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In general insurance pricing, aligning losses with accurate premiums is
crucial for insurance companies’ competitiveness. Traditional actuarial
models often face challenges like data heterogeneity and mismeasured
covariates, leading to misspecification bias. This paper addresses these is-
sues from a Bayesian perspective, exploring connections between Bayesian
hierarchical modeling, partial pooling techniques, and Gustafson correc-
tion method for mismeasured covariates. We focus on Non-Differential
Berkson (NDB) mismeasurement and propose an approach that corrects
such errors without relying on gold standard data. We discover the unique
prior knowledge regarding the variance of the NDB errors, and utilize it
to adjust the biased parameter estimates built upon the NDB covariate.
Using simulated datasets developed with varying error rate scenarios, we
demonstrate the superiority of Bayesian methods in correcting parameter
estimates. However, our modeling process highlights the challenge in
accurately identifying the variance of NDB errors. This emphasizes the
need for a thorough sensitivity analysis of the relationship between our
prior knowledge of NDB error variance and varying error rate scenarios.
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1 Introduction

In Non-life insurance practice, the risk premium is the portion of the premium that
specifically covers the expected loss arising from claims (Boland, 2006). Therefore,
accurately predicting aggregate claim amounts (also known as ‘loss severity’ in in-
surance terms) is critical for major actuarial decisions to prevent insolvency. In order
to estimate the risk premium (or aggregate claim amounts), one significant tool that is
often considered in a conventional regression framework (such as Generalized Linear
Models (GLMs), Generalized Additive Models (GAMs), etc.) is the identification of
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risk clustering, where certain risks or claims are observed to cluster together within
specific contexts (Werner and Modlin, 2010). By recognizing and analyzing these
clusters - geographical regions, demographic groups, types of policies, or latent classes,
etc. - within the GLM framework, insurers can make data-driven adjustments to their
premium structures, ensuring that pricing reflects the actual risk accurately. This
tailored homogeneity, in turn, improves their overall financial performance (Ohlsson
and Johansson, 2010).

In the GLM framework, risk clustering often relies on the covariates X in the model
(Werner and Modlin, 2010). While practitioners typically verify model assumptions
such as distributional properties, residual patterns, and statistical significance, etc.,
they may often overlook the broader implications of the inclusion of covariates X.
Aggarwal et al. (2016) discuss the concept of covariate-based model risk in non-life
pricing, highlighting that risks such as model misspecification error or flawed data
inputs often stem from the inclusion of covariates X in the model. This oversight can
become particularly problematic when estimating the aggregate claim amount Sh|X.

1.1 Research questions

Suppose we are dealing with a group policy where each policy h can generate multiple
claims (Baranoff et al., 2006). For example, each policy h is taken out by a different
company, such as an oil company, a car manufacturer, etc., resulting in h = 1, · · · , H
unique policies in the insurer’s portfolio. Each company holds a single group policy h
to protect its multiple assets. Let the individual claim amount Yhi, i = 1, 2, · · · , Nh(t)
associated with Nh(t) different claims during a policy period t for a single policy h is
log-normally distributed (i.e., lnYhi ∼ N(µ(t), σ(t)2)). Assuming the policy period
t is fixed and short, as is typical in a non-life insurance context, we can ignore t for
simplicity. Under this assumption, the claim count Nh for policy h remains limited
and follows a negative binomial distribution (Ohlsson and Johansson, 2010). The
individual claim amount Yhi, as well as themean claim amount Ȳh for a policy h follows
a log-normal distribution, assuming the claim count is not large enough for the Central
Limit Theorem to apply. Each policy, treated as an individual observation, has a unique
Nh value because it is linked to a distinct group of insured assets requiring insurance
protection. Hence, for each policy h, the aggregate claim amounts Sh received by
an insurer can be defined as a log-normal convolution: Sh = ΣNh

i=1Yhi = Yh1 + Yh2 +
. . . + YhNh = NhȲh. In order to determine the future value of the expected aggregate
claim amounts E[Sh] for a policy h, the traditional risk modeling principle applies the
frequency-severity approach (Kaas et al., 2008), which involves modeling the frequency
and severity of claims (the number of claims and the size of each claim) separately.
Resting on the assumption that the summands Yhi are mutually independent and
identically distributed (i.i.d.) to maintain homogeneity, the expected aggregate claim
amount E[Sh] = E[Yh1] + E[Yh2] + . . . + E[YhNh ] for a policy h can be simplified as:

E[Sh] = E[Nh]× E[Ȳh] for a policy h by the Frequency-Severity approach. (1)

Now, let X = {XF,XS} represent the covariate matrix that is statistically significant
to understand Nh, Yhi, Ȳh, and Sh. The inclusion of covariates X introduces new, po-
tentially unknown structures into the data space of Nh, Yhi, Ȳh, and Sh, altering the
underlying distributional properties of the individual summand Ȳh|XS

h (Neuhaus and
McCulloch, 2006). As a result, their convolutions E[Sh|X] may be re-organized into hi-
erarchical structures where observations at one level can be grouped into others. To be
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specific, based on the group policy assumption, we can assume that Yh1, Yh2, · · · , YhNh

are influenced by the same covariate vector XS
h = {xS

h , zS
h}, and thus the inclusion

of X still leads to E[Sh|X] = E[Nh|XF
h ] × E[Ȳh|XS

h ], as shown in Equation (1). How-
ever, if each claim amount Yhi is influenced by individually different covariate vec-
tor XS

hi = {xS
hi, zS

hi}, i = 1, · · · , Nh, the summands - Yh1|XS
h1, Yh2|XS

h2, · · ·YhNh |X
S
hNh

-
may remain independent, but the assumption of the identically distributed obser-
vations (homogeneity) is no longer valid (since the distribution of each summand
may have different parameter values). This heterogeneity introduced by X renders
E[Sh|X] ̸= E[Nh|XF

h ]× E[Yhi|XS
hi], making these log-normal convolutions analytically

intractable under the traditional risk modeling principle (Kaas et al., 2008).
Alongside inherent heterogeneity, actuaries frequently encounter model risks linked

to poor data quality, especially when covariates are affected by excessive noise. Various
types of noise ormeasurement errors exist (whichwill be discussed in the next section);
however, we focus specifically on Non-Differential Berkson (NDB) mismeasurement
due to its unique impact on the modeling process and its simplicity in application. The
inclusion of NDB covariates not only compromises the accuracy of the model but also
amplifies existing heterogeneity, potentially leading to biased estimates and erroneous
conclusions (Grace et al., 2021). These covariate-based model risks introduce new
challenges, emphasizing the need for a deeper understanding of their effects and the
development of advanced modeling techniques to address them. In this regard, we
aim to tackle two fundamental covariate-based model risks by posing the following
research questions:

• RQ1. If an additional unobservable heterogeneity is introduced by the inclusion
of covariates X, how to capture this and maintain homogeneity in risk clustering?

• RQ2. If an additional estimation bias results from the use of the mismeasured
covariates (with Non-Differential Berkson (NDB) error in particular), what is
the best way to mitigate this model risk?

1.2 Our contribution and paper outline

This paper is dedicated to the development of a novel strategy for modeling the
conditional aggregate claim amount Sh|X by dealing with the covariate-based model
risks: heterogeneity (RQ1) and NDB covariate (RQ2). We center our attention on the
hierarchical GLM and Gustafson correction, with the aim of establishing connections
between them and integrating them within the Bayesian parametric framework. This
framework is especially relevant to actuarial risk management, as it facilitates the
calculation of posterior credibility intervals to account for all sources of uncertainty
in estimating the risk premium (Cairns, 2000). The primary contribution of this
study is the novel elicitation of prior knowledge about the unknown variance of the
NDB covariate conditional on the true covariate x∗|x. Understanding x∗|x is central
to implementing the Gustafson correction with a Gibbs sampler and facilitates its
application inmitigating themodel risk tied to theNDB covariate x∗. To our knowledge,
no previous studies have tackled the estimation of risk premium while accounting for
NDB errors in the covariate within the hierarchical GLM framework.
The paper is organized as follows: Section 2 provides background information

on the problem setting and discusses traditional approaches to the research ques-
tions RQ1 and RQ2. Section 3 explores our modeling methods for aggregate claim
amounts under the frequency-severity principle, considering two scenarios: the com-
plete covariate case and the NDB covariate case. This section details the components
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of Bayesian inference within the hierarchical GLM framework and the development
of Gibbs samplers, introducing our novel Gustafson correction for addressing NDB
covariates. Section 4 presents empirical results and validates our approach using real
insurance data. The effectiveness of our Bayesian hierarchical GLM incorporating the
Gustafson correction technique is then compared to classical risk premium models
using Simulation Extrapolation (SIMEX). The paper concludes with Section 5.

2 Background and Conventional Approaches to RQ1 and RQ2

This section provides a brief background on the problem setting and explores various
conventional methods related to each research question.

2.1 Heterogeneity in risk clusters

The key objective in classical regression-based risk premium modeling is to accurately
describe the stochastic relationships between the insured claim amounts and indepen-
dent, homogeneous risk clusters. Homogeneity within a risk cluster reflects the similar
characteristics of policyholders, which aids in managing the inherent variability ob-
served in claim data. Common approaches in this domain include Generalized Linear
Models (GLMs), Generalized Additive Models (GAMs), and Multivariate Adaptive
Regression Splines (MARS), among others (Ohlsson and Johansson, 2010).
GLMs serve as a fundamental framework for analyzing premiums and risk clus-

ters, owing to their clarity and theoretical robustness. These models effectively tackle
heteroscedasticity through the application of Weighted Least Squares (WLS) and
accommodate variability across different risk levels by incorporating a class-specific
term in the linear predictor. Nonetheless, GLMs operate under the assumption that all
heterogeneity stems from known covariates, which may lead to the neglect of unob-
served factors and non-linear interactions that significantly contribute to heterogeneity
(Werner and Modlin, 2010). GAMs build upon GLMs by integrating smoothing
functions, which facilitate the capturing non-linear relationships among risk factors.
This approach enhances flexibility by employing a nonparametric modeling strategy
that adjusts the functional form based on the underlying data. However, GAMs fall
short in capturing variations arising from categorical covariates (Denuit and Lang,
2004). MARSs represent another sophisticated advancement, further refining GLMs
by applying piecewise linear regressions across data intervals. This characteristic not
only enhances computational efficiency compared to GAMs but also makes MARSs
particularly adept at handling high-dimensional data challenges (Francis, 2003).

In the context of risk premium modeling with GLMs, GAMs, and MARSs, address-
ing heterogeneity necessitates the inclusion of an additional class-specific effect term
within the linear predictor. This term aims to capture the latent heterogeneity inherent
in each risk cluster, reflecting unique deviations from the cluster mean (Wuthrich,
2020). However, a notable limitation of these classical risk premium modeling frame-
works is that once parameters are estimated, predictions for new risk premiums are
typically made solely based on these parameters and the associated covariates, ne-
glecting latent factors and uncertainty inherent in these estimates. Consequently,
overlooking this uncertainty constrains the insurer’s ability to make more informed
decisions and effectively formulate their financial strategies (Parodi, 2023).
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2.2 NDB errors in covariates

Before delving into the methods for correcting measurement errors in covariates,
we first provide an overview of the various types of measurement error. Consider
XS = {xS, zS}, where only xS, a continuous covariate, is subject to mismeasurement,
while zS, a binary covariate, is complete. For simplicity, we omit the superscript s from
the covariate matrix XS∗ and the continuous covariate vector xS∗, referring to them
as X∗ and x∗ respectively. The measurement error ϵ and the error-prone observed
covariate x∗ are assumed to follow ϵ ∼ N(0, σ2

ϵ ) and x∗ ∼ N(x, T2). The approach
to handling mismeasured covariates depends on the nature of ϵ. Now, the different
types of measurement errors ϵ are outlined as follows:

• Additive vs Multiplicative (Fewell, 2007) : With additive error, the mismeasured
covariate x∗ can be expressed as x∗ = x+ ϵ, while the multiplicative error can be
represented as x∗ = x · ϵ.

• Differential vs Non-Differential (Romann, 2008) : The error ϵ can be classified
as differential or non-differential based on its relationship with other variables.
Differential error occurs when the mismeasured covariate x∗ is correlated with
the outcome, represented as x∗ ∼ Y| z, x. Conversely, non-differential error
arises when the error ϵ in x∗ provides no additional information about the
outcome beyond what is already contained in x, leading to x∗⊥ Y| x, z. This
implies that f (Y|x∗, x, z) = f (Y|x, z) and f (x∗|Y, x, z) = f (x∗|x).

• Classical vs Berkson (Carroll et al., 2006) : Classical error occurs when the error
ϵ is independent of the true covariates, leading to ϵ ⊥ Y, x, z, E[ϵ|x∗, z] = 0
and T2 = V(x) + V(ϵ) > V(x). In contrast, if the error ϵ is independent of
the observed covariates, but associated with other latent factors with multiple
levels, Berkson error applies, where ϵj ⊥ Y, x∗, z, resulting in E[ϵj|x∗, z] = 0 and
T2

j = V(xj) + V(ϵj) < V(x) for j = 1, · · · , J. This implies that the error ϵ can
display varying levels of heteroscedasticity across different risk clusters due to
the latent factors.

We focus on the case in which the mismeasured covariate x∗ arises from additive
measurement error in a manner that is non-differential (blind to the outcome and
other covariates) and Berkson (correlated to the latent factors), allowing us to address
error structures that may vary across risk clusters. Throughout this paper, we refer to
it as the ‘NDB covariate.’
Regression Calibration (RC) is a widely used method for addressing the NDB

covariate in the regression framework. RC intuitively corrects errors by leveraging the
relationship between the NDB covariate and true covariate, regressing on the expected
true covariates given the NDB ones (Freedman et al., 2004). Carroll et al. (2006)
suggest that RC remains valid with GLMs when unbiased reference measurements
(i.e., gold standard data) are available, but obtaining such data has been found to be
costly and often impractical. In addition, Skrondal and Kuha (2012) demonstrate that
parameter estimates from RC can be inconsistent as the size of the error variances σ2

ϵ

increases.
An alternative method, Simulation-Extrapolation (SIMEX), proposed by Cook and

Stefanski (1994), corrects parameter estimates through simulation rather than recov-
ering true covariate values. SIMEX assesses the impact of measurement error by
introducing additional artificial noise into the NDB covariate and observing how this
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affects parameter estimates. By modeling these changes as a function of the noise,
optimal parameter estimates can be obtained by setting the noise level back to zero.
Unlike RC, SIMEX does not require external reference such as gold standard data for
error correction; however, the primary challenge of SIMEX lies in the risk of inaccurate
extrapolation due to the complex relationship between the estimated parameters and
the error variance σ2

ϵ (Oh et al., 2018). Although a simple quadratic curve is often
used for extrapolation stability, Carroll et al. (2006) show that parameter estimates
may remain inconsistent until the extrapolation curve perfectly captures this complex
relationship, which remains as a persistent limitation.

3 Modeling Method for Sh|XF,XS

3.1 Introduction of partial pooling to address heterogeneity in risk
clustering: RQ1

The partial pooling method, proposed by Gelman and Carlin (2013), tackles data het-
erogeneity among risk clusters by finding a middle ground between two perspectives:
‘complete pooling’, where a single global parameter overlooks cluster differences, and
‘no-pooling’, where separate parameters are created for each cluster. Partial pooling
techniques are naturally integratedwithin the hierarchical GLM framework, which per-
mits each parameter to be modeled independently. Specifically, within the hierarchical
GLM framework, the cluster-specific intercept, or ‘varying intercept’ models both
overall data and cluster-level data, flexibly moving between complete and no-pooling
settings. For example, in a log-normal model of aggregate claims given by:

lnYi ∼ N
(

E[lnYi|X], σ2
lnY

)
, for I = 1, · · · , N

E[lnYi|X] = E[α[j]] + XT β, for j = 1, · · · , J

α[j] ∼ N(µα, σ2
α),

(2)

where β represents the regression parameters, and σ2
lnY is the log-scale variance of

the outcome, the varying intercept α[j] has its own normal density with parameters -
µα, σ2

α -, representing the cluster’s mean and variance. In no-pooling, α[j] varies across
clusters, while in complete pooling, α[j] takes a single value for all data. The partial
pooling approximates the value of the varying intercept by weighting the no-pooling
estimate lnYj − XT

j β j and the complete pooling estimate µα as below (Gelman and
Hill, 2007).

E[α[j]] ≈
nj/σ2

lnYj

nj/σ2
lnYj

+ 1/σ2
α

· (lnYj − XT
j β j) +

1/σ2
α

nj/σ2
lnYj

+ 1/σ2
α

· µα (3)

in which nj is the sample size in the cluster j, σ2
lnYj

is the variance of the cluster j

(within-cluster variance), and σ2
α is the total cluster variance. In interpreting Equation

(3), when the cluster j has small samples (i.e., nj → 0) or the total cluster variance
σ2

α is small and reliable (i.e., σ2
α → 0), the estimate E[α[j]] shifts towards the global

intercept µα. Otherwise, it leans towards the local cluster intercept lnYj − XT
j β j.

Figure 1 gives a further illustration of how the partial pooling technique is integrated
into the hierarchical GLM. Let the local cluster j’s outcome parameter θj = {β j, σ2

lnYj}
for j = 1, · · · , J be an independent sample from a population distribution with global
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Figure 1: As a Bayesian parametric example with J = 4 clusters, this diagram depicts a typical Bayesian
hierarchical model with the Bias-Variance trade-off through the partial pooling. For prediction,
the class membership j of each data point {Yhi,Xhi} should be known beforehand.

parameters (hyperparameters) ϕ = {a0, b0, c0, d0}, as shown in Figure 1. If ϕ is
unknown and requires estimation, the uncertainties in both θandϕwould be evaluated
using their joint posterior distribution given by:

p(θ, ϕ|lnY,X) ∝ f (lnY|X, θ, ϕ) · p(θ, ϕ) =
J

∏
j=1

f (lnYj|Xj, θj, ϕ) · p(θj, ϕ) (4)

where the hyperparameters ϕ affect the outcome (or cluster) through the cluster
parameter θj, as illustrated in Figure 1. To analyze the joint prior p(θj, ϕ) in Equation
(4), it is decomposed into the cluster parameter distribution p(θj|ϕ) and the hyperprior
p(ϕ). The posterior distributions are represented as p(θj|ϕ, lnYj,Xj) for the cluster
parameter and p(ϕ|lnY,X) for the hyperprior, which can then be evaluated as:

p(θ|ϕ, lnY,X) =
J

∏
j=1

p(θj|ϕ, lnYj,Xj) (5)

p(ϕ|lnY,X) = p(θ, ϕ|lnY,X)
p(θ|ϕ, lnY,X) (6)

where the parameter layer for θj is informed by the data points grouped by each cluster
j in Equation (5) (this indicates no-pooling), while the hyperparameter layer for ϕ
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communicates with the entire population without any clusters in Equation (6) (this
indicates complete pooling). In Figure 1, complete pooling in the upper layer utilizes
all data, which may overlook cluster-specific variations and result in underfitting, as
hyperparameters ϕ are updated based on the entire dataset. In contrast, no pooling in
the lower layer treats each cluster independently, risking overfitting, with parameters θj
updated on a cluster-wise basis. The diagram in Figure 1 is translated into the analytic
expression in Equations (4), (5), and (6). Note that the numerator in Equation (6) is
just the joint posterior for θ, ϕ from Equation (4), and the denominator in Equation
(6) is the posterior for θ|ϕ in Equation (5). From Equations (4), (5), and (6), one can
see that the cluster specific parameter θj and the global parameter ϕ can be drawn
and estimated recursively, as per Figure 1. This balance enables optimal information
sharing between clusters, allowing predictions to account for both cluster-level and
individual-level variations simultaneously, thereby addressing heterogeneity across
risk clusters effectively (Gelman and Carlin, 2013).

3.2 Introduction of Gustafson correction to address NDB covariate: RQ2

Assuming additive, non-differential Berkson errors (NDB) in a covariate, we examine
the Bayesian framework to account for its cluster-wise error structure (i.e., heteroscedas-
ticity) probabilistically. The strength of a Bayesian approach to address NDB covariate
errors has been well-documented by Grace et al. (2021). From a Bayesian perspective,
deviations from true values can be corrected through the incorporation of the prior
knowledge that captures the relation between the unobservable true covariate x and
the observed NDB covariate x∗. When the NDB error structure introduces cluster-wise
heteroscedasticity, the framework specifies structural components to capture varying
variances across risk clusters. This cluster-wise inference can also be achieved by
leveraging the manageable joint product and Gibbs sampling (Gustafson, 2008).

The model component specification plays a crucial role in formulating the strategy,
as it determines the parameterization when incorporating the necessary parameter
knowledge. For the NDB covariate problem, Gustafson (2008) begins by specifying
the full joint density of the relevant variables as

f (Y, x∗, x, z) = f (Y|x∗, x, z) · f (x∗|x, z) · f (x|z) · f (z) (7a)
f (Y, x∗, x|z) = f (Y|x∗, x, z) · f (x∗|x, z) · f (x|z) (7b)

in which the term for the precisely measured covariate z is factored out for the sake of
simplicity. Due to the assumption of the non-differential error, the conditional joint
density in Equation (7b) can be further reduced to

f (Y, x∗, x|z) = f (Y|Ax∗, x, z) · f (x∗|x, Az) · f (x|z) (8)

where the cancellations are based on the definition of NDB error as described in
Section 2.2. This conditional joint density in Equation (8) is termed as the complete
joint model (Gustafson, 2008). As the true covariate x is not observable, the complete
joint model is technically inaccessible or theoretical. However, in the construction
of the complete joint model in Equation (8), three main components that make up
the relationship between the true covariate x and the observed covariate x∗ can be
identified:

• outcome component f (Y|x, z)

• linking (measurement) component f (x∗|x)
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• covariate (exposure) component f (x|z)

In particular, the linking component incorporates the measurement error mechanism
of x∗j ∼ N(xj, T2

j ) into the analysis, allowing control over the simulation process
(Grace et al., 2021). The linking (measurement) component term and T2

j also enable
investigation of the NDB error’s effect on the unknown risk clusters.
In contrast, the conditional joint model available in reality is referred to as the

incomplete joint model (Gustafson, 2008), which can be represented as:

f (Y, x∗|z) = f (Y|x∗, z) · f (x∗|z) (9)

where the outcome term f (Y|x∗, z) and the exposure term f (x∗|z) are fully known.
Note that the incomplete joint model in Equation (9) can be obtained from marginal-
izing the complete joint model in Equation (8) over the unobservable true covariate x.
For a concise comparison, refer to Table 1.

Table 1: Comparison of Complete and Incomplete Joint models
Complete Joint (unknown) Incomplete Joint (known)

f (Y|x, z)︸ ︷︷ ︸
outcome

· f (x∗|x)︸ ︷︷ ︸
measurement

· f (x|z)︸ ︷︷ ︸
exposure

f (Y|x∗, z)︸ ︷︷ ︸
outcome

· f (x∗|z)︸ ︷︷ ︸
exposure

= f (Y, x∗, x | z) = f (Y, x∗ | z)

The implication is that when we align the two models by integrating out the unob-
servable true covariate x from the complete joint model, the resulting equation reveals
the connection between the parameters of the complete joint model and those of the
incomplete joint model, as follows:∫

f (Y, x∗, x | z) dx = f (Y, x∗ | z) (10)

While explicitly solving the integral in Equation (10) can be difficult, comparing the
parameterizations on both sides of the equation uncovers the link between the param-
eters of the model based on the NDB covariate x∗ and and the true model using the
actual covariate x. Motivated by Romann (2008) and Grace et al. (2021), we analyti-
cally derived the solution to the integral in Equation (10), with the detailed derivation
provided in Part 3 of the on-line supplementary file. Accordingly, a hybrid Gibbs
sampler was developed using the relationship embedded in the parameterizations
(highlighted in Part 2 of the on-line supplementary file) to mitigate the model risk
associated with the NDB covariates.

3.3 Clustering Sh|XF,XS with Complete Case Covariate: RQ1.Tackling
heterogeneity

With accuratelymeasured covariates, we have emphasized the necessity ofmaintaining
homogeneity within each risk cluster to determine fair premiums. However, model
risk—specifically the heterogeneity issue (RQ1)—emerges when covariates introduce
variability, increasing the heterogeneity within these clusters. Assuming that the risk
clusters j = 1, · · · , J are already established, this section presents our foundational
hierarchical GLM with varying coefficients, utilizing the partial pooling technique to
ensure more homogeneous risk clusters.
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Baseline GLM: For each policy h = 1, · · · , H, we suggest that the claim count Nh
follows a negative binomial (NB) distribution with mean ξh and dispersion parameter
ψ. This setting, along with the assumption that the individual claim amounts on a
logarithmic scale lnYhi, i = 1, · · · , Nh, are independent and normally distributed with
mean µh and variance σ2, is grounded in Ohlsson and Johansson (2010). In short, we
represent these two outcome models as follows:

Nh ∼ NB(ξh, ψ) =
Γ(Nh + ψ)

Nh!Γ(ψ)

[
ξh

ξh + ψ

]Nh[
ψ

ξh + ψ

]ψ

(11a)

Ȳh ∼ LogN(µh, σ2) =
1

Ȳh
√

2πσ2
exp(− 1

2σ2

[
lnȲh − µh

]2
) (11b)

With the addition of covariates X =
(
XF : {xF, zF}, XS : {xS, zS}

), the covariate
effects and the information for risk clusters j = 1, · · · , J can be integrated into the
outcome models via the expectation parameters ξh and µh as presented in Equation
(11). Specifically, the covariates for claim count (frequency) and claim amount (sever-
ity) are represented by XF : {xF, zF} and XS : {xS, zS}, respectively. This leads to the
expectation parameters taking the form of GLMs:

ξh = E[Nh] = E[E[Nh|XFβF + ϵF
h ]] = E[exp (XFβF + ϵF

h )] ≈ eX
F βF (12a)

eµh+
1
2 σ2

= E[Ȳh] = E[E[Ȳh|XSβS + ϵS
h ]] = E[exp (XSβS +

1
2

σ2 + ϵS
h)] ≈ eX

SβS+ 1
2 σ2

(12b)

where the residuals are normally distributed, ϵF
h ∼ N(0, σ2

ϵF), ϵS
h ∼ N(0, σ2

ϵS). Based
on the frequency-severity principle, the conditional expected aggregate claim amount
given X = {XF, XS} for a policy h is expressed as E[Sh|X] = E[Nh|XF] × E[Ȳh|XS].
Consequently, the point estimate of the risk premium, considering the covariates XF

and XS, is determined by

E[Sh|XF,XS] = exp
(
XFβF + XSβS +

1
2

σ2) (13)

Hierarchical GLM with partial pooling: However, incorporating covariates XF

and XS into the model may introduce unobserved risk factors, leading to increased
heterogeneity within each risk cluster j = 1, · · · , J. To tackle this issue, we propose a
hierarchical GLM that employs distinct model for each parameter, along with cluster-
specific GLM coefficient vectors and dispersion parameters βF

j , ψj, βS
j , σ2

j across all
policies h = 1, · · · , H. Consequently, Equation (13)with j(h) ∈ {1, · · · , J} is redefined
with the following prior selections:

E[Sj(h)|XF,XS] = exp
(
XFβF

j + XSβS
j +

1
2

σ2
j
) (14a)

For Nh


βF

j | βF
0 , ΣF

β0
∼ MVN(βF

0 , ΣF
β0
)

ψj | uF
0 , vF

0 ∼ Ga(
uF

0
2

,
vF

0
2
)

(14b)
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For Ȳh


βS

j | βS
0 , ΣS

β0
∼ MVN(βS

0 , ΣS
β0
)

σ2
j | uS

0 , vS
0 ∼ InvGa(

uS
0

2
,

vS
0

2
)

(14c)

For XF



xF
j(h) ∼ N(E[xF

j ], λ2F
j )

λ2F
j ∼ InvGa(cF

0 , dF
0 )

zF
j(h) ∼ Bernoulli(πF

j )

πF
j ∼ Beta(gF

0 , hF
0 )

(14d)

For XS



xS
j(h) ∼ N(E[xS

j ], λ2S
j )

λ2S
j ∼ InvGa(cS

0 , dS
0)

zS
j(h) ∼ Bernoulli(πS

j )

πS
j ∼ Beta(gS

0 , hS
0)

(14e)

Equation (14) presents a Bayesian hierarchical GLM in which the hyperparameters
are dynamically updated based on the observed data. Gelman and Carlin (2013)
and Winkelmann (2008) recommend a Multivariate Gaussian prior for β due to the
Normality assumption, a Gamma prior for ψ, and an Inverse Gamma prior for σ2

due to its positive nature and adjustability. In this way, the hierarchical structure in
Equation (14) encompasses several layers, each influenced by the data differently to
adjust the degree of sharing in pooling.

In Section 2, we previously discussed the partial pooling effect that can be attained
by utilizing hierarchical structure within this GLM framework. In short, the hierar-
chical GLM in Equation (14) explores unique parameter values for each individual
(saturated cohort) and each cluster (reduced cohort), pooling them across multiple
clusters rather than averaging the parameter values based on the available information
(Gelman and Carlin, 2013). To achieve this, the GLM coefficients and dispersion
parameters - βF

j , ψj, βS
j , σ2

j - should vary by each cluster (i.e., no-pooling). At the same
time, the corresponding hyperparameters βF

0 , ΣF
β0

, uF
0 , vF

0 , βS
0 , ΣS

β0
, uS

0 , vS
0 should be up-

dated by the entire data (i.e., complete pooling). The hyperpriors selected for these
hyperparameters in this paper are listed below in Equations (15) to (18).

βF
0 | m0, δ ∼ MVN(m0, 1

δ ΣF
β0
)

ΣF
β0

| q
0
, Λ ∼ IW(q

0
, Λ)

}
for βF

j (15)

uF
0 | ρ

u1
, ρ

u2
∝ ρ

( uF
0
2

)
−1

u1 / Γ
( uF

0
2

)ρ
u2

vF
0 | ρ

v1
, ρ

v2
∼ Ga(ρ

v1
, ρ

v2
)

 for ψj (16)

βS
0 | m0, δ ∼ MVN(m0, 1

δ ΣS
β0
)

ΣS
β0

| q0, Λ ∼ IW(q0, Λ)

}
for βS

j (17)

uS
0 | ρu1, ρu2 ∝ ρ

( uS
0
2

)
−1

u1 / Γ
( uS

0
2

)ρu2

vS
0 | ρv1, ρv2 ∼ Ga(ρv1, ρv2)

 for σ2
j (18)

where: 1/δ serves as a variance inflation factor; m0 and Σβ0 denote the mean vector
and variance-covariance matrix of the GLM coefficients, respectively; q0 and Λ are
the degrees of freedom and the scale matrix of an Inverse Wishart hyperprior to
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sample the variance-covariance matrix, respectively. As q0 increases, its scale matrix Λ
becomes smaller, and thus the variance-covariancematrix Σβ0 becomesmore influential
(Kennedy and O’Hagan, 2001). ρu1 and ρu2 are the shape and rate parameters of a
Gamma hyperprior. Such distributional knowledge discussed here can be taken into
account when we simulate posterior parameter samples with the Gibbs sampler.

The selection of hyperpriors in Equations (15 to 18) is informed by distributions that
are conjugate to the priors outlined in Equation (14), significantly streamlining the
Bayesian updating process. For the hyperpriors of uF

0 and uS
0 specified in Equations

(16) and (18), we utilize analytically derived kernels from Fink (1997) due to their
conjugacywith the Gamma and Inverse Gamma distributions of ψj and σ2

j in Equations
(14b) and (14c), which define their shape parameters. Consequently, the distributions
of uF

0 and uS
0 will maintain their original kernel forms, even after incorporating updated

values for ψj and σ2
j .

To break down Equations (14 to 18), we consider three distinct layers involved in
the parameter inferences, as outlined below:

• Data layer: N1, {Y1(1), · · ·Y1(N1)}, . . . , NH, {YH(1), · · ·YH(NH)} | θj

• Parameter layer: θj = {βF
j , ψj, βS

j , σ2
j | ϕ}

• Hyperparameter layer I and II: ϕ = {βF
0 , ΣF

β0
, uF

0 , vF
0 , βS

0 , ΣS
β0

, uS
0 , vS

0 ,
m0, δ, q

0
, Λ, ρ

u1
, ρ

u2
, ρ

v1
, ρ

v2
, m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2}

It is important to note that the inference for the main parameter level relies on cluster-
specific data, while hyperparameter inference uses the entire dataset. However, as-
suming the hyperparameters m0, δ, q

0
, Λ, ρ

u1
, ρ

u2
, ρ

v1
, ρ

v2
, m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2

are fixed makes their selection non-trivial. As a general guideline, flat hyperpriors -
assigning equal probability to all potential parameter values - should be employed
when specific knowledge about hyperparameter values is unavailable. Additional
strategies for choosing hyperparameters can be found in the works of Fink (1997);
Kennedy and O’Hagan (2001); Bousquet (2008), as well as their references.
As a Bayesian parametric framework, the hierarchical GLM necessitates defining

the likelihood, prior, and hyperprior distributions at each tier of the hierarchy before
deriving posterior estimates for the parameters. This is crucial because the calculation
of marginal posterior means hinges on the joint distribution across all levels (Gelman
and Carlin, 2013). The initial formulation of the cluster-specific joint probability
(posterior ∝ likelihood × prior) based on Equation (14a) is as follows:

H

∏
h=1

f (Nj(h)|βF
j , ψj)

Nj

∏
i=1

f (Yj(hi)|βS
j , σ2

j ) p(βF
j ) p(βS

j ) p(ψj) p(σ2
j ) for cluster j

(19)
However, within the complete hierarchical framework described in Equation (14), the
baseline joint posterior for cluster j (to utilize in the Gibbs sampler) is expressed as:

H

∏
h=1

f (Nj(h)|βF
j , ψj)

Nj

∏
i=1

f (Yj(hi)|βS
j , σ2

j ) ⇒ likelihood model

× p(βF
j |βF

0 , ΣF
β0
) p(βS

j |βS
0 , ΣS

β0
) p(ψj|uF

0 , vF
0 ) p(σ2

j |uS
0 , vS

0) ⇒ prior model
× p(βF

0 |m0, δ) p(ΣF
β0
|q

0
, Λ) p(βS

0 |m0, δ) p(ΣS
β0
|q0, Λ) ⇒ hyperprior model.I

× p(uF
0 |ρu1

, ρ
u2
) p(vF

0 |ρv1
, ρ

v2
) p(uS

0 |ρu1, ρu2) p(vS
0 |ρv1, ρv2) ⇒ hyperprior model.II

(20)
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As seen in Equation (20), we note that the hyperparameter layer remains unaffected by
cluster membership j. To compute the expected aggregate claim amount E[Sj(h)|X] for
policy h in cluster j from Equation (14a), we focus on calculating themarginal posterior
means for the main parameters such as E[βF

j |Nh], E[ψj|Nh], E[βS
j |Yh1, Yh2, · · ·YhNh ],

and E[σ2
j |Yh(1), Yh(2), · · ·Yh(Nh)]. This can be also followed by constructing credibility

intervals with the 5% level (given by the lower 2.5% and upper 2.5% of the posterior
distribution for example) for Bayesian inference to estimate the likely range of true
parameter values for the cluster j.

Posterior Computation for Bayesian Inference: The conjugate hyperpriors in Equa-
tions (15) to (18) yield closed-form full conditional posterior hyperpriors, and a Gibbs
sampler, a Markov Chain Monte Carlo (MCMC) method applied to both negative bi-
nomial and log-normal GLMs, efficiently simulates the hyperparameters for posterior
estimation using these hyperpriors. The analytically derived full conditional posterior
hyperpriors (posterior hyperprior ∝ prior× hyperprior) utilized by the Gibbs sampler
are shown below:

βF
0 | m0, δ, N,XF, ΣF

β0
∼ MVN

(
δ

δ+1 m0 +
1

δ+1 βF,
ΣF

β0
δ+1

)
ΣF

β0
| q0, Λ, N,XF, βF

0 ∼ IW
(

q0 + 2, (βF
0 − βF)(βF

0 − βF)T

+δ(βF
0 − m0)(βF

0 − m0)T + Λ
)


for βF (21)

uF
0 | ρ

u1
, ρ

u2
, N,XF, vF

0 ∝
(
ψj ·

vF
0

2 · ρ
u1

)(uF
0 /2
)
−1/ Γ

(
uF

0 /2
)ρ

u2
+1

vF
0 | ρ

v1
, ρ

v2
, N,XF, uF

0 ∼ Ga
(

ρ
v1
+

uF
0j
2 , ρ

v2
+ ψj

)
 for ψj (22)

βS
0 | m0, δ, Y,XS, ΣS

β0
∼ MVN

(
δ

δ+1 m0 +
1

δ+1 βS,
ΣS

β0
δ+1

)
ΣS

β0
| q0, Λ, Y,XS, βS

0 ∼ IW
(

q0 + 2, (βS
0 − βS)(βS

0 − βS)T

+δ(βS
0 − m0)(βS

0 − m0)T + Λ
)


for βS (23)

uS
0 | ρu1, ρu2, Y,XS, vS

0 ∝
(

1
σ2

j
· vS

0
2 · ρu1

)(uS
0 /2
)
−1

/ Γ
(

uS
0 /2

)ρu2+1

vS
0 | ρv1, ρv2, Y,XS, uS

0 ∼ Ga
(

ρv1 +
uS

0
2 , ρv2 +

1
2σ2

j

)
 for σ2

j (24)

Note that the expressions in Equations (21) to (24) are directly sub-
stituted into the joint conditional posterior of all parameters specified
in Equation (20). Specifically, Equations (21) to (24) redefine the hy-
perprior terms p(βF

0 |m0, δ) p(ΣF
β0
|q

0
, Λ) p(βS

0 |m0, δ) p(ΣS
β0
|q0, Λ) and

p(uF
0 |ρu1

, ρ
u2
) p(vF

0 |ρv1
, ρ

v2
) p(uS

0 |ρu1, ρu2) p(vS
0 |ρv1, ρv2) in Equation (20). For

the main parameter term p(βF
j |βF

0 , ΣF
β0
) p(βS

j |βS
0 , ΣS

β0
) p(ψj|uF

0 , vF
0 ) p(σ2

j |uS
0 , vS

0) in
Equation (20); however, we employ the Metropolis-Hastings (MH) algorithm within
the Gibbs sampler due to the lack of conjugate priors for the primary parameters
βF

j , ψj, βS
j , σ2

j that align with our negative binomial and log-normal likelihoods.
Given the two outcome models - claim counts Nh and claim amounts Ȳh -, both

Gibbs samplers can be executed in parallel to assess Equation (14a), assuming no
covariate errors. Figure 2 illustrates the process of re-estimating the model parameters
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Figure 2: The acyclic graphical representation of the flows of the parameter updates in the hierarchical
GLM. This is a snapshot for a single iteration (M=1).

βF
j , ψj, βS

j , σ2
j for each cluster j using the two distinct Gibbs samplers. Algorithm S2 in

Part 2 of the on-line supplementary file provides a detailed description of the Gibbs
sampler tailored for modeling claim amounts Yh using the log-normal density. The
approach for claim counts Nh based on the negative binomial distribution would be
analogous and therefore omitted for brevity.
At the initialization of the Gibbs sampler, it is crucial to establish initial values

for the hyperparameters ϕ : {βS
0 , ΣS

β0
, uS

0 , vS
0 , m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2, cS

0 , dS
0 , gS

0 , hS
0},

which support the prior choices in Equations (14c) and (14e) for the log-normal GLM.
Using these values, the initial parameters for the outcome θ(old) : {β

S(old)
j , σ

2(old)
j } and

covariate w : {πS
j , λ2S

j } are determined. These parameters ultimately yield the values
for the communal hyperparameters βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 , which guide both complete
pooling and no pooling throughout the Gibbs sampling process. The two-stage Gibbs
sampler for the log-normal model is executed as follows:

[Stage.1] Sampling with Complete Pooling
The Gibbs sampler first estimates the outcome parameters θ (without clustering) using
a complete pooling approach. This aims to refine the communal hyperparameters
βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 , as outlined in Equations (23) and (24). Given the absence of
conjugate priors for the log-normal outcome, theMetropolis-Hastings (MH) algorithm
is used, with the prior serving as its proposal distribution from where the candidate
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values are drawn. Proposal samples θ(new) are generated based on these communal
hyperparameters, yielding θ(∗), which support the global mean E[Yhi|X], while re-
updating the communal hyperparameters βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 . See Algorithm S2 in
Part 2 of the on-line supplementary file.

[Stage.2] Sampling without Pooling
In this stage, with the cluster membership j already established, the goal is to generate
accurate parameter estimates θ(∗) for each cluster. These estimates are guided
by the communal hyperparameters βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 obtained from [Stage.1].
By using these communal hyperparameters, the Gibbs sampler optimizes θ

(∗)
j

for each risk cluster, minimizing within-cluster variability. The log-likelihood
value can be computed after each iteration to monitor convergence. The imple-
mentation detail is provided inAlgorithm S2 in Part 2 of the on-line supplementary file.

3.4 Clustering Sh|XF,XS with NDB Case Covariate: RQ2.Tackling NDB
errors

This section introduces a novel method for handling the NDB covariate (RQ2) based
on the hierarchical GLM framework and partial pooling for risk premium modeling.
Consistentwith the parametric Bayesian principle (Hong andMartin, 2018), we assume
that the risk clusters j = 1, · · · J have already been established. Given two covariate
matrices XF : {xF, zF} for the negative binomial outcome Nh and XS : {zS, xS} for
the log-normal outcome Ȳh respectively, we consider the case where the continuous
covariate xS contains mismeasurements, classified as Non-Differential Berkson (NDB)
measurement errors. Since the covariates for the negative binomial outcome Nh are
assumed complete, this section particularly focuses on the log-normal outcome Ȳh and
its covariate xS within the hierarchical framework. For simplicity, we will omit the
superscript s and refer to xS as simply x in the remainder of the discussion.

In Section 3.2, we briefly introduced Gustafson’s error correction method to address
model risk associated with the NDB covariate. The key idea is to estimate or sample
the parameter values for the true covariate using a specialized joint model. This
model incorporates prior knowledge of θj through the linking component f (x∗|x, θj),
which captures the cluster-wise relationship between the true covariate x and the NDB
covariate x∗ (Grace et al., 2021). The main objective of this section is to accurately
estimate the parameter values θj for the joint model.

To elaborate, the complete joint model that encompasses the outcome Ȳh, the NDB
covariate x∗, the true covariate x, and the additional covariate z is expressed as per
Equation (8) as:

f (Ȳh, x∗, x|z) = f (Ȳh|Ax∗, x, z)︸ ︷︷ ︸
outcome

× f (x∗|x, Az)︸ ︷︷ ︸
linking component

× f (x|z)︸ ︷︷ ︸
covariate

(25)

where the true covariate x is included and is unknown in real life. As outlined in
Section 3.2, the full joint distribution can be simplified to the form in Equation (25)
because the NDB covariate x∗ is uncorrelated with any other variables except the
true covariate x itself. To integrate Gustafson’s complete joint model for the NDB
covariate from Equation (25) into the hierarchical GLM framework, we redefine the
risk premiummodeling structure alongwith the priors originally specified in Equation
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(14) as below:

E[Sj(h)|XF,XS∗] = exp
(
XFβF

j + XS∗βS
j +

1
2

σ2
j
) (26a)

For Nh


βF

j | βF
0 , ΣF

β0
∼ MVN(βF

0 , ΣF
β0
)

ψj | uF
0 , vF

0 ∼ Ga(
uF

0
2

,
vF

0
2
)

(26b)

For Ȳh


βS

j | βS
0 , ΣS

β0
∼ MVN(βS

0 , ΣS
β0
)

σ2
j | uS

0 , vS
0 ∼ InvGa(

uS
0

2
,

vS
0

2
)

(26c)

For XF



xF
j(h) ∼ N(E[xF

j ], λ2F
j )

λ2F
j ∼ InvGa(cF

0 , dF
0 )

zF
j(h) ∼ Bernoulli(πF

j )

πF
j ∼ Beta(gF

0 , hF
0 )

(26d)

For XS∗



xS∗
j(h)|x

S
j(h) ∼ N(xS

j(h), T2
j )

T2
j ∼ undetermined

xS
j(h)|z

S
j(h) ∼ N(κj0 + κj1zS

j(h), λ2S
j )

κj ∼ MVN(κ̃, λ2S
j Σ̃κ)

λ2S
j ∼ InvGa(cS

0 , dS
0)

zS
j(h) ∼ Bernoulli(πS

j )

πS
j ∼ Beta(gS

0 , hS
0)

(26e)

Within the hierarchical framework established in Equation (26), bothmodels for Nh|XF

and Ȳh|XS∗ are elaborated to compute Sh|X. However, this section will focus solely
on modeling the claim amount Ȳh|XS∗ for demonstration purposes. This is based on
the assumption that the claim amount model Ȳh|XS∗ is solely influenced by the NDB
covariate x∗. For simplicity, we will denote the covariate matrix XS∗ and the continuous
covariate vector xS∗ as X∗ and x∗, respectively.

We will start by constructing the complete joint model outlined in Equation (25) to
derive the model for the claim amount Ȳh|X∗. This entails identifying previously de-
fined ‘linking component’ (also known as measurement model, termed by Gustafson,
2008) that connects x∗ to x within a hierarchical framework. We define the linking
component under the assumption that x∗ is a normally distributed random variable.

fN(x∗h |xh) =
1√

2πT2
j

exp{
−(x∗h − xh)

2

2T2
j

} (27)

where x∗h |xh = xh + ϵj ∼ N(xh,T2
j ), T2

j : V(x∗|x), ϵj ∼ N(0, σ2
jϵ), and T2

j =

σ2
x + σ2

jϵ. This suggests that the prior knowledge of the dispersion T2
j in Equation (27)

captures the cluster-specific traits of the NDB covariate, derived from the relationship
between the NDB covariate x∗ and the true covariate x. However, initially estimating
T2

j is challenging because both the true covariate variance σ2
x and the cluster-wise error

variance σ2
jϵ are unknown.
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To complete the joint model in Equation (25), we define the outcome and covariate
components (referred to as ‘exposure model’ in Gustafson’s terminology as outlined
below:

fLogN(Ȳh|xh, zh) =
1

Ȳh

√
2πσ2

j

exp{−1
2

[ lnȲh − (β j0 + β j1xh + β j2zh)

σj

]2
} (28a)

fN(xh|zh) =
1√

2πλ2
j

exp{
−(xh − {κj0 + κj1zh})2

2λ2
j

} (28b)

where Ȳh|xh, zh ∼ LogN(Xhβ j, σ2
j ), σ2

j : V(Ȳ|X), xh|zh ∼ N(κj0 + κj1zh, λ2
j ), and

λ2
j : V(x|z) as shown in Equations (26c) and (26e). Note that the three terms in

Equations (27) and (28) are essential building blocks, as they must be multiplied to
form the complete joint model specified in Equation (25). However, the two terms
in Equation (28) are largely theoretical since the true covariate x remains unknown.
Instead, more practical terms available for implementation are:

fLogN(Ȳh|x∗h , zh) =
1

Ȳh

√
2πσ̂2

j

exp{−1
2

[ lnȲh − (β̂ j0 + β̂ j1x∗h + β̂ j2zh)

σ̂j

]2
} (29a)

fN(x∗h |zh) =
1√

2πλ̂2
j

exp{
−(x∗h − {κ̂j0 + κ̂j1zh})2

2λ̂2
j

} (29b)

where Ȳh|x∗h , zh ∼ LogN(X∗ β̂ j, σ̂2
j ), σ̂2

j : V(Ȳ|X∗), x∗h |zh ∼ N(κ̂j0 + κ̂j1zh, λ̂2
j ), and

λ̂2
j : V(x∗|z) (the notation ·̂ is used to indicate that these parameters are derived from

the covariate with NDB errors, prior to correction). By multiplying these two terms -
the outcomemodel and the covariate model - in Equation (29), we obtain the incomplete
joint model in Equation (30), as per Equation (9), which serves as the practical available
solution:

f (Ȳh, x∗h | z) =
1

Ȳh(2π)σ̂jλ̂j
× exp

(
− 1

2σ̂2
j

[
(lnȲh − β̂ j0 − β̂ j2zh)− β̂ j1x∗h

]2)
× exp

(
− 1

2λ̂2
j

[
x∗h − (κ̂j0 + κ̂j1zh)

]2) (30)

However, this joint model has a notable limitation: it is developed without the true
covariate x. Fortunately, connecting the complete joint model in Equation (25) with
the incomplete joint model in Equation (30) is a straightforward process. As noted in
Section 3.2, we can obtain another incomplete model by marginalizing the complete
joint model in Equation (25) over the true covariate x using the following integral:∫

f (Ȳh, x∗h , xh | zh) dxh

=
∫
x

1
σjȲh

√
2π

exp{−1
2

[ lnȲh − (β j0 + β j1xh + β j2zh)

σj

]2
}

× 1√
2πT2

j

exp{
−(x∗h − xh)

2

2T2
j

} × 1√
2πλ2

j

exp{
−(xh − {κj0 + κj1zh})2

2λ2
j

} dxh

(31)
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The evaluation process for the integral in Equation (31) is detailed in Part 3 of the
on-line supplementary file, and the resulting solution is presented below.∫

f (Ȳh, x∗h , xh | zh) dxh

=
1

Ȳh(2π)σjTjλj

( σ2
j λ2

j T
2
j

β2
j1T

2
j λ2

j + σ2
j λ2

j + σ2
j T

2
j

)1/2

× exp

(
− 1

2

( λ2
j +T2

j

β2
j1T

2
j λ2

j + σ2
j λ2

j + σ2
j T

2
j

)[
(lnȲh − β j0 − β j2zh)−

β j1

(
x∗h
T2

j
+

κj0+κj1zh

λ2
j

)
1
T2

j
+ 1

λ2
j

]2
)

× exp

(
− 1

2

( 1
T2

j + λ2
j

)[(
x∗h − (κj0 + κj1zh)

)2])
= f (Ȳh, x∗h | zh)

(32)
In Equation (32), the unobservable true covariate term x is completely eliminated
through this marginalization process. As a result, the integral solution in Equation
(32), derived from the complete joint model, aligns with the incomplete joint model in
Equation (30). The key point is that while these two solutions originate from different
sources, they both describe the same incomplete joint model f (Ȳh, x∗h | zh) in a practical
framework, without needing to evaluate or sample the true covariate x. This allows
for directly matching the parameters of the complete and incomplete joint models.

This relationship can be formalized through a system of equations. Since the param-
eters of the incomplete joint model β̂ j0, β̂ j1, β̂ j2, σ̂2

j , λ̂2
j , κ̂j0, κ̂j1 (with the .̂ denoting the

parameter estimates based on NDB error) in Equation (30) are accessible, the param-
eters of the marginalized complete joint model β j0, β j1, β j2, σ2

j , λ2
j , κj0, κj1 in Equation

(32) can be expressed in terms of these counterparts. Solving this system of equations
could provide a guideline for adjusting parameter estimates in the presence of the
NDB covariate x∗ (RQ2). The full derivation and detailed explanation of the system of
equations are provided in Part 3 of the on-line supplementary file, and the resulting
system of equations for the complete joint model parameters is shown below.

λ2
j = λ̂2

j −T2
j (33a)

κj0 = κ̂j0 (33b)
κj1 = κ̂j1 (33c)

β j1 =
β̂ j1λ̂2

j

λ̂2
j −T2

j
(33d)

β j0 = β̂ j0 −
β̂ j1κ̂j0T

2
j

λ̂2
j −T2

j
(33e)

β j2 = β̂ j2 −
β̂ j1κ̂j1T

2
j

λ̂2
j −T2

j
(33f)

σ2
j = σ̂2

j −
β2

j1T
2
j (λ̂

2
j −T2

j )

λ̂2
j

(33g)

Our novel prior knowledge onT2
j and scaling factor ζ: As shown in Equation (33),

the adjustment of the parameter estimation in the incomplete jointmodel largely hinges
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on the value of T2
j . However, as mentioned previously, estimating T2

j in Equation
(27) is challenging until the relationship between the NDB covariate x∗ and the true
covariate x is clarified. The system of equations, particularly Equation (33a), now
reveals that T2

j can be expressed as λ̂2
j − λ2

j . In other words, V(x∗|x) = V(x∗|z)−
V(x|z). From this, several key insights (our own findings) can be drawn:

(i) λ̂2
j : V(x∗|z) is always greater than λ2

j : V(x|z) according to Equation (33a).

(ii) Given that x∗|z ∼ N(κ̂j0 + κ̂j1z, λ̂2
j ) and x|z ∼ N(κj0 + κj1z, λ2

j ),
it appears that κ̂j0 = κj0 and κ̂j1 = κj1, hence E[x∗|z] = E[x|z] according to
Equation (33b) and (33c).

(iii) Given (i) and (ii), it is safe to say that the variance of the true covariate can
be a scalar multiple of the variance of the NDB covariate: λ2

j = ζ × λ̂2
j where

0 < ζ < 1 is a scaling factor.

Equation (33a), along with the key insights (i), (ii), and (iii), establishes a crucial prior
knowledge regarding the dispersion parameter of the linking componentT2

j : V(x∗|x).
Together, they highlight that

• T2
j = λ̂2

j − λ2
j i.e., V(x∗|x) = V(x∗|z)− V(x|z) from Equation (33a).

• λ2
j = ζ × λ̂2

j i.e., V(x|z) = ζ × V(x∗|z) from the findings (i),(ii),(iii).

Ultimately, the relationships described above can be expressed through the equation:

T2
j = (1 − ζ)λ̂2

j or V(x∗|x) = (1 − ζ) V(x∗|z) (34)

which demonstrates that the dispersion parameter T2
j can be represented as a fraction

(1 − ζ) of the variance λ̂2
j : V(x∗|z). Thus, with an estimate for λ̂2

j , we can determine
T2

j using the scaling factor 0 < ζ < 1. In other words, given the availability of both x∗

and z, we can utilize λ̂2
j : V(x∗|z) as a proxy for estimating T2

j : V(x∗|x). The scaling
factor 0 < ζ < 1 reflects our confidence in the adequacy of the known covariate z as a
substitute for the unobservable true covariate x. A higher value of ζ indicates that T2

relies less on V(x∗|z). Conversely, a lower ζ enhances the dependency on the observed
variance V(x∗|z) to inform our understanding of T2.

In this paper, we suggest utilizing the insights gained about T2
j as the prior

knowledge for modeling the probability distribution of x∗|x, which elucidates the
cluster-specific relationship between the NDB covariate x∗ and the true covariate x.
Additionally, we will implement a sensitivity analysis for ζ and assess how changes in
this scaling factor impact the estimates of T2

j , in order to shed light on how the scaling
factor ζ influences the effectiveness of the error correction approach. This, in turn,
will facilitate the identification of the ideal value for T2

j to improve estimation results
impacted by the model risk associated with the NDB covariate x∗.

Gibbs sampler modification with the Gustafson correction: We propose imple-
menting the following enhancements (additional steps) to integrate the resulting
system of equations from Equation (33) into the Gibbs sampler for our hierarchical
GLMdevelopment, as described in Algorithm S2 in Part 2 of the on-line supplementary
file:

19



(a) In line 12, assuming the NDB covariate value x∗h in x∗ at observation h in the
risk cluster j, we add a step to sample the posterior parameters for the linking
component in Equation (27) and the covariate model in Equation (29b). This
sets the stage for parameter adjustment using the system of equations outlined
in line 18.

wj :



πj ∼ Beta(g0 + Σzj, h0 + nj − Σzj)

κ̂j ∼ MVN
([
(Σ̃−1

k + KT
1 K1)

−1(Σ̃−1
k κ̃ + K2)

]
, λ̂2

j

[
Σ̃−1

k + KT
1 K1

]−1
)

λ̂2
j ∼ InvGa

( c0+nj
2 , 1

2 (d0 + Σ(xj − κ̂0j + κ̂1jzj)
2)
)

T2
j = (1 − ζ)λ̂2

j
(35)

The derivations of the posterior densities for the covariate model parameters -
πj, κ̂j, λ̂2

j - are thoroughly outlined in Part 1 of the on-line supplementary file.
The scaling factor ζ is set by researchers based on the findings from the sensitivity
analysis, ensuring it aligns with the anticipated error levels in the NDB covariate
across various scenarios. A more in-depth exploration of this experiment will be
presented in the following section.

(b) In line 18, we utilize the system of equations from Equation (33) to refine the
estimated outcome parameter values θ

(∗)
j : {β

(∗)
j , σ

2(∗)
j } by using the parameter

samples from the incomplete joint model: β̂ j0, β̂ j1, β̂ j2, σ̂j, λ̂j, κ̂j0, κ̂j1, along with
the variance T2

j = (1 − ζ)λ̂2
j (where 0 < ζ < 1) of the linking component in

Equation (27). It is important to note that the parameter samples obtained
from the incomplete joint model during the Gibbs sampler must satisfy specific
criteria outlined in Equation (33). For instance, as indicated in Equation
(33a), λ̂2

j values must always exceed λ2
j values. Additionally, according to

Equation (33g), σ̂2
j must be always greater than the value given by β2

j1T
2
j λ2

j

λ̂2
j

. These
constraints ensure that the sampled parameters maintain valid relationships
with the true parameters, allowing the Gibbs sampler to filter out any samples
that do not conform to these requirements.

4 Empirical Study

4.1 Data: Local Government Property Insurance Fund

We evaluate our hierarchical GLM using an insurance dataset from the Wisconsin
Local Government Property Insurance Fund (LGPIF)1. Compiled by the actuarial
research team at the University of Wisconsin, this dataset encompasses information on
insurance coverage for H = 1, 679 policies pertaining to various government building
units acrossWisconsin. This dataset presents unique challenges, particularly regarding
unobservable heterogeneity (RQ1) in the log-normal outcome variable influenced
by the NDB covariate (RQ2). This paper employs a frequency-severity approach to

1 The Local Government Property Insurance Fund was established to provide insurance coverage
to government properties not owned by the State of Wisconsin. The Fund made insurance available
for local government property such as municipal buildings, schools, libraries and vehicles. For further
details, refer to https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
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risk premium modeling, incorporating four covariates: two for the claim count model
- a binary covariate zF (AC15: 1 or 0) and a continuous covariate xF (LnCoverage) -
and two for the claim amount model - also a binary covariate zS (Fire5: 1 or 0) and a
continuous covariate xS (lnDeduct). The outcome variables - claim count and claim
amount - are represented as Nh and Ȳh respectively. Therefore, the structure of this
dataset is outlined as follows:

Year1, · · · , Yeary

Policy (h = a): {(Na,XF
a , Ya(1), · · ·Ya(Na),X

S
a ), · · · , (Na,XF

a , Ya(1), · · ·Ya(Na),X
S
a )}

Policy (h = b): {(Nb,XF
b , Yb(1), · · ·Yb(Nb),X

S
b ), · · · , (Nb,XF

b , Yb(1), · · ·Yb(Nb),X
S
b )}

...
Policy (h = H): {(NH,XF

H, YH(1), · · ·YH(NH),X
S
H), · · · , (NH,XF

H, YH(1), · · ·YH(NH),X
S
H)}

The experiment concerns predicting the aggregate claim amount E[Sh|X] using
the frequency-severity principle to establish risk premiums for specific policies.
Predictions are categorized into six distinct entity types: city, county, school, town, village,
and miscellaneous. These classifications represent the source of the insured property,
effectively organizing the policies into six fixed risk clusters (i.e., j = 1, · · · , 6),
representing six distinct entity types. This approach allows for the incorporation of
varying risk characteristics associated with each entity type in the predictions. As
discussed in the main text, the continuous covariate xS in the claim amount model is
assumed to be influenced by NDB error.

4.2 Model Implementation

Using simulation data, we evaluate our hierarchical GLM-based approach for
correcting NDB errors against the SIMEX error correction method discussed in
Section 2.2. Both methodologies seek to simultaneously tackle two model risk issues -
heterogeneity (RQ1) and NDB covariates (RQ2) - for risk premium development.
As mentioned in Section 2.2, many existing error correction techniques rely on gold
standard data (e.g., subsets of the true covariate) to estimate the true covariate
by establishing relationships between mismeasured and true values. However, in
practical applications, access to gold standard data is often limited or nonexistent. In
this regard, this experiment aims to create methodologies that effectively address the
NDB measurement errors without the need for gold standard data, leveraging the
prior knowledge derived: T2

j = (1 − ζ)λ̂2
j from Section 3.4. We develop simulation

data to explore the relationship between the scaling factor ζ and the severity of
NDB errors, represented by the error rate Rϵx , in the NDB covariate x∗. This process
hinges on two elements: a) gold-standard datasets with no errors, and b) datasets
with controlled error rates in the NDB covariate x∗. By comparing models from
error-free data with those generated from datasets with varying NDB error levels,
we assess the efficiency of Gustafson’s correction approach, which is based on a
hierarchical GLM, in relation to the error rate Rϵx and the scaling factor 0 < ζ < 1.
Our ultimate goal is to establish a guideline for selecting an optimal scaling factor ζ

that accounts for the unknown variance T2
j = (1 − ζ)λ̂2

j when the error rate Rϵx is
known. Once established, this guideline could aid in estimating the true covariate
when gold-standard data is unavailable.
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Design of simulation data: We construct simulation datasets with different error
rates Rϵx , derived from real LGPIF data, while preserving the original LGPIF dataset as
the gold standard. These simulation datasets are generated by deliberately introducing
controlled NDB errors into the true covariate xS at different error rates Rϵx . The
method for creating NDB errors in the covariate xS∗, leading to variations in Rϵx , is
summarized in Figure 3. As defined in Section 2.2, the NDB error ϵj ∼ N(0, σ2

jϵ)

Figure 3: Design of Non-differential Berkson (NDB) Error in x∗ and the induced heteroscedasticity
varying by cluster j

is characterized by its independence from the outcome and other covariates, while
being correlated with the latent factors. However, as indicated in Equation (34), the
Gustafson correction method suggests that the variance of the linking component
V(x∗|x) can be approximated using the variance of the covariate component V(x∗|z).
Hence, to replicate this setting, we connect the NDB covariate xS∗ with the binary
covariate zS as shown in Equation (29b) by conditionally introducing the NDB errors
to the true covariate xS only when zS = 1. Additionally, as proposed by Hoffmann et al.
(2017), the cluster-specific error variance σ2

jϵ is modeled using the random correlation
−1 < ρj(x,x∗) < 1 between the true covariate xS and the NDB covariate xS∗, simulating
the NDB error structure. This method utilizes the NDB noise generation technique
introduced by Klau et al. (2021), and it is given by:

σ2
jϵ =

V(xS)

ρ2
j(xS,xS∗)

− V(xS) (36)

Therefore, the selection of cluster-specific random correlations ρ1(xS,xS∗), · · · ρJ(xS,xS∗)

can lead to variations in the error severity in the NDB covariate xS∗. We generate three
simulation datasets, based on the LGPIF dataset, corresponding to different error rate
Rϵx scenarios in xS∗, with error rates set at 1%, 10%, and 40%2. The definition of error
rate that we use is:

Rϵx =
ΣH

h=1|xS∗
h − xS

h |
ΣH

h=1xS
h

:


0.01 (1%) error rate in xS∗ for dataset A.
0.1 (10%) error rate in xS∗ for dataset B.
0.4 (40%) error rate in xS∗ for dataset C.

(37)

2 We raise a question of whether an NDB covariate with an excessive error rate (e.g., > 50%) is
worth including at all, suggesting that it might be better to exclude such a covariate.
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Candidate models: As noted earlier, our goal is to determine the optimal scaling
factor ζ, which varies depending on the error rate Rϵx - 1%, 10%, 40% - in the NDB
covariate xS∗. The performance of the hierarchical GLM, with the corresponding
optimal ζ for each error rate, is then compared to that of the SIMEX method. Figure 4
presents the development process for four distinct risk premium models, facilitating a
comprehensive comparison between the Gustafson correction method and SIMEX
within the Bayesian hierarchical GLM and traditional GLM frameworks. Each model,

Figure 4: Four candidate models - (A) to (D) - for risk premium development. Specifically,
Model(B),(C),(D) need to be thoroughly compared across various error rates Rϵx - 1%, 10%, 40%
- in the NDB covariate x∗.

labeled (A) through (D), is designed to systematically assess the impact of different
error rates in the NDB covariate xS∗. Model(A), built using the true covariates
within the hierarchical GLM framework, serves as the gold standard and provides a
performance benchmark. This benchmark is critical for evaluating the effectiveness of
the correction methods.In contrast, Model(B) highlights the detrimental effect (model
risk) of using the NDB covariate xS∗ in the same hierarchical GLM framework. It is
essential to compare this error-prone Model(B) with Model(C), which incorporates
Gustafson’s correction, and Model(D), which applies the SIMEX correction with
conventional GLM. The purpose of this comparison is to assess how well these
correction methods mitigate the negative effects of NDB errors in the covariate xS∗.

Choice of hyperparameters: To run the Gibbs sampler for the hierarchical models -
Model(A),(B),(C) - in Figure 4, flat priors have been selected on the hyperparameters
ϕ : {m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2, c0, d0, g0, h0} as outlined in Equations (21) through
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(24) and Equation (26):

{m0 = βF
GLM, m0 = βS

GLM, δ = 0.01, δ = 0.01} for βF
0 and βS

0

{q
0
= p + 2, q0 = p + 2, Λ = ΣF

GLM, Λ = ΣS
GLM} for ΣF

β0
and ΣS

β0

{ρ
u1

= 0.125, ρu1 = 0.125, ρ
u2

= 1.5, ρu2 = 1.5} for uF
0 and uS

0

{ρ
v1

= 8, ρv1 = 8, ρ
v2

= 1, ρv2 = 1} for vF
0 and vS

0

{cF
0 = 0.5, cS

0 = 0.5, dF
0 = 0.5, dS

0 = 0.5} for λ2F and λ2S

{gF
0 = 0.5, gS

0 = 0.5, hF
0 = 0.5, hS

0 = 0.5} for πF and πS

(38)

where βF
GLM, βS

GLM denote the naïve GLM coefficient vectors, serving as initial values
for the Gibbs sampler. The variable p represents the number of covariates in the
model, while ΣF

GLM, ΣS
GLM are the variance-covariance matrices obtained from the

naïve GLM output. The values specified in Equation (38) have been meticulously
chosen based on preliminary findings from a trial run of the Gibbs sampler with
randomly assigned starting values. While using inappropriate initial values may lead
to less efficient posterior samples, it can still yield some samples that shed light on the
true posterior distribution behavior. By employing the Method of Moments technique
(Pearson, 1936), we can gain insights into the nature of these posterior samples,
guiding our selection of starting values to improve the Gibbs sampler’s efficiency.

4.3 Model Validation

To assess the effectiveness of the proposedmodels in the following section, themethods
outlined below will be utilized:

• LPPD : To assess predictive performance in the Bayesian context, we can em-
ploy the Log Pointwise Predictive Density (LPPD) (McElreath, 2018), which
captures model uncertainty through the complete posterior distribution. LPPD
is calculated by averaging the log-predictive likelihood for each data point across
posterior samples θ1, · · · θM, as follows:

LPPD(Ȳ1, · · · , ȲH,X1, · · · ,XH, θ) =
H

∑
h=1

ln
( 1

M

M

∑
m=1

L(θm; Ȳh,Xh)
)

(39)

The likelihood function takes values from 0 to 1 (since it is a probability
function), resulting in LPPD values from −∞ to 0. Multiplying LPPD by -2
yields values similar to Mean Squared Error (MSE), where a perfect fit equals
zero and a poor fit results in a large positive value (Cousineau and Allan, 2015).
Note that LPPD emphasizes predictive performance. This is because LPPD not
only assesses how well the model fits the training data but also evaluates its
generalization to new, unseen data by incorporating parameter uncertainty from
the full posterior distribution (McElreath, 2018).

• DKL : The Kullback-Leibler Divergence DKL quantifies how one probability dis-
tribution differs from another by comparing their entropies H[.] (Anderson and
Burnham, 2004). Among competing models, the one with the minimized DKL is
preferred. For our predictive model L(θ; Ȳh,X) and target model P(θtrue; Ȳh,X),
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DKL(P, L) = H[P, L]− H[P] for our model can be computed as:

DKL = −
H

∑
h=1

ln
(

L(θ; Ȳh,Xh)
)
·P(θtrue; Ȳh,Xh)+

H

∑
h=1

ln
(

P(θtrue; Ȳh, Xh)
)
·P(θtrue; Ȳh,Xh)

(40)
where ∑H

h=1 ln
(

L(θ; Ȳh,Xh)
)

is the LPPD discussed previously. We aim to
identify which candidate model achieves a larger decrease in DKL and the extent
of that reduction.

• SSPE + SAPE : Prediction performance can be evaluated by measuring the
discrepancy between predicted and observed values using the Sum of Square
Error (SSE) criterion. Specifically, the Sum of Square Prediction Error (SSPE)
and the Sum of Absolute Prediction Error (SAPE) can be used to assess different
facets of accuracy. SSPE focuses on squared differences between predicted values
g(Xh) and actual values Ȳh, while SAPE calculates the absolute differences across
all observations h = 1, · · · H:

SSPE:
H

∑
h=1

(
g(Xh)− Ȳh

)2 (41a)

SAPE:
H

∑
h=1

|g(Xh)− Ȳh| (41b)

SSPE and SAPE assess prediction performance differently. SSPE penalizes large
deviations more heavily, while SAPE treats all deviations equally by focusing on
absolute differences. Given the skewed nature of our outcome Ȳh, where outliers
may be common, SAPE is preferred. This approach considers each data point
equally important, making it unnecessary to disproportionately penalize larger
errors, particularly whenwe are concernedwith potential outliers (Parodi, 2023).

• CTE : The final aspect of this validation process is assessing risk within the
predictive distributions, specifically through the Conditional Tail Expectation
(CTE), defined as follows:

CTE(q) = E[ Ȳh|Ȳh > Qq(Ȳh) ], q ∈ (0, 1) (42)

where Qq(Ȳh) is the qth quantile of the predictive distribution. The CTE analyzes
the tail behavior of predictive distributions to provide insights into expected
aggregate losses (risk premium) under extreme conditions (Brazauskas et al.,
2008). A lower CTE value indicates the model predicts less severe losses in
extreme scenarios.

We have outlined several criteria for model validation, including: 1) LPPD, 2) DKL, 3)
SSPE, 4) SAPE, and 5) CTE. In the upcoming section, these metrics will be used to
evaluate the performance and accuracy of our proposed models in predicting risk
premiums.
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4.4 Results with LGPIF (H = 1, 679)

We constructed a training set with 1,276 records for modeling and a test set with 403
records for validation. As shown in Figure 4, Model(A) serves as the gold standard,
Model(B) represents a flawed model that reflects real-world risks, Model(C) applies
the Gustafson correction, and Model(D) utilizes the SIMEX correction within a tradi-
tional GLM framework. We systematically evaluated the performance of Models(B),
(C), and (D) across three scenarios with varying error rates Rϵx = 0.01, Rϵx = 0.1,
and Rϵx = 0.4 in the NDB covariate xS∗. Additionally, we compared the effects of
the scaling factor 0 < ζ < 1 in Models(C) and (D) within each error rate scenario.
For each hierarchical GLM model, Model(A), (B), (C) shown in Figure 4, we ran
two independent Markov chains with M = 60, 000 iterations of Gibbs sampling, fol-
lowing Algorithm S2 in Part 2 of the on-line supplementary file. Since Model(A)
is the gold standard, the focus was on comparing Models(B), (C), and (D) across
datasets with error rates Rϵx = 0.01, Rϵx = 0.1, and Rϵx = 0.4. Model(C) employed
the Gustafson correction with scaling factors ζ = {0.1, · · · , 0.9}. Within each Gibbs
sampling iteration in Model(A), (B), and (C), a Metropolis-Hastings (MH) technique
was embedded to update the outcome parameters - βF

j , ψj, βS
j , σ2

j - as conjugate priors
were not available. The initial 10,000 iterations were treated as burn-in and discarded.
Convergence was confirmed using the Brooks-Gelman statistic (Brooks and Gelman,
1998), ensuring adequate mixing of the chains. For Model(D), a conventional GLM,
parameters were estimated using theMaximum Likelihood Estimation (MLE)method.

The aggregate claim amount model f (Sh|XF,XS, ξh, ψ, µh, σ2), representing the risk
premium function, is derived by integrating these two gold standard models through
Monte Carlo simulation: the i) estimated claim count model f (Nh|XF, ξh, ψ) and the ii)
estimated claim amountmodel f (Ȳh|XS, µh, σ2) (Detailed results for each gold standard
model are provided in Part 4 of the on-line supplementary file). The integration process
begins by simulating a claim count sample Nh for a policy h. This sample is drawn from
the claim count model f (Nh|XF, ξh, ψ). Subsequently, for each drawn claim count Nh, a
corresponding set of claim amount samples is generated. These samples are obtained
from the claim amount model f (Ȳh|XS, µh, σ2). This iterative process is repeated
numerous times, allowing for the construction of a comprehensive distribution of
aggregate claims Sh for a policy h (Scollnik, 2001). The resulting predictive distribution

Figure 5: Model(A) Result V: A histogram of the overall expected aggregate claim amount on a log scale,
overlaid with the individual cluster-wise distributions lnSh|XF,XS.
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of the aggregate claim amountmodeling is illustrated in Figure 5. This figure compares
the cluster-wise distributions of the aggregate claim amount Sh on a log scale with the
overall distribution of Sh. This comparison facilitates the evaluation of each cluster’s
risk profile and its impact on the total aggregate claim. Significantly, the distribution
for ‘Cluster 2’ (shown as a dotted blue curve) closely resembles the shape of the overall
distribution, indicating a substantial contribution to the overall risk premium.
In what follows, we will examine the results of Models (A), (B), (C), and (D),

focusing exclusively on the claim amount component Ȳh|XS∗ ∼ LogN(µh =
ln
(
E[Ȳh|XS∗]

)
− 1

2 σ2
j , σ2

j ) (log-normal GLM). As outlined in Section 4.2, we account
for scenarios where the covariates associated with the negative binomial outcome
Nh are complete, while the continuous covariate XS for the claim amount outcome
is subject to Non-Differential Berkson (NDB) measurement errors. Our focus will
center on the log-normal outcome Ȳh and its associated NDB covariate XS∗ within the
hierarchical modeling framework.

Comparisons [Model(B) vs Model(C) vs Model(D)]: As illustrated in Fig-
ure 4, this experiment evaluates which candidate models, Models (C) and (D), yield
results closest to the gold standard, Model (A). Specifically, we compare Model
(C), utilizing the Gustafson correction, with Model (D), which employs the SIMEX
correction. Models (A), (B), and (C) are developed within the Bayesian hierar-
chical GLM framework, while Model (D) is constructed in the conventional GLM
framework, providing a frequentist perspective. Additionally, a sensitivity analysis
for the claim amount model is conducted to determine the optimal scaling factor
value ζ, leveraging the prior knowledge: T2

j = (1 − ζ)λ̂2
j . Table 2 presents a com-

Table 2: Comparison of the scale parameter σ2
j estimates from the hierarchical log-normal GLMs in

Model(A),(B), and (C) across risk clusters j = 1, · · · , 6
Model Scale Parameter estimates σ2

j

Model(A)
Gold

standard

σ2
j=1 3.35 with 95% Credible Interval: {1.04 ≤ σ2

j=1 ≤ 9.85}
σ2

j=2 3.44 with 95% Credible Interval: {1.05 ≤ σ2
j=2 ≤ 10.01}

σ2
j=3 3.22 with 95% Credible Interval: {1.02 ≤ σ2

j=3 ≤ 9.48}
σ2

j=4 3.40 with 95% Credible Interval: {1.04 ≤ σ2
j=4 ≤ 9.78}

σ2
j=5 3.40 with 95% Credible Interval: {1.23 ≤ σ2

j=5 ≤ 10.13}
σ2

j=6 3.23 with 95% Credible Interval: {1.01 ≤ σ2
j=6 ≤ 9.65}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model(B)
Before

correction

σ2
j=1 3.36 3.38 3.59

σ2
j=2 3.44 3.51 3.65

σ2
j=3 3.26 3.38 3.46

σ2
j=4 3.43 3.58 3.67

σ2
j=5 3.44 3.57 3.65

σ2
j=6 3.28 3.45 3.51

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model(C)
After

correction

σ2
j=1 3.28 3.30 3.33 3.22 3.32 3.56 3.36 3.34 3.31

σ2
j=2 3.37 3.38 3.41 3.29 3.46 3.48 3.46 3.45 3.33

σ2
j=3 3.19 3.22 3.34 3.26 3.26 3.57 3.24 3.23 3.21

σ2
j=4 3.27 3.31 3.48 3.31 3.35 3.61 3.41 3.38 3.36

σ2
j=5 3.10 3.29 3.49 3.25 3.35 3.57 3.42 3.38 3.35

σ2
j=6 3.11 3.29 3.33 3.39 3.32 3.57 3.26 3.25 3.19

LPPD (×103) -16.79 -16.77 -16.78 -16.41 -16.39 -16.41 -16.19 -16.20 -16.21
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parison of the marginal posterior means of the scale parameter σ2
j obtained from

Model(A), (B), and (C). Each hierarchical GLM describes the log-normal outcome:
Ȳh|XS ∼ LogN(µh = ln

(
E[Ȳh|XS]

)
− 1

2 σ2
j , σ2

j ). Additional comparisons of the
marginal posterior means of the GLM coefficients β j are provided in Tables 3 and 4,
which also include results from the sensitivity analysis on the optimal scaling factor ζ.

We first examine Model(B), which incorporates the NDB covariate xS∗, introducing
model risk. Our investigation focuses on how the parameter estimates - the scale
parameter σ2 and the GLM coefficients β - vary with increasing error rates Rϵx , re-
flecting different degrees of model risk. As seen in Tables 2, 3, and 4, estimates
from Model(B) consistently show an upward trend in response to higher error rates
(Rϵx : 0.01 → Rϵx : 0.40). Both the scale parameter σ2 and the GLM coefficients β0, β2
(intercept and binary covariate) inflate, while β1 (linked to xS∗) decreases across all
clusters j = 1, · · · , 6. This pattern aligns with the expectation that as the error rate
Rϵx increases, the added noise results in greater variability in the outcomes, causing
a proportional rise in the scale parameter σ2. The consistent directional shift in the
coefficient β1, tied to the NDB covariate xS∗, indicates that xS∗ follows a systematic
trend characteristic of NDB error. Turning to Model(C), which applies the Gustafson

Table 3: Comparison of the GLM intercept β0j estimates from the hierarchical log-normal GLMs (claim
amount component) in Model(A),(B), and (C) across risk clusters j = 1, · · · , 6

Model Intercept Parameter estimates β j0

Model(A)
Gold

standard

β0j=1 7.18 with 95% Credible Interval: {4.98 ≤ β0j=1 ≤ 9.32}
β0j=2 7.69 with 95% Credible Interval: {5.50 ≤ β0j=2 ≤ 9.71}
β0j=3 6.37 with 95% Credible Interval: {4.11 ≤ β0j=3 ≤ 8.86}
β0j=4 7.36 with 95% Credible Interval: {3.83 ≤ β0j=4 ≤ 10.52}
β0j=5 7.14 with 95% Credible Interval: {3.83 ≤ β0j=5 ≤ 10.32}
β0j=6 7.36 with 95% Credible Interval: {4.87 ≤ β0j=6 ≤ 10.46}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model(B)
Before

correction

β0j=1 7.28 8.89 9.40
β0j=2 7.72 9.14 9.51
β0j=3 6.44 8.82 9.28
β0j=4 7.33 9.28 9.52
β0j=5 7.12 9.37 9.57
β0j=6 7.46 9.11 9.72

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model(C)
After

correction

β0j=1 6.08 7.24 7.29 6.86 7.28 8.03 7.21 7.09 6.81
β0j=2 7.35 8.07 8.21 7.37 8.12 8.43 7.56 7.39 7.24
β0j=3 5.20 6.07 6.21 5.93 6.19 7.25 6.35 6.11 5.87
β0j=4 6.40 7.33 7.87 6.91 7.53 8.16 7.39 7.14 6.73
β0j=5 6.52 6.95 7.20 6.23 6.94 7.28 7.18 7.15 7.11
β0j=6 6.20 7.40 7.48 6.87 7.27 7.67 7.39 7.15 6.42

LPPD (×103) -16.79 -16.77 -16.78 -16.41 -16.39 -16.41 -16.19 -16.20 -16.21

correction technique, we observe that as the error rate Rϵx increases, the parameter esti-
mates from Model(C) progressively align with those of the gold standard, Model(A),
with the values falling within the credible intervals established by Model(A). This
alignment is a promising indicator of our correction method’s effectiveness. Note that
a key aspect of our error correction technique is the selection of an optimal scaling
factor ζ. Table 2, 3 and 4 highlight that Model(C) performs best within the scaling
factor range 0.5 ≤ ζ ≤ 0.7. This suggests that the relationship between the conditional
error variance terms - V(x∗|x) and V(x∗|z) - is largely captured in this window of ζ,
as reflected by the prior knowledge: T2

j = (1 − ζ)λ̂2
j in Equation (34).
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Table 4: Comparison of the GLM slope β1j, β2j estimates from the hierarchical log-normal GLMs (claim
amount component) in Model(A),(B), and (C) across risk clusters j = 1, · · · , 6.

Model Slope Parameter estimates β j1; β j2

Model(A)
Gold

standard

β1j=1 0.31 with 95% Credible Interval: {0.03 ≤ β1j=1 ≤ 0.62}
β1j=2 0.24 with 95% Credible Interval: {−0.04 ≤ β1j=2 ≤ 0.59}
β1j=3 0.43 with 95% Credible Interval: {0.09 ≤ β1j=3 ≤ 0.67}
β1j=4 0.33 with 95% Credible Interval: {−0.10 ≤ β1j=4 ≤ 0.84}
β1j=5 0.34 with 95% Credible Interval: {−0.12 ≤ β1j=5 ≤ 0.89}
β1j=6 0.29 with 95% Credible Interval: {−0.08 ≤ β1j=6 ≤ 0.67}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model(B)
Before

correction

β1j=1 0.29 0.06 0.01
β1j=2 0.24 0.04 0.01
β1j=3 0.42 0.07 0.01
β1j=4 0.32 0.07 0.01
β1j=5 0.34 0.06 0.01
β1j=6 0.28 0.06 0.01

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model(C)
After

correction

β1j=1 0.56 0.38 0.21 0.38 0.36 0.27 0.34 0.38 0.42
β1j=2 0.38 0.26 0.11 0.34 0.27 0.20 0.21 0.33 0.38
β1j=3 0.83 0.56 0.32 0.52 0.48 0.39 0.43 0.47 0.51
β1j=4 0.47 0.32 0.28 0.41 0.35 0.26 0.37 0.42 0.48
β1j=5 0.81 0.41 0.29 0.34 0.31 0.28 0.36 0.39 0.45
β1j=6 0.55 0.40 0.31 0.31 0.26 0.19 0.31 0.34 0.38

Model(A)
Gold

standard

β2j=1 0.24 with 95% Credible Interval: {−0.55 ≤ β2j=1 ≤ 1.01}
β2j=2 0.21 with 95% Credible Interval: {−0.47 ≤ β2j=2 ≤ 0.82}
β2j=3 0.12 with 95% Credible Interval: {−0.67 ≤ β2j=3 ≤ 0.94}
β2j=4 0.08 with 95% Credible Interval: {−1.06 ≤ β2j=4 ≤ 0.59}
β2j=5 -0.12 with 95% Credible Interval: {−1.05 ≤ β2j=5 ≤ 0.60}
β2j=6 0.17 with 95% Credible Interval: {−0.63 ≤ β2j=6 ≤ 0.67}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model(B)
Before

correction

β2j=1 0.27 0.31 0.38
β2j=2 0.24 0.34 0.40
β2j=3 0.13 0.32 0.40
β2j=4 0.09 0.17 0.22
β2j=5 0.10 0.12 0.17
β2j=6 0.12 0.23 0.36

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model(C)
After

correction

β2j=1 0.17 0.26 0.29 0.19 0.28 0.31 0.25 0.23 0.19
β2j=2 0.23 0.27 0.31 0.18 0.23 0.28 0.24 0.21 0.18
β2j=3 0.07 0.11 0.19 0.07 0.12 0.17 0.19 0.17 0.15
β2j=4 0.01 0.03 0.11 0.11 0.13 0.18 0.10 0.07 0.02
β2j=5 -0.11 -0.14 0.16 -0.21 -0.15 -0.07 -0.16 -0.19 -0.21
β2j=6 0.12 0.19 0.21 0.08 0.17 0.21 0.16 0.12 0.09

LPPD (×103) -16.79 -16.77 -16.78 -16.41 -16.39 -16.41 -16.19 -16.20 -16.21

The challenge, however, lies in identifying the optimal range of ζ values for a specific
error rate Rϵx in the covariate x∗. Our findings from this LGPIF experiment show
that when ζ deviates from the 0.5 ≤ ζ ≤ 0.7 range, Model(C)’s corrections become
ineffective, often performing worse than the erroneous Model(B). This worsens as the
error rate Rϵx increases, which is expected, because a higher error rate implies greater
bias, making it much harder for the model to correct. Interestingly, our experimental
results suggest that the optimal ζ range can be effectively identified by evaluating
the LPPD for each modeling result, as the LPPD reflects the degree of predictive
performance. This reflects how closely the estimated parameter values align with the
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gold standard. Therefore, by searching for the modeling results with the maximum
LPPD, we can systematically pinpoint the optimal ζ, leading to enhanced correction
performance without requiring access to gold standard data.

Our LGPIF experimental results are further analyzed in Figure 6 and Table 5 for
the error rate Rϵx = 0.01, Figure 7 and Table 6 for the error rate Rϵx = 0.10, and
Figure 8 and Table 7 for the error rate Rϵx = 0.40. For comparisons, Tables 5, 6, 7
present (i) LPPD, (ii) SSPE, (iii) SAPE, and (iv) Kullback-Leibler Divergence (DKL)
for the individual claim amount model f (Ȳh|XS) as well as CTEs for the aggregate
claim amount model f (Sh|XF,XS) within each error rate scenario. The results from
Model(D), traditional GLM with SIMEX correction, are also included. Figures 6,7,8
display histograms of the testing set across all clusters j = 1, · · · , 6, comparing the
out-of-sample prediction curves from Model(C) (blue) against the gold standard
Model(A) (red) and the erroneous Model(B) (dotted). The prediction curve for
Model(D) is omitted due to its subpar performance.
As expected, Tables 5, 6, and 7 show that the gold standard model, Model(A),

achieves the highest LPPD value of −16, 155.90, while the naïve model with model
risk, Model(B), consistently exhibits the lowest LPPD values across datasets with vary-
ing error rates. Note that the LPPD for the GLM-based SIMEX method is unavailable,
as LPPD calculations require posterior densities. Applying Gustafson corrections
in Model(C) produces LPPD values of −16, 770.85 with ζ = 0.6 for an error rate
0.01, −16, 370.44 with ζ = 0.6 for an error rate 0.10, and −16, 188.31 with ζ = 0.5
for an error rate 0.40, closely aligning with the LPPD of the error-free gold standard
model, Model(A). This result aligns with other metrics, such as SSPE and SAPE, across
different error rate scenarios. The erroneous model with model risk, Model(B), con-
sistently exhibits the highest SSPE and SAPE values, reflecting its weaker predictive
performance. In contrast, the Gustafson correction model, Model(C), achieves signifi-
cantly lower SSPE and SAPE values, closely approximating those of the gold standard
model, Model(A). Additionally, as the error rate increases, Model(C) increasingly
outperforms the SIMEX method, Model(D), underscoring its robustness.
The effectiveness of the Gustafson correction technique is further substantiated by

DKL, which quantifies the distance between the estimated distribution produced by
Model(B) and Model(C) and the target (gold standard) distribution, Model(A). A
smaller DKL value indicates a more accurate error correction. Notably, as shown in
Tables 5, 6, and 7, within the range of 0.5 ≤ ζ ≤ 0.7, Model(C) exhibits a reduction in
DKL from 0.61 to 0.33 as the error rate increases from Rϵx = 0.01 to Rϵx = 0.40. This
trend suggests that the Gustafson correction effectively mitigates the impact of the
NDB covariate, thereby enhancing the model’s fidelity to the true data distribution as
error rates rise. It is important to note that Model(D), a GLMwith SIMEX, is excluded
from this analysis due to its frequentist nature, which does not yield the LPPD values
necessary for this divergence assessment.
In the Conditional Tail Expectation (CTE) analysis, the predictive distribution

generated by the Gustafson correction in Model(C) exhibits thicker tails compared
to Model(D), with higher CTE values of CTE 95% = 269, 656 at Rϵx = 0.01 ,
CTE 95% = 281, 371 at Rϵx = 0.10, CTE 95% = 278, 099 at Rϵx = 0.40. Notably,
the CTE values of Model(C) do not demonstrate a consistent trend across the varying
error rate scenarios. However, the higher CTE values in Model(C) suggest that while
the Gustafson correction enhances the model’s overall predictive accuracy, the underly-
ing hierarchical GLMmay effectively address extreme values or outliers. This indicates
a potential improvement in the model’s applicability in contexts where accurately
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capturing outliers is essential.
Upon inspection of Figures 6, 7, and 8, it is clear that the Gustafson correction

(Model(C), blue curve) effectively mitigates the model risk from the NDB covariate
(Model(B), dotted curve) because the corrected hierarchical GLM curves (Model(C),
blue) align closely with that of the gold standard curve (Model(A), red) across all
clusters j = 1, · · · 6, particularly in scenarios with higher error rates: Rϵx = 0.40 in
Figure 8. However, a slight gap still persists between Models(A) and (C), indicating
that the correction, while beneficial, has limitations.

In contrast, Model(B) demonstrates significant distortions, including extreme vari-
ations and multiple peaks that worsen with increasing error rates. Although both
Models(B) and (C) are derived from the same LGPIF dataset, the Gustafson correction
in Model(C) appears to effectively restore the properties of the original distribution,
particularly pronounced at higher error rates such as Rϵx = 0.40. This improvement is
observed with scaling factors in the range 0.5 ≤ ζ ≤ 0.7, suggesting that the relation-
ship between V(x∗|x) and V(x∗|z) in the LGPIF dataset is characterized by this range
of ζ. Consequently, further investigation may be warranted using different datasets
where V(x∗|x) and V(x∗|z) have relationships defined by different range of scaling
factors.
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ζ = 0.6
Rϵx= 0.01 Feature

Model(A):
Gold

standard

Model(B):
with

Model Risk

Model(C)
Gustafson
correction

Model(D):
SIMEX

correction

f (lnȲh|XS)

LPPD -16,155.90 -17,437.59 -16,770.85 -
SSPE 784.52 817.16 798.89 816.80
SAPE 415.21 422.53 419.83 421.60
DKL 0.00 1.28 0.61 -

f (lnSh|XF,XS)

CTE 10% 48,782.40 42,995.64 49,599.75 45,237.36
CTE 50% 81,593.58 89,103.11 82,218.10 78,736.26
CTE 90% 209,761.38 226,599.19 196,273.16 121,342.20
CTE 95% 274,996.31 260,859.33 269,656.52 170,487.20

Table 5: Comparison of predictive performances among three Bayesian hierarchical GLMs—Model (A),
(B), and (C)—and the GLM-based SIMEX, based on the LGPIF data with a covariate error rate
of Rϵx= 0.01 and a scaling factor of ζ = 0.6.

Figure 6: Curve alignment under the condition of ‘error rate Rϵx = 0.01’ with ζ = 0.6: Cluster-wise
histograms (for j = 1, · · · 6) of the observed claim amount Yh on a log scale and the out-of-
sample predictive densities obtained from Model(A), (B), and (C)

32



ζ = 0.6
Rϵx= 0.10 Feature

Model(A):
Gold

standard

Model(B):
with

Model Risk

Model(C)
Gustafson
correction

Model(D):
SIMEX

correction

f (lnȲh|XS)

LPPD -16,155.90 -17,731.03 -16,390.44 -
SSPE 784.52 840.02 795.07 892.72
SAPE 415.21 430.22 418.68 439.92
DKL 0.00 1.57 0.41 -

f (lnSh|XF,XS)

CTE 10% 48,782.40 50,222.22 49,764.81 45,846.51
CTE 50% 81,593.58 84,118.93 83,595.88 73,558.45
CTE 90% 209,761.38 233,257.58 221,359.16 129,851.81
CTE 95% 274,996.31 295,325.47 281,371.20 164,324.93

Table 6: Comparison of predictive performances among three Bayesian hierarchical GLMs—Model (A),
(B), and (C)—and the GLM-based SIMEX, based on the LGPIF data with a covariate error rate
of Rϵx= 0.10 and a scaling factor of ζ = 0.6.

Figure 7: Curve alignment under the condition of ‘error rate Rϵx = 0.10’ with ζ = 0.6: Cluster-wise
histograms (for j = 1, · · · 6) of the observed claim amount Yh on a log scale and the out-of-
sample predictive densities obtained from Model(A), (B), and (C)
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ζ = 0.5
Rϵx= 0.40 Feature

Model(A):
Gold

standard

Model(B):
with

Model Risk

Model(C)
Gustafson
correction

Model(D):
SIMEX

correction

f (lnȲh|XS)

LPPD -16,155.90 -18,058.43 -16,188.31 -
SSPE 784.52 861.44 793.50 954.04
SAPE 415.21 437.73 417.36 532.72
DKL 0.00 1.94 0.33 -

f (lnSh|XF,XS)

CTE 10% 48,782.40 54,671.42 49,155.18 54,716.98
CTE 50% 81,593.58 89,824.04 84,038.84 75,489.60
CTE 90% 209,761.38 233,321.29 223,497.02 174,000.54
CTE 95% 274,996.31 295,939.47 278,098.80 186,720.87

Table 7: Comparison of predictive performances among three Bayesian hierarchical GLMs—Model (A),
(B), and (C)—and the GLM-based SIMEX, based on the LGPIF data with a covariate error rate
of Rϵx= 0.40 and a scaling factor of ζ = 0.5.

Figure 8: Curve alignment under the condition of ‘error rate=0.40’ with ζ = 0.5: Cluster-wise histograms
(for j = 1, · · · 6) of the observed claim amount Yh on a log scale and the out-of-sample predictive
densities obtained from Model(A), (B), and (C)
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5 Discussion

This paper proposes a novel hierarchical GLM framework to estimate insurance risk
premium with the incorporation of the heterogeneity and NDB covariate, outlined in
research questions RQ1 and RQ2. Our proposedmodel presents overall good empirical
performances in retrieving the original error-free parameter values, which suggests
that it is worth considering the Gustafson correction boosted with the hierarchical
Bayesian framework to avoid the impact of the NDB errors. Ultimately, we seek to
develop practical guidelines for selecting the optimal scaling factor with the Gustafson
correction in the absence of gold standard data.

RegardingRQ1, we initially analyzed the partial pooling effect of a hierarchical GLM
as a solution for addressing heterogeneity. Given the predetermined risk clusters j =
1, · · · , 6, we observed the highest LPPD value from the gold standardmodel, indicating
an improvement in predictive power compared to other conventional GLMmodels.
This suggests that the effect of heterogeneity is effectively mitigated. For RQ2, we
expanded the model by incorporating Gustafson correction into the hierarchical GLM
framework to mitigate the model risk linked to the NDB covariate. Throughout our
experiments, we demonstrated the impact of the model risk when using a naïve model
built on the NDB covariate. This model misspecification led to significant distortion
in the spread and created extreme modality in the predictive distribution. In this
context, we showed how applying the Gustafson correctionwithin the same framework
effectively ‘restores’ the predictive distribution’s original spread and characteristics.
The NDB error mitigation was further confirmed by additional performance metrics
such as LPPD, SSPE, SAPE, DKL, etc.
A key aspect of our hybrid modeling framework to handle NDB covariates is the

choice of scaling factor ζ, which our findings demonstrate to be crucial in error cor-
rection. Specifically, ζ moderates the contribution of λ̂2 : V(x∗|z) to explaining
T2 :V(x∗|x), guiding adjustments of the erroneous parameters. Notably, we found
that both the scaling factor ζ and the error rates Rϵx in the NDB covariate are crucial,
requiring careful calibration for optimal results. To determine the ideal ζ, we have de-
vised a rule of thumb relying on the maximum LPPD value, providing a path forward
without access to gold-standard data. For the error rates Rϵx in the NDB covariate, our
experimental results indicate that the hierarchical GLM equipped with the Gustafson
correction performs consistently well across different error rate scenarios, particularly
within the range of scaling factor such as 0.5 ≤ ζ ≤ 0.7. However, these numbers
suggest a relatively strong degree of relation between λ̂2 : V(x∗|z) and T2 :V(x∗|x),
as reflected by the prior knowledge: T2

j = (1 − ζ)λ̂2
j in Equation (34). Furthermore,

the optimal range of ζ appears to be dataset-dependent, as it is likely unique to each
one. Varying relationships among covariates can lead to distinct ranges for ζ. Indeed,
we have yet to explore other datasets where this degree of relation is characterized
by a different range of ζ. It can be important to investigate how the performance of
the correction varies across different error rate scenarios when the optimal ζ is ranged
differently. This leaves room for further research to fully understand the implications
of ζ on model performance.

5.1 Future Work

There are several concerns regarding our hierarchical GLM risk premium modeling
equipped with Gustafson correction.
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(a) Dimensionality: In our current analysis, we have limited our focus to two
covariates - one binary and one continuous - for the sake of simplicity. However,
it is imperative to explore more intricate datasets that encompass a greater
variety of covariates. In the Bayesian framework, as the number of covariates
increases, the complexity of the likelihood components - essentially the models
representing these covariates - also expands. This escalation may introduce
additional noise or unobserved structures that could compromise the stability
of the resulting predictive distributions (Gelman and Hill, 2007). Therefore,
conducting further investigations into the challenges posed by high-dimensional
covariates within the hierarchical GLM framework presents an opportunity for
enhancing model robustness and accuracy.

(b) Reliability of risk clusters: As a parametric Bayesian approach, fixed risk
clusters in the hierarchical GLM framework have several downsides that merit
further exploration. Above all, if the predetermined risk clusters are not entirely
accurate, this can lead to additional bias and possibly reduce model validity
(Gelman and Carlin, 2013). However, when the fixed clusters are indeed
correct, the partial pooling mechanism within the hierarchical GLM framework
demonstrates its superiority, effectively leveraging the structure of the data while
improving parameter estimates. Thus, future research should investigate more
flexible Bayesian clustering methods that allow for dynamic cluster adjustments.

(c) Granularity of error rates: In the development of simulation data, we sought to
determine the error rate at which the Gustafson correction becomes ineffective.
Our findings indicate that for error rates Rϵx below 0.01, the application of the
correction is generally unwarranted, as model risk remains minimal under
such conditions. In the range of error rates from 0.10 to 0.50, the correction
demonstrated its utility. Specifically, it was effective when the scaling factor
0.5 ≤ ζ ≤ 0.7, as the hidden relation between λ̂2 : V(x∗|z) and T2 :V(x∗|x) in
the LGPIF dataset is explained by the range of ζ. However, we hypothesize
that at error rates exceeding 0.50, the correction may encounter considerable
limitations in its effectiveness, despite our identification of the optimal range
for ζ. It is noteworthy that this specific scenario has not yet been explored in
our study, indicating a potential avenue for future research utilizing different
datasets.

(d) Scalability of posterior simulation: Lastly, we propose an examination of the
scalability of posterior simulations utilizing our Gibbs sampler. Our empirical
analysis, particularly with the LGPIF dataset, demonstrates that the hierarchi-
cal GLM framework maintains stable performance with sample sizes up to
H ≤ 2, 000. However, the impact of larger sample sizes, specifically those ex-
ceeding 10,000, has not been addressed within the scope of this paper. As the
volume of data increases, it raises critical questions regarding the computational
efficiency of our hierarchical GLM framework, particularly given the heightened
demand for computational resources and the potential for performance degra-
dation, as noted in studies of Ni et al. (2020). This aspect becomes increasingly
significant in contexts where insurance loss data is anticipated to accumulate
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over time, necessitating a thorough exploration of the framework’s capacity to
scale effectively while maintaining performance.

Variable Definitions

The following variables and functions are used in this manuscript:

i = 1, . . . , Nh observation index i in policy h.
h = 1, . . . , H policy index h with sample (policy) size H.
j = 1, . . . , J cluster index for J clusters.
nj number of observations in cluster j.
Yhi, Nh ith individual loss amount and loss count in a policy h.
Yj(hi), Nj(h) ith individual loss amount and loss count in a policy h in a cluster

j.
Sh outcome variable as ΣiYhi in a policy h.
X = {XF, XS} list of covariate matrices (including XS,XS) for both frequency and

severity.
XF : {xF, zF} matrix of covariates (including xF, zF) for claim count outcome

(Frequency).
XS : {xS, zS} matrix of covariates (including xS, zS) for claim amount outcome

(Severity). Focusing solely on severity, we omit the superscript ‘s’
for simplicity.

X : {x, z} matrix of covariates (including zS, xS) for claim amount outcome
(Severity). Focusing solely on severity, we omit the superscript ‘s’
for simplicity.

XF
h : {xF

h , zF
h} vector of covariates in policy h (Frequency).

xF vector of continuous covariate (Frequency).
zF vector of binary covariate (Frequency).
xF

h individual value of continuous covariate in policy h (Frequency).
zF

h individual value of binary covariate in policy h (Frequency).
XS

h : {xS
h , zS

h} vector of covariates in policy h (Severity).
xS vector of continuous covariate, and x∗ indicates the mismeasured

(Severity).
zS vector of binary covariate (Severity).
xS

h individual value of continuous covariate, and x∗h indicates the mis-
measured in policy h (Severity).

zS
h individual value of binary covariate in policy h (Severity).
Xh : {xh, zh} vector of covariates in policy h.
x vector of continuous covariate, and x∗ indicates the mismeasured.
z vector of binary covariate.
xh individual value of continuous covariate, and x∗h indicates the mis-

measured in policy h.
zh individual value of binary covariate in policy h.
p0(·) parameter model (for prior).
p(·) parameter model (for posterior).
f0(·) data model (for continuous cluster).
f (·) data model (for discrete cluster).
E[ · ], V[ · ] Expectation and variance as point estimates.
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ϕ(·) probability density function of Standard Gaussian density.
Φ(·) Cumulative density function of Standard Gaussian density.
θj set of parameters - β, σ2 - associated with the outcome model

f (Y|X) for j cluster (posterior sample: θ
(∗)
j ).

wj set of parameters - π, µ, λ2 - associated with the covariate mod-
els f (X) for j cluster (posterior sample: w(∗)

j ).
ωj cluster weights (mixing coefficient) for j cluster (finalized

sample: ω
(∗)
j ).

β j : {β j0, β j1, β j2} regression coefficient vector for a mean outcome estimation.
β0, Σβ0 vector of initial regression coefficients and variance-covariance

matrix, i.e. σ̂2(XTX)−1 = XTX(ΣY − ΣŶ)T(ΣY − ΣŶ)/(n − p)
obtained from the baseline multivariate Gamma regression of
ΣŶ > 0.

σ2
j cluster-wise variance or scale parameter for the outcome.

πj proportion parameter for Bernoulli covariate.
µj location parameter for Gaussian covariate x.
λ2

j dispersion parameter for Gaussian covariate x.
κj : {κj0, κj1} regression coefficient vectors to explain the mean of the unob-

served Gaussian covariate x|z.
T2

j variance parameter for x∗|x to indicate the contamination level
in the measurement model.

m0, δ hyperparameters of Multivariate Normal for βS
0 .

q0, Λ hyperparameters of Inverse Wishart density for ΣS
β0
.

u0, v0 hyperparameters of Inverse Gamma density for σ2
j .

ρu1, ρu2 hyperparameters of Fink’s function for u0.
ρv1, ρv2 hyperparameters of Gamma density for v0.
µ0, λ2

j hyperparameters of Gaussian density of µj.
c0, d0 hyperparameters of Inverse Gamma density for λ2

j
g0, h0 hyperparameters of Beta density for πj.

K1 :

1 z1
... ...
1 znj

 nj × 2 matrix to compute Σ
nj
h=1(x∗h − κ̂j0 − κ̂j1zh)

2.

K2 :

 ∑
nj
h=1 x∗h

∑
nj
h=1 x∗hzh

 2 × 1 matrix to compute Σ
nj
h=1(x∗h − κ̂j0 − κ̂j1zh)

2.

βF
j : {βF

j0, βF
j1, βF

j2} regression coefficient vector for a mean claim count (Fre-
quency) estimation.

βS
j : {βS

j0, βS
j1, βS

j2} regression coefficient vector for a mean claim amount (Sever-
ity) estimation.

ξh, ψ parameters - ξh (number of failure) and ψ (number of success)
- for Negative Binomial.

βF
0 , ΣF

β0
vector of initial regression coefficients and variance-covariance
matrix obtained from the baseline multivariate Poisson regres-
sion of N̂ > 0.

βS
0 , ΣS

β0
vector of initial regression coefficients and variance-covariance
matrix obtained from the baseline multivariate Gamma regres-
sion of Ŷ > 0.
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uF
0 , vF

0 hyperparameters of Inverse Gamma density for ψj.
uS

0 , vS
0 hyperparameters of Inverse Gamma density for σ2

j .
m0, δ hyperparameters of Multivariate Normal for βF

0 .
q

0
, Λ hyperparameters of Inverse Wishart density for ΣF

β0
.

ρ
u1

, ρ
u2

hyperparameters of Fink’s function for uF
0 .

ρ
v1

, ρ
v2

hyperparameters of Gamma density for vF
0 .

βS+
0 , ΣS+

β0
, uS+

0 , vS+
0 communal hyperparameters for partial pooling in a hierarchi-

cal GLM (claim amount).
βF+

0 , ΣF+
β0

, uF+
0 , vF+

0 communal hyperparameters for partial pooling in a hierarchi-
cal GLM (claim count).

β̂ j : {β̂ j0, β̂ j1, β̂ j2} regression coefficient vector for a mean outcome estimation
based on NDB covariate x∗ (before correction).

σ̂2
j cluster-wise variance or scale parameter for the outcome based

on NDB covariate x∗ (before correction).
ξ̂ j skewness parameter for log skew-normal outcome based on

NDB covariate x∗ (before correction).
λ̂2

j dispersion parameter for Gaussian covariate x|z based onNDB
covariate x∗ (before correction).

κ̂j : {κ̂j0, κ̂j1} regression coefficient vectors to explain the mean of the un-
observed Gaussian covariate x|z based on NDB covariate x∗
(before correction).

κ̃, Σ̃κ hyperparameters of Multivariate Normal for κ.
Rϵx error rate, representing the proportion of the total noise relative

to the total true values within an NDB covariate.
σ2

jϵ variance of an NDB error.
ρj(x,x∗) correlation between the true covariate and the NDB covariate

in cluster j.
ϵ NDB measurement error
1/δ Variance inflation factor as a ratio of the virtual sample size

to the observation sample size, representing the impact of
the prior. The default choice is 1/δ = 100. See Sharples
1990 Sharples (1990).

L(·) likelihood function of the current model.
P(·) likelihood function of the target model.

Acronym List

NDB Non-Differential Berkson Error

LPPD Log Pointwise Predictive Density

DKL Kullback-Leibler Divergence

SSPE Sum of Square Prediction Error

SAPE Sum of Absolute Prediction Error

CTE Conditional Tail Expectation
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NB Negative Binomial Distribution

N Normal (Gaussian) Distribution

LogN Lognormal Distribution

MVN Multivariate Normal Distribution

Ga Gamma Distribution

Beta Beta Distribution

InvGa Inverse Gamma Distribution

IW Inverse Wishart Distribution

LGPIF Local Government Property Insurance Fund

GLM Generalized Linear Model

GAM Generalized Additive Model

MARS Multivariate Adaptive Regression Spline

RC Regression Calibration

SIMEX Simulation Extrapolation

WLS Weighted Least Squares
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