
Investigating Systems Modernisation: Approaches,
Challenges and Risks

Gareth Hogan1, Patricija Shalkauskaite1, Mengte Zhu1, Martin Derwin1, Murat
Yilmaz2 [0000-0002-2446-3224], Andrew McCarren1,3 [0000-0002-7297-0984], and Paul M. Clarke1,4

[0000-0002-4487-627X].

1 School of Computing, Dublin City University, Ireland
{gareth.hogan22, patricija.shalkauskaite2, mengte.zhu2,

martin.derwin2}@mail.dcu.ie
2 Department of Computer Engineering, Gazi University, Ankara,

Turkey
my@gazi.edu.tr

3 Insight, the Science Foundation Ireland Research Centre for Data
Analytics

andrew.mccarren@dcu.ie
4 Lero, the Science Foundation Ireland Research Centre for Software

paul.m.clarke@dcu.ie

Abstract.
Findings indicate that software system modernisation projects are often more
complex and costly than initially thought, and that they risk failure as a result.
Layered in business processes, workflows, historical implementation and
evolution decisions, legacy systems have remained in use because they have been
useful and not easily replaced. Modernizing these systems can involve partial
functional migration or entire re-implementation, the extent to which is utilized
requires deep upfront planning and investigation.
 In this paper, we provide a multivocal literature review (MLR) of Software
System Modernisation, examining its ongoing relevance amidst continuous
technological advancements. Our research provides an analysis on the role of a
legacy system, the need and benefits of legacy system modernisation, various
strategies and approaches employed, challenges encountered throughout the
modernisation process and the risks and costs that shape modernisation
endeavours. This systematic investigation of the topic of modernisation can
highlight the various considerations for researchers and practitioners tasked with
modernisation evaluations.

Keywords: System Modernisation, Software Engineering, Legacy System
Modernisation, System Migration, System Transformation.

mailto:abasse.camara2%7d@mail.dcu.ie
mailto:abasse.camara2%7d@mail.dcu.ie

2 G. Hogan et al.

1 Introduction

The need for software system modernisation resonates across industries and challenges
organisations to adapt in the ever-evolving digital landscape. Systems are perpetually
susceptible to obsolescence, and the need for system modernisation increases as
compatibility and security support decreases [1]. Through applying a multivocal
literature review, this paper aims to delve into the numerous dimensions of system
modernisation that organizations need to consider when undertaking such an
endeavour. The following research questions are asked:

1. RQ1: Why is system modernisation necessary?
2. RQ2: What approaches are used in legacy system modernisation?
3. RQ3: What are the risks and costs of system modernisation?
4. RQ4: What are the challenges associated with system modernisation?

Section 2 of this paper presents the Multivocal Literature Review (MLR) methodology,
followed by a detailed analysis in Section 3. Research limitations and future work are
outlined in Section 4, with Section 5 presenting a conclusion.

2 Research Methodology

2.1 Methodology

This research paper was created as part of an MLR. We adopted an MLR approach for
searching and reviewing both peer-reviewed (white) and some non-peer reviewed
(grey) literature. For each of the four research questions we defined search strings using
relevant keywords and made use of Google Scholar to retrieve and review literature on
the subject of this paper.

2.2 Search Strings

Initial research focused on the topic using general search strings like “System
Modernisation” and some synonyms such as “Architectural Transformation” and
“System Migration”. This facilitated the acquisition of a general sense of the subject,
later breaking it down into four research foci, following which an individual researcher
examined a single sub-topic through the creation of more specific search strings.
Searches included “Software System Modernisation”, “Costs of System
Modernisation”, “Risks of System Migration”, “Cloud Migration Automation”,
“Dangers of System Modernisation”, and “Challenges of System Modernisation”.
Logical operators such as “AND” and “OR” were further utilized to bring increased
focus to the searches, and to obtain more accurate results. Searches also evolved over
time in different ways as the research progressed, for example the term “Software” was
added to searches to focus the literature on software systems, we also added
“Modernization” as a second spelling to include papers using the American spelling
convention.

G. Hogan et al. 3

2.3 Inclusion/ Exclusion Criteria

When reviewing the results of searches, initial results were filtered using the following
criteria:

- Only papers written in English.
- Published in the last five years (2019-2024)
- Present in the top twenty results of the search.

Each identified paper in the filtered search results was briefly reviewed to check if they
were relevant to the given research question, and if they were, the research would be
added them to the collection for in-depth review.

Not every paper that was relevant was included in this paper, some proved not relevant
to the specific research question or did not provide much valuable information upon in-
depth reading. In total, 76 papers were reviewed, with 39 of the most informative
included in this paper. Table 1 presents the most prevalent sources for white literature.

Table 1. Top Sources of Research Documents.

Source Number Reviewed Number Cited
IEEE 22 9
Science Direct 12 9
ACM 8 4
Springer 6 5
ArXiv 4 3

3 Analysis

3.1 RQ1: Why is System Modernisation Necessary?

Software modernisation?
Software modernisation is the re-architecture of existing software from legacy
infrastructure to modern architecture. and the process of applying advanced
technologies and methodologies, including cloud, agile, and containerisation, to an
organisation's traditional IT infrastructure, architecture, and products to maximise
resiliency, efficiency, agility, and speed [2] . Modernisation is a technical process that
moves the logic of existing applications into a modern, state-of-the-art environment,
always with the goal of reducing costs [2]. Therefore, software modernisation is the
process of evolving existing software systems by replacing, redeveloping, reusing, or
migrating software components and platforms when traditional maintenance practices
are no longer able to achieve expected results [2].

4 G. Hogan et al.

Software modernisation can cover various aspects, such as migrating to a new platform,
updating programming languages, or improving the user interface. Software
modernisation becomes even more important when dealing with legacy systems.

 Legacy systems
A legacy system is a system that no longer fully functions as originally intended, mainly
related to the performance of the system and associated adaptation inertia. Because
technology becomes obsolete over time, even solutions developed in a short period of
time can become legacy issues. When such a system cannot keep up with business
goals, it needs to be maintained, thereby degrading the user experience, and making it
difficult for users to benefit from the system due to its inability to satisfy their needs,
which in some cases is related to increasing data volumes. When deficiencies in legacy
systems hamper users’ business performance, legacy software modernisation can make
a huge difference [3]. Key areas where legacy systems can become disruptive are as
follows:

• Maintenance and support: For systems that are launched within a short
period of time, maintenance costs often exceed development costs [3].

• Integration and Compliance: Most regulations are updated annually, and
failing to meet the requirements issued by regulators can cost you
millions of dollars in penalties [3].

• Security: Outdated security protocols are a major concern for most
businesses. For enterprises, real-time security updates are necessary.
Outdated security protocols will cause data leaks and cause huge
economic losses to the enterprise [4].

• Lost Opportunities: A lack of innovation can impact the long-term
profitability of a software business, and it will be unable to adapt to
changing market standards (customer needs, safety regulations, quality
standards), resulting in lost business opportunities [4].

• Lack of agility and efficiency: Outdated software often fails to meet the
needs of modern development and becomes inefficient. Modernisation
and automation can improve the efficiency of most processes and
significantly increase the efficiency growth rate [3].

• Brand reputation: Outdated software is often accompanied by suboptimal
performance and potential crashes. Poorly performing software can also
damage the software's brand reputation [4].

Modernisation is reported to deliver the following benefits:
Modernising legacy software can significantly improve performance, as outdated
systems often suffer from slow response times, frequent crashes, and inefficiencies. By
adopting modern technologies and frameworks, businesses can optimise their software
to improve speed, reliability, and resource utilisation. This increases productivity,
reduces downtime, and enhances user experience [2].

G. Hogan et al. 5

Scalability and flexibility: Legacy systems are often rigid and difficult to adapt to
changing business needs. Software modernisation introduces scalability and flexibility
by leveraging modern architectures and platforms. Cloud-native technologies,
microservices, and containerisation enable enterprises to efficiently scale applications,
respond quickly to market demands, and handle increased workloads. With modern
software, organisations can easily add or remove features, integrate with third-party
services, and expand their offerings.[5]

Cost optimisation: Legacy systems can become a financial burden due to high
maintenance costs, licensing fees, and inefficient resource utilisation. Software
modernisation helps organisations optimise costs by eliminating redundant processes,
reducing infrastructure expenses, and streamlining operations. By leveraging cloud
computing, businesses can move from capital expenditures to operational expenditures,
paying only for the resources they use. Additionally, modern software requires less
maintenance and support, freeing up resources for strategic initiatives [5].

Enhance security and compliance: Legacy software is often susceptible to security
vulnerabilities and lacks the robust security features offered by modern systems.
Software modernisation enhances security by implementing the latest security
protocols, encryption technologies, and access controls. It ensures compliance with
industry regulations and protects sensitive data from unauthorised access. Modern
software also allows for timely security patches and updates, reducing the risk of
security incidents and data breaches [6].

Competitive advantage: In today's rapidly evolving digital environment, maintaining a
competitive advantage is critical. Software modernisation enables businesses to
innovate, differentiate and gain a competitive advantage. By leveraging modern
technology, organisations can deliver new features and functionality faster, improve
customer experience and adapt to market trends. Modern software enables businesses
to embrace digital transformation, unlock new opportunities and respond effectively to
changing customer needs [7].

3.2 RQ2: What Approaches are used in Legacy System Modernisation?

Understanding the intricacies of legacy system modernisation is crucial for
organisations seeking to optimise their IT infrastructure, improve operational
efficiency, and remain competitive in rapidly evolving markets. The intricate nature of
legacy systems offers a range of approaches, each possessing unique strengths,
limitations, and applicability. From migration to re-implementation, organisations must
choose the most suitable approach to achieve their modernisation objectives effectively.

Legacy System Modernisation?
Various definitions for a legacy system have been given by different authors and
organisations. Common terms used to describe a legacy system are old, critical and

6 G. Hogan et al.

outdated as illustrated by [2, Sec. 3A]. A legacy system is not necessarily “bad”, they
are high dependency systems that contain important business logic and data collected
over several years [2]. [8, Ch. 1 "].

Modernisation of legacy systems is not a simple process; the systems consist of
interrelated components deeply ingrained within the organisation’s culture and
environment. Therefore, the system modernisation process must intricately consider
these organisational culture and environment factors to provide unified and systematic
guidance to the organisation [2, Sec. 4], [9] . Legacy systems are not all similar. Some
are tightly coupled, highly monolithic “monstrosities” [10, Sec. 1]. Others use layered
architecture which can be updated using incremental implementations. There are
several approaches an organisation can take to system modernisation. Careful planning
and implementation are necessary.

The complexity and diversity of legacy systems means that researchers struggle to find
industry-wide applicable methodologies and solutions in an academic setting. The
sociotechnical aspect of legacy system modernisation cannot be easily simulated for
experimentation. Existing legacy systems have been in place for decades, undergoing
relatively little technological evolution. Naturally, there were fundamental changes like
replacing data storage mechanisms by relational databases or text based terminal
interfaces with user interfaces, but at the core business, functionality was provided in
similar ways over several years. In today’s technological landscape, life expectancy of
a software system has shortened significantly due to the speed of technological
evolution [10, Sec. 1].

According to M. Bellotti, “each legacy modernisation project starts off feeling easy.
After all, a working system did exist at one point… All the modernising team should
need to do is simply repeat that process using better technology, the benefit of hindsight,
and improved tooling. It should be easy”. In reality, modernisation projects will take
months, if not years to complete and maintaining motivation is a difficult challenge [11,
Ch. 4]. Legacy systems are often too complex to easily replace and at the same time too
valuable to the business to be removed [10, Sec. 1], [9], [12].

Latest studies on legacy system modernisation tend to focus on migration and
integration to the modern environment such as Cloud, SOA and Big Data. Researchers
prefer to focus on the requirement phase of modernisation. Few papers tackle the
management and strategic aspects of modernisation. The study by [2] examined several
of these papers and concludes that there are six phases of legacy system modernisation.
These are: “planning, old and new requirements determination, design and
development, testing and system implementation”. The planning phase is less detailed
while the old requirements determination is often emphasised because of the business
value of legacy systems. Reverse engineering is highlighted as an important technique
during the old requirements determination phase.

G. Hogan et al. 7

In summary, legacy system modernisation is a complex task with multiple phases.
Modernisation projects are very time-consuming, they can take years to accomplish. It
is challenging to replace a legacy system entirely, due to the importance of the system
to the business. Several authors re-iterated the lack of emphasis on the management and
strategic aspects of modernisation projects, and the fact that researchers face challenges
in developing universally applicable methodologies due to system diversity and
sociotechnical nuances [2], [11]. Current studies predominantly focus on migration and
integration into modern environments. It is important for businesses to understand the
significance of addressing both technical and organisational challenges to successfully
navigate the modernisation process. Regrettably, many businesses only consider legacy
system modernisation when it becomes imperative rather than proactively [11, Ch. 10].
Nonetheless, various approaches to modernisation exist that may be considered once
the process begins.

Approaches
Unfortunately, one of the most common approaches to modernising a legacy system is
to just ignore it. This is tempting in situations where there is a lack of documentation
or system knowledge is lost. However, the risks of ignoring the system are potentially
huge [8, Ch. 1].

The naïve approach to system modernisation is to redevelop the system entirely using
the latest technology. System redevelopment is not always possible. It could be that the
costs of redevelopment are too high, the time required is not acceptable or that
organisations lack the experience needed to build large new business applications.
Instead, they are often more adept at keeping their legacy assets alive. A cost effective
solution might involve the utilisation of sophisticated tool support. However, this
remains an area where greater tool capability is desirable.

Re-implementation
Re-implementation is when the original code is re-written (in another language or
another platform) based on re-documentation of that code [12, 13]. Re-implementation
is not an automated conversion, it requires human judgement. Developers must be
familiar with both the old and new languages, understand the existing algorithms and
be able to recreate them. The gap between the old and new language can be substantial,
constructs that exist only in the old language may need to be simulated in the new
language. In some cases the same constructs may have different semantics [13, Sec. 3].
System re-implementation involves several steps: measuring the size and complexity
of the existing system. Then analysing, visualising, and documenting existing code,
renaming data and procedures, recovering business logic, isolating the code to be re-
implemented. And finally: re-writing code, testing code and integration [13, Sec. 5].

Migration
Migration is a system modernisation technique where the legacy system is moved to a
more flexible platform without disturbing the original system’s data and rules [2, Sec.

8 G. Hogan et al.

3]. Migration moves the components of the system to a new technology rather than later
versions of the current technology. This can be applied to any part of the system. There
are many reasons why an organisation may want to migrate their legacy system. A new
technology may have emerged, another vendor or product may offer better technical
solutions, or the original vendor may have ceased trading entirely. Migration can result
in significant cost savings. Only a fraction of migration projects are planned and staffed
initially as migration projects. Typically, this happens in scenarios where a “strict one-
by-one replacement” is required. However, in the context of large-scale enterprise
modernisation projects, migration frequently happens as an afterthought. This
negatively affects both the approaches taken in these scenarios as well as resulting
solutions [10, Sec. 4.3.4].

One case study proposes a Topology for legacy system migration using reasoned
generalisations [10]. Fig.1 shows groupings of those generalisations showing the
relationships between them.

Figure 1: Legacy System Migration Topology: Grouping the generalisations into

related topics to highlight relationships and create a thematic map [10].

Migrations may be driven by technical or business requirements. There can be
interpersonal conflicts that endanger migration projects. Problems may arise when
trying to migrate data that has incompatible formats or required data is missing.
Migration teams often need to enrich (make up) the missing, required data to get the
migration process to work. Migration teams must also remember to update any
documentation that is made irrelevant by the migration [2, Ch. 1]. The lack of an
adequately skilled workforce to maintain legacy systems is one of the most commonly
named reasons for legacy system migration. [10, Sec. 5].

G. Hogan et al. 9

Emerging cloud technology has gained a lot of attention in recent years. Cloud
migration is a process employed which involves transferring data from legacy database
systems to typically more cost-effective and efficient cloud-based databases without
necessitating a complete overhaul of the existing infrastructure. A Cloud migration
often has concept variants and multiple methods of instantiation. “This process itself
(cloud
migration) is contingent on existing organisational structures and characteristics of a
legacy system” [14, Sec. 2.1].

Automation in other approaches to modernisation may be difficult due to the diversity
of the legacy system [13]. Automated cloud migration tools (ACMTs) have been
developed and are evolving to streamline the migration process. Their benefits are
significant in terms of cost, time, and business innovation [15]. Migration is also
commonly used to transition from monolithic architectures to Service-Oriented
Architectures (SOAs) or microservices architectures (MSAs) [12], [16]. Re-
engineering is an important step here, as it can reduce complexity, lower coupling,
higher cohesion and simplify integration [16, Sec. 8].

There has been a surge in research aimed at generalising legacy system modernisation
strategies and automating the modernisation process [2], [5], [10], [11], [12], [13], [16].
When considering using automation, the question is “if the automation fails, will it be
clear what has gone wrong?” [11]. Automation, while beneficial in streamlining
processes, raises concerns about engineers potentially losing familiarity with the inner
workings of the legacy system.

3.3 RQ3: What are the Risks and Costs of System Modernisation?

Modernisation of software systems is an inherently risky business, the pressure to
efficiently modernise systems to meet new requirements and mitigate growing risks is
always building [10]. Systems that are the target of modernisation efforts have grown
and evolved over years and even decades into millions of lines of code, they suffer from
issues of maintainability, scalability and supportability, and they struggle to adapt to
the latest developments in hardware and software [17]. Although recognising that these
systems are problematic, companies nevertheless have continued with them as they are
too complex to easily replace and at the same time much too valuable to be removed
[10]. Then migration process is known to be complex and risky, and is it not unusual
for these projects to fail as a result [17].

Modernisation happens at a point in a system’s lifespan where risk is unavoidable,
leaving a system as-is presents several risks while embarking on a modernisation effort
also presents high levels of risk. Legacy systems are known to significantly increase
security risks at a company because they are not designed to address contemporary
cyber security risks [18], this was demonstrated in the case of the US federal
government by a study examining the argument that systems are “secure-by-antiquity”,

10 G. Hogan et al.

which believed that older systems with little documentation are more difficult to attack.
However, research has found that antiquity does not make legacy systems more secure,
but in fact significantly increases the frequency of security incidents [18]. In a separate
study focused on legacy software in medical devices, it was found that devices often
lacked basic security features and run legacy operating systems with publicly known
vulnerabilities [19]. Breaches and security incidents in systems of this nature can cost
the industry billions, endanger patient privacy, and enable large scale identity theft [19].
This example illustrates just how risky and costly security breaches in legacy systems
can be if they are not prevented.

Owing to years of usage, development, and improvement, a legacy application’s size
and complexity increases, making the disadvantages of legacy systems outweigh their
advantages [20]. Legacy systems can accumulate a lot of problems as they age, they are
commonly running on obsolete hardware, use old programming languages and are
subject to limited support and irreplaceable parts [20]. When the disadvantages and
costs stack up, that is when firms look towards modernising.

Some research suggests that most migration projects fail because of poor planning and
risk analysis [21], [22]. The most important factor to success is to carefully plan large
migration projects and consider all the options presented before rushing into the project
[21]. Modernisation projects are often critical projects vital to a company’s
competitiveness and success, they should be treated accordingly and systematically
evaluated to identify trade-offs and risks [23]. A lack of understanding and
preparedness from companies underpin a lot of the failures seen in these types of
projects [22]. For example, one study [21] reported that generating new code accounts
for the least cost in software migration. Testing was by far the highest cost driver of the
project being studied, accounting for over 70% of project time [21], this is just one of
many common misconceptions and pitfalls businesses face. Another common trap is
being lured into rushed migrations by “fashionable architectural decisions” [23] and the
hype of new technology [22]. Committing to a costly modern solution should be
avoided by carefully considering all alternatives before rushing into them [21],
particularly analysing the reasons for modernisation in the first place.

Alongside the analysis of modernisation opportunities and risk factors, projects are
often bound by cost [21], companies need to establish what options are available to
them within budget. However, this is not an easy task, modernisation is not a set-in-
stone process with clear guidelines and costs, many papers acknowledge the facts that
there are very few pieces of research that consider the cost of modernisation [21], [22].
There may also be many more cost drivers than first appear when planning a project,
such as the pricing of servers and cloud services being complex, with varying pricing
models and discounts across different regions [22], however they can be estimated. On
the other hand, one of the largest cost drivers is the cost of acquiring the expertise and
knowledge required to complete a large modernisation project [24], estimates on
acquiring the skills and knowledge is mostly explorative, and a lot of it comes from
experience with other cases [22], but each modernisation project is highly unique. The

G. Hogan et al. 11

true total cost can only accurately be known after the migration is complete [22], so
careful and cautious analysis must be completed to account for setbacks, errors and
additional costs that could not be accounted for before a project is started.

Modernisation projects are inherently risky, often performed on critical systems that
suffer from poor security, maintainability, and adaptability. There are often just as
many risks associated with leaving a system as-is as there are with modernising it. To
increase the chances of project success, companies need to carefully consider all the
options before them, and evaluate all potential risks and costs involved. Each project is
highly unique and there is no universal guide to modernisation, but considering the
major risk sources and costs is crucial to planning a successful project.

3.4 RQ4: What are the Challenges Associated with System Modernisation?

Modernising a system poses a formidable challenge. Organisations can face numerous
hurdles in their decision to transition the legacy system and this may deter them from
going through with their project. The cost of modernising may be too great, and those
who weren’t discouraged in some cases may find their migration process has not
achieved the organisation’s goals [24, p. 3].

In the context of cloud migration, organisations must decide on an appropriate
migration strategy. However, organisations often fall short in fully identifying their
circumstance to successfully execute the complex changes necessary for their legacy
systems to take advantage of cloud services [24, p. 1]. Some may decide to go through
with cloud migration because there is genuine technical and financial incentive to do
so, whilst others may simply go through with it as it is a “fashionable” technical trend.
Either way, it is crucial to realise the impact and scope of changes cloud migration
brings. Prior to the COVID-19 pandemic, there was a lack of academic literature
exploring what a generic and application agnostic cloud transition may look like [24,
p. 1]. Frameworks have been proposed, but complete solutions are missing [25, p. 3].
With the recent increase in cloud adoption in the post-pandemic world [26] [27], there
has been an increased effort in academia to provide methodologies on how to re-
engineer legacy systems to be cloud-enabled [28] [29] [14] [30]. However, due to a
lack of standardisation and consistency it can be difficult to choose the right strategy.
Sufficient time has to be allocated for the detailed planning and design of a legacy
system transition to avoid failure [31, p. 1].

Not only must a technical strategy be determined, but the business model and processes
must be improved and aligned with the modernisation efforts if necessary. “… [T]he
software implemented to replace legacy systems is developed or configured to largely
mimic their features and functionality in order to minimise the disruption to
organisational operations that accompanies the introduction of new technology”, [32,
p. 1]. However, doing so can lead to the carry-over of legacy features and the business
processes that accommodate them. This is especially true for public agencies who start

12 G. Hogan et al.

a legacy replacement project [33, p. 1]. Due to the negligence of systematic adjustments
and bureaucratised decision-making processes, this oversight leads to the “legacy
problem” [33] and fails to take advantage of new technologies the legacy system is
being transitioned to. It is therefore crucial that organisations identify if there may be a
need to not only modernise their system technically, but the business model and culture
as well.

Once the planning is complete, the subsequent hurdle lies in adhering to its
implementation in the time allocated. Organisations often underestimate the time it can
take for such projects to be completed [34, p. 2]. Delays can occur in the most
unexpected of places, and organisations should be considerate of this to avoid halting
their project. Compatibility issues between the current infrastructure and the cloud
platforms may surface, and unforeseen dependencies between other systems can result
in cascading issues. Extensive adjustments in order to resolve incompatibilities and
ensure a smooth transition may be required and this may delay the modernisation
project.

Other challenges include system requirement changes that introduce scope creep.
Although it can be advantageous to use the modern services that cloud providers offer,
it is worth considering if it is actually required, as sometimes this may cause technical
debt due to too excess different technologies utilised in the communication between
services [35]. Additional integrations and customisations can expand the original scope
of the project, and this can increase the cost of the project as well as delay the project
delivery. It is important to have a clear, defined scope in the beginning of the project to
better identify if requirements are starting to expand. If constant changes are
necessitated, it can be worthwhile adopting an agile methodology to help with the
iterative development [34, p. 4]. If requirements expand or resource allocation wasn’t
performed adequately, resources can become constrained. Personnel and expertise
limitations can arise due to the scarcity of people who know both the legacy system as
well as the modern technology it is being transitioned to. Upskilling and training the
workforce can be resource intensive, and potential skill gaps within the team can occur.
On top of the day-to-day operational responsibilities, motivation challenges may arise
as staff encounter the difficult task of adapting to new, unfamiliar technologies and
overcoming learning curves. Knowledge transfer and documentation is important to
reduce the effect of information loss, and as the number and variety of tools and
technologies increase, weak knowledge management and lack of standardisation may
emerge [35].

System modernisation can bring about security and regulatory concerns as well as
uncertainty. As organisations go through with their cloud migration projects, they may
have to grapple with compliance hazards and challenges regarding data protection and
privacy [36]. Therefore, it becomes imperative to conduct a thorough risk analysis
before migrating to the cloud. Legalities and regulations can be difficult to uphold if
the cloud service provider is not transparent with their services. Due to the “absence of
visibility into the security of the platform” [37, p. 2], some organisations are hesitant to

G. Hogan et al. 13

adopt cloud services. Ambiguities and misunderstandings can arise if there are no
clearly laid out service level agreements regarding expectation management [38, p. 2].
Contractual obligations that were set out when the legacy system was created should
also be reviewed to see if they may be affected and whether any agreements may be
unintentionally broken. For example, licensing issues of legacy systems can surface if
the transitioned system scales automatically which creates multiple instances of that
system [14, p. 14].

For some stakeholders, the physical presence of servers and hardware instils a sense of
control and security. Edward Snowden’s leaks about the NSA’s espionage programs
creates doubt and hesitancy about storing critical, confidential information in the cloud
[38, p. 5]. Additionally, organisations may be reluctant to rely on third-party entities
for critical aspects of their operations in fear of outages and may feel vulnerable to
attack since big data centres can be targets of hackers [38, p. 5]. Due to these
difficulties, “some high-privacy and safety critical systems such as military, aviation,
and aerospace systems might not be able to directly take advantage of cloud services”
[24, p. 4]. It may be worthwhile for organisations to consider investing partially rather
than fully into cloud services, creating a hybrid on-premises and cloud infrastructure.

Despite the plethora of challenges and setbacks associated with system modernisation,
the potential benefits can significantly outweigh the risks. It can open the opportunity
for enhanced efficiency and scalability, and benefits include streamlined processes, cost
savings, and increased competitiveness. The long-term advantages of a modernised
system can position organisations for prolonged success in a world where change is
rapid. It is through thoughtful, considerate planning and design and a strategic mindset
that organisations can navigate the challenges and ultimately reap the rewards of system
modernisation.

4 Research Limitations and Future Work

Although this work was strictly time-limited, the methods used were considered
academically rigorous. The search strings used are clearly identified. In addition, the
main body of the paper is systematically sorted based on its citations and the logical
correlation of each part of the paper. Although a high citation count does not necessarily
guarantee better publication quality or greater relevance, a powerful paper selection
mechanism emerges when combined with the rationale derived from the judgment of
the research team.

As software modernisation continues to advance at a rapid pace, increasing business
efficiency, user experience, and scalability, the importance of software modernisation
services becomes even more apparent as organisations strive to stay ahead of the curve
in a rapidly evolving digital environment. Adopting cutting-edge technologies such as
AI-driven modernisation, microservices architecture, low-code/no-code platforms,
DevOps practices, cloud-native paradigms, and innovative legacy modernisation

14 G. Hogan et al.

technologies enable enterprises to unlock increased efficiency, scalability, and agility.
In the future we hope to visit current and emerging trends and further delve into the
analysis of how they impact the future of software modernisation.

5 Conclusion

Taking full advantage of emerging infrastructure innovations such as serverless
computing [39] (for example Function-as-a-Service [40]) can assist firms not only in
devolving hardware concerns to reliable third-party providers, but also in incorporating
technology to increase their speed of delivery of new software into existing systems
[41, 42]. Unfortunately, however, system modernisation is a complex technical
undertaking, especially where knowledge loss affects a product or team [43]. This study
is therefore focused on examining the currently reported approaches, challenges and
risks associated with modernization efforts through investigation of four research
questions. In RQ1, we examined the necessity of system modernisation, finding that
not modernising may severely affect your budget, security, and reputation and that there
are many benefits to system modernisation. Through RQ2, we discussed the complexity
of legacy systems and researched the various approaches to modernisation. We
analysed their applicability and limitations, focusing on migration due to recent
technological advancements. RQ3 addressed the risks and cost of modernisation,
finding that a key factor to success is to rigorously analyse and plan any modernisation
effort, it also found that few research papers focus on how to estimate the true cost of
modernisation which makes accounting for budgets severely challenging. Finally, RQ4
researched the challenges in the modernisation process, observing challenges such as
data protection during cloud migration and “scope creep”.

System modernisation is a critical process in software engineering. Its benefits to the
system’s performance, scalability, cost, security, and competitive advantage outweigh
the inherent risks and challenges faced during the modernisation process. Furthermore,
the benefits of system modernisation can strategically position organisations for
sustained success amidst continual technological evolution.

Our research underlines that planning and organisation are fundamental to successful
modernisation. Modernisation projects are complex and often require varied solutions.
Organisations often overlook the importance of planning, resulting in pitfalls, poor
management, and diminished motivation. Some challenges encountered are not solely
technical but stem from organisational conflicts. This dimension poses a significant
obstacle to researchers, as it is difficult to address the sociotechnical aspect of system
modernisation. However, through careful planning and consideration organisations can
enjoy the fruits of modernisation.

Acknowledgements. This research is supported in part by SFI, Science Foundation
Ireland (https://www.sfi.ie/) grant No SFI 13/RC/2094_P2 to Lero - the Science
Foundation Ireland Research Centre for Software. It is also supported in part by SFI,

G. Hogan et al. 15

Science Foundation Ireland (https://www.sfi.ie/) grant No SFI 12/RC/2289_P2 to
Insight - the Science Foundation Ireland Research Centre for Data Analytics.

References

[1] K. Hrisafov and N. Chivarov, ‘Implementing Industry 4.0 solution with legacy
informational systems’, Ind. 40, vol. 5, no. 5, pp. 235–238, 2020.

[2] H. K. A. Bakar, R. Razali, and D. I. Jambari, ‘Implementation Phases in Modernisation of
Legacy Systems’, in 2019 6th International Conference on Research and Innovation in
Information Systems (ICRIIS), Dec. 2019, pp. 1–6. doi: 10.1109/ICRIIS48246.2019.9073628.

[3] H. K. A. Bakar, R. Razali, and D. I. Jambari, ‘A Guidance to Legacy Systems
Modernization’, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 3, Art. no. 3, Jun. 2020, doi:
10.18517/ijaseit.10.3.10265.

[4] P. L. Leon and F. E. A. Horita, ‘On the modernization of systems for supporting digital
transformation: A research agenda’, in Proceedings of the XVII Brazilian Symposium on
Information Systems, in SBSI ’21. New York, NY, USA: Association for Computing Machinery,
Jul. 2021, pp. 1–8. doi: 10.1145/3466933.3466976.

[5] M. Abdellatif et al., ‘A taxonomy of service identification approaches for legacy software
systems modernization’, J. Syst. Softw., vol. 173, p. 110868, Mar. 2021, doi:
10.1016/j.jss.2020.110868.

[6] M. Khan et al., ‘Modernization Framework to Enhance the Security of Legacy Information
Systems’, Intell. Autom. Soft Comput., vol. 32, no. 1, pp. 543–555, 2022, doi:
10.32604/iasc.2022.016120.

[7] Catherine, J. D. Trisaktyo, T. Ranas, M. Rasyiid, and M. R. Shihab, ‘Embracing Agile
Development Principles in an Organization using The Legacy System: The Case of Bank XYZ
in Indonesia’, in 2020 6th International Conference on Computing Engineering and Design
(ICCED), Oct. 2020, pp. 1–5. doi: 10.1109/ICCED51276.2020.9415831.

[8] Working with Legacy Systems. Accessed: Feb. 02, 2024. [Online]. Available:
https://learning.oreilly.com/library/view/working-with-legacy/9781838982560/

[9] H. Abu Bakar, R. Razali, and D. I. Jambari, ‘A Qualitative Study of Legacy Systems
Modernisation for Citizen-Centric Digital Government’, Sustain. Basel Switz., vol. 14, no. 17,
pp. 10951-, 2022, doi: 10.3390/su141710951.

[10] S. Strobl, M. Bernhart, and T. Grechenig, ‘Towards a Topology for Legacy System
Migration’, in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, Seoul Republic of Korea: ACM, Jun. 2020, pp. 586–594. doi:
10.1145/3387940.3391476.

[11] Kill It with Fire. Accessed: Feb. 02, 2024. [Online]. Available:
https://learning.oreilly.com/library/view/kill-it-with/9781098128883/

[12] T. R. Vinay and A. A. Chikkamannur, ‘A Novel Methodology to Restructure Legacy
Application onto Micro-Service-Based Architecture System’, in Emerging Research in
Computing, Information, Communication and Applications, N. R. Shetty, L. M. Patnaik, H. C.
Nagaraj, P. N. Hamsavath, and N. Nalini, Eds., in Lecture Notes in Electrical Engineering.
Singapore: Springer, 2022, pp. 509–519. doi: 10.1007/978-981-16-1342-5_39.

16 G. Hogan et al.

[13] H. Sneed and C. Verhoef, ‘Re-implementing a legacy system’, J. Syst. Softw., vol. 155,
pp. 162–184, Sep. 2019, doi: 10.1016/j.jss.2019.05.012.

[14] M. Fahmideh, F. Daneshgar, F. Rabhi, and G. Beydoun, ‘A generic cloud migration
process model’, Eur. J. Inf. Syst., vol. 28, no. 3, pp. 233–255, May 2019, doi:
10.1080/0960085X.2018.1524417.

[15] ‘Best Leadership Practices of Multinational Corporations in the use of Automated
Migration Tools in Adoption of Commercial Cloud Computing Platforms: A Meta-Analysis -
ProQuest’. Accessed: Feb. 16, 2024. [Online]. Available:
https://www.proquest.com/openview/1b08e1a13c87f43a1d83783e5a2e858d/1?pq-
origsite=gscholar&cbl=18750&diss=y

[16] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dustdar,
‘Microservices: Migration of a Mission Critical System’, IEEE Trans. Serv. Comput., vol. 14,
no. 5, pp. 1464–1477, Sep. 2021, doi: 10.1109/TSC.2018.2889087.

[17] H. Rambarassah and S. Khaddaj, ‘The complexity attachment in modernization
journey’, in 2022 21st International Symposium on Distributed Computing and Applications for
Business Engineering and Science (DCABES), Oct. 2022, pp. 119–122. doi:
10.1109/DCABES57229.2022.00078.

[18] M.-S. Pang and H. Tanriverdi, ‘Strategic roles of IT modernization and cloud migration
in reducing cybersecurity risks of organizations: The case of U.S. federal government’, J. Strateg.
Inf. Syst., vol. 31, no. 1, p. 101707, Mar. 2022, doi: 10.1016/j.jsis.2022.101707.

[19] T. Tervoort, M. T. De Oliveira, W. Pieters, P. Van Gelder, S. D. Olabarriaga, and H.
Marquering, ‘Solutions for Mitigating Cybersecurity Risks Caused by Legacy Software in
Medical Devices: A Scoping Review’, IEEE Access, vol. 8, pp. 84352–84361, 2020, doi:
10.1109/ACCESS.2020.2984376.

[20] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad, ‘Legacy
systems to cloud migration: A review from the architectural perspective’, J. Syst. Softw., vol. 202,
p. 111702, Aug. 2023, doi: 10.1016/j.jss.2023.111702.

[21] H. M. Sneed and C. Verhoef, ‘Cost-driven software migration: An experience report’,
J. Softw. Evol. Process, vol. 32, no. 7, p. e2236, 2020, doi: 10.1002/smr.2236.

[22] T. Talvitie, ‘Estimating the migration cost to modern cloud: An exploratory case study’,
2020, Accessed: Feb. 05, 2024. [Online]. Available: https://trepo.tuni.fi/handle/10024/119644

[23] P. Cruz, H. Astudillo, R. Hilliard, and M. Collado, ‘Assessing Migration of a 20-Year-
Old System to a Micro-Service Platform Using ATAM’, in 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C), Mar. 2019, pp. 174–181. doi: 10.1109/ICSA-
C.2019.00039.

[24] M. Fahmideh, F. Daneshgar, G. Beydoun, and F. Rabhi, ‘Challenges in migrating
legacy software systems to the cloud an empirical study’. arXiv, Apr. 16, 2020. doi:
10.48550/arXiv.2004.10724.

[25] M. Khan et al., ‘CMMI Compliant Modernization Framework to Transform Legacy
Systems’, Intell. Autom. Soft Comput., vol. 27, no. 2, pp. 311–331, 2021, doi:
10.32604/iasc.2021.014280.

[26] M. Gokarna, ‘Reasons behind growing adoption of Cloud after Covid-19 Pandemic and
Challenges ahead’. arXiv, Feb. 27, 2021. doi: 10.48550/arXiv.2103.00176.

[27] Z. R. Alashhab, M. Anbar, M. M. Singh, Y.-B. Leau, Z. A. Al-Sai, and S. Abu
Alhayja’a, ‘Impact of coronavirus pandemic crisis on technologies and cloud computing

G. Hogan et al. 17

applications’, J. Electron. Sci. Technol., vol. 19, no. 1, p. 100059, Mar. 2021, doi:
10.1016/j.jnlest.2020.100059.

[28] M. Fahmideh, G. Low, G. Beydoun, and F. Daneshgar, ‘Cloud Migration Process A
Survey Evaluation Framework and Open Challenges’. arXiv, Apr. 16, 2020. doi:
10.48550/arXiv.2004.10725.

[29] M. Fahmideh, J. Grundy, G. Beydoun, D. Zowghi, W. Susilo, and D. Mougouei, ‘A
model-driven approach to reengineering processes in cloud computing’, Inf. Softw. Technol., vol.
144, p. 106795, Apr. 2022, doi: 10.1016/j.infsof.2021.106795.

[30] M. Fahmideh, G. Low, and G. Beydoun, ‘Conceptualising Cloud Migration Lifecycle’.
arXiv, Sep. 03, 2021. doi: 10.48550/arXiv.2109.01757.

[31] K. Ramchand, M. Baruwal Chhetri, and R. Kowalczyk, ‘Enterprise adoption of cloud
computing with application portfolio profiling and application portfolio assessment’, J. Cloud
Comput., vol. 10, no. 1, p. 1, Jan. 2021, doi: 10.1186/s13677-020-00210-w.

[32] A. Alexandrova and L. Rapanotti, ‘Requirements analysis gamification in legacy
system replacement projects’, Requir. Eng., vol. 25, no. 2, pp. 131–151, Jun. 2020, doi:
10.1007/s00766-019-00311-2.

[33] A. Alexandrova, L. Rapanotti, and I. Horrocks, ‘The legacy problem in government
agencies: an exploratory study’, in Proceedings of the 16th Annual International Conference on
Digital Government Research, Phoenix Arizona: ACM, May 2015, pp. 150–159. doi:
10.1145/2757401.2757406.

[34] C. S. Ranganathan and R. Sampathrajan, ‘Cloud Migration Meets Targeted Deadlines’,
in 2023 4th International Conference on Electronics and Sustainable Communication Systems
(ICESC), Jul. 2023, pp. 672–676. doi: 10.1109/ICESC57686.2023.10193104.

[35] S. Soares de Toledo, A. Martini, A. Przybyszewska, and D. I. K. Sjøberg, ‘Architectural
Technical Debt in Microservices: A Case Study in a Large Company’, in 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt), May 2019, pp. 78–87. doi:
10.1109/TechDebt.2019.00026.

[36] Maniah, B. Soewito, F. Lumban Gaol, and E. Abdurachman, ‘A systematic literature
Review: Risk analysis in cloud migration’, J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6,
Part B, pp. 3111–3120, Jun. 2022, doi: 10.1016/j.jksuci.2021.01.008.

[37] R. Amin, S. Vadlamudi, and M. M. Rahaman, ‘Opportunities and Challenges of Data
Migration in Cloud’, Eng. Int., vol. 9, no. 1, Art. no. 1, Apr. 2021, doi: 10.18034/ei.v9i1.529.

[38] A. Iqbal and R. Colomo-Palacios, ‘Key Opportunities and Challenges of Data
Migration in Cloud: Results from a Multivocal Literature Review’, Procedia Comput. Sci., vol.
164, pp. 48–55, Jan. 2019, doi: 10.1016/j.procs.2019.12.153.

[39] McAleese, S., Conway-McLoughlin, J., Detyna, F., Murashev, A., Yilmaz, M., Clarke,
P.M.: Serverless Software Engineering - And How To Get There. In: Proceedings of Systems,
Software and Services Process Improvement, EuroSPI 2022, 30 August 2022 - 2 September
2022, Salzburg, Austria. Communications in Computer and Information Science (CCIS), vol
1646. Springer, Cham. pp. 75–90. Available: https://doi.org/10.1007/978-3-031-15559-8_6

[40] Grogan, J., Mulready, C., McDermott, J., Urbanavicius, M., Yilmaz, M., Abgaz, Y.,
McCarren, A., MacMahon, S.T., Garousi, V., Elger, P., Clarke, P.M.: A Multivocal Literature
Review of Function-as-a-Service (FaaS) Infrastructures & Implications for Software Developers.
In: Proceedings of the 27th European and Asian Conference on Systems, Software and Services

18 G. Hogan et al.

Process Improvement (EuroSPI 2020), Springer CCIS Vol. 1251, 9-11 September 2020,
Dusseldorf, Germany. https://doi.org/10.1007/978-3-030-56441-4_5

[41] Lapuz, N., Clarke, P., Abgaz, Y.: Digital Transformation and the Role of Dynamic
Tooling in Extracting Microservices from Existing Software Systems. In Proceedings of the 28th
European and Asian Conference on Systems, Software and Services Process Improvement
(EuroSPI 2021), Springer CCIS Vol. 1442, pp. 301-305, 1-3 September 2021, Krems, Austria.

[42] Clarke, P., Elger, P., O'Connor, R.V.: Technology-Enabled Continuous Software
Development. In: Proceedings of the International Conference on Software Engineering (ICSE)
Workshop on Continuous Software Evolution and Delivery (CSED) (2016)

[43] Rashid, M., Clarke, P., O'Connor, R.V. A Systematic Examination of Knowledge Loss
in Open Source Software Projects. International Journal of Information Management (IJIM),
Volume 46, June 2019, pp.104-123. Y. Abgaz, McCarren, A., Elger, P., Solan, D., Lapuz, N.,
Bivol, M., Jackson, G., Yilmaz, M., Buckley, J., and Clarke, P., "Decomposition of Monolith
Applications Into Microservices Architectures: A Systematic Review," in IEEE Transactions on
Software Engineering, vol. 49, no. 8, pp. 4213-4242, Aug. 2023, doi:
10.1109/TSE.2023.3287297.

