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Notations:
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rt Risk free rate during time [t− 1, t].

θit Number of shares of the ith asset held at time t.
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µi Drift of the ith asset.
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Xt Wealth of a portfolio at time t.

Σ Covariance matrix of the portfolio.

γ Risk aversion parameter of power utility.

εi Transaction cost of the ith asset.
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Abstract

This thesis develops a method for evaluating and mitigating the effect of transac-

tion costs on trading strategies with many assets. An iteration procedure yields the

cost-adjusted portfolio return, enabling the formulation of portfolio-choice problems as

optimization of Recurrent Neural Networks (RNN). This method reproduces the theo-

retical results available for one risky asset and the numerical approximations available

for two risky assets through finite-elements. Crucially, the RNN model scales to sev-

eral assets and is fully interpretable, as its parameters identify their no-trade region.

Importance-sampling significantly enhances the model’s performance, especially with

several assets. An application to equally-weighted funds demonstrates the method’s

ability to reduce both tracking error and tracking difference from an empirical target.
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Chapter 1

Introduction

1.1 Background

According to iShares [2023], Exchange-Traded Funds (ETFs) are a significant fraction

of the total global financial market in both equities and fixed income, ranging from

4.4% to 12.7% of equities, and continue to increase. This indicates a high demand for

asset management over the world. Managing assets in a frictionless market is simple -

fixed proportions invested in risky assets respectively is the optimal solution (Merton

[1969], Merton [1971]) based on the assumption of Geometric Brownian Motion risky

assets. However, real markets have several frictions. Possible transaction costs consist

of bid-ask spread (whereby an investor has to buy at higher price than they could sell

for), broker fees, and market impact for specific investors. iShares [2023] also points

out that the US market witnesses an average 12 bp bid-ask spread in the US ETF

market, while this number is even higher in Europe and Asian-Pacific market. The

stock market is a little bit more liquid, as the average bid-ask spread of NYSE and

NASDAQ are around 0.5% and 1% respectively.

Investors who ignore transaction costs and stick to their target strategy may suffer

a loss and go bankrupt in the worst scenario. A general way to fix the problem is

to perform a buy-and-hold strategy, thereby reducing trading frequency. However, no

explicit solution is made for such a question with large portfolios. When one asks what

is exactly the optimal strategy, what are the impacts of such transaction costs, and how

1 21/08/2024



Chapter 1. Introduction

to evaluate the performance of a portfolio accurately with such costs, the problem soon

turns into solving a n-dimensional nonlinear stochastic partial differential equation

(SPDE), which is too complicated in general.

Although a number of numerical solutions has been made to solve the problem

and impressive achievements have been obtained, most studies restrict the number of

risky assets to a small number (i.e, two risky assets). We want to study this question

through machine learning methods with several risky assets.

1.2 Literature

Markowitz [1952] was a pioneer in the development of the quantitative portfolio op-

timization problem. Merton [1969] and Merton [1971] later addressed the portfolio

optimization problem in a continuous market, demonstrating that an investor should

maintain a constant proportion of safe and risky assets. However, the presence of

transaction costs complicates the problem, as sellers receive less than the market price.

Consequently, the Merton strategy would inevitably lead to bankruptcy if executed

continuously.

Magill and Constantinides [1976] were the first to investigate the Merton problem

in the context of transaction costs, concluding that a no-trade region exists wherein the

investor should refrain from trading. Davis and Norman [1990] explored the theoretical

characterization of the partial differential equation (PDE) for determining the no-trade

region. Liu and Loewenstein [2002] established the boundary in a finite horizon, while

Liu [2004] examined the multi-dimensional model with uncorrelated assets. Guasoni

and Muhle-Karbe [2015] and Gerhold et al. [2014] derived the explicit form of the

boundaries in a market with a single riskless and risky asset subject to bid-ask spread.

Bichuch and Guasoni [2018] studied a two-asset model featuring correlated liquid and

illiquid assets. Brown and Smith [2011] constructed a dynamic model to approximate

the value function directly. Other relevant research includes asymptotic analysis and

numerical solutions (Muthuraman and Kumar [2004], Altarovici et al. [2016], Chen

et al. [2022]), rebalancing frequencies (Ekren and Liu [2018], Sun et al. [2006]), and
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Chapter 1. Introduction

the consumption problem (Gerhold et al. [2013]).

This thesis is primarily concerned with explicit and numerical solutions of optimal

trading strategy with transaction costs. In a market where the bid-ask spread ε ∈ (0, 1)

represents the sole transaction cost, sellers receive only (1 − ε)St, where St denotes

the asset prices. This study aims to develop a potential machine learning algorithm

for numerically determining the optimal strategy in a market comprising multiple

correlated assets with varying transaction costs. Most related research tends to employ

Convolutional Neural Networks (CNN) and Reinforcement Learning (RL) to pinpoint

the optimal strategy or identify trading opportunities by analyzing financial signals

(Deng et al. [2017], Ugur Gudelek et al. [2018]). Zhang and Zhou [2019] utilized an

RL model and compared the resulting no-trade region with PDE solutions but did

not fully address the impact of correlation. Gaegauf et al. [2023] figure out a way to

model the no-trade regions with machine learning, Gaussian process regressions and

dynamic programming. Most of the listed works focus on one risky asset or two risky

assets. However, we are more interested in studying the no-trade regions of multiple

dimensional assets from their geometric implication, comparing the outcomes with

existing results and validating empirical results.

1.3 Contributions

To achieve this objective, we first develop an algorithm-friendly function that can

serve as a layer in the machine learning model, calculating the overall return of a

trading strategy under specific transaction costs. Next, we create the asymptotic

boundaries derived from explicit and numerical solutions presented Gerhold et al.

[2014], Muthuraman and Kumar [2004] and Bichuch and Guasoni [2018] in the form

of activation functions for the RNN model. Our Recurrent Neural Network (RNN)

model can produce accurate solutions for a single risky asset and approximate solutions

for two risky assets, and can be extended to higher dimensions. The simulated asset

data is processed through the activation function and return function before reaching

the loss function, followed by backpropagation. The model is trained multiple times,
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Chapter 1. Introduction

and the resulting solutions are compared with relevant Partial differential equations

(PDEs) and numerical results.

Results indicate that the single-asset model demonstrates excellent performance

with rapid convergence, and the two-asset model exhibits similar results. The high-

dimensional model provides approximations of no-trade regions, which have been ef-

fectively tested in 3-asset and 10-asset systems. However, the high-dimensional model

consumes significantly more system resources and memory than the one-asset and two-

asset models, and this issue has been partially resolved with the importance sampling

method (Guasoni and Robertson [2008]). A hyperellipsoid method is also introduced

to help the convergence of high dimension problems at the cost of less accuracy. Such

method is partially effective and need extra improvement to reduce the side effect of

unforeseen gradients. An empirical study to equally-weighted ETF fund EQL demon-

strates the method’s ability to reduce both tracking error and tracking difference from

a target trading strategy.

In conclusion, the novel contributions of this thesis consist of:

(i) Use of RNN for portfolio management with transaction costs.

(ii) Development of an iterative procedure for portfolio optimization with transaction

costs.

(iii) Comparison of performance of the proposed method with available explicit re-

sults.

(iv) Development of machine learning algorithms that are applicable to portfolios

with many assets.

(v) Proposal of hyperellipsoid no-trade regions as practical compromise between per-

formance and tractability.

(vi) Performance-enhancement through the application of importance-sampling.
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Chapter 1. Introduction

1.4 Thesis structure

This rest of the thesis is organised as follows:

• In Chapter 2, we present an approach for replicating a portfolio return with

trading costs. The approach exploits iterations to obtain fast convergence of

portfolio returns with transaction costs. We also design a recurrent neural net-

work to calculate such portfolio return from relevant assets. In detail, the model

takes assets returns, costs, and a target strategy as inputs and outputs a cus-

tomised loss function.

• In Chapter 3, we demonstrate the formulation of the one-asset and two-assets

model. Both models are based on the utilization of double-ReLU functions.

Monte Carlo methods are employed for simulating numerical results, which are

compared to existing outcomes. ESR (Equivalent safe rate) is introduced to

evaluate model outputs.

• In Chapter 4, we formulate a multiple assets model by constructing a vectoriza-

tion and bisection method with approaches to reduce complexity. A simplified

hyperellipsoid method is then included to help the convergence with higher di-

mension. In addition, this chapter pertinent examples featuring more than two

risky assets: simulated portfolios with 2, 3, and 10 risky assets. 3-D no-trade

region of 3 assets and ESR are also presented.

• In Chapter 5, we introduce a number of variance reduction methods among which

we choose the importance sampling method. We prove the change of measure

of importance sampling for the wealth process with transaction costs and apply

the method on high dimensional assets model. We compare simulation results

with and without variance reduction, to ascertain the performance increase.

• In Chapter 6, we introduce tracking error and tracking difference to evaluate

ETF (Exchange-traded fund) performance. We import an equally-weighted ETF

(EQL) to demonstrate the RNN method’s ability to reduce both tracking error
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Chapter 1. Introduction

and tracking difference from an empirical target. The performance of the hyper-

ellipsoid method is also examined.

• In Chapter 7, we conclude the thesis, discussing the future of this work and

limitations, outlining some potential research directions for the future.
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Chapter 2

Portfolio Returns Model

This chapter presents a novel approach for constructing a portfolio return with trans-

action costs. The approach is suggested to be working with iterations and algorithm

friendly. Mathematical proof of convergence is presented and an example is also in-

troduced. Then an structure of recurrent neural network is designed to calculate such

portfolio return from relevant assets. In detail, the model takes assets returns, costs a

target strategy as input and generates loss function through a layer with customised

activation function which will be modeled in following chapters.

2.1 Portfolio Returns with Proportional Trading Costs

In a financial market with d risky assets, denote by rit the simple return of the i-th

risky asset in the period [t − 1, t] and by rt−1 the safe return (the subscript of each

quantity reflects the time it is observed). In the absence of trading costs, a portfolio

that holds a fraction of wealth πi
t−1 in the i-risky asset has the familiar return

rπ,0t =

(
1−

d∑
i=1

πi
t−1

)
rt +

d∑
i=1

πi
t−1r

i
t, (2.1)

which is the weighted average, using portfolio weights, of the assets’ returns during

the same period.

In the presence of proportional trading costs, portfolios’ returns are no longer

7 21/08/2024



Chapter 2. Portfolio Returns Model

weighted averages of assets’ returns. In fact, such returns are not even determined by

assets’ returns alone, as they must include also the cost of adjusting a portfolio at the

end of the period.1

If trading the i-th asset incurs a proportional transaction cost of εi, in that the

ask price at time t is Si
t(1 + εi) while the bid price is Si

t(1 − εi), the following result

shows how to obtain the return with trading costs of a solvent trading strategy through

simple iteration.

Proposition 2.1.1. Let the prices Si
t be positive. If a solvent strategy π = (πi

t)
1≤i≤d
0≤t<∞

satisfies the condition L := sup1≤t≤T

∑d
i=1 ε

i|πi
t| < 1, then the function

F π,ε(x) :=
d∑

i=1

πi
t−1r

i
t +

(
1−

d∑
i=1

πi
t−1

)
rt −

d∑
i=1

εi|πi
t(1 + x)− πi

t−1(1 + rit)|, (2.2)

has a fixed point, and it is the return rπt of the strategy π with transaction costs. The

sequence defined by rπ,0t as in (2.1) and rπ,n+1 = F π,ε(rπ,n) converges to rπt and

|rπ − rπ,k| ≤ Lk

1− L

d∑
i=1

εi
∣∣πi

t(1 + rπ,0t )− πi
t−1(1 + rit)

∣∣ . (2.3)

Proof. Denoting by θit the number of shares of the i-th asset held at time t in the

portfolio and by Xt the portfolio value at time t, the budget equation with proportional

transaction costs is

Xt −Xt−1 =
d∑

i=1

θit−1(S
i
t − Si

t−1) +

(
Xt−1 −

d∑
i=1

θit−1S
i
t−1

)
rt−1 −

d∑
i=1

εiSi
t |θit − θit−1|

(2.4)

Dividing the right-hand side by Xt−1,

Xt −Xt−1

Xt−1

=
d∑

i=1

Si
t−1θ

i
t−1

Xt−1

·
Si
t − Si

t−1

Si
t−1

+

(
1−

d∑
i=1

θit−1S
i
t−1

Xt−1

)
rt−1−

d∑
i=1

εi
Si
t

Xt−1

|θit−θit−1|

1Adjustment at the beginning or at the end of the period is a matter of convention. We adopt the
latter convention so as to consider only the two portfolio weights πt−1 and πt in the period [t− 1, t]
rather than πt−2, πt−1, πt.
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Denoting by rπt = Xt−Xt−1

Xt−1
the portfolio return, by rit =

Si
t−Si

t−1

Si
t−1

the return on the i-th

asset, and by πi
t =

θitS
i
t

Xt
the portfolio weight of the i-th asset, it follows that

rπt =
d∑

i=1

πi
t−1r

i
t +

(
1−

d∑
i=1

πi
t−1

)
rt−1 −

d∑
i=1

εi
Si
t

Xt−1

|θit − θit−1| (2.5)

To rewrite also the last term as a function of weights and returns, note that, because

both Si
t and Xt are positive (the latter by solvency):

d∑
i=1

εi
Si
t

Xt−1

|θit − θit−1| =
d∑

i=1

εi
∣∣∣∣θitSi

t

Xt

Xt

Xt−1

−
θit−1S

i
t−1

Xt−1

Si
t

Si
t−1

∣∣∣∣
=

d∑
i=1

εi
∣∣πi

t(1 + rXt )− πi
t−1(1 + rit)

∣∣
Thus, equation (2.5) becomes:

rπt =
d∑

i=1

πi
t−1r

i
t −

d∑
i=1

εi
∣∣πi

t(1 + rπt )− πi
t−1(1 + rit)

∣∣+(1− d∑
i=1

πi
t−1

)
rt−1

= F π,ε(rπt ) (2.6)

which identifies rπt as a fixed point of the map F .

To establish the convergence of the sequence (rπ,n)n≥1, it suffices to show that F

is a contraction: for some δ > 0 it holds that |F (x) − F (y)| ≤ (1 − δ)|x − y| for all

x, y ∈ R, that is, F is Lipschitz continuous with constant strictly less than one. Thus,

it is enough to check that the derivative of F is defined up to a finite number of points,

and that its absolute value is strictly less than one. Indeed,

|(F π,ε)′(x)| =

∣∣∣∣∣−
d∑

i=1

εiπi
t sgn

(
πi
t(1 + x)− πi

t−1(1 + rit)
)∣∣∣∣∣ ≤

d∑
i=1

εi|πi
t| ≤ L < 1. (2.7)

Thus, F has a unique fixed point, to which every iteration converges. In particular,

starting the iteration at the frictionless return rπ,0t yields

|rπ,nt − rπ,n−1
t | ≤ Ln−1|rπ,1t − rπ,0t | = Ln−1

d∑
i=1

εi
∣∣πi

t(1 + rπ,0t )− πi
t−1(1 + rit)

∣∣ (2.8)
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whence, as claimed,

|rπt − rπ,kt | ≤
∞∑

n=k+1

|rπ,nt − rπ,n−1
t | ≤ Lk

1− L

d∑
i=1

εi
∣∣πi

t(1 + rπ,0t )− πi
t−1(1 + rit)

∣∣ (2.9)

Proposition 2.1.1 yields a simple procedure to compute a portfolio’s return with

transaction costs. Starting from the frictionless return, iterate the map in equation

(2.3) a few times until the desired precision is reached. Equation (2.9) yields a point-

wise bound on the error in terms of the frictionless return. Note also that Proposition

2.1.1 only requires portfolio weights and assets’ returns, not asset prices and number

of shares, thereby superseding the calculation of such auxiliary quantities.

The iteration converges under the mild condition
∑d

i=1 ε
i|πi

t| < 1, which is satisfied

in any realistic situation. For example, the condition holds if (max1≤i≤d ε
i)
∑d

i=1 |πi
t| <

1, which means that the total risky position, as a multiple of the portfolio value, does

not exceed the reciprocal of the transaction cost on the most illiquid asset. Even in

the extreme case of ε = 5%, the restriction is merely that leverage does not exceed 20,

which is well beyond the margin requirements that any broker would place on such an

asset.

Two or three iterations are sufficient in typical settings. For the sake of prudence,

all the results in this thesis are derived with five iterations. (Table 2.1 shows the

effect of transaction costs at various iterations for the momentum, which is known to

be sensitive to frictions.) A computational advantage a fixed number of iterations is

that the return’s calculation is seamless to integrate with automatic differentiation,

enabling its use in conjunction with machine learning frameworks.

2.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs, Rumelhart et al. [1986] and Elman [1990]) consti-

tute a category of deep neural networks (DNNs) characterized by connections between

nodes across a given sequence, enabling the simulation of temporal dynamic behavior
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Iterations (n) 0 1 2 3 4 5
Return 1.56 0.83 0.68 0.68 0.68 0.68
Trading costs 0 0.73 0.88 0.88 0.88 0.88

Table 2.1: Average monthly returns (August 1963 to November 2023)

Value-weighted momentum strategy (Jegadeesh and Titman [1993]) replicated with the method of
Novy-Marx and Velikov [2016] and transaction costs from Hasbrouck [2009]. Each column shows the
time average return rr,πt (first row) and the average transaction costs (second row) obtained from n
iterations of the map in (2.2).

through subsequent layers. Owing to such features, RNNs are particularly effective

for tasks where the context of previous inputs is crucial, such as time series analysis

(Connor et al. [1994]), natural language processing (Li and Wu [2015]), and speech

recognition. Unlike traditional neural networks, RNNs have loops that allow informa-

tion to persist, enabling them to maintain a "memory" of previous inputs. A simple

RNN exemplifies a fully connected RNN, where in the outputs of all neurons are con-

nected to the inputs of all neurons. At each time step, the input is propagated forward

in conjunction with the preceding values of the hidden layer. Consequently, the RNN

can retain essential information from the previous layer, facilitating prediction.

Figure 2.1: Structure of A Basic RNN

The framework contains three components: input, hidden layer and output, which

follows the corresponding equation:

ht = σh(Wxxt +Whht−1 + bh) (2.10)

ot = σo(Woht + bo) (2.11)
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where xt is the input data, ht is the value of hidden layer and ot is the output. σh is

the activation function and σo is a linear layer.

Long Short-Term Memory (LSTM) networks, introduced by Hochreiter [1997], tar-

get at the vanishing gradient problem by including a more complicated structure. An

LSTM unit usually consists of a cell, an input gate, an output gate, and the most

important forget gate. These gates manage the sequence information, allowing the

network to retain or drop information when needed. This architecture enables LSTMs

to capture long-range dependencies more effectively than standard RNNs. Cho [2014]

came up with the Gated Recurrent Unit (GRU), which is a simplified version of LSTM.

It inherits the core concept of LSTM by combining the input and forget gates into a

single gate and merge the cell state with hidden state. This architecture reduces the

complexity while maintaining performance comparable to basic LSTMs.

Though most application of RNNs are on language studies, researchers find them

suitable for time series analysis. In accordance to our target, we would replicate the

rebalancing behavior of a portfolio manager step by step. Therefore, RNN is selected

as the fundamental model for our study. As the information we use for training are part

of Monte Carlo simulation, we will start with the basic RNN without a forget/update

gate. LSTMs and GRUs might be also included if necessary.

2.3 RNN with trading costs

It is expected that the optimal trading strategy with transaction cost can be approx-

imated through the implementation of a machine learning model, characterized by a

specialized double ReLU activation function and a corresponding loss function. Figure

2.2 provides a general work procedure of the expected machine learning model. The

model takes a target strategy as input and the layer with activation function is sup-

posed to output a modified strategy with respect to the target. The modified strategy

is then used to generalize a sequence of returns for creating the loss.
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Figure 2.2: A high-level overview of the model in Section 3.1.1

In addition, the RNN model relevant portfolio returns with respect to individual

assets.
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Chapter 3

One And Two Dimensional Models

In this chapter, we will demonstrate model formulation related results using several

examples. Initially, we examine the case of a single risky asset, construct the model

utilizing the double ReLU as the activation function, and compare the results of our

deep learning no-trade region with the theoretically optimal strategy (Gerhold et al.

[2014]). Subsequently, we attempt to replicate a two-risky-assets no-trade region model

where the activation function is replaced by a double ReLU based parallelogram and

compare the results with proven numerical outcomes (Altarovici et al. [2016]). All

corresponding results showcase the impressive performance of the RNN model. Monte

Carlo methods will be employed for all simulations to compute the expected utility.

The algorithm will operate on the following platform:

Platform Framework CUDA

Google Colab Pytorch 2.2 12.3

3.1 One Asset

Consider a market with a constant safe rate r and a single risky asset with constant

excess return µ ∈ R and volatility σ > 0, i.e., with price St described by the diffusion

dSt

St

= (µ+ r)dt+ σdWt, (3.1)
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where Wt is a Brownian Motion. If the transaction costs ε are small, the optimal

strategy for an investor with isoelastic utility U(x) = x1−γ/(1 − γ) in this market is

not to trade as long as the portfolio weight πt remains in the region [π−, π+], where

π± = π∗ ±
(

3

2γ
(π∗)2(1− π∗)2

)1/3

ε1/3 +O(ε)2/3 (3.2)

and π∗ = µ
γσ2 denotes the Merton portfolio, while buying (resp. selling) minimally to

restore the weight to π− (resp. π+), as to restore it to the interval [π−, π+].1

At the first order, this strategy is optimal for agents that maximize expected utility

from (i) consumption in infinite horizon (Shreve and Soner [1994], Janeček and Shreve

[2004]), (ii) terminal wealth on a finite horizon (Bichuch [2012]), and (iii) terminal

wealth on a long horizon (Gerhold et al. [2014]).

A convenient measure of the expected utility from terminal wealth is the equivalent

safe rate, defined as the hypothetical safe rate that would make an investor indifferent

between investing optimally and earning such rate on all wealth:

ESRT =
1

T
logE[X1−γ

T ]
1

1−γ (3.3)

With one asset, the equivalent safe rate has the expression Bichuch [2012], Gerhold

et al. [2014]

lim
T→∞

ESRT = r +
µ2

2γσ2
− γσ2

2

(
3

2γ
(π∗)2(1− π∗)2

)2/3

ε2/3 +O(ε4/3) (3.4)

The importance of these asymptotic expressions is twofold: First, they provide an

analytical benchmark to evaluate the performance of numerical methods. Second, they

provide reasonable starting points for models with several assets, for which asymptotics

are not available.

1Different papers use different notation to denote transaction costs. In this thesis, ε denotes
transaction cost against the mid-price, not the relative bid-ask spread, which is ε

1+ε .
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3.1.1 Optimization Model

As theoretical work prescribes that the optimal trading strategy is identified by the

no-trade region [π−, π+], the computational challenge is to identify the boundaries π−

and π+ numerically. To this end, observe that portfolio updating in discrete-time for

a strategy based on a no-trade region is governed by a two-step process. In the first

step, the portfolio weight πt−1 changes because the asset price changes from t − 1 to

t, becoming πt− defined as

πt− = πt−1
1 + r1t

1 + πt−1r1t
(3.5)

In the second step, the portfolio weight changes from π1
t− to π1

t because the agent

trades at time t. The strategy based on the no-trade region [π−, π+] requires that

πt =


π− πt− < π−

πt− πt− ∈ [π−, π+]

π+ πt− > π+

(3.6)

or, equivalently,

πt = −max(−max(πt− − π−, 0) + π+ − π−, 0) + π+. (3.7)

This latter representation is convenient because it specifies the updating procedure as

the composition of affine functions (x 7→ ax+ b) and the positive-part transformation

(x 7→ x+), known in the machine-learning literature as the ReLU (rectified linear unit)

activation.

These observations indicate that the wealth-portfolio pair (Xt, πt), which evolves
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over time as follows:

πt− =πt−1
1 + r1t

1 + πt−1r1t
(Input layer) (3.8)

πt =−max(−max(πt− − π−, 0) + π+ − π−, 0) + π+ (Activation) (3.9)
Xt

Xt−1

=1 + rπ,εt where rπ,εt follows from Proposition 2.1.1 (Output) (3.10)

(In particular, πt− is used only to obtain πt but is not required at subsequent steps.)

This recursive updating of wealth and portfolio weights fits into the framework

and structure of Recurrent Neural Networks (RNN) (Goodfellow et al. [2016]). The

simplest type of such networks (Elman [1990]) is the recursion:

ht = σh(Whht− + bh) (3.11)

ot = σo(F
π,ε(Woht) + bo) (3.12)

where, in machine-learning terminology, ht denotes the hidden state, ot the output,

and xt the input. The functions σh and σo are arbitrary nonlinear maps, while

Wh,Wx,Wo, bh, bo are model parameters, to be estimated.

The analogy with the present model is as follows: the input is the asset’s return

r1t , which enters the dynamics of the hidden state – the portfolio πt – along with the

previous value of the hidden state. The output is the portfolio return rπt .

The portfolio optimization problem is similar in spirit, but does not exactly fit this

algebraic specification for two reasons: First, the recursion in (3.8) and (3.9) entails two

nonlinear maps (the reciprocal in (3.8) and the ReLU-composition in (3.9)) following

linear maps of the arguments. Second, the portfolio return (output) depends both on

the portfolio weight (hidden state) and on the asset’s return (input). Notwithstanding

such differences, the resulting recurrent network is also straightforward to implement

through automatic differentiation frameworks.

The RNN in (3.10) contains only two parameters, the boundaries π− and π+, and

their estimation proceeds as follows.
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Figure 3.1: Convergence of the equivalent safe rate (left panel) and optimal buy-sell
boundaries (right). µ = 0.2, σ = 0.5, γ = 3, whence π∗ = 26.7%. T is ten years and ∆t
half month (T/∆t = 240). Transaction costs are ε = 3%. The simulation is performed
with N = 104 paths. The left panel reports −E

[
X1−γ

T −1

1−γ

]
, which yields the loss.

(i) Simulate the IID returns (r1t (ωi))
1≤i≤N
1≤t≤T , where T denotes the number of time-

periods and N the number of paths, with prescribed expected excess return µ

and volatility σ.

(ii) Use a steepest-gradient algorithm to maximize the objective (minimize the in-

verse as the loss):

max
π−,π+

1

N

N∑
i=1

XT (ωi)
1−γ − 1

1− γ
where XT (ωi) =

T∏
t=1

(1 + rπt (ωi))

3.1.2 Numerical Results

Figure 3.1 reports the calibration results for typical parameter values, using rela-

tively large transaction costs ε = 3% to enhance visibility.2 The results confirm that

the numerical optimizers obtained from the algorithm closely align to the theoretical

quantities.

Platform GPU Memory Time
Google Colab 2.2 GB <1 min

Table 3.1: One-Asset Model Performance (approximation)

2All machine-learning results in this thesis were obtained in the Pytorch 2.2 framework with the
CUDA 12.3 libraries.
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Table 3.1 presents the efficiency of the one-asset model, which converges fast

with little computational resources required. Deviations arises from three sources:

(i) statistical variability related to the number of paths in the simulation; (ii) time-

discretization, which is half-monthly in the simulation while assumed continuous in

the asymptotic formulas, and (iii) approximation error in the asymptotic formula.

In fact, the effect of such deviations is statistically and economically insignificant,

as Figure 3.2 shows. The equivalent safe rate of the calibrated policy is only a few

basis points lower than the theoretical value implied by the explicit formula, which

consistently lies within the estimate’s confidence interval. The confidence intervals

applied in this thesis are theoretically based on normal distribution with a confidence

level equal to 95%.

In summary, numerical optimization results in the one-asset model are consistent,

within statistical and economic significance, with the first-order explicit formulas ob-

tained in theoretical papers. The next section examines the two-dimensional setting,

highlighting how the problem’s complexity increases with dimensionality, and compar-

ing the the performance of the method in this thesis with previous work.

Figure 3.2: Equivalent Safe Rate of the calibrated optimal policy (vertical, in percent,
estimate in dashed blue, confidence interval in light blue) and of the explicit formula
(3.4) (solid red) against transaction cost (horizontal, in percent). Parameters as in
Figure 3.1.
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3.2 Two Assets

The two-asset model is important for three reasons: First, as the simplest setting in

which no-trade regions are not intervals, it illustrates the challenges of modeling their

shapes. Second, in this setting explicit asymptotic formulas are known only in special

cases but numerical studies with finite-differences methods are available in general,

hence a comparison of our approach with others numerical work is possible. Third,

the two-asset model immediately reveals the challenges of higher dimensions and makes

it clear which model approaches may scale to higher dimensions and which ones may

not.

3.2.1 Optimization Model

The two-asset version of price dynamics is:

dSi
t

Si
t

= (µi + r)dt+
d∑

j=1

σijdW j
t , i = 1, 2

where (µi)i=1,2 is a vector and (σij)i,j=1,2 an invertible matrix. The assets’ returns’

covariance matrix is Σ = σσ′ (the prime sign denotes matrix transposition). Their

correlation is ρ = Σ12/
√
Σ11Σ22. Recall that in this market the optimal portfolio for an

investor with relative risk aversion γ is the Markowitz-Merton portfolio π∗ =
Σ−1µ

γ
, for

utility maximization from both consumption and terminal wealth, both with a finite

and infinite horizons.

Accordingly, equation (3.8) with two assets becomes:

πi
t− = πi

t−1

1 + rit
1 +

∑
j=1,2 π

j
t−1r

j
t

i = 1, 2 (3.13)

while (3.10) remains the same, as Proposition 2.1.1 encompasses an arbitrary number

of assets. The central question is how to replace (3.9), i.e., how to describe the no-trade

region and rebalancing.

The exact shape of no-trade regions is unknown in multiple dimensions, but the
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Figure 3.3: No-trade region (centered blue parallelogram) and eight trading regions
(other combinations of up-center-down with left-center-right) for uncorrelated (left
panel) and correlated (right) assets. Red arrows indicate the boundary components
towards which rebalancing occurs.

numerical studies of Muthuraman and Kumar [2004], Possamaï et al. [2015], and Al-

tarovici et al. [2016] indicate that, if transaction costs are small, such regions are

well approximated by parallelograms centered near the frictionless optimizer π∗. In

addition, the low sensitivity of expected utility to the exact location of the no-trade

boundaries near optimality, which is present even with one asset, suggests that focus-

ing on parallelogram-shaped no-trade regions offers a promising class of strategies to

approximate optimality. The parametrization of such strategies is visualized in Figure

3.3. Define the matrix

M =

m11 m12

m21 m22

 (3.14)

Each of its four vertices is represented as

V −− =

v−−
1

v−−
2

 = M

−1
0

+ π∗ V −+ =

v−+
1

v−+
2

 = M

 0

−1

+ π∗

V ++ =

v++
1

v++
2

 = M

+1

0

+ π∗ V +− =

v+−
1

v+−
2

 = M

 0

+1

+ π∗
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With these definitions, the two-dimensional analogue of the rebalancing function (3.9)

takes two separate expressions, depending on the orientation of the parallelograms,

and still relies on the map:

S(x, b−, b+) := −max(−max(x− b−, 0) + b+ − b−, 0) + b+

for suitable choices of b− and b+. With matrix (3.14), we formulate two dynamic lines:

l1 =
m11 −m12

m21 −m22

l2 =
m21 +m22

m11 +m12

(3.15)

and a double ReLu function in two dimensions with correlation:

πi
t = S(πi

t−, b
i
−, b

i
+) i = 1, 2 (3.16)

Specifically, if the top-right diagonal is longer than the down-right diagonal ((l1 > 0,

l2 > 0)), then

b− =

−(−(l1 · (π2
t− − v−−

2 ))+ + v−+
1 − v−−

1 )+ + v−+
1

−(−(l2 · (π1
t− − v−−

1 ))+ + v+−
2 − v−−

2 )+ + v+−
2

 (3.17)

b+ =

−(−(l1 · (π2
t− − v+−

2 ))+ + v++
1 − v+−

1 )+ + v++
1

−(−(l2 · (π1
t− − v−+

1 ))+ + v++
2 − v−+

2 )+ + v++
2

 (3.18)

Vice versa, if the top-right diagonal is shorter than the down-right diagonal (l1 < 0,

l2 < 0), then

b− =

−(−(l1 · (π2
t − v−+

2 ))+ + v−−
1 − v−+

1 )+ + v−−
1

−(−(l2 · (π1
t − v+−

1 ))+ + v−−
2 − v+−

2 )+ + v−−
2

 (3.19)

b+ =

−(−(l1 · (π2
t − v++

2 ))+ + v+−
1 − v++

1 )+ + v+−
1

−(−(l2 · (π1
t − v++

1 ))+ + v−+
2 − v++

2 )+ + v−+
2

 (3.20)
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Figure 3.4: Lower bounds of the no-trade region for each asset (b1− on left, b2− on
right) against portfolio weight in the other asset. The non-zero slopes in each plot are
l1 =

m11−m12

m21−m22
=

v−+
1 −v−−

1

v−+
2 −v−−

2

and l2 =
m21+m22

m11+m12
=

v+−
2 −v−−

2

v+−
1 −v−−

1

respectively. The left plot is the
lower bound of asset 1: b1−(π

2
t−) while the right plot refers to lower bound of asset 2:

π2
t = b2−(π

1
t−).

As a result, a similar structure as the one-asset case follows:

πi
t− =πi

t−1

1 + rit
1 +

∑
j=1,2 π

j
t−1r

j
t

i = 1, 2 (Input layer)

πi
t =S(πi

t−, b
i
−, b

i
+) i = 1, 2 (Activation)

Xt

Xt−1

=1 + rπ,εt (Output)

Where the most significant difference is in the activation function, compared with the

one-asset case.

3.2.2 Numerical Results

Numerical simulation performance depends on the convergence of the model and the

initial guess has significant effect on the convergence. It is suggested that we take into

consideration the role that matrix M plays in the model. We notice that M contains

the four learnable parameters that defines the four vertexes of the parallelogram.

M =

δ1 δ1

δ2 −δ2
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Portfolio Asset µ σ ρ ε γ π

A 1 12.00% 57% 23% 1% 2 15%
2 12.00% 57% 1% 15%

B 1 12.00% 67% -11% 1% 2 15%
2 12.00% 67% 1% 15%

C 1 3.62% 15% 22% 0% 3 51.73%
2 0.36% 4% 5% 32.32%

Table 3.2: Parameter values for the three portfolio configurations.

is a chosen as initial value to start with where δ1 and δ2 are the distance of boundaries to

the Merton portfolio respectively, without considering the correlation between assets.

With such M , we starts to estimate the no trade region from a simple no trade region.

Table 3.2 reports three combinations of parameters considered in the literature.

The first two combinations were used by Muthuraman and Kumar [2004] in a numerical

solution of the HJB partial differential equation with the finite-element method. The

last combination was used in Bichuch and Guasoni [2018] to solve the HJB ordinary

differential equation arising in a market with one liquid and one illiquid asset.

The location and size of the no-trade regions obtained with the method in this

thesis are essentially the same as in Muthuraman and Kumar [2004] (top and center

panels in Figure 3.5), but the shapes differ, as the regions in Muthuraman and Ku-

mar [2004] depart from parallelograms, especially in the left and bottom sides. This

discrepancy is largely due to the difference in the objective considered: Muthuraman

and Kumar [2004] study the HJB equation of the problem of optimal investment and

consumption, rather than optimal investment alone. Consumption entails a continu-

ous outflow of cash, therefore it induces agents to accept larger cash balances before

buying more stocks, lest they may have to sell them again soon. This effect is more

pronounced if the agent’s time-preference rate (hence consumption rate) is higher, and

indeed Muthuraman and Kumar [2004] use a 10% discount rate, leading to an annual

consumption rate above 9%.

As long as asymptotics are well approximated in the liquid-illiquid model, it is also

possible to evaluate whether the results are consistent with previous work. In pursuit

of a comprehensive analysis, we examine a case involving assets with distinct trading
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costs. Portfolio C (Table 3.2) encompasses one liquid asset without trading costs and

one illiquid asset, with data derived from estimated values of U.S. Equities and Real

Estate (1975âĂŞ2013) (Bichuch and Guasoni [2018]). The results in the liquid-illiquid

asset model (bottom panel in Figure 3.5) are closely aligned with those in of Bichuch

and Guasoni [2018]. Because one asset is nearly frictionless (0.01%), the no-trade

region is a thin oblique line, whose slope reflects the use of the liquid asset to hedge

the fluctuating illiquid position. In summary, the no-trade regions identifies with the

RNN-based approach in this thesis are broadly consistent with previous work, with

some discrepancies related to differences in the models considered in different studies.

Platform GPU Memory Time
Google Colab 8.6 GB 12 min

Table 3.3: Two-Assets Model Performance (approximation)

Table 3.3 presents the efficiency of the two-assets model, where computing time

and GPU memory requirement increases significantly. The main reason could be

the increase number of logical reasoning with respect to both assets when the model

calculates the slopes of the edges of the parallelogram.

3.2.3 Equivalent Safe Rates

Recall that we can estimate the ESR of a portfolio using Equation (3.3). Nevertheless,

there is insufficient evidence of an explicit theoretical solution for a two-asset portfolio

with trading costs. Consequently, an alternative comparison is introduced for the case

of Portfolio C, which combines a liquid asset and an illiquid asset, as there exists an

asymptotic solution (Bichuch and Guasoni [2018]):

ESR = r +
µ2σ2

1 − 2µ1µ2ρσ1σ2 + µ2
1σ

2
2

2γ(1− ρ2)σ2
1σ

2
2

− λ2

2γσ2
2(1− ρ2)

(3.21)

where λ is derived from the following equations:

λ =

(
3

4
γ(π∗)2σ4

I

(
(β2 −

µ1

γσI

)2σ2
1 + (1− π∗

2)
2σ2

I

))1/3

ε1/3 +O(ε2/3)
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β1 =
ρσ1σ2

σ2
2

, β2 =
ρσ1σ2

σ2
1

µ2 = β2µ2 + α, σ2
2 = (β2σ1)

2 + σ2
I

By substituting parameters in Portfolio C to Equation(3.21), we can have both simu-

lated and theoretical ESR:

Asset ESR
RNN(%)

95%Confidence
Interval

Asymptotic
ESR(%)

Portfolio C 0.992 [0.959%,1.022%] 0.984

Table 3.4: ESR on Portfolio C in Table(3.2)

Consequently, it is clear that the RNN model delivers a robust approximation of

the no-trade region and the corresponding equivalent safe rate in the long term when

the portfolio comprises a combination of liquid and illiquid assets. Additionally, we

investigate a range of distinct trading costs associated with the illiquid asset:

ε1 ε2 ε3 ε4 ε5

0.25% 0.5% 1% 2.5% 5%

and we thereby plot the simulated ESR and theoretical ESR with respect to such

trading costs in Figure 3.6. There are some reasons resulting in the slow change of

ESR with respect to trading costs. For example, low volatility of illiquid asset results

in low possibility of trading the illiquid asset. The asymptotic result also indicates

that ESR is not strongly impacted by trading cost of the illiquid asset.

Still, there is compelling evidence supporting the strong performance of the RNN

model, as the generated confidence interval encompasses the theoretical solution across

various transaction costs.
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Figure 3.6: Portfolio C: ESR Comparison
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Asset Low Frictionless High
π1 50.79% 51.73% 52.68%
π2 16.18% 32.32% 48.46%

Figure 3.5: Comparison of the no-trade regions in this thesis (left) with the ones in
Muthuraman and Kumar [2004] (top and center) and the numerical bounds in Bichuch
and Guasoni [2018] (bottom).
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Chapter 4

Multiple Dimensional Models

This chapter presents a path from a two assets model to the formulation of multiple

assets model. With the two-assets model, we manually locate the coordinates of each

vertex of the no-trade region which formulates a parallelogram. However, it is im-

possible to replicate the same method in high-dimensional portfolio as the number of

vertices increase to 2d, with more edges and hypersurfaces. We introduce a vectoriza-

tion and bisection model (also called hyperparallelogram model) to progress. The the

model is integrated with several method for simplicity. A new hyperellipsoid model

is then constructed to improve computation efficiency and is tested with benchmark

in comparison with basic multi-dimensional model. Both methods are embedded into

the RNN model by replacing the activation function in the hidden layer and keep

the general model structure unchanged. In addition, this chapter pertinent examples

featuring more than two risky assets: simulated portfolios with 2, 3, and 10 risky

assets.

4.1 Model formulation

Considering a market with d(d > 2, d ∈ N) risky assets and r = 0 as well:

dSi
t

Si
t

= µidt+
d∑

j=1

σijdW j
t , i = 1, 2, . . . , d
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with ρij representing the correlation between asset i and j. In contrast to the scenario

in section(3.2), the number of assets increases, subsequently elevating the complexity of

devising a model with explicit boundaries for each risk asset with trading costs. This is

due to the necessity of extracting each individual component from the rotation matrix

of size d× d, in order to manually formulate at least 2d boundaries. Consequently, it

becomes crucial to develop an alternative model that focuses on the multi-asset case by

reducing complexity, even at the expense of accuracy. As a result, a more generalized

vectorization model will be introduced.

Figure 4.1: The Vectorization Model

Figure 4.1 presents a two-asset example within a suitable vectorization model.

Analogous to the content in Figure 3.3, π∗ represents the Merton portfolio, while π

denotes a strategy outside the specific no-trade region following a price change in

assets. π̂ is the anticipated portfolio after rebalancing, which is precisely what we

aim to determine. The transition from π to π̂ is referred to as one “projection". The

vector vi serves as normalized direction of asset i (i = 1, 2, . . . , d) and is set to be

always orthogonal to the boundary of asset i. The aforementioned variables have the
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following relationship:

α+
i = vi · (π̂ − π∗) (4.1)

π̂ = π + λi · ei (4.2)

Where equation (4.1)) is recognized as the boundary condition, and α+
i is the upper

boundary of asset i, which is forced to be positive. In the same way, we can evidently

presume the existence of a symmetric virtual lower boundary for asset i, denoted by

α−
i . Equation (4.2) illustrates the blue arrow, “projection," in Figure 4.1, where λi

represents the distance between π and π̂, and ei is the standard unit vector of a specific

axis. Once again, it is clear that we have:

λi =
α+
i − vi · (π − π∗)

vi · ei
(4.3)

when

vi · (π − π∗) > α+
i

we will alternatively have:

λi =
α−
i − vi · (π − π∗)

vi · ei
(4.4)

when

vi · (π − π∗) < α−
i

As a result, the “projection" method is to ensure that after one “projection", we can

guarantee:

α−
i ≤ vi · (π̂ − π∗) ≤ α+

i
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which restores the portfolio to the no-trade region except for those in regions A, B,

C, and D. However, such a “projection" is not applicable in regions A, B, C, and

D since both α+
i and α−

i would force π to be projected onto some extension line

of boundaries that remain outside the no-trade region. Consequently, an alternative

bisection method is introduced to address this situation:

Figure 4.2: The Vertex Model

Figure 4.2 indicates a example of a bisection method. Once π falls into region B,

instead of performing a "projection", we formulate the link π between π∗ to find the

middle point:

πm =
π + π∗

2

Repeating this process by replacing either π or π∗ with πm during each loop until

vi · (π̂−π∗) ∈ (α+
i − ϵ, α+

i + ϵ) or vi · (π̂−π∗) ∈ (α−
i − ϵ, α−

i + ϵ) or the maximum loop is

reached. Ultimately, π̂ (the last generated πm) becomes the anticipated strategy. This

algorithm of course introduces some inaccuracy, as illustrated in Figure 4.2. The π̂

will mostly be situated at the boundary close to the vertex rather than precisely at the

32 27/08/2024



Chapter 4. Multiple Dimensional Models

vertex, as depicted in Figure 3.3. Moreover, with the increase in dimension d (number

of assets), the algorithm becomes less accurate since there tends to be edges, surfaces

or other hyper-surfaces serves as the vertex in the two assets case. Nonetheless, as

price changes are less likely to be substantial within small time intervals, the method

remains applicable, provided that rapid rebalancing is employed.

In summary, the combination of the “projection" method and bisection method con-

tributes to the modeling of the no-trade region. It is necessary to first determine if

the strategy is inside the vertex region (i.e., A, B, C, D) using the discriminant that

strategies outside the vertex region will be within the no-trade region in one "projec-

tion", while those inside the vertex region will not. The full algorithm is outlined as

follows:

Algorithm 1 Projection and Bisection (Projection)
1: ϵ = 1e− 5
2: n = 8
3: for i← 1, 2, . . . , d do ▷ Loop over assets
4: vi = Normalize(v)[i, :]
5: λ+ = α+

i − vi(π − π∗)/eivi
6: λ− = α−

i − vi(π − π∗)/eivi
7: π̂ = π + λ+ × (vi(π − π∗) > α+

i )× ei + λ− × (vi(π − π∗) < α−
i )× ei

8: judge = v(π̂ − π∗) < α+ + ϵ and v(π̂ − π∗) > α− − ϵ ▷ Judge variable
indicating the status of all assets after one projection trade of the i-th asset

9: judge_vec[i] = min(judge, dim = 0) ▷ Judge vector recording if an asset is
suitable for projection

10: for i← 1, 2, . . . , d do
11: vi = Normalize(v)[i, :]
12: λ+ = α+

i − vi(π − π∗)/eivi
13: λ− = α−

i − vi(π − π∗)/eivi
14: π̂ = π + λ+ × (vi(π̂ − π∗) > α+

i )× ei + λ− × (vi(π̂ − π∗) < α−
i )× ei

33 27/08/2024



Chapter 4. Multiple Dimensional Models

Algorithm 2 Projection and Bisection (Bisection)
15: πin = π∗

16: πout = πm = π
17: judge_bi = v(πm− π∗) ∈ (α+− ϵ, α+ + ϵ) or v(πm− π∗) ∈ (α−− ϵ, α− + ϵ)▷ This

variable is used to judge whether the πm is exactly on the boundary of no trade
region

18: while not judge_bi and k < n do
19: k ++
20: πm = (πin + πout)/2
21: if (v(πm − π∗) < α+ + ϵ and v(πm − π∗) > α− − ϵ) then
22: πin = πm

23: else
24: πout = πm

25: judge_bi = v(πm − π∗) ∈ (α+ − ϵ, α+ + ϵ) or v(πm − π∗) ∈ (α− − ϵ, α− + ϵ)
return judge_vec× π̂ + (1− judge_vec)× πm ▷ Apply projection algorithm to
the assets that suits projection algorithm and bisection to others

The whole function of hyperparallelogram method can be summarized as:

π̂t = HP (πt−). (4.5)

4.2 Model Simplification

Analogously, for the projection and bisection model delineated in Section 4.1, it is

imperative to estimate a matrix v and two vectors, α+ and α−. To mitigate compu-

tational complexity, we posit α− = −α+, thereby reducing the estimation to a single

vector. An alternative approach to further diminish model complexity involves initially

establishing an input value as follows:

v =


v1 . . . 0

... . . . ...

0 . . . vd

 =


1
δ1

. . . 0

... . . . ...

0 . . . 1
δd


Subsequently, one could refrain from normalizing vector v and permanently set −α− =

α+ = 1. This methodology effectively eliminates at least n variables, allowing vector

v to encapsulate more information. However, it is crucial to note that since δ varies
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among different assets and vector v is no longer normalized, distinct portfolios may

yield substantially different v values. This discrepancy can precipitate convergence

difficulties when selecting an appropriate learning rate.

An alternative strategy involves maintaining −α−
i = α+

i = δi, which consequently

leads to initial inputs tending towards:

v =


v1 . . . 0

... . . . ...

0 . . . vd

 =


1 . . . 0

... . . . ...

0 . . . 1


This approach effectively mitigates the impact of unbounded initial estimates. For

both aforementioned methodologies, it is crucial to judiciously select the learning rate

to ensure the convergence of the simulation, as the optimal learning rate may vary

significantly across different portfolios. The techniques elucidated above successfully

reduce the number of parameters requiring estimation from d2 to d2 − d, thereby

enhancing computational efficiency to a small extent.

To expound further, the reduction in parameter space not only alleviates compu-

tational burden but also potentially mitigates over-fitting risks. This parsimony in

model complexity is particularly advantageous when dealing with high-dimensional

asset spaces, where the curse of dimension can otherwise pose significant challenges.

It is worth noting that while these simplifications offer computational advantages,

they may introduce certain trade-offs in model flexibility. Therefore, it is imperative

to validate the model’s performance empirically and ensure that the reduced param-

eter space does not unduly constrain the model’s ability to capture essential market

dynamics.

Furthermore, the selection of an appropriate learning rate becomes even more crit-

ical in this context. One might consider implementing adaptive learning rate tech-

niques, such as Adam, to dynamically adjust the learning rate during the optimization

process. This adaptive approach could potentially address the portfolio-specific vari-

ations in optimal learning rates, thereby enhancing the robustness and convergence
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properties of the model across diverse portfolio compositions.

4.3 Ellipsoid Method

4.3.1 The Hyperellipsoid model

With portfolios comprising more than three assets exhibiting low correlation, the initial

projection method yields results wherein the learned no-trade region approximates a

general hyperellipsoid. We can mathematically represent this general ellipse using the

following equation (Strang [2006]):

(π − π∗)TA(π − π∗) = 1 (4.6)

where A denotes a positive definite symmetric matrix (Golub and Van Loan [1996])

that defines the hyperellipsoid. This formulation allows for a more nuanced represen-

tation of the no-trade region in higher-dimensional asset spaces. The decision-making

process for a particular input strategy πt− can be articulated as follows:

• if a particular input strategy πt− lies inside the expected no-trade region, we

maintain the current position: π̂t;

• Conversely, when πt− is situated outside the no-trade region:

(πt− − π∗)TA(πt− − π∗) > 1

We can introduce a scalar τ to indicate the direction pointing from π∗ to πt−, thus

establishing the following relationship:

τ 2(πt− − π∗)TA(πt− − π∗) = 1
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This formulation allows us to solve for τ , yielding:

τ 2 =
1

(πt− − π∗)TA(πt− − π∗)
(4.7)

The projected point onto the surface of the hyperellipsoid, representing the modi-

fied strategy, can be elegantly expressed as:

π̂t = HE(πt−) = π∗ + τ(πt− − π∗) (4.8)

This method indeed offers a significant reduction in the number of parameters to be

estimated, from d2 to d2+d
2

and ensures that when rebalancing is necessary (i.e., when

πt− lies outside the no-trade region), the new portfolio allocation π̂t is always positioned

on the boundary of the no-trade region. This approach minimizes transaction costs

by executing the smallest possible trade to bring the portfolio back to an acceptable

position.

It is imperative to acknowledge that the hyperellipsoid assumption stems from

a phenomenon observed in high-dimensional bisection methods. Specifically, these

methods tend to obfuscate the boundaries of hyperparallelograms, causing them to

approximate hyperellipsoids. This characteristic represents a notable limitation of

the projection and bisection approach. Consequently, the hyperellipsoid approxima-

tion scarcely enhances model accuracy and finds its applicability primarily in high-

dimensional portfolios exhibiting low correlation among their components. The trans-

formation from parallelograms to hyperellipsoids in higher dimensions is a consequence

of the “curse of dimensionality”, wherein the geometric properties of objects become

less significant as the number of dimensions increases. This phenomenon underscores

the complexity inherent in high-dimensional optimization problems and reinforces the

need for careful consideration when applying such approximations in portfolio theory.

The validation of the hyperellipsoid method necessitates a comparative analysis of

the convergence properties of both the relative ESR and the geometric characteristics

of the hyperellipsoid, specifically its boundaries and axes lengths. Although subject to
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rotation, the hyperellipsoid fundamentally remains an n-dimensional ellipse. Its initial

axes lengths can be expressed as functions of the eigenvalues of the positive definite

matrix A:

a1, a2, ..., ad =
1√
ξ1
,

1√
ξ2
, ...,

1√
ξd

where ai(i = 1, 2...d) are the axes length of the hyperellipsoid and ξi(i = 1, 2...d) are

eigenvalues of matrix A. The boundaries of the parallelogram, however, are not easy

to obtain through the algorithm. As a result, we apply:

|αi| i = 1, 2...d

to approximate the boundaries of such a parallelogram. It is clear that the hyperpar-

allelogram and hyperellipsoid methods share similar structure:

πi
t− =πi

t−1

1 + rit
1 +

∑
j=1,2 π

j
t−1r

j
t

i = 1, 2, ...d (Input layer)

πt =HP (πt−) or HE(πi
t−) (Activation)

Xt

Xt−1

=1 + rπ,εt (Output)

It is crucial to recognize that this estimation, while informative, is not precise due

to several geometric considerations. The vectors αi do not necessarily align with the

diagonals of the hyperparallelogram, nor are they guaranteed to be mutually orthog-

onal. This misalignment introduces a degree of imprecision into our approximation.

The utility of this approach lies in its ability to provide a reasonable approximation.

Our expectation is that the axes lengths of the hyperellipsoid and their corresponding

αi values exhibit a close correspondence, both in magnitude and relative scale.

4.3.2 Example: Ten risky assets

To validate the performance of this complexity reduction method, we introduce a

comprehensive benchmark for comparative analysis. This benchmark facilitates a

systematic comparison between the proposed hyperellipsoid method and the origi-
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nal methodology elucidated in Section 4.6. For the purpose of this evaluation, we

employ a diverse ten-asset portfolio, the composition of which is meticulously detailed

in Table 4.6.

Figure 4.3: Portfolio F Comparison

The left plot is from the original projection and bisection model in section 4.1 and the right plot is
from the hyperellipsoid method introduced in this section with lr = 0.1.

ESRmin(%)
ESR

RNN(%) ESRmax(%)

Portfolio F 4.72 4.79 4.88
Portfolio F (Hyperellipsoid) 4.72 4.78 4.88

Table 4.1: Portfolio ESR in Table 4.6

Based on the results presented in Figure 4.3 and Table 4.1, it can be conclusively

inferred that the hyperellipsoid method performs admirably, aligning with theoretical

expectations.

Method Platform GPU Memory Time
Hyperparallelogram Google Colab 22 GB 25 min

Hyperellipsoid Google Colab 9.3 GB 2 min

Table 4.2: Ten-Assets Model Performance Comparison (approximation)

The method’s efficacy (Table 4.2) is evidenced by several key observations:

(i) Convergence: The hyperellipsoid method demonstrates a markedly smoother

convergence trajectory compared to the original method, even when initialized

with random input values. This enhanced stability in convergence is a significant

advantage in optimization processes.
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(ii) Computational Efficiency: The method exhibits substantial improvements in

computational performance. Specifically, it achieves a reduction of at least 95%

in simulation time and 50% in memory utilization. This remarkable efficiency

gain allows for the incorporation of additional epochs and scenarios, potentially

leading to increased overall accuracy.

(iii) Accuracy and Efficiency: As evidenced in Table 4.1, the hyperellipsoid method

introduces a marginal reduction in ESR of approximately 0.01%. This slight de-

crease in performance is offset by the significant enhancements in computational

efficiency and resource utilization.

The implementation of this method presents users with a nuanced trade-off between

accuracy, computational speed, and memory management. While the slight reduction

in ESR may be a consideration, the substantial gains in efficiency often brings this

minor loss in precision for many practical applications. As a result, we highlight that

this method should only be applied to portfolios with multiple assets, as the higher the

dimension is, the more the no-trade region of original projection and bisection method

tends to be close to a hyperellipsoid. Hence, the difference between two methods will

also reduce.

Assets A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
1√
ξi

0.039 0.046 0.049 0.059 0.077 0.116 0.163 0.310 8.330 0.469
|αi| 0.022 0.109 0.022 0.028 0.021 0.018 0.048 0.030 0.017 0.029

Euclidean Distance 8.332

Table 4.3: Comparison of Axes Lengths and boundaries on Portfolio F

Table 4.3 provides a comprehensive comparative analysis of the axes lengths derived

from the hyperellipsoid model and the corresponding |αi| values obtained from the

hyperparallelogram model. A detailed examination of these results reveals visible

disparities between the two approaches, and Key observations from this comparison

include:

(i) The hyperparallelogram model exhibits a notable property of providing station-

ary boundaries for all assets within the portfolio. This uniformity in boundary
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definition suggests a consistent treatment of all assets, regardless of their indi-

vidual characteristics or correlations.

(ii) In contrast, the hyperellipsoid model generates a set of axes lengths characterized

by extreme variability, causing a huge Euclidean distance between two methods.

One reason could be that gradients vanish at some directions of the hyperellipsoid.

This issue may arises due to the inherent curvature of the hyperellipsoid’s surface and

has significant implications for the optimization process. This is a drawback of the

hyperellipsoid model since several assets strategy may be faced with outage during the

training and trading. With the dimension increasing, this adverse impact may also

increase while the importance of a particular asset may decrease, compensating for

such impact at certain level. Therefore, this method can remain cautiously optimistic

for the speed of convergence, but extra work should be conducted to correct and

improve such model.

4.4 Example: Two risky assets

Having developed the projection and bisection model in section 4.1, it is worthwhile

to compare the simulation results of the new model with relevant existing results. We

begin with the two-asset cases, i.e., portfolio A and portfolio C. The comparisons are

presented as follows:
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Figure 4.4: Portfolio A Comparison

The left plot is from the parallelogram model in section 3.2 and the right plot is from the projection
and bisection model in section 4.1.

Figure 4.5: Portfolio C Comparison

The left plot is from the RNN model in section 3.2 and the right plot is simulated by projection and
bisection model in section 4.1.

The plots of the projection and bisection model are generated using the Monte

Carlo method, as the estimated parameters are not expected to calibrate exact bound-

aries. The comparison of portfolio A demonstrates substantial consistency between the

two models, with similar plots. The comparison of portfolio C reveals a better approx-

imation by the projection and bisection model, as the distance between the upper and

lower bounds of asset 1 should be very close, due to the fact that it has full liquidation.

In summary, we can confidently conclude that the new projection and bisection model
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provides a good fit for the two-asset system according to previous work.

4.5 Example: Three risky assets

To study the performance of projection and bisection model with multiple assets, we

construct two new portfolio with 3 assets and γ = 2, ε = 1%.

µ σ ε

Asset1(π1) 0.12 0.4 1%
Asset2(π2,) 0.12 0.4 1%
Asset3(π3,) 0.12 0.4 1%

Table 4.4: Portfolios D & E

Portfolios D & E have similar assets with ρD = 0 and ρE = 20%.

The corresponding 3D plots are presented below. In accordance with Portfolio

D, we expect to see a 3D square due to the zero correlation between assets. The

plot strongly supports this theory, as it closely resembles a square with only minor

deviations due to random error. With respect to Portfolio E, as small trading costs

are introduced, we anticipate a parallelepiped, which is indeed what we observe in

Figure 4.6.

Figure 4.6: No-trade region of Portfolio D & Portfolio E

The left plot is from Portfolio D and the right plot is from Portfolio E

Although the plots in Figure 4.6 visually corroborate the efficacy of the projection

and bisection model, it remains crucial to quantitatively assess the results. Despite

the absence of an explicit formula for determining either the no-trade region or the
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equivalent safe rate of high-dimensional assets, we can approximate the boundaries

of the ESR utilizing certain formulas derived from the work of Bichuch and Guasoni

[2018]. In a market consisting of n + 1 assets, where n assets are liquid with µ1 and

Σ1, and only one asset is illiquid with µ2 and σ2
2, the ESR is approximated as the safe

rate in the absence of trading costs, diminished by a term contingent on the trading

costs and the correlation between the illiquid asset and the liquid assets:

ESR :=
µ′Σ−1µ

2γ
− λ2

2γσ2
2 (1− Φ)

(4.9)

where

Σ =

 Σ1 Σ12

Σ21 σ2
2



λ =

(
3

4
γ2(π∗

2)
2σ4

I

((
Σ12 −

µ1

γ

)′

Σ−1
1

(
Σ12 −

µ1

γ

)
+ (1− π∗

2)
2 σ2

I

))1/3

ε′1/3+O
(
ε′2/3

)

Φ =
Σ21Σ

−1
1 Σ12

σ2
2

and Σ represents the comprehensive covariance matrix by part, while Σ12 is the co-

variance between all liquid assets and the particular illiquid asset. The n-dimensional

vector β = Σ−1
1 Σ12 signifies the exposures of the illiquid asset to the risk factors of

all liquid assets, and σ2
I = σ2

2(1 − Φ) designates the corresponding asset-specific risk.

Moreover, the frictionless optimal illiquid asset is:

π̄2 =
µ2 − β′µ1

γσ2
2 (1− Φ)

Utilizing the aforementioned formulas, it becomes feasible to compute the ESR of a

multi-asset portfolio. Nevertheless, as our multi-asset portfolio comprises d(d > 2)

assets, rather than containing merely one illiquid asset, Equation (4.9) ceases to be

effective. One approach to approximate the ESR involves treating each asset as the
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illiquid one while considering the others as liquid, and subsequently subtracting the

cumulative impact of trading costs from the ESR devoid of trading costs. Although

this estimation tends to underestimate the ESR, it adapts Equation (4.9) as follows:

ESRmin :=
µ′Σ−1µ

2γ
−

d∑
i=1

λ2
i

2γσ2
i (1− Φi)

(4.10)

λi =

(
3

4
γ2(π∗

i )
2σ4

I,i

((
Σ1i −

µ1

γ

)′

Σ−1
1

(
Σ1i −

µ1

γ

)
+ (1− π∗

i )
2 σ2

I,i

))1/3

ε′1/3+O
(
ε′2/3

)
and similarly we have βi = Σ−1

1 Σ1i, σ2
I,i = σ2

i (1− Φi) and the frictionless optimal

illiquid asset is still:

π̄i =
µi − β′

iµ1

γσ2
i (1− Φi)

where i denotes the ith asset which is treated as the illiquid one when others are

temporarily assumed to be liquid, and Φi is defined by:

Φi =
Σi1Σ

−1
1 Σ1i

σ2
i

The upper bound of ESR is supposed to be:

ESRmax :=
µ′Σ−1µ

2γ
−max

i

λ2
i

2γσ2
i (1− ρ′iρi)

(4.11)

It is clear that ideally the simulated ESR are located between ESRmin and ESRmax.

With the help of equation (4.10) and (4.11), it is now feasible to quantify and compare

the performance of the model with different portfolios. It becomes obvious that the

ESR
RNN(%) ESRmin(%) ESRmax(%)

Portfolio D 6.46 6.37 6.62
Portfolio E 4.70 4.61 4.75

Table 4.5: ESR on Portfolios D & E

simulated equivalent safe rates of both portfolios lie within the bounds of the maximum

and minimum estimates of their theoretical equivalent safe rates. Consequently, the

dependability of the projection and bisection model is substantiated in the context of
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a three-asset scenario.

4.6 Example: Ten risky assets

Upon examining the plot of the three-asset model, we gain a degree of confidence in the

model’s suitability, as evidenced by the plausible shapes of the squares. However, three

dimensions typically represent the upper limit for visualizing asset dimensions, imply-

ing that drawing straightforward conclusions from visualization becomes increasingly

challenging as dimensions increase. Consequently, it is of paramount importance to

scrutinize the model’s reliability in higher-dimensional scenarios. To accomplish this,

we construct a new portfolio consisting of 10 assets, maintaining γ = 2 and ε = 1%.

µ σ ρ ε

Asset1∼10 0.12 0.4 0.4 1%

Table 4.6: Portfolio F

The simulated results, estimated results, together with ESR, are displayed

ESR
Min

ESR
RNN

ESR
Max

Portfolio F 4.76 4.79 4.88

Table 4.7: Results on Portfolio in Table 4.6

The table on the right hand side indicates the ESR in percentage (%).

In summary, the ESR function exhibits a rapid but not smooth convergence at ap-

proximately 50 epochs with a learning rate of l = 0.01 due to the similarities of included

assets. The model is anticipated to converge more smoothly with a higher learning

rate. Simultaneously, the simulated equivalent safe rate resides squarely between its
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maximum and minimum approximations, which consequently furnishes compelling ev-

idence corroborating the model’s suitability for a 10-asset market. We also notice that

this simulation results benefits from high correlation between assets, and when cor-

relation reduces, model can still converge but can hardly improve the ESR from its

initial input.
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Variance Reduction

The difficulty of the model, as is presented in the previous chapters, lies in the increase

of computational resources requirement under high dimension. We aim at finding

a way to reduce the number of simulated paths for decreasing the size of training

data without losing accuracy of Monte Carlo simulation. This chapter introduces a

short review about existing methods reducing variance with respect to Monte Carlo

simulation. The importance sampling method is chosen afterwards as the technique

to be utilized in this article. The scalar of importance sampling is then proved for the

wealth process Xt with trading costs and is then utilized in high-dimensional assets

model. The scalar is extracted from simulated data and then multiply by the output

layer X1−γ
t under the new measure. Comparison of simulation results between with

and without variance reduction is then presented.

5.1 Reduce Variance and Increase Speed

Both parallelogram method and projection with bisection method target at reducing

the loss function (opposite of ESR). The session is then reduced to the approximation

and evaluation of the loss under certain probability measure P . In practice, the loss

function becomes:

Loss = min
π−,π+

−Ḡn, Ḡn =
1

n

∑
ω

U(XT (ω)) (5.1)
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The Monte Carlo simulation is then applied and loss is estimated by the sample average

in equation[5.1] from the iid samples of returns and the corresponding selection of

strategy. It is then clear to learn from the central limit theorem that the asymptotic

confidence interval of EP [U(XT (ω))] is:

(Ḡn − ξn, Ḡn + ξn)

and

ξn = qα
σn√
n
, σn =

1

n

∑
ω

(U(XT (ω))− Ḡn)
2,

where σn is the sample variance and qα is the 1 − α
2

quantile of the standard normal

distribution. In this sense, we can only achieve relatively accurate results when we

have small σn or large n and if there exists a large variance, we have to increase

the number of path to preserve enough accuracy. However, because the model is to

remember and process return and strategy data for all time steps and scenarios, the

restriction of computing and memory resource suggests that we cannot increase the

path n without any limitation. This tension highlights the trade off between model

accuracy and computing speed.

Monte Carlo simulation has been studied for a long time and many approaches has

been come up with to reduce variance and increase accuracy. The following sections

review several widely-used variance reduction methods and address their benefits and

drawbacks with respect to the integration to our model.

5.2 Methods for Variance Reduction

A number of methodologies has been developed to address this problem. We will

discuss control variates, antithetic variates, stratified sampling, and importance sam-

pling.
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5.2.1 Antithetic Variates

The method of antithetic variates (Hammersley and Morton [1956]) aims to reduce

variance by introducing negative dependence between pairs of replications and is widely

used.

In particular, considering a Monte Carlo simulation Yi driven by standard normal

random variables (i.i.d.N(0, 1)): Z1, Z2, Z3, ..., Zn, the method of antithetic variates

simply suggest including another sequence: −Z1,−Z2,−Z3, ...,−Zn to double the num-

ber of simulation and the extra samples are represented as Ŷi. The antithetic variates

estimator is simply the average of all 2n observations. We derive:

V ar[
Yi + Ŷi

2
] =

1

4
(V ar(Yi) + V ar(Ŷi) + 2Cov(Yi, Ŷi)) < V ar[

Yi + Yj

2
]

provided that Cov(Yi, Ŷi) < 0 and Yj is another generated sample independent from

Yi, thus the method is proved to work by reducing the efforts to generate simulations

and variance simultaneously. However, the difficulty of our model is consuming too

much resources to process samples when applying stochastic gradient method rather

than preparing samples. Therefore, antithetic variates is not the best candidate for

our requirements.

5.2.2 Control Variates

The method of control variates (Rubinstein and Marcus [1985]) is among the most

widely-used techniques for enhancing Monte Carlo simulation. It exploits information

about the errors in estimates of known quantities to reduce the error in an estimate

of an unknown quantity.

The key point of this method is to use an alternative variable Yi(b) to estimate the

original Yi:

Yi(b) = Yi − k (Ui − E[U ])

where Ui is from some distribution with known expectation and known correlation
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with Yi. The mean of Yi can be computed as:

Ȳ (b) = Ȳ − b(Ū − E[U ]) =
1

n

n∑
i=1

(Yi − b (Ui − E[U ])) .

As a result, Ȳ (b) is an unbiased estimation of E[Y ]. The variance of the estimator:

V ar [Yi(b)] = V ar [Yi − b (Ui − E[U ])]

= σ2
Y − 2bσUσY ρUY + b2σ2

U

could be minimized through solving a simple quadratic function and then applying

b = σY

σU
ρUY = Cov(U,Y )

V ar(U)
. Consequently, we derive:

V ar[Yi(b)] = (1− ρ2UY )V ar[Yi].

It turns out that the variance is then reduced when ρUY > 0. However, such a

method is well applicable with a chosen candidate random variable Ui such that the

expectation of Ui and the correlation between Ui and the target Yi is known and

determined. In contrast, since the potential trading strategy is not determined, it

is difficult to understand the explicit distribution of the wealth process and almost

impossible to choose a good candidate as the distribution U . As a result, the method

of control variates might not be the best way to improve our model.

5.3 Stratified Sampling

Stratified sampling is more complicated and uses other samples which constrain the

fraction of observations drawn from specific subsets of the target sample space (Glasser-

man [2013]). This method is mostly based on the following equation:

E[Y ] =
K∑
i=1

P (Y ∈ Bi) E [Y | Y ∈ Bi] =
K∑
i=1

piE [Y | Y ∈ Bi]
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where Y is the samples to be simulated, B1, B2, ...BK are disjoint partitions that satisfy

P (Y ∈ ∪iBi) = 1 and pi = P (Y ∈ Bi). Assuming ni = npi, then

Ŷ =
K∑
i=1

pi ·
1

ni

ni∑
j=1

Yij =
1

n

K∑
i=1

ni∑
j=1

Yij

is an unbiased estimator of E[Y ] where Yij denotes draws from the conditional dis-

tribution Y ∈ Bi. Now we process with another variable H and relevant subsets,

P (H ∈ ∪iBi) = 1, and then we have:

E[Y ] =
K∑
i=1

P (H ∈ Ai) E [Y | H ∈ Ai] =
K∑
i=1

piE [Y | H ∈ Ai]

where pi = P (H ∈ Bi) and then the estimator of E[Y ] turns out to be:

Ŷ =
K∑
i=1

pi ·
1

ni

ni∑
j=1

Yij =
1

n

K∑
i=1

pi
qi

ni∑
j=1

Yij

with qi =
ni

n
being the fraction of observations drawn from stratum i. The process

includes:

• Choose the candidate variable H and relevant disjoint strata B1, B2, ...BK .

• Generate samples from the distribution of paired (H, Y ) with H ∈ Bi.

The variance of the estimator turns out to be:

V ar[Ŷ ] =
K∑
i=1

p2iV ar

[
1

ni

ni∑
j=1

Yij

]
=

K∑
i=1

p2i
σ2
i

ni

with the optimal solution of q:

q∗i =
piσi∑K
l=1 plσl

, i = 1, . . . , K.

The variance is well reduced when the stratum standard deviations vary. However,

with our model, it is difficult to choose a stratum with varying standard deviations

as the potential candidate for H, which is likely to be the assets price, is determined
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and we are not aware of the stratum. As a result, we will not perform the method of

stratified sampling.

5.4 Importance Sampling Method

Importance sampling method (Tokdar and Kass [2010]) is the general description of

a set of Monte Carlo improvement methods where a mathematical expectation of a

target distribution is approximated by the adjusted expectation under some other

distribution. More precisely, it simultaneously changes the probability measure P and

the payoff Ḡ to keep the same expectation and meanwhile, significantly reduce variance

(Guasoni and Robertson [2008]). The target of our problem, EP [U(XT )] is redefined

as:

EP [U(XT )] = EQ[HT ]

where HT = U(XT )
dP
dQ

. With the feature of power utility, it is equivalent to start with

EP [X
1−γ
T ] instead of EP [U(XT )] as EP [U(XT )] =

(EP [X1−γ
T ]−1)

1−γ
. The target is to find

HT and dP
dQ

which indicates the Brownian Motion under Q measure. As a result, we

then introduce

EP [X
1−γ
T ] = EQ[X

1−γ
T

dP

dQ
] (5.2)

where:
dQ

dP
= exp

(
− 1

2

∫ T

0

ḣ2
tdt+

∫ T

0

ḣtdWt

)
(5.3)

which indicates

WQ
t = Wt − ht (5.4)

WQ is a Q-Brownian Motion by Cameron-Martin theorem and Gisanov theorem with

ḣt being the first order derivative of ht. In this problem, we expect the unique solution

of ḣt to be a constant vector. To solve the problem, we formulate the dynamic of XT :

dXt = µπtXtdt+ σπtXtdWt − εSt|dϕt|
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and it turns out that:

XT = exp

(∫ T

0

(µπt −
1

2
σ2π2

t )dt+

∫ T

0

σπtdWt −
∫ T

0

επtdvt

)
(5.5)

under the P-measure with dvt =
|dϕt|
ϕt

as the term describing the trading cost. Since

randomness comes from the
∫ T

0
σπtdWt term, with the listed equations, we can derive

the unique solution of ht with the help of the Euler-Lagrange equation.

ht = (1− γ)σπ̄t, ḣt = (1− γ)σπ̄ (5.6)

where π̄ is the Merton optimal strategy µ
γσ2 without trading costs ε under one dimen-

sion and Σ−1µ
γ

, σσT = Σ for more than one asset. The progress of optimisation turns

into:

EP [U(XT )] =
(EP [X

1−γ
T ]− 1)

1− γ
=

1

1− γ

(
(EQ[X

1−γ
T

dP

dQ
]− 1)

)
where:

dP

dQ
= exp

(
− 1

2

∫ T

0

ḣ2
tdt−

∫ T

0

ḣtdWt

)
With Q-measure, the Xt is simulated with the same volatility but an transformed drift.

µ̂ = µ+ σḣt

From a theoretical perspective, the variance is eliminated and scenarios could be re-

duced to only one under the assumption of no trading costs. With the existence of

trading costs, the story is different as the volatility term is ((1− γ)
∫ T

0
(πt − π̄)σdWt)

rather than 0 since πt − π̄ ̸= 0. However, we can still expect that the importance

sampling method could notably reduce the variance (hardly to 0) and computing com-

plexity as the difference πt − π̄ is not supposed to be big when the strategy πt will be

controlled by some upper bound and lower bound with the important assumption of

small transaction costs.
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5.5 Results Comparison

In order to validate the performance of the importance sampling method, we start the

comparison from the simple case with simulated basic assets. The comparison will

include direct plots of no-trade regions.

5.5.1 One Asset Case

We start from the basic one asset model, we should notice from previous chapter

that this problem with relevant no-trade region has already been resolved and we can

compare directly with the asymptotic solution. We use the asset below:

µ σ T ε γ Nsteps

0.02 0.2 10 1% 2 120

The results without importance sampling contains the comparison between the same

asset with two different number of scenarios.

Figure 5.1: No Trade Region: 3000 Paths & 10000 Paths

The left plot is from 3000 scenarios and the right plot is from 10000 scenarios

Figure 5.1 indicates that with the increasing number of scenarios, there is no doubt

that the simulated no-trade region turns to be close to the asymptotic solution, which

means increase the scenarios can help reduce variance. We should also notice the

randomness of the samples since 3000 and 10000 are not a large number of scenarios

and the plot could vary due to a changing random seed.
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Figure 5.2: No Trade Region: 3000 Paths with Importance Sampling

Figure 5.2 shows that with the same asset and the importance sampling method,

the 3000 scenarios simulation performs better than the 10000 scenarios simulation

without importance sampling, accurately reproducing the asymptotic solution.

Method IS ESR(%) LOW UP
3000 NO 0.194 0.171 0.323
10000 NO 0.218 0.196 0.302
3000 YES 0.223 0.188 0.309

Asymptotic - 0.232 - -
NTR - - 0.187 0.311

Table 5.1: One Asset Importance Sampling Performance on ESR

IS denotes importance sampling, NTR denotes asymptotic no trade region while low and up refers to
lower bound and upper bound of such no trade region respectively

The equivalent safe rates estimation also suggests the superiority of importance

sampling method as the 3000 scenarios simulation of importance sampling provides a

equivalent safe rate high than the 10000 scenarios simulation. The ESR is closer to

the asymptotic derived from equation (3.4). The examples and the theory indicates

that importance sampling method significantly improves the simulation and reduces

variance in some situation without introducing extra computing requirements in the

one-asset model.
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5.5.2 Two Assets Case

To validate the importance sampling model with more than one asset, we still begin

with the dynamic portfolio model established by Muthuraman and Kumar [2004] for

consistency. The portfolios in Table 3.2 contains 2 same assets with covariance matrix:

Σ =

0.4− k k

k 0.4− k


with k ∈ (−∞, 0.2]. The covariance matrix preserves the feature of a constant Merton

optimal strategy with varying correlations. We compare different numbers of scenarios

with and without importance sampling.

µ1 µ2 k T ε γ Nsteps

0.12 0.12 0.15 10 1% 2 120

The results presented in Table 5.2 clearly demonstrate the improvements made by im-

portance sampling method. The ESR of direct ETF strategy without doing anything

about trading costs are comparatively low in all scenarios dependent on the rebalanc-

ing frequency. With the increase of scenarios, accuracy of all results increases. The

performance of 10000 scenarios with importance sampling method is close to 30000

scenarios with importance sampling, and is better than both 10000 and 30000 sce-

narios without importance sampling, providing a higher ESR and smaller confidence

interval. The results indicate that importance sampling method plays positive role

in reducing computing complexity and variance. However, it still requires a certain

number of scenarios to maintain the accuracy of simulation, as the variance cannot be

completely removed.
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Npaths IS ESR
Merton(%)

ESR
ETF(%)

ESR
NTR(%)

ESR
RNN(%)

10000 Yes 1.80 1.48 1.68 (4.33) 1.70 (4.32)
30000 Yes 1.80 1.48 1.68 (4.33) 1.70 (4.32)
10000 No 1.80 1.45 1.65 (4.30) 1.66 (4.29)
30000 No 1.80 1.45 1.65 (4.30) 1.67 (4.30)

Table 5.2: Two Assets Importance Sampling Performance

IS denotes importance sampling, NTR represents the simple no-trade region strategy without con-
sidering the correlation
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Empirical Results

This chapter presents an introduction to the fundamental concepts of tracking error

and tracking difference, two pivotal metrics extensively employed in the comparative

analysis of Exchange-Traded Fund (ETF) performance and a specific benchmark. The

application of these metrics to an equally-weighted ETF serves as a demonstrative case

study, illustrating the efficacy of the RNN methodologies in mitigating both tracking

error and tracking difference from an empirically determined target.

6.1 Evaluating Exchange-Traded Funds (ETFs)

The goal of the thesis, overall, is to relate this RNN model to empirical findings on

trading strategy modification considering the impact of trading costs. As the strategy

deal with portfolios, and the most common portfolios one can find in the market are

Exchange-Traded Funds, a type of investment fund that tracks an index, a commodity,

bonds, a basket of assets, or other asset types and is traded on stock exchanges, which

are known as ETFs. A passive ETF is a type of ETF that aims to replicate the

performance of a particular index or benchmark, and the strategy of a passive ETF

could be clear, making it possible to track. The tracking difference (TrD):

TrDT = 100 ∗ ((1 +RiT −RbT )
1
T − 1)

≈ 1

T
(RiT −RbT ) ∗ 100 (6.1)
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is the annualized average of difference between the fund and the benchmark. RiT−RbT

is the cumulative difference of returns during a specific time period and T is the number

of years during such period. The tracking error (TrE):

TrET =

√√√√ 1

T

KT∑
t=1

(rit − rbt − TrDT )2 (6.2)

describes the annualized standard deviation of the fund’s and the benchmarkâĂŹs

returns difference, where rit and rbt are returns of the fund and benchmark during

a time interval and K is number of such intervals in a year. Both tracking error

and tracking difference are widely used in Frino and Gallagher [2001], Charteris and

McCullough [2020] and Guasoni and Mayerhofer [2023] to evaluate the performance

of ETFs and leveraged portfolios. This thesis is going to use both tracking error and

tracking difference together with equivalent safe rate(ESR) to evaluate the performance

of trading cost mitigation with the RNN model. In detail, we choose the returns of

strategies modified in different ways as the input rit and the ideal returns of optimal

strategy without transaction cost as the benchmark rbt.

6.2 Model Performance on Small ETF

ALPS [2023] is a small Fund of Fund (FOF) product using equal weight strategy to

replicate NYSE Equal Sector Weight Index (NYXLEW) and it is rebalanced quarterly.

The target is to replicate the ETF in three different ways. One way is to replicate with

rigorously equal weight strategy with zero trading cost, and this provides a multiple

of the indexâĂŹ return above the safe rate as a benchmark. The second way is to

replicate with a simple no trade region (simple NTR) strategy:

π± = π∗ ± (
3

4γ
π2
∗(1− π∗)

2)1/3ε′1/3

which approximately considers the proportional trading costs with a no trade region

in the absence of correlation. The last way is to replicate with simulated strategy from
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the RNN model which consider the proportional trading costs with a no trade region

with regard to correlation. With varying trading costs, we simulate training data with

parameters:

T γ Npaths Nsteps

10 4 20000 120

The covariance matrix, noted as Σ, is sourced from Yahoo Finance, covering the returns

from August 1998 to June 2023 with:

µ = γΣπ∗

Where π∗ denotes the equal weight strategy, and this equation lead to the assumption

of drift µ of assets included in the ETF. For convenience, we construct a testing

data set with exactly same input parameters but different random seed and the ESR

performance of testing data implies positive results.

Figure 6.1: EQL ESR Estimation with Different Costs

Results in Figure 6.1 clarifies that with the increase of trading cost, the ETF strategy

which is strictly equal weight, witnesses a significant decrease in terms of its ESR,

indicting the challenge to replicate the optimal return of a strategy which trades illiquid

assets.
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ε
(%)

ESR
Merton(%)

ESR
ETF(%)

ESR
NTR(%)

ESR
RNN(%)

0.05 7.20 7.20 7.20 (5.97) 7.20 (5.97)
0.25 7.20 7.11 7.18 (5.95) 7.19 (5.99)
0.50 7.20 7.01 7.16 (5.95) 7.17 (5.95)
1.00 7.20 6.80 7.14 (5.95) 7.15 (6.00)
2.50 7.20 6.17 7.10 (5.97) 7.12 (6.01)

Table 6.1: Strategy ESR on EQL

ETF denotes the direct ETF strategy without no-trade region, NTR represents the simple no-trade
region. The evaluating data including returns of EQL and relevant ETFs from August 2009 to June
2023

Meanwhile, the RNN strategy, exceeds both simple no trade region strategy with

only slight lead and both are much better than ETF strategy. This could be due to

the low correlation between assets. In fact, the assets included in the ETF are indexes

of different industrial sectors which, have low correlation.

ε
(%)

TrD
RNN(%)

TrD
ETF(%)

TrD
NTR(%)

TrE
RNN(%)

TrE
ETF(%)

TrE
NTR(%)

t
RNN

t
ETF

t
NTR

0.05 0.22 -0.39 0.21 0.50 1.20 0.49 1.65 -1.22 1.63
0.25 0.39 -0.39 0.42 0.65 1.20 0.71 2.24 -1.22 2.18
0.50 0.42 -0.39 0.46 0.62 1.20 0.81 2.47 -1.22 2.12
1.00 0.57 -0.39 0.51 0.94 1.20 0.94 2.25 -1.22 1.99
2.50 0.37 -0.39 0.47 1.37 1.20 1.16 0.99 -1.22 1.50

Table 6.2: Strategy Performance on EQL

ETF denotes the direct ETF strategy without no-trade region, NTR represents the simple no-trade
region. The evaluating data including returns of EQL and relevant ETFs from August 2009 to June
2023

The result presented in Table 6.2 indicates that with extremely small trading costs,

the tracking difference and tracking error are also extremely small, and both mitigated

strategies do not surpass the ETF strategy significantly. As trading costs slowly in-

creases, both strategy become significant and the RNN model start to function to

improve the strategy. However, when trading costs reaches a certain level, a decrease

in significance appears again. As all assets are very illiquid, there is hardly a "close"

strategy to keep high tracking difference and low tracking error simultaneously. In

this situation tracking error retains a high level to maintain a high tracking difference

due to a low level of risk aversion. In general, the comparison indicates that the RNN

model surpasses the strategy of the ETF significantly with better tracking difference

62 27/08/2024



Chapter 6. Empirical Results

and less tracking error. However, the RNN model does not surpass the simple no-trade

region strategy by a large margin: it is better, but only to a small extent. As a result,

it would be meaningful to use both modification methods to improve the performance

of an equally-weighted ETF, but the simple no-trade region method might be an easier

solution in some cases when assets correlations are low.

(a) ε = 0.05%
Assets XLE XLF XLP XLV XLB XLK XLY XLI XLU XLRE XLC

1√
ξi

0.023 0.046 0.064 0.074 0.099 0.124 0.175 0.213 1.980 0.340 0.453
|αi| 0.119 0.011 0.123 0.128 0.067 0.061 0.007 0.130 0.092 0.017 0.079
ED 1.967

(b) ε = 0.25%
Assets XLE XLF XLP XLV XLB XLK XLY XLI XLU XLRE XLC

1√
ξi

0.027 0.034 0.054 0.072 0.118 0.110 0.177 0.207 0.280 1.080 0.517
|αi| 0.021 0.023 0.089 0.089 0.023 0.024 0.10 0.100 0.11 0.100 0.025
ED 1.202

(c) ε = 0.5%
Assets XLE XLF XLP XLV XLB XLK XLY XLI XLU XLRE XLC

1√
ξi

0.034 0.038 0.078 0.089 0.122 0.200 28.087 0.487 0.376 0.260 0.286
|αi| 0.020 0.018 0.130 0.139 0.022 0.018 0.117 0.094 0.158 0.013 0.019
ED 27.977

(d) ε = 1%
Assets XLE XLF XLP XLV XLB XLK XLY XLI XLU XLRE XLC

1√
ξi

0.041 0.089 0.114 0.189 0.207 0.263 0.298 0.361 0.431 0.974 7.775
|αi| 0.034 0.027 0.127 0.140 0.033 0.030 0.144 0.107 0.166 0.033 0.034
ED 7.814

(e) ε = 2.5%
Assets XLE XLF XLP XLV XLB XLK XLY XLI XLU XLRE XLC

1√
ξi

0.186 0.250 0.351 0.339 0.498 0.819 1.078 2.013 5.920 1.966 3.352
|αi| 0.033 0.192 0.097 0.171 0.193 0.029 0.165 0.140 0.180 0.177 0.046
ED 7.229

Table 6.3: Comparison of Axes Lengths and boundaries on EQL ETF

Table 6.3 compares the performance of optimizing the ETF using the hyperpar-

allelogram and hyperellipsoid methodologies respectively. Analogous to the results

observed for Portfolio F, the hyperparallelogram exports stable |αi| whereas the hy-

perellipsoid method occasionally generates exploding axe lengths on certain assets.

Experiments have been done with different number of scenarios, learning rates and

random seed while results remain with extreme axis length values (eigenvalues) which

may vary but can hardly been reduced significantly. Table 6.4 apply the same metrics
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in Table 6.2 to evaluate the tracing error and tracking difference of such ETF with the

hyperellipsoid method. Results indicates that the hyperellipsoid, can always target at

improving tracing error at the cost of higher tracing difference. It performs well with

low transaction costs. However, if transaction costs increase, the tracking differences

start to increase and ends up with low t-value causing it not as good as the simple

no-trade region algorithm. The reason is that overall the mathematically optimized

no-trade region can never be an exact hyperellipsoid with low correlation and the be-

haviors of some axe lengths, possibly because of gradients also reduce accuracy and

this problem will be further studied.

ε
(%)

TrD
ELIP(%)

TrD
ETF(%)

TrD
NTR(%)

TrE
ELIP(%)

TrE
ETF(%)

TrE
NTR(%)

t
ELIP

t
ETF

t
NTR

0.05 0.49 -0.39 0.21 0.94 1.20 0.49 1.93 -1.22 1.63
0.25 0.59 -0.39 0.42 0.99 1.20 0.71 2.2 -1.22 2.18
0.50 0.51 -0.39 0.46 0.92 1.20 0.81 2.06 -1.22 2.12
1.00 0.60 -0.39 0.51 1.18 1.20 0.94 1.91 -1.22 1.99
2.50 0.56 -0.39 0.47 1.79 1.20 1.16 1.16 -1.22 1.5

Table 6.4: Hyperellipsoid Strategy Performance on EQL

Evaluating data is similar to Table 6.2 and ELIP refers to results from the hyperellipsoid method.

The concurrent consideration of hyperparallelogram and hyperellipsoid models in

portfolio optimization underscores a fundamental principle in quantitative finance: the

existence of multiple variable approaches to strategy optimization. This multiplicity

of solutions presents each method’s applicability, strengths, and limitations. It is im-

perative to delineate clearly the contexts in which each approach is most appropriately

and effectively employed.
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Conclusion

In summary, this thesis investigates the effect of transaction costs on portfolio re-

balancing, and develops an algorithm capable of efficiently approximating a trading

strategy accounting for transaction costs. Leveraging this algorithm, machine learn-

ing theory, and pertinent mathematical theory on asymptotic analysis of the no-trade

region, we have devised a supervised recurrent neural network model to address the

multi-asset trading problem with transaction costs. This model effectively incorporates

existing findings, yielding numerically optimal strategies given a specific portfolio’s risk

premium and covariance.

The primary contribution of this thesis lies in presenting a model that tackles high-

dimensional trading problems with transaction costs without sacrificing interpretabil-

ity from both mathematical and financial perspectives, by concurrently integrating

relevant mathematical and financial insights with machine learning methodologies.

Thus, utilizing this model to achieve an effective trading strategy is promising. The

industry may find it appealing to adopt a mathematically explicable model that as-

sists in managing a fixed-assets portfolio or modifying an existing strategy, such as an

original equal-weighted ETF, by assuming µ = γσπ∗. Further research of model appli-

cation to small ETF demonstrates that our strategy surpasses established equal-weight

and basic buy-and-hold strategies with small transaction costs.

The model does have a few limitations where Zero safe rates can be easily upgraded

with a modified drift term. First and the most obvious is that it does not work
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with fixed trading costs, and as a result, it is not suitable to those assets with high

fixed trading costs, such as Crypto currencies. More specifically, considering a power

utility with constant risk aversion, Altarovici et al. [2016] point out that the optimal

strategy with proportional and fixed transaction costs under one dimension is a double-

boundary no-trade region. The region has a narrow boundary covered by a wider

boundary. The trader should keep passive within the wider no-trade region and trade

when the weight exceeds the wider no-trade region, which leads to trading the weight

of the asset back to the narrow boundary instead of the wider one. It is obvious that if

the proportion of the fixed costs is extremely small compared to the overall wealth Xt,

then both no-trade regions converge and the effects of fixed costs is small. This method

can be done by updating the activation function with an extra boundary covering the

original no-trade region. Our model can also replicate the case by redefining the

activation function on the basis that one asset can be extended to more assets model.

This work could be covered in future research.

The model’s underlying theory relies on constant volatility, potentially hindering

its performance in markets better characterized by stochastic volatility models. Con-

sumption rate ct is not involved and it should be modeled in the future as consumption

model usually possesses greater research significance assuming the manager continu-

ously charges management fees. The model is also challenged by the real market with

low correlation. It is evident that most assets, especially those widely used as parts

of ETFs, are not highly dependent on each other. When the correlation reduces to a

certain level (i.e. 10%), it sometimes turns out that the simple no trade region and buy

and hold strategy is more cost effective in terms of calculation. Rebalancing frequency

is also a factor; higher frequencies necessitate more computational resources for larger

simulation datasets over a trading horizon and relevant market regulations may affect

availability at specific trading frequencies (e.g., the Chinese market).

Additionally, the simulation and deployment of the model requires significant mem-

ory and computing resources, with demands increasing as portfolio size grows. This

problem is partially resolved by introducing the hyperellipsoid model in the previous
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chapters. However, this method is not perfect and causes inaccuracy in strategies of

some assets when dealing with large dimension portfolio. Future work will involve

model fix, improvement and computing resource optimizing for this model.

To summarize, our research offers an algorithm capable of optimizing trading

strategies for multiple-assets portfolios with transaction costs. This algorithm is not

only amenable to programming but also mathematically and financially interpretable,

and compares favorably to existing approaches in the literature.
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Appendix A

Codes

In this section, relevant codes are included but only key contents will be covered, for

codes that can execute directly, move to Github: Li [2024].

A.1 One Asset

A.1.1 Functions

1 # Function to calculate the final return with trading cost with

respect to a particular strategy

2 def cal_return(strat , returns , cost , n_iterations =5):

3 r = strat[:-1, :]* returns

4 r0 = strat[:-1, :]* returns

5 for _ in range(n_iterations):

6 r = r0 -cost*abs((r+1)*strat[1:, :]-( returns +1)*strat[:-1, :])

7 return r

Code Listing A.1: Calculate return

1 # Module for importance sampling

2 def importance_sampling(is_importance ,seed ,mu ,sigma ,s0,npaths ,

seq_length ,gamma ,T):

3 """

4 Simulates stock returns under a different probability measure

using importance sampling.
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5

6 Parameters:

7 - is_importance (bool): Flag to determine if importance sampling

should be used.

8 - seed (int): Random seed for reproducibility.

9 - mu (float): Drift rate of the stock under the original measure.

10 - sigma (float): Volatility of the stock.

11 - s0 (float): Initial stock price.

12 - npaths (int): Number of simulation paths.

13 - seq_length (int): The sequence length of the simulation.

14 - gamma (float): Risk aversion parameter.

15 - T (float): Time horizon for the simulation.

16 - device (str or torch.device): The device on which to perform

the computations.

17

18 Returns:

19 Tuple of (mu_importance , returns , scaler) under the Q measure.

20 """

21 if not is_importance:

22 stock = dg.OneStock(seed ,mu ,sigma ,s0,npaths ,seq_length -1,T)

23 returns = torch.tensor(stock.Returns (),dtype=torch.float).to(

device).transpose (0,1)

24 scaler = 1

25

26 else:

27 # define the h

28 h = (1-gamma)/gamma*mu/sigma

29 # define the new drift under Q measure

30 mu_importance = (1-gamma)/gamma*mu+mu

31 # Simulate stock under Q measure

32 stock = dg.OneStock(seed ,mu_importance ,sigma ,s0 ,npaths ,

seq_length -1,T)

33 # Returns under Q measure

34 returns = torch.tensor(stock.Returns (),dtype=torch.float).to(

device).transpose (0,1)
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35 # Extract Brownian Motion under Q measure

36 BM_last = stock.BM()[-1,:]

37 # The scaler

38 scaler = torch.exp(torch.tensor (-1/2*h*h*T-h*BM_last)).to(

device)

39 return returns , scaler

Code Listing A.2: Importance Sampling

1 # Make a portfolio

2 def make_portfolio(seed ,mu,sigma ,s0,npaths ,seq_length ,T,trading_cost ,

gamma):

3 # Create a stock simulation with prices , returns

4 # seed , mu, sigma , S0 , paths , steps , T

5 # Define the Merton_optimal strategy

6 Merton_opt = mu/(sigma*sigma*gamma)

7 # Define the distance for initial non trade region

8 delta = np.power(np.power(Merton_opt *(1- Merton_opt)*trading_cost

,2) ,1/3)

9 stock = dg.OneStock(seed ,mu ,sigma ,s0,npaths ,seq_length -1,T)

10 returns = torch.tensor(stock.Returns (),dtype=torch.float).to(

device).transpose (0,1)

11 # Create a default strategy as initial input , better use the

optimal strategy without cost

12 strategy = Merton_opt*torch.ones((seq_length ,1),dtype=torch.float

).to(device)

13 # Create a trading cost

14 cost = torch.tensor(trading_cost*np.ones([seq_length -1,1]),dtype

=torch.double).to(device)

15 return returns , strategy , cost , Merton_opt , delta

Code Listing A.3: Simulate Portfolio

1 def make_model(input_size , hidden_size , n_layers , npaths , seq_length ,

delta , gamma , learning_rate):

2 model = NOA.WealthRNN(input_size , hidden_size , n_layers , npaths ,

seq_length).to(device)
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3 model.update_bias(delta)

4 model.to(device)

5 # Use utility as the loss function

6 criterion = UL.PowerUtilityLoss(gamma)

7 #model.rnn.fc2_param.bias.requires_grad = True

8 optimizer = optim.Adam(filter(lambda p: p.requires_grad , model.

parameters ()), lr=learning_rate)

9 return model , criterion , optimizer

Code Listing A.4: Create Model

1 # Train and plot model

2 def train_model(strategy , target , returns , cost , scaler , model ,

criterion , optimizer ,n_epochs ,gamma ,T):

3 losses = np.zeros(n_epochs)

4 for epoch in range(n_epochs):

5 fina_strat , outputs = model(strategy.double (), target ,

returns , cost , None)

6 loss = criterion(outputs ,scaler)

7 optimizer.zero_grad ()

8 loss.backward ()

9 optimizer.step()

10 losses[epoch] += loss

11 # Plot the model

12 POA.loss_esr(n_epochs , losses ,gamma ,T)

13 for name , param in model.named_parameters ():

14 print (name , param.data)

15 return model , losses

Code Listing A.5: Train Model

1 # Calculate different ESR:

2 def ESR(mu,sigma ,gamma ,data , T,trading_cost , confidence =0.95):

3 # Merton strategy

4 Merton_opt = mu/(sigma*sigma*gamma)

5 # ESR from the RNN simulation

6 ESR_simulated = 1/T*np.log(np.power(np.mean(np.power(data ,1-gamma
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)) ,1/(1- gamma)))

7 # Confidence interval

8 CI = 1/T*np.log(np.power(calculate_confidence_interval(np.power(

data ,1-gamma),confidence) ,1/(1-gamma)))

9 # Theoretical ESR without cost

10 ESR_opt = mu*mu/sigma/sigma /2/ gamma

11 # Asymtotic ESR

12 ESR_real = mu*mu/sigma/sigma /2/gamma -gamma*sigma*sigma /2*np.power

(trading_cost ,2/3)*np.power (3/2/ gamma*Merton_opt*Merton_opt *(1-

Merton_opt)*(1- Merton_opt) ,2/3)

13 return ESR_simulated , CI, ESR_opt , ESR_real

Code Listing A.6: Calculate ESR

A.1.2 Neural Networks

1 # Customize a RNN layer with double relu

2 # considering returns data to build a changed strategy weight

according to price change

3 class NoTradeRegionRNN(nn.Module):

4

5 def __init__(self , input_size , hidden_size , batch_size):

6 """ Initialize params."""

7 super(NoTradeRegionRNN , self).__init__ ()

8 # read input parameters

9 self.input_size = input_size

10 self.hidden_size = hidden_size

11 self.batch_size = batch_size

12

13 self.input_param = nn.Linear(input_size , hidden_size ,bias =

False).to(device)

14 self.hidden_param = nn.Linear(hidden_size , hidden_size).to(

device)

15 self.fc1_param = nn.Linear(hidden_size ,hidden_size).to(device

)

6 27/08/2024



Appendix A. Codes

16 self.fc2_param = nn.Linear(hidden_size ,hidden_size ,bias =

False).to(device)

17

18 # Forward function allows a form:

19 # h_t = w_fc2*relu(w_fc1*relu(w_inp*x_t+b_inp+w_h*h_{t-1}+ b_h)+

b_fc1)+b_fc2+b_fc1 -b_h1

20 def forward(self , input , target , returns , hidden):

21 pi_bar = torch.tensor(target ,dtype=torch.float).to(device)

22 """ Propogate input through the network."""

23 def recurrence(input , hidden):

24 """ Recurrence helper."""

25

26 ingate = self.input_param(input) + self.hidden_param.

weight*hidden -(pi_bar -self.hidden_param.bias)

27 ingate2 = self.fc1_param.weight*F.relu(ingate)+2* self.

hidden_param.bias

28 h = self.fc2_param.weight*F.relu(ingate2)+pi_bar+self.

hidden_param.bias

29 return h

30

31 # Loop to formulate the rnn

32 output = []

33 steps = range(input.size (0))

34 myret = returns.view(input.size (0) -1,self.batch_size ,self.

hidden_size)

35 for i in steps:

36 if i ==0:

37 hidden = input [0]* torch.ones(self.hidden_size ,self.

batch_size ,self.hidden_size).to(device)

38 else:

39 # pi_t = pi_{t -1}*(1+ r_t)/(1+ pi_{t-1}* r_t) due to change

of price after rebalance

40 hidden = recurrence(input[i], hidden *(1+ myret[i-1])

/(1+ hidden*myret[i-1]))

41 if isinstance(hidden , tuple):
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42 output.append(hidden [0])

43 else:

44 output.append(hidden)

45

46 output = torch.cat(output , 0).view(input.size (0), self.

batch_size , self.hidden_size)

47 return output , hidden

Code Listing A.7: RNN layer of no-trade region

1 class WealthRNN(nn.Module):

2 def __init__(self , input_size , hidden_size , n_layers , batch_size ,

seq_length):

3 super(WealthRNN , self).__init__ ()

4 self.input_size = input_size

5 self.hidden_size = hidden_size

6 self.n_layers = n_layers

7 self.batch_size = batch_size

8 self.seq_length = seq_length

9 # the rnn layer which works as out , hidden_t = f(out_(t),

hidden_(t-1)), used to approximate pi^*_(t)= f(pi^*_(t-1),pi_t)

10 self.rnn = NoTradeRegionRNN(input_size , hidden_size ,

batch_size).to(device)

11 self.out = nn.Linear(hidden_size , hidden_size ,bias=False).to(

device)

12 # initialize some bias and weight

13 self.rnn.input_param.weight = torch.nn.Parameter(torch.zeros

(1,1))

14 self.rnn.hidden_param.weight = torch.nn.Parameter(torch.ones

(1,1))

15 self.rnn.hidden_param.bias = torch.nn.Parameter (0* torch.ones

(1,1))

16 self.rnn.fc1_param.bias = torch.nn.Parameter (0* torch.ones

(1,1))

17 self.rnn.fc1_param.weight = torch.nn.Parameter (-1*torch.ones

(1,1))
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18 self.rnn.fc2_param.weight = torch.nn.Parameter (-1*torch.ones

(1,1))

19 self.out.weight = torch.nn.Parameter(torch.ones(hidden_size ,

hidden_size))

20

21 def update_bias(self ,value):

22 self.rnn.hidden_param.bias = torch.nn.Parameter(value*torch.

ones (1,1))

23 self.out.weight.requires_grad = False

24 self.rnn.input_param.weight.requires_grad = False

25 self.rnn.hidden_param.weight.requires_grad = False

26 self.rnn.fc1_param.weight.requires_grad = False

27 self.rnn.fc2_param.weight.requires_grad = False

28

29 def step(self , input , target , returns , cost , hidden=None):

30 output , hidden = self.rnn(input , target , returns , hidden).to(

device)

31 output2 = self.out(output)

32 return output , output2

33

34 def forward(self , inputs , target , returns , cost ,hidden=None):

35 # hidden = self.__init__hidden ().to(device)

36 hidden = inputs [0]* torch.ones(self.n_layers , self.batch_size ,

self.hidden_size , dtype=torch.float64).to(device)

37 output , hidden = self.rnn(inputs.float(), target , returns ,

hidden.float())

38 # output_temp the overall wealth at time T for importance

sampling

39 output2 = torch.prod(FOA.cal_return(output.float ().view(self.

seq_length ,self.batch_size),returns ,cost).to(device)+1,0)

40 return output , output2

Code Listing A.8: Nonlinear layer of wealth process
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A.2 Two Assets

A.2.1 Functions

1 # Create a square simple no trade region strategy without correlation

2 def simpleNTR(input , returns , upper , lower):

3 output = []

4 steps = range(input.size (1))

5 for i in steps:

6 if i == 0:

7 hidden = input[:, 0, :]. view(input.size (0), 1, input.size

(2)).to(device)

8 else:

9 adjust_pi = hidden.view(input.size (0), 1, input.size (2))

* (1 + returns[:, i - 1, :]. view(input.size (0), 1, input.size (2)))

\

10 / (1 + torch.sum(hidden.view(input.size (0),

1, input.size (2)) * returns[:, i - 1, :]. view(input.size (0), 1,

input.size (2)), 0))

11 # Apply the simple no trade region strategy

12 hidden = torch.where(adjust_pi < lower , lower , torch.

where(adjust_pi > upper , upper , adjust_pi))

13 output.append(hidden)

14 output = torch.cat(output , 1)

15 return output

Code Listing A.9: Create a simple no-trade region

1 # Create function which calculate ESR with strategy returns and cost

2 def cal_esr(strategy , returns , cost , utility_gamma , T, scaler = 1):

3 x = torch.prod(cal_return(strategy ,returns ,cost)+1,0)

4 esr = torch.log(torch.pow(torch.mean(torch.pow(x,1- utility_gamma)*

scaler) ,1/(1- utility_gamma)))/T

5 #I = np.log(np.power(confidence_interval (( torch.pow(x,1-

utility_gamma)*scaler).detach ().cpu().numpy ()) ,1/(1- utility_gamma)

))/T
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6 std = torch.std(torch.log(torch.pow(( torch.pow(x,1- utility_gamma)*

scaler) ,1/(1- utility_gamma)))/T)

7 return esr ,std

Code Listing A.10: Calculate ESR and its std

1 # A function that compares different ESR under different models

2 def ESR(input_size , hidden_size , n_layers ,num_stocks , seq_length ,

npaths ,\

3 model_state_dict , strategy , returns , cost , utility_gamma , T,

scaler = 1, confidence = 0.95):

4

5 batch_size = npaths

6 seq_length = seq_length

7 dim_size = num_stocks

8 # create a simple no trade region

9 lower = strategy [:,0,:]. view(num_stocks ,1,npaths)-torch.pow (1.5/

utility_gamma *( strategy*strategy *(1- strategy)*(1- strategy))

[:,0,:]. view(num_stocks ,1,npaths)*cost [:,0,:]. view(num_stocks ,1,

npaths) ,1/3)

10 upper = strategy [:,0,:]. view(num_stocks ,1,npaths)+torch.pow (1.5/

utility_gamma *( strategy*strategy *(1- strategy)*(1- strategy))

[:,0,:]. view(num_stocks ,1,npaths)*cost [:,0,:]. view(num_stocks ,1,

npaths) ,1/3)

11 stra_NTR_the = simpleNTR(strategy , returns , upper , lower)

12 # create a new model

13 model3 = NTA.WealthRNN(input_size , hidden_size , n_layers ,

batch_size , seq_length ,dim_size).to(device)

14 # load saved data

15 model3.load_state_dict(model_state_dict)

16 # outputs of testing data

17 _, outputs = model3(strategy.to(device),strategy [:,0,0], returns ,

cost , None)

18 # condidence interval

19 CI = 1/T*np.log(np.power(confidence_interval(np.power(outputs.

detach ().cpu().numpy() ,1-utility_gamma),confidence) ,1/(1-

11 27/08/2024



Appendix A. Codes

utility_gamma)))

20

21 return cal_esr(strategy ,returns ,cost ,utility_gamma , T),cal_esr(

stra_NTR_the ,returns ,cost ,utility_gamma , T),cal_esr(_,returns ,cost

,utility_gamma , T),CI

Code Listing A.11: Compare final ESR

A.2.2 Neural Networks

1 class NoTradeRegionRNN(nn.Module):

2

3 def __init__(self , input_size , hidden_size , batch_size ,dim_size):

4 """ Initialize params."""

5 super(NoTradeRegionRNN , self).__init__ ()

6 # read input parameters

7 self.input_size = input_size

8 self.hidden_size = hidden_size

9 self.batch_size = batch_size

10 self.dim_size = dim_size

11

12 # Define parameters of double relu function for activation

function

13 self.input_param = nn.Linear(input_size , dim_size ,

hidden_size).to(device)

14 self.hidden_param = nn.Linear(hidden_size , dim_size ,

hidden_size).to(device)

15 self.fc1_param = nn.Linear(hidden_size , dim_size ,hidden_size)

.to(device)

16 self.fc2_param = nn.Linear(hidden_size , dim_size , hidden_size

).to(device)

17 self.rotate_param = nn.Linear(dim_size ,dim_size ,bias=False)

18

19 # Forward function allows a form:

20 # h_t = w_fc2*relu(w_fc1*relu(w_inp*x_t+b_inp+w_h*h_{t-1}+ b_h)+

b_fc1)+b_fc2+b_fc1 -b_h1
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21 def forward(self , input , target , returns_partition , hidden):

22 def myrotate(input_rotate):

23 input_new = input_rotate.squeeze (1)

24 out = torch.matmul(self.rotate_param.weight ,input_new)

25 return out.unsqueeze (1)

26

27 # a function that creates the corner of the rotated no trade

region

28 def corner ():

29 mat2 = np.ones ([2 ,4])

30 mat2 [:,0] = np.array ([-1,0])

31 mat2 [:,1] = np.array ([0,-1])

32 mat2 [:,2] = np.array ([1 ,0])

33 mat2 [:,3] = np.array ([0 ,1])

34 index_matrix2 = torch.tensor(mat2 ,dtype = torch.float).to

(device)

35 res = torch.matmul(self.rotate_param.weight ,index_matrix2

).T+target

36 return res

37

38 # Create the corner and related slope of different lines

39 Corner = corner ()

40 ac = (self.rotate_param.weight [1,0]+ self.rotate_param.weight

[1,1])\

41 /(self.rotate_param.weight [0 ,0]+ self.rotate_param.weight

[0,1])

42

43 bd = (self.rotate_param.weight [0,0]-self.rotate_param.weight

[0,1])\

44 /(self.rotate_param.weight [1,0]-self.rotate_param.weight

[1,1])

45

46 # Create the lower and upper bounds of each assets

47 def lower_bound_x(x):

48 ingate = (x.squeeze (1)[1]- Corner [0 ,1]*(bd >=0)-Corner
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[1 ,1]*(bd <0))*bd

49

50 ingate2 = -F.relu(ingate)+torch.abs(Corner [1,0]- Corner

[0,0])

51

52 res = -F.relu(ingate2)+Corner [1 ,0]*(bd >=0)+Corner [0 ,0]*(

bd <0)

53 return res

54

55 def upper_bound_x(x):

56 ingate = (x.squeeze (1)[1]- Corner [3 ,1]*(bd >=0)-Corner

[2 ,1]*(bd <0))*bd

57

58 ingate2 = -F.relu(ingate)+torch.abs(Corner [2,0]- Corner

[3,0])

59

60 res = -F.relu(ingate2)+Corner [2 ,0]*(bd >=0)+Corner [3 ,0]*(

bd <0)

61 return res

62

63 def lower_bound_y(x):

64 ingate = (x.squeeze (1)[0]- Corner [0 ,0]*(ac >=0)-Corner

[3 ,0]*(ac <0))*ac

65

66 ingate2 = -F.relu(ingate)+torch.abs(Corner [0,1]- Corner

[3,1])

67

68 res = -F.relu(ingate2)+Corner [3 ,1]*(ac >=0)+Corner [0 ,1]*(

ac <0)

69 return res

70

71 def upper_bound_y(x):

72 ingate = (x.squeeze (1)[0]- Corner [1 ,0]*(ac >=0)-Corner

[2 ,0]*(ac <0))*ac

73
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74 ingate2 = -F.relu(ingate)+torch.abs(Corner [1,1]- Corner

[2,1])

75

76 res = -F.relu(ingate2)+Corner [2 ,1]*(ac >=0)+Corner [1 ,1]*(

ac <0)

77 return res

78

79 def lower_bound(x):

80 return torch.stack(( lower_bound_x(x),lower_bound_y(x))).

view(self.dim_size ,self.hidden_size ,self.batch_size)

81

82 def upper_bound(x):

83 return torch.stack(( upper_bound_x(x),upper_bound_y(x))).

view(self.dim_size ,self.hidden_size ,self.batch_size)

84

85 def recurrence(input , hidden):

86 # w_inp*x_t+b_inp+w_h*h_{t-1}+ b_h

87 ingate = self.input_param.weight.view(self.dim_size ,self.

input_size ,self.hidden_size)*input \

88 + self.hidden_param.weight.view(self.dim_size ,

self.hidden_size ,self.hidden_size)*hidden - lower_bound(hidden)

89 # w_fc1*relu(ingate)+upper -lower

90 ingate2 = self.fc1_param.weight.view(self.dim_size ,self.

hidden_size ,self.hidden_size)*F.relu(ingate)\

91 + upper_bound(hidden) - lower_bound(hidden)

92 # w_fc2*relu(ingate2)+upper

93 h = self.fc2_param.weight.view(self.dim_size ,self.

hidden_size ,self.hidden_size)*F.relu(ingate2) + upper_bound(hidden

)

94 return h

95

96 output = []

97 steps = range(input.size (1))

98 for i in steps:

99 if i ==0:
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100 hidden = input [:,0,:]. view(self.dim_size ,1,self.

batch_size).to(device)

101 #hidden = (torch.tensor(Markowitz_opt ,dtype=torch.

float).view(self.dim_size ,1,1)*torch.ones((self.dim_size ,1,self.

batch_size),dtype=torch.float)).to(device)

102 else:

103 # pi_t = myrotate(pi_{t -1}*(1+ r_t)/(1+ sum(pi_{t-1}*

r_t))) due to change of price after rebalance

104 adjust_pi = hidden.view(self.dim_size ,1,self.

batch_size)*(1+ returns_partition [:,i-1 ,:]. view(self.dim_size ,1,

self.batch_size))\

105 /(1+ torch.sum(hidden.view(self.

dim_size ,1,self.batch_size)*returns_partition [:,i-1 ,:]. view(self.

dim_size ,1,\

106 self.batch_size) ,0))

107

108

109

110 hidden = recurrence(input[:,i,:]. view(self.dim_size ,

self.input_size ,self.batch_size), adjust_pi)

111

112 output.append(hidden)

113

114 output = torch.cat(output , 1)

115

116 return output , hidden

Code Listing A.12: NN layer of no-trade region

1 class WealthRNN(nn.Module):

2 def __init__(self , input_size , hidden_size , n_layers , batch_size ,

seq_length , dim_size):

3 super(WealthRNN , self).__init__ ()

4 self.input_size = input_size

5 self.hidden_size = hidden_size

6 self.n_layers = n_layers
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7 self.batch_size = batch_size

8 self.seq_length = seq_length

9 self.dim_size = dim_size

10 # the rnn layer which works as out , hidden_t = f(out_(t),

hidden_(t-1)), used to approximate pi^*_(t)= f(pi^*_(t-1),pi_t)

11 self.rnn = NoTradeRegionRNN2(input_size , hidden_size ,

batch_size , dim_size).to(device)

12 self.out = nn.Linear(dim_size , hidden_size ,bias=False).to(

device)

13 # initialize some bias and weight

14 self.rnn.fc1_param.weight = torch.nn.Parameter (-1*torch.

ones_like(self.rnn.fc1_param.weight))

15 self.rnn.fc2_param.weight = torch.nn.Parameter (-1*torch.

ones_like(self.rnn.fc2_param.weight))

16 self.rnn.input_param.weight = torch.nn.Parameter(torch.

zeros_like(self.rnn.input_param.weight))

17 self.rnn.hidden_param.weight = torch.nn.Parameter(torch.

ones_like(self.rnn.hidden_param.weight))

18 self.out.weight = torch.nn.Parameter (* torch.ones_like(self.

out.weight))

19

20 def update_bias(self ,value):

21 self.rnn.hidden_param.bias = torch.nn.Parameter(value)

22 self.rnn.fc1_param.bias = torch.nn.Parameter (2* value)

23 self.rnn.fc1_param.bias.requires_grad = False

24

25 def update_weight(self ,value):

26

27 self.rnn.rotate_param.weight = torch.nn.Parameter(value)

28

29 self.rnn.input_param.weight.requires_grad = False

30 self.rnn.hidden_param.weight.requires_grad = False

31 self.rnn.fc1_param.weight.requires_grad = False

32 self.rnn.fc2_param.weight.requires_grad = False

33 self.out.weight.requires_grad = False

17 27/08/2024



Appendix A. Codes

34

35

36 def step(self , input ,target , returns_partition , cost_partition ,

hidden=None):

37 output , hidden = self.rnn(input , target , returns_partition ,

hidden).to(device)

38 output2 = self.out.weight.view(self.dim_size ,self.hidden_size

,self.hidden_size)*output

39 return output , output2

40

41 def forward(self , inputs , target , returns_partition ,

cost_partition ,hidden=None):

42 hidden = self.__init__hidden ().to(device)

43 output , hidden = self.rnn(inputs.float(),target ,

returns_partition , hidden.float ())

44 # output2 the overall wealth at time T

45 output2 = torch.prod(FTA.cal_return(output ,returns_partition ,

cost_partition).to(device)+1,0)

46 return output , output2

47 #return output

48

49 def __init__hidden(self):

50 hidden = 0.0* torch.ones(self.dim_size , self.hidden_size ,

self.batch_size ,dtype=torch.float64).to(device)

51 return hidden

Code Listing A.13: Nonlinear layer of wealth process

A.3 Multiple Assets

A.3.1 Functions

1 # Create a positive definite symetric matrix close to the input

matrix

2 def return_matrix_modification(matrix , n):
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3 try:

4 # Attempt to perform a Cholesky decomposition

5 np.linalg.cholesky(matrix)

6 # If successful , return the matrix itself

7 return matrix

8 except np.linalg.LinAlgError:

9 # If the decomposition fails , return the specified

alternative

10 return (matrix *0.995+ np.identity(n)*0.005)

Code Listing A.14: Positive definite matrix approximation

A.3.2 Neural Networks

1 # Customize a RNN layer with double relu for multiple assets

2 # considering returns data to build a changed strategy weight

according to price change

3 # v normalized

4 class NoTradeRegionRNN(nn.Module):

5

6 def __init__(self , input_size , hidden_size , batch_size ,dim_size):

7 """ Initialize params."""

8 super(NoTradeRegionRNN , self).__init__ ()

9 # read input parameters

10 self.input_size = input_size

11 self.hidden_size = hidden_size

12 self.batch_size = batch_size

13 self.dim_size = dim_size

14 self.edge_coef = nn.Linear(dim_size ,dim_size).to(device)

15

16 # Forward function allows a form:

17 # h_t = w_fc2*relu(w_fc1*relu(w_inp*x_t+b_inp+w_h*h_{t-1}+ b_h)+

b_fc1)+b_fc2+b_fc1 -b_h1

18 def forward(self , input , target , returns_partition , hidden):

19 # create the pi_bar(merton optimal) and identity matrix
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20 pi_bar = (torch.tensor(target ,dtype=torch.float).to(device).

view(self.dim_size ,self.hidden_size ,self.hidden_size)*\

21 torch.ones((self.dim_size ,self.hidden_size ,self.

batch_size),dtype=torch.float).to(device)).squeeze (1)

22 e_matrix = torch.eye(self.dim_size).to(device)

23

24 def recurrence(input , hidden):

25 #creating scalars , empty vectors and normalized v

26 eps = 1e-5

27 hidden = hidden.squeeze (1)

28 hidden_temp = hidden

29 judge_mat = torch.zeros([self.dim_size ,self.batch_size ]).to(

device)

30 v = torch.nn.functional.normalize(self.edge_coef.weight , p

=2.0, dim=1, eps=1e-12, out = None)

31

32 # loop once to find the fitness of each asset

33 for j in range(self.dim_size):

34 # create v for each asset

35 vj = torch.nn.functional.normalize(self.edge_coef.weight , p

=2.0, dim=1, eps=1e-12, out = None)[j,:]

36 # calculate lambda for all assets

37 lambda_pi_plus = (torch.abs(self.edge_coef.bias[j])*torch.

ones(self.batch_size).to(device) - torch.matmul(vj,hidden -pi_bar))

/(torch.matmul(vj ,e_matrix[j,:]))

38 lambda_pi_minus = (-torch.abs(self.edge_coef.bias[j])*torch

.ones(self.batch_size).to(device) - torch.matmul(vj ,hidden -pi_bar)

)/( torch.matmul(vj,e_matrix[j,:]))

39 hidden_new = hidden + (lambda_pi_plus.view(self.batch_size

,1)*e_matrix[j,:]).T*( torch.matmul(vj,hidden -pi_bar)>torch.abs(

self.edge_coef.bias[j]))+\

40 (lambda_pi_minus.view(self.batch_size ,1)*e_matrix[j

,:]).T*(torch.matmul(vj,hidden -pi_bar)<-torch.abs(self.edge_coef.

bias[j]))

41 # create a matrix recording the fitness of such asset
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42 judge = (torch.matmul(v,hidden_new -pi_bar)<torch.abs(self.

edge_coef.bias.view(self.dim_size ,1))+eps) & (torch.matmul(v,

hidden_new -pi_bar)>-torch.abs(self.edge_coef.bias.view(self.

dim_size ,1))-eps)

43

44 judge = torch.min(judge ,0).values

45 judge_mat[j,:] = judge

46 # create a matrix recording the assets which project to

notrade region with only one projection

47 judge_mat = torch.max(judge_mat ,0).values

48 del hidden_new

49 torch.cuda.empty_cache ()

50

51 for j in range(self.dim_size):

52 # create v for each asset

53 vj = torch.nn.functional.normalize(self.edge_coef.weight , p

=2.0, dim=1, eps=1e-12, out = None)[j,:]

54 # calculate lambda for all assets

55 lambda_pi_plus = (torch.abs(self.edge_coef.bias[j])*torch.

ones(self.batch_size).to(device) - torch.matmul(vj,hidden_temp -

pi_bar))/(torch.matmul(vj,e_matrix[j,:]))

56 lambda_pi_minus = (-torch.abs(self.edge_coef.bias[j])*torch

.ones(self.batch_size).to(device) - torch.matmul(vj,hidden_temp -

pi_bar))/(torch.matmul(vj,e_matrix[j,:]))

57 # one step projection of each asset

58 hidden_temp = hidden_temp + (lambda_pi_plus.view(self.

batch_size ,1)*e_matrix[j,:]).T*( torch.matmul(vj ,hidden_temp -pi_bar

)>torch.abs(self.edge_coef.bias[j]))+\

59 (lambda_pi_minus.view(self.batch_size ,1)*e_matrix[j

,:]).T*(torch.matmul(vj,hidden_temp -pi_bar)<-torch.abs(self.

edge_coef.bias[j]))

60

61 del lambda_pi_plus

62 del lambda_pi_minus

63 torch.cuda.empty_cache ()
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64 # start a bisection method to find the exact boundary of

assets without one fitness projection

65 h_in = pi_bar

66 h_out = (1-judge_mat)*hidden

67 for i in range (10):

68 h_m = h_in+(-h_in+h_out)/2

69 judge = (torch.matmul(v,h_m -pi_bar) <=torch.abs(self.

edge_coef.bias.view(self.dim_size ,1))+eps) & (torch.matmul(v,h_m -

pi_bar) >=-torch.abs(self.edge_coef.bias.view(self.dim_size ,1))-eps

)

70 judge = torch.min(judge ,0).values

71 h_out = (~judge)*h_m+( judge)*h_out

72 h_in = (judge)*h_m +(~ judge)*h_in

73 hidden = (judge_mat*hidden_temp +(1- judge_mat)*h_m).unsqueeze

(1)

74 return hidden

75

76 output = []

77 steps = range(input.size (1))

78 #myret = returns

79 for i in steps:

80 if i ==0:

81 hidden = input [:,0,:]. view(self.dim_size ,1,self.

batch_size).to(device)

82 #hidden = (torch.tensor(Markowitz_opt ,dtype=torch.float

).view(self.dim_size ,1,1)*torch.ones((self.dim_size ,1,self.

batch_size),dtype=torch.float)).to(device)

83 else:

84 # pi_t = myrotate(pi_{t -1}*(1+ r_t)/(1+ sum(pi_{t-1}* r_t)

)) due to change of price after rebalance

85 adjust_pi = hidden.view(self.dim_size ,1,self.batch_size

)*(1+ returns_partition [:,i-1,:]. view(self.dim_size ,1,self.

batch_size))\

86 /(1+ torch.sum(hidden.view(self.

dim_size ,1,self.batch_size)*returns_partition [:,i-1 ,:]. view(self.
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dim_size ,1,\

87 self.batch_size) ,0))

88

89 hidden = recurrence(input[:,i,:]. view(self.dim_size ,

self.input_size ,self.batch_size), adjust_pi)

90 output.append(hidden)

91 output = torch.cat(output , 1)

92 return output , hidden

Code Listing A.15: NN layer of no-trade region (normalized v)

1 # Customize a RNN layer with double relu for multiple assets

2 # considering returns data to build a changed strategy weight

according to price change

3 # v not normalized

4 class NoTradeRegionRNN2(nn.Module):

5

6 def __init__(self , input_size , hidden_size , batch_size ,dim_size):

7 """ Initialize params."""

8 super(NoTradeRegionRNN2 , self).__init__ ()

9 # read input parameters

10 self.input_size = input_size

11 self.hidden_size = hidden_size

12 self.batch_size = batch_size

13 self.dim_size = dim_size

14 self.edge_coef = nn.Linear(dim_size ,dim_size).to(device)

15

16 # Forward function allows a form:

17 # h_t = w_fc2*relu(w_fc1*relu(w_inp*x_t+b_inp+w_h*h_{t-1}+ b_h)+

b_fc1)+b_fc2+b_fc1 -b_h1

18 def forward(self , input , target , returns_partition , hidden):

19 # create the pi_bar(merton optimal) and identity matrix

20 pi_bar = (torch.tensor(target ,dtype=torch.float).to(device).

view(self.dim_size ,self.hidden_size ,self.hidden_size)*\

21 torch.ones((self.dim_size ,self.hidden_size ,self.

batch_size),dtype=torch.float).to(device)).squeeze (1)
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22 e_matrix = torch.eye(self.dim_size).to(device)

23

24 def recurrence(input , hidden):

25 #creating scalars , empty vectors and normalized v

26 eps = 1e-5

27 hidden = hidden.squeeze (1)

28 hidden_temp = hidden

29 judge_mat = torch.zeros([self.dim_size ,self.batch_size ]).to(

device)

30 v = self.edge_coef.weight

31

32 # loop once to find the fitness of each asset

33 for j in range(self.dim_size):

34 # create v for each asset

35 vj = self.edge_coef.weight[j,:]

36 # calculate lambda for all assets

37 lambda_pi_plus = (torch.abs(self.edge_coef.bias[j])*torch.

ones(self.batch_size).to(device) - torch.matmul(vj,hidden -pi_bar))

/(torch.matmul(vj ,e_matrix[j,:]))

38 lambda_pi_minus = (-torch.abs(self.edge_coef.bias[j])*torch

.ones(self.batch_size).to(device) - torch.matmul(vj ,hidden -pi_bar)

)/( torch.matmul(vj,e_matrix[j,:]))

39 hidden_new = hidden + (lambda_pi_plus.view(self.batch_size

,1)*e_matrix[j,:]).T*( torch.matmul(vj,hidden -pi_bar)>torch.abs(

self.edge_coef.bias[j]))+\

40 (lambda_pi_minus.view(self.batch_size ,1)*e_matrix[j

,:]).T*(torch.matmul(vj,hidden -pi_bar)<-torch.abs(self.edge_coef.

bias[j]))

41 # create a matrix recording the fitness of such asset

42 judge = (torch.matmul(v,hidden_new -pi_bar)<torch.abs(self.

edge_coef.bias.view(self.dim_size ,1))+eps) & (torch.matmul(v,

hidden_new -pi_bar)>-torch.abs(self.edge_coef.bias.view(self.

dim_size ,1))-eps)

43

44 judge = torch.min(judge ,0).values
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45 judge_mat[j,:] = judge

46 # create a matrix recording the assets which project to

notrade region with only one projection

47 judge_mat = torch.max(judge_mat ,0).values

48 del hidden_new

49 torch.cuda.empty_cache ()

50

51 for j in range(self.dim_size):

52 # create v for each asset

53 vj = self.edge_coef.weight[j,:]

54 # calculate lambda for all assets

55 lambda_pi_plus = (torch.abs(self.edge_coef.bias[j])*torch.

ones(self.batch_size).to(device) - torch.matmul(vj,hidden_temp -

pi_bar))/(torch.matmul(vj,e_matrix[j,:]))

56 lambda_pi_minus = (-torch.abs(self.edge_coef.bias[j])*torch

.ones(self.batch_size).to(device) - torch.matmul(vj,hidden_temp -

pi_bar))/(torch.matmul(vj,e_matrix[j,:]))

57 # one step projection of each asset

58 hidden_temp = hidden_temp + (lambda_pi_plus.view(self.

batch_size ,1)*e_matrix[j,:]).T*( torch.matmul(vj ,hidden_temp -pi_bar

)>torch.abs(self.edge_coef.bias[j]))+\

59 (lambda_pi_minus.view(self.batch_size ,1)*e_matrix[j

,:]).T*(torch.matmul(vj,hidden_temp -pi_bar)<-torch.abs(self.

edge_coef.bias[j]))

60

61 del lambda_pi_plus

62 del lambda_pi_minus

63 torch.cuda.empty_cache ()

64 # start a bisection method to find the exact boundary of

assets without one fitness projection

65 h_in = pi_bar

66 h_out = (1-judge_mat)*hidden

67 for i in range (10):

68 h_m = h_in+(-h_in+h_out)/2

69 judge = (torch.matmul(v,h_m -pi_bar) <=torch.abs(self.
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edge_coef.bias.view(self.dim_size ,1))+eps) & (torch.matmul(v,h_m -

pi_bar) >=-torch.abs(self.edge_coef.bias.view(self.dim_size ,1))-eps

)

70 judge = torch.min(judge ,0).values

71 h_out = (~judge)*h_m+( judge)*h_out

72 h_in = (judge)*h_m +(~ judge)*h_in

73 hidden = (judge_mat*hidden_temp +(1- judge_mat)*h_m).unsqueeze

(1)

74 return hidden

75

76 output = []

77 steps = range(input.size (1))

78 #myret = returns

79 for i in steps:

80 if i ==0:

81 hidden = input [:,0,:]. view(self.dim_size ,1,self.

batch_size).to(device)

82 #hidden = (torch.tensor(Markowitz_opt ,dtype=torch.float

).view(self.dim_size ,1,1)*torch.ones((self.dim_size ,1,self.

batch_size),dtype=torch.float)).to(device)

83 else:

84 # pi_t = myrotate(pi_{t -1}*(1+ r_t)/(1+ sum(pi_{t-1}* r_t)

)) due to change of price after rebalance

85 adjust_pi = hidden.view(self.dim_size ,1,self.batch_size

)*(1+ returns_partition [:,i-1,:]. view(self.dim_size ,1,self.

batch_size))\

86 /(1+ torch.sum(hidden.view(self.

dim_size ,1,self.batch_size)*returns_partition [:,i-1 ,:]. view(self.

dim_size ,1,\

87 self.batch_size) ,0))

88

89 hidden = recurrence(input[:,i,:]. view(self.dim_size ,

self.input_size ,self.batch_size), adjust_pi)

90

91 output.append(hidden)
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92 output = torch.cat(output , 1)

93

94 return output , hidden

Code Listing A.16: NN layer of no-trade region (unnormalized v)

1 class NoTradeRegionRNN_Ellipse(nn.Module):

2 def __init__(self , input_size , hidden_size , batch_size , dim_size)

:

3 """ Initialize params."""

4 super(NoTradeRegionRNN_Ellipse , self).__init__ ()

5 # Read input parameters

6 self.input_size = input_size

7 self.hidden_size = hidden_size

8 self.batch_size = batch_size

9 self.dim_size = dim_size

10

11 self.k = int(self.dim_size * (self.dim_size - 1) / 2)

12 self.num_elements = int(self.dim_size * (self.dim_size + 1) /

2)

13 self.upper_triangular_elements = nn.Parameter(torch.randn(

self.num_elements))

14

15 def rotate_matrix(self):

16 skew_matrix = torch.zeros(self.dim_size , self.dim_size , dtype

=torch.float32).to(device)

17 triu_indices = torch.triu_indices(self.dim_size , self.

dim_size , offset =0).to(device)

18 skew_matrix[triu_indices [0], triu_indices [1]] = self.

upper_triangular_elements

19 rotate = skew_matrix.T @ skew_matrix

20 return rotate

21

22 def project_to_ellipse(self , x, c, R):

23 # Direction vector from center to point

24 direction = x - c # Shape: (n,)
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25 # The scalar to scale the direction vector such that the

point lies on the ellipse boundary

26 dad = direction.T @ R @ direction

27 # Compute the scalar t

28 t = 1.0 / torch.sqrt(dad)

29 # New point on the ellipse boundary

30 new_point = c + t * direction # Shape: (n,)

31 return new_point

32

33 def forward(self , input , target , returns_partition , hidden):

34 # Create the pi_bar (Merton optimal) and identity matrix

35 pi_bar = (torch.tensor(target , dtype=torch.float).to(device).

view(self.dim_size , self.hidden_size , self.hidden_size) *

36 torch.ones((self.dim_size , self.hidden_size , self.

batch_size), dtype=torch.float).to(device)).squeeze (1)

37 rotated_Q = self.rotate_matrix ()

38

39 def recurrence(input , hidden):

40 # Creating scalars , empty vectors and normalized v

41 eps = 1e-5

42 hidden = hidden.squeeze (1)

43 # (x-c)

44 diff = (hidden - pi_bar).T.unsqueeze (2)

45 # x is inside or outside the ellipse

46 value_ellipse = (diff.transpose (1, 2) @ rotated_Q @ diff)

.squeeze (2)

47 judge = value_ellipse > 1.0

48

49 # If the point is outside the ellipse , project it to the

ellipse boundary

50 new_hidden = hidden.clone()

51 for i in range(self.batch_size):

52 if judge[i]:

53 new_hidden [:, i] = self.project_to_ellipse(hidden

[:, i], pi_bar[:, i], rotated_Q)

28 27/08/2024



Appendix A. Codes

54

55 return new_hidden.unsqueeze (1)

56

57 output = []

58 steps = range(input.size (1))

59 for i in steps:

60 if i == 0:

61 hidden = input[:, 0, :]. view(self.dim_size , 1, self.

batch_size).to(device)

62 else:

63 adjust_pi = hidden.view(self.dim_size , 1, self.

batch_size) * (1 + returns_partition [:, i - 1, :]. view(self.

dim_size , 1, self.batch_size)) \

64 / (1 + torch.sum(hidden.view(self.

dim_size , 1, self.batch_size) * returns_partition [:, i - 1, :].

view(self.dim_size , 1, self.batch_size), 0))

65

66 hidden = recurrence(input[:, i, :]. view(self.dim_size

, self.input_size , self.batch_size), adjust_pi)

67

68 output.append(hidden)

69 output = torch.cat(output , 1)

70

71 return output , hidden

Code Listing A.17: NN layer of no-trade region (ellipsoid)

1 # wealth process

2 class WealthRNN(nn.Module):

3 def __init__(self , input_size , hidden_size , n_layers , batch_size ,

seq_length , dim_size):

4 super(WealthRNN , self).__init__ ()

5 self.input_size = input_size

6 self.hidden_size = hidden_size

7 self.n_layers = n_layers

8 self.batch_size = batch_size

29 27/08/2024



Appendix A. Codes

9 self.seq_length = seq_length

10 self.dim_size = dim_size

11 # the rnn layer which works as out , hidden_t = f(out_(t),

hidden_(t-1)), used to approximate pi^*_(t)= f(pi^*_(t-1),pi_t)

12 self.rnn = NoTradeRegionRNN(input_size , hidden_size ,

batch_size , dim_size).to(device)

13 self.out = nn.Linear(dim_size , hidden_size ,bias=False).to(

device)

14 # initialize some bias and weight

15 self.rnn.edge_coef.weight = torch.nn.Parameter(torch.eye(self

.dim_size).to(device))

16 #self.rnn.edge_coef.weight = torch.nn.functional.normalize(

self.rnn.edge_coef.weight , p=2.0, dim=1, eps=1e-12, out = None)

17 self.out.weight = torch.nn.Parameter(torch.ones_like(self.out

.weight))

18 self.out.weight.requires_grad = False

19

20 def update_bias(self ,value):

21 self.rnn.edge_coef.bias = torch.nn.Parameter(value)

22

23 def step(self , input , target , returns_partition , cost_partition ,

hidden=None):

24 output , hidden = self.rnn(input , target , returns_partition ,

hidden).to(device)

25 output2 = self.out.weight.view(self.dim_size ,self.hidden_size

,self.hidden_size)*output

26 return output , output2

27

28 def forward(self , inputs , target , returns_partition ,

cost_partition , hidden=None):

29 hidden = inputs [:,0,:].to(device)

30 output , hidden = self.rnn(inputs.float(), target ,

returns_partition , hidden.float ())

31 # output2 the overall wealth at time T

32 output2 = torch.prod(FMA.cal_return(output ,returns_partition ,
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cost_partition)+1,0)

33 return output , output2

Code Listing A.18: Nonlinear layer of wealth process

1 # wealth function for third ellipse method

2 class WealthRNN_Ellipse(nn.Module):

3 def __init__(self , input_size , hidden_size , n_layers , batch_size ,

seq_length , dim_size):

4 super(WealthRNN_Ellipse , self).__init__ ()

5 self.input_size = input_size

6 self.hidden_size = hidden_size

7 self.n_layers = n_layers

8 self.batch_size = batch_size

9 self.seq_length = seq_length

10 self.dim_size = dim_size

11 # the rnn layer which works as out , hidden_t = f(out_(t),

hidden_(t-1)), used to approximate pi^*_(t)= f(pi^*_(t-1),pi_t)

12 self.rnn = NoTradeRegionRNN_Ellipse(input_size , hidden_size ,

batch_size , dim_size).to(device)

13 self.out = nn.Linear(dim_size , hidden_size ,bias=False).to(

device)

14 self.out.weight = torch.nn.Parameter(torch.ones_like(self.out

.weight)).to(device)

15 self.out.weight.requires_grad = False

16

17 def step(self , input , target , returns_partition , cost_partition ,

hidden=None):

18 output , hidden = self.rnn(input , target , returns_partition ,

hidden).to(device)

19 output2 = self.out.weight.view(self.dim_size ,self.hidden_size

,self.hidden_size)*output

20 return output , output2

21

22 def forward(self , inputs , target , returns_partition ,

cost_partition , hidden=None):
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23 hidden = inputs [:,0,:].to(device)

24 output , hidden = self.rnn(inputs.float(), target ,

returns_partition , hidden.float ())

25 # output2 the overall wealth at time T

26 output2 = torch.prod(FMA.cal_return(output ,returns_partition ,

cost_partition)+1,0)

27 return output , output2

Code Listing A.19: Nonlinear layer of wealth process (ellipsoid)
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