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Abstract: Background/Objectives: Predicting patient readmission is an important task for healthcare
risk management, as it can help prevent adverse events, reduce costs, and improve patient outcomes.
In this paper, we compare various conventional machine learning models and deep learning models
on a multimodal dataset of electronic discharge records from an Irish acute hospital. Methods: We
evaluate the effectiveness of several widely used machine learning models that leverage patient
demographics, historical hospitalization records, and clinical diagnosis codes to forecast future clinical
risks. Our work focuses on addressing two key challenges in the medical fields, data imbalance
and the variety of data types, in order to boost the performance of machine learning algorithms.
Furthermore, we also employ SHapley Additive Explanations (SHAP) value visualization to interpret
the model predictions and identify both the key data features and disease codes associated with
readmission risks, identifying a specific set of diagnosis codes that are significant predictors of
readmission within 30 days. Results: Through extensive benchmarking and the application of
a variety of feature engineering techniques, we successfully improved the area under the curve
(AUROC) score from 0.628 to 0.7 across our models on the test dataset. We also revealed that specific
diagnoses, including cancer, COPD, and certain social factors, are significant predictors of 30-day
readmission risk. Conversely, bacterial carrier status appeared to have minimal impact due to lower
case frequencies. Conclusions: Our study demonstrates how we effectively utilize routinely collected
hospital data to forecast patient readmission through the use of conventional machine learning while
applying explainable AI techniques to explore the correlation between data features and patient
readmission rate.

Keywords: electronic patient records; multimodal deep learning; explainable AI

1. Introduction

Effective risk management in healthcare is crucial as it safeguards patient safety,
optimizes resource utilization, and ensures the overall efficiency of healthcare systems,
thereby mitigating potential adverse events and enhancing the quality of patient care [1].
Healthcare-associated infections are an example of a key risk for modern healthcare. To be
able to assess and control this risk, it is essential for hospitals to have reliable mechanisms
to anticipate future events, such as in-hospital infection outbreaks or transmission. As the
digital transformation of healthcare becomes more mature, there is a need for new ways to
leverage the available healthcare data for the prediction of infection, treatment outcomes,
and risk management. The readmission rate is recognized as one of the pivotal metrics
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for assessing the effectiveness of patient treatment [2]. Clancy et al. [2] define hospital
readmission as occurring when a patient returns to the hospital after initial discharge
within 30 days. By forecasting individual patients’ readmission risks, interventions can
be identified to reduce costs and propose innovative strategies for preventing readmis-
sions [3]. This motivation drives our research effort to evaluate the suitability of typical
healthcare data to forecast 30-day readmission rates within one of the national acute hospi-
tals in Ireland as part of a larger research project to improve the prevention and control of
healthcare-associated healthcare infections (PCHCAI).

This particular interdisciplinary PCHCAI project, ARK-Virus, has brought together
researchers in human factors, health systems, data governance, data analytics, infection
control, and microbiology [4]. The ARK-Virus project took a systems approach to managing
the risk of healthcare-acquired infection in an acute hospital setting, supported by the
ARK (Access Risk Knowledge) Platform. This approach uses the Cube socio-technical
systems analysis methodology, which requires evidence-based analysis, like the predictive
machine learning (ML) data and deep learning (DL) analysis methods described in this
paper. The analysis techniques must be suitable for the data available and the deployment
context of risk management.

Conventional machine learning (ML) models, characterized by interpretability, ease of
implementation, and well-established frameworks [5], offer practical advantages in forecast-
ing hospital readmission, providing informative insights into risk factors and facilitating
trust among healthcare professionals. Their simplicity, limited data requirements, and
alignment with clinical reasoning make them effective tools for enhancing risk management
in healthcare.

This research explores the potential of the different conventional ML models on this
dataset to predict patient outcomes. We also incorporate several well-known DL models
into our experiments for comparison. Additionally, we emphasize model explainability,
aiming to identify specific data attributes that are likely to impact patient readmission,
since explainability is one of the most important requirements in healthcare [6].

In summary, this paper addresses two key research questions:

1. How effectively can conventional ML models utilize diverse data types within Irish
healthcare discharge records to predict patient outcomes, such as the 30-day
readmission rate?

2. How can we generate clinically meaningful explanations for these predictive models
using a popular explainable AI technique?

Our main contributions are as follows:

• We evaluate various conventional ML algorithms, as well as a set of DL methods,
for predicting patient readmissions using routinely collected discharge records data
from an Irish acute hospital that encompass patient demographics, their clinical
information, diagnosis codes, and previous hospitalization.

• We extensively assess the importance of each data feature in predicting patient readmis-
sion by analyzing the impact of individual group features on the classification score,
while also testing with different data sampling methods to address the class imbalance.

• To gain deeper insights into the models’ predictions, we use SHAP visualizations to
examine how patient clinical information and diagnosis codes are related to 30-day
readmissions. Finally, we interpret the significance of these visualizations.

Overall, the structure of our paper is as follows: We present an overview of prior
research in Section 2. Section 3 provides an introduction to our data sources and the
methodology we employ. In Section 4, we present the outcomes of our benchmarking
models and accompany these with visualizations depicting the importance of the features.
Lastly, in Section 5, we engage in a discussion concerning the results, and limitations,
and outline possible avenues for future research.
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2. Related Work
2.1. Multimodal Machine Learning in Patient Readmission Forecast

Various research studies have explored the task of predicting patient readmission
with multiple different time frames, such as 30, 180, or 365 days, depending on their focus.
In our study, our primary focus lies in predicting readmissions within a 30-day window.
The surge in data potentially available for clinical and safety decision making as a result of
digital transformation is not only marked by a substantial increase in volume but also by a
growing complexity and diversity in their forms. These challenges contribute to a notable
rise in the publication of research papers, particularly in the multimodal machine learning
topics, since multimodal methods address the data diversity.

Many researchers [7–11] have substantiated the advantages of amalgamating diverse
data types extracted from patients’ electronic health records (EHRs). These encompass
patient demographics, medical diagnoses, vital signs, lab test results, and historical hos-
pital visit records, all of which contribute to the prognosis of future readmissions. These
studies have adeptly incorporated multimodal configurations into a variety of machine
learning models to cater to this task, yielding superior performance compared to single-
modal methodologies.

Hence, we aim to introduce and address the unique characteristics of our discharge
records data, which may differ from data in other research. For example, lab tests and
vital signs are pivotal features in both [9,10], whereas they were not available in our study.
Additional supplementary information can also be leveraged for readmission prediction,
such as integrating clinical prescription data with weather and air quality records [12],
or patient-reported outcome measures (short, self-completed questionnaires) [13]. How-
ever, the effectiveness of these measures largely depends on their design, implementation,
and the timing of data collection, and they are not always readily available. Consequently,
in Section 3.1.1, we will provide an introduction to our electronic data, highlighting the
associated characteristics, and thereby distinguishing our approach from these aforemen-
tioned studies.

Given these differences, we shift our emphasis to the clinical diagnostic aspects,
particularly the utilization of International Classification of Diseases (ICD) codes, since
these are commonly available to access in the global healthcare system. Many studies
have employed diverse techniques to extensively harness the information encapsulated
in ICD code names for tasks related to predicting patient outcomes. These approaches
span from straightforward tree-based models [10,14] to more advanced deep language
models, such as convolutional networks [15] and recurrent networks [7,8,16,17]. Studies
have found that instead of relying exclusively on medical code names, leveraging the
contextual descriptions of clinical concepts can amplify the effectiveness of predictive
models [15,18]. In our experiment, we seek to conduct a comparative analysis between the
use of code names and descriptions, in conjunction with other variables, to reassess this
claim. Our position asserts that for the conventional model we employ for this dataset,
utilizing clinical codes rather than textual descriptions is seen to offer more effectiveness to
the models’ accuracy.

It is worth noting, however, that these studies typically do not address the challenge
of class imbalance (the imbalance of classes can be defined as when the number of one
type of data points outnumbers the instances of another type), which is a prevalent and
ubiquitous issue when utilizing many types of electronic data from the healthcare domain
for AI applications. While previous studies [7,9] suggest the introduction of additional
weights in their cost function to mitigate this problem, they report that this approach is not
particularly effective [7]. In contrast, our approach directly tackles this issue by comparing
a variety of data sampling techniques, from random sampling to KNN-based sampling,
which significantly improved the overall performance metrics of our methods.

Furthermore, the existing research papers to date often lack adequately transparent
explanations for their models’ performance. This deficiency is primarily attributed to the
fact that such explanations are typically tailored to specific models and cannot be readily
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applied to others [14], or they necessitate the integration of additional components like
attention modules [16,18]. In our research, we have adopted a widely recognized and
universally applicable Shapley additive explanations (SHAP) method, regardless of the
specific architecture of the machine learning models employed. While SHAP is a popular
tool for explaining feature importance in ML models, many studies report SHAP values
for only a single model. In practice, different models may capture and represent feature
relationships with the target variable in diverse ways, leading to variations in SHAP values
across models. Therefore, we not only use SHAP to investigate the relevance of patient
information and diagnostic code groups that may influence early readmission but also
aggregate SHAP values across multiple models to ensure the stability and reliability of
our findings.

2.2. Explainable AI in Healthcare Domain

There has been a growing demand for transparency of AI models to be utilized in the
healthcare sector [6]. In our research, we advocate utilization of the SHAP method [19],
which is based on the Shapley value [20] (we highly recommend looking at this exten-
sive book for a more intuitive explanation of SHAP value https://christophm.github.io/
interpretable-ml-book/shapley.html, (accessed on 30 August 2024)), to visualize the im-
portance of model features. SHAP values possess the advantage of being model-agnostic,
making them universally applicable in conjunction with any machine learning models.
This represents a straightforward approach that offers additional interpretability without
affecting the models’ parameters, thus preventing compromising model accuracy.

A recent comprehensive survey [6] provides an extensive list of explainable methods
for interpreting model predictions and investigating their underlying behaviors. The survey
notes that in many previous studies utilizing EHRs as data, SHAP is often the preferred
choice among explainability methods. However, it is worth noting that these studies
commonly overlook the inclusion of patients’ diagnosis codes and descriptions [21–23].
Thus, in our study, we illustrate how this approach can provide useful information on which
factors potentially influence patient readmissions based on their prior clinical diagnosis
codes and the descriptive terms in our dataset.

3. Method
3.1. The Collected Data
3.1.1. Data Description

The data used for this retrospective study comprised an anonymized sample of typical
operational Irish healthcare electronic data, collected daily from inpatients at St. James’
Hospital, Dublin, Ireland. As such, they represent the diversity of interlinked data that are
needed for this sort of analysis and highlight challenges with data consistency, sparseness,
and other quality factors that are often found in operational data. Demonstrating methods
that can overcome these challenges is a major goal of this study.

In Irish healthcare settings, inpatient data is digitally collected through the Hospital
Inpatient Enquiry (HIPE) system. HIPE plays a pivotal role in Irish healthcare data col-
lection, generating approximately 1.7 million records annually (information for HIPE can
be found at https://hpowp.com/hipe-home/, (accessed on 30 August 2024)). A HIPE
discharge record is created when a patient is discharged from (or dies in) a hospital. It
encompasses patients’ demographic, clinical, and administrative data for each bed day,
including discharge codes noted by medical administrators, which reflect patient conditions
for a discrete episode of care. An episode of care begins at admission to hospital, as a day
or inpatient, and ends at discharge from (or death in) that hospital.

The HIPE data in our study are neatly organized in a table and include both structured
and semi-structured fields, covering a time period from 2018 to 2022 and consisting of
almost 1 million rows. Each row in this dataset represents one patient’s stay at the hospital,
recorded every night. Furthermore, the dataset includes patients’ demographic information
as well as their hospitalization, including the episode admission and discharge time,

https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://hpowp.com/hipe-home/
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medical wards they were admitted to and discharged from, and the speciality of that ward.
The data features are described in Appendix A, and the main statistical description of the
dataset is reported in Table 1.

Table 1. Overall statistics of the data after processing. Clinical codes include International Classifica-
tion of Diseases (ICD), Irish Coding Standards (ICS), Diagnosis Related Groups (DRG), and Major
Diagnostic Categories (MDC).

Feature Name Statistics

Number of patients 50,159
Number of episodes 82,713
Highest value of number of clinical visits of a single patient 46
Number of unique clinical codes 9851
Number of unique generalized clinical codes 3771

Besides patient demographics such as gender and county of residence, the dataset also
includes information on up to 29 diagnoses and 29 medical procedures for each hospital
stay. These are entered as clinical codes by hospital discharge administrators based on the
free-text medical notes from doctors. These clinical codes are categorized using the widely
recognized guidelines within the HIPE system, namely Irish Coding Standards (ICS) [24].
The ICS are guidelines for the collection of data for all discharges from hospitals in Ireland
and the 10th Edition ICD-10-AM/ACHI/ACS classification system. The ICD-10 system,
published by the World Health Organization (WHO) [25], is a standardized method for
categorizing and labeling diagnoses, symptoms, and procedures related to hospital care.
Additionally, the dataset contains codes and descriptions for Diagnosis Related Groups
(DRG) and Major Diagnostic Categories (MDC). These codes help categorize different
diagnoses for the purpose of healthcare reimbursements. In total, the dataset encompasses
9851 distinct diagnosis and procedure codes. Some illustrative examples are presented in
Table 2.

Table 2. Example of a data instance where multiple codes might be assigned in an episode. These
codes are shown at their most granular level.

Diagnosis Code Code Description

J44 Chronic obstructive pulmonary
D351 Benign neoplasm of parathyroid gland
I20 Angina

Z22.3 Carrier of other specified bacterial diseases

Procedure Code Code Description

9555009 Allied health intervention pharmacy
3031500 Subtotal parathyroidectomy

DRG Code Code Description

K05A Parathyroid procedures

MDC Code Code Description

10 Parathyroid procedures

3.1.2. Data Cleaning and Feature Engineering

In this section, we present a comprehensive overview of our data processing pipeline.
We begin by selectively retaining episodes that occurred between 1 January 2018 and 28
February 2022, stripping episodes that do not have a final discharge date or ones that are
missing an admission date as they would likely generate noises in our data. In order to
maintain data consistency, we exclude records associated with patients who were either
deceased during hospitalization or were transferred to another healthcare facility. These
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cases are considered outliers since our primary objective is predicting patient readmission
within 30 days, and these situations may not align with that goal [10].

For numerical data features, we apply standardization to ensure numerical stability,
while categorical data features are converted into one-hot encoding matrices. These prepro-
cessing steps are not necessary for LightGBM and CatBoost, as these frameworks handle
them internally.

The sequential data from patients’ past hospital visits hold valuable insights for
predicting their future hospitalizations, a concept well-supported by prior research [7,26,27].
Thus, we have manually integrated cumulative features based on the patients’ historical
admissions. The representative features for each data sample include cumulative metrics
from the past t episodes, such as the total length of stay since the last t episodes, the number
of ICU admissions in the last t episodes, and the counts of diagnoses and procedures from prior
admissions within the last t episodes. We also present an ablation study in Figure A3 to
examine the impact of t, which appears to significantly influence model performance.

For the medical codes in our dataset, studies show that utilizing the most granular
levels of medical codes may not be imperative for effective predictions [7,8,14,16,17]. Fol-
lowing their footsteps, we follow this approach by grouping the first three digits of ICD-10
diagnosis codes and five digits of ICS procedure codes. This grouping significantly reduces
the number of unique codes (as shown in Table 1). These characters provide a high-level
grouping of diseases that represents the category of the diagnosis, which provides sufficient
information for machine learning models to learn in our study. We also report the ablation
study for this setting in Figure A1.

For the code’s descriptions, we apply standard text preprocessing techniques, includ-
ing converting text to lowercase, and eliminating stopwords, punctuation, and numerical
characters. Missing values in these columns are uniformly filled with “None” to ensure con-
sistency. Finally, to maintain data integrity, we remove duplicate rows and empty columns
from the dataset. This step ensures that our dataset remains clean and well-structured
for analysis.

3.2. Models
3.2.1. Data Sampling Method

Our dataset demonstrates a significant class imbalance between the number of readmit-
ted and non-readmitted patients, as shown in Figure 1, with the positive class representing
only 12% of the data.

Figure 1. Readmission class distribution in the dataset, which is highly imbalanced toward the
negative class.

We conducted a power analysis to estimate the required sample sizes for predicting
30-day patient readmission, considering varying effect sizes, as shown in Figure 2. Using a
significance level of 0.05 and a desired power of 0.8, our analysis revealed that as the effect
size decreases, the required sample size also increases. For smaller effect sizes, such as
0.2, a much larger sample size is necessary to achieve sufficient power, while larger effect
sizes, such as 0.8, require fewer samples. Based on our analysis, for an effect size of 0.3,
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and with the 12% class imbalance ratio taken into account, we estimate that approximately
500–3000 samples for each class would be needed to achieve the desired power.

Figure 2. Power analysis with different effect size.

To tackle this issue, we conduct an extensive experiment to identify the optimal data
sampling method, covering the five most commonly used techniques:

• Majority Undersampling: Randomly removes instances from the majority class to
balance the class distribution.

• Minority Oversampling: Randomly replicates instances from the minority class to
balance the class distribution.

• Tomek Link Undersampling [28]: Identifies and removes majority class samples that
form Tomek links (pairs of nearest neighbours from different classes) to clean the
decision boundary.

• Synthetic Minority Over-sampling Technique (SMOTE) [29]: Generates synthetic
samples for the minority class by interpolating between existing instances.

• Adaptive Synthetic Sampling (ADASYN) [30]: Generates synthetic samples by fo-
cusing more on the minority class instances that are near the decision boundary or in
regions with more majority class samples.

3.2.2. Term Frequency-Inverse Document Frequency

To encode textual data for ML models, we employ a commonly used technique, namely
term frequency-inverse document frequency (TF-IDF) [31]. TF-IDF assesses the importance
of individual terms within a text by calculating their frequency. We utilize these encoding
techniques for experiments that employ clinical codes or code descriptions as training
features for machine learning models. In medical texts, it is common for terms to appear
as compound nouns. To try capturing potential associations between these terms, we
generate n-gram tokens from the code descriptions. We retain only those terms that appear
at least twice in the episode treatment. We also report the ablation study for choosing n in
Figure A2. It should be noted that when using the clinical diagnosis codenames rather than
descriptions as the training features, these associations are reflected in the codenames due
to their hierarchical structure design. Initially, TF-IDF is trained on the vocabulary of the
training set and subsequently encodes entire medical paragraphs as single vectors for each
episode in the validation set.
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3.2.3. Machine Learning Models

In our investigation, we perform a comprehensive benchmarking comparison to iden-
tify the most optimal choice among nine models, encompassing both machine learning and
deep learning approaches, with the results detailed in Table 3. These methods encompass
some of the most well-known conventional machine learning methods: logistic regression,
random forest, AdaBoost, XGBoost, CatBoost, and LightGBM. Logistic regression serves
as a fundamental algorithm primarily utilized for binary classification tasks, recognized
for its simplicity and interpretability [32]. In contrast, random forest operates as an ensem-
ble learning technique, combining multiple decision trees to enhance predictive accuracy
while mitigating overfitting risks [33]. AdaBoost, short for adaptive boosting, is tailored
to enhance the performance of weak learners by assigning greater weight to misclassified
instances [34]. Among the high-performing gradient boosting frameworks, we have se-
lected XGBoost, CatBoost, and LightGBM. Extreme gradient boosting (XGBoost) [35] is
recognized for its speed and performance due to features such as regularization, missing
value handling, and parallelization, making it particularly suited for structured or tabular
data. CatBoost [36] is engineered to manage categorical features natively, eliminating the
need for extensive preprocessing like one-hot encoding. LightGBM [37] employs a leaf-wise
tree growth algorithm, offering faster training times and improved performance on large
datasets. Additionally, we leverage the Optuna tool [38] to optimize hyperparameters
across all experimental models, as detailed in Table 3.

Table 3. Comparison between conventional ML models and DL models on the test set using their
best settings on the validation set found by the Optuna optimizer. Bold colored texts indicate best
results of the metrics.

Model
Results on Test Set Using Cross-Validation

Balanced Accuracy Specificity Sensitivity F1 Score AUROC Score
Logistic Regression [32] 0.646 (0.003) 0.57 (0.009) 0.72 (0.008) 0.37 (0.003) 0.706 (0.001)
Random Forest [33] 0.633 (0.002) 0.56 (0.01) 0.706 (0.005) 0.364 (0.002) 0.683 (0.013)
AdaBoost [34] 0.63 (0.007) 0.52 (0.0004) 0.75 (0.015) 0.364 (0.006) 0.69 (0.004)
XGBoost [35] 0.64 (0.005) 0.6 (0.009) 0.678 (0.015) 0.37 (0.003) 0.69 (0.009)
CatBoost [36] 0.641 (0.002) 0.51 (0.013) 0.768 (0.011) 0.369 (0.002) 0.71 (0.002)
LightGBM [37] 0.645 (0.001) 0.61 (0.015) 0.68 (0.016) 0.378 (0.0013) 0.704 (0.006)
CNN1D 0.614 (0.01) 0.57 (0.123) 0.655 (0.11) 0.355 (0.009) 0.663 (0.013)
LSTM 0.632 (0.009) 0.633 (0.052) 0.63 (0.068) 0.372 (0.008) 0.68 (0.01)
Transformers [39] 0.62 (0.008) 0.566 (0.087) 0.672 (0.078) 0.358 (0.007) 0.67 (0.008)

3.2.4. Deep Learning Models

We also incorporate representative deep learning models that are frequently utilized
for natural language data: CNN, LSTM, and transformer. Convolutional neural net-
works (CNN), primarily designed for image processing, can also effectively learn from
natural language data by employing convolutional filters to capture local feature inter-
actions. In the context of language data, CNNs can automatically identify patterns or
dependencies among neighbouring language tokens, thereby facilitating the learning of
structured or spatial relationships within the data [40]. Long short-term memory networks
(LSTM), a variant of recurrent neural networks (RNN), excel at capturing sequential depen-
dencies in data. When applied to tabular datasets, LSTMs are capable of modeling temporal
or sequential relationships between features, particularly when the data have a time series
or ordered structure. Transformers [39], characterized by their self-attention mechanism,
can effectively manage tabular data by focusing on feature importance across the entire
dataset. Unlike CNNs and LSTMs, transformers are effective at capturing complicated
feature interactions without being constrained by local or sequential structures, making
them well-suited for high-dimensional tabular data with diverse feature relationships.
To utilize these models with our feature sets without modifying their architecture, we only
use clinical code names and descriptions as training features.
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4. Results and Discussion
4.1. Validation Method and Performance Metrics

Researchers have extensively studied suitable evaluation metrics for classification
tasks within the healthcare domain [41]. They have emphasized the importance of not
relying solely on a subset of metrics, as doing so could potentially yield misleading re-
sults when implementing models in clinical settings. To comprehensively assess model
performance, we employ multiple evaluation metrics, including sensitivity, specificity, F1
score and area under the curve score (AUROC). The equations for the first three metrics are
provided below:

Speci f icity =
TN

TN + FP
(1)

Sensitivity =
TP

TP + FN
(2)

F1 =
2TP

2TP + FP + FN
(3)

Here, TP, FP, TN, and FN denote true positives, false positives, true negatives,
and false negatives, respectively. Speci f icity places a greater emphasis on correctly classify-
ing negative samples, while Sensitivity aims to minimize the misclassification of positive
instances, making it a critical metric in medical studies [41].

The F1 score represents the harmonic mean of precision and recall, providing a bal-
anced measure that penalizes extreme values of either precision or recall. AUROC, on the
other hand, has gained popularity in machine learning [42] due to its favourable properties
when dealing with imbalanced classes. It is used to distinguish between positive and
negative classes across different threshold settings regardless of class distribution, making
it an effective balance measurement. As a result, we have selected AUROC as the balance
metric for model comparison.

To assess the robustness of our models, we employ cross-validation techniques, partic-
ularly stratified five-fold cross-validation. This approach ensures that each fold maintains
reasonable class distribution, mitigating the effects of class imbalance problems when using
cross-validation. Following the guidance of [41], we avoid sharing data from the same
patients across different folds to prevent introducing bias during the parameter tuning
phase. We report the mean and standard deviation of model performance across these
folds, and predictions made on the test set are presented for all the experiments.

4.2. Model Performance

Table 3 presents a performance comparison among traditional ML and DL approaches,
revealing that CatBoost stands out as the leading model in terms of AUROC score, while
LightGBM achieves the highest F1 score. It is intriguing that a straightforward algorithm
like logistic regression shows a commendable balance in metric scores, likely due to the
effectiveness of our robust data engineering pipeline and meticulous hyperparameter
tuning. In contrast, the advanced deep learning methods appear to be less suited for this
task, as evidenced by their underwhelming AUROC scores. This may be attributed to
the fact that these models are solely trained on textual features, potentially overlooking
significant predictors and missing out on the advantages offered by feature engineering.
Zarghani [43] also found that deeper models such as LSTM tend to overfit on the training set
and not be generalizable to the smaller validation subset, resulting in inferior performance
compared to methods like XGBoost and LightGBM in predicting patient readmission in
diabetic patients. Figure 3 illustrates the ROC curves for these models.
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Figure 3. ROC curves for all experiment models.

We also conduct a thorough evaluation of the individual features included in our mod-
els in order to assess their importance in Table 4. This evaluation involved systematically
including each feature one at a time and examining whether there is an improvement in
the evaluation score. We perform this setup for all ML models and aggregate the results for
each setup. This ensures the consistency of the experiment and proves that the inclusion
of newly engineered features is the main contribution to the performance. Otherwise, we
include Figure 4 showing the impact of each group of features on the models individually.

Table 4. Comparison of effectiveness between features used in training the ML models. The results
are aggregated across ML models and cross-validation folds and benchmarked on our data test set.
Bold colored texts indicate best results of the metrics. ‘x’ indicates the according feature was included
in training and evaluating for the experiment.

Exp. ID Patient
Information

Code
Description

Code
Names

Past
Episode

Data
Sampling Specificity Sensitivity F1 Score AUROC

Score

1 x 0.968 (0.037) 0.066 (0.086) 0.088 (0.096) 0.628 (0.034)
2 x x 0.972 (0.02) 0.1 (0.053) 0.161 (0.075) 0.658 (0.014)
3 x x 0.971 (0.021) 0.097 (0.051) 0.15 (0.073) 0.655 (0.013)
4 x x x 0.954 (0.037) 0.148 (0.088) 0.2 (0.097) 0.686 (0.02)
5 x x x x 0.55 (0.069) 0.726 (0.066) 0.369 (0.0098) 0.7 (0.01)

Figure 4. Effectiveness of each data features’ inclusion and techniques applied across different models.
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As presented in Table 4, it is crucial to note that the inclusion of clinical codes and
descriptions has the most significant impact on the performance of the model, leading to
an improvement of 3% in the AUROC score. Additionally, our findings agree with the
conclusions drawn by Ma et al. [15] regarding the utility of code descriptions. In our case,
the inclusion of code descriptions indeed led to performance improvement as opposed to
using code names only (Experiments 2 and 3). For more information on this, we attach the
detailed evaluation table in Table A1.

Moreover, leveraging data from prior admissions introduces valuable prior knowledge
for future decision-making. Experiment 4 received a substantial AUROC score improve-
ment of approximately 3% thanks to the incorporation of cumulative features from previous
hospital episodes. As anticipated, we gain significant performance enhancement when all
features from various modalities are incorporated. This observation strongly supports the
efficacy of multimodal techniques in our predictive model.

It is important to highlight that there is a significant imbalance between specificity
and sensitivity in most of our reported experiments in Table 4. Experiments 1–4 exhibit
extremely high specificity scores, indicating a strong bias toward the negative class, which
constitutes a substantial portion of the dataset. In contrast, Experiment 5, which integrated
a sampling technique, achieve a more balanced distribution of scores between specificity
and sensitivity, resulting in improved overall balance performance. We also report an
ablation study on different choices of data sampling methods in Figure A4.

Overall, traditional models demonstrate a reasonable level of effectiveness in dealing
with complex and diverse datasets like patient discharge records when appropriate data
processing and engineering techniques are applied.

4.3. Feature Importance

In this section, we demonstrate the application of SHAP value visualization to il-
lustrate feature importance for our models. The computation of SHAP values involves
systematically perturbing input features and analyzing how these modifications impact the
final model predictions. Figure 5 demonstrates the relative rankings of features based on
their absolute SHAP value, aggregated across multiple models. In detail, for each feature
(see the feature description in Appendix A), we compute its absolute SHAP value, and then
we rank the features based on this value. We do this for all ML models we mentioned,
and then scale the ranking to 0–1 and average them. The higher the value of average
ranking, the more influence it has on patient readmission within the next 30 days. As can
be seen, CODENAMES and CODE_DESCRIPTION show a strong influence on patient
readmission since they directly reflect the patient’s condition. In contrast, other features
display a wide variation in ranking distribution, indicating that different models prioritize
different features as important.

In the following figures, the arrangement of features, from top to bottom, signifies their
importance, with the most significant features occupying the upper positions. Additionally,
each dot on the plot represents an individual data sample, with the colour intensity of each
dot reflecting its numeric value when input into the model. The x-axis in the visualization
displays the SHAP value for each plotted dot. Positive SHAP values indicate that the model
is more inclined to classify the corresponding sample as positive (in our context, signifying
that the patient is likely to be readmitted within the 30-day window), and negative values
suggest the opposite. A SHAP value “0.0” is indicative of minimal impact. Within our focus,
we exclusively examine the SHAP values associated with clinical codes and descriptions to
assess their contribution to the model’s predictions.

In Figure 6, we focus on what are the top influencing factors that are associated with
patient readmission. Firstly, DISCHARGE_DESCRIPTION and DISCHARGE_SPECIALTY
emerge as the most crucial feature in our dataset. We hypothesize that these two features
reflect the clinical decision at the time of discharge, potentially indicating the guidance for
diagnosis, treatment, and destination received by patients upon discharge. Consequently,
patients discharged from some specific departments (e.g., ones that often deal with chronic
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or long-term conditions) might have a higher likelihood of readmission. Additionally,
the length of stay (LOS) feature and the total count of previous hospitalizations for a patient
carry meaningful predictive values, suggesting that patients with frequent readmission
history and longer hospital stays have an increased likelihood of readmission within a
month. Lastly, we observed that a higher value in NUM_DIAGNOSIS is associated with an
elevated impact on the prediction of patient readmission.

Figure 5. Overall feature ranking based on SHAP absolute values across models.

Figure 6. Feature importance based on SHAP values, aggregated and averaged across models.

Figure 7 provides an in-depth exploration of the most influential clinical codes on
models, as outlined in Table 4. We have selectively chosen to present codes or terms that
exhibit clearly distinguishable SHAP value measurements, meaning that their feature value
does not vary along the x-axis. For those codes or terms that do not meet this criterion,
despite having a significant impact, their interpretation is not straightforward in isolation
and should be considered in conjunction with other terms or codes. Some of our findings
in the feature importance align with medical insights from previous research.

Likewise, ICD-10 code ’Z59’ corresponds to patients facing ’Problems related to hous-
ing and economic circumstances’, indicating a link between social factors and readmission
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rates. Previous studies have substantiated the association between social factors and
all-cause unplanned readmissions, highlighting low socioeconomic status and housing
instability as prominent contributing factors [44]. We also find ’Z22’ to be one of the minor
causes for readmission; it presents a group of codes for ’carrier of infectious diseases’, which
is of potential interest to the ARK project. In our interpretation, these clinical codes, indicat-
ing the diagnoses of patients’ conditions and their social status, are important predictors of
the patients’ 30-day readmissions.

Figure 7. Clinical code importance. We present generalized clinical codes that have a large impact on
patient readmission prediction across models.

In conclusion, our SHAP value visualization analysis has provided valuable insights
into the global observation of how a patient’s diagnosis contributes to the likelihood of their
readmission within 30 days. Notably, diseases such as cancer, indicated by clinical codes
like ‘96199’ and terms like ‘malignant neoplasm’, emerge as key contributors to increased
readmission risks. Furthermore, chronic conditions like ‘J44’ (COPD) and social factors
represented by ‘Z59’ are identified as significant determinants. However, being bacteria
carriers, as indicated by code ‘Z22’, appears to have minimal impact on the readmission
likelihood of patients, likely due to the scarcity of such cases during the study period.
As one of our objectives is to study clinical risks, we leave the investigation of the effects of
bacteria for our future research.

5. Conclusions and Future Works

Patient risk management is crucial for healthcare providers because it ensures patient
safety, prevents adverse events, and reduces legal and financial risks. Forecasting patient
readmission automatically using AI helps hospitals achieve these goals by allowing timely
interventions, better post-discharge planning, and more efficient resource allocation.

In this study, we carry out a performance comparison of multiple conventional ML
models on the extensive incorporation of multimodal discharge records data from an Irish
acute hospital. Despite the complex and diverse nature of data within the HIPE system,
gradient boosting algorithms come out as the top algorithms, demonstrating their strong
ability to simultaneously capture patient demographics, historical hospitalization records,
and clinical diagnosis codes. Overall, after integrating all these features into the algorithm, we
successfully improve the results from a baseline AUROC score of 0.628 to 0.7 averaging over
nine models. Although an AUROC score at around 0.7 seems to be moderate, it falls within
the typical range observed in an overview study for readmission prediction conducted by
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Yu and Son [45], which is between 0.51 and 0.93. This also highlights the utility of routinely
collected data in hospitals to further improve the outcome of patients in this digital era.

The successful application of the conventional SHAP value technique to dissect the
ML models has allowed us to provide visually interpretable figures that illustrate the pre-
dictions of the model without compromising accuracy on complex multimodal healthcare
data. Notably, through this analysis, we have established a robust correlation between
patients’ diagnosis codes and their likelihood of future readmission. This understanding
has the potential to empower hospital experts and organizations in anticipating future risks
and costs more effectively, ultimately leading to improvements in hospital processes and
enhanced patient outcomes. By recognizing that certain common illnesses within Irish
hospitals significantly contribute to readmission risks, healthcare providers can tailor inter-
ventions and care plans to address the specific needs of patients with these diagnosis codes.
This proactive approach has the potential not only to reduce the likelihood of readmissions
but also optimize resource allocation, thus fostering a more efficient and patient-centric
healthcare system.

Nevertheless, there are several limitations to our study. One challenge when working
with clinical codes is their high dimensionality due to their complicated and sparsely
populated nature. As evidenced by the approximately 10,000 distinct codes reported in
Table 1, sparsity is a significant concern. Conversely, utilizing clinical terms results in a less
sparse word embedding matrix, enabling the capture of the hierarchical structure inherent
in these clinical codes. Despite our efforts to address this issue through code generalization,
it proved to be an ineffective solution—as evidenced in Figure A1—possibly due to loss of
information. It is also possible that missing data may contain concealed information that
could serve as potential predictors, as has been reported in [46]. We have noticed that other
authors have recommended other methods for missing data and their impact on ML classi-
fiers in similar problems [47,48]. In addition to these, we have conducted comprehensive
benchmarks to assess different data sampling methods. However, the same configurations
have yet to be applied to deep learning models, largely due to the complexities associated
with the data. Future research should aim to investigate more sophisticated strategies to
effectively address both of these challenges.

In the realm of healthcare, future research may need to delve deeper into the archi-
tectures of deep learning models to adapt them to this specific domain for better perfor-
mance, but it will also require additional efforts to enhance transparency in dealing with
their black-box architectures, as well as seeking domain expert’s validation and verifica-
tion. For instance, language models like CNN [49], transformer [39], or process mining
techniques could be explored further to leverage sequential patient visits and improve
predictive capabilities while maintaining interpretability.
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Appendix A. Description of the Used Data Features

Patient demographics
GENDER
Patient’s sexL male, female, or other

AREA OF RESIDENCE
The patient’s place of living; includes Dublin Districts, other Ireland counties, and a
small amount of other European countries.

Patient episode information
EPISODE_ISOLATED
Boolean value indicating whether the patient was in an isolation room in the current
episode

LOS
Length of stay of the current episode

DISCHARGE DESCRIPTION
Episode’s outcome

DISCHARGE SPECIALTY
Episode’s discharge ward specialty

Clinical code information
NUM_DIAGNOSIS
Number of diagnoses that patient received during the episode

NUM_PROCEDURES
Number of procedures that patient received during the episode

CODENAMES

Ward transition information
ADMISSION WARD
The codename of the ward to which the patient was admitted

DISCHARGE WARD
The codename of the ward from which the patient was discharged

EPISODE_NUMBER_ACUTE_DEPARTMENT_VISITS
Number of acute departments that the patient visited during the current episode.
In our study, we refer to wards that admit patients directly from the Emergency
Department as Acute Departments.

EPISODE_NUMBER_EMERGENCY_DEPARTMENT_VISITS
Number of emergency departments that patient visited during the current episode

NUM_WARDS
Number of ward transitions during the episode
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Appendix B. Ablation Study

Figure A1 illustrates that the implementation of code generalization results in a broader
range of performance outcomes, while also exhibiting a higher median performance com-
pared to the non-generalized approach.

Figure A1. Effectiveness of generalized codes. In the generalized setting, all diagnosis codes are
truncated to the first three letters, while all procedure codes are truncated to the first five letters.

As demonstrated in Figure A2, the utilization of the 1-gram model provides the most
stable distribution of performance. Conversely, employing larger n-grams tends to result in
diminished performance.

Figure A2. Effectiveness of N-gram models when encoding textual data using TF-IDF.

Figure A3 indicates that incorporating information from past episodes enhances the
performance of all models, underscoring the significance of historical data in predicting
patient readmissions.
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Figure A3. Effectiveness of the number of past episodes considered for prediction across differ-
ent models.

Table A1. Comparative effectiveness of code names versus code descriptions in machine learning
and deep learning models. Bold texts indicate best results of the evaluation metrics.

Exp.
AUROC Score Results on Test Set Using Cross-Validation

XGBoost AdaBoost LightGBM CatBoost Logistic
Regression

Random
Forest CNN1D LSTM Transformers

Code Names 0.60426
(0.0106) 0.638 (0.0037) 0.6317 (0.006) 0.64555

(0.0048) 0.666 (0.0016) 0.6513 (0.004) 0.61 (0.0066) 0.638 (0.01) 0.651 (0.0035)

Code
Description 0.616 (0.0066) 0.642 (0.0046) 0.631 (0.008) 0.649 (0.0037) 0.669 (0.0014) 0.638 (0.0075) 0.66 (0.001) 0.655 (0.0016) 0.643 (0.004)

Figure A4 illustrates that all sampling methods employed effectively address the class
imbalance issue, demonstrating improvements in F1 scores across the models.

Figure A4. Effectiveness of various data sampling methods aggregated across models.
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