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ABSTRACT

The RECONNECT project addresses the fragmentation of Ireland’s public healthcare systems, aim-
ing to enhance service planning and delivery for chronic disease management. By integrating com-
plex systems within the Health Service Executive (HSE), it prioritizes data privacy while supporting
future digital resource integration. The methodology encompasses structural integration through a
Federated Database design to maintain system autonomy and privacy, semantic integration using
a Record Linkage module to facilitate integration without individual identifiers, and the adoption
of the HL7-FHIR framework for high interoperability with the national electronic health record
(EHR) and the Integrated Information Service (IIS). This innovative approach features a unique ar-
chitecture for loosely coupled systems and a robust privacy layer. A demonstration system has been
implemented to utilize synthetic data from the Hospital Inpatient Enquiry (HIPE), Chronic Disease
Management (CDM), Primary Care Reimbursement Service (PCRS) and Retina Screen systems for
healthcare queries. Overall, RECONNECT aims to provide timely and effective care, enhance clin-
ical decision-making, and empower policymakers with comprehensive population health insights.

Keywords Record linkage · Federated healthcare database · healthcare queries · demonstration system

1 Introduction

In Ireland, chronic diseases like diabetes and cardiovascular conditions place a significant strain on the healthcare
system, necessitating coordinated, long-term management. Integrated care models, supported by digital health tech-
nologies and national programs, are essential for improving patient outcomes, reducing hospitalizations, and managing
healthcare costs effectively [7]. Ireland’s healthcare system is under increasing pressure due to a growing and aging
population, rising chronic diseases, and evolving patient expectations. These factors have led to longer waiting lists
and overcrowded hospitals. The COVID-19 pandemic further highlighted vulnerabilities in infrastructure and staffing
although it also provided an opportunity for researchers from different communities to address issues with dataset
engineering [13]. Without intervention, vulnerable populations—such as the elderly and those from lower socioeco-
nomic backgrounds—risk poorer health outcomes. However, this challenge presents an opportunity for transformation
through digital technologies and data-driven approaches. The Connecting Government 2030 Strategy promotes dig-
italization in healthcare, aiming to improve access, enhance efficiency, and position Ireland as a leader in innovative
health solutions.



The specific problem to be addressed is the fragmentation and isolation of data within the Irish healthcare system.
Currently, health data is scattered across multiple disconnected systems, creating challenges for patients, clinicians,
and policymakers. Patients navigating the healthcare service must repeatedly report and recall their health informa-
tion. Clinicians face difficulties accessing a comprehensive view of a patient’s health, compounded by the burden
of retrieving information from various sources. For policymakers, making informed decisions about health service
delivery is challenging due to the lack of comprehensive information on the population.

Overall, this lack of data integration hampers timely and effective patient care, complicates the delivery of integrated
services, and restricts data-driven decision-making in both clinical and strategic contexts. This issue is further exac-
erbated by the growing pressures on the healthcare system. Inefficient integration and utilization of healthcare data
leads to several problems:

• Disconnected patient records negatively impact patients, clinicians, and population health planners. These
gaps lead to suboptimal patient care, increased workloads for clinicians, and hinder the effectiveness of health
planners and policymakers.

• Inflexible systems struggle to identify and adapt to changing healthcare needs and priorities.

• Manual data processing is not only resource-intensive but also susceptible to errors, further straining an
already overwhelmed system.

To address these challenges, the proposed solution will focus on creating a comprehensive healthcare data integration
infrastructure, which includes:

• Structural Integration: A federated database design that preserves the autonomy of existing systems while
facilitating varying levels of privacy and access.

• Semantic Integration: A record linkage module that complies with data governance policies, allowing for
integration even without a universal identifier. This approach can be applied to systems such as HIPE, CDM,
PCRS, and RetinaScreen.

• Adoption of Standards: A new framework based on the Fast Healthcare Interoperability Resources (HL7-
FHIR) model [4], ensuring high levels of interoperability within integrated FHIR data, regardless of the
participating healthcare systems.

The remainder of this paper is structured as follows. In Section §2, we outline the four-layer architecture used in
creating digital healthcare assets. Section §3 details the generation of healthcare assets, including our integration
strategy used with examples. Finally, in Section §4, we present our conclusions.

2 Methodology

In this section, we outline the RECONNECT methodology for creating digital healthcare assets, specifically datasets
based on either CSV or FHIR formats. Our approach utilizes a four-layer federated architecture that encompasses
data at various levels of structure and representation. As illustrated in Figure 1, a federated architecture [14] operates
under the premise that systems are loosely coupled—meaning they do not need to communicate directly with one
another—and are read-only, indicating that the RECONNECT architecture cannot write to the systems residing at the
Local Schema Layer. This architecture offers a degree of autonomy that, among other benefits, supports a high level
of privacy and complies with stringent governance procedures within organizations [6].

2.1 Local Schema Layer

The Local Schema layer contains all source systems which may be entirely heterogeneous containing systems based
on relational databases, hierarchical databases, Web (HTML or XML) sources or proprietary data. This autonomy of
source information systems is preserved in a federated database architecture which is a crucial feature of RECON-
NECT: no participating system requires modification nor is required to facilitate updates from with the RECONNECT
system.

The Reconnect Local Schema layer replicates four distinct datasets within the HSE that are specific to a particular
chronic disease: Type 2 Diabetes. Currently, these systems are fragmented, preventing any digital interoperability.
The datasets are as follows:

1. HIPE: Hospital In-Patient Enquiry
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Figure 1: RECONNECT Architecture: Creation and Manipulation of Novel Digital Healthcare Assets

2. CDM: Chronic Disease Management

3. PCRS: Primary Care Reimbursement Service

4. Retina Screen

HIPE: The HIPE system maintains the national database of hospital discharge activity, serving the data needs of
various stakeholders, including policymakers, clinical teams, and researchers. It is the primary source of national
data on hospital discharges, encompassing all acute public hospitals, though private hospitals are excluded from the
database. HIPE collects demographic, clinical, and administrative information on discharges and deaths in public
hospitals across the country. This dataset also feeds into national files that are used for activity-based funding.

The synthetic dataset is derived from HIPE metadata and represents a scaled-down version of records for the entire
population of Ireland. It replicates the statistical properties and patterns of real-world healthcare data without contain-
ing any actual identifiable personal information. Each patient is identified by an MRN number, which is encrypted
in the national file. The dataset includes limited personal details, as well as information on diagnoses, treatments,
and the doctors assigned to each patient discharged from the hospital. Synthetic data has shown to offer significiant
advantages when prototyping these types of applications [3], [8] in advance of the receipt of actual healthcare datasets.

CDM: The program is designed for individuals aged 18 and above with specific chronic conditions such as type 2
diabetes, asthma, COPD, and cardiovascular diseases. It includes regular reviews, personalized care plans, medication
assessments, support for condition management, early detection of new conditions and complications, and community-
based care. The synthetic data is generated based on the structure and guidelines of the CDM treatment program.

PCRS: It is a division of the HSE responsible for reimbursing healthcare professionals for services rendered to the
public. PCRS manages payments for high-tech drugs, reimburses hospitals for medications, and oversees the assess-
ment of Medical Card and GP Visit Card applications. Additionally, PCRS compiles statistics and conducts trend
analyses for stakeholders, aiding in policy development and strategic decision-making.

Retina Screen: This program provides national diabetic retinopathy screening for individuals aged 12 and above with
diabetes. The primary goal of the database is to identify diabetes cases by HSE area, initially to support Retina Screen
program, with potential expansion to other aspects of diabetes care. Retina Screen is a population-based database
designed to identify and collect data on instances of Type 2 diabetes within a specified population. However, it does
not capture all cases of Type 2 diabetes.
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A separate PII database is used to store all personally identifiable information (PII). Access to this data is controlled
through a role-based security layer, and while the PII dataset is currently used for data integration, it remains separate
from the main screening dataset..

2.2 FHIR Schema Layer

While systems may have heterogeneous data models at the Local Schema Layer, all datasets which have been extracted
form the underlying systems must have a common data representation [1]. Thus, at this stage, data will be extracted
from source systems and transformed into the RECONNECT common data model (HL7-FHIR). Additionally, systems
will be interconnected using established integration techniques. FHIR has the latest HL7 [11] healthcare standard and
has been used in similar projects [5], [15] to varying degrees of success. Similarly graph-based common models such
as those used in [10] have been shown to have benefits over the more traditional relational model which is often used in
these types of architectures. The adoption of HL7-FHIR offers a high degree of extensibility to the solution presented
here.

Mapping Metadata: The purpose of the FHIR mapper is to ensure consistent interpretation of data across systems
which is challenging due to variations in coding systems and clinical terminologies. Each data source contains various
attributes across different categories. For this, we build upon earlier work on metadata mapping from multiple sources
?? as it plays a crucial role in connecting source datasets with their roles in systems such as RECONNECT. In FHIR,
these categories correspond to distinct resources. Different attribute sets within a data source are mapped to different
FHIR resources. Transforming a data source into a FHIR subgraph is achieved using a resource map and a namespace
linker.

This study includes four potential mapping types:

1. ONE TO ONE mappings: Applied when there is a direct correspondence between source and FHIR proper-
ties, allowing the attribute value from the data source to be directly imported.

2. MANY TO ONE mappings: Used when multiple source attributes are needed to populate a single FHIR
property.

3. INDIRECT mappings: Utilized to provide default values for FHIR resources that are absent in the source
data.

4. LOOKUP mappings: Indicate attributes that require record linkage to populate the corresponding FHIR
property.

Record Linkage: This step will provide a holistic patient record by linking the databases. Record linkage [9], a well-
known challenge in data integration, is often simple when databases share common identifiers. However, healthcare
systems rarely align in terms of structure or identifiers, making it difficult to accurately identify patients and achieve
proper integration. In this project, the healthcare systems lacked a single unique identifier, contained unrecognizable
or missing identifiers, and recorded patient data inconsistently.

Record linkage typically relies on probabilistic, inexact attribute matching between systems (e.g., name, date of birth
and contact details), but these attributes are not available here due to privacy concerns ??. Previous research has
tackled this issue, even within healthcare. In the current architecture, only researchers working with synthetic data can
perform record linkage, as shown in Figure 1. They create a Patient Meta-Record, which links unique identifiers from
the evaluated systems. This anonymized Meta-Record facilitates data integration from systems assessed for linkage.
This approach will address the gap caused by the lack of an Individual Health Identifier (IHI).

2.3 Global Schema Layer

The concept is to create a new (distributed) digital asset for each user requirement. These assets may be shared and
reused across multiple requirements (with appropriate governance) or utilized for a single case study. They remain in
the system as pre-computed queries until the user chooses to delete them and can be updated as needed. The assets we
create and populate are referred to as Digital Health Records (DHRs).

A global schema provides a standardized digital data asset for capturing and presenting patient information or offer-
ing an overview of the prevalence of chronic diseases and associated risk factors across various demographics, age
groups, and genders. This helps identify patients with similar risk factors and predict the likelihood of chronic disease
development in individuals. Section 3.1 outlines how this new system can be adapted to generate multiple distributed
digital assets based on different user requirements. These digital assets can be shared among multiple users, with
access determined by the level of permissions granted.
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Digital health records are invaluable resources for both health research and clinical decision-making. They provide
a comprehensive view of patient history, treatments, and outcomes, which can be used to enhance patient care and
support public health initiatives.

Figures 2 and 3 illustrate interactions with the system, where users select a number from the provided list and input the
relevant ”where” clause to obtain results. This process generates the expected output for case 1, with the digital health
record dynamically populated in the global schema layer using data from the HIPE, CDM, PCRS, and RetinaScreen
systems. Similar results can be achieved by selecting other functions and entering a corresponding ”where” clause, as
demonstrated in the samples provided in Section 3.1

Comprehensive interoperability can be realized by integrating national systems to improve patient care, ensure regula-
tory compliance, enhance operational efficiency, extend the reach of national prevention programs, and optimize cost
management within healthcare organizations.

Figure 2: System interaction with a single parameter

2.4 Query Processing Layer

There are 3 ”case studies” in the illustration: blue (pulling from 3 sources); brown (pulling from 4 sources); green (2
sources).
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Figure 3: System interaction with multiple parameters

1. Uptake of Retina Screen among People with Diabetes. This case study refers to the percentage of people not
participating in the prevention services led by the government but ending up in the hospital. Datasets used:

(a) Retinascreen
(b) CDM
(c) HIPE

Diabetic retinopathy (DR) is the leading cause of preventable blindness. The independent risk factors for
DR included diabetes duration, haemoglobin A1c, serum glucose, systolic blood pressure, and duration of
diabetes. After 5 years, approximately 25% of type 1 diabetes patients will have retinopathy. After 10 years,
almost 60% will have retinopathy, and after 15 years, 80% will have retinopathy. International guidelines for
diabetic retinopathy (DR) screening, released by the International Council of Ophthalmology (ICO), specify
that adequate DR screening should encompass a visual acuity test and a retinal examination.
This case study aims to pull data from Retinascreen, CDM and HIPE databases. The data governance layer
specifies the level of detail accessible by the system operator.

2. Blood Pressure Control among People with Diabetes
Datasets:

(a) PCRS
(b) CDM
(c) HIPE

6



Randomized controlled trials have shown that lowering systolic blood pressure (SBP) to less than 140 mmHg
and diastolic blood pressure (DBP) to less than 90 mmHg benefits people with diabetes. If SBP is 140 mmHg
or more and/or DBP is 90 mmHg or more, drug therapy is necessary, preferably starting with a combination
therapy. The use of renin-angiotensin system (RAS) inhibitors is strongly supported, especially in patients
with evidence of end-organ damage. Controlling blood pressure often requires multiple drug therapies, and a
combination of two or more drugs at fixed doses in a single pill should be considered to improve adherence
and achieve earlier control of blood pressure.

3. Amputations among People with Diabetes
Datasets:
(a) CDM
(b) HIPE

Diabetes can lead to foot or leg amputation, with a limb amputated every 20 seconds globally due to diabetes.
85% of these amputations are preceded by a foot ulcer. The HSE introduced the National Diabetes Footcare
program in 2010, recommending annual foot screenings for people with diabetes to assess their risk of lower
extremity amputation. Those at risk should be referred to foot protection services in the community or
hospital setting.

3 Generating Healthcare Assets

The healthcare assets represent a subset of the primary integrated datasets, specifically designed to meet the needs of
the system’s end-users. These assets are tailored to serve both individual users, such as clinicians, and larger teams
like the health intelligence unit. By providing read-only access, they effectively prevent accidental data modifications.
Built on integrated data, they enable faster and more efficient workflows. Access to these assets is controlled through
role-based security to ensure that only authorized users can retrieve the data.

These healthcare assets are sourced from existing datasets, using dynamic queries that add an extra layer of data secu-
rity. Depending on the use case and access permissions, end-users can retrieve integrated data, including Personally
Identifiable Information (PII). Various healthcare assets are available for analysis, focusing on specific conditions of
national and local interest, such as Type 2 diabetes and related conditions like hypertension, retinopathy, and amputa-
tions.

The Individual Health Identifier (IHI) is crucial to the data integration process, enabling the identification of individual
patients within the dataset. The IHI National Register has been established with 4,775,629 records sourced from a
recognized data reservoir. Each record in this repository is assigned a unique IHI number, formally initiating the IHI
National Register. In cases where IHI is unavailable, a separate key is generated using fuzzy matching techniques,
based on attributes identified across different systems.

Different Healthcare assets developed include:

1. Integrating HIPE, CDM, PCRS, and Retinascreen systems for an Individual: This asset involves the compre-
hensive integration of health data from HIPE, CDM, PCRS, and RetinaScreen for individual patients. The
goal is to provide a holistic view of a patient’s health status and enhance care coordination, as shown in Figure
4.

2. Uptake of Retina Screen among People with Diabetes: Since retinopathy affects individuals with both Type
1 and Type 2 diabetes, this dataset tracks the number of people who have undergone RetinaScreen based on
their type of diabetes. Understanding these numbers can help identify gaps in care and improve screening
practices.

3. Uptake of Retina Screen among People on Type of Diabetes: Since retinopathy affects individuals with both
Type 1 and Type 2 diabetes, this dataset tracks the number of people who have undergone RetinaScreen,
categorized by their type of diabetes. Analyzing these numbers can help identify gaps in care and improve
screening practices.

4. Multimorbidity (Prevalence of More Than One Chronic Disease): This dataset focuses on the prevalence and
management of individuals with multiple chronic diseases, also known as multimorbidity. It highlights the
need for comprehensive care strategies to address the complexities of managing multiple health conditions
simultaneously. The CDM system tracks individuals diagnosed with Type 2 diabetes, asthma, chronic ob-
structive pulmonary disease (COPD), and cardiovascular diseases, including stable heart failure, ischaemic
heart disease, cerebrovascular disease (stroke/TIA), and atrial fibrillation. This dataset helps identify subsets
of individuals with similar underlying risk factors.
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Figure 4: High-Level example of how Diabetic patients who missed their Retinopathy appointment are identified

5. Diabetes, Medication, and Physical Activity: This dataset explores the relationship between diabetes man-
agement, medication usage, and the role of physical activity. It emphasizes the impact of lifestyle changes,
particularly exercise, on medication requirements and overall diabetes control. Engaging in physical activity
fewer than three times per week is identified as a risk factor for developing chronic diseases.

6. Age, Physical Activity, and Hospital Admission due to Chronic Disease: This dataset explores the correlation
between a patient’s age, level of physical activity, and the frequency of hospital admissions related to chronic
diseases. It emphasizes the importance of promoting physical activity, particularly among older adults, to
reduce hospitalizations.

7. Blood Pressure Control among People with Diabetes: This dataset focuses on the critical need to manage
blood pressure in individuals with diabetes. Drug therapy is recommended for those with diastolic blood
pressure above 90 and systolic blood pressure above 140. Proper blood pressure control is essential for
preventing complications such as stroke, coronary events, and kidney disease.

8. Cardiovascular Disease among People with Diabetes: This dataset identifies diabetes patients who are at an
increased risk of developing cardiovascular disease. It highlights the importance of regular screenings and
preventive measures to mitigate this risk.

9. Hospital Admissions among People with Diabetes: This dataset compiles data from patients registered in
both the CDM and HIPE systems, focusing on the number of hospital admissions for individuals diagnosed
with Type 2 diabetes. Its goal is to identify patterns and causes of hospitalizations, improving diabetes
management and reducing healthcare costs.

10. Amputations among People with Diabetes: This dataset tracks the incidence of amputations in individuals
with diabetes, often resulting from complications like neuropathy, poor circulation, and other risk factors.
It highlights the importance of preventive care, such as regular foot screenings and early interventions, to
reduce diabetes-related amputations.

11. Identifying Patients in a Demographic Location Based on Gender: This dataset categorizes patients within
specific demographic locations by gender. The data can be used to tailor healthcare services and design
targeted outreach programs.

8



12. Identifying Patients in a Demographic Location Based on Age: This dataset focuses on identifying patients
within specific demographic locations, categorized by age. Understanding the age distribution allows health-
care providers to address the specific needs of different age groups more effectively. Individuals aged 45 and
older are more prone to developing chronic diseases and other risk factors.

13. Medications for People with Both Diabetes and Hypertension: This dataset examines the various medica-
tions prescribed to individuals managing both diabetes and hypertension. It underscores the importance of
addressing both conditions concurrently to reduce health risks. This data also aids clinicians in developing
better care models for these patients

14. Identify Patient Subgroups with Shared Conditions: This dataset identifies subgroups of patients with similar
health conditions, enabling healthcare providers to develop targeted interventions. Such insights can improve
the effectiveness of treatment plans and enhance patient outcomes.

3.1 Technical Methodology

In this section, we provide some detail on the integration strategy adopted for the construction of the healthcare assets
described previously.

The dynamic case procedure is a PostgreSQL stored procedure for dynamic data retrieval. It allows users to retrieve
specific health-related data from the local schema layer, based on a given condition type and an identification param-
eter. The procedure creates a temporary table named result value to store the results returned by the called functions.
It calls various functions based on the value of condition type.

Explanation for Dynamic procedure.

1. Parameters:
condition type: Used to determine which query to run based on the provided value.
identification: An identifier (could be MRN, ID, mobile, etc.) to be used in the SQL queries.

2. Dynamic Table Creation: The procedure dynamically creates a table named result value based on the type of
data being fetched, which is determined by the condition type provided.

3. CASE Structure: Depending on the value of condition type, a corresponding query is executed. Each case
uses a specific function (e.g., hipe data, cdm data, etc.) to retrieve data from various tables.

4. ELSE Clause: If none of the provided conditions match, the procedure raises a notice saying ”Check selected
function”

This procedure is designed to dynamically generate queries and create tables based on the input condition type and
identification.

The procedure calls a function internally. Each function is designed to retrieve patient-specific health records by
combining data from multiple tables using dynamic SQL. In the case where no matching condition type is found, the
procedure raises a notice indicating that no matching record was found. This provides feedback to the user or calls
the application without terminating the procedure abruptly. The procedure can be called running a Python script and
providing the related parameters. Each function is based on the following:

1. Parameters: The function accepts several parameters, including the table names (TABLE1, TABLE2, TA-
BLE3, TABLE4, TABLE5, TABLE6) and filtering conditions (WHERECLAUSE1, WHERECLAUSE2,
WHERECLAUSE3).

2. Dynamic SQL Query: The query variable is constructed using the format function, which dynamically inserts
table names and WHERE conditions into the SQL statement.

3. Joins: It performs several JOIN operations between the tables to gather patient data like MRN, IHI, contact
details, diagnosis, andor screening details.

4. WHERE Clause: The query filters data based on screening date, diagnosis, and chronic diseases.

5. Execution: The dynamically generated query is executed, and the result set is returned using RETURN
QUERY EXECUTE query.

Procedure Calls and Functionality.

The procedure performs the following actions based on the condition type and displays results in a dynamically created
result table. Sample query follows every case. The following queries contain the condition type used:
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1. F1 mrn: Example 1 retrieves data based on the mrn (medical record number) using the hipe data function.
This function integrates all the systems in the local schema and provides details regarding each individual
patient from all systems.

call dynamic_case_procedure(’F1_mrn’,’10164260’);
select * from result_value;

Sample Query 1.

2. F1 id: Example 2 retrieves data based on the Individual Health Identifiers using the cdm data function.
This function integrates CDM, PCRS and RetinaScreen systems from the local schema and provides details
regarding an individual from all systems.

call dynamic_case_procedure(’F1_id’,’10043’);
select * from result_value;

Sample Query 2.

3. F1 mobile: Example 3 retrieves data based on the mobile number using the rs data function. It provides a
similar functionality as the previous function however the mobile number uniquely identifies the patient.

call dynamic_case_procedure(’F1_mobile’,’8382643256’);
select * from result_value;

Sample Query 3.

4. F2 eir: Example 4 retrieves patient data based on the EIR code using the eir data function. The first three
characters of the Eircode that identify the area are stored in the database.

call dynamic_case_procedure(’F2_eir’,’F52’);
select * from result_value;

Sample Query 4.

5. F3 eir age data: Example 5 retrieves data for patients filtered on both age and Eircode using the eir age
function. It takes a minimum age and the first three characters of an Eircode as parameters and retrieves
patient details such as name, sex, address, age, and Eircode. This function is designed to retrieve data for up
to 3 Eircodes in a single query.

call dynamic_case_procedure(’F3_eir_above45_data’,’F52’);
select * from result_value;

Sample Query 5.

6. F3 eirdesc age data: Example 6 retrieves data for patients filtered on both age and Eircode description using
the eirdesc age data function. It takes a minimum age and the area name as parameters and retrieves patient
details such as name, sex, address, age, and Eircode description. This function is designed to retrieve data for
up to 3 Area names in a single query.

call dynamic_case_procedure(’F3_eirdesc_above45_data’,’Boyle’);
select * from result_value;

Sample Query 6.
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7. F4 rs uptake: Example 7 retrieves data related to patients who choose not to enrol in the Retinopathy pro-
gramme for the prevention of Retinopathy but were admitted to the hospital and diagnosed with Retinopathy.

call dynamic_case_procedure(’F4_rs_uptake’,’Type 2 diabetes’);
select * from result_value;

Sample Query 7.

8. F5 rs diab type: Example 8 retrieves data related to the patient suffering from diabetes but a distinction on
the type of diabetes is made using the rs diab type function.

call dynamic_case_procedure(’F5_rs_diab_type’,’1’);
select * from result_value;

Sample Query 8.

9. F5 Hospital diabetes: Example 9 retrieves data based on hospitalization due to any condition and type of
diabetes.

call dynamic_case_procedure(’F5_rs_diab_type’,’2’);
select * from result_value;

Sample Query 9.

10. F6 Hypertension: Example 10 retrieves data related to patients who are diagnosed with both diabetes and
hypertension using the diab hyp function.

call dynamic_case_procedure(’F6_Hypertension’,’Type 2 diabetes’);
select * from result_value;

Sample Query 10.

11. F7 diab risk: Example 11 retrieves data related to diabetes risk factors like physical activity, age, chronic
diseases or any other risk factors using the diab risk function. Other risk factors that have been included are:
overweight or obesity, age 45 or older, parent or sibling with type 2 diabetes, being physically active less than
3 times a week, have non-alcoholic fatty liver disease (NAFLD).

call dynamic_case_procedure(’F7_diab_risk’, ’sibling with type 2 diabetes,
non-alcholic fatty liver disease,
parent with type 2 diabetes, ethnicity, overweight’);

select * from result_value;

Sample Query 11.

12. F8 cvd: Example 12 retrieves data related to diabetic patients who are also diagnosed with one or more
cardiovascular diseases using the diab cvd function. Different Cardiovascular diseases mentioned in the
CDM booklet are Stable Heart Failure, Ischaemic Heart Disease, Cerebrovascular Disease (Stroke / TIA)
and/or Atrial Fibrillation.
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call dynamic_case_procedure(’F7_diab_risk’, ’sibling with type 2 diabetes, ethnicity’);
select * from result_value;

Sample Query 12.

13. F9 all amp: Example 13 retrieves data related to diabetic amputations using the amputation function.

call dynamic_case_procedure(’F8_cvd’, ’Atrial fibrillation,Ischaemic Heart Disease,
Stroke,Stable Heart Failure’);

select * from result_value;

Sample Query 13.

14. F9 hipe amp: Example 14 retrieves data related to diabetic patients who have had amputations and are regis-
tered in the hospital system using the amputation hipe function.

call dynamic_case_procedure(’F8_cvd’, ’Stable Heart Failure’);
select * from result_value;

Sample Query 14.

15. F10 system gender: Example 15 retrieves data based on gender (used as an identifier here) using the gen-
der data function.

call dynamic_case_procedure(’F9_all_amp’, ’Foot Ulceration’);
select * from result_value;

Sample Query 15.

16. F11 gender eir: Example 16 retrieves gender-related data based on Eircode using the gender eir data func-
tion.

call dynamic_case_procedure(’F9_hipe_amp’, ’Foot Ulceration’);
select * from result_value;

Sample Query 16.

17. F12 medication: Example 17 retrieves data regarding the diabetic and hypertension patients’ medication data
using the diab hyp med function to understand treatment provided in different parts of the country.

call dynamic_case_procedure(’F10_system_gender’, ’F’);
select * from result_value;

Sample Query 17.

18. F13 activity: Example 18 retrieves activity-related data using the diab hyp act function. The data can be
retrieved using different chronic diseases, gender and physical activity frequency.
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call dynamic_case_procedure(’F11_gender_eir’, ’F,F93’);
select * from result_value;

Sample Query 18.

4 Conclusions

In this paper, we proposed a method for integrating chronic disease systems to address shortcomings in existing health-
care systems. The RECONNECT system features a generic architecture comprising a Record Linkage component,
tailored for environments with loosely coupled information systems. This enhances integration by enabling seamless
connections between disparate data sources. Unlike traditional systems, RECONNECT adheres to the global HL7-
FHIR standard, improving interoperability and aligning with international best practices. Additionally, it efficiently
reuses digital assets, enhancing healthcare delivery. Privacy and data security are prioritized, with a dedicated privacy
layer safeguarding patient information. A prototype using synthetic data demonstrates its capabilities and potential
impact. In many circumstances where healthcare solutions are being developed, real patient data in not available to de-
velopers. Thus, we generated synthetic Irish health chronic disease datasets based on the metadata from HIPE, CDM,
PCRS, and Restina in to use in our validation studies. As part of this validation, 14 new healthcare assets were cre-
ated to illustrate how clinicians, strategists and policy makers can benefit from the deployment of the RECONNECT
prototype.
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