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Abstract: For decades, fossil fuels have been the backbone of reliable energy systems, offering
unmatched energy density and flexibility. However, as the world shifts toward renewable energy,
overcoming the limitations of intermittent power sources requires a bold reimagining of energy
storage and integration. Power-to-X (PtX) technologies, which convert excess renewable electricity
into storable energy carriers, offer a promising solution for long-term energy storage and sector
coupling. Recent advancements in machine learning (ML) have revolutionized PtX systems by
enhancing efficiency, scalability, and sustainability. This review provides a detailed analysis of
how ML techniques, such as deep reinforcement learning, data-driven optimization, and predictive
diagnostics, are driving innovation in Power-to-Gas (PtG), Power-to-Liquid (PtL), and Power-to-Heat
(PtH) systems. For example, deep reinforcement learning has improved real-time decision-making
in PtG systems, reducing operational costs and improving grid stability. Additionally, predictive
diagnostics powered by ML have increased system reliability by identifying early failures in critical
components such as proton exchange membrane fuel cells (PEMFCs). Despite these advancements,
challenges such as data quality, real-time processing, and scalability remain, presenting future
research opportunities. These advancements are critical to decarbonizing hard-to-electrify sectors,
such as heavy industry, transportation, and aviation, aligning with global sustainability goals.

Keywords: power-to-x; machine learning; power-to-gas; power-to-liquid; power-to-heat; data-driven
optimization; energy storage; green hydrogen; green ammonia; sustainable aviation fuel

1. Introduction

The global energy landscape is transforming, shifting from reliance on fossil fuels
to an increased adoption of renewable energy sources. While essential for sustainability,
this transition introduces challenges, particularly concerning the intermittent nature of
renewable energy sources, such as wind and solar power. Historically, fossil fuels have
offered unparalleled reliability and adaptability in meeting the energy demands of various
sectors thanks to their high degree of accessibility, flexibility, portability [1,2], and storability
with a high density of energy. As shown in Figure 1, fossil fuels have dominated global
energy generation for decades, but clean energy sources have steadily increased their share
over recent years. However, this progress is still insufficient to fully offset the dependency
on fossil fuels.

Fossil fuels have adeptly managed fluctuations in supply and demand, ensuring a bal-
ance within the energy systems. However, the variability in renewable energy production
necessitates robust solutions to ensure stability in the energy supply, aligning generation
with demand across various timescales. The intermittent generation from renewables,
characterized by fluctuations ranging from seconds to seasons, presents a significant barrier
to their broader implementation. Energy storage systems (ESSs) can play a crucial role in
mitigating these fluctuations and achieving a more reliable and consistent energy supply.
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ESSs help store excess energy generated from renewable sources during times of surplus
production, making it available when demand is higher or production is low [3,4]. By
smoothing out these supply–demand mismatches, ESSs not only enhance grid stability but
also facilitate the integration of renewables into the existing energy infrastructure. This
adaptability is crucial for driving the transition toward cleaner energy systems without
compromising reliability.

Figure 1. Annual electricity generation data for 2000–2022 [5].

Although there are advancements in energy storage, like batteries designed for short-
term balancing, the limitations of these solutions become apparent when considering longer-
duration storage, as evidenced by their low energy densities and high costs compared to
liquid fuels, like diesel, gasoline, or liquid methane [6–8]. Also, the geographic disparity
between renewable energy sources and major consumption centers further complicates
direct electrification efforts.

These challenges underscore the necessity for innovative approaches like Power-to-X
(PtX) technologies. While battery systems store electricity directly, PtX extends this by
converting energy into other forms, like hydrogen or synthetic fuels, enabling longer-term
storage and versatility across different sectors. Together, they provide a comprehensive
solution for both short- and long-term energy storage challenges. It is projected that, by
2050, PtX and cogeneration will form the foundation of a resilient, decentralized, and
carbon-neutral energy system in Europe [9]. This transformation will empower industries
and citizens across the continent to generate clean heat and energy locally, in a manner that
is reliable, cost-effective, and efficient.

The development of PtX systems faces a range of challenges across economic, technical,
environmental, regulatory, and infrastructural areas. Overcoming these challenges requires
collaboration and innovation in various fields, including technological advancements,
regulatory adjustments, market growth, and improved modeling approaches [4,10–12]. ML
plays a crucial role in tackling these issues, particularly as PtX systems become more com-
plex with the integration of renewable energy sources. ML provides effective solutions by
simplifying complex optimization tasks, improving predictive and forecasting capabilities,
real-time decision-making [13], high-throughput screening and clustering, and simulation
acceleration.

While the existing review studies have examined the application of ML in each PtX-
related technology area, per se, the literature lacks a holistic overview on how ML can
evolve the development of the entire PtX system. Several review studies are found in
the literature that have a focus on specific components of PtX and PtX-related systems;
for instance, some researchers have provided comprehensive review studies of proton
exchange membrane (PEM) electrolyzers, with a particular focus on the integration of
ML, to enhance control-oriented modeling, dynamic operation, and control strategies
aimed at enhancing system stability and efficiency [14–17]. Also, Iqbal et al. (2024) [18]
conducted an in-depth bibliometric analysis of ML in optimizing hydrogen production
through electrochemical methods. Some other have explored recent advancements in
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environmental, economic, and policy considerations in hydrogen production technologies
and the role of ML and data-driven methods [19–21].

Very few review studies are found in the literature that have a particular focus on PtX
systems (as a whole) and ML, such as the work by Ullah et al. (2022) [22], which explored
the integration of advanced data-driven methodologies, like IoT, big-data analytics, and
ML, to optimize PtX operations. They highlight the potential of these technologies to
improve sustainability and efficiency by dynamically adjusting operational parameters
to manage renewable energy intermittency. They suggest that challenges such as data
management, computational demands, and the need for real-time optimization persist.
While their work is comprehensive, it lacks sufficient depth in ML applications. Another
contribution to this area is the work by Birkner (2017) [23], which, while not a review paper
and not recent, discusses the application of big-data tools and neuronal networks in smart
energy systems, including PtX technologies. The study highlights the role of ML-driven
predictive tools in optimizing PtX operations, particularly in balancing energy generation
and improving grid stability.

A review of the existing studies shows that, although considerable research has been
conducted on specific components of PtX-related technologies, there remains a notable gap
in reviewing works that focus directly on PtX systems as a whole, incorporating explicit
references to any member of the PtX family—such as PtG, PtL, PtA, etc.—in combination
with ML and data-driven methods. On the other hand, researchers rarely have studied
the broad topic of PtX without focusing on a specific type, but the study by Kim et al.
(2023) [24] is worth mentioning, where researchers developed a data-driven, reliability-
based optimization approach using generative adversarial networks (GANs) to manage
renewable uncertainty across grid-assisted PtX systems. This review aims to address that
gap by focusing exclusively on studies where the PtX concept, in any of its forms, is paired
with ML. Table A1, provided in Appendix A, encompasses recent review papers that have
explored specific subjects that can be related to PtX systems, such as green hydrogen
production technologies, catalysts, materials, etc.

The present review provides a comprehensive analysis of the role of ML in different
types of PtX systems, including PtG, PtL, and PtH. While the two above-mentioned works
deliver a very general overview on data-driven methods for operational optimization of
PtX systems and take a broader view in sustainable energy practices, the current work
distinguishes itself by covering recent advances achieved by ML in different specific types
of PtX systems, including technological innovation, optimization, system integration,
forecasting, prediction, and strategic environmental and economic analysis.

The overall structure of this article is as follows: After this Introduction, Section 2
outlines the methodology used to identify and classify the relevant literature, including
details on keyword selection and search strategy. Section 3 provides a comprehensive
review of the concepts and challenges of PtX systems, offering necessary background
on different PtX technologies. Section 4 then introduces the core concepts of ML and
traces their evolution, laying the groundwork for understanding ML applications in energy
systems. The heart of the review is found in Section 5, which explores ML applications in
PtX systems through four key categories: (1) machine learning in Power-to-Gas systems,
(2) machine learning in Power-to-Liquid systems, (3) advances in sustainable combustion
and fuel optimization for next-generation engines, and (4) machine learning in Power-to-
Heat. Section 6 discusses the insights gathered from the literature, and finally, Section 7
wraps up the discussion and offers directions for further research on integrating ML into
PtX systems.

2. Review Methodology

In the context of applying ML to PtX processes, most research has focused on reviewing
specific aspects of PtX in isolation. This body of work mostly encompasses process and
technology optimization in Multi-Energy and Integrated Renewable Energy Systems (IRESs)
and power networks.
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An organized search strategy was employed to explore the relevant literature, utilizing
approximately 140 keywords in specifically designed logical queries on Scopus. The
search was conducted in stages, systematically covering different categories of studies
and discovering the overlaps. This approach aimed to investigate the application of ML
methods in the context of PtX and related areas, which began emerging as a growing
research area around 2008 due to advancements in ML techniques and increasing interest
in PtX solutions for renewable energy integration. A total of 507 peer-reviewed journal
articles and review papers published between 2008 and 2024 were identified. Figure 2
illustrates the increasing research interest in this field since 2008. Notably, the total number
of studies related to PtX, irrespective of ML applications, exceeds 50,000 papers. However,
ML and related keywords were found in only 1.0% of these studies’ title, abstract, and
keywords.

Figure 2. Application of ML in the fields related to PtX process publication trend from Scopus
academic search platform.

As part of the data-gathering process, and to obtain insightful information, the iden-
tified literature was categorized into seven groups based on the primary tasks of ML:
prediction, forecasting, classification, screening, optimization, process control, and sim-
ulation acceleration. In addition to the frequent interchangeable use of some of these
terms—such as prediction and forecasting—in the literature, overlaps exist among them
due to the dynamic and innovative nature of ML methods and their diverse applications.
An analysis of the frequency of different ML tasks in the PtX field, along with the overlaps,
provides valuable insights (see the Venn diagram in Figure 3a). However, in a number
of 61 articles from this collection (mostly review papers), no specific ML-based task or
method was mentioned in the title, abstract, and keywords area; therefore, they were not
categorized under any of these classes.
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Figure 3. (a) Distribution and overlap of ML tasks applied in the field of PtX and sustainable energy
systems according to the literature (2016–2024). The Venn diagram illustrates the dominant ML
tasks (optimization, prediction, and forecasting) and highlights the significant overlap between these
categories, as well as their relation to other tasks such as process control, classification, screening, and
simulation acceleration. (b) Distribution of unique ML tasks in PtX and sustainable energy systems.
The pie chart displays the relative frequency of each ML task, considering only papers that focus
exclusively on a single task without overlapping with other categories.

Figure 3a offers a visualized approximation of the extent to which different ML tasks
intersect, reflecting their interchangeable use in the literature or their combination in specific
research studies. The size of each shape reflects the relative frequency of publications related
to each task, while the overlaps show the degree to which certain tasks (or related terms)
are used together in the literature. Accordingly, optimization, prediction, and forecasting
constitute the majority of ML applications in PtX research, with significant overlap between
these categories. Process control, classification, screening, and simulation acceleration are
also applied, though to a lesser extent. It is important to note that a vast majority of studies
in the field fall under optimization, prediction, and forecasting. Figure 3b presents a pie
chart comparing the frequency of each ML task, focusing on unique studies not shared
between other categories.

Given the expansive scope of research in this field, this paper will focus on articles
and reviews published in peer-reviewed journals after 2020. After applying manual further
screening and eligibility criteria over the 507 papers, a total number of 127 papers were
identified to include any keywords directly associated with a type of PtX system. Finally, 53
papers were selected as the most relevant for detailed review and included in the reviewing
process, using Mendeley Desktop Software Version 1.19.8. Besides these included studies,
several other references are cited in this study for their contribution to more general subjects
related to sustainable development of energy, PtX, and ML.

Categorizing studies in a review can be helpful, as it enhances clarity, organization,
and depth; helps identify research gaps; facilitates a comparative analysis; and makes the
review more accessible and useful for a diverse audience. For the current review, it was
performed by exploring each study based on specific key questions:

• What is the main focus area of the study?
• What specific ML techniques are used?
• What application is ML used for?
• What are the main outcomes of the study?
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Addressing these questions for each of the included papers would also serve as a
critical step to understanding the actual contribution of each study to the literature, through
a critical perspective. Figure 4 represents the workflow of this review.

Figure 4. The strategy for identifying and reviewing the related literature.

3. Power-to-X Systems: Concepts and Challenges

Power-to-X, or PtX, refers to a suite of technologies that convert electrical power, pri-
marily from renewable sources, into different forms of energy carriers or chemical products.
This transformation process aims to overcome the limitations of direct electrification and
energy storage by enabling the versatile use of renewable energy across various sectors. The
“X” in PtX (or P2X) stands for various end products, such as hydrogen (mostly known as
P2H2 in the literature); gas (PtG or P2G)—a gaseous energy carrier such as synthetic natural
gas, methanol (PtM or P2M); ammonia (PtA or P2A); and other chemicals or fuels (see
Figure 5), offering a bridge between renewable energy sources and their broader application
in industry, transportation, and beyond. By harnessing excess renewable electricity for
the production of these carriers, PtX technologies can play a key role in enhancing energy
storage, diversifying energy applications, and facilitating the decarbonization of sectors
traditionally reliant on fossil fuels [5]. The flexibility of PtX systems makes them essential
for achieving long-term energy sustainability, particularly as global energy demand shifts
toward cleaner, more resilient sources.

PtX systems can be broadly categorized into Power-to-Gas (PtG), Power-to-Liquid
(PtL), Power-to-Heat (PtH), and Power-to-Chemicals (PtCs), each converting surplus re-
newable electricity into different energy carriers or products. These systems are essential
for energy storage and decarbonization, particularly in hard-to-abate sectors, like industry,
transportation, and aviation. Power-to-Fuels (PtFs) is an overarching term that includes
both PtG and PtL, focusing on gaseous and liquid fuel production. Electrolysis, especially
for hydrogen, is central to most PtX pathways. Though these categories often overlap
due to shared technologies, they are differentiated by the specific energy carrier produced
and its use. On the other hand, PtX terminology is evolving. The term “Power-to-X”
is increasingly used in the literature as an umbrella term for technologies that convert
renewable electricity into other energy forms, such as gases, liquids, chemicals, fuels, heat,
etc. However, the usage of these terms is indeed somewhat fluid, and there is no strict,
universally adopted standard for naming conventions within the PtX framework. This
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flexibility allows researchers and industries to apply the term in various contexts, leading to
some inconsistencies and overlaps in terminology. For example, terms like “Sun-to-Liquid”
or “CO2-to-Fuel” emphasize specific inputs (solar energy, CO2) or processes (carbon utiliza-
tion). Also, terms like PtM (Power-to-Methanol) and PtA (Power-to-Ammonia) emphasis
process with specific outputs. These variations reflect the interdisciplinary nature of PtX,
allowing flexibility to highlight novel technologies [25]. While PtF often includes PtG and
PtL, some processes, like CO2-to-Fuel, specifically focus on converting captured carbon
dioxide into fuels, further diversifying the terminology [26]. This evolving usage allows
innovation but also highlights the need for clarity across different PtX applications.

Figure 5. Schematics of PtX infrastructure reprinted with permission from [10]. PtX systems primarily
begin with electrolysis, where renewable electricity is used to split water into hydrogen and oxygen.
This renewable hydrogen can then be applied in secondary processes such as methanation, hydro-
genation, and Fischer–Tropsch synthesis to produce hydrocarbon products or ammonia through the
Haber–Bosch process, offering a flexible range of outputs. However, additional pathways may also
exist depending on the specific PtX technology used.

The foundational PtX process is P2H2, which uses renewable electricity to electrolyze
water into hydrogen and oxygen. The hydrogen can be stored or further converted into
other fuels. Two main types of electrolyzers dominate this space: PEM electrolyzers and
alkaline electrolyzers. PEM electrolyzers can operate at high efficiencies of around 80%,
but they require expensive catalysts, such as platinum, which increases the cost. Alkaline
electrolyzers, on the other hand, are less efficient (65–70%) but are more cost-effective
and use cheaper materials [27]. Recent research has focused on improving operational
flexibility to handle fluctuating renewable energy inputs more effectively [28]. In addition
to the widely used PEM and alkaline electrolyzers, other electrolysis methods, such as
solid oxide electrolysis (SOE) and Anion Exchange Membrane (AEM) electrolysis offer
distinct advantages and challenges. SOE operates at very high temperatures (700–1000 ◦C),
allowing it to achieve efficiencies as high as 70% by utilizing excess industrial heat. This
makes it highly efficient for large-scale hydrogen production and particularly useful for
applications like Power-to-Syngas, which require both hydrogen and carbon monoxide
(CO). However, SOE systems face durability challenges due to material degradation at
high temperatures [27]. On the other hand, AEM electrolysis operates in an alkaline
environment, using hydroxide ions (OH−) to generate hydrogen. Unlike PEM systems,
AEM does not require expensive catalysts like platinum, offering a more cost-effective
alternative. While still in development, AEM electrolysis holds great potential for lowering
costs in decentralized hydrogen production, though membrane durability and efficiency
improvements are key hurdles to overcome [29].

PtG systems convert renewable electricity into gaseous fuels such as hydrogen or
methane. The primary technology used in PtG is electrolysis, where water is split into
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hydrogen and oxygen. Hydrogen can then be stored or further combined with captured
carbon dioxide (CO2) in a methanation process to produce synthetic natural gas (SNG).
This process is particularly useful for long-term storage and can be integrated into existing
natural gas infrastructure. PtG systems often utilize alkaline or PEM electrolyzers, with sys-
tem efficiencies ranging from 60% to 75%, depending on the technology and heat-recovery
mechanisms in place [30]. A key challenge is improving the efficiency of the process, espe-
cially during the conversion of hydrogen into methane through methanation. Research has
focused on optimizing the reaction conditions, such as using solid oxide electrolysis cells
(SOECs), which can increase overall system efficiency when the co-electrolysis of water and
CO2 is involved [31].

PtL systems convert renewable energy into liquid fuels, like methanol, dimethyl ether,
or synthetic gasoline, through electrochemical or thermochemical processes. These liquid
fuels are crucial for decarbonizing sectors such as aviation, shipping, and heavy-duty trans-
port, which require high-energy-density fuels. The typical PtL process involves converting
CO2 and hydrogen into syngas (a mixture of CO and H2) through the reverse water–gas
shift (rWGS) reaction, followed by Fischer–Tropsch synthesis to produce hydrocarbons.
The efficiency of PtL processes depends heavily on the integration of key technologies, such
as electrolysis, reverse water–gas shift (rWGS) reactions, and Fischer–Tropsch synthesis.
For example, research has shown that optimizing the operating conditions of the rWGS
reaction (e.g., at 825 ◦C and 5 bar) can significantly improve PtL system performance, with
efficiencies reaching up to 38.7% [32]. Another study indicated that integrating biogas
upgrading and SOEC electrolysis with Fischer–Tropsch synthesis can achieve an energy
efficiency of over 80% for producing Fischer–Tropsch liquids [33].

Power-to-Fuel (PtF) encompasses both gaseous and liquid fuel production but specif-
ically targets synthetic fuels (referred to as electro-fuels, or e-fuels) that can replace con-
ventional fossil fuels. PtF systems often utilize technologies like Fischer–Tropsch synthesis
to convert renewable hydrogen and CO2 into hydrocarbons suitable for transportation
fuels. These processes can produce a variety of fuels, such as synthetic natural gas (SNG),
methanol, and syncrude (a precursor to gasoline and diesel). The efficiency of PtF systems
can vary widely depending on the specific fuel being produced. For example, a study
comparing different PtF systems found that the energy efficiency for producing hydrogen
through electrolysis can reach up to 94%, while the efficiency drops to around 64% when
converting hydrogen into synthetic gasoline [31]. Advances in heat integration and process
intensification, such as co-electrolysis of CO2 and H2O, are being investigated to improve
overall system performance [34].

PtH focuses on converting renewable electricity into thermal energy, which can then
be used for heating purposes or as a high-temperature heat source for industrial processes.
PtH systems are highly efficient in converting electricity into heat, often exceeding 95%
efficiency, making them a viable option for grid balancing and decarbonizing heating
systems. One of the key advantages of PtH systems is their flexibility, as they can be rapidly
deployed to stabilize the grid during periods of excess renewable generation. Combined
heat and power (CHP) systems are often used in PtH applications, where both electricity
and heat are produced from the same energy source. Recent advancements in decentral-
ized micro-CHP systems show promise in reducing transmission losses and improving
overall system efficiency [35]. These systems are increasingly being integrated with renew-
able energy sources to provide flexible, on-demand heat and power for residential and
industrial applications.

Overall, the concept of PtX is central to addressing the challenges of integrating
renewable energy into our current energy systems. It can provide energy storage, transport,
and utilization in forms compatible with existing infrastructure and technologies [36]. P2H2
is identified as the lynchpin of PtX, a foundational step toward the production of sustainable
fuels and chemicals that can be used across various sectors, including those that are difficult
to decarbonize, such as the industrial sector, heavy transportation, and aviation. The
production of hydrogen via electrolysis, utilizing surplus renewable electricity, facilitates
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the creation of a flexible and responsive energy system capable of accommodating the
inherent unpredictability of wind and solar power [37]. Beyond hydrogen, PtX technologies
open the door to a broader spectrum of synthetic fuels, such as methanol and ammonia,
which not only provide sustainable alternatives but also leverage existing infrastructure
and offer practical solutions for deeply entrenched, hard-to-electrify sectors.

Furthermore, the integration of PtX technologies leverages existing natural gas grids
and equipment. This integration provides a solution for storing and transporting energy
and contributes to the decarbonization of various sectors by providing cleaner alternatives
to fossil fuels. PtM and PtA exemplify the potential of PtX to utilize carbon dioxide and
nitrogen from the air, turning them into valuable commodities while enhancing the energy
system’s flexibility and resilience [4,38–40]. As renewable energy scales up, particularly in
sectors where direct electrification may not be viable, synthetic fuels emerge as a bridge,
enabling the use of established technologies like Internal Combustion Engines (ICEs) in a
more sustainable manner.

Contrary to the perception that the future of transportation and energy is exclusively
electric, ICE technology continues to evolve, presenting a compatible pathway for uti-
lizing synthetic fuels produced via PtX processes. The continuous improvement of the
already-mature technology of ICEs, coupled with the strategic incorporation of PtX-derived
fuels, also called e-fuels, can facilitate a more inclusive and pragmatic approach toward
achieving sustainability in transportation and beyond. This perspective does not discount
the potential of electric vehicles but rather highlights the diversity of solutions required
to address the complex challenges of the global energy transition [41,42]. As we consider
these alternatives, e-fuels stand out as a promising solution. Not only are they capable
of powering existing ICEs, but they also offer a carbon-neutral pathway by reintroducing
captured carbon into the energy cycle.

E-fuels are carbon-neutral and renewable because the carbon they contain is sourced
directly from the atmosphere, while the chemical energy stored in them comes from
renewable resources, like wind or solar power. This process effectively closes the carbon
loop, as the CO2 released during combustion is equal to the amount initially captured. In
one sense, it can be viewed as reversing the combustion process by using renewable energy
to create fuel, thus reintroducing captured carbon into the energy cycle (see Figure 6).

Figure 6. The carbon-neutral cycle of e-fuels, where CO2 captured from the atmosphere is reused to
create fuel using renewable energy, thus closing the carbon loop. Figure adapted from [43].

The development and implementation of PtX technologies represent a critical juncture
in the global effort to transition from fossil fuels to a more sustainable, flexible, and resilient
energy system. By leveraging the synergy between renewable energy sources, energy
storage technologies, and PtX processes, we can overcome the challenges of intermittency
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and geographical limitations, paving the way for a decarbonized future that still benefits
from the proven capabilities of the current infrastructure and well-established technologies,
like ICEs.

What Key Challenges Impede PtX Systems’ Progress?

The progression of PtX systems is impeded by multifaceted challenges that span
economic, technical, environmental, regulatory, and infrastructural domains. A quick
review of these challenges is presented in Figure 7. The economic barriers are particularly
pronounced, with high capital and operational costs, especially in the absence of sufficient
government incentives. These economic challenges are exacerbated by the high costs
associated with renewable electricity and hydrogen storage [4,10–12].

Technically, the maturity of PtX technologies varies, with some systems, like solid
oxide electrolyzer cells (SOECs), still in the early stages of development [27]. In addition,
the technical scalability of PtX technologies is hampered by the limited availability of
critical raw materials, such as platinum group metals, which are essential for electrolysis
processes [12]. The integration of these technologies into existing infrastructures is complex,
particularly when coupled with the fluctuating nature of renewable energy sources, which
demand dynamic flexibility that many current systems cannot adequately provide [44,45].
This challenge is compounded by the issues of thermal instability and catalyst degrada-
tion that arise when operating PtX processes dynamically to match the fluctuating supply
of renewable energy, which can complicate the maintenance of consistent product qual-
ity [34]. Additionally, the effective utilization of by-products and waste heat, a potential
efficiency booster, remains underexplored, further limiting the overall effectiveness of PtX
systems [11].

Environmental challenges also pose significant barriers, particularly in the sourcing
and storage of CO2 and the environmental impact of electrolyzer operations, which raise
concerns about water depletion and other forms of degradation. Furthermore, the substan-
tial water demand for hydrogen production via electrolysis, though currently considered
manageable in some regions, must be carefully monitored as PtX scales up globally [12]. In
fact, electrolysis for hydrogen generation consumes vast amounts of water and electricity,
and as PtX systems expand, water depletion and other forms of environmental degrada-
tion, such as resource-intensive material production for electrolysis and catalytic systems,
could exacerbate the situation [46]. Additionally, CO2 storage and sourcing present sig-
nificant challenges, with the availability of low-carbon or carbon-neutral CO2 being a
crucial factor in ensuring the overall sustainability of these systems. The environmental
impacts are closely tied to the type of electricity used, with renewable sources substantially
lowering the carbon footprint, while fossil-based electricity significantly undermines the
carbon-reducing potential of PtX [26]. Moreover, the lack of widely adopted sustainability
metrics and comprehensive environmental assessments hampers a full understanding of
the implications of PtX technologies, particularly within hybrid renewable energy systems
(HRESs) [27,47]. Life-cycle assessments (LCAs) are essential to confirm the advantages of
PtX systems, as their benefits are highly dependent on energy source, process efficiency,
and indirect emissions from material and energy input. LCAs reveal that while PtX systems
can reduce land use and water consumption compared to traditional methods, significant
challenges remain in achieving large-scale sustainability [48]. Therefore, a holistic view
of PtX technologies’ environmental impact, including indirect emissions and resource
consumption, is essential for scaling up these systems in a sustainable manner.
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Figure 7. Existing challenges in developing PtX systems.

Regulatory constraints, such as strict standards for natural gas and hydrogen blending,
further limit the integration of PtX products into existing energy networks [11]. The lack
of a cohesive, application-neutral regulatory framework for PtX technologies presents
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a significant barrier to their deployment and scaling. Regulatory gaps and the absence
of supportive niche markets complicate the commercialization of PtX systems [49]. The
market for PtX products is still developing, and the reliance on public funding shows
the current lack of economic viability and the need for greater market acceptance and
infrastructure development to support the widespread commercialization of PtX systems.

Infrastructural challenges, including geographical variability and the scalability of
PtX projects, complicate the large-scale deployment of these technologies. Furthermore,
implementing PtX processes in remote locations with high renewable energy potential but
limited infrastructure adds to the operational challenges, leading to increased costs and
complexity [34]. The transition to decentralized energy systems introduces additional com-
plexities in ensuring stability and security, which are critical for the sustainable operation
of PtX technologies [11,27].

Limitations in current modeling and optimization approaches often lead to oversim-
plifications that fail to capture the real-world complexities of PtX systems. The need for
multi-objective optimization that considers not only economic factors but also environ-
mental and operational safety metrics is crucial for accurately assessing and improving
the performance of these technologies [11]. Without addressing these diverse factors,
the potential for PtX systems to meaningfully contribute to decarbonization efforts may
be hindered.

Addressing these intertwined challenges requires a concerted and innovative effort
across multiple sectors, including technological innovation, regulatory reform, market de-
velopment, and enhanced modeling techniques. ML can be a critical enabler in addressing
the multifaceted challenges of integrating PtX technologies into existing energy systems.
As PtX systems grow in complexity, particularly with the integration of renewable energy
sources, ML offers robust solutions by converting complex optimization tasks into manage-
able processes, enhancing predictive accuracy and real-time decision-making [13]. Its ability
to integrate diverse data sources and optimize energy storage is indispensable for main-
taining system stability and efficiency in increasingly decentralized and cyber–physical
energy networks [50].

4. ML: Concepts, Evolution, and Impact

ML is a pivotal branch of artificial intelligence (AI) that focuses on enabling computer
systems to learn from data, identify patterns, and make decisions with minimal human
intervention. Unlike traditional programming, where specific instructions are coded, ML al-
gorithms develop their own logic based on input data, allowing them to adapt and improve
over time [51]. ML can be understood as the scientific study of mathematical algorithms
and models designed to generate complex rules based on data, thereby automating tasks
that would otherwise require human intelligence. These algorithms are categorized by
learning styles—such as supervised, unsupervised, and reinforcement learning—and by
their function, including classification, regression, and clustering. Deep learning, a subset
of ML, specifically focuses on learning data representations through multiple layers of pro-
cessing, further expanding the capabilities of ML [52]. As ML algorithms have become more
advanced, they have revolutionized various industries by solving complex problems and
driving innovation, making ML indispensable in the modern technological landscape [53].
The versatility of ML algorithms, combined with their capacity for continuous learning and
optimization, have proven their critical role in advancing technology [54].

The essential elements of ML include representation, which refers to the set of clas-
sifiers or the language that a computer system understands to interpret data; evaluation,
which involves assessing the model’s accuracy and effectiveness in making predictions
or classifications; and optimization, the process of improving the model’s performance
by finding the best parameters or methods that yield the highest evaluation scores. These
components are crucial for enabling ML algorithms to learn from data, make predictions,
and adapt over time without explicit programming [51,52].
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ML is broadly categorized into three main types: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning involves training algorithms on
labeled datasets, enabling them to predict outcomes or classify data based on known input–
output pairs [52]. This approach is widely used in industries like automotive manufacturing
for predictive maintenance, where algorithms can forecast component failures by analyzing
historical data [54]. Unsupervised learning, on the other hand, deals with unlabeled data,
using techniques like clustering and dimensionality reduction to identify hidden patterns
or group similar items, which is particularly useful in quality control and process [51,52]
through trial and error, making it ideal for optimizing complex processes in dynamic
environments such as manufacturing and supply chain logistics [53,54]. These types of
ML, along with deep learning, a subset focused on learning data representations through
multiple layers, are integral to advancing automation, efficiency, and innovation in various
technological and industrial domains [52].

While deep learning (DL) is a subset of ML, this paper examines a broader range
of ML techniques, including both traditional methods and DL, to capture the diverse
applications in PtX systems. Traditional ML techniques, such as reinforcement learning,
genetic algorithms, and data-driven optimization, are particularly effective in tasks like
process control, predictive maintenance, and resource management, where interpretability
and computational efficiency are key. DL, while powerful for more complex data and high-
dimensional data (such as images or complex sequences), may not always be necessary for
optimizing PtX systems. Therefore, our focus includes both simpler ML methods and DL,
as appropriate for each task.

The evolution of ML has profoundly impacted industries, particularly within the
framework of Industry 4.0, where it has become essential for optimizing processes, enhanc-
ing automation, and enabling data-driven decision-making. Initially, the integration of ML
faced challenges, such as data scarcity and technological limitations, but advancements
in deep learning and other algorithms have gradually overcome these barriers, leading to
widespread industrial applications. ML now plays a crucial role in sectors like smart manu-
facturing and petrochemicals, where it drives real-time process optimization, predictive
maintenance, and energy-efficiency improvements. As research continues to advance, ML
is poised to further revolutionize industries by addressing challenges related to data quality
and scalability, solidifying its role as a key driver of innovation and efficiency in the modern
industrial landscape [53–56]. As these technologies mature, industries are increasingly
leveraging ML not just for operational efficiency but also for more strategic applications,
such as long-term sustainability goals and predictive market shifts. This trajectory shows
the growing importance of AI-driven solutions in maintaining a competitive edge in the
evolving industrial landscape.

In PtX systems, several advanced ML techniques play a critical role in optimizing
complex, multi-variable processes, such as energy conversion, storage, and resource man-
agement. Among these, deep reinforcement learning (DRL), neural networks (NNs), and
genetic algorithms (GAs) stand out for their potential to enhance system efficiency, min-
imize environmental impact, and improve overall process automation. In the following,
we provide additional technical depth on these techniques, exploring their underlying
mechanisms and how they contribute to the optimization of PtX systems.

4.1. Deep Reinforcement Learning (DRL)

DRL combines reinforcement learning (RL) and deep neural networks (DNNs) to
handle complex, high-dimensional decision-making tasks. In DRL, an agent interacts with
an environment modeled as a Markov Decision Process (MDP), which consists of states,
actions, rewards, and transitions. The agent learns an optimal policy that maximizes cumu-
lative rewards over time by navigating through different states based on its interactions.
The key technical aspect of DRL is the Q-learning algorithm, where the Q-value function
maps state–action pairs to the expected cumulative rewards. When scaled to complex envi-
ronments with large state–action spaces (such as in PtX systems where energy management
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or optimization across multiple variables is required), a deep neural network (DNN) is
used to approximate the Q-value function, known as the Deep Q-Network (DQN) [57].

A critical feature of the DQN is the experience replay buffer, which stores the agent’s
interactions and samples them randomly to train the network. This process reduces the
correlation between consecutive training examples, improving convergence. Furthermore,
DQN uses a target network to stabilize training by holding a fixed set of weights for the
Q-value approximator during multiple updates [58]. In more advanced versions of DRL,
such as Double DQN and Dueling DQN, additional techniques are used to improve the
stability and accuracy of learning. In PtX applications, DRL can help optimize real-time
decisions regarding energy storage, resource allocation, and system controls. Given the
stochastic nature of energy systems, DRL can continuously learn from system feedback and
adjust operations for optimal efficiency.

4.2. Neural Networks (NNs)

Neural networks (NNs) are composed of layers of neurons that model complex, non-
linear relationships between inputs and outputs. The architecture of a neural network
includes input layers, hidden layers, and output layers. Each neuron in the hidden lay-
ers applies a non-linear activation function (such as ReLU or Sigmoid) to the weighted
sum of inputs it receives from the previous layer, enabling the network to approximate
intricate functions. A key technical element in NNs is backpropagation, a process where
the network’s prediction error is calculated and propagated backward through the layers
to update the weights using gradient descent. In deep neural networks (DNNs), which
contain many hidden layers, backpropagation, combined with stochastic gradient descent
(SGD), is used to optimize the network’s weights [59].

In PtX systems, NNs are crucial for predictive modeling, such as forecasting energy de-
mand, predicting system failures, and optimizing the conversion processes (e.g., hydrogen
production or CO2 capture). More sophisticated architectures, like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), are used for processing spatial
and temporal data respectively, providing robust models for dynamic energy systems [60].

4.3. Genetic Algorithms (GAs)

Genetic algorithms (GAs) are a population-based search heuristic inspired by the pro-
cess of natural selection. GAs work by evolving a population of potential solutions through
genetic operators, such as selection, crossover, and mutation. A fitness function evaluates
each candidate solution, and the best-performing solutions are selected to “reproduce”
the next generation by combining parts of two parent solutions (crossover) or randomly
altering parts of a solution (mutation) [61]. One of the advantages of GAs is their ability
to solve optimization problems where the solution space is large and complex, and where
gradient information is unavailable or unreliable (as in many PtX processes). GAs are
particularly useful for multi-objective optimization problems, such as minimizing energy
consumption, costs, and emissions in PtX processes, while maximizing efficiency. GAs
have also been applied to optimize the topology of neural networks, evolving architectures
that perform better in specific applications [62]. For PtX systems, GAs can help optimize
process parameters, such as temperature, pressure, or material flow, in energy-conversion
processes, like PtM or P2H2. By evaluating and iterating through various configurations,
GAs enable the discovery of optimal setups that are difficult to find through manual tuning
or traditional optimization methods.

5. Power-to-X and Machine Learning: A Promising Team-Up

As explored, ML has been successfully used to accelerate the discovery and opti-
mization of materials, particularly catalysts, essential for scaling PtX technologies and
reducing dependency on scarce raw materials. It also enhances predictive modeling to
manage fluctuating renewable energy inputs, ensuring seamless system integration and
energy management. Economically, ML supports strategic planning and analysis by simu-
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lating cost-effective scenarios and improving market viability. Finally, ML plays a crucial
role in conducting comprehensive environmental impact assessments, optimizing pro-
cesses to minimize environmental impacts, and ensuring the sustainable development of
PtX systems. Together, these capabilities position ML as a cornerstone in advancing PtX
technologies toward a more efficient, reliable, and sustainable future.

The structure of this section, which forms the main body of the review, is designed
to provide a focused analysis of how ML and data-driven methods enhance various PtX
processes, with each subsection dedicated to a different PtX technology—PtG, Power-
to-Liquid, sustainable combustion, and PtH. This structure allows for a clear, thematic
exploration of ML’s role in optimizing each technology, starting with more established
processes, like PtG, and progressing to more niche applications, like PtH.

5.1. Machine Learning and Power-to-Gas Systems

The increasing integration of renewable energy sources into power systems has driven
the development of PtX technologies, particularly PtG, which converts surplus renewable
power into storable forms, like hydrogen or methane. Figure 8 represents a schematic of
PtG system.

PtG systems are a technology designed to store surplus renewable energy by convert-
ing it into hydrogen or synthetic natural gas (SNG) through electrolysis and methanation
processes. In these systems, excess electricity, particularly from intermittent renewable
sources like wind or solar, is used to produce hydrogen via water electrolysis. The hydrogen
can be stored directly, injected into the natural gas grid, or further converted into SNG by
combining it with captured CO2. PtG systems offer long-term energy-storage solutions
and can provide flexibility to power grids, reduce wind and solar curtailment, and enhance
the integration of renewable energy. Additionally, PtG systems can support ancillary ser-
vices to the electricity grid, such as frequency and voltage regulation, and facilitate the
decarbonization of sectors such as transportation, heating, and industry [63,64]. They also
allow the existing natural gas infrastructure to be used for hydrogen transport and stor-
age, reducing capital investment needs. While PtG systems are still emerging, they show
great potential in the transition to a sustainable, low-carbon energy, while ensuring that
excess renewable energy is never wasted but instead utilized for further decarbonization of
hard-to-abate sectors.

As the complexity of energy systems grows, ML and data-driven methods are be-
coming central to optimizing the efficiency, flexibility, and resilience of PtX systems. This
section synthesizes insights from several research papers that examine the role of ML in
advancing PtG technologies, focusing on the applications of these methods to enhance
operational decision-making, uncertainty management, and multi-energy integration.

Figure 8. Simplified schematic of a PtG system, adapted from [65].
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5.1.1. Coordinating PtG in Multi-Energy Systems

A major theme in PtX research is the use of ML to coordinate the interaction between
multiple energy carriers—electricity, heat, gas, and hydrogen—particularly in systems
that integrate PtG. Y. Zhang et al. (2022) [66] emphasize the need for data-driven robust
optimization to manage the interplay between wind and solar energy outputs in electric–
gas networks. Their model employs data-driven robust optimization (DDRO) techniques to
process historical data on renewable generation and create a Minimum Volume Enclosing
Ellipsoid (MVEE) uncertainty set, allowing the system to optimize dispatch decisions
with reduced conservatism. Similarly, Z. Yang and Jiang (2024) [67] proposed a two-step
scheme for multi-energy systems (MESs) integrating PtG to mitigate renewable-energy
curtailment by converting excess wind and solar energy into natural gas. MLs, specifically
deep neural networks, are trained using historical data to optimize real-time decision-
making in electricity–heat demand response (DR), significantly reducing charging costs
and improving system security amidst uncertainties in renewable energy supply.

Integration of Combined Cooling, Heating, and Power (CCHP) systems with PtG in
multi-energy system has been a key strategy in enhancing the flexibility and reliability of
multi-energy systems, according to the literature. This combination leverages renewable
energy to meet diverse energy needs—electricity, heating, cooling, and gas—while address-
ing the uncertainties inherent in wind and solar power. Yang et al. (2023) [68] proposed
a two-stage framework that combines CCHP, PtG, and carbon capture, optimizing sys-
tem operations through ML models that generate predictive scenarios based on historical
energy imbalances. This approach improves multi-energy coordination at the regional
scale, balancing cost and reliability. Siqin et al. (2022) [69] focus on a PtG-CCHP microgrid,
where uncertainties in wind and solar generation are tackled using a Wasserstein metric
in their DRO model. By integrating PtG with CCHP, they enhance system flexibility and
reliability, much like Yang’s regional framework but applied at a smaller scale. In a similar
vein, L. Wang et al. (2024) [70] introduced a novel Power-to-Gas-to-Power (PtG-PtP) system
driven by the Allam cycle, which integrates carbon capture and water desalination into
PtG processes. By combining exergy analysis with ML techniques like artificial neural
networks (ANNs) and multi-objective optimization, their system maximizes energy and
water production efficiencies while reducing emissions, highlighting a novel approach for
multi-energy system design in PtG technologies. Also, L. Li et al. (2022) [71] propose a 100%
renewable island energy system integrating PtG, biogas; Combined Cooling, Heating, and
Power (CCHP); and desalination technologies to meet electricity, heating, cooling, gas, and
fresh-water demand under extreme weather conditions. The model utilizes agent-based
modeling (ABM) for energy-demand prediction and employs multi-objective optimization
to design and optimize system dispatch using k-means clustering. The results show that,
compared to battery storage, PtG reduces annual costs by 2.5%, while extreme weather
resilience is improved through enhanced biogas and desalination capacities, demonstrating
the system’s economic and environmental benefits.

Mansouri et al. (2023) [36] integrated real-time IoT data with a deep learning frame-
work using a Long Short-Term Memory (LSTM) neural network to predict energy demand
and dynamically adjust energy supply, including PtG in multi-energy microgrids. This
enables systems to quickly adapt to fluctuations in market prices and renewable energy
availability. Also, Olanlari et al. (2022) [37] used ML to optimize multi-energy virtual
power plants (MEVPPs), coordinating PtG, energy storage, and renewables through an
Epsilon-constraint method and a fuzzy satisfying approach. This maximized profits while
meeting emissions targets, with ML predicting market prices and demand fluctuations to
adjust strategies. Meanwhile, Qi et al. (2022) [72] enhanced system reliability by integrating
a Power-to-Methane (PtCH4) system with Liquid CO2 Energy Storage (LCES), balancing re-
newable energy supply and demand. Zhong et al. (2024) [73] further improved operational
flexibility by introducing a PtM system combining solid oxide electrolysis cells (SOECs)
and a methanation reactor, optimizing off-design performance to enhance efficiency.
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5.1.2. Deep Reinforcement Learning for Dynamic Optimization

The dynamic nature of renewable energy generation requires real-time decision-
making, and deep reinforcement learning (DRL) has proven to be particularly effective in
handling such challenges. Liang et al. (2024) [74] and B. Zhang et al. (2023) [75] both apply
DRL algorithms to PtG systems, integrating them with carbon capture technologies.

Liang et al. (2024) [74] implemented a Twin Delayed Deep Deterministic Policy Gradi-
ent (TD3) algorithm to dynamically optimize energy flows in complex systems, providing
stability and adaptability through continuous action spaces. B. Zhang et al. (2023) [75]
enhanced this approach by using a Soft Actor–Critic (SAC) algorithm with prioritized expe-
rience replay, improving learning efficiency and enabling quicker adaptation to fluctuations
in renewable generation and market prices. Similarly, Cui et al. (2023) [76] applied the
SAC algorithm to optimize electricity–gas–heat coupling in low-carbon microgrids, incor-
porating PtG and Organic Rankine Cycle (ORC) technologies. Wen and Aziz (2023) [77]
further explored energy hub scheduling using a modified double-deep Q-network, com-
paring Power-to-Gas-to-Power (PtX2P) and Biomass-to-Gas-to-Power (B2X2P), with B2X2P
proving more profitable but PtX2P offering greater flexibility. Finally, Monfaredi et al.
(2023) [78] introduced a multi-agent deep reinforcement learning (MA-DRL) method to
optimize energy management in microgrids, improving coordination of renewable energy
resources and reducing both operational costs and carbon emissions.

These studies collectively demonstrate the effectiveness of advanced reinforcement
learning algorithms, such as TD3, SAC, and multi-agent DRL, in optimizing energy flows
and improving the operational flexibility of multi-energy systems. By incorporating real-
time adaptability and advanced coordination of energy resources, these methods not only
enhance system efficiency but also reduce operational costs and carbon emissions, making
them vital for managing the complexities of renewable energy integration in PtG systems
and multi-energy microgrids.

5.1.3. Predictive Diagnostics in PtG Systems

In addition to optimization, ML enhances the reliability of PtG systems through pre-
dictive diagnostics. Zaveri et al. (2023) [79] developed a ML-based diagnostic model for
proton exchange membrane fuel cells (PEMFCs), used in PtG systems to produce hydrogen.
By employing supervised learning algorithms, including advanced regression techniques,
such as support vector machine, decision tree regression, random forest regression, and
artificial neural network, they detect early signs of PEMFC malfunction, such as dehydra-
tion or flooding. The predictive capabilities of these models improve system reliability and
reduce downtime, ensuring the consistent production of hydrogen in PtG applications. Ma
et al. (2022) [80] also focus on PEMFC systems integrated with PtG, but in the context of
hybrid energy systems that address renewable uncertainty. Their study applies wavelet
transform–neural network to optimize PEMFC operations under fluctuating renewable in-
puts, ensuring that energy storage and hydrogen production remain stable. The integration
of PEMFC and PtG, supported by ML, enables these systems to balance renewable energy
variability effectively.

ML improves the reliability of PtG systems, particularly through predictive diag-
nostics for PEMFCs, as demonstrated by Zaveri et al. (2023) [79], who used various
supervised learning algorithms to detect early signs of malfunction. Additionally, the
wavelet transform–neural network approach by Ma et al. (2022) [80] ensures stable PEMFC
operations in hybrid systems by balancing renewable energy fluctuations. These advance-
ments ensure consistent hydrogen production and enhance the operational stability of
PtG systems.

5.1.4. Market Integration and Carbon Capture in PtG Systems

ML has also been applied to optimize PtG systems in the context of market operations,
particularly in integrating carbon trading mechanisms and electricity markets. Researchers
has attempted to make PtG systems economically viable in competitive market environ-



Sustainability 2024, 16, 9555 18 of 42

ments by applying ML; X. Zheng et al. (2021) [81] proposed a stochastic co-optimization
model for power–gas systems in day-ahead markets. Their model integrates PtG technolo-
gies and uses ML-based methods, such as Gaussian Process Regression (GPR), to predict
electricity and gas prices. Also, Janke et al. (2020) [82] explored bidding strategies for PtX
systems in day-ahead electricity markets, utilizing an artificial neural network (ANN) to
forecast electricity prices and develop a price-independent order (PIO) strategy. While PIO
helps avoid expensive, carbon-intensive electricity during peak loads, it results in fewer
operating hours and higher hydrogen production costs compared to a price-dependent
order (PDO), which proved to have 10.9% lower levelized hydrogen costs.

Li et al. (2023) [83] extended the application of ML to near-zero carbon emission
power (NZCEP) plants, integrating PtG and CCS to optimize both energy production
and carbon capture under carbon trading mechanisms. Their use of a k-means clustering
algorithm simplified carbon pricing scenarios and optimized operations based on real-time
carbon price signals. Similarly, Wu and Li (2023) [84] incorporated PtG into hydrogen-
based integrated energy systems with CCS, utilizing a Wasserstein-based DRO model and
ML predictions to manage fluctuations in renewable generation and carbon prices. This
approach efficiently converts surplus renewable energy into hydrogen while capturing
and storing carbon emissions. Lastly, Janke et al. (2020) [82] focused on optimizing
P2H2 systems by developing a price-independent order (PIO) bidding strategy for the
electricity market. Supported by ANN, this strategy improved electricity price forecasting
and reduced hydrogen production costs by avoiding peak demand periods. Despite the
price-dependent order (PDO) strategy offering lower levelized costs overall, PIO proved
effective under volatile market conditions, providing a valuable tool for plant operations.
Together, these advancements highlight how ML and advanced strategies can enhance the
efficiency and adaptability of PtG systems in various operational contexts.

5.1.5. Handling Uncertainty with Data-Driven Robust Optimization

Uncertainty management is a recurring theme across many of these studies, regardless
of the specific focus. Whether managing renewable energy variability or dealing with
market price fluctuations, ML is central to building models that can anticipate and respond
to unpredictability. The use of distributionally robust optimization (DRO) by Siqin et al.
(2022) [69], Yang et al. (2023) [68], and L. Zheng et al. (2024) [85] showcases how robust
models can mitigate risks associated with wind and solar generation. Similarly, deep
reinforcement learning (DRL), as used by Liang et al. (2024) [74] and B. Zhang et al.
(2023) [75], allows for real-time adaptation to fluctuating energy supply and demand. In
predictive diagnostics, Zaveri et al. (2023) [79] and Ma et al. (2022) [80] demonstrate how
ML can anticipate failures in PEMFCs, improving system stability.

Also, Fan et al. (2023) [86] developed a two-stage distributionally robust optimization
(TSDRO) model for integrated energy system groups (IESGs), focusing on energy sharing
and carbon transfer under wind and photovoltaic power uncertainties. The model utilizes
kernel density estimation (KDE) and the Wasserstein metric to construct fuzzy uncertainty
sets, achieving a balance between robustness and economic efficiency. Similarly, Gao
et al. (2022) [87] introduced a data-driven DDRO model for urban integrated energy
systems, focusing on wind-power uncertainty. They employed techniques such as KDE
and the Wasserstein metric to improve resource utilization and system robustness in
PtG applications.

The application of ML in PtG systems has addressed key challenges, such as optimiz-
ing energy flows, managing uncertainty, and integrating multi-energy systems. Studies
utilizing techniques like deep reinforcement learning, distributionally robust optimization,
and predictive diagnostics have demonstrated improvements in system flexibility, reliabil-
ity, and operational efficiency. The studies, however, could not be limited to the proposed
categorization as the applications of ML could be so diverse and innovative, still related to
the field. For example, Lakhmi et al. (2024) [88] presented another use of ML in process
monitoring, focusing on a gas sensor array designed to control PtX processes. Using both
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linear models (Partial Least Squares) and non-linear models (ANNs), they showed that
ANN models provided more accurate predictions for methane concentrations, offering
superior performance for process control applications.

Furthermore, ML has shown potential in enhancing market integration and handling
renewable energy variability. The literature, as summarized in the Table 1, suggests that as
PtG systems grow more complex, ML will be crucial in advancing their capabilities to meet
future energy demands and decarbonization goals.

Table 1. Key findings from the recent literature on ML and PtG systems.

Paper Focus Area ML Method Used Application Key Contribution

Zhang et al.
(2022) [66]

Integrated electric–gas
systems

Data-driven robust
optimization (DDRO),
Minimum Volume
Enclosing Ellipsoid
(MVEE)

Wind–solar output
correlation in IEGS

Proposes a two-stage dispatch
model for integrated
electric–gas systems,
improving day-ahead and
real-time dispatch costs with
MVEE uncertainty set.

Yang and Jiang
(2023) [67]

Multi-energy systems
(MESs)

Deep neural networks
(DNNs)

Real-time
decision-making for
integrated
heat–electricity
demand response (DR)

Reduced charging costs and
optimized real-time
operational decisions without
prior knowledge of future
conditions. Integrated PtG to
reduce renewable energy
curtailment.

Yang et al.
(2023) [68]

Regional integrated
energy systems (RIESs)

Data-driven two-stage
DRO

CCHP-PtG-CCS
planning under
uncertainty

Uses DRO for planning
regional CCHP-PtG-CCS
systems, improving reliability
and reducing carbon emissions
under multi-energy
uncertainty.

Siqin et al.
(2022) [69] PtG-CCHP microgrid

Distributionally robust
optimization (DRO),
Wasserstein metric

Economic dispatch
under uncertainty

Proposes a PtG-CCHP system
with DRO to improve stability,
economy, and low-carbon
operation by managing wind
and solar uncertainty.

Wang et al.
(2024) [70]

Power-to-Gas-to-
Power (PtG-PtP) and
Carbon Capture

ANN, multi-objective
optimization

Integration of PtG-PtP
with the Allam cycle for
simultaneous electricity
and water production

Proposed a novel system
combining PtG with the Allam
cycle for energy generation,
carbon capture, and water
desalination, optimizing
exergy efficiency and
minimizing emissions

Li et al. (2022)
[71] Island energy systems

Agent-based modeling
(ABM), k-means
clustering

100% renewable island
with PtG

Proposes a multi-objective
optimization for island energy
systems integrating PtG and
desalination technologies,
reducing costs and improving
weather resilience.

Mansouri et al.
(2023) [36]

Multi-energy
microgrids

Long Short-Term
Memory (LSTM),
IoT-based prediction

Market management
for smart prosumers

Proposes an IoT-enabled
hierarchical framework for
multi-energy microgrid market
management using deep
learning to optimize demand
response strategies.
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Table 1. Cont.

Paper Focus Area ML Method Used Application Key Contribution

Ghasemi
Olanlari et al.
(2022) [37]

Multi-energy virtual
power plants
(MEVPPs)

Fuzzy satisfying
approach,
Epsilon-constraint
method

VPP with PtG and
demand response
integration

Develops an optimal
scheduling model for MEVPPs
integrating PtG, renewable
energy, and demand response
to maximize profit and
minimize emissions.

Qi et al. (2022)
[72]

Energy storage in PtM
process,
techno-economic
evaluation

Artificial neural
network-based
surrogate optimization

Design and
optimization of the
PtM-LCES process
using a renewable
power mix

Demonstrated that integrating
LCES in the PtM process
enhances profitability and
energy efficiency, and reduces
methane production costs,
making it competitive with
fossil natural gas.

Zhong et al.
(2024) [73]

Power-to-Methane
(PtCH4) with SOEC
integration

No specific ML method,
focuses on optimization
algorithms

Solid oxide electrolysis
and methanation
reactor optimization

Optimized off-design
performance of PtCH4 systems,
enhancing operational
flexibility and efficiency.

Liang et al.
(2024) [74]

Integrated energy
system with CCS-PtG

Twin Delayed Deep
Deterministic Policy
Gradient (TD3)

Real-time scheduling
for low-carbon energy

Uses DRL to dynamically
optimize scheduling in
CCS-PtG systems, lowering
carbon emissions and
operational costs.

B. Zhang et al.
(2023) [75]

Integrated CCS and
PtG systems

Soft Actor–Critic (SAC)
with Prioritized
Experience Replay
(PER)

Dynamic energy
dispatch optimization

Improved system flexibility
and reduced operational costs
through SAC-based real-time
optimization in CCS-PtG
systems.

Cui et al. (2023)
[76]

Low-carbon economic
dispatch of microgrid

Soft Actor–Critic (SAC),
Multilayer Perceptron
(MLP)

Electricity–gas–heat
coupling with PtG

Proposes a low-carbon
dispatch model with SAC to
reduce microgrid CO2
emissions and operational
costs by optimizing
electricity–gas–heat coupling
and PtG.

Wen and Aziz
(2023) [77]

CCS and PtG
integration

Multi-agent
reinforcement learning
(MARL)

Carbon capture and
energy system
optimization

Proposes a model for
integrating carbon capture and
PtG systems using MARL to
optimize energy management
and reduce emissions in
energy systems.

Monfaredi et al.
(2023) [78]

Optimal Energy
Management in
Microgrids

Multi-agent deep
reinforcement learning
(MA-DRL)

Energy management in
grid-connected
microgrids

Developed a robust
MA-DRL-based strategy to
coordinate multiple energy
carriers, reducing emissions
and costs while optimizing
microgrid operations.

Zaveri et al.
(2023) [79]

PEM fuel cells
(PEMFCs) in PtG
systems

Support vector
machine (SVM),
decision tree, random
forest, ANN

PEMFC diagnostics for
failure prediction

ML model predicts PEMFC
failures like dehydration and
flooding, improving reliability
and stability in PtG systems.
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Table 1. Cont.

Paper Focus Area ML Method Used Application Key Contribution

Ma et al. (2022)
[80]

Hybrid PEMFC-PtG
systems

Wavelet
transform–neural
network

PEMFC-PtG under
renewable uncertainty

Proposes a hybrid PEMFC-PtG
system optimized with ML for
renewable integration,
reducing operating costs and
emissions.

Zheng et al.
(2021) [81] Electricity–gas systems

Stochastic
co-optimization,
Sequential
Mixed-Integer
Second-Order Cone
Programming (SOC)

Day-ahead market
participation

Co-optimizes electricity and
gas systems in day-ahead
markets under uncertainty
using PtG, with new pricing
and settlement mechanisms.

Janke et al.
(2020) [82] PtX systems Artificial neural

network (ANN)
Electricity price
forecasting

Developed price-independent
order (PIO) strategy for
hydrogen production to
optimize bidding strategies in
day-ahead markets

Zheng et al.
(2024) [85]

Multi-energy systems
under uncertainty

Clayton copula-based
joint probability
distribution, DRO

Uncertainty
management in
carbon–electricity
markets

Proposes a DRO model for
coordinating MES interactions
and mitigating uncertainty in
carbon and electricity markets
using PtG integration.

Li et al. (2023)
[83]

Near-zero carbon
emission power plants
(NZCEPs)

K-means clustering,
Data-driven robust
optimization (DSRO)

Scheduling under
electricity–carbon
markets

Proposes a DSRO model for
scheduling NZCEPs,
optimizing renewable energy
consumption and carbon credit
generation under
electricity–carbon market.

Wu and Li
(2023) [84]

Hydrogen-based
integrated energy
systems (HIESs)

Wasserstein
metric-based DRO

HIES with PtG and
carbon trading

Proposes a WDRO model for
optimizing HIES with PtG and
CCS under carbon trading and
renewable uncertainty,
reducing operational costs and
emissions.

Fan et al. (2023)
[86]

Integrated energy
systems (IESs)

Kernel Density
Estimation (KDE),
Wasserstein metric

Energy sharing and
carbon transfer
optimization

Develop a two-stage DRO for
energy sharing and carbon
transfer in IES, reducing
carbon emissions and
improving resource allocation
with CCUS and PtG
integration.

Gao et al. (2022)
[87]

Urban integrated
energy systems (UIESs)

Distributionally robust
optimization (DRO),
Norm-1 and Norm-inf
constraints

UIES with wind power
uncertainty

Proposes a DDRO model for
urban integrated energy
systems, optimizing energy
purchases and mitigating wind
power uncertainty using
norm-based constraints.

Lakhmi et al.
(2024) [88]

Process Control in PtX
Systems

Artificial neural
network (ANN), Partial
Least Squares (PLS)

Gas sensor array for
process control and gas
mixture composition
detection

Built sensor arrays for
monitoring gases in PtX
systems; ANN proved more
effective for methane detection
than linear models.
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5.2. Machine Learning and Power-to-Liquid Systems

PtL systems are an innovative approach to converting renewable energy into liquid
fuels, utilizing surplus electricity to synthesize hydrocarbons, methanol, and ammonia.
These processes typically involve using renewable electricity for water electrolysis to
produce hydrogen, which is then combined with captured CO2 in processes like Fischer–
Tropsch synthesis to create carbon-neutral fuels, such as methanol or synthetic diesel.
Ammonia is also increasingly produced in PtL systems, serving as a carbon-free hydrogen
carrier with advantages in storage and transportation. Recent advancements, such as
plasma-assisted ammonia synthesis, enhance the efficiency of ammonia production at
lower temperatures and pressures, reducing the energy footprint [89,90]. PtL fuels can
be seamlessly integrated into existing fuel infrastructure, supporting decarbonization in
sectors like aviation, shipping, and heavy industry. These systems offer flexibility in fuel
production while helping close the carbon cycle by using captured CO2 or nitrogen, making
them a key solution for achieving net-zero emissions in hard-to-abate sectors.

Green ammonia is emerging as a key hydrogen carrier due to its high hydrogen
content, low flammability, and established transport infrastructure, making it vital for
industries such as fertilizers and fuel cells. Its potential to reduce energy consumption
and emissions is significant. Catalytic decomposition using nickel-based catalysts is noted
for its cost-effectiveness in large-scale hydrogen production, and ML aids in optimizing
these catalysts by simulating reaction mechanisms [91,92]. Recent advancements in green
ammonia synthesis emphasize its role in sustainable energy due to its low-carbon footprint
and compatibility with renewable energy sources. Deng et al. (2024) [92] proposed a
physics-informed sparse identification model for optimizing reactor design, enhancing
ammonia yield using a bald-eagle search algorithm. Similarly, Zeng et al. (2023) [93]
employed plasma catalysis under low-temperature pulsed plasmas, optimizing parameters
through a Bayesian neural network to improve energy efficiency. These studies collectively
advance green ammonia synthesis by integrating ML and optimization techniques to boost
yield and sustainability. A schematic of green ammonia synthesis process is shown in
Figure 9.

Figure 9. Schematic of green ammonia synthesis process. Reprinted with permission from [92].

Power-to-Ammonia (PtA) technology provides a practical solution for converting
surplus renewable energy into ammonia, a fuel that is both storable and transportable,
offering a means to enhance the stability of multi-energy systems. In recent research,
PtA is being integrated into energy hubs that combine renewable power sources with
advanced energy storage and management systems. These hubs are optimized to address
the intermittent nature of renewable energy by converting it into green ammonia, which
can later be used for power generation or other applications. In this context, studies have
focused on designing energy-efficient, cost-effective solutions to improve the operation
of PtA systems within multi-energy hubs, particularly in terms of energy conversion
efficiency and system scalability [94,95]. Innovations in PtA system integration are not
only improving energy efficiency but also unlocking new strategies for managing complex
energy flows in real-time. By leveraging advanced optimization algorithms, such as deep
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reinforcement learning, these systems are becoming increasingly adept at responding to
the variability of renewable energy, as demonstrated by recent studies.

In their study, Xiong et al. (2023) [94] propose a coordinated energy management
strategy for a renewable-powered multi-energy hub that incorporates PtA technology. Their
system employs a multi-agent deep reinforcement learning (DRL) algorithm to optimize
energy flow, ensuring that the hub can efficiently handle fluctuating renewable energy
inputs, such as wind and solar. The use of the DRL algorithm significantly enhances the
hub’s ability to minimize operational costs and carbon dioxide emissions, while also maxi-
mizing ammonia production. On the other hand Qi et al. (2022) [95] presented a different
approach by proposing an energy hub that integrates PtA with liquid air energy storage
(LAES) technology. Their system is designed to co-produce green ammonia and electricity,
using a surrogate-based optimization method to achieve cost-optimal configurations. By
combining LAES with PtA, the system enhances its flexibility and performance, allowing it
to store excess renewable energy and generate power on demand.

Ammonia-fueled solid oxide fuel cells (SOFCs) offer the ability to directly convert am-
monia into electricity with high efficiency and lower carbon emissions. These systems are
particularly attractive due to ammonia’s high energy density and ease of storage compared
to hydrogen. However, challenges remain in optimizing their performance, particularly
in managing the high temperatures generated during ammonia decomposition and im-
proving overall system efficiency. Yanchen Lai et al. (2023) [96] have addressed this by
investigating the thermal management of ammonia-fueled tubular SOFCs, focusing on the
impact of ammonia cracking reactions within the fuel cell. Their study develops a thermal
management model, proposing pre-reforming techniques and optimized reaction activation
energy to improve temperature distribution and reduce thermal stress. Meanwhile, Y. Du
et al. (2023) [97] propose a novel SOFC and rotary engine system, integrating hydrogen
regeneration to enhance part-load performance. Using a data-driven model, they optimize
the system’s efficiency, showing significant improvements in energy output, particularly at
partial loads.

While ammonia has gained significant attention in PtL technologies, PtL systems
are versatile and can produce a variety of fuels, including hydrogen, methanol, and hy-
drocarbons. Recent research has focused on optimizing these systems using ML and
advanced optimization techniques to enhance their efficiency and flexibility. For example,
Ahbabi Saray et al. (2024) [98] developed a system that produces both liquid hydrogen
and ammonia using renewable energy, employing artificial neural networks (ANNs) and
genetic algorithms (GAs) for optimization. Their system not only efficiently balances the
production of hydrogen and ammonia but also addresses multiple energy needs, such
as cooling and freshwater generation. Also, Zhao et al. (2024) [99] focus on hydrogen
production through solar-assisted methanol steam reforming, optimizing key operational
factors using a GA–Back Propagation Neural Network (GA-BPNN) model. Expanding
PtL beyond ammonia and hydrogen, Mohammad Nezhad et al. (2024) [100] optimized a
Fischer–Tropsch process for hydrocarbon fuel production in small-scale PtL plants. Using
surrogate models and genetic algorithms, they enhance the efficiency of the fuel production
system, which offers a compact and localized energy storage solution. The key findings
related to ML applications in Power-to-Liquid Systems are summarized in Table 2.
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Table 2. Key findings from the recent literature on machine learning and Power-to-Liquid systems.

Paper Focus Area ML Method Used Application Key Contribution

Deng et al. (2024)
[92]

Green ammonia
synthesis

Bald eagle search
algorithm, sparse
identification

Optimizing ammonia
reactor design

Improved ammonia yield by
optimizing reactor
parameters using time-series
data analysis.

Zeng et al. (2023)
[93]

Plasma-assisted
ammonia synthesis

Bayesian neural
network (BNN)

Optimizing plasma
catalysis for ammonia
production

Enhanced energy efficiency
through pulse voltage and
gap optimization.

Xiong et al. (2023)
[94]

PtA in multi-energy
hubs

Deep reinforcement
learning (DRL)

Energy flow
optimization in
multi-energy hubs

Maximized ammonia
production and minimized
operational costs with
renewable energy.

Qi et al. (2022)
[95]

PtA with LAES
integration

Surrogate-based
optimization

Co-production of green
ammonia and
electricity

Achieved cost-optimal
system configuration and
enhanced flexibility.

Lai et al. (2023)
[96]

Ammonia-fueled solid
oxide fuel cells

No ML used; thermal
management model
analysis

Optimizing SOFC
performance for
ammonia fuel

Developed a thermal
management model to
improve temperature
distribution in SOFCs.

Du et al. (2023)
[97]

SOFC and rotary
engine systems

Data-driven model
using optimization
algorithms

Part-load performance
optimization for SOFC
systems

Improved energy output and
efficiency, especially under
partial loads.

Ahbabi Saray
et al. (2024) [98]

Dual hydrogen and
ammonia production

Artificial neural
network (ANN),
genetic algorithm (GA)

Renewable-powered
hydrogen and
ammonia
co-production

Balanced hydrogen and
ammonia production with
optimized energy system
performance.

Zhao et al. (2024)
[99]

Hydrogen production
from methanol

GA–Backpropagation
Neural Network
(GA-BPNN)

Solar-assisted methanol
steam reforming for
hydrogen production

Optimized operational
parameters for enhanced
hydrogen yield and system
efficiency.

Mohammad
Nezhad et al.
(2024) [100]

Fischer–Tropsch fuel
production

Surrogate model,
genetic algorithm (GA)

Small-scale
hydrocarbon fuel
production

Optimized Fischer–Tropsch
process, enhancing the
efficiency of localized fuel
storage.

Mashhadimoslem
et al. (2023) [91]

Green ammonia
synthesis using
nickel-based catalysts

ML for catalyst
optimization

Catalytic
decomposition in green
ammonia production

Used ML to optimize
nickel-based catalysts for
hydrogen production,
improving efficiency and
reducing costs.

5.3. Advances in Sustainable Combustion and Fuel Optimization for Next-Generation Engines

The transition to sustainable combustion will depend heavily on the interplay be-
tween hydrogen and carbon-based fuels, each offering unique advantages and challenges.
Hydrogen’s potential as a clean fuel is promising due to its versatility and low carbon
footprint, but its combustion presents technical hurdles, such as flame instability and
nitrogen oxide emissions. Meanwhile, carbon-based fuels, especially those derived from
renewable sources, provide higher energy densities, making them indispensable for sec-
tors like aviation. However, their reliance on carbon capture and the complexity of their
combustion processes necessitate advanced computational methods, including ML, for
optimizing fuel efficiency and minimizing emissions. As highlighted by Pitsch (2024) [101],
both hydrogen- and carbon-based fuels require innovative approaches in fuel technology
and computational modeling to drive the transition toward sustainable combustion.



Sustainability 2024, 16, 9555 25 of 42

To fully leverage hydrogen’s potential as a clean fuel, its production and distribution
systems must be optimized. In particular, managing hydrogen refueling stations is critical,
where fluctuating demand and integration with renewable energy sources create opera-
tional challenges. Huy et al. (2024) [102] address this issue by implementing Generative
Adversarial Imitation Learning (GAIL) to optimize real-time energy management, improv-
ing decision-making by mimicking expert strategies to balance hydrogen production with
electricity generation.

ML’s role in combustion modeling is equally crucial, particularly for hydrogen- and
carbon-based fuels. Traditional computational models struggle with non-linear interactions
like flame instability, but ML offers a solution by enhancing combustion simulations
with data-driven approaches. As Pitsch (2024) [101] notes, integrating ML with physics-
based models is essential for optimizing fuel design, enhancing combustion efficiency,
and reducing emissions. Expanding on this, Kale et al. (2023) [103] explored the stability
of hydrogen–CNG-powered vehicles, using advanced control techniques such as MIMO
system models and transfer functions to ensure operational feasibility in hybrid fuel
systems. Building on this, Sadeq et al. [104] developed machine-learning models for
predicting flame radius evolution and turbulent flame speeds in gas-to-liquid (GTL) fuel
combustion. These models demonstrated superior accuracy and efficiency compared to
traditional CFD methods, offering insights that can optimize the performance of alternative
fuels like GTL in sustainable combustion systems. The use of ML to model complex
combustion dynamics further highlights its potential for improving fuel efficiency and
reducing emissions in next-generation fuels, including hydrogen and biofuels.

Recent advancements in engine design further underscore the importance of ML in
combustion systems. Sapra et al. (2024) [105] applied computational fluid dynamics (CFD)
and Gaussian Process Regression (GPR) to optimize piston-bowl geometries for energy-
assisted compression ignition using low-cetane sustainable aviation fuel blends. This
integration significantly reduces ignition delays and improves fuel efficiency, particularly
under high-altitude and high-load conditions. Similarly, Narayanan et al. (2024) [106]
developed the Misfire-Integrated Gaussian Process (MInt-GP) emulator to enhance control
systems for jet fuels with varying cetane numbers, offering up to 80 times faster computation
than traditional CFD methods, thus reducing the cost and time associated with engine
control system training.

Finally, ML plays a key role in evaluating the environmental impact of alternative fuels.
Ahmed et al. (2023) [107] used supervised ML models, including random forest, decision
tree, and XGBoost, to assess the life-cycle impact of offshore vessels powered by LNG and
green ammonia. The study found that green ammonia-powered vessels exhibited lower
global warming potential and emissions compared to conventional fuels, with XGBoost
outperforming other models in predictive accuracy, providing a robust framework for
environmental impact assessments.

Sustainable Aviation Fuel (SAF)

Production of sustainable liquid fuels can be classified under PtL processes. According
to L. Yang et al. (2023) [108], who presented a comprehensive framework to quantify
CO2 emissions from China’s civil aviation industry up to 2050 by using a combination
of Backpropagation Neural Network (BPNN) and Monte Carlo simulations, addressing
the uncertainties in future aviation demand and policy changes is crucial for meeting
decarbonization goals. Their analysis shows that while sustainable aviation fuels (SAFs)
are pivotal to reducing emissions, achieving carbon neutrality by 2050 will require SAFs to
account for up to 70% of aviation fuel. In addition to SAF adoption, innovations in aircraft
technology, carbon capture methods, and carbon trading mechanisms will be essential to
offset emissions and meet global targets. This highlights the growing role of ML in not only
forecasting emissions but also optimizing the integration of SAFs into the aviation fuel mix.

In line with these findings, F. Wang and Rijal (2024) [109] further explored the potential
of sustainable aviation fuels by focusing on strained hydrocarbons and cycloalkanes as
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promising SAF candidates due to their high energy density and efficient combustion prop-
erties. Their study employed ML techniques such as quantum chemistry-based simulations
and neural networks to optimize molecular structures, enhancing fuel stability, energy den-
sity, and combustion efficiency. They emphasized the importance of addressing production
challenges, providing a detailed technoeconomic assessment based on life-cycle assessment
(LCA) and production cost models, which evaluate the scalability and economic viability
of SAF production. While their results show that these SAFs offer significant performance
advantages, scaling up production remains a challenge due to high initial costs.

The key findings related to the applications of ML in sustainable aviation fuels are
summarized in Table 3.

Table 3. Key findings from the recent literature on the applications of ML in sustainable aviation
fuel (SAF).

Paper Focus Area ML Method Used Application Key Contribution

Pitsch (2024) [101]
Hydrogen and
carbon-based fuel
combustion

Data-driven
modeling

Combustion simulations
for hydrogen and
carbon-based fuels

Integrated ML and
physics-based models to
address non-linear
interactions in turbulent
combustion, enhancing fuel
efficiency and reducing
emissions.

Huy et al. (2024)
[102]

Hydrogen
refueling-station
optimization

Generative
Adversarial
Imitation Learning
(GAIL)

Real-time energy
management in hydrogen
refueling stations

Developed an ML-based
energy management model
that mimics expert strategies
to optimize hydrogen
production and electricity
generation, improving
efficiency and flexibility.

Kale et al. (2023)
[103]

Hydrogen–CNG
hybrid vehicles

MIMO system
models, Bode plots

Stability analysis of
hydrogen–CNG-powered
vehicles

Analyzed vehicle stability
and control using transfer
functions to ensure the
operational feasibility of
hydrogen–CNG hybrid fuel
systems.

Sadeq et al. [104]
Predicting flame radius
and turbulent
flame speed

Neural networks,
GA, k-fold
cross-validation

Combustion of diesel, GTL,
and 50/50 blend

High-precision ML models
outperform CFD, with max
error percentages of 5.46%
for flame radius and 6.58%
for flame speed.

Sapra et al. (2024)
[105]

Engine design for
low-cetane
aviation fuels

Gaussian Process
Regression (GPR)

Piston-bowl design
optimization for
low-cetane fuel blends

Combined CFD and ML to
optimize engine geometries,
reducing ignition delays and
enhancing fuel efficiency in
sustainable aviation fuel
blends.

Narayanan et al.
(2024) [106]

Energy-assisted
compression ignition
(EACI) engines

Misfire-Integrated
Gaussian Process
(MInt-GP)

Control system
optimization for varying
cetane number jet fuels

Developed a
physics-integrated GP model
to predict combustion
profiles, offering up to
80 times faster computation
than CFD, improving control
system training.
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Table 3. Cont.

Paper Focus Area ML Method Used Application Key Contribution

Yang et al. (2023)
[108]

Sustainable aviation
fuel (SAF) emissions

Backpropagation
Neural Network
(BPNN), Monte
Carlo

CO2 emission
quantification in China’s
civil aviation industry

Used ML to address
uncertainties in aviation
demand and policy, showing
SAFs must account for up to
70% of aviation fuel to meet
decarbonization goals.

Wang and Rijal
(2024) [109]

SAF development and
optimization

Neural networks,
Quantum
Chemistry-Based
Simulations

Optimization of SAF
molecular structures
(strained hydrocarbons
and cycloalkanes)

Employed ML to optimize
fuel molecular structures,
enhancing SAF stability and
combustion efficiency, while
providing a techno-economic
assessment of SAF scalability.

5.4. Machine Learning and Power-to-Heat

PtH systems convert excess electricity, typically from renewable sources like wind or
solar, into heat, which can be used for space heating and industrial processes or stored in
district heating systems. These systems help balance electricity grids by utilizing surplus
energy during periods of high renewable generation and low demand. PtH technologies,
such as electric boilers and heat pumps, can be integrated into district heating networks,
providing flexibility by shifting energy between the electricity and heat sectors. Further-
more, as highlighted in recent studies, such as the one by Liu et al. (2023) [110], buildings
themselves can offer flexibility services to the grid by integrating PtH systems with model
predictive control and leveraging thermal inertia. This allows buildings to modulate energy
consumption in response to fluctuating energy prices and renewable availability, further
enhancing grid stability. By replacing fossil fuel-based heat production, PtH technologies
contribute to decarbonization and reduce greenhouse gas emissions in the heating sector.
Studies have shown that PtH systems can significantly reduce wind and solar curtailment
and lower operational costs for energy systems, especially when integrated with thermal
storage [111,112].

In their study, Liu et al. (2023) [110] emphasized the application of ML, particularly
model predictive control (MPC), in optimizing PtH systems to provide flexibility services
within building energy systems. By using MPC, these systems can adjust energy consump-
tion dynamically based on real-time data, responding efficiently to variations in renewable
energy supply and electricity demand. The demand-side flexibility has been a concern in
other studies as well; Nunna et al. (2023) [113] also explored demand-side flexibility in
ultra-low-temperature district heating (ULTDH) systems using PtH solutions. By applying
a genetic algorithm (GA) for optimizing the charging of hot-water storage based on elec-
tricity price signals and demand forecasts, the system achieves significant cost savings and
energy flexibility. This approach enhances renewable energy integration, demonstrating
an over 91% cost reduction compared to traditional controls, while also supporting grid
stability. Similarly, the study by Fleschutz et al. (2023) [114] investigated the transition of
manufacturing companies from energy prosumers to “flexumers” by leveraging demand-
side flexibility within multi-energy systems (MESs). By integrating flexible energy storage
and demand response (DR) programs, the study demonstrates how MESs can dynamically
adjust their energy profiles, achieving significant reductions in both operational costs and
carbon emissions.

The integration of ML and data-driven techniques in PtH systems continues to demon-
strate significant potential; the study by Kansara et al. (2024) [115] focuses on integrating
physics-driven and data-driven modeling approaches to optimize energy systems that
include PtH integrated with renewable sources, like solar and wind, as well as storage
components, like thermal energy storage (TES). A key takeaway is that combining both
modeling methods can significantly reduce computational time—up to 37% for energy con-
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cepts without TES—while maintaining high solution accuracy, offering a balanced trade-off
between computational efficiency and precision. Also, Lange and Kaltschmitt (2022) [116]
presented a ML-based method, using Long Short-Term Memory (LSTM) networks, to
perform probabilistic day-ahead forecasts of thermal storage capacities in residential PtH
systems. By predicting temperature distributions and transforming them into storage
capacity forecasts, the approach improves renewable energy integration, outperforming
traditional models in accuracy and reliability. The key findings related to the applications
of ML in PtH systems are summarized in Table 4.

Table 4. Key findings from the recent literature on machine learning and Power-to-Heat systems.

Paper Focus Area ML Method Used Application Key Contribution

Liu et al. (2023)
[110]

PtH systems in
building energy
flexibility

Model Predictive
Control (MPC)

Flexibility services for
buildings

Use of MPC to dynamically
adjust energy consumption
in response to real-time data,
enhancing energy flexibility
in building systems and
renewable energy
integration.

Nunna et al.
(2023) [113]

Ultra-low-temperature
district heating
(ULTDH)

Genetic algorithm (GA)
Optimizing hot water
storage charging and
electricity price signals

Demonstrated significant
cost savings and enhanced
demand-side flexibility by
integrating PtH systems with
district heating using
GA-based optimization.

Fleschutz et al.
(2023) [114]

Multi-energy system
(MES) flexibility

Not explicitly ML,
focus on demand-side
flexibility

MES in manufacturing
companies, integrating
flexible energy storage

Highlights the transition of
companies from energy
prosumers to flexumers,
using demand-side flexibility
for cost and emission
reductions.

Lange and
Kaltschmitt (2022)
[116]

PtH residential storage
systems

Long Short-Term
Memory (LSTM)

Day-ahead
probabilistic forecasts
of storage capacities

Improved the accuracy and
reliability of renewable
energy integration through
LSTM-based forecasts,
optimizing thermal storage
operations in PtH systems.

Kansara et al.
(2024) [115]

Energy system
optimization with PtH

Hybrid (physics-driven
and data-driven
models)

PtH systems integrated
with renewable sources

Achieved 37% reduction in
computational time for
system optimization without
compromising solution
accuracy, using a hybrid
modeling approach.

6. Discussion and Insight

The integration of ML into PtX processes marks a significant evolution in renewable
energy management and offers new opportunities for enhancing system efficiency, flex-
ibility, and sustainability. As PtX technologies grow in complexity, particularly with the
increasing adoption of renewable energy sources, ML provides advanced tools to optimize
performance, facilitate integration, reduce emissions, and handle the inherent uncertainties
in energy supply and demand. In this section, we explore the critical findings, implications,
limitations, and future directions of ML applications in PtX systems for a comprehensive
overview of the field’s current state and its trajectory toward future innovations.
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6.1. Summary of Key Findings

This review identifies several crucial advancements in the integration of ML/data-
driven methods with PtX processes, spanning from PtG and PtL to PtH systems. One of
the main findings is that ML enhances system optimization, improving overall efficiency in
energy conversion, system integrations, and storage processes. In PtG systems, ML-based
models, such as deep reinforcement learning and robust optimization algorithms, have
significantly improved real-time operational decision-making, reducing both operational
costs and carbon emissions. Studies show that ML’s predictive diagnostics and dynamic
optimization capabilities are instrumental in managing the uncertainties inherent in renew-
able energy systems, particularly in fluctuating renewable energy inputs like wind and
solar power.

Similarly, in Power-to-Liquid processes, ML models have been applied to optimize
ammonia and synthetic fuel production processes. This enables improved efficiency in
renewable hydrogen production, which is combined with CO2 to generate liquid fuels via
processes such as Fischer–Tropsch synthesis. Studies highlight how ML aids in optimizing
the performance of renewable-based energy hubs that integrate PtA systems, improving
energy storage and flexibility.

In PtH systems, the application of ML, particularly model predictive control (MPC),
enhances energy efficiency by dynamically adjusting heating demand based on real-time
data and renewable energy supply. This approach has significantly contributed to reducing
grid curtailment and improving renewable energy integration into district heating systems.

These findings have far-reaching implications for the energy transition, particularly in
integrating renewable energy systems with flexible storage and energy conversion technolo-
gies. By improving the efficiency, reliability, and flexibility of PtX systems, ML offers new
insights into overcoming the challenges of renewable energy intermittency. For example,
ML-enhanced PtX processes help align energy production with demand, addressing the
imbalance between energy supply and demand, particularly in multi-energy and integrated
systems, across multiple timescales. This also has direct applications in industrial sectors,
heavy transportation, and aviation, where energy-storage and -conversion challenges are
more pronounced.

ML-based models also provide robust solutions for managing the complexities of
carbon capture and storage (CCS) integration with PtX systems. This integration is vital
for decarbonizing sectors that rely heavily on fossil fuels. The ability of ML to forecast
energy generation, optimize energy storage, and manage the intricate interdependencies
in multi-energy systems ensures the operational flexibility of PtX technologies across
diverse applications.

Finally, future research must address the gaps in life-cycle assessments by incorporat-
ing comprehensive environmental and economic sustainability metrics. These assessments
will provide a clearer understanding of the long-term viability of PtX technologies, particu-
larly in sectors like heavy transportation, aviation, and industry, where decarbonization
is critical.

6.2. Emerging Technologies: Potential Role of Quantum Computing

While much of this review has focused on the transformative impact of ML on PtX
technologies, it is also essential to briefly highlight an emerging computational technology
that could have a profound influence on the future of PtX systems: quantum computing.
Quantum computing is emerging as a promising technology capable of solving complex
optimization and simulation problems that challenge classical computing methods. Al-
though it is still in its infancy, quantum computing excels in handling high-dimensional,
non-linear optimization tasks, which are essential in managing complex energy systems,
particularly in large-scale applications such as energy and power systems [117]. The ability
of quantum algorithms to optimize processes more efficiently could significantly improve
the integration of renewable energy sources and enhance system scalability, areas where
traditional methods often fall short [118].
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Quantum neural networks (QNNs) and other quantum-based approaches are gaining
attention for their potential to improve real-time control and decision-making systems. QNNs
have shown promise in enhancing decentralized energy systems’ ability to respond to fluc-
tuating renewable energy inputs, improving operational flexibility and efficiency [119,120].
The synergy between quantum computing and ML also offers new avenues for optimizing
energy management systems, enabling faster, more accurate predictions and optimizations
in highly dynamic environments [121]. Based on these developments, the application of
quantum computing in PtX technologies could be transformative, particularly in hard-to-
decarbonize sectors.

On the other hand, quantum computing holds significant potential for advancing the
development of catalysts essential for green hydrogen production. Recent studies have ex-
plored the potential of quantum simulations to optimize molecular structures and improve
catalytic efficiency in such reactions. For instance, quantum spintronic mechanisms have
been applied to enhance the efficiency of water-splitting devices through polaron surface
states, offering a promising approach to hydrogen generation while minimizing energy con-
sumption [122]. Similarly, quantum-enhanced simulations of material properties, such as
the spin–orbital coupling in cerium oxide catalysts, have shown substantial improvements
in hydrogen yield, reducing the need for expensive catalysts like platinum [123].

While we briefly mentioned the role of quantum computing here due to its critical
importance, we acknowledge that this is a subject deserving of independent and detailed
study. As quantum computing continues to evolve, its applications in PtX systems are
likely to become a significant area of research, with the potential to reshape energy systems
and help achieve decarbonization goals across industrial sectors.

The field of PtX systems is evolving toward a more integrated, dynamic, and resilient
approach to energy system management, where ML plays a pivotal role. ML enables
the optimization of PtX technologies, making them more adaptable to the complexities
of renewable energy integration. With continued advancements, PtX systems, driven
by ML, are poised to become foundational components of a decentralized and carbon-
neutral energy future. By improving energy conversion efficiency, optimizing storage,
and enhancing operational flexibility, ML is accelerating the transition toward sustainable
energy systems that can meet the growing global demand for clean energy while addressing
the challenges of intermittent renewable sources.

6.3. Future Directions

Despite the clear advancements, significant gaps remain in ML’s application to PtX
systems. One of the main limitations is the scalability of ML algorithms, particularly in
managing larger-scale PtX operations. Current research focuses primarily on small-to-
medium-scale systems, and more work is needed to adapt these solutions for industrial-
scale applications, especially in the context of large energy storage systems, like liquid-air
energy storage (LAES) and PtCH4.

Moreover, many ML applications are still limited by the availability and quality of real-
time operational data. ML models require vast amounts of high-quality data to optimize
performance, but many PtX systems suffer from fragmented data sources and inadequate
monitoring infrastructure. This impedes the ability of ML algorithms to provide accurate
real-time optimization, limiting their effectiveness in fully autonomous PtX systems.

Additionally, while ML models have been successfully applied to optimize fuel pro-
duction processes and energy system management, there is a notable lack of comprehensive
life-cycle assessments (LCAs) in existing studies. Without these assessments, the environ-
mental impacts of PtX technologies, including emissions from energy conversion processes,
water use, and resource consumption, remain poorly understood. This represents a signifi-
cant gap in assessing the sustainability of PtX systems.

To address these limitations, future research should focus on improving the scalability
of ML applications in PtX systems. This includes developing more advanced algorithms
capable of handling larger datasets and more complex system interactions, especially in



Sustainability 2024, 16, 9555 31 of 42

the context of multi-energy systems (MESs). ML models that can simultaneously optimize
energy generation, storage, and consumption across sectors will be essential for advancing
PtX processes.

There is also a pressing need for more robust data management frameworks that
ensure the availability of high-quality, real-time operational data across PtX systems. This
will allow ML models to perform more accurate predictive diagnostics and dynamic
optimization, improving system resilience in fluctuating energy environments.

Furthermore, integrating ML with emerging digital technologies, such as the Internet
of Things (IoT), big-data analytics, and cloud-based infrastructure, could offer new possi-
bilities for the real-time monitoring and optimization of PtX systems. This approach could
significantly improve the operational flexibility and scalability of PtX processes, especially
in managing distributed energy resources in decentralized systems.

7. Conclusions

This review demonstrates the transformative role of ML in advancing PtX technolo-
gies, particularly in optimizing processes, enhancing operational flexibility, and addressing
the complex energy storage challenges associated with renewable energy integration. ML
techniques, ranging from traditional methods like reinforcement learning and genetic algo-
rithms to advanced approaches such as deep learning, have proven essential in managing
the technical intricacies of PtX systems, including multi-energy integration, renewable
energy intermittency, and real-time decision-making.

Despite significant progress, several challenges remain. One key area for future
research lies in addressing the scalability of ML algorithms for industrial-scale PtX ap-
plications. While current ML models have shown success in smaller-scale systems, they
must be extended to manage larger, more complex operations, such as those that integrate
multi-energy systems; long-duration energy storage; and advanced energy carriers, like
hydrogen and synthetic fuels. This includes developing advanced multi-objective opti-
mization techniques capable of handling high data complexity while maintaining real-time
responsiveness and operational flexibility.

Another critical research direction is improving real-time data management frame-
works. PtX systems often suffer from fragmented data sources and inadequate monitoring
infrastructure, thus limiting the accuracy and effectiveness of ML algorithms in real-time
optimization. Future research should prioritize building robust data management systems
capable of integrating real-time operational data from across PtX technologies. These
frameworks will enable more precise ML-driven predictions and facilitate the automation
of PtX systems.

Additionally, ML applications should expand to include comprehensive life-cycle
assessments (LCAs). The environmental impacts of PtX technologies—such as emissions
from energy conversion, water use, and resource consumption—are not fully understood,
largely due to a lack of consistent LCA methodologies. By incorporating advanced LCA
frameworks into ML models, future research can provide a more holistic view of PtX
sustainability, particularly in sectors like heavy transportation and industry that are chal-
lenging to decarbonize.

Quantum computing represents another exciting frontier for future research, offering
transformative potential for tackling the high-dimensional, complex problems inherent
in PtX systems. Quantum-enhanced optimization could significantly improve catalyst
discovery, process optimization, and large-scale energy storage. Exploring the intersection
of ML and quantum computing will be vital for addressing the most pressing challenges in
renewable energy integration and decarbonization, making it an essential area for future
interdisciplinary studies.

Lastly, integrating emerging digital technologies, such as the Internet of Things (IoT)
and big-data analytics, with ML will further enhance real-time monitoring, predictive
diagnostics, and optimization in PtX systems. This integration will help mitigate the
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operational uncertainties caused by fluctuating renewable energy inputs, improving the
flexibility and adaptability of PtX systems in decentralized energy environments.

This review finds that ML techniques have played a pivotal role in improving the
efficiency and operational flexibility of PtX technologies, particularly through the optimiza-
tion of energy-conversion and -storage processes. ML will continue to be a cornerstone
for advancing PtX technologies, driving innovation in energy conversion, storage, and
system flexibility. Ongoing advancements in ML, quantum computing, and data-driven
optimization, combined with interdisciplinary collaboration, are essential for realizing a
sustainable, decentralized, and carbon-neutral energy future. By addressing the current
challenges of scalability, real-time data integration, and life-cycle sustainability, the next
generation of PtX systems will more effectively meet the growing global demand for clean,
reliable energy.
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Nomenclature

Term Description
ABM agent-based modeling
AI artificial intelligence
AEM Anion Exchange Membrane
ANN artificial neural network
BPNN backpropagation neural network
B2X2P Biomass-to-X-to-Power
CCS carbon capture and storage
CHP combined heat and power
CCHP Combined Cooling, Heating, and Power
CNG Compressed Natural Gas
CFD computational fluid dynamics
CO2 carbon dioxide
DDRO data-driven robust optimization
DFT density functional theory
DL deep learning
DNN deep neural network
DQN Deep Q-Network
DR demand response
DRO distributionally robust optimization
DRL deep reinforcement learning
EACI energy-assisted compression ignition
E-fuels electro-fuels
ESS energy storage system
FC fuel cell
F-T Fischer–Tropsch
GAIL Generative Adversarial Imitation Learning
GA genetic algorithm
GAN generative adversarial network
GPR Gaussian Process Regression
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GTL gas-to-liquid
HIES Hydrogen-based Integrated Energy System
HRES hybrid renewable energy systems
ICE Internal Combustion Engine
IESG integrated energy system group
IRES Integrated Renewable Energy System
IoT Internet of Things
LAES liquid-air energy storage
LCA life-cycle assessment
LCES Liquid CO2 Energy Storage
LSTM Long Short-Term Memory
MDP Markov Decision Process
MES multi-energy system
MEVPP multi-energy virtual power plant
MIMO Multiple-Input Multiple-Output
ML machine learning
MInt-GP Misfire-Integrated Gaussian Process
MVEE Minimum Volume Enclosing Ellipsoid
NN neural network
NZCEP near-zero carbon emission power
ORC Organic Rankine Cycle
PEM proton exchange membrane
PEMFC proton exchange membrane fuel cell
PIO price-independent order
PDO price-dependent order
PtA Power-to-Ammonia
PtC Power-to-Chemical
PtCH4 Power-to-Methane
PtF Power-to-Fuel
PtG Power-to-Gas
PtH Power-to-Heat
PtL Power-to-Liquid
PtM Power-to-Methanol
PtP Power-to-Power
PtX Power-to-X
PtX2P Power-to-X-to-Power
P2H2 Power-to-Hydrogen
QNN quantum neural network
ReLU Rectified Linear Unit
RL reinforcement learning
RNN recurrent neural network
rWGS reverse water–gas shift
SAC soft actor–critic
SAF sustainable aviation fuel
SGD stochastic gradient descent
SNG synthetic natural gas
SOE solid oxide electrolysis
SOEC solid oxide electrolysis cell
SOFC solid oxide fuel cell
SVM support vector machine
TES thermal energy storage
TD3 Twin Delayed Deep Deterministic Policy Gradient
ULTDH ultra-low-temperature district heating
WDRO Wasserstein-based Distributionally Robust Optimization
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Appendix A

Table A1. Recent review articles that cover subjects in relation to PtX.

Reference Journal Category/Scope

[124] International Journal of Hydrogen
Energy Hydrogen catalysis and production—biohydrogen, ML, nanocatalyst

[125] International Journal of Hydrogen
Energy

Hydrogen catalysis and production—density functional theory,
electrocatalyst, green hydrogen

[126] Energy Hydrogen catalysis and production—analysis and prediction, hydrogen
production, ML

[18] Fuel Hydrogen catalysis and production—AI, bibliometric analysis, deep
learning

[14] International Journal of Hydrogen
Energy Hydrogen catalysis and production—control, hydrogen, modeling

[15] Gaodianya Jishu/High Voltage
Engineering

Hydrogen catalysis and production—electrolyzer, hydrogen production,
model properties

[127] MRS Bulletin Hydrogen catalysis and production—autonomous research,
electrochemical synthesis, energy storage

[128] International Journal of Hydrogen
Energy

Hydrogen catalysis and production—artificial neural networks, biomass
processes, hydrocarbon pyrolysis

[129] Applied Sciences (Switzerland) Hydrogen catalysis and production—alkaline-water electrolysis, hydrogen
production technologies, hydrogen storage methods

[130] Chemical Engineering Journal Hydrogen catalysis and production—catalysis, computational fluid
dynamics (CFD), density functional theory (DFT)

[131] Journal of Energy Chemistry Hydrogen catalysis and production—algorithm development,
computational modeling, HER catalyst synthesis

[132] Environmental Chemistry Letters Hydrogen catalysis and production—activated carbon, bioenergy,
hydrogen

[133] International Journal of Hydrogen
Energy Hydrogen catalysis and production—chemometrics, data science, DFT

[134] Electrochemical Energy Reviews Hydrogen catalysis and production—electrocatalysts, in situ techniques,
oxygen evolution reaction

[16] Renewable and Sustainable Energy
Reviews

Hydrogen catalysis and production—degradation, demand response,
dynamic operation

[17] Energy and AI Hydrogen catalysis and production—AI, control, management system

[135] International Journal of Hydrogen
Energy

Hydrogen catalysis and production—computational modeling, density
functional theory, heterogeneous catalysis

[136] Matter Hydrogen catalysis and production—carbon utilization, catalysis,
cheminformatics

[137] Advanced Science Photocatalysis for hydrogen production—carbon dioxide reduction,
Fischer–Tropsch, material modeling

[138] Chemical Communications Photocatalysis for hydrogen production

[139] Advanced Functional Materials Photocatalysis for hydrogen production—biomass exemplifications,
DFT-data driven approach, energy carriers

[140] Materials Today Catalysis Photocatalysis for hydrogen production—carbon nitrides, hydrogen,
photocatalysis

[141] Chemistry of Materials Photocatalysis for hydrogen production
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Table A1. Cont.

Reference Journal Category/Scope

[142]
Journal of Photochemistry and
Photobiology C: Photochemistry
Reviews

Photocatalysis for hydrogen production—dye-sensitization, hydrogen
generation, organic and inorganic dyes

[143] Chemical Engineering Journal Photocatalysis for hydrogen production—electricity, hydrogen generation,
photocatalytic fuel cell

[144] Clean Technologies and
Environmental Policy

Photocatalysis for hydrogen production—bibliometric data, cluster
analysis AI, ML

[145] ACS Catalysis Photocatalysis for hydrogen production—CO2 reduction, ML,
photoelectrochemistry, halide perovskites

[146] Nanotechnology Photocatalysis for hydrogen production—biocatalysis, multiple exciton
generation, photocatalysis

[147] Journal of Composites Science Hydrogen storage—AI, hydrogen storage, ML

[148] Materials Today Energy Hydrogen storage—hydrogen storage, ML, metal–organic frameworks

[149] Journal of Energy Storage Hydrogen storage—Dewar–Kubas interaction, first principles,
functional groups

[150] Nano Research Hydrogen storage—model-driven material development processes,
nanomaterials, nanotechnology

[151] Open Research Europe Hydrogen storage—economic requirements, energy transition,
porous media

[152] Progress in Energy Hydrogen storage—adsorption, energy storage, ML

[153] Fuel Hydrogen storage—electronic structure, first-principle calculations, ML

[154] Chemical Engineering Journal Hydrogen storage—catalysis, computational, MOFs

[155] Renewable and Sustainable Energy
Reviews Hydrogen storage—China, feasibility analysis, geochemical reactions

[156] Capillarity Hydrogen storage—lattice Boltzmann method, Navier–Stokes equation,
numerical method

[157] Coatings Hydrogen storage—HEAs, high-entropy alloys, hydrogen storage

[158] International Journal of Hydrogen
Energy Hydrogen storage—hydrogen storage, ML, metal hydrides

[109] Energy and Fuels Sustainable fuel

[159] Renewable and Sustainable Energy
Reviews Sustainable fuel—Fischer–Tropsch

[160] Journal of Energy Chemistry Sustainable fuel

[161] Current Opinion in Green and
Sustainable Chemistry Sustainable fuel

[162] Carbon Capture Science and
Technology Sustainable fuel

[163] Cailiao Gongcheng/Journal of
Materials Engineering Sustainable fuel

[19] Polymers Environmental, economic, strategy, management, and policy—hydrogen
storage (tank), nanocomposite(s), nanotubes

[20] Energy Conversion and
Management

Environmental, economic, strategy, management, and policy—economic
and environmental impacts, engineering and theoretical prospects,
hydrogen production
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Table A1. Cont.

Reference Journal Category/Scope

[21] Energies Environmental, economic, strategy, management, and policy—energy
footprint, green hydrogen, green hydrogen guarantees of origin

[164] Energy and AI
Environmental, economic, strategy, management, and
policy—demand-side management, dynamic power dispatch,
energy storage

[110] Advances in Applied Energy PtH—building energy flexibility, data-driven, model predictive control

[22] Energies PtX—big data, electrolysis, IoT

[165] Catalysts Simulation acceleration—non-thermal plasma reactors, plasma,
plasma catalysis
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