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ABSTRACT
We present an advanced version called Voxento-Pro which is an
interactive voice-based lifelog retrieval system. This system has
been developed to participate in the seventh ACM Lifelog Search
Challenge LSC’24, at ICMR’24 in Thailand. In Voxento-Pro, we
introduce a conversational query methodology by utilising Ope-
nAI’s Assistant API and employ OpenAI’s Whisper technology
for state-of-the-art speech recognition and synthesis. This novel
version features a more natural interaction mechanism, which en-
hances the user’s experience. In addition, the user interface (UI) was
redesigned and introduced a new chat interface and other compo-
nents. The backend retrieval API was rebuilt with a new technology
to support fast and efficient API interactions. Data processing of the
lifelog data resulted in about 20% of non-important images being
identified and 27% of missing data being filled with Geocoding APIs.

CCS CONCEPTS
•Human-centered computing→ Sound-based input / output;
• Information systems → Search interfaces; • Computing
methodologies → Speech recognition.
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1 INTRODUCTION
Lifelogging, the practice of digitally documenting one’s life through
the use of a range of sensors and wearable camera technology, is
revolutionising how we capture and recall our daily experiences.
This process creates a rich, multimodal dataset consisting of photos,
metadata, location data, and biometric metrics data, among others,
aiming to provide an integrated view of an individual’s daily activ-
ities [7]. Yet, the challenge is in our ability to effectively retrieve
a particular moment in detail, which is essentially a problem of
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searching through a vast array of multimodal lifelog data to find
relevant content.

Recent development of AI tools and the implementation of large
language models (LLMs), provide the ability to understand human
natural language through its training on vast amounts of text data.
For instance, OpenAI’s ChatGPT (Generative Pre-trained Trans-
former model), employs advanced algorithms to understand and
process natural language queries [14]. We believe utilising these ad-
vanced technologies can have a significant contribution to pushing
the field of lifelog retrieval forward.

Voxento’s evolution has resulted in a state-of-the-art lifelog re-
trieval system that offers a user-friendly voice interaction, facil-
itating effortless access to lifelog data. This system has been a
participant in the last four LSC challenges, showing progressive im-
provements [2–5]. Hence, we introduce Voxento-Pro which utilises
OpenAI’s Assistant API [14] to deliver a greater understanding of
the context to user queries with improved levels of support when de-
tecting relevant answers from lifelog metadata. We also incorporate
the OpenAI Whisper API [16] as an additional speech recognition
feature, leveraging its exceptional accuracy and capacity to operate
in a variety of noisy environments. In addition, significant effort
was made in processing the lifelog dataset, where approx. 20% of the
images were classified as not within the user interests scope (not
likely to be of relevance to any expected user queries). We retained
the OpenAI CLIP model (ViT-L/14) [15] while evaluating larger
models from OpenCLIP models (ViT-H/14) and (ViT-g/14) which
contain 5 times more trained data [6]. The interface was redesigned
with new components such as a chat interface, search-level option
and topic task selection. Also, an efficient filtering mechanism was
introduced into the system’s backend, designed to extract various
filters from the query. This approach aims to deliver a focused and
relevant set of results, thereby reducing the user’s need to manually
select filters on the frontend. Finally, this paper includes an analysis
of the system’s performance evaluation.

2 RELATEDWORK
In the recent LSC’23 competition [9], 13 systems participated phys-
ically, including the involvement of novice users. LifeXplore, which
won for the first time, redesigned its entire system, integrating free
text-search using embeddings and utilizing the OpenCLIP (ViT-
H/14) model, achieving best results [17]. MyEachtra [20], ranked
second, built upon the successful MyScéal system [21], emphasizing
event segmentation as a primary contribution to the retrieval pro-
cess. Both LifeXplore andMyEachtra used OpenCLIP (ViT-H/14) for
image-text retrieval. Memento 3.0 [1] also employed CLIP models,
leveraging embeddings from a range of larger models like OpenAI
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CLIP and OpenCLIP, while E-LifeSeeker [12] used similar models
alongside CoCa, BLIP, and ALIGN. Overall, there is a growing inter-
est in the use of OpenAI CLIP, OpenCLIP, and BLIP models, which
collectively advance the state-of-the-art in lifelog retrieval systems.

In terms of Question-Answering (QA) topics, such efforts made
by MyEachtra and MyScéal [20, 21], have laid the groundwork by
employing QA models on lifelog data to provide visually corre-
lated answers to queries. Meanwhile, initiatives like E-LifeSeeker,
LifeInsight and MemoriEase [12, 13, 23] have utilised embedding
models like CLIP and BLIP, though users are required to visually
identify answers within images. Our methodology seeks to employ
advanced Large Language Models (LLMs) to deliver comprehensive
natural language responses to queries alongside the top-ranked
relevant images from image-text embeddings, thereby allowing for
a more dynamic and engaging user dialogue. This aligns with the es-
sential aspects of question-answering and conversational retrieval,
crucial for an efficient voice interface.

Recent advancements in lifelog retrieval are demonstrated by
the Lifelog Discovery Assistant [10], which leverages GPT-3 to re-
fine search queries for optimal alignment with vector embeddings
through precise instructions. A related work, LifeInsight [13], lever-
ages AI-driven technologies to reformulate user queries into various
descriptions relevant to the user’s requirements, and is capable of
executing multiple retrieval operations using these diverse descrip-
tions. Diverging from this, our method employs GPT-4, catering to
the complexity of instructions and system configuration necessary
for a conversational chatbot specifically designed to lifelog data
retrieval. Our approach enhances query context understanding,
provides clarifications as needed, supports speech-based queries,
effectively reformulates searches and provides comprehensive an-
swers within the lifelog data.

A few systems incorporate speech-to-text technology to con-
vert speech queries into text, such as [19] by using DeepSpeech
technology, yet the discussion on fully voice-based lifelog retrieval
systems has been limited, with our system being an exception. Some
previous research like [18] has adopted the Speech API following
its integration into our work, but none have yet utilised OpenAI’s
Whisper API. In pioneering this approach, we have introduced
Whisper into our system, setting a new standard for accuracy and
efficiency in voice-based lifelog retrieval.

3 LSC23 REVIEW OF VOXENTO 4.0
PERFORMANCE

At each participation for Voxento, our highlighted contribution
related to system performance, user experience, and new topic
queries involving different levels of complexity. Most notably, at
the recent LSC’23 competition [9], Voxento 4.0 was ranked 6th
of the 14 systems. One interesting observation is that the Novice
user performed better than the expert user in all topics of tasks. In
addition, the novice user achieved the top score among all partic-
ipants in the KIS topic. This can be linked to the effectiveness of
the interface for novice users. We highlighted the aspects related
to Voxento 4.0 performance as follows:

• User Interface (UI): Although we designed the user interface to
be more effective, the novice user encountered some challenges at
the training session that might be related to the many options and

components in the interface. Therefore, minimising the number
of components and making the user interface more simple.

• Ad-hoc topic task: Despite Voxento’s 4.0 efficiency in retriev-
ing many images, a notable portion of the ranked results still
includes irrelevant images to the query. To address this, the initial
step involves data processing aimed at reducing the presence of
non-valuable images, such as blurry ones, from the dataset and
eliminating unrelated images through the introduction of a new
filtering mechanism.

• Q&A topic task: The challenge lies in locating the answer within
either the images themselves or the accompanying text in the
metadata. Users must carefully examine the images, subsequent
events, and relevant metadata to derive an answer. To facilitate
the resolution of such complex topic tasks, we leverage the capa-
bilities of OpenAI’s Assistant API [14] which employs the API as
a retrieval task based on the ranked results set which is derived
from the image-text embeddings.

Figure 1: Voxento-Pro System Architecture and Workflow

4 OVERVIEW OF VOXENTO-PRO
In this section, we present an overview of Voxento-Pro and its archi-
tecture, with a detailed description of the main components, includ-
ing the LSC data processing, conversational query methodology,
user interface and interaction and semantic search. The system’s
architecture, illustrated in Figure 1, is divided into five principal
components: the user interaction, the visual interface for displaying
results, Speech APIs that facilitate voice recognition and synthesis,
OpenAI’s Assistant API for natural language processing, and the
backend API. The backend consists of a filtering mechanism that
interprets and implements query filters on search results, along
with two search engines—one for text-based queries and another
for image-embedding searches.

There is no change to the LSC dataset used in LSC’24 from last
year. A detailed description of the LSC’24 dataset can be found
in [8, 9]. This dataset contains about 725,000 images which were
generated using wearable cameras by an active lifelogger over 18
months between 2019 and 2020.

4.1 Data Processing
As the lifelog dataset expands in size, a key challenge emerges in
managing these datasets to align with computational capacities
while employing embedding models that maintain a manageable
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size of embedding features. To further enhance the dataset, we have
undertaken several tasks, including:
• Non-valuable Images: We define non-valuable images as those
lacking clear content, like blurry or overly dark pictures. Utilising
the OpenCV1 library, we apply a Laplacian variance threshold
method for blur detection and a colour analysis strategy for iden-
tifying dominant colours in images through HSV (Hue, Satura-
tion, Value) range. This approach helped us identify around 4,000
blurred and 9,000 colour-dominant images, such as those with
9,000 instances of high dominant colour over an image, making
them non-valuable. Figure 2 shows examples of such images.

• Non-important Images: We assume that such images are likely
to be of no interest to lifeloggers seeking meaningful content. Nu-
merous images were discovered that are unlikely to provide any
significant meaning, such as pictures of blank walls or ceilings.
Our exploration of the OpenCV library revealed that edge detec-
tion, specifically through the use of the canny method at a very
low threshold, could effectively identify these unwanted images.
Approximately 178,000 images, constituting 24% of the dataset,
were detected using this method. Figure 2 shows examples of
images generated by edge detection.

• Geographic Coordinates: We encountered numerous images
lacking specific location details, such as city, country, and address.
Just having the name of a place proved insufficient for extract-
ing the necessary information. To address this issue, we turned
to the OpenStreetMap2 API and the Google Geocoding3 API.
These tools allowed us to transform the geographic coordinates
associated with each image into detailed address information.

• Travel Labels: We have decided to further refine and enhance
this feature by continuously labelling travel-related images with
the format (source airport code - destination airport code) from a
previous system [5]. We identified the absence of labels for four
travel instances. This discovery was made possible by leveraging
the VAISL dataset, by [22]. As a result, this enhancement sig-
nificantly aids in the retrieval process by allowing the system
to exclude a total of 17,000 images associated with travel labels
when the search query does not pertain to airplanes, thereby
streamlining the search experience and improving the relevance
of retrieved results.

• Gaps and Missed Data: To cover for interruptions in GPS data
recording, we implemented a method where we filled in missing
location details for images by analysing the temporal and spatial
timing of events surrounding the gaps. If events before and after
a gap showed the same location and were within a five-minute
interval, we assumed the lifelogger remained in the same place,
resulting in updating around 200,000 records accordingly. Addi-
tionally, we utilised the VAISL dataset [22] to enhance and enrich
our metadata with missing information, such as home labels, and
introduced new types of data like activity labels.

4.2 Conversational Query Methodology
It is crucial for LSC to develop a system that supports understanding
while providing natural language queries with the interaction in

1https://opencv.org/
2https://www.openstreetmap.org/
3https://developers.google.com/maps/documentation/geocoding/overview

Figure 2: Examples of Non-valuable and Non-important Im-
ages

the context of lifelog retrieval. Therefore, we employed the OpenAI
Assistant API to guide the search engine to the most appropriate
interaction with the user. Hence, by utilising the API we treat the
retrieval process as a cooperative task, where the user and the AI
API work together to find the desired information.

To fulfil the integration smoothly between the user, backend
(search engine) and the OpenAI Assistant API, we defined six flags
for different contexts of interaction after various designs and tests
as follows:

We asked OpenAI’s Assistant API in the instructions to include
these flags in the response, so the backend retrieval will understand
the next action.

• Reply: Response for normal query like greetings.
• Context: Employ if a query is unrelated to the lifelog data.
• Clarification: Required for vague or incomplete queries.
• Answer: Submit the answer found in the text.
• Search: Appropriate when a query is detailed enough
• Re-search: Reformulate the query if the results are insuffi-
cient.

Figure 3 displays a variety of chat dialogues between users and
the system, facilitated by OpenAI’s Assistant API. Furthermore,
OpenAI’s Assistant API incorporates a retrieval task feature that
allows for dataset attachment, yet the full lifelog dataset remains
securely stored in our backend and is not fully disclosed to OpenAI.
Only a limited selection of the top 10th-ranked list, with specific
columns, is shared to ensure privacy considerations are properly
upheld.

4.3 Improved Voice-based Interaction
In the context of enhanced voice interaction, the development of
the chat interface has been a pivotal step towards achieving a fully
interactive lifelog retrieval system. This interface serves as the
foundation for voice-based interaction retrieval, transitioning from
a traditional standard retrieval system to a lightweight application
developed and equipped with a screen capable of processing speech
queries and delivering results in both text and image formats.

In terms of new features, we employ state-of-the-art speech
recognition and synthesis from the OpenAI API called Whisper
[16]. The incorporated additional speech API benefits lifelog re-
trieval tasks by supporting a more seamless and intuitive user
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Figure 3: Chat Dialogue Examples

experience, facilitating direct, voice-activated access to lifelog data.
Enhancements in voice interaction have been made by removing
non-essential voice commands, such as filter applying, and shifting
these functions to the backend, simplifying the user experience. Ad-
ditionally, the interface now supports text-to-speech functionality
for responses, enhancing the naturalness of communication.

We have retained the Google Speech API, our native speech
recognition technology, ensuring effective interaction by leverag-
ing both technologies. The detailed implementation of voice in-
teraction features in earlier versions of our system is thoroughly
documented in [3, 4], providing an extensive overview of the fea-
tures and methodologies employed in our approach to voice-based
lifelog retrieval.

Figure 4: Voxento-Pro Main Interface

4.4 Improved User Interface (UI)
Reflecting on the insights gained from the analysis in section 3,
we undertook a comprehensive redesign of our interface to priori-
tise simplicity and enhance usability for novice users, as shown

in Figure 4. The updated user interface incorporates several key
enhancements to improve user interaction and system functionality,
with retained crucial features from previous versions.

Firstly, We introduced a chat interface that connects to the back-
end, integrating with the OpenAI Assistant API, equipped with a
speech recognition button allowing direct speech-to-text input. We
now offer two different levels of search functionality. The optimised
search utilises extracted filters and excludes non-valuable images.
The second level ’deep search’ mode includes all images with filter-
ing, providing a more extensive search option. Additionally, users
will have the option to select the desired number of search results,
enhancing customization based on user preference. To further assist
users, especially novices, we introduced selectable topic types to
guide the search process more effectively.

In terms of visual enhancements, the interface now displays
a list of activities before and after a selected image and includes
detailed annotations within zoomed images. We have also enriched
the image labels in the main interface by adding location details
alongside existing date and time information. Newly implemented
is a method for extracting the frequency of words in the results set,
which provides insights that are particularly useful in responding
to queries about trends, such as “Which airline did I fly with most
often in 2019?”.

4.5 Improved Semantic Search
Firstly, regarding the backend API development, we transitioned
from using Flask API to FastAPI for our new API technology. Unlike
Flask, which operates on a synchronous model, FastAPI functions
asynchronously, making it more adept at handling numerous re-
quests simultaneously. This adaptation is especially beneficial given
the competitive nature of the LSC, where timely and efficient han-
dling of multiple queries is crucial. FastAPI enhances the speed of
our search query API calls, allowing for quicker responses.

In exploring semantic search, the OpenCLIP ViT-H/14 model
demonstrated superior performance in LifeXplore and MyEach-
tra winning systems [17, 20]. Meanwhile, the OpenCLIP ViT-g/14
model showed enhanced performance compared to the OpenAI
ViT-L/14 model at hint 3 [1]. However, at the initial hints, the Ope-
nAI ViT-L/14 model outperformed all competing models [1]. Given
the proven effectiveness of the OpenAI CLIP ViT-L/14 model in
handling most LSC queries, we have continued its use while also
evaluating the OpenCLIP ViT-H/14 and ViT-g/14 models.

An advancement was made in optimising text-based search func-
tionality. While text-based search mechanisms were operational in
prior versions of our system, the principal challenge lay in the wait
time for generating ranked results. To address this, we carefully
selected metadata to encompass only essential texts and stream-
lined the search algorithm to operate on a select subset of metadata
columns.

4.6 Improved Filtering Mechanism
In an effort to further improve the efficiency of data retrieval, we
innovated a pre-result filtering system. This enhanced mechanism
utilises a set of pre-configured filters, capable of being called di-
rectly on the query prior to the generation of result sets. These
filters consist of detailed criteria, including date, time, and location,
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for instance, within the time filter, specifications such as midnight,
morning, afternoon, and even seasonal categories are considered.
Moreover, the refinement of our filtering methodology extends to
the accommodation of spelling errors within queries related to filter
criteria. For instance, a search query such as I visited Thiland in the
last sumer for a university trip, despite misspellings, is interpreted
accurately by the system to deduce intended filters—country name
and seasonal period. In this scenario, the system’s enhanced linguis-
tic flexibility recognises variations of ’Thailand’ as thiland, thilnd,
tailend and ’Summer’ as sumer, summr, thereby maintaining the
efficacy of the search mechanism despite input inaccuracies.

4.7 Improved Vector Similarity
Major strategies have been employed to enhance the efficiency
of vector similarity computations. The initial approach involved
narrowing the dataset by removing 20% of images deemed non-
essential, leading to the creation of two separate sets of embeddings
based on specially prepared metadata. The first set encompasses em-
beddings for the entire image collection, while the second excludes
those identified as non-important. This distinction has facilitated
the introduction of a search-level feature within the user interface,
empowering users to select the depth of search according to their
needs when initial results are deemed inadequate.

In terms of indexing the embedding features, the system lever-
ages the same as the previous version, FAISS (Facebook AI Sim-
ilarity Search) [11] with a brute-force approach. LifeXplore and
Memento 3.0 [1, 17] showed competitive systems using the FAISS
and the method of the inverted file index with clustering. In our
approach, we have expanded upon this methodology by increasing
the number of clusters to 100 through an inverted index strategy.
This adjustment significantly accelerated search speeds, however,
initial testing found that a brute-force approach could have more
accuracy.

5 SYSTEM EVALUATION
Based on the innovations introduced into the current system, we
evaluated 24 Known-Item Search (KIS) topics, incorporating 14 from
LSC’22 and 10 from LSC’23, utilising the HiT@K metric, which
measures the effectiveness of retrieving at least one relevant item
within the top-𝐾 of the result set. This evaluation employs a range
of𝐾 values (1, 3, 5, 10, 20, 50, and 100) and the provided information
hints at distinct time intervals (𝑇=0,30,60 seconds), which closely
follows the Memento evaluation [1]. The evaluation was performed
on three versions: 𝑉𝑜𝑥𝑒𝑛𝑡𝑜4.0, our previous system; 𝑉𝑜𝑥𝑒𝑛𝑡𝑜 −
𝑃𝑟𝑜𝑂𝑝𝑒𝑛𝐴𝐼𝐶𝐿𝐼𝑃 the current version; and𝑉𝑜𝑥𝑒𝑛𝑡𝑜−𝑃𝑟𝑜𝑂𝑝𝑒𝑛𝐶𝐿𝐼𝑃 ,
using the OpenCLIP model (ViT-H/14).

The data presented in Table 1 demonstrates the enhanced capabil-
ities of Voxento-Pro OpenAI CLIP ViT-L/14, evidencing its superior
efficacy in accurately identifying a specific image from the initially
provided hints. Comparing Voxento 4.0 with Voxento-Pro (both
versions using the OpenAI CLIP ViT-L/14 model), there’s a clear
improvement in the HiT@K metrics across almost all K values. The
most notable advances are seen in the lower K values (@1, @3, @5),
which are critical for immediate user satisfaction as they indicate a
higher percentage of the user finding a relevant result quickly. For
instance, at hint 1, there’s an improvement from 16.67% to 20.83%

at @1, and similar incremental improvements are observed at @3
and @5. The user will be able to solve on average 41.67% of the
queries in only the top three ranked results with only the first
hint. It is important to note, however, that the inclusion of images
deemed unimportant marginally impacts the overall result quality.
The advancements in data processing have indeed resulted in the
successful attainment of the system’s performance benchmarks.

Voxento-Pro maintains or slightly improves performance at
higher K values, suggesting enhanced overall recall without af-
fecting the precision in early results. In comparison, Voxento-Pro
using the OpenCLIP ViT-H/14 model shows a decrease in perfor-
mance across the board compared to the OpenAI CLIP ViT-L/14
models, even with its expansive training dataset and large model
dimensions. This suggests that while Voxento-Pro has benefited
from the advanced features introduced in the paper, the OpenCLIP
model may not align as well with this particular dataset or the
configurations may need further adjustment. Consequently, the
employment of both OpenCLIP ViT-H/14 and OpenCLIP ViT-g/14
(also tested but not included in the table) will be excluded from
the current version, reserving instead for subsequent testing ex-
periments. The experimental phase shed light on an interesting
observation: an increment in hints does not necessarily correlate
with a higher probability of retrieving relevant images. The testing
analysis shows a slight decrease in HiT@K metrics after the fifth
hint.

In our focused evaluation of Question-Answering (Q&A) queries,
we selected 10 Q&A topics from LSC’23, on purpose omitting Q&A
topics from LSC’22 due to the absence of factual answers. This
strategic choice facilitated the examination of the system’s efficacy
in leveraging the integration of text-image retrieval capabilities
with the Assistant API. Among the chosen topics, the system suc-
cessfully provided detailed responses to 5, offered closely related or
relevant answers to 3, and was unable to address 2 topics. Notably,
some queries returned responses only after the initial questions
were rephrased. The following is an example of a topic for which
the system generated an answer:

• Q&A: I had some Strawberry Jam / Preserve in my refrigerator.
It was the best jam I ever tasted. What brand was it?

• Answer: The brand of the best tasting Strawberry Jam / Preserve
in the user’s refrigerator is "MRS BRIDGES".

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an advanced version of Voxento system
generation called Voxento-Pro. This paper introduces the conver-
sational query methodology by utilising OpenAI’s Assistant API
which shows promising results alongside Whisper API, a state-of-
the-art speech recognition and synthesis from OpenAI. The user
interface was redesigned with the introduction of the chat interface,
search-level options and other components. We kept employing
OpenAI CLIP (ViT-L/14) and with the system’s features showed bet-
ter results compared to the previous system, specifically in solving
on average 42% of queries in only the top three ranked results with
only the first hint. Intensive efforts in data processing resulted in
identifying about 20% of non-important images, 200k missing data
in addresses filled and 16k images travel labelled. We will continue
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Hint @1 @3 @5 @10 @20 @50 @100

Voxento 4.0 (OpenAI CLIP ViT-L/14) H1 16.67 37.5 50.00 50.00 66.67 66.67 83.33
H2 25.00 50.00 62.50 70.83 79.17 83.33 83.33
H3 45.83 50.0 58.33 70.83 75.00 83.33 83.33

Voxento-Pro (OpenAI CLIP ViT-L/14) H1 20.83 41.67 54.17 58.33 70.83 70.83 83.33
H2 29.17 50.00 58.33 66.67 75.00 79.16 83.33
H3 50.00 54.17 58.33 66.67 70.83 70.83 70.83

Voxento-Pro (OpenCLIP ViT-H/14) H1 16.67 25.00 25.00 33.33 41.66 54.17 62.50
H2 29.17 37.50 45.83 45.83 45.83 54.17 54.17
H3 25.00 37.50 41.67 45.83 50.00 58.33 58.33

Table 1: Comparative Evaluation of System Performance for 24 Known-Item Search (KIS) Topics Using Average HiT@KMetrics

improving the conversational query methodology by fine-tuning
the model as well as improving the user voice interaction.
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