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Abstract.  
Generative Artificial Intelligence (GenAI) has become a practical tool that ex-
hibits the potential to revolutionize numerous industries through publicly availa-
ble systems with simple yet effective interfaces. This paper outlines the findings 
of research conducted in a multivocal literature review (MLR) with the aim of 
exploring the impact of GenAI in software engineering, with a focus on the fun-
damental aspects, use cases, benefits, and risks associated with contemporary 
GenAI models leveraged in key industries and practices. Key findings indicate 
that GenAI is adopted in software engineering, with various reported benefits in 
areas including requirement engineering, estimation and testing. However, there 
are also some risks associated with GenAI-based Software Engineering, such as 
in the context of generated data consistency and accuracy (sometimes referred to 
as the Hallucination problem), plagiarism, bias, and security. GenAI-assisted 
software engineering is becoming more mainstream, but resolving all the associ-
ated issues is going to take some time.   

Keywords: Generative AI, Large Language Models, Software Engineering, 
Risks, Benefits. 

1 Introduction 

In recent years, Generative Artificial Intelligence (GenAI) has emerged as a ground-
breaking force in our technological landscape, with the potential to orchestrate a pro-
found transformation across diverse industries and propel us into an era of unprece-
dented innovation and creativity. Driven by advanced algorithms and immense compu-
tational capabilities, GenAI possesses the ability to redefine creativity and productivity, 
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generating novel content that spans text, images, videos or programming code in re-
sponse to instructions, or prompts, entered by the respective user [1]. 
 
When ChatGPT was launched in late 2022, it was quickly established as a seminal 
technology and awakened the world to the transformative potential of GenAI [1]. The 
technology underpinning the revolutionary chatbot represents one of the biggest step 
changes in the history of artificial intelligence—rather than simply analysing or classi-
fying existing data, GenAI is able to create entirely new and diverse material [1]. 
 
From ChatGPT to DALL-E, the latest class of GenAI applications has emerged from 
foundation models, which are complex machine learning systems trained on vast quan-
tities of data (text, images, audio or a mix of data types) on a massive scale [1]. As 
depicted in Figure 1, by leveraging these foundation models GenAI models can handle 
varied tasks involving different input and output types, such as converting text into 
images using the DALLE-2 model, text into audio using the AudioLM model or text 
into code by the Codex model [2].  
 

 
Figure 1 - A taxonomy depicting the classification of popular generative AI models 
based on their input and the format of the output they generate [2] 
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The power of these GenAI systems lies not only in their size and computational capa-
bilities but also in the fact that they can be adapted quickly for a wide range of down-
stream tasks without the need for task-specific training, making them suitable for sev-
eral domains [1]. Through ever-increasing utility and adoption, GenAI consistently 
challenges the previous assumption that artistic, creative tasks such as writing poems, 
creating software, designing fashion, and composing music could only be performed 
by humans [3]. 
 
This research aims to examine the current and potential impact of GenAI on the soft-
ware engineering industry through four key themes: technological foundations, use 
cases, benefits and risks. These themes comprise the following research questions con-
sidered within this paper: 
 

● RQ1: What is Generative AI? 
● RQ2: How is Generative AI used in Software Engineering? 
● RQ3: What are the benefits associated with using Generative AI in Software 

Engineering? 
● RQ4: What are the risks associated with using Generative AI in Software En-

gineering? 
 
The paper follows an organised structure: Section 2 outlines the research methodology, 
while Section 3 provides an analysis of the related literature through four aforemen-
tioned research questions. Section 4 briefly discusses the known limitations of research, 
with Section 5 indicating directions for future research. Section 6 presents concluding 
remarks. 

2 Research Methodology 

2.1 Methodology 

This research paper was written as a Multivocal Literature Review (MLR) with the 
result that it includes white literature (peer reviewed papers) and grey literature (blogs, 
articles, news reports, etc.). Platforms such as Google Scholar and IEEE Xplore were 
used to search and identify academic literature on our chosen topic, as well as standard 
search engines like Google Search to find relevant grey literature. 

2.2 Search Strings 

Initial search query strings, such as “Generative AI in Software Engineering”, were 
deployed to identify central areas of interest. Refined search strings were then elabo-
rated and incorporating Boolean logic, including, “Foundation Models”, “Large Lan-
guage Models” AND “Training”, “Generative AI” AND “Software Engineering”, 
“Generative AI” AND “Benefits” OR “Gains”, “Generative AI” AND “Software 
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Engineering” AND “Risks”, “Generative AI in Software Engineering” AND “Halluci-
nation”, "Intrinsic Hallucination”. 

2.3 Inclusion/ Exclusion Criteria 

As part of our inclusion/exclusion criteria for obtaining relevant and reliable material, 
we opted to restrict our literature selection to mainly academic works published after 
2019 using Google Scholar. Given the rapid evolution of the generative AI field, we 
highlighted that it was imperative for our research to remain current and pertinent. Once 
we compiled relevant white literature material using our search strings, we proceeded 
to analyse the abstracts, introductions, and conclusions of each paper to assess their 
relevance and reliability. We then reviewed the selected literature and analysed key 
points while considering the diverse perspectives from different papers and their listed 
citations. Researching grey literature required a more cautious approach that considered 
only those that were deemed to be entirely relevant and reliable sources. Exclusion cri-
teria included non-relevant papers, material that wasn’t accessible in full format or in 
English, and those whose origin or authenticity could not be established. Finally, we 
constructed a literature pool containing information on material containing various in-
sights systematically obtained through our MLR. 

3 Analysis 

3.1 RQ1: What is Generative AI? 

To effectively explore the use cases, benefits, and risks of GenAI in software engineer-
ing, we must first establish a definition of GenAI and examine its foundational aspects, 
capabilities and ongoing evolution. 

 
Definition of Generative AI 
In contrast to discriminative AI models, which focus on modelling input data decision 
boundaries in tasks such as classification, regression, or clustering, GenAI models excel 
at the probabilistic generation of new data such as text, images, audio, and videos [4]. 
GenAI is underpinned by foundation models consisting of deep artificial neural net-
works with billions of parameters trained on massive unannotated datasets [5][6]. These 
datasets can consist of content retrieved from diverse sources such as books, articles, 
websites, and social media posts, among other sources [5]. Foundation models can 
serve as the backbone for various GenAI tasks after extensive training on large and 
diverse corpora of data, allowing them to acquire comprehensive and expressive repre-
sentations of complex data, such as natural language, digital images and audio [8]. 

 
The most widely known foundation models are large language models (LLMs), such as 
ChatGPT [5]. Other well-known categories of foundation models include multimodal 
and visual language models (VLMs). Multimodal models can generate multiple types 
of data through understanding the connections and interactions between them [7]. 
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VLMs learn the visual representations of objects from large-scale image datasets and 
utilise these learned representations for downstream computer vision or vision-lan-
guage tasks [8]. GenAI models, being built upon these foundation models, are then 
capable of multi-tasking and performing complex tasks based on input prompts includ-
ing summarisation, question answering, text and image classification, image generation 
and code generation [8]. 
 
Modern GenAI models, such as those identified in Figure 2, work by leveraging the 
statistical capabilities of deep generative models (DGMs) and deep learning techniques 
to model high-dimensional probability distributions, enabling them to produce outputs 
that resemble real-world data [8]. Deep learning refers to an advanced subset of ma-
chine learning that leverages artificial neural networks, with multiple hidden layers in 
a nested architecture, to model complex data representations and automatically detect 
correlations and patterns in large datasets [6][7]. Training DGMs is typically conducted 
through semi-supervised learning, a combination of learning techniques using a small 
amount of labelled data in a supervised approach, followed by extensive unlabelled data 
in an unsupervised approach [8]. 

 
Evolution of Generative AI  
GenAI models within the domain of artificial intelligence date back to the 1950s, with 
the development of Hidden Markov Models (HMMs) and Gaussian Mixture Models 
(GMMs), which generated sequential data such as speech and time series data [11]. 
However, it wasn’t until the emergence of deep learning that GenAI models saw sig-
nificant improvements in performance [11]. 

 
In the field of natural language processing (NLP), a traditional method to generate sen-
tences was to learn word distributions using N-gram language modelling and then 
search for the predicted optimal sequence [11]. However, this method couldn’t effec-
tively adapt to long sentences, which were addressed by the introduction of recurrent 
neural networks (RNNs) for language modelling tasks, allowing for modelling rela-
tively longer dependencies in the text [11]. This was followed by the development of 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), which utilised a 
gating mechanism to control memory management during model training [8]. 
 
Within the field of computer vision, before the advent of deep learning-based methods, 
traditional image generation algorithms used techniques such as texture synthesis and 
texture mapping. These algorithms were based on hand-designed features and limited 
in their ability to create complex and diverse images [11]. 

 
The advancement of generative models in various domains has followed different paths 
but the arrival of the transformer architecture served as a key factor in the development 
of GenAI models [8].  Introduced by Vaswani et al. for NLP tasks in 2017 to solve the 
limitations of traditional models such as RNNs in handling variable-length sequences 
and context awareness [8], the transformer was later applied in Computer Vision and 
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then became the dominant backbone for many generative models in various domains 
and many state-of-the-art models such as GPT-3, DALL-E-2, Codex, and Gopher [11]. 

 
Figure 2 - A table outlining the contemporary competitive landscape of GenAI [1]. 
 
The transformer architecture utilises encoder and decoder blocks with a self-attention 
mechanism that allows the model to attend to different parts in an input sequence [11]. 
With the aim of solving sequence-to-sequence problems, the encoder takes in an input 
sequence and generates intermediate hidden representations, while the decoder takes in 
the hidden representation and generates a relevant output sequence [11]. 
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In the field of NLP, many prominent LLMs such as BERT and GPT models adopt the 
transformer architecture as their foundational building block, offering advantages over 
previous building blocks such as LSTM and GRU [11]. Similarly in Computer Vision, 
the Vision Transformer (ViT) and Swin Transformer later took the theory applied by 
Vaswani et al. even further by combining the transformer architecture with visual com-
ponents, allowing it to be applied to image based downstream tasks [11]. In addition to 
the improvement that transformers have brought to individual modalities, this intersec-
tion also enabled models from different domains to be fused together for multimodal 
AI tasks. [11] 
 
Large Language Models 
A Large Language Model (LLM) is a deep neural network model which has been 
trained on large amounts of textual data, such as books, code, articles, and websites, to 
learn the underlying patterns and relationships in specific languages with the aim of 
building an internal representation of the ingested data through analysis of language 
structure, rules and patterns [1]. Through this, the large language model is able to gen-
erate coherent and novel content such as grammatically correct sentences and para-
graphs that mimic those generated by humans in its training data, or syntactically cor-
rect code snippets and documentation also based on training data from large code re-
positories [1]. 
 
LLMs have emerged as cutting-edge artificial intelligence systems, playing a pivotal 
role in the progression of natural language processing capabilities which have evolved 
initially from statistical to neural language modelling and eventually from pre-trained 
language models (PLMs) to LLMs [12]. Pre-training language models involve provid-
ing them with universal language knowledge [13], while meta-training aims to align 
the model’s behaviour to the user’s intentions. In this case, the user’s intention includes 
both explicit intentions, like following instructions, and implicit intentions, like main-
taining truthfulness and avoiding bias, toxicity, or any harmful behaviour [14]. Large 
language models can then be considered a special class of pre-trained language models 
developed by scaling the model size, pre-training corpora and computation resources 
[12]. 
 
In addition to improved generalisation and domain adaptation when prompted, LLMs 
also appear to have what are known as emergent abilities, which refer to unpredictable 
tasks performed by an algorithm, that weren’t explicitly programmed into it [15]. For 
example, the ability of a LLM to capture the non-specified semantic relations between 
words based on their vector representation in multidimensional space can be considered 
an emergence phenomenon [15]. These abilities are known to be acquired by LLMs 
due to their enormous parametric scale even when the pre-trained LLMs are not trained 
specifically to possess these attributes [12]. Such abilities have led LLMs widely 
adopted in diverse settings including, multimodal models, robotics, tool manipulation, 
question and answering, autonomous agents, etc. Various improvements have also been 
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suggested in these areas either by domain or task-specific training and better prompting 
tailored to the intended task and LLM being utilised [12]. 
 

3.2 RQ2: How is Generative AI used in Software Engineering? 

LLMs excel at processing complex inputs and information to produce relevant new 
content, features that heavily lend themselves to Software Development. The technol-
ogy's direct impact on industry productivity is estimated at 20-45% of the current yearly 
expenditure. This figure mainly represents the reduction in time spent performing cer-
tain tasks (code drafts, correction and refactoring, root-cause analysis, generating new 
system designs) when using GenAI assistance [16]. 

 
With such a large economic impact, more and more software departments are incorpo-
rating the technology into their workflow, with one survey showing 77% business lead-
ers (across multiple industries) ranking GenAI as impactful emerging technology they 
will use, and 56% of leaders voting IT/Tech and Operations as the highest priority func-
tions for adoption of the technology [17]. 
 
Generative AI in Software Engineering 
GenAI has been recognised for having the potential to revolutionise the Software De-
velopment Life Cycle (SDLC), with propositions even being made for a new model of 
SDLC called GAASD (GenAI assisted Software Development) [18]. This new model 
would incorporate GenAI in all stages of the life cycle, from the Planning and Require-
ments Gathering stage to the Maintenance phase. As companies shift their focus and 
resources to GenAI assisted development, GAASD might soon be the next paradigm 
shift comparable to Agile development in the 2010’s. Mass adoption of a new SDLC 
model is not something that happens overnight, but GenAI is already being used in 
various stages of a traditional SDLC. 

 
Current Applications  
The impact of GenAI is already apparent across the industry landscape, as over 20,000 
organisations are already using Github’s Copilot [19], a GenAI based coding assistant 
that integrates directly into the developers’ IDE where it provides auto-complete code 
suggestions and a chat interface for more complex queries. Dr. Ozkaya, technical di-
rector at the SEI, identifies 5 main areas that GenAI LLMs can be used in software 
development [20]: 

• Specification generation: LLMs can access entire corpora of domain specific reg-
ulatory documents and specifications, and excel at processing textual data. Using 
this information paired with project specific requirements, a LLM could create a 
comprehensive list of requirements for a software application that would only 
need to be reviewed by the product manager. In an online Q&A session [21], 
Douglas Schmidt of the SEI highlights this functionality when asked about how 
GenAI will be used in the US Department of Defense. 
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• Just-in-time developer feedback: Using a GenAI coding assistant, developers can 
get instant feedback at any time without the need for a code review or assessment 
by a peer or superior. Github’s Copilot can provide not only corrections and im-
provements but also suggestions for future steps developers can take, with devel-
opers reporting significant improvements in coding efficiency, and feeling fulfil-
ment at work [19]. 

• Improved testing: Another major usage of coding assistants is in the form of au-
tomatically generated unit tests. Manual testing has several drawbacks [22] which 
GenAI coding tools can help mitigate. In a 2024 virtual roundtable [23] software 
testing expert Paul Gerrard says “I envision that testing and QA will become more 
focused on the end-user experience and less focused on code-centric activities, 
such as writing unit tests, as GenAI technologies continue to mature,” when asked 
how GenAI tools will integrate into the software engineering process, reflecting 
the industry trend of automating less cognitively demanding coding tasks with 
GenAI. 

 
• Documentation: GenAI LLMs can improve documentation in several ways in 

software development. According to one IEEE journal [24], GenAI can be used 
to: 

o Create comprehensive documentation as it generates code, 
o Summarise existing documentation, 
o Identify missing requirements or inconsistencies in requirements 

documentation. 
This can streamline the documentation process and improve the quality by keep-
ing the documentation reflective of the codebase and requirements. 

• Language translation: Many legacy software systems are built using outdated and 
obsolete languages, which makes maintenance and integration a time-consuming 
task that requires software engineers who are proficient in both the legacy and 
modern languages. In the online Q&A session [21], Douglas Schmidt, former 
chief technical officer of the Software Engineering Institute (SEI), talks about how 
LLMs can be trained and fine-tunes to understand languages that are used in the 
Department of Defence legacy repositories (e.g. Ada, JOVIAL), to maintain and 
aid in the evolution and comprehension of codebases. 

 
Novel Applications and Trends 
In the “Introducing GPTs” November 2023 update, OpenAI’s ChatGPT started allow-
ing users to create custom GPTs complete with API calls and instructions, providing a 
chat interface that can execute custom actions [25]. These actions can enable a GPT to 
perform tasks outside of the confines of ChatGPT, allowing it to do things such as ac-
cess external data, connect to databases and send HTTP requests with in-built user au-
thentication. Combined with the Team workspace services that ChatGPT offers, soft-
ware teams could be able to collaborate in an entirely novel way, letting them interface 
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with internal and external APIs through plain language prompts. However, as a new 
feature, there is limited data to support its practicality in real terms. 
 
Tools and workspaces like these are shaping a rapidly changing future in software en-
gineering, potentially altering the fundamental ways in which software engineers ap-
proach their jobs. In the previously mentioned IEEE Journal, Ebert and Louridas spec-
ulate that within 3 years most software companies will have an AI-augmented devel-
opment and testing strategy, which will lead to developers requiring new competencies 
[24]. Previously niche proficiencies like prompt engineering, improving automatically 
generated software and feeding learning engines may become more valued as the role 
of software engineer evolves. 
 
Prompt engineering is one of the main emerging areas of interest as GenAI tools be-
come increasingly popular. Prompt engineering is the process of creating and refining 
detailed instructions (prompts) for a GenAI model, to receive high quality and relevant 
output [26]. This process requires creativity and trial and error in order to guide the AI 
system to the best possible response it can create. Prompt engineering may redefine 
certain problems in software engineering, where “programming tasks are expressed as 
prompts that guide the behaviour of AI models, thereby encouraging the exploration of 
creative and innovative strategies over applying traditional programming methods and 
tools” [27]. This shift in methodology creates new opportunities, as ‘prompt engineer’ 
is becoming a standalone job title, as seen in Figure 3. 
 

 
Figure 3: Search results for “Prompt engineer,” Indeed [28]. 
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3.3 RQ3: What are the benefits associated with using Generative AI in Software 
Engineering? 

While the adoption of GenAI in the software engineering landscape is still in a rather 
adolescent phase, great strides have already been made in utilising the benefits that it 
can bring to companies in many aspects of the SDLC.  
 
Requirements Engineering 
Requirements engineering (RE) is one of the most vital and challenging stages of soft-
ware engineering. This is mainly due to downfalls in communication between what the 
stakeholders envision the project they want to achieve and what the developers interpret 
those wants to be based on discussions they have with the stakeholders. RE is a time-
consuming process that will more than likely need to be iterated on as the project con-
tinues over time. GenAI can play a role in mitigating the time needed to perform tasks 
such as elicitation, validation, and specification. 
 
Arora, Grundy and Abdelrazek conducted a preliminary evaluation on how well 
ChatGPT can be integrated into the requirement elicitation stage of RE. Data was col-
lected through four two-hour meetings with three experts working on a real-world sys-
tem. These meetings outlined the project, system users, user requirements and software 
features. Four participants were then given the project outline, two of whom were well-
established software engineers and the other two were NLP and RE research students. 
Over the course of the next 45 minutes, they were told to use ChatGPT to generate user-
story-style requirements based on their given project outline. The results were then 
compared to 20 key requirements outlined by the experts of the real-world-system and 
given a precision and recall percentage. The precision results ranged from a high of 
82% to a low of 15% and the recall results ranged from 58% to 20%. The highest recall 
and precision were both achieved by the same participant who was an expert, while the 
two participants who were students had much lower precision and recall percentages 
[29]. 
 
Overall, this study shows the promising benefits of GenAI in the RE landscape. These 
results were achieved without a model fine-tuned for this type of task but just by using 
ChatGPT. It also showed that experience will still play an important role in extracting 
the most potential benefits that GenAI can offer in assisting in RE processes such as 
elicitation. 
 
Story Point Estimation 
Story point estimation is an agile software development method that designates a num-
ber (points) such as 1, 2, 3, 5, etc., to user stories based on a mixture of the story's 
complexity and the time needed to complete the implementation of the story. This 
method is prone to error, even by experts in the industry. Fu and Tantithamthavorn 
proposed GPT2SP, a GenAI-based story point estimation technique that utilises a GPT-
2 trained language model with a GPT-2 based transformer architecture. This technique 
was seen to be able to be used effectively across multiple projects, rather than deep-
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learning methods such as Deep-SE, which are not as transferable because they are built 
from a project’s story point dataset. Compared to 10 other baseline approaches in 16 
open-source projects, GPT2SP was 34%-57% more accurate for within-project estima-
tions and 39%-49% more accurate for cross-project estimations [30].  
 
These findings show that this proposed model would greatly improve the accuracy of 
story point estimation and could be widely adopted by software engineering companies 
among a range of their projects rather than having to build and train a specific model 
for one project that is non-transferable. The proposed model could also be seen to have 
even more benefits if integrated with newer GPT models such as GPT-4. 
 
Code Completion 
Code completion tools such as GitHub CoPilot, Tabnine and Kite have become much 
more widely adopted by developers in recent years, leading to an increase in speed of 
development and productivity. A study conducted by GitHub showed that developers 
utilising CoPilot accept 30% of code suggestions, representing real productivity gains, 
with the percentage increasing over time as users adjust to using GitHub CoPilot. The 
study also showed that code generated through code completion has seen an increase 
in acceptance rate by reviews over six months of developers using CoPilot, with the 
trend steadily increasing each month [31]. An assessment done by GitHub in 2022 saw 
two groups of individual developers creating a HTTP server in JavaScript. One group 
had access to CoPilot while the other group did not. The assessment concluded that the 
group with CoPilot access were on average 55.8% faster at implementing the server 
[32].  
 
These studies point to a correlation previously mentioned between the use of code com-
pletion tools such as CoPilot and an increase in speed of delivery and productivity in 
developers. This holds the promise of major economic benefit to companies as the de-
livery times for projects could shorten (and with fewer project resources). 
 

3.4 RQ4: What are some of the notable risks that come with using Generative 
AI in Software Engineering? 

As discussed previously, GenAI provides developers with a powerful tool that can 
speed up development, however there are risks associated with GenAI that developers 
should be cautious about. 
 
Hallucination 
One major problem with using GenAI in software development is that the model may 
hallucinate when giving a response. Hallucination in GenAI refers to “text generated 
by GPTs that contains factual inconsistencies, contradictions, or content that diverges 
from human cultural norms and expectations, despite being coherent and seemingly 
realistic” [33].  The exact cause of hallucination is debated, it could be that because 
GPT models train on entries from across the internet, the line between true facts and 
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misinformation is heavily blurred. Yann LeCun, a pioneer in deep learning, argues that 
the cause lies deep within the LLM’s architecture design, saying that “there is a more 
fundamental flaw that leads to hallucinations” [34]. In software development, these 
hallucinations manifest in unreliable code generation, of which there are two main types 
of hallucination: 
 
• Intrinsic Hallucinations: This is when the information is present in the source 

documents but its synthesis misrepresents the source and fabricates inconsistent 
facts that may hold true in the original source but taken out of context, it loses its 
true meaning [33] [35]. In software development, source code may be deemed 
appropriate and functional in the training set, but taken out of context can cause 
the code to lose its original value. 

 
• Extrinsic Hallucinations: This is when the content can neither be validated nor 

contradicted, leading to assumed truths being presented as facts, this is caused by 
documents with poor information [33] [35]. When it comes to code generation, 
the model may present code that is technically accurate in the scope of its 
knowledge but it hallucinates inaccurate code that it interprets to be true but has 
nothing to support or contradict its validity. 

 
The response of a model is highly dependent on the prompts it's given, differing 
prompts may render different responses, with vague prompts leading to hallucination. 
One proposed methodology for prompt engineering is Goal Prompt Evaluation Iteration 
(GPEI), depicted in Figure 4 [36]. Using this methodology addresses the issue of hal-
lucinations by avoiding potentially vague prompts, leaning into the process of setting 
clear and concise goals, and of iterating on prompts to get the most optimal answer. 

 
One mitigation strategy proposed by OpenAI is to apply Reinforcement Learning from 
Human Feedback (RLHF) to improve ethical compliance of GPT models [33].  This 
strategy involves developers iterating on smaller datasets by comparing the desired out-
put by that produced by the GenAI model, labelling the output through human feedback 
in order to guide the model into producing a more desirable output [37]. 
 
Security 
Studies have shown that using AI assistants in software development increases the like-
lihood of introducing security risks to the system being implemented [38]. As stated 
before, ChatGPT trains on data from the internet so the lack of quality control means 
that industry standards of cyber security may be overlooked in favour of giving a sim-
pler and direct response that works, but one that may introduce security flaws. This may 
be a critical problem when dealing with high dependency systems that require code to 
be as close to perfect as possible. AI assistance may incur insecure code due the GPT 
model overlooking certain areas, not getting the full scope of the project or having a 
lack of knowledge surrounding the various dependencies and complexities involved in 
development. GPT models can help programmers detect security flaws, but it is heavily 
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reliant on the prompts provided by the user and also the extent of security experience 
the user has [38]. 
 

 
Figure 4: GPEI Methodology [36]. 
 
Plagiarism 
GPT models provide quick and personalised responses, which many developers favour 
over the traditional method of spending time searching the web. Skipping this step may 
lead to overlooked plagiarism concerns [39]. Plagiarism is the act of taking an idea and 
passing it as your own, when developers take code from community sites like Stack 
Overflow, they can reference the source of the code and refer back to it when necessary. 
However, GPT models take, pull and mix responses from various sources causing the 
original code owner to be left uncredited for his work [40]. Not only is this unfair to 
the original code creator, but also the credibility, reliability or contextuality of the orig-
inal code is to be questioned, leading once again to possible faulty code generation. 
 
Many major ethical concerns surrounding AI are related to privacy. Many companies 
are concerned with how AI can infringe the private data of individuals or company 
documents by gathering, analysing and processing their information [41]. This poses a 
major risk when the code ownership is concerned.  Many developers have their own 
coding style that is unique to them and so, their work and likeness may be used by AI 
assistants as training data, copying and rewrapping their work without referencing the 
source.  

 
Bias 
LLMs are developed and trained on vast quantities of data taken from all across the 
internet, some of which is imbued with inherent biases and preconceptions. Biases spe-
cifically in GenAI refers to wrongly depicted data that carries preconceptions which 
may influence responses and cause skews in the data used to train the model [41]. Any 
mistake that is found in the training data will be amplified by the GenAI model, causing 
it to exhibit discriminatory concerns which can significantly impact that model’s 



T. Bazzan et al.                                                                            15 
 

performance and generalizability [39]. This is particularly evident in code generation 
when mistakes are amplified and are found to carry security flaws that could negatively 
impact the software development process through unreliable code [39]. 
 
Cost 
The cost to train and develop a LLM can pose a risk to companies if they are not pre-
pared for the scaling factor of training models. OpenAI offers plans where you pay for 
the number of tokens you use. A news report states that the “process of training a large 
language model such as OpenAI’s GPT-3 could cost more than $4 million” [42]. The 
same news report mentions Latitude, a small startup, was spending almost $200,000 
per month on GPT-3 API calls and AWS on their GenAI-based web game, ‘AI Dun-
geon’. Software companies are naturally aware of the cost of developing and maintain-
ing high quality software but it is important to note the potential monetary risks that 
integrating AI may incur. 
 
These risks range from trivial annoyances to potentially devastating flaws and security 
breaches. Faulty code is easy to miss, and for the time being, there isn’t a concrete cure 
to AI hallucinations. Developers should be cautious using code generated by AI assis-
tants as its user-friendly natural language processing may conceal potential flaws, con-
tradictions and vulnerabilities found in the code. 

4 Research Limitations  

This research highlights GenAI’s potential to improve efficiency and productivity in 
development processes. However, it is crucial to recognise the rapidly changing nature 
of this technology, which challenges the long-term relevance of current findings. 
 
The research aim was to clearly define the broad capabilities and limitations of GenAI 
tools in improving software development practices rather than the specific methods 
software engineers use to apply GenAI in addressing more complex development is-
sues.  A clear understanding of these tools is essential, regardless of how GenAI evolves 
in the future. This approach ensures that the integration of GenAI into software engi-
neering is informed by a comprehensive grasp of its potential impacts, benefits, and 
limitations. Despite our efforts to conduct a comprehensive and diverse study, our re-
search was limited by factors such as time constraints, limited access to reputable ma-
terial on training costs and ethical considerations of GenAI, limited empirical evidence 
on the real-world benefits due to how recent the adoption of GenAI is the SDLC. 

 
It is important to also highlight that the main body of this research was conducted by a 
team of four final year undergraduate researchers over a fixed time period of 6 weeks. 
This will inevitably affect the depth of the research, the associated interpretations, and 
to some extent the full implementation of the MLR methodology, for example in reach-
ing robust decisions on literature inclusions. Every effort was taken on weekly basis to 
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reduce the effects of these constraints through direct supervision from a senior aca-
demic. 

5 Directions for Future Research            

In this research we have identified the benefits of using GenAI tools in software devel-
opment and the known risks associated with using it. Future research could further ex-
plore the impact that GenAI could have on the cost of building a software system, 
whether it is financially more cost effective or not. In the software development life 
cycle, it is very difficult to strike a perfect balance between cost, quality, and speed; 
oftentimes, one must be sacrificed over the other. We could investigate the possible 
ways that GenAI could improve speed and quality while reducing cost. Several studies 
have attempted to find this but due to it being such a novel concept there is little con-
crete evidence. 

 
In addition, future research could be conducted to understand the ethical and moral 
concerns that arise regarding job security in software engineering. Could AI assistants 
potentially replace programmers altogether? While GenAI is currently highly depend-
ent on the user, there is no telling how things will look in a few years, given the rapid 
advancements of AI. This warrants further research into the perspectives of other ex-
perts on the field regarding job security. Broader questions also arise: Does the adoption 
of GenAI have negative effects on the environment and increase inertia around progress 
towards greener software engineering? [43] Furthermore, what about the biases that 
might exist in LLM generated code [44], and how might this affect system acceptance 
and performance, especially for socially-critical systems? [45] These, and other im-
portant questions, are yet to be fully evaluated.  

6 Conclusion            

The role of a software engineer is a constantly changing one [46], and the ability of 
firms to successfully identify changing contexts [47] and apply appropriate adaptations 
[48] is reported to be important, even in smaller firms [49]. This study explores the 
presently evolving impact of GenAI technology on the software engineering industry, 
noting the reported benefits and risks associated with the technology. The findings of 
this study have a number of practical implications. Specific areas were identified within 
the software development life cycle where GenAI tools could have the significance, 
including Specification Generation, Just-In-Time Developer Feedback, Improved Test-
ing, Documentation, and Language Translation. The findings furthermore suggest that 
the usage of GenAI tools applied in a software engineering context can have many 
benefits, such as from higher developer fulfilment, increases in story-point estimation 
accuracy, and major increases in code implementation speeds. 
 
While the adoption of GenAI in software engineering is receiving considerable atten-
tion, it is important to note that there are a variety of concerns that should not be 
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casually overlooked. Although GenAI can ostensibly increase productivity, there are 
issues concerning the accuracy of the data returned from GenAI platforms. There are 
furthermore a range on not insignificant risks associated with security, plagiarism and 
bias.    This research also highlights that there are specific monetary and safety impli-
cations to be addressed if adopting GenAI. 
 
GenAI represents a significant technological step forward, but its adoption in software 
engineering is evolving and it is not risk free. In a world of hybrid working, the ability 
of firms to softly monitor employee activity is significantly reduced [50], with the result 
that companies may inadvertently incorporate GenAI code into their products where 
developers adopt the technology while working remotely (and without informing the 
company). Valuable intellectual property might also be put at risk where it is submitted 
into GenAI platforms, for example where source code is submitted to get a summary of 
the functionality. The challenge for firms is to balance GenAI’s adoption while also 
continuing to address other key business considerations including, intellectual property 
management, quality, and predictability. GenAI adoption may also throw a considera-
ble focus back on requirement engineering, which in GenAI terminology equates to 
Prompt Engineering. Navigating the adoption of GenAI based software engineering 
will be a significant and evolving challenge for firms in the coming years.  
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