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Integration of multi-omic data for the purposes of biomarker discovery can provide novel and robust 
panels across multiple biological compartments. Appropriate analytical methods are key to ensuring 
accurate and meaningful outputs in the multi-omic setting. Here, we extensively profile the proteome 
and transcriptome of patient pancreatic cyst fluid (PCF) (n = 32) and serum (n = 68), before integrating 
matched omic and biofluid data, to identify biomarkers of pancreatic cancer risk. Differential 
expression analysis, feature reduction, multi-omic data integration, unsupervised hierarchical 
clustering, principal component analysis, spearman correlations and leave-one-out cross-validation 
were performed using RStudio and CombiROC software. An 11-feature multi-omic panel in PCF 
[PIGR, S100A8, REG1A, LGALS3, TCN1, LCN2, PRSS8, MUC6, SNORA66, miR-216a-5p, miR-216b-5p] 
generated an AUC = 0.806. A 13-feature multi-omic panel in serum [SHROOM3, IGHV3-72, IGJ, IGHA1, 
PPBP, APOD, SFN, IGHG1, miR-197-5p, miR-6741-5p, miR-3180, miR-3180-3p, miR-6782-5p] produced 
an AUC = 0.824. Integration of the strongest performing biomarkers generated a 10-feature cross-
biofluid multi-omic panel [S100A8, LGALS3, SNORA66, miR-216b-5p, IGHV3-72, IGJ, IGHA1, PPBP, 
miR-3180, miR-3180-3p] with an AUC = 0.970. Multi-omic profiling provides an abundance of potential 
biomarkers. Integration of data from different omic compartments, and across biofluids, produced 
a biomarker panel that performs with high accuracy, showing promise for the risk stratification of 
patients with pancreatic cystic lesions.
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Multi-omics has been at the forefront of medical research for the last decade, affording scientists and clinicians 
the opportunity to evaluate multiple compartments of biological data, interrogate differences, make correlations, 
tease out functional properties, and inform personalized medicine approaches for the management of many 
diseases1–3. However, there are important inherent difficulties to handling the large-scale datasets generated by 
multi-omics, such as appropriate integration of data from different biological compartments, handling missing 
data or outliers, scaling of different variables and SI units (International System of Units), inflation of false 
discovery rates, and choosing the appropriate data handling and analysis pipeline that is suitable to the dataset4. 
In this study, we perform detailed analyses of both single- and multi-omic datasets in a set of matched biological 
samples for the purposes of biomarker discovery, highlighting the strengths and weaknesses of each approach 
as we generate a novel and robust multi-omic cross-biofluid (CBF) biomarker panel for pancreatic cancer risk 
stratification.

Pancreatic cancer (PC) has the worst 5-year survival rate of any cancer as of 2024, at just 13%5. Early detection 
of PC is the primary concern of most PC research, as it has the potential to make a substantial difference to the 
treatment and survival of these patients. Pancreatic cystic lesions (PCLs) are fluid-filled sacs on or inside the 
pancreas, that have the potential to become premalignant6. While some PCLs are completely benign, others 
have been shown to have malignant potential and could therefore play a role in the progression to PC6. The issue 
arises in distinguishing which PCLs are benign and which are premalignant and should, as such, be monitored 
and/or treated accordingly. At present, there are several sets of clinical guidelines worldwide for the stratification 
of PCLs into risk groups based on their clinical presentation7,8. Unfortunately, the presence of several sets of 
guidelines worldwide indicates the lack of consensus among clinicians as to the cut-offs or defined parameters 
for these classification factors. As such, the risk stratification of these patients is inaccurate, and could therefore 
be contributing to the overall problem of early detection.

Importantly, genetic mutations generally occur alongside the development of precursor lesions such as PCLs, 
and are therefore present at their subsequent progression through increasing histological grades, culminating 
in invasive carcinoma9,10. These genetic mutations can influence the classification of PCL patients into low- and 
high-risk categories. One such important genetic mutation in this study is von Hippel-Lindau (VHL) syndrome. 
VHL syndrome is a familial neoplastic condition, caused by a germline mutation to the VHL tumour suppressor 
gene, which can increase a patient’s risk of developing PCLs during their lifetime, while also increasing their risk 
of developing malignant cystic or solid lesions, such as cystic pancreatic neuroendocrine tumours or PDAC11–13. 
As such, while a patient may present with a low-risk PCL, the patient themselves would be regarded as high-
risk given their genetic predisposition to PCLs and PC. This highlights yet another potential variable in risk 
stratification and multi-omic dataset evaluation, that a rigorous analytical pipeline, and subsequently a robust 
biomarker or biomarker panel, should be able to adequately account for.

The identification of novel, robust biomarkers for the early detection of PC risk is urgently needed for 
these patients, and could provide a much-needed change to the way in which PCLs are managed, enabling the 
discovery of high-risk patients at earlier stages of PC development. In this study, the proteome and transcriptome 
of PCL patient pancreatic cyst fluid (PCF) and serum were profiled in order to identify differentially expressed 
proteins and miRNA between low- and high-risk patients. The proteome and transcriptome were chosen as 
target compartments as they have been consistently demonstrated to produce the most promising biomarkers 
in this setting14. Differentially expressed proteins and miRNA were examined both alone, and as part of a multi-
omic panel, in both the PCF and the serum, in order to examine their utility as biomarkers of risk stratification. 
Extensive evaluation of these features was carried out using unsupervised hierarchical clustering  (UHC), 
principal component analysis (PCA) and Spearman correlations, with leave-one-out cross-validation 
(LOOCV) being used to fit, train and validate predictive linear classification models. Novel and cutting-edge 
feature selection methodologies were then performed to reduce the PCF- and serum-based panels to the top 
performing biomarkers in each fluid. The most robust biomarkers identified from each biofluid were then scaled 
and integrated to create a cross-biofluid (CBF) multi-omic panel. The utility of both CA19-9 and CEA, currently 
utilised biomarkers in this setting that are imperfect and are frequently dysregulated, were also examined in 
this cohort, and integrated with the top performing panel in order to assess whether they could improve its 
performance.

Results
8-protein panel in PCF stratifies patients into risk categories with modest accuracy
Label-free proteomics identified 465 proteins present across PCF samples after data clean-up. Differential 
expression analysis revealed eight proteins [PIGR, S100A8, REG1A, LGALS3, TCN1, LCN2, PRSS8 and MUC6] 
to be significantly upregulated in high-risk PCF compared to low-risk (adj-p < 0.002, FDR = 0.05, s0 = 0.1) 
(Fig. 1A and B). These eight proteins were integrated to create an 8-protein biomarker panel. UHC of patients 
into risk groups using this 8-protein panel was performed with an accuracy of 81.25% (Fig. 1C). The VHL outlier 
patient was shown to relate more closely to the low-risk classification than any other high-risk patient. In the 
PCA, modest separation of the low- and high-risk groups can be seen, with the high-risk ellipse being larger 
in size, indicating more variance in this group (Supplementary Material S1)(Fig. 1D). Spearman correlations 
showed that expression levels of each of the eight proteins correlated positively with patient risk (p < 0.01), 
with some proteins having significant positive correlations with age, and negative correlations with alcohol 
consumption (p < 0.05)(Fig. 1E).

3-miRNA panel in PCF stratifies patients into risk categories with poor accuracy
Whole transcriptome sequencing identified 2096 miRNAs present across PCF samples after data clean-up. 
Differential expression analysis revealed three miRNAs [SNORA66, miR-216a-5p and miR-216b-5p] to be 
significantly upregulated in high-risk PCF compared to low-risk (adj-p < 0.05, FDR = 0.05, s0 = 0.1) (Fig. 2A 
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and B). These three miRNAs were integrated to create a 3-miRNA biomarker panel. UHC of patients into risk 
groups using this 3-miRNA panel was performed with an accuracy of 60% (Fig. 2C). In the PCA, the entire low-
risk ellipse was captured inside that of the high-risk ellipse, showing the poor separation of the two groups, with 
the VHL outlier patient being encapsulated within both classifications (Supplementary Material S2) (Fig. 2D). 
Spearman correlations showed that only miR-216a-5p had a significant positive correlation with patient risk 
(p < 0.05) (Fig. 2E).

11-feature multi-omic panel in PCF stratifies patients into risk categories with high accuracy
The 8-protein and 3-miRNA panels were then scaled and integrated to create an 11-feature multi-omic biomarker 
panel. UHC of patients into risk groups using this 11-feature multi-omic panel was performed with an accuracy 
of 95.8%, with only the VHL outlier being grouped incorrectly (Fig. 3A). There were no significant correlations 
between any of the three miRNAs and eight proteins (p > 0.05) (Fig. 3B). S100A8 represented a smaller segment 
than the other biomarkers and only correlated significantly with REG1A, LGALS3 and TCN1 (p < 0.05). In the 
PCA, the proteins had less variance compared to the miRNAs, with S100A8 having the least variance in the 
11-feature panel (Supplementary Material S3) (Fig. 3C). The high-risk ellipse was much larger again, indicating 
larger variance in the high-risk population. Importantly, the single high-risk datapoint that caused the high-risk 
ellipse to overlap substantially with the low-risk ellipse represented the VHL outlier patient. Using LOOCV, the 
8-protein panel produced an AUC of 0.607 (Sensitivity = 70.6%, Specificity = 60%); the 3-miRNA panel produced 
an AUC of 0.658 (Sensitivity = 60%, Specificity = 53.3%); and the 11-feature multi-omic panel produced an AUC 
of 0.806 (Sensitivity = 66.7%, Specificity = 75%) (Fig. 3D). Despite the modest performances of the 8-protein 
and the 3-miRNA panels alone, the integration of these two panels together improved the overall performance. 
Importantly, when the VHL outlier patient was reclassified to low-risk, the performance of all panels improved 
(Fig. 3D).

Fig. 1. Proteomic analysis of PCF identifies eight proteins significantly upregulated in high-risk patients 
compared to low-risk patients. (A) Differential expression analysis identified eight proteins that were 
differentially expressed between low- and high-risk PCF samples (adj-p < 0.05, FDR = 0.05, s0 = 0.1). (B) 
Boxplots showing the distribution of patient expression levels for the eight differentially expressed proteins. (C) 
UHC of patients into high- and low-risk groups based on their expression of the eight differentially expressed 
proteins. Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of the differentially 
expressed proteins. (D) 2D PCA using the eight differentially expressed proteins, with biplot overlayed. Ellipses 
represent 80% of the data captured within the two risk classifications. Biplot scale is set to zero to ensure 
vectors (arrows) are scaled to represent their respective loadings. The length of each vector is proportional to 
the variance of the corresponding protein. (E) Spearman correlations between patient clinical data and the 
eight differentially expressed proteins are given as a corrplot. Colour intensity relates to R value, circle size 
relates to the p-value (*p < 0.05, **p < 0.01, ***p < 0.001). Black arrows show the position of the VHL outlier 
patient.
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8-protein panel in serum stratifies patients into risk categories with modest accuracy
Label-free proteomics identified 145 proteins present across the serum samples after data clean-up. Two proteins 
[SHROOM3 and IGHV3-72] were significantly downregulated in high-risk serum compared to low-risk 
(p < 0.05) (Fig. 4A). Despite not being significantly differentially expressed, a further six proteins with the lowest 
p-values were taken forward for biomarker analysis [IGJ, IGHA1, PPBP, APOD, SFN, IGHG1], as panels of 
multiple biomarkers have been shown to produce better results14. A total of eight proteins were examined, as the 
8-protein panel in PCF examined above was shown to have good accuracy (Fig. 4B). These eight proteins were 
integrated to create an 8-protein biomarker panel. UHC of patients into risk groups using this 8-protein panel 
was performed with an accuracy of 76.5% (Fig. 4C). In the PCA, three components were required to account for 
69.5% of the variance (Supplementary Material S4) (Fig. 4D). Separation of the two groups was modest, with 
some clustering of low- and high-risk samples being seen across the three components. Here, the VHL outlier 
was on the outer peripheries of both groups, indicating no preferential alignment with either group. Spearman 
correlations showed that SHROOM3 was the only one of the eight proteins to significantly correlate with patient 
risk, having a negative correlation (p < 0.01) (Fig.  4E). Both SHROOM3 and SFN positively correlated with 
smoking habits (p < 0.05).

5-miRNA panel in serum stratifies patients into risk categories with poor accuracy
Whole transcriptome sequencing identified 2,096 miRNAs present across the serum samples after data clean-up. 
Differential expression analysis revealed five miRNAs [miR-197-5p, miR-6741-5p, miR-3180, miR-3180-3p and 
miR-6782-5p] to be significantly upregulated in high-risk serum compared to low-risk (adj-p < 0.05, FDR = 0.05, 
s0 = 0.1) (Fig. 5A and B). These five miRNAs were integrated to create a 5-miRNA biomarker panel. UHC of 
patients into risk groups using this 5-miRNA panel was performed with an accuracy of 60% (Fig. 5C). The VHL 
outlier patient did not align with either risk classification. In the PCA, the ellipse of the low-risk classification 

Fig. 2. Transcriptomic analysis of PCF identifies three miRNAs significantly upregulated in high-risk 
patients compared to low-risk patients. (A) Differential expression analysis identified three miRNAs that 
were differentially expressed between low- and high-risk PCF samples (adj-p < 0.05, FDR = 0.05, s0 = 0.1). (B) 
Boxplots showing the distribution of patient expression levels of the three differentially expressed miRNAs. (C) 
UHC of patients into high- and low-risk groups based on their expression of the three differentially expressed 
miRNAs. Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of the miRNAs. 
(D) 2D PCA using the three differentially expressed miRNAs, with biplot overlayed. Ellipses represent 80% of 
the data captured within the two risk classifications. Biplot scale is set to zero to ensure vectors (arrows) are 
scaled to represent their respective loadings. The length of each vector is proportional to the variance of the 
corresponding miRNA. (E) Spearman correlations between patient clinical data and the three differentially 
expressed miRNAs are given as a corrplot. Colour intensity relates to R value, circle size relates to the p-value 
(*p < 0.05, **p < 0.01, ***p < 0.001). Black arrows show the position of the VHL outlier patient.
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was captured almost entirely inside that of the high-risk classification, indicating poor separation of the two 
groups (Supplementary Figure S5) (Fig. 5D). Here, the VHL outlier was encapsulated within the high-risk ellipse 
only. Spearman correlations showed no correlations with patient risk (p > 0.05) (Fig. 5E). MiR-6741-5p had a 
significant positive correlation with increased smoking (p < 0.05).

13-feature multi-omic panel in serum stratifies patients into risk categories with high 
accuracy
The 8-protein and 5-miRNA panels were then scaled and integrated to create a 13-feature multi-omic biomarker 
panel. UHC of patients into risk groups using this 13-feature panel was performed with an accuracy of 79.3% 
(Fig. 6A). There were no significant correlations between SFN, PPBP and SHROOM3 and any of the other ten 
biomarkers (p > 0.05) (Fig. 6B). IGHV3-72 had the most correlations within the panel, significantly correlating 
with IGJ, IGHA1 and IGHG1 (p < 0.05). IGHV3-72 had a significant negative correlation with miR-6741-5p, and 
APOD had a significant negative correlation with miR-6782-5p (p < 0.05). The strongest correlations were found 
between miR-197-5p and both miR-3180 and miR-3180-3p, as indicated by the thicker chords. In the PCA, three 
components were required to account for 61.4% of the variance (Supplementary Material S6) (Fig. 6C). With 
three components, the separation of the two groups was modest, though not distinct. Importantly, the VHL 
outlier patient was grouped within the high-risk classification in this setting. Using LOOCV, the 8-protein panel 
produced an AUC of 0.608 (Sensitivity = 82.2%, Specificity = 34.8%); the 5-miRNA panel produced an AUC of 
0.427 (Sensitivity = 46.7%, Specificity = 40.0%); and the 13-feature multi-omic panel produced an AUC of 0.824 
(Sensitivity = 71.4%, Specificity = 80.0%) (Fig. 6D). Despite the poor performance of the 5-miRNA panel, and 
modest performance of the 8-protein panel, the integration of these two panels together improved the overall 
performance. Importantly, when the VHL outlier patient was reclassified to low-risk as before, the performance 

Fig. 3. Integration of the differentially expressed proteins and miRNAs generates a robust 11-feature multi-
omic biomarker panel in PCF. (A) UHC of patients into high- and low-risk groups based on their expression of 
the eight proteins and three miRNAs which form an 11-feature multi-omic panel. Dendrograms show (top) the 
relatedness of the patients, and (left) the relatedness of the differentially expressed proteins and miRNAs. (B) 
Chord diagram showing significant Spearman correlations (p < 0.05) between the eight differentially expressed 
proteins and three differentially expressed miRNAs. Inner chords reflect correlations between the biomarkers. 
Chord thickness is directly related to the strength of the correlation, with thicker chords indicating stronger 
correlations. (C) 2D PCA using this 11-feature multi-omic panel, with biplot overlayed. Ellipses represent 80% 
of the data captured within the two risk classifications. Biplot scale is set to zero to ensure vectors (arrows) are 
scaled to represent their respective loadings. The length of each vector is proportional to the variance of the 
corresponding protein or miRNA. (D) ROC curves generated from LOOCV of the miRNAs alone, the proteins 
alone, and the 11-feature multi-omic panel, as well as their performances when the VHL outlier patient is 
reclassified. Black arrows show the position of the VHL outlier patient.
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of the 5-miRNA panel and the 13-feature multi-omic panel improved, though the 8-protein panel performance 
was worse (Fig. 6D).

10-feature multi-omic CBF panel stratifies patients into risk categories with very high 
accuracy
The performance of every possible combination of the 11 features from the 11-feature multi-omic PCF panel 
was examined using CombiROC software, with sensitivity and specificity cut-offs of 83% and 25%, respectively 
(Supplementary Material S7). Twenty combinations of these features were observed to meet these cut-offs, with 
four being the minimum number of features required to do so. The same analysis was run on the 13-feature 
multi-omic serum panel, with sensitivity and specificity cut-offs of 93% and 47%, respectively (Supplementary 
Material S7). Thirty-six combinations were identified that met these criteria, with six being the minimum 
number of features required to do so. A 4-feature PCF panel consisting of S100A8, LGALS3, SNORA66 and 
miR-216b-5p, and a 6-feature serum panel consisting of IGHV3-72, IGJ, IGHA1, PPBP, miR-3180 and miR-
3180-3p, were identified as the top performing combinations. These two panels were then integrated to create a 
10-feature multi-omic CBF panel, and examined in a matched patient cohort. UHC of patients into risk groups 
using this 10-feature panel was performed with an accuracy of 73.9% (Fig. 7A). While there were no significant 
correlations between PPBP and any of the other nine biomarkers (p > 0.05), S100A8 in the PCF had the most 
correlations within the panel, significantly correlating with both miR-3180-3p and miR-3180 in the serum, as 
well as LGALS3 in the PCF (p < 0.05) (Fig. 7B). MiR-216b-5p and SNORA66 had the strongest correlation, as 
indicated by the thicker chords, while IGHA1 and IGHV3-72 had the weakest correlation. PCA was conducted 
using three components as this was shown to account for 69.6% of the variance (Supplementary Material S8) 
(Fig.  7C). With three components, the separation of the two groups was modest, with some overlap on the 
centre of the plot. Importantly, the VHL outlier patient was grouped within the high-risk classification in this 
setting. Using LOOCV, the 10-feature multi-omic CBF panel produced an AUC of 0.970 (Sensitivity = 91.7%, 
Specificity = 90.9%) (Fig. 7D). This is the highest reported AUC of any panel examined here thus far. The reduced 

Fig. 4. Proteomic analysis of serum identifies eight proteins downregulated in high-risk patients compared to 
low-risk patients. (A) Differential expression analysis identified eight proteins that were differentially expressed 
between low- and high-risk serum samples. (B) Boxplots showing the distribution of patient expression levels 
for the eight differentially expressed proteins. (C) UHC of patients into high- and low-risk groups based on 
their expression of the eight differentially expressed proteins. Dendrograms show (top) the relatedness of 
the patients, and (left) the relatedness of the differentially expressed proteins. (D) 3D PCA using the eight 
differentially expressed proteins, with biplot overlayed. Biplot scale is set to zero to ensure vectors (arrows) 
are scaled to represent their respective loadings. The length of each vector is proportional to the variance of 
the corresponding protein. (E) Spearman correlations between patient clinical data and the eight differentially 
expressed proteins are given as a corrplot. Colour intensity relates to R value, circle size relates to the p-value 
(*p < 0.05, **p < 0.01, ***p < 0.001). Black arrows show the position of the VHL outlier patient.
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4-feature PCF panel produced an AUC of 0.927 (Sensitivity = 83.3%, Specificity = 91.7%), and the 6-feature serum 
panel produced an AUC of 0.686 (Sensitivity = 78.6%, Specificity = 66.7%). Despite the poor performance of the 
6-feature serum panel, the integration of this panel with the high-performing 4-feature PCF panel improved 
the overall performance. Importantly, when the VHL outlier patient was reclassified to low-risk as before, the 
performance of both the 10-feature multi-omic CBF panel and the 4-feature PCF panel was worsened (Fig. 7D). 
Reactome pathway analysis of the six proteins within this panel revealed 20 pathways to be significantly enriched 
(adj-p < 0.05, FDR = 0.05), including pathways involved in the immune system, diseases of the immune system, 
hemostasis, transcription, vesicle-mediated transport and signal transduction (Supplementary Material SE1).

Neither CEA nor CA19-9 improve the performance of the 10-feature multi-omic CBF panel
Finally, the utility of CA19-9 and CEA in this setting were assessed. CA19-9 levels were not significantly different 
in low- or high-risk patient serum (p = 0.9826) (Fig. 8A). CEA levels were significantly increased in the PCF 
of high-risk patients compared to low-risk (p < 0.001) (Fig. 8B). CEA was then integrated into the 10-feature 
multi-omic CBF panel to investigate whether its addition would improve the performance of the panel. Overall, 
the performance of the 10-feature multi-omic CBF panel + CEA was worse than the 10-feature multi-omic CBF 
panel alone, indicating that the addition of CEA to this panel does not improve its performance (Supplementary 
Material S9) (Fig. 8C–E).

Discussion
At present, there exists no robust single biomarker, or biomarker panel, that can effectively stratify patients with 
PCLs into low- and high-risk groups. This study aimed to profile the proteome and transcriptome of matched 
PCL patient PCF and serum to identify promising novel biomarkers for PCL patient risk stratification. We 
examined the utility of differentially expressed proteins and miRNAs, both as single omic-level panels and as 

Fig. 5. Transcriptomic analysis of serum identifies five miRNAs significantly upregulated in high-risk 
patients compared to low-risk patients. (A) Differential expression analysis identified five miRNAs that were 
significantly differentially expressed between low- and high-risk serum samples (adj-p < 0.05, FDR = 0.05, 
s0 = 0.1). (B) Boxplots showing the distribution of patient expression levels of the five differentially expressed 
miRNAs. (C) UHC of patients into high- and low-risk groups based on their expression of the five differentially 
expressed miRNAs. Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of the 
miRNAs. (D) 3D PCA using the five differentially expressed miRNAs, with biplot overlayed. Biplot scale is set 
to zero to ensure vectors (arrows) are scaled to represent their respective loadings. The length of each vector is 
proportional to the variance of the corresponding miRNA. (E) Spearman correlations between patient clinical 
data and the differentially expressed miRNA are given as a corrplot. Colour intensity relates to R value, circle 
size relates to the p-value (*p < 0.05, **p < 0.01, ***p < 0.001). Black arrows show the position of the VHL 
outlier patient.
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multi-omic panels, within the PCF and serum to investigate the value of each biofluid in this setting. Finally, 
we explored the avenue of multi-omic CBF panels, by integrating the PCF- and serum-based panels, in order 
to understand whether layering multiple levels of biomarker data could produce improved biomarker efficacy.

Within both the PCF and the serum, the integration of multiple omic compartments to create a multi-
omic panel produced the most robust results for patient PC risk classification. Indeed, while the protein and 
miRNA panels alone demonstrated a modest ability to classify PCL patients based on risk in both biofluids, the 
performance of these multi-omic panels delivered the best results overall. Interestingly, in the PCF it was shown 
that the 3-miRNA panel performed better than the 8-protein panel for risk classification by LOOCV, despite 
only one of the three miRNA significantly correlating with risk status, and demonstrating poor stratification 
in both the UHC and the PCA. Conversely, in the serum the 8-protein panel performed with better accuracy 
in the UHC, and with higher AUC in the LOOCV, compared to the 5-miRNA panel. When looking at the 
correlations of these serum-based biomarkers with clinical factors, one protein (SHROOM3) significantly 
correlated with risk, while no miRNA correlated with this factor. Given that panels of multiple biomarkers have 
been demonstrated to produce better results than single biomarkers alone, it would be expected that in both 
biofluids the 8-protein panels would be superior14. These contrasting results highlight the importance of the 
method of evaluation used for biomarker efficacy. UHC, for example, allows the datapoints to cluster based 
on patient expression of certain variables, and in this way it groups like-with-like to enable the visualisation of 
patterns15. Here, this analysis was used to investigate whether the patient cohorts would separate into groups 
based on their expression of these factors. While separation of patient risk groups in the PCA was the worst out 
of all the panels when using the 3-miRNA panel in the PCF, it is important to note that such methods can be 
greatly influenced by poor performing variables, especially when there are so few to begin with. Indeed, it was 
shown that when using this 3-miRNA panel to train and test a LOOCV model, this model performs modestly. 

Fig. 6. Integration of the differentially expressed proteins and miRNAs generates a robust 13-feature multi-
omic biomarker panel in serum. (A) UHC of patients into high- and low-risk groups based on their expression 
of the eight proteins and the five miRNAs identified as being differentially expressed, which form a 13-feature 
multi-omic panel. Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of the 
miRNAs and proteins. (B) Chord diagram showing significant Spearman correlations (p < 0.05) between 
the eight differentially expressed proteins and five differentially expressed miRNAs. Inner chords reflect 
correlations between the biomarkers. Chord thickness is directly related to the strength of the correlation, with 
thicker chords indicating stronger correlations. (C) 3D PCA using the 13-feature multi-omic panel, with biplot 
overlayed. Biplot scale is set to zero to ensure vectors (arrows) are scaled to represent their respective loadings. 
The length of each vector is proportional to the variance of the corresponding protein or miRNA. (D) ROC 
curves generated from LOOCV of the miRNAs alone, the proteins alone, and the 13-feature multi-omic panel, 
as well as their performances when the VHL outlier patient is reclassified. Black arrows show the position of 
the VHL outlier patient.
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PCA analysis allows the visualisation of large datasets in smaller components or dimensions via dimensionality 
reduction, clustering similar samples together and aligning highly correlated variables16. In this way, PCA finds 
the majority of its utility in ‘long’ datasets with dimensionality issues, where there are more variables than the 
number of samples and as such, it can be difficult to discern the individual effects of a single variable17. Here, 
the 3-miRNA panel from the PCF was dimensionally reduced to two components using PCA, which is not 
a common practice for such small datasets. However, this approach highlighted the outlier among the three 
biomarkers, SNORA66, and illustrated that the majority of variance could be accounted for by miR-216a-5p 
and miR-216b-5p, suggesting that SNORA66 is perhaps the least important component of this 3-miRNA panel. 
Conversely, the 8-protein panels in both the PCF and the serum performed well in all analyses, despite the fact 
that while all eight proteins in the PCF significantly correlated with risk, just one of the proteins in the serum 
had a significant correlation with risk. This is likely due to the number of variables in these panels, with eight 
variables helping to distinguish and restructure the data according to their expression. In this way, larger panels 
allow for better handling of outlier patients, as when one variable becomes dysregulated, the others within the 
panel can compensate for this. However, the utility of both the miRNA- and protein-based panels alone are 
limited, with modest separation being seen in the UHC and PCA, and modest AUC values being obtained in the 
LOOCV. The integration of these omic compartments to form multi-omic biomarker panels is where the true 
potential of these biomarkers can be seen. Indeed, current trends in biomarker identification lean towards the 
creation of multi-omic panels that can better control for the complexity of the disease4. By encompassing factors 
from multiple biological levels, multi-omic biomarker panels can better compensate for the dysregulation of 
individual biological compartments. In fact, substantial improvements in results from either omic level alone can 
be seen through the use of the 11-feature multi-omic panel in the PCF and the 13-feature multi-omic panel in 
the serum. Importantly, the identification of one outlier patient highlights the limitation of these panels. Indeed, 
in the initial models with this patient classified as high-risk, this datapoint can be frequently seen as an outlier. 

Fig. 7. Integration of the reduced PCF and serum panels generates a robust 10-feature multi-omic CBF 
biomarker panel. (A) UHC of patients into high- and low-risk groups based on their expression of the reduced 
serum panel and the reduced PCF panel. Dendrograms show (top) the relatedness of the patients, and (left) 
the relatedness of the biomarkers. (B) Chord diagram showing significant Spearman correlations (p < 0.05) 
between the serum biomarkers and PCF biomarkers. Inner chords reflect correlations between the biomarkers. 
Chord thickness is directly related to the strength of the correlation, with thicker chords indicating stronger 
correlations. (C) 3D PCA using this 10-feature multi-omic CBF panel, with biplot overlayed. Biplot scale is set 
to zero to ensure vectors (arrows) are scaled to represent their respective loadings. The length of each vector is 
proportional to the variance of the corresponding biomarker. (D) ROC curves generated from LOOCV of the 
reduced PCF panel alone, the reduced serum panel alone, and the 10-feature multi-omic CBF panel, as well as 
their performances when the VHL outlier patient is reclassified. Black arrows show the position of the VHL 
outlier patient.
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In the UHC for the 11-feature multi-omic panel in the PCF specifically, it is the only datapoint that is incorrectly 
clustered. When reclassified, the model performance improves for all analyses in the PCF, with improved 
separation of the two groups in the PCA, and increased AUC for the LOOCV. In the serum, the performance 
of the 5-miRNA panel and the 13-feature multi-omic panel is improved when the VHL patient is reclassified, 
while the 8-protein panel performance worsened. Here, it is important to highlight the substantial alteration 
to model performance that just one patient could make. Furthermore, while in this case the presence of a VHL 
mutation stood out clinically as a potential confounding factor, it may not be appropriate to reclassify or remove 
this patient from this analysis as their original classification as high-risk was based on the same guidelines as 
all other patients. These data emphasise the need for validation of these results in a larger, independent patient 
cohort where longitudinal progression data can confirm whether high-risk patients progressed to PC.

The CBF integration of both multi-omic panels from PCF and serum produced the highest classification 
accuracy of any panel examined, without the need to reclassify the outlier VHL patient. Indeed, while the 
integration of proteomic and transcriptomic biomarkers to create a multi-omic panel in both the PCF and the 
serum separately produced substantially better risk stratification than either omic level alone, it is clear from 
these results that the layering of data from multiple biological compartments could be the key to the generation 
of more robust biomarkers. Here, CombiROC software was used to interrogate both the 11-feature multi-omic 
panel in PCF and the 13-feature multi-omic panel in the serum. Using appropriate cut-offs, these panels were 
reduced down to the least number of biomarkers that would still produce highly sensitive results in order to 
allow the integration of these biomarkers to create a CBF panel. In the same way that multi-omic panels have the 
potential to encapsulate the complexity of disease, and have the unique ability to control for the dysregulation of 
one omic compartment or factor via compensation of other biomarkers within the panel4, CBF panels present 
a new and exciting progression from this. By selectively reducing the PCF and serum panels, and generating 
a new panel that consists of two omic compartments, as well as two distinct biofluids from the same patient, 

Fig. 8. Neither CA19-9 nor CEA improve the performance of the 10-feature multi-omic CBF panel. (A) Serum 
concentration of CA19-9 (U/mL) in high-risk (red) and low-risk (blue) patients. Mann–Whitney test. Data 
are presented as mean ± SEM. (B) PCF concentration of CEA (ng/mL) in high-risk (red) and low-risk (blue) 
patients. Mann–Whitney test. Data are presented as mean ± SEM, ****p < 0.0001. (C) UHC of patients into 
high-risk (red) and low-risk (blue) groups based on their expression of the 10-feature multi-omic CBF panel 
and CEA. Dendrograms show (top) the relatedness of the patients, and (left) the relatedness of the biomarkers. 
(D) 3D PCA using the 10-feature multi-omic CBF panel + CEA, with biplot overlayed. Biplot scale is set to 
zero to ensure vectors (arrows) are scaled to represent their respective loadings. The length of each vector is 
proportional to the variance of the corresponding biomarker. (E) ROC curves generated from LOOCV of the 
10-feature multi-omic CBF panel (light blue lines), and the 10-feature multi-omic CBF panel + CEA (black), as 
well as their performances when the VHL outlier patient is reclassified (dashed lines). Black arrows show the 
position of the VHL outlier patient.
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high sensitivity, specificity and AUC metrics were achieved. Furthermore, the performance of this panel is not 
improved by the reclassification of the VHL patient, further emphasising its utility in this setting. Importantly, 
while the sensitivity cut-off was higher in the serum panel (93%) compared to the PCF panel (83%), more features 
were required to achieve this high performance in the serum than in the PCF, perhaps indicating that PCF-based 
biomarkers perform better than serum-based biomarkers in this cohort, which would not be unexpected given 
the direct proximity of PCF to the PCL in question. Also of note, is the ratio of proteins to miRNAs in these 
two reduced panels, with two proteins (S100A8 and LGALS3) and two miRNAs (SNORA66 and miR-216b-5p) 
making up the PCF panel, while four proteins (IGHV3-72, IGJ, IGHA1 and PPBP) and two miRNAs (miR-3180 
and miR-3180-3p) make up the serum panel. Interestingly, SHROOM3, the only significant protein in the serum 
that also significantly correlated with patient risk, was not included in the reduced panel. Importantly, CA19-
9 levels were shown to have no significant difference in the serum of low- and high-risk patients, indicating a 
limited utility in the risk stratification setting for this FDA-approved diagnostic biomarker for PC. While CEA 
was significantly differentially expressed in the PCF of low- and high-risk patients, the addition of CEA to the 
10-feature multi-omic CBF panel worsened the LOOCV performance of the panel.

Among the 10 biomarkers within the final CBF panel, several of these factors have been previously identified 
as dysregulated in the pancreatic setting. Within the transcriptomic compartment, miR-216-5p has been studied 
extensively in the context of PC, as it is a pancreas-specific miRNA18. MiR-216b-5p has been demonstrated to 
function as a tumour suppressive miRNA in pancreatic tissues by repressing PC cell proliferation, inducing 
apoptosis and cell cycle arrest, and supressing invasive and migratory capabilities19,20. As such, its expression 
is generally reduced in PC tissues, and this is associated with poor prognosis19,21. Interestingly, despite the 
downregulation of this miRNA in PC, miR-216b-5p has previously been shown to be increased in high-risk 
IPMNs compared to low-risk, which aligns with the elevated levels identified in the PCF of high-risk patients 
in this study22. SNORA66, mir-3180 and miR-3180-3p, unfortunately, remain largely unstudied in PC or PCLs. 
MiR-3180 has been suggested as a potential biomarker of hepatitis B virus infection persistence23, while miR-
3180-3p was shown to be significantly upregulated in the serum of chemotherapy (cisplatin) resistant gastric 
cancer patients compared to chemotherapy sensitive patients, and significantly correlated with high TNM 
stage24. Within the proteomic compartment, no studies to date have reported on IGHV3-72 in pancreatic 
disease, however, the levels of this protein in plasma exosomes have been shown to have utility in distinguishing 
lung adenocarcinoma from lung squamous cell carcinoma25. Importantly, increased LGALS3 expression has 
been observed as an early PC event, with LGALS3 expression shown to be 1.5-fold higher in chronic pancreatitis 
tissues compared to healthy controls, but up to 6.5-fold higher in PC tissue, increasing incrementally as the 
disease progresses26,27. Indeed, both LGALS3 mRNA and protein levels have been shown to be significantly 
increased in PC tissue compared to healthy controls28. Interestingly, LGALS3, along with LCN2, REG1A and 
S100A8, has been previously detected in patient PCF, with S100A8 and LCN2 also being detected in PCF cell 
pellets, though no indication as to the level of expression or differential expression between controls were 
reported6. High S100A8 expression in pancreatic ductal fluid has been demonstrated to predict worse disease-
free and overall survival in late-stage PC patients29, with the current study providing evidence that S100A8 is 
elevated in the PCF of high-risk patients. Furthermore, S100A8 was shown to be overexpressed in PC tumours 
compared to normal and pancreatitis tissues30. IGHA1 plays a key role in immunoglobulin receptor binding 
activity, and has been measured previously in the PCF of both chronic pancreatitis and non-pancreatitis 
patients31. Importantly, IGHA1 has also been measured in normal pancreatic FFPE tissue samples, but was 
not detected in chronic pancreatitis or PC FFPE tissue specimens32. This study demonstrated lower levels of 
IGHA1 in high-risk PCF, suggesting that expression may be lost during disease progression. IGJ has previously 
been identified, via proteomic evaluation of pancreatic patient plasma, as being upregulated in PDAC plasma 
compared to healthy controls33. While this does not align with the results reported in this study, discrepancies 
in the concentrations of numerous proteins in serum versus plasma have been reported, and the two fluids 
are therefore not directly comparable34. PPBP, also known as CXCL7, is a neutrophil chemoattractant that has 
been demonstrated by Matsubara et al.35 to be significantly decreased in the plasma of PC patients compared 
to healthy controls. However, Pan et al.33 found PPBP levels to be elevated in chronic pancreatitis and PDAC 
plasma compared to healthy controls. In a 2021 study, Kim et al.36 generated a plasma-based multi-biomarker 
panel consisting of 14 proteins, including PPBP, that could distinguish PDAC from controls with AUC values of 
up to 0.977. Here, Kim et al.36 found PPBP levels to be increased in PDAC patients compared to controls. These 
three studies highlight the importance of validation of biomarkers across independent patient cohorts, and the 
vast differences that can be seen in biomarker expression profiles across different patient cohorts. Overall, six 
out of the ten biomarkers have previously been studied in the pancreatic setting, with the remaining four being 
reported in this study for the first time. Interestingly, pathway enrichment of the proteins within this panel 
also revealed significant associations with the immune system, providing evidence of the potential involvement 
of these features in processes such as neutrophil degranulation, regulation of the TLR signalling cascade, and 
diseases of the immune system.

While the various biomarker panels generated in this study have shown promise in the risk stratification 
setting for patients with PCLs, it is important to note that this study is not without its limitations. While the 
patients included in this analysis were stratified as low- or high-risk based on the European evidence-based 
guidelines for PCL management, these guidelines are one of several that exist globally. Indeed, there is a lack of 
consensus among clinicians as to the characteristics that constitute a low- or high-risk of PC development. As 
such, while these data were generated using the European guidelines, they may not align with other guidelines 
globally, and this is a major issue with current PCL research. Further to this, another limitation of this study is 
the lack of a validation cohort to verify these results. While validation is an important part of any biomarker 
research, it was not possible to generate a validation cohort over the course of this study. Indeed, in order to 
validate these results another dataset consisting of proteomic and transcriptomic data for both PCF and serum 
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of PCL patients would be needed. As such, while the results presented are very promising, these data remain to 
be validated in an independent patient cohort. This lack of readily available matched datasets remains one of the 
major caveats with the use of multi-omic data at present, hampering validation of results through standard data 
mining efforts.

Overall, the various approaches used to analyse these data highlight the strengths and weaknesses of the 
panels identified in this study, and demonstrate that while UHC and PCA are useful for interrogating datasets, 
training and testing models that are developed for the examination of biomarkers, such as LOOCV, gives the best 
sense of biomarker performance. Metrics such as AUC value, sensitivity and specificity are the most important 
in this context, and should therefore be given the most weight. The results reported here not only describe 
the dysregulation of proteins and miRNAs in pancreatic disease that have not previously been seen, but also 
demonstrate their potential utility as biomarkers of patient PC risk in this PCL cohort. Promising multi-omic 
panels have been identified in both the PCF and the serum that have the potential to classify patients based on 
their risk of PC with high accuracy. Using novel CombiROC software these two multi-omic panels were reduced 
and integrated to create a CBF multi-omic panel that could stratify patients with improved accuracy compared 
to either multi-omic panel alone. This research not only highlights promising novel biomarkers of patient PC 
risk stratification, but provides a unique methodology for the generation of biomarker panels across biological 
samples. Importantly, these data also highlight potential caveats to biomarker panel design and analysis, and as 
such demonstrate the importance of careful and extensive validation of results in novel patient cohorts. While 
these data remain to be further validated in an independent patient cohort, the outputs reported here give hope 
not just for the establishment of robust biomarkers in pancreatic disease, but for biomarker research as a whole. 
Lastly, this work showcases the vast diversity of dysregulated components to be found within the PCF and serum 
of PCL patients. Given the expansive research conducted to date demonstrating the various factors within the 
PCF, it is important to understand how these factors become dysregulated and what role they may have in the 
progression of PCLs to PC.

Materials and methods
Patient sample collection
PCF and peripheral blood serum were collected prospectively from patients presenting with a PCL in one of 
three tertiary hospitals in Dublin, Ireland (Tallaght University Hospital, St. James’s Hospital and St. Vincent’s 
University Hospital) from July 2019 to July 2022. PCF samples (n = 32) were collected via endoscopic 
ultrasound-guided fine-needle aspiration, with serum samples (n = 68) being collected prior to cyst puncture. 
As serum samples were taken prior to cyst puncture, matched serum and PCF were only obtained for n = 32 
patients due to a low volume of PCF present, difficulty puncturing the cyst, or complications during endoscopy. 
Demographic information for all cohorts are provided in Supplementary Materials S10, S11, and S12. PCF CEA 
levels were assessed clinically for all patients as part of routine cytology. Patients were stratified into low- and 
high-risk groups for PC development by the clinical team using the 2018 European evidence-based guidelines 
on pancreatic cystic neoplasms37. Pathology for these patients was not available for a definitive classification 
as tissue is not taken as part of the routine clinical workup for these patients. Importantly, one patient within 
the cohort possesses a VHL mutation, and as such this patient was classified as high-risk due to their genetic 
predisposition to PCLs and PC, despite their PCL receiving a low-risk classification. As such, the data presented 
here were examined, where appropriate, with this patient classified as both low- and high-risk, and changes 
in panel performance were discussed. A detailed illustration of the methods can be found in Supplementary 
Material S13.

Materials
All chemicals and reagents used were purchased from Sigma-Aldrich (Wicklow, Ireland), unless otherwise 
stated. Triton-X100 (Product Code 306324N) was purchased from British Drug Houses Ltd (London, UK).

HTG EdgeSeq miRNA whole transcriptome sequencing of PCF and serum
PCF and serum samples were processed in accordance with OP-00034, HTG EdgeSeq processing. Serum samples 
were processed with a modified protocol, using a 1:2 dilution with Plasma Lysis Buffer in place of the Biofluid 
Lysis Buffer to overcome the presence of inhibitors in the samples. Target capture was done by HTG EdgeSeq 
chemistry. The library was prepared in accordance with OP-00035, HTG EdgeSeq PCR processing. Clean-up 
procedures were performed according to OP-00037, HTG EdgeSeq AMPure clean-up of Illumina Sequencing 
Libraries. The library was quantified in accordance with OP-00079, HTG EdgeSeq KAPA Library Quantification 
for Illumina Sequencing. All samples and controls were quantified in triplicate.

Following qPCR quantification, the HTG EdgeSeq RUO Library Calculator (v3.2) was used to ensure there 
was a sufficient concentration of sample for library pooling and to determine the appropriate dilutions for 
building the library pool. Use of the HTG EdgeSeq RUO Library Calculator was guided by the HTG EdgeSeq 
RUO Library Calculator Instructions for Use (P/N 10290200). All samples processed within this study had 
sufficient PCR product to be pooled for sequencing. The HTG EdgeSeq RUO library calculator was also used to 
determine the volume and specific type of denaturation reagents to be used for the library.

The sequencing was performed on the Illumina NextSeq sequencer in accordance with OP-00093, HTG 
EdgeSeq Illumina NextSeq sequencing. The sequencing data on miRNA expression of target genes were 
imported into HTG EdgeSeq Parser software (v5.3.0.7184). The HTG EdgeSeq Reveal Application (v3.1.0) was 
utilized to quality check and normalize data. Post-sequencing quality control (QC) metrics were used to detect 
sample failure modes. Data were returned from the sequencer in the form of demultiplexed FASTQ files, with 
four files per original well of the assay. The HTG EdgeSeq Parser was used to align the FASTQ files to the probe 
list to collate the data. All multi-tissue control correlations passed Pearson and Spearman correlation acceptance 
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criteria of ≥ 0.85, and all samples passed the HTG EdgeSeq post-sequencing metrics. Transcriptomic data have 
been uploaded to the Gene Expression Omnibus (GSE280768 and GSE280772).

Preparation of PCF samples for LC–MS
The protein concentration of PCF samples was assessed by Pierce™ BCA Protein Assay (Cat. No. 23225)
(ThermoFisher, UK) as per the manufacturer’s instructions. Hydrophobic and hydrophilic Speedbead Magnetic 
Carboxylate Modified Particles (GE Healthcare, Cat. No. 45152105050250 and 65152105050250) (Cytiva, MS, 
USA) were combined in a ratio of 1:1 (v/v), rinsed on the DynaMagTM (Cat No. 12321D) (ThermoFisher, 
London, UK), and reconstituted in the starting volume of LC–MS grade water. Volumes representing 50 µg of 
protein from each sample were combined with an equal volume of 2X sample buffer [300 mM NaCl, 100 mM 
tris (pH 8.0), 3  mM MgCl2, 2% Triton-X100 and 1 tablet of Complete Mini Protease Inhibitor in LC–MS 
grade water]. After incubating at 4 °C with intermittent agitation for 20 min, samples were centrifuged before 
adding lysis buffer [6 M urea, 2 M thiourea and 50 mM MOPS in LC–MS grade water] and 0.2 M dithiothreitol. 
Samples were incubated on a thermoshaker at 700 RPM for 15 min at 30 °C, then cooled to RT before adding 
0.4 M iodoacetamide and incubating on a thermoshaker at 700 RPM for 15 min at room temperature (RT) in 
the dark. After incubating, 100% acetonitrile was added to each sample, followed by magnetic bead mix, and 
samples were placed on a rotation mixer at RT for 1 h. Samples were then rinsed on the DynaMagTM stand. 
Samples were processed in this way by rinsing with both 70% (v/v) ethanol, and 100% acetonitrile, consecutively. 
After the final rinse, 50 mM ammonium bicarbonate was added to each tube, followed by Promega Sequencing 
Grade Modified Trypsin (Product Code V5111) (MyBio Ltd, Kilkenny, Ireland). Samples were then incubated 
overnight on a thermoshaker at 500 RPM and 37 °C. Samples were then quick spun and resuspended with more 
fresh magnetic bead mix, along with 100% acetonitrile. Tubes were then incubated on the rotation mixer for 
18 min at RT, before being rinsed on the DynaMagTM stand. Samples were then rinsed with 100% acetonitrile 
before being removed from the stand and LC–MS grade water added to elute the peptides from the beads. The 
magnetic beads were vortexed intermittently for 5 min at RT before being placed on the DynaMagTM stand 
a final time for 5 min. The eluted peptide supernatant was then carefully transferred to a fresh tube. Peptide 
concentrations of the elutants were assessed by PierceTM Quantitative Colorimetric Peptide Assay (Cat. No. 
23275) (ThermoFisher, UK) as per the manufacturer’s instructions. Peptide sample dilutions of 100 ng/mL were 
prepared in 0.1% (v/v) formic acid in mass-spec vials.

Label-free LC–MS/MS analysis of PCF
Samples were run on a Thermo Scientific Q Exactive mass spectrometer coupled to a Dionex Ultimate 
3000 (RSLCnano) chromatography system to perform the LC–MS/MS analysis of PCF samples in the Mass 
Spectrometry Facility, Conway Institute of Biomolecular and Biomedical Research, University College Dublin. 
The tryptic peptides were separated on a reversed-phase C18 column packed in-house (8 cm × 75 μm ID; C 
18, 3.0 μm (ReproSil-Pur 120 Dr Maitsch GmbH.)) and separated at a constant flow rate of 250 nL/min by an 
increasing acetonitrile gradient. Mobile phases were 0.5% (v/v) acetic acid, 2% (v/v) acetonitrile, 97.5% (v/v) 
water (phase A), and 0.5% (v/v) acetic acid, 2% (v/v) water, 97.5% (v/v) acetonitrile (phase B). The peptides were 
separated by a gradient starting from 1% of mobile phase B and increased linearly to 30% for 58 min at a flow 
rate of 250 nL/min. The mass spectrometer was operated in data dependent TopN 12 mode, with the following 
settings: mass range 320-1600 Th; resolution for MS1 scan 70,000; AGC target 3e6; resolution for MS2 scan 
17,500; AGC target 5e4.

Preparation of serum samples for LC–MS
Immunodepletion of serum samples was carried out using the Proteome Purify 12 Human Serum Protein 
Immunodepletion Resin kit (Cat. No. IDR012) (R&D Systems, MN, USA) as per the manufacturer’s instructions. 
Following this, sample suspension was placed into the upper chamber of a Corning™ Costar™ Spin-X™ Centrifuge 
Tube Filter (Product Code 10310361) (Fisher Scientific, Dublin, Ireland) and centrifuged for 2 min at 2000 × g. 
The immunodepleted elutants were moved to a fresh tube and combined with − 20 °C 100% acetone and stored 
at − 20 °C overnight. After this time, samples were centrifuged and the supernatant discarded to waste, before 
adding − 20 °C 50% (v/v) acetone. Samples were centrifuged again and the supernatant was discarded to waste 
before adding more − 20 °C 50% (v/v) acetone and centrifuging as before. The pellet was allowed to air dry for 
24 h at RT. Once dry, the protein pellets were immediately processed using the PreOmics iST 96 × kit (Product 
code P.O.00027) (PreOmics GmbH, Munich, Germany) as per the manufacturer’s instructions.

Label-free LC–MS/MS analysis of serum
An UltiMate 3000 nano RSLC (ThermoFisher, UK) system interfaced with an Orbitrap Fusion Tribrid Mass 
Spectrometer (ThermoFisher, UK) was used to perform the LC–MS/MS analysis of serum samples in the 
Proteomics Facility of the National Institute for Cellular Biotechnology, Dublin City University. A volume of 
2 μL from each sample was loaded onto a PepMap100, C18, 300 μm × 5 mm trapping column using a flow rate 
of 25 μL/min with 2% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic acid in LC–MS grade water for 3 min. 
Each sample was then resolved onto an Acclaim PepMap 100, 75 μm × 50 cm, 3 μm analytical column. A binary 
gradient of: solvent A (0.1% (v/v) formic acid in LC–MS grade water) and solvent B (80% (v/v) acetonitrile, 
0.08% (v/v) formic acid in LC–MS grade water), using 2–32% B for 50 min, 32–90% B for 5 min, and holding 
at 90% for 5 min at a flow rate of 300 nL/min was used to elute peptides. A column temperature of 47 °C and a 
voltage of 2.0 kV was used for peptide ionization. Data-dependent acquisition was performed using a full scan 
range of 380–1500  m/z. The Orbitrap mass analyser with a resolution of 120,000 (at m/z 200), a maximum 
injection time of 50 ms and an automatic gain control (AGC) value of 4.0 × E5 was used to perform scans. A 
top-speed acquisition algorithm was used to determine the number of selected precursor ions for fragmentation. 
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Selected precursor ions were isolated in the quadrupole using an isolation width of 1.6 Da. A dynamic exclusion 
was applied to analysed peptides after 60  s and only peptides with a charge state between 2 + and 7 + were 
analysed. Precursor ions were fragmented using higher energy collision-induced dissociation with a normalized 
collision energy of 28%. The resulting MS/MS ions were measured in the Orbitrap analyser with a resolution of 
30,000 (at m/z 200). MS/MS scan conditions were typically the following: a targeted AGC value of 5 × E4 and a 
maximum fill time of 300 ms.

Protein identification from LC–MS/MS
Data from both PCF and serum LC–MS/MS analysis were searched against the Human Reference Proteome 
(reviewed entries) downloaded from Uniprot.org (21-05-2021), using MaxQuant (v1.6.17.0). Label-Free 
Quantitation was selected as was the Match between Runs option. The following parameters were selected for 
the search—Fixed Mod: carbamidomethylation; Variable Mods: methionine oxidation, acetyl (protein N-term); 
Trypsin/P digest enzyme; Precursor mass tolerances 4.5 ppm; Fragment ion mass tolerances 20 ppm; Peptide 
FDR 1%; Protein FDR 1%.  Proteomic data have been uploaded to the PRIDE database (PXD057661 and 
PXD057299).

Quantification of serum CA19-9 concentrations via sandwich ELISA
Soluble CA19-9 concentrations in patient serum were measured using the Human CA19-9 PharmaGenie ELISA 
kit (Cat. Code: SBRS0338) from Assay Genie Ltd (Dublin, Ireland) as per the manufacturer’s instructions. The 
absorbance at 450 nm was measured using the GloMax Explorer microplate reader (Promega, WI, USA).

Bioinformatic analysis of omics data
Both PCF and serum proteomic data obtained from LC–MS were cleaned and normalised using Perseus software 
(v1.6.15.0)38. Briefly, label-free quantification (LFQ) intensity data were filtered to remove reverse sequences, 
potential contaminants and proteins that were only identified by peptides carrying one or more modified amino 
acids (“only identified by site”). The data were then filtered based on valid values, and proteins with zero values 
in more than 30% of samples were removed. The data were then log2 transformed, normalised using a linear 
transformation, and imputed to replace missing values from the normal distribution. Differential expression 
analysis with Benjamini-Hochberg corrections was conducted in Perseus using the built-in ‘edgeR’ package from 
RStudio.

PCF and serum transcriptomic data were obtained from HTG Molecular in CPM normalised form. 
Normalised transcriptomic data were loaded into RStudio (v21.09.0) and differential expression analysis using 
Empirical Bayes Statistics for Differential Expression was conducted using packages ‘readxl’ (v1.4.1), ‘edgeR’ 
(v3.32.1) and ‘DESeq’ (v1.30.1). Multiple comparisons for differential expression analysis was corrected using 
Benjamini-Hochberg corrections.

Power calculations suggest that a minimum of 15 patients per cohort is required for sufficient statistical 
power (z = 0.8, α = 0.05, β = 0.2, k = 1)39. Box plots and volcano plots of significantly differentially expressed 
factors were created in GraphPad Prism (v9.5.0). Processed proteomic and transcriptomic data for both PCF 
and serum were scaled individually before being integrated to create a single data matrix. UHC with supporting 
heatmap and dendrograms were generated in RStudio using packages ‘edgeR’ (v3.32.1), ‘cluster’ (v2.1.4), ‘purrr’ 
(v0.3.4), ‘dendextend’ (v1.15.2), ‘dplyr’ (v1.0.9), ‘ggplot2’ (v3.3.5), ’ComplexHeatmap’ (v2.6.2), ‘RColorBrewer’ 
(v1.1-3), ‘gplots’ (v3.1.1), ‘pheatmap’ (v1.0.12) and ‘factoextra’ (v1.0.7). Corrplots illustrating the correlations 
between patient clinical data and omic factors were created in RStudio using packages ‘Hmisc’ (v4.7-2), 
‘heatmap3’ (v1.1.9), ‘pheatmap’ (v1.0.12), ‘plot.matrix’ (v1.6.2), ‘RColorBrewer’ (v1.1-3), ‘gplots’ (v3.1.1), 
‘corrplot’ (v0.90) and ‘ggcorrplot’ (v0.1.3). Clinical data were converted to binary code where appropriate using 
the key in Supplementary Material S14. PCA was conducted in RStudio using packages ‘tidyverse’ (v1.3.1), 
‘ggplot2’ (v3.3.5), ‘factoextra’ (v1.0.7), ‘rgl’ (v0.108.3) and ‘plot3D’ (v1.4). LOOCV and corresponding ROC plots 
were created in RStudio using packages ‘tidyverse’ (v1.3.1), ‘dplyr’ (v1.0.9), ‘plyr’ (v1.8.7), ‘klaR’ (v1.7-1) and 
‘caret’ (v6.0-93). Predictive linear classification models were used in the LOOCV. All linear models (used in the 
LOOCV, differential expression analysis, and in the Spearman correlations) report on the linear relationships 
between variables, and how changes in one variable can impact the other. P-values report on whether these 
relationships are statistically significant, and whether there is a significant association between the variables. 
For example, where increases in certain protein levels are significantly associated with high-risk PCL patients.

Assessment of optimal biomarker combinations was conducted using CombiROC software (v1.2)40. Data 
were scaled in RStudio and processed using a linear transformation to ensure no negative values were present 
before being brought into the CombiROC software. Using the graphics function, the minimum number of 
biomarker features was set to 1 in order to evaluate the number of biomarkers that produced the best results. The 
test signal cut-off was calculated as the mean of the control group plus the standard deviation, rounded to the 
nearest whole number to be compatible with the software. For PCF the cut-off was set to 3, for serum this was 
set to 4. PCF sensitivity and specificity limitations were set at 83% and 25%, respectively. Serum sensitivity and 
specificity limitations were set at 93% and 47%, respectively.

Pathway mapping
Proteins in the final CBF panel were entered into the Reactome Pathway Browser (v 3.7) analysis tool to evaluate 
potential pathways that these features may be involved in41. Significantly enriched pathways (p-value < 0.05, 
FDR = 0.05) were sorted under the platform’s hierarchy for ease of interpretation.

Scientific Reports |          (2025) 15:129 14| https://doi.org/10.1038/s41598-024-83742-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
Study data have been uploaded to online repositories. Transcriptomic data have been uploaded to the Gene 
Expression Omnibus (GSE280768 and GSE280772). Proteomic data have been uploaded to the PRIDE database 
(PXD057661 and PXD057299).
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