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Abstract: For general insurance pricing, aligning losses with accurate premiums is crucial
for insurance companies’ competitiveness. Traditional actuarial models often face chal-
lenges like data heterogeneity and mismeasured covariates, leading to misspecification
bias. This paper addresses these issues from a Bayesian perspective, exploring connections
between Bayesian hierarchical modeling, partial pooling techniques, and the Gustafson
correction method for mismeasured covariates. We focus on Non-Differential Berkson
(NDB) mismeasurement and propose an approach that corrects such errors without relying
on gold standard data. We discover the unique prior knowledge regarding the variance
of the NDB errors, and utilize it to adjust the biased parameter estimates built upon the
NDB covariate. Using simulated datasets developed with varying error rate scenarios,
we demonstrate the superiority of Bayesian methods in correcting parameter estimates.
However, our modeling process highlights the challenge in accurately identifying the
variance of NDB errors. This emphasizes the need for a thorough sensitivity analysis of
the relationship between our prior knowledge of NDB error variance and varying error
rate scenarios.

Keywords: Bayesian hierarchical model; heterogeneity; non-differential Berkson
measurement error; aggregate insurance claim; risk premium; partial pooling;
Gustafson correction

1. Introduction
In non-life insurance practice, the risk premium is the portion of the premium that

specifically covers the expected loss arising from claims [1]. Therefore, accurately predicting
aggregate claim amounts (also known as ‘loss severity’ in insurance terms) is critical for
major actuarial decisions to prevent insolvency. In order to estimate the risk premium (or
aggregate claim amounts), one significant tool that is often considered in a conventional
regression framework (such as Generalized Linear Models (GLMs), Generalized Additive
Models (GAMs), etc.) is the identification of risk clustering, where certain risks or claims
are observed to cluster together within specific contexts [2]. By recognizing and analyzing
these clusters—geographical regions, demographic groups, types of policies, latent classes,
etc.—within the GLM framework, insurers can make data-driven adjustments to their
premium structures, ensuring that pricing reflects the actual risk accurately. This tailored
homogeneity, in turn, improves their overall financial performance [3].

In the GLM framework, risk clustering often relies on the covariates X in the model [2].
While practitioners typically verify model assumptions such as distributional properties,
residual patterns, and statistical significance, etc., they may often overlook the broader
implications of the inclusion of covariates X. Aggarwal et al. (2016) [4] discuss the concept
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of covariate-based model risk in non-life pricing, highlighting that risks such as model
misspecification error or flawed data inputs often stem from the inclusion of covariates
X in the model. This oversight can become particularly problematic when estimating the
aggregate claim amount Sh|X.

1.1. Research Questions

Suppose we are dealing with a group policy where each policy h can generate multiple
claims [5]. For example, each policy h is taken out by a different company, such as an
oil company, a car manufacturer, etc., resulting in h = 1, . . . , H unique policies in the
insurer’s portfolio. Each company holds a single group policy h to protect its multiple
assets. Let the individual claim amount Yhi, i = 1, 2, . . . , Nh(t) associated with Nh(t)
different claims during a policy period t for a single policy h be log-normally distributed
(i.e., lnYhi ∼ N(µ(t), σ(t)2)). Assuming the policy period t is fixed and short, as is typical in
a non-life insurance context, we can ignore t for simplicity. Under this assumption, the claim
count Nh for policy h remains limited and follows a negative binomial distribution [3].
The individual claim amount Yhi, as well as the mean claim amount Ȳh for a policy h follows
a log-normal distribution, assuming the claim count is not large enough for the Central
Limit Theorem to apply. Each policy, treated as an individual observation, has a unique
Nh value because it is linked to a distinct group of insured assets requiring insurance
protection. Hence, for each policy h, the aggregate claim amounts Sh received by an insurer
can be defined as a log-normal convolution: Sh = ΣNh

i=1Yhi = Yh1 +Yh2 + . . . +YhNh
= NhȲh.

In order to determine the future value of the expected aggregate claim amounts E[Sh] for a
policy h, the traditional risk modeling principle applies the frequency–severity approach [6],
which involves modeling the frequency and severity of claims (the number of claims and
the size of each claim) separately. Resting on the assumption that the summands Yhi

are mutually independent and identically distributed (i.i.d.) to maintain homogeneity,
the expected aggregate claim amount E[Sh] = E[Yh1] + E[Yh2] + . . . + E[YhNh

] for a policy h
can be simplified as:

E[Sh] = E[Nh]× E[Ȳh] for a policy h by the Frequency-Severity approach. (1)

Now, let X = {XF, XS} represent the covariate matrix that is statistically signifi-
cant to understand Nh, Yhi, Ȳh, and Sh. The inclusion of covariates X introduces new,
potentially unknown structures into the data space of Nh, Yhi, Ȳh, and Sh, altering the
underlying distributional properties of the individual summand Ȳh|XS

h [7]. As a result,
their convolutions E[Sh|X] may be re-organized into hierarchical structures, where ob-
servations at one level can be grouped into others. To be specific, based on the group
policy assumption, we can assume that Yh1, Yh2, . . . , YhNh

are influenced by the same
covariate vector XS

h = {xS
h , zS

h}, and thus the inclusion of X still leads to E[Sh|X] =

E[Nh|XF
h ] × E[Ȳh|XS

h ], as shown in Equation (1). However, if each claim amount Yhi is
influenced by individually different covariate vector XS

hi = {xS
hi, zS

hi}, i = 1, . . . , Nh, the
summands—Yh1|XS

h1, Yh2|XS
h2, . . . YhNh

|XS
hNh

—may remain independent, but the assump-
tion of the identically distributed observations (homogeneity) is no longer valid (since the
distribution of each summand may have different parameter values). This heterogene-
ity introduced by X renders E[Sh|X] ̸= E[Nh|XF

h ] × E[Yhi|XS
hi], making these log-normal

convolutions analytically intractable under the traditional risk modeling principle [6].
Alongside inherent heterogeneity, actuaries frequently encounter model risks linked

to poor data quality, especially when covariates are affected by excessive noise. Various
types of noise or measurement errors exist (which will be discussed in the next section);
however, we focus specifically on Non-Differential Berkson (NDB) mismeasurement due to
its unique impact on the modeling process and its simplicity in application. The inclusion of



Appl. Sci. 2025, 15, 210 3 of 38

NDB covariates not only compromises the accuracy of the model but also amplifies existing
heterogeneity, potentially leading to biased estimates and erroneous conclusions [8]. These
covariate-based model risks introduce new challenges, emphasizing the need for a deeper
understanding of their effects and the development of advanced modeling techniques to
address them. In this regard, we aim to tackle two fundamental covariate-based model
risks by posing the following research questions:

• RQ1. If an additional unobservable heterogeneity is introduced by the inclusion of
covariates X, how do we capture this and maintain homogeneity in risk clustering?

• RQ2. If an additional estimation bias results from the use of the mismeasured covari-
ates (with Non-Differential Berkson (NDB) error in particular), what is the best way to
mitigate this model risk?

1.2. Our Contribution and Paper Outline

This paper is dedicated to the development of a novel strategy for modeling the
conditional aggregate claim amount Sh|X by dealing with the covariate-based model risks:
heterogeneity (RQ1) and NDB covariate (RQ2). We center our attention on the hierarchical
GLM and Gustafson correction, with the aim of establishing connections between them and
integrating them within the Bayesian parametric framework. This framework is especially
relevant to actuarial risk management, as it facilitates the calculation of posterior credibil-
ity intervals to account for all sources of uncertainty in estimating the risk premium [9].
The primary contribution of this study is the novel elicitation of prior knowledge about
the unknown variance of the NDB covariate conditional on the true covariate x∗|x. Under-
standing x∗|x is central to implementing the Gustafson correction with a Gibbs sampler
and facilitates its application in mitigating the model risk tied to the NDB covariate x∗.
To our knowledge, no previous studies have tackled the estimation of risk premium while
accounting for NDB errors in the covariate within the hierarchical GLM framework.

The paper is organized as follows: Section 2 provides background information on the
problem setting and discusses traditional approaches to the research questions RQ1 and
RQ2. Section 3 explores our modeling methods for aggregate claim amounts under the
frequency–severity principle, considering two scenarios: the complete covariate case and
the NDB covariate case. This section details the components of Bayesian inference within
the hierarchical GLM framework and the development of Gibbs samplers, introducing
our novel Gustafson correction for addressing NDB covariates. Section 4 presents the
empirical results and validates our approach using real insurance data. The effectiveness
of our Bayesian hierarchical GLM incorporating the Gustafson correction technique is
then compared to classical risk premium models using Simulation Extrapolation (SIMEX).
The paper concludes with Section 5.

2. Background and Conventional Approaches Related to RQ1 and RQ2
This section provides a brief background on the problem setting and explores various

conventional methods related to each research question.

2.1. Heterogeneity in Risk Clusters

The key objective in classical regression-based risk premium modeling is to accurately
describe the stochastic relationships between the insured claim amounts and indepen-
dent, homogeneous risk clusters. Homogeneity within a risk cluster reflects the similar
characteristics of policyholders, which aids in managing the inherent variability observed
in claim data. Common approaches in this domain include Generalized Linear Models
(GLMs), Generalized Additive Models (GAMs), and Multivariate Adaptive Regression
Splines (MARSs), among others [3].
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GLMs serve as a fundamental framework for analyzing premiums and risk clus-
ters, owing to their clarity and theoretical robustness. These models effectively tackle
heteroscedasticity through the application of Weighted Least Squares (WLS) and accom-
modate variability across different risk levels by incorporating a class-specific term in the
linear predictor. Nonetheless, GLMs operate under the assumption that all heterogeneity
stems from known covariates, which may lead to the neglect of unobserved factors and
non-linear interactions that significantly contribute to heterogeneity [2]. GAMs build upon
GLMs by integrating smoothing functions, which facilitate the capturing of non-linear
relationships among risk factors. This approach enhances flexibility by employing a non-
parametric modeling strategy that adjusts the functional form based on the underlying data.
However, GAMs fall short in capturing variations arising from categorical covariates [10].
MARSs represent another sophisticated advancement, further refining GLMs by applying
piecewise linear regressions across data intervals. This characteristic not only enhances
computational efficiency compared to GAMs but also makes MARSs particularly adept at
handling high-dimensional data challenges [11].

In the context of risk premium modeling with GLMs, GAMs, and MARSs, addressing
heterogeneity necessitates the inclusion of an additional class-specific effect term within
the linear predictor. This term aims to capture the latent heterogeneity inherent in each
risk cluster, reflecting unique deviations from the cluster mean [12]. However, a notable
limitation of these classical risk premium modeling frameworks is that once parameters
are estimated, predictions for new risk premiums are typically made solely based on these
parameters and the associated covariates, neglecting the latent factors and uncertainty
inherent in these estimates. Consequently, overlooking this uncertainty constrains the
insurer’s ability to make more informed decisions and effectively formulate their financial
strategies [13].

2.2. NDB Errors in Covariates

Before delving into the methods for correcting measurement errors in covariates,
we first provide an overview of the various types of measurement error. Consider
XS = {xS, zS}, where only xS, a continuous covariate, is subject to mismeasurement,
while zS, a binary covariate, is complete. For simplicity, we omit the superscript s from
the covariate matrix XS∗ and the continuous covariate vector xS∗, referring to them as X∗

and x∗, respectively. The measurement error ϵ and the error-prone observed covariate x∗

are assumed to follow ϵ ∼ N(0, σ2
ϵ ) and x∗ ∼ N(x, T2). The approach to handling mis-

measured covariates depends on the nature of ϵ. Now, the different types of measurement
errors ϵ are outlined as follows:

• Additive vs. multiplicative [14]: With additive error, the mismeasured covariate x∗

can be expressed as x∗ = x + ϵ, while the multiplicative error can be represented as
x∗ = x · ϵ.

• Differential vs. non-differential [15]: The error ϵ can be classified as differential or
non-differential based on its relationship with other variables. Differential error occurs
when the mismeasured covariate x∗ is correlated with the outcome, represented as
x∗ ∼ Y| z, x. Conversely, non-differential error arises when the error ϵ in x∗ provides
no additional information about the outcome beyond what is already contained in x,
leading to x∗⊥ Y| x, z. This implies that f (Y|x∗, x, z) = f (Y|x, z) and f (x∗|Y, x, z) =
f (x∗|x).

• Classical vs. Berkson [16]: Classical error occurs when the error ϵ is independent of the
true covariates, leading to ϵ ⊥ Y, x, z, E[ϵ|x∗, z] = 0 and T2 = V(x) + V(ϵ) > V(x).
In contrast, if the error ϵ is independent of the observed covariates but associated
with other latent factors with multiple levels, Berkson error applies, where ϵj ⊥ Y, x∗, z,
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resulting in E[ϵj|x∗, z] = 0 and T2
j = V(xj) + V(ϵj) < V(x) for j = 1, . . . , J. This

implies that the error ϵ can display varying levels of heteroscedasticity across different
risk clusters due to the latent factors.

We focus on the case in which the mismeasured covariate x∗ arises from additive
measurement error in a manner that is non-differential (blind to the outcome and other
covariates) and Berkson (correlated to the latent factors), allowing us to address error
structures that may vary across risk clusters. Throughout this paper, we refer to it as the
‘NDB covariate’.

Regression Calibration (RC) is a widely used method for addressing the NDB covariate
in the regression framework. RC intuitively corrects errors by leveraging the relationship
between the NDB covariate and true covariate, regressing on the expected true covariates
given the NDB ones [17]. Carroll et al. (2006) [16] suggest that RC remains valid with
GLMs when unbiased reference measurements (i.e., gold standard data) are available,
but obtaining such data has been found to be costly and often impractical. In addition,
Skrondal and Kuha (2012) [18] demonstrate that parameter estimates from RC can be
inconsistent as the size of the error variances σ2

ϵ increases.
An alternative method, Simulation Extrapolation (SIMEX), proposed by Cook and Ste-

fanski (1994) [19], corrects parameter estimates through simulation rather than recovering
true covariate values. SIMEX assesses the impact of measurement error by introducing
additional artificial noise into the NDB covariate and observing how this affects parameter
estimates. By modeling these changes as a function of the noise, optimal parameter esti-
mates can be obtained by setting the noise level back to zero [20]. Unlike RC, SIMEX does
not require external reference such as gold standard data for error correction; however,
the primary challenge of SIMEX lies in the risk of inaccurate extrapolation due to the
complex relationship between the estimated parameters and the error variance σ2

ϵ [20].
Although a simple quadratic curve is often used for extrapolation stability, Carroll et al.
(2006) [16] show that parameter estimates may remain inconsistent until the extrapolation
curve perfectly captures this complex relationship, which remains as a persistent limitation.

3. Modeling Method for Sh|XF , XS

3.1. Introduction of Partial Pooling to Address Heterogeneity in Risk Clustering: RQ1

The partial pooling method, proposed by Gelman and Carlin (2013) [21], tackles
data heterogeneity among risk clusters by finding a middle ground between two perspec-
tives: ‘complete pooling’, where a single global parameter overlooks cluster differences,
and ‘no-pooling’, where separate parameters are created for each cluster. Partial pooling
techniques are naturally integrated within the hierarchical GLM framework, which permits
each parameter to be modeled independently. Specifically, within the hierarchical GLM
framework, the cluster-specific intercept, or ‘varying intercept’, models both the overall
data and cluster-level data, flexibly moving between complete and no-pooling settings.
For example, in a log-normal model of aggregate claims given by:

lnYi ∼ N
(

E[lnYi|X], σ2
lnY

)
, for I = 1, . . . , N

E[lnYi|X] = E[α[j]] + XT β, for j = 1, . . . , J

α[j] ∼ N(µα, σ2
α),

(2)

where β represents the regression parameters, and σ2
lnY is the log-scale variance of the

outcome, the varying intercept α[j] has its own normal density with parameters µα,
σ2

α , representing the cluster’s mean and variance. In no-pooling, α[j] varies across clusters,
while in complete pooling, α[j] takes a single value for all data. The partial pooling approxi-
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mates the value of the varying intercept by weighting the no-pooling estimate lnYj − XT
j β j

and the complete pooling estimate µα as given below [22]:

E[α[j]] ≈
nj/σ2

lnYj

nj/σ2
lnYj

+ 1/σ2
α

· (lnYj − XT
j β j) +

1/σ2
α

nj/σ2
lnYj

+ 1/σ2
α

· µα (3)

in which nj is the sample size in the cluster j, σ2
lnYj

is the variance of the cluster j (within-

cluster variance), and σ2
α is the total cluster variance.

In interpreting Equation (3), when the cluster j has small samples (i.e., nj → 0) or
the total cluster variance σ2

α is small and reliable (i.e., σ2
α → 0), the estimate E[α[j]] shifts

towards the global intercept µα. Otherwise, it leans towards the local cluster intercept
lnYj − XT

j β j.
Figure 1 gives a further illustration of how the partial pooling technique is integrated

into the hierarchical GLM. Let the local cluster j’s outcome parameter θj = {β j, σ2
lnYj}

for j = 1, . . . , J be an independent sample from a population distribution with global
parameters (hyperparameters) ϕ = {a0, b0, c0, d0} as shown in Figure 1. If ϕ is unknown
and requires estimation, the uncertainties in both θ and ϕ would be evaluated using their
joint posterior distribution given by:

p(θ, ϕ|lnY, X) ∝ f (lnY|X, θ, ϕ) · p(θ, ϕ) =
J

∏
j=1

f (lnYj|Xj, θj, ϕ) · p(θj, ϕ) (4)

where the hyperparameters ϕ affect the outcome (or cluster) through the cluster param-
eter θj as illustrated in Figure 1. To analyze the joint prior p(θj, ϕ) in Equation (4), it
is decomposed into the cluster parameter distribution p(θj|ϕ) and the hyperprior p(ϕ).
The posterior distributions are represented as p(θj|ϕ, lnYj, Xj) for the cluster parameter
and p(ϕ|lnY, X) for the hyperprior, which can then be evaluated as:

p(θ|ϕ, lnY, X) =
J

∏
j=1

p(θj|ϕ, lnYj, Xj) (5)

p(ϕ|lnY, X) =
p(θ, ϕ|lnY, X)
p(θ|ϕ, lnY, X)

(6)

where the parameter layer for θj is informed by the data points grouped by each cluster
j in Equation (5) (this indicates no-pooling), while the hyperparameter layer for ϕ com-
municates with the entire population without any clusters in Equation (6) (this indicates
complete pooling). In Figure 1, complete pooling in the upper layer utilizes all data, which
may overlook cluster-specific variations and result in underfitting, as hyperparameters
ϕ are updated based on the entire dataset. In contrast, no-pooling in the lower layer
treats each cluster independently, risking overfitting, with parameters θj updated on a
cluster-wise basis. The diagram in Figure 1 is translated into the analytic expression in
Equations (4)–(6). Note that the numerator in Equation (6) is just the joint posterior for
θ, ϕ from Equation (4), and the denominator in Equation (6) is the posterior for θ|ϕ in
Equation (5). From Equations (4)–(6), one can see that the cluster-specific parameter θj and
the global parameter ϕ can be drawn and estimated recursively as per Figure 1. This bal-
ance enables optimal information sharing between clusters, allowing predictions to account
for both cluster-level and individual-level variations simultaneously, thereby addressing
heterogeneity across risk clusters effectively [21].
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Figure 1. As a Bayesian parametric example with J = 4 clusters, this diagram depicts a typical
Bayesian hierarchical model with the bias–variance trade-off through the partial pooling. For predic-
tion, the class membership j of each data point {Yhi, Xhi} should be known beforehand.

3.2. Introduction of Gustafson Correction to Address NDB Covariate: RQ2

Assuming additive Non-Differential Berkson (NDB) errors in a covariate, we examine
the Bayesian framework to account for its cluster-wise error structure (i.e., heteroscedas-
ticity) probabilistically. The strength of a Bayesian approach to address NDB covariate
errors has been well documented by Grace et al. (2021) [8]. From a Bayesian perspective,
deviations from true values can be corrected through the incorporation of the prior knowl-
edge that captures the relation between the unobservable true covariate x and the observed
NDB covariate x∗. When the NDB error structure introduces cluster-wise heteroscedasticity,
the framework specifies structural components to capture varying variances across risk
clusters. This cluster-wise inference can also be achieved by leveraging the manageable
joint product and Gibbs sampling [23].

The model component specification plays a crucial role in formulating the strategy, as it
determines the parameterization when incorporating the necessary parameter knowledge.
For the NDB covariate problem, Gustafson (2008) [23] begins by specifying the full joint
density of the relevant variables as:

f (Y, x∗, x, z) = f (Y|x∗, x, z) · f (x∗|x, z) · f (x|z) · f (z) (7a)

f (Y, x∗, x|z) = f (Y|x∗, x, z) · f (x∗|x, z) · f (x|z) (7b)
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in which the term for the precisely measured covariate z is factored out for the sake of
simplicity. Due to the assumption of the non-differential error, the conditional joint density
in Equation (7b) can be further reduced to:

f (Y, x∗, x|z) = f (Y|Ax∗, x, z) · f (x∗|x, Az) · f (x|z) (8)

where the cancellations are based on the definition of NDB error as described in Section 2.2.
This conditional joint density in Equation (8) is termed as the complete joint model [23].
As the true covariate x is not observable, the complete joint model is technically inaccessible
or theoretical. However, in the construction of the complete joint model in Equation (8),
three main components that make up the relationship between the true covariate x and the
observed covariate x∗ can be identified:

• Outcome component f (Y|x, z);
• Linking (measurement [23]) component f (x∗|x);
• Covariate (exposure [23]) component f (x|z).

In particular, the linking component incorporates the measurement error mechanism
of x∗j ∼ N(xj, T2

j ) into the analysis, allowing control over the simulation process [8].

The linking (measurement) component term and T2
j also enable investigation of the NDB

error’s effect on the unknown risk clusters.
In contrast, the conditional joint model available in reality is referred to as the incom-

plete joint model [23], which can be represented as:

f (Y, x∗|z) = f (Y|x∗, z) · f (x∗|z) (9)

where the outcome term f (Y|x∗, z) and the exposure term f (x∗|z) are fully known. Note
that the incomplete joint model in Equation (9) can be obtained from marginalizing the
complete joint model in Equation (8) over the unobservable true covariate x. For a concise
comparison, refer to Table 1.

Table 1. Comparison of complete and incomplete joint models.

Complete Joint (Unknown) Incomplete Joint (Known)

f (Y|x, z)︸ ︷︷ ︸
outcome

· f (x∗|x)︸ ︷︷ ︸
measurement

· f (x|z)︸ ︷︷ ︸
exposure

f (Y|x∗, z)︸ ︷︷ ︸
outcome

· f (x∗|z)︸ ︷︷ ︸
exposure

= f (Y, x∗, x | z) = f (Y, x∗ | z)

The implication is that when we align the two models by integrating out the unob-
servable true covariate x from the complete joint model, the resulting equation reveals the
connection between the parameters of the complete joint model and those of the incomplete
joint model as follows: ∫

f (Y, x∗, x | z) dx = f (Y, x∗ | z) (10)

While explicitly solving the integral in Equation (10) can be difficult, comparing the
parameterizations on both sides of the equation uncovers the link between the parameters
of the model based on the NDB covariate x∗ and the true model using the actual covariate
x. Motivated by Romann (2008) [15] and Grace et al. (2021) [8], we analytically derive
the solution to the integral in Equation (10), with the detailed derivation provided in Part
3 of the Supplementary Materials. Accordingly, a hybrid Gibbs sampler is developed
using the relationship embedded in the parameterizations (highlighted in Part 2 of the
Supplementary Materials) to mitigate the model risk associated with the NDB covariates.
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3.3. Clustering Sh|XF, XS with Complete Case Covariate: RQ1 Tackling Heterogeneity

With accurately measured covariates, we emphasize the necessity of maintaining
homogeneity within each risk cluster to determine fair premiums. However, model
risk—specifically the heterogeneity issue (RQ1)—emerges when covariates introduce vari-
ability, increasing the heterogeneity within these clusters. Assuming that the risk clusters
j = 1, . . . , J are already established, this section presents our foundational hierarchical
GLM with varying coefficients, utilizing the partial pooling technique to ensure more
homogeneous risk clusters.

Baseline GLM: For each policy h = 1, . . . , H, we suggest that the claim count Nh

follows a negative binomial (NB) distribution with mean ξh and dispersion parameter ψ.
This setting, along with the assumption that the individual claim amounts on a logarithmic
scale lnYhi, i = 1, . . . , Nh, are independent and normally distributed with mean µh and
variance σ2, is grounded in Ohlsson and Johansson (2010) [3]. In short, we represent these
two outcome models as follows:

Nh ∼ NB(ξh, ψ) =
Γ(Nh + ψ)

Nh!Γ(ψ)

[
ξh

ξh + ψ

]Nh[
ψ

ξh + ψ

]ψ

(11a)

Ȳh ∼ LogN(µh, σ2) =
1

Ȳh
√

2πσ2
exp(− 1

2σ2

[
lnȲh − µh

]2
) (11b)

With the addition of covariates X =
(
XF : {xF, zF}, XS : {xS, zS}

)
, the covariate

effects and the information for risk clusters j = 1, . . . , J can be integrated into the outcome
models via the expectation parameters ξh and µh as presented in Equation (11). Specifically,
the covariates for claim count (frequency) and claim amount (severity) are represented
by XF : {xF, zF} and XS : {xS, zS}, respectively. This leads to the expectation parameters
taking the form of GLMs:

ξh = E[Nh] = E[E[Nh|XFβF + ϵF
h ]] = E[exp (XFβF + ϵF

h )] ≈ eXF βF
(12a)

eµh+
1
2 σ2

= E[Ȳh] = E[E[Ȳh|XSβS + ϵS
h ]] = E[exp (XSβS +

1
2

σ2 + ϵS
h)] ≈ eXS βS+ 1

2 σ2
(12b)

where the residuals are normally distributed, ϵF
h ∼ N(0, σ2

ϵF ), ϵS
h ∼ N(0, σ2

ϵS). Based
on the frequency–severity principle, the conditional expected aggregate claim amount
given X = {XF, XS} for a policy h is expressed as E[Sh|X] = E[Nh|XF]× E[Ȳh|XS]. Conse-
quently, the point estimate of the risk premium, considering the covariates XF and XS, is
determined by:

E[Sh|XF, XS] = exp
(
XFβF + XSβS +

1
2

σ2) (13)

Hierarchical GLM with partial pooling: However, incorporating covariates XF and XS

into the model may introduce unobserved risk factors, leading to increased heterogeneity
within each risk cluster j = 1, . . . , J. To tackle this issue, we propose a hierarchical GLM that
employs a distinct model for each parameter, along with cluster-specific GLM coefficient
vectors and dispersion parameters βF

j , ψj, βS
j , σ2

j across all policies h = 1, . . . , H. Consequently,
Equation (13) with j(h) ∈ {1, . . . , J} is redefined with the following prior selections:
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E[Sj(h)|XF, XS] = exp
(
XFβF

j + XSβS
j +

1
2

σ2
j
)

(14a)

For Nh


βF

j | βF
0 , ΣF

β0
∼ MVN(βF

0 , ΣF
β0
)

ψj | uF
0 , vF

0 ∼ Ga(
uF

0
2

,
vF

0
2
)

(14b)

For Ȳh


βS

j | βS
0 , ΣS

β0
∼ MVN(βS

0 , ΣS
β0
)

σ2
j | uS

0 , vS
0 ∼ InvGa(

uS
0

2
,

vS
0

2
)

(14c)

For XF



xF
j(h) ∼ N(E[xF

j ], λ2F
j )

λ2F
j ∼ InvGa(cF

0 , dF
0 )

zF
j(h) ∼ Bernoulli(πF

j )

πF
j ∼ Beta(gF

0 , hF
0 )

(14d)

For XS



xS
j(h) ∼ N(E[xS

j ], λ2S
j )

λ2S
j ∼ InvGa(cS

0 , dS
0 )

zS
j(h) ∼ Bernoulli(πS

j )

πS
j ∼ Beta(gS

0 , hS
0 )

(14e)

Equation (14) presents a Bayesian hierarchical GLM in which the hyperparameters
are dynamically updated based on the observed data. Gelman and Carlin (2013) [21]
and Winkelmann (2008) [24] recommend a Multivariate Gaussian prior for β due to the
Normality assumption, a Gamma prior for ψ, and an Inverse Gamma prior for σ2 due to
its positive nature and adjustability. In this way, the hierarchical structure in Equation (14)
encompasses several layers, each influenced by the data differently to adjust the degree of
sharing in pooling.

In Section 2, we previously discussed the partial pooling effect that can be attained
by utilizing the hierarchical structure within this GLM framework. In short, the hier-
archical GLM in Equation (14) explores unique parameter values for each individual
(saturated cohort) and each cluster (reduced cohort), pooling them across multiple clus-
ters rather than averaging the parameter values based on the available information [21].
To achieve this, the GLM coefficients and dispersion parameters—βF

j , ψj, βS
j , σ2

j —should
vary by each cluster (i.e., no-pooling). At the same time, the corresponding hyperparam-
eters βF

0 , ΣF
β0

, uF
0 , vF

0 , βS
0 , ΣS

β0
, uS

0 , vS
0 should be updated by the entire data (i.e., complete

pooling). The hyperpriors selected for these hyperparameters in this paper are listed below
in Equations (15)–(18):

βF
0 | m0, δ ∼ MVN(m0, 1

δ ΣF
β0
)

ΣF
β0

| q
0
, Λ ∼ IW(q

0
, Λ)

}
for βF

j (15)

uF
0 | ρ

u1
, ρ

u2
∝ ρ

( uF
0
2

)
−1

u1 / Γ
( uF

0
2
)ρ

u2

vF
0 | ρ

v1
, ρ

v2
∼ Ga(ρ

v1
, ρ

v2
)

for ψj (16)

βS
0 | m0, δ ∼ MVN(m0, 1

δ ΣS
β0
)

ΣS
β0

| q0, Λ ∼ IW(q0, Λ)

}
for βS

j (17)

uS
0 | ρu1, ρu2 ∝ ρ

( uS
0
2

)
−1

u1 / Γ
( uS

0
2
)ρu2

vS
0 | ρv1, ρv2 ∼ Ga(ρv1, ρv2)

for σ2
j (18)
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where 1/δ serves as a variance inflation factor; m0 and Σβ0 denote the mean vector and
variance–covariance matrix of the GLM coefficients, respectively; and q0 and Λ are the
degrees of freedom and the scale matrix of an Inverse Wishart hyperprior to sample the
variance–covariance matrix, respectively. As q0 increases, its scale matrix Λ becomes
smaller, and thus the variance–covariance matrix Σβ0 becomes more influential [25]. ρu1

and ρu2 are the shape and rate parameters of a Gamma hyperprior. Such distributional
knowledge discussed here can be taken into account when we simulate the posterior
parameter samples with the Gibbs sampler.

The selection of hyperpriors in Equations (15)–(18) is informed by distributions that
are conjugate to the priors outlined in Equation (14), significantly streamlining the Bayesian
updating process. For the hyperpriors of uF

0 and uS
0 specified in Equations (16) and (18), we

utilize analytically derived kernels from Fink (1997) [26] due to their conjugacy with the
Gamma and Inverse Gamma distributions of ψj and σ2

j in Equations (14b) and (14c), which

define their shape parameters. Consequently, the distributions of uF
0 and uS

0 will maintain
their original kernel forms, even after incorporating updated values for ψj and σ2

j .
To break down Equations (14)–(18), we consider three distinct layers involved in the

parameter inferences as outlined below:

• Data layer: N1, {Y1(1), . . . Y1(N1)
}, . . . , NH , {YH(1), . . . YH(NH)} | θj

• Parameter layer: θj = {βF
j , ψj, βS

j , σ2
j | ϕ}

• Hyperparameter layers I and II: ϕ = {βF
0 , ΣF

β0
, uF

0 , vF
0 , βS

0 , ΣS
β0

, uS
0 , vS

0 ,
m0, δ, q

0
, Λ, ρ

u1
, ρ

u2
, ρ

v1
, ρ

v2
, m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2}

It is important to note that the inference for the main parameter level relies on cluster-
specific data, while hyperparameter inference uses the entire dataset. However, assuming
that the hyperparameters m0, δ, q

0
, Λ, ρ

u1
, ρ

u2
, ρ

v1
, ρ

v2
, m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2 are fixed

makes their selection non-trivial. As a general guideline, flat hyperpriors—assigning
equal probability to all potential parameter values—should be employed when specific
knowledge about hyperparameter values is unavailable. Additional strategies for choosing
hyperparameters can be found in the works of Fink (1997) [26], Kennedy and O’Hagan
(2001) [25], and Bousquet (2008) [27], as well as their references.

As a Bayesian parametric framework, the hierarchical GLM necessitates defining
the likelihood, prior, and hyperprior distributions at each tier of the hierarchy before
deriving posterior estimates for the parameters. This is crucial because the calculation of
marginal posterior means hinges on the joint distribution across all levels [21]. The initial
formulation of the cluster-specific joint probability (posterior ∝ likelihood × prior) based
on Equation (14a) is as follows:

∏H
h=1 f (Nj(h)|βF

j , ψj) ∏
Nj
i=1 f (Yj(hi)|βS

j , σ2
j ) p(βF

j ) p(βS
j ) p(ψj) p(σ2

j ) for cluster j (19)

However, within the complete hierarchical framework described in Equation (14),
the baseline joint posterior for cluster j (to utilize in the Gibbs sampler) is expressed as:

H

∏
h=1

f (Nj(h)|βF
j , ψj)

Nj

∏
i=1

f (Yj(hi)|βS
j , σ2

j ) ⇒ likelihood model

× p(βF
j |βF

0 , ΣF
β0
) p(βS

j |β
S
0 , ΣS

β0
) p(ψj|uF

0 , vF
0 ) p(σ2

j |uS
0 , vS

0 ) ⇒ prior model

× p(βF
0 |m0, δ) p(ΣF

β0
|q

0
, Λ) p(βS

0 |m0, δ) p(ΣS
β0
|q0, Λ) ⇒ hyperprior model.I

× p(uF
0 |ρu1

, ρ
u2
) p(vF

0 |ρv1
, ρ

v2
) p(uS

0 |ρu1, ρu2) p(vS
0 |ρv1, ρv2) ⇒ hyperprior model.II

(20)

As seen in Equation (20), we note that the hyperparameter layer remains unaffected
by cluster membership j. To compute the expected aggregate claim amount E[Sj(h)|X]
for policy h in cluster j from Equation (14a), we focus on calculating the marginal pos-
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terior means for the main parameters such as E[βF
j |Nh], E[ψj|Nh], E[βS

j |Yh1, Yh2, . . . YhNh
],

and E[σ2
j |Yh(1), Yh(2), . . . Yh(Nh)

]. This can be also followed by constructing credibility inter-
vals with the 5% level (given by the lower 2.5% and upper 2.5% of the posterior distribution
for example) for Bayesian inference to estimate the likely range of true parameter values
for cluster j.

Posterior Computation for Bayesian Inference: The conjugate hyperpriors in Equa-
tions (15)–(18) yield closed-form full conditional posterior hyperpriors, and a Gibbs sampler,
a Markov Chain Monte Carlo (MCMC) method applied to both negative binomial and
log-normal GLMs, efficiently simulates the hyperparameters for posterior estimation using
these hyperpriors. The analytically derived full conditional posterior hyperpriors (posterior
hyperprior ∝ prior × hyperprior) utilized by the Gibbs sampler are shown below:

βF
0 | m0, δ, N, XF, ΣF

β0
∼ MVN

(
δ

δ+1 m0 +
1

δ+1 βF,
ΣF

β0
δ+1

)
ΣF

β0
| q0, Λ, N, XF, βF

0 ∼ IW
(

q0 + 2, (βF
0 − βF)(βF

0 − βF)T

+δ(βF
0 − m0)(βF

0 − m0)
T + Λ

)


for βF (21)

uF
0 | ρ

u1
, ρ

u2
, N, XF, vF

0 ∝
(
ψj ·

vF
0
2 · ρ

u1

)(uF
0 /2
)
−1/ Γ

(
uF

0 /2
)ρ

u2
+1

vF
0 | ρ

v1
, ρ

v2
, N, XF, uF

0 ∼ Ga
(

ρ
v1
+

uF
0j
2 , ρ

v2
+ ψj

)
for ψj (22)

βS
0 | m0, δ, Y, XS, ΣS

β0
∼ MVN

(
δ

δ+1 m0 +
1

δ+1 βS,
ΣS

β0
δ+1

)
ΣS

β0
| q0, Λ, Y, XS, βS

0 ∼ IW
(

q0 + 2, (βS
0 − βS)(βS

0 − βS)T

+δ(βS
0 − m0)(βS

0 − m0)
T + Λ

)


for βS (23)

uS
0 | ρu1, ρu2, Y, XS, vS

0 ∝
(

1
σ2

j
· vS

0
2 · ρu1

)(uS
0 /2
)
−1

/ Γ
(

uS
0 /2

)ρu2+1

vS
0 | ρv1, ρv2, Y, XS, uS

0 ∼ Ga
(

ρv1 +
uS

0
2 , ρv2 +

1
2σ2

j

)
for σ2

j (24)

Note that the expressions in Equations (21)–(24) are directly substituted into the joint con-
ditional posterior of all parameters specified in Equation (20). Specifically, Equations (21)–(24)
redefine the hyperprior terms p(βF

0 |m0, δ) p(ΣF
β0
|q

0
, Λ) p(βS

0 |m0, δ) p(ΣS
β0
|q0, Λ) and

p(uF
0 |ρu1

, ρ
u2
) p(vF

0 |ρv1
, ρ

v2
) p(uS

0 |ρu1, ρu2) p(vS
0 |ρv1, ρv2) in Equation (20). For the main

parameter term p(βF
j |βF

0 , ΣF
β0
) p(βS

j |β
S
0 , ΣS

β0
) p(ψj|uF

0 , vF
0 ) p(σ2

j |uS
0 , vS

0 ) in Equation (20);
however, we employ the Metropolis–Hastings (MH) algorithm within the Gibbs sampler
due to the lack of conjugate priors for the primary parameters βF

j , ψj, βS
j , σ2

j that align with
our negative binomial and log-normal likelihoods.

Given the two outcome models—claim counts Nh and claim amounts Ȳh—both Gibbs
samplers can be executed in parallel to assess Equation (14a), assuming no covariate errors.
Figure 2 illustrates the process of re-estimating the model parameters βF

j , ψj, βS
j , σ2

j for each
cluster j using the two distinct Gibbs samplers.

Algorithm S2 in Part 2 of the Supplementary Materials provides a detailed description
of the Gibbs sampler tailored for modeling claim amounts Yh using the log-normal density.
The approach for claim counts Nh based on the negative binomial distribution would be
analogous and is therefore omitted for brevity.
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Figure 2. The acyclic graphical representation of the flows of the parameter updates in the hierarchical
GLM. This is a snapshot for a single iteration (M = 1).

At the initialization of the Gibbs sampler, it is crucial to establish the initial values for
the hyperparameters ϕ : {βS

0 , ΣS
β0

, uS
0 , vS

0 , m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2, cS
0 , dS

0 , gS
0 , hS

0}, which
support the prior choices in Equations (14c) and (14e) for the log-normal GLM. Using these
values, the initial parameters for the outcome θ(old) : {β

S(old)
j , σ

2(old)
j } and covariate w :

{πS
j , λ2S

j } are determined. These parameters ultimately yield the values for the communal

hyperparameters βS+
0 , ΣS+

β0
, uS+

0 , vS+
0 , which guide both complete pooling and no-pooling

throughout the Gibbs sampling process. The two-stage Gibbs sampler for the log-normal
model is executed as follows:

[Stage.1] Sampling with Complete Pooling

The Gibbs sampler first estimates the outcome parameters θ (without clustering) us-
ing a complete pooling approach. This aims to refine the communal hyperparameters
βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 as outlined in Equations (23) and (24). Given the absence of conju-
gate priors for the log-normal outcome, the Metropolis–Hastings (MH) algorithm is used,
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with the prior serving as its proposal distribution, from where the candidate values are
drawn. Proposal samples θ(new) are generated based on these communal hyperparameters,
yielding θ(∗), which support the global mean E[Yhi|X], while re-updating the communal
hyperparameters βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 . See Algorithm S2 in Part 2 of the Supplementary
Materials.

[Stage.2] Sampling without Pooling

In this stage, with the cluster membership j already established, the goal is to generate accu-
rate parameter estimates θ(∗) for each cluster. These estimates are guided by the communal
hyperparameters βS+

0 , ΣS+
β0

, uS+
0 , vS+

0 obtained from [Stage.1]. By using these communal

hyperparameters, the Gibbs sampler optimizes θ
(∗)
j for each risk cluster, minimizing the

within-cluster variability. The log-likelihood value can be computed after each iteration to
monitor convergence. The implementation detail is provided in Algorithm S2 in Part 2 of
the Supplementary Materials.

3.4. Clustering Sh|XF, XS with NDB Case Covariate: RQ2 Tackling NDB Errors

This section introduces a novel method for handling the NDB covariate (RQ2) based on
the hierarchical GLM framework and partial pooling for risk premium modeling. Consis-
tent with the parametric Bayesian principle [28], we assume that the risk clusters j = 1, . . . J
have already been established. Given two covariate matrices XF : {xF, zF} for the negative
binomial outcome Nh and XS : {zS, xS} for the log-normal outcome Ȳh respectively, we
consider the case where the continuous covariate xS contains mismeasurements, classified
as Non-Differential Berkson (NDB) measurement errors. Since the covariates for the neg-
ative binomial outcome Nh are assumed to be complete, this section particularly focuses
on the log-normal outcome Ȳh and its covariate xS within the hierarchical framework.
For simplicity, we will omit the superscript s and refer to xS as simply x in the remainder of
the discussion.

In Section 3.2, we briefly introduce Gustafson’s error correction method to address
model risk associated with the NDB covariate. The key idea is to estimate or sample
the parameter values for the true covariate using a specialized joint model. This model
incorporates prior knowledge of θj through the linking component f (x∗|x, θj), which
captures the cluster-wise relationship between the true covariate x and the NDB covariate
x∗ [8]. The main objective of this section is to accurately estimate the parameter values θj

for the joint model.
To elaborate, the complete joint model that encompasses the outcome Ȳh, the NDB

covariate x∗, the true covariate x, and the additional covariate z is expressed as per
Equation (8) as:

f (Ȳh, x∗, x|z) = f (Ȳh|Ax∗, x, z)︸ ︷︷ ︸
outcome

× f (x∗|x, Az)︸ ︷︷ ︸
linking component

× f (x|z)︸ ︷︷ ︸
covariate

(25)

where the true covariate x is included and is unknown in real life. As outlined in Section 3.2,
the full joint distribution can be simplified to the form in Equation (25) because the NDB
covariate x∗ is uncorrelated with any other variables except the true covariate x itself.
To integrate Gustafson’s complete joint model for the NDB covariate from Equation (25)
into the hierarchical GLM framework, we redefine the risk premium modeling structure
along with the priors originally specified in Equation (14) as shown below:
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E[Sj(h)|XF, XS∗] = exp
(
XFβF

j + XS∗βS
j +

1
2

σ2
j
)

(26a)

For Nh


βF

j | βF
0 , ΣF

β0
∼ MVN(βF

0 , ΣF
β0
)

ψj | uF
0 , vF

0 ∼ Ga(
uF

0
2

,
vF

0
2
)

(26b)

For Ȳh


βS

j | βS
0 , ΣS

β0
∼ MVN(βS

0 , ΣS
β0
)

σ2
j | uS

0 , vS
0 ∼ InvGa(

uS
0

2
,

vS
0

2
)

(26c)

For XF



xF
j(h) ∼ N(E[xF

j ], λ2F
j )

λ2F
j ∼ InvGa(cF

0 , dF
0 )

zF
j(h) ∼ Bernoulli(πF

j )

πF
j ∼ Beta(gF

0 , hF
0 )

(26d)

For XS∗



xS∗
j(h)|x

S
j(h) ∼ N(xS

j(h), T2
j )

T2
j ∼ undetermined

xS
j(h)|z

S
j(h) ∼ N(κj0 + κj1zS

j(h), λ2S
j )

κj ∼ MVN(κ̃, λ2S
j Σ̃κ)

λ2S
j ∼ InvGa(cS

0 , dS
0 )

zS
j(h) ∼ Bernoulli(πS

j )

πS
j ∼ Beta(gS

0 , hS
0 )

(26e)

Within the hierarchical framework established in Equation (26), both models for Nh|XF

and Ȳh|XS∗ are elaborated to compute Sh|X. However, this section will focus solely on
modeling the claim amount Ȳh|XS∗ for demonstration purposes. This is based on the
assumption that the claim amount model Ȳh|XS∗ is solely influenced by the NDB covariate
x∗. For simplicity, we will denote the covariate matrix XS∗ and the continuous covariate
vector xS∗ as X∗ and x∗, respectively.

We will start by constructing the complete joint model outlined in Equation (25) to
derive the model for the claim amount Ȳh|X∗. This entails identifying previously defined
‘linking component’ (also known as measurement model, termed by Gustafson [23]) that
connects x∗ to x within a hierarchical framework. We define the linking component under
the assumption that x∗ is a normally distributed random variable:

fN(x∗h |xh) =
1√

2πT2
j

exp{
−(x∗h − xh)

2

2T2
j

} (27)

where x∗h |xh = xh + ϵj ∼ N(xh,T2
j ), T2

j : V(x∗|x), ϵj ∼ N(0, σ2
jϵ), and T2

j = σ2
x + σ2

jϵ.

This suggests that the prior knowledge of the dispersion T2
j in Equation (27) captures

the cluster-specific traits of the NDB covariate, derived from the relationship between the
NDB covariate x∗ and the true covariate x. However, initially estimating T2

j is challeng-
ing because both the true covariate variance σ2

x and the cluster-wise error variance σ2
jϵ

are unknown.
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To complete the joint model in Equation (25), we define the outcome and covariate com-
ponents (referred to as ‘exposure model’ in Gustafson’s terminology [23]) as outlined below:

fLogN(Ȳh|xh, zh) =
1

Ȳh

√
2πσ2

j

exp{−1
2

[ lnȲh − (β j0 + β j1xh + β j2zh)

σj

]2
} (28a)

fN(xh|zh) =
1√

2πλ2
j

exp{
−(xh − {κj0 + κj1zh})2

2λ2
j

} (28b)

where Ȳh|xh, zh ∼ LogN(Xhβ j, σ2
j ), σ2

j : V(Ȳ|X), xh|zh ∼ N(κj0 + κj1zh, λ2
j ),

and λ2
j : V(x|z) as shown in Equations (26c) and (26e). Note that the three terms in

Equations (27) and (28) are essential building blocks, as they must be multiplied to form the
complete joint model specified in Equation (25). However, the two terms in Equation (28)
are largely theoretical since the true covariate x remains unknown. Instead, more practical
terms available for implementation are:

fLogN(Ȳh|x∗h , zh) =
1

Ȳh

√
2πσ̂2

j

exp{−1
2

[ lnȲh − (β̂ j0 + β̂ j1x∗h + β̂ j2zh)

σ̂j

]2
} (29a)

fN(x∗h |zh) =
1√

2πλ̂2
j

exp{
−(x∗h − {κ̂j0 + κ̂j1zh})2

2λ̂2
j

} (29b)

where Ȳh|x∗h , zh ∼ LogN(X∗ β̂ j, σ̂2
j ), σ̂2

j : V(Ȳ|X∗), x∗h |zh ∼ N(κ̂j0 + κ̂j1zh, λ̂2
j ), and λ̂2

j :
V(x∗|z) (the notation ·̂ is used to indicate that these parameters are derived from the
covariate with NDB errors, prior to correction). By multiplying these two terms—the
outcome model and the covariate model—in Equation (29), we obtain the incomplete joint
model in Equation (30), as per Equation (9), which serves as the practical available solution:

f (Ȳh, x∗h | z) =
1

Ȳh(2π)σ̂jλ̂j
× exp

(
− 1

2σ̂2
j

[
(lnȲh − β̂ j0 − β̂ j2zh)− β̂ j1x∗h

]2)
× exp

(
− 1

2λ̂2
j

[
x∗h − (κ̂j0 + κ̂j1zh)

]2) (30)

However, this joint model has a notable limitation: it is developed without the true
covariate x. Fortunately, connecting the complete joint model in Equation (25) with the
incomplete joint model in Equation (30) is a straightforward process. As noted in Section 3.2,
we can obtain another incomplete model by marginalizing the complete joint model in
Equation (25) over the true covariate x using the following integral:

∫
f (Ȳh, x∗h , xh | zh) dxh

=
∫

x

1
σjȲh

√
2π

exp{−1
2

[ lnȲh − (β j0 + β j1xh + β j2zh)

σj

]2
}

× 1√
2πT2

j

exp{
−(x∗h − xh)

2

2T2
j

} × 1√
2πλ2

j

exp{
−(xh − {κj0 + κj1zh})2

2λ2
j

} dxh

(31)
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The evaluation process for the integral in Equation (31) is detailed in Part 3 of the
Supplementary Materials, and the resulting solution is presented below:

∫
f (Ȳh, x∗h , xh | zh) dxh

=
1

Ȳh(2π)σjTjλj

( σ2
j λ2

j T
2
j

β2
j1T

2
j λ2

j + σ2
j λ2

j + σ2
j T

2
j

)1/2

× exp

(
− 1

2

( λ2
j +T2

j

β2
j1T

2
j λ2

j + σ2
j λ2

j + σ2
j T

2
j

)[
(lnȲh − β j0 − β j2zh)−

β j1

(
x∗h
T2

j
+

κj0+κj1zh

λ2
j

)
1
T2

j
+ 1

λ2
j

]2
)

× exp

(
− 1

2

( 1
T2

j + λ2
j

)[(
x∗h − (κj0 + κj1zh)

)2])
= f (Ȳh, x∗h | zh)

(32)

In Equation (32), the unobservable true covariate term x is completely eliminated
through this marginalization process. As a result, the integral solution in Equation (32),
derived from the complete joint model, aligns with the incomplete joint model in
Equation (30). The key point is that while these two solutions originate from different
sources, they both describe the same incomplete joint model f (Ȳh, x∗h | zh) in a practical
framework, without needing to evaluate or sample the true covariate x. This allows for
directly matching the parameters of the complete and incomplete joint models.

This relationship can be formalized through a system of equations. Since the pa-
rameters of the incomplete joint model β̂ j0, β̂ j1, β̂ j2, σ̂2

j , λ̂2
j , κ̂j0, κ̂j1 (with the .̂ denoting the

parameter estimates based on NDB error) in Equation (30) are accessible, the parameters
of the marginalized complete joint model β j0, β j1, β j2, σ2

j , λ2
j , κj0, κj1 in Equation (32) can be

expressed in terms of these counterparts. Solving this system of equations could provide a
guideline for adjusting parameter estimates in the presence of the NDB covariate x∗ (RQ2).
The full derivation and detailed explanation of the system of equations are provided in Part
3 of the Supplementary Materials, and the resulting system of equations for the complete
joint model parameters is shown below:

λ2
j = λ̂2

j −T2
j (33a)

κj0 = κ̂j0 (33b)

κj1 = κ̂j1 (33c)

β j1 =
β̂ j1λ̂2

j

λ̂2
j −T2

j
(33d)

β j0 = β̂ j0 −
β̂ j1κ̂j0T

2
j

λ̂2
j −T2

j
(33e)

β j2 = β̂ j2 −
β̂ j1κ̂j1T

2
j

λ̂2
j −T2

j
(33f)

σ2
j = σ̂2

j −
β2

j1T
2
j (λ̂

2
j −T2

j )

λ̂2
j

(33g)

Our novel prior knowledge on T2
j and scaling factor ζ: As shown in Equation (33),

the adjustment of the parameter estimation in the incomplete joint model largely hinges
on the value of T2

j . However, as mentioned previously, estimating T2
j in Equation (27) is

challenging until the relationship between the NDB covariate x∗ and the true covariate x is
clarified. The system of equations, particularly Equation (33a), now reveals that T2

j can be
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expressed as λ̂2
j − λ2

j . In other words, V(x∗|x) = V(x∗|z)− V(x|z). From this, several key
insights (our own findings) can be drawn:

(i) λ̂2
j : V(x∗|z) is always greater than λ2

j : V(x|z) according to Equation (33a).

(ii) Given that x∗|z ∼ N(κ̂j0 + κ̂j1z, λ̂2
j ) and x|z ∼ N(κj0 + κj1z, λ2

j ),
it appears that κ̂j0 = κj0 and κ̂j1 = κj1, hence E[x∗|z] = E[x|z] according to
Equations (33b) and (33c).

(iii) Given (i) and (ii), it is safe to say that the variance of the true covariate can be a scalar
multiple of the variance of the NDB covariate: λ2

j = ζ × λ̂2
j where 0 < ζ < 1 is a

scaling factor.

Equation (33a), along with the key insights (i), (ii), and (iii), establishes a crucial prior
knowledge regarding the dispersion parameter of the linking component T2

j : V(x∗|x).
Together, they highlight that

• T2
j = λ̂2

j − λ2
j i.e., V(x∗|x) = V(x∗|z)− V(x|z) from Equation (33a).

• λ2
j = ζ × λ̂2

j i.e., V(x|z) = ζ × V(x∗|z) from the findings (i), (ii), (iii).

Ultimately, the relationships described above can be expressed through the equation

T2
j = (1 − ζ)λ̂2

j or V(x∗|x) = (1 − ζ) V(x∗|z) (34)

which demonstrates that the dispersion parameter T2
j can be represented as a fraction

(1 − ζ) of the variance λ̂2
j : V(x∗|z). Thus, with an estimate for λ̂2

j , we can determine T2
j

using the scaling factor 0 < ζ < 1. In other words, given the availability of both x∗ and
z, we can utilize λ̂2

j : V(x∗|z) as a proxy for estimating T2
j : V(x∗|x). The scaling factor

0 < ζ < 1 reflects our confidence in the adequacy of the known covariate z as a substitute
for the unobservable true covariate x. A higher value of ζ indicates that T2 relies less on
V(x∗|z). Conversely, a lower ζ enhances the dependency on the observed variance V(x∗|z)
to inform our understanding of T2.

In this paper, we suggest utilizing the insights gained about T2
j as the prior knowledge

for modeling the probability distribution of x∗|x, which elucidates the cluster-specific
relationship between the NDB covariate x∗ and the true covariate x. Additionally, we
will implement a sensitivity analysis for ζ and assess how changes in this scaling factor
impact the estimates of T2

j , in order to shed light on how the scaling factor ζ influences the
effectiveness of the error correction approach. This, in turn, will facilitate the identification
of the ideal value for T2

j to improve estimation results impacted by the model risk associated
with the NDB covariate x∗.

Gibbs sampler modification with the Gustafson correction: We propose imple-
menting the following enhancements (additional steps) to integrate the resulting system of
equations from Equation (33) into the Gibbs sampler for our hierarchical GLM development,
as described in Algorithm S2 in Part 2 of the Supplementary Materials:

(a) In line 12, assuming the NDB covariate value x∗h in x∗ at observation h in the risk
cluster j, we add a step to sample the posterior parameters for the linking component
in Equation (27) and the covariate model in Equation (29b). This sets the stage for
parameter adjustment using the system of equations outlined in line 18:

wj :



πj ∼ Beta(g0 + Σzj, h0 + nj − Σzj)

κ̂j ∼ MVN
([
(Σ̃−1

k +KT
1 K1)

−1(Σ̃−1
k κ̃ +K2)

]
, λ̂2

j

[
Σ̃−1

k +KT
1 K1

]−1
)

λ̂2
j ∼ InvGa

( c0+nj
2 , 1

2 (d0 + Σ(xj − κ̂0j + κ̂1jzj)
2)
)

T2
j = (1 − ζ)λ̂2

j

(35)
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The derivations of the posterior densities for the covariate model parameters—πj,
κ̂j, λ̂2

j —are thoroughly outlined in Part 1 of the Supplementary Materials. The scaling
factor ζ is set by researchers based on the findings from the sensitivity analysis,
ensuring it aligns with the anticipated error levels in the NDB covariate across various
scenarios. A more in-depth exploration of this experiment will be presented in the
following section.

(b) In line 18, we utilize the system of equations from Equation (33) to refine the esti-

mated outcome parameter values θ
(∗)
j : {β

(∗)
j , σ

2(∗)
j } by using the parameter samples

from the incomplete joint model: β̂ j0, β̂ j1, β̂ j2, σ̂j, λ̂j, κ̂j0, κ̂j1, along with the variance
T2

j = (1 − ζ)λ̂2
j (where 0 < ζ < 1) of the linking component in Equation (27). It is im-

portant to note that the parameter samples obtained from the incomplete joint model
during the Gibbs sampler must satisfy the specific criteria outlined in Equation (33).
For instance, as indicated in Equation (33a), λ̂2

j values must always exceed λ2
j values.

Additionally, according to Equation (33g), σ̂2
j must be always greater than the value

given by
β2

j1T
2
j λ2

j

λ̂2
j

. These constraints ensure that the sampled parameters maintain

valid relationships with the true parameters, allowing the Gibbs sampler to filter out
any samples that do not conform to these requirements.

4. Empirical Study
4.1. Data: Local Government Property Insurance Fund

We evaluate our hierarchical GLM using an insurance dataset from the Wisconsin
Local Government Property Insurance Fund (LGPIF) (The Local Government Property In-
surance Fund was established to provide insurance coverage to government properties not
owned by the State of Wisconsin. The Fund made insurance available for local government
property such as municipal buildings, schools, libraries and vehicles. For further details,
refer to https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
accessed on 10 October 2024). Compiled by the actuarial research team at the Uni-
versity of Wisconsin, this dataset encompasses information on insurance coverage for
H = 1679 policies pertaining to various government building units across Wisconsin. This
dataset presents unique challenges, particularly regarding unobservable heterogeneity
(RQ1) in the log-normal outcome variable influenced by the NDB covariate (RQ2). This
paper employs a frequency–severity approach to risk premium modeling, incorporating
four covariates: two for the claim count model (a binary covariate zF (AC15: 1 or 0) and
a continuous covariate xF (LnCoverage)), and two for the claim amount model (also a bi-
nary covariate zS (Fire5: 1 or 0) and a continuous covariate xS (lnDeduct)). The outcome
variables—claim count and claim amount—are represented as Nh and Ȳh, respectively.
Therefore, the structure of this dataset is outlined as follows:

Year1, . . . , Yeary

Policy (h = a): {(Na, XF
a , Ya(1), . . . Ya(Na), XS

a ), . . . , (Na, XF
a , Ya(1), . . . Ya(Na), XS

a )}

Policy (h = b): {(Nb, XF
b , Yb(1), . . . Yb(Nb)

, XS
b ), . . . , (Nb, XF

b , Yb(1), . . . Yb(Nb)
, XS

b )}
...

Policy (h = H): {(NH , XF
H , YH(1), . . . YH(NH), XS

H), . . . , (NH , XF
H , YH(1), . . . YH(NH), XS

H)}

The experiment concerns predicting the aggregate claim amount E[Sh|X] using the
frequency–severity principle to establish risk premiums for specific policies. Predictions are
categorized into six distinct entity types: city, county, school, town, village, and miscellaneous.

https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
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These classifications represent the source of the insured property, effectively organizing the
policies into six fixed risk clusters (i.e., j = 1, . . . , 6), representing six distinct entity types.
This approach allows for the incorporation of varying risk characteristics associated with
each entity type in the predictions. As discussed in the main text, the continuous covariate
xS in the claim amount model is assumed to be influenced by NDB error.

4.2. Model Implementation

Using simulation data, we evaluate our hierarchical GLM-based approach for correct-
ing NDB errors against the SIMEX error correction method discussed in Section 2.2. Both
methodologies seek to simultaneously tackle two model risk issues—heterogeneity (RQ1)
and NDB covariates (RQ2)—for risk premium development. As mentioned in Section 2.2,
many existing error correction techniques rely on gold standard data (e.g., subsets of the
true covariate) to estimate the true covariate by establishing relationships between mismea-
sured and true values. However, in practical applications, access to gold standard data is
often limited or nonexistent. In this regard, this experiment aims to create methodologies
that effectively address the NDB measurement errors without the need for gold standard
data, leveraging the prior knowledge T2

j = (1 − ζ)λ̂2
j derived from Section 3.4. We develop

simulation data to explore the relationship between the scaling factor ζ and the severity
of NDB errors, represented by the error rate Rϵx , in the NDB covariate x∗. This process
hinges on two elements: (a) gold-standard datasets with no errors, and (b) datasets with
controlled error rates in the NDB covariate x∗. By comparing models from error-free data
with those generated from datasets with varying NDB error levels, we assess the efficiency
of Gustafson’s correction approach, which is based on a hierarchical GLM, in relation to
the error rate Rϵx and the scaling factor 0 < ζ < 1. Our ultimate goal is to establish a
guideline for selecting an optimal scaling factor ζ that accounts for the unknown variance
T2

j = (1 − ζ)λ̂2
j when the error rate Rϵx is known. Once established, this guideline could

aid in estimating the true covariate when gold-standard data are unavailable.
Design of simulation data: We construct simulation datasets with different error

rates Rϵx , derived from real LGPIF data, while preserving the original LGPIF dataset as
the gold standard. These simulation datasets are generated by deliberately introducing
controlled NDB errors into the true covariate xS at different error rates Rϵx . The method
for creating NDB errors in the covariate xS∗, leading to variations in Rϵx , is summarized in
Figure 3.

Figure 3. Design of Non-Differential Berkson (NDB) error in x∗ and the induced heteroscedasticity
varying by cluster j. Note that the dotted lines and circles in the diagram form icons that represent
heteroscedasticity.
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As defined in Section 2.2, the NDB error ϵj ∼ N(0, σ2
jϵ) is characterized by its inde-

pendence from the outcome and other covariates, while being correlated with the latent
factors. However, as indicated in Equation (34), the Gustafson correction method suggests
that the variance of the linking component V(x∗|x) can be approximated using the variance
of the covariate component V(x∗|z). Hence, to replicate this setting, we connect the NDB
covariate xS∗ with the binary covariate zS as shown in Equation (29b) by conditionally
introducing the NDB errors to the true covariate xS only when zS = 1. Additionally, as pro-
posed by Hoffmann (2017) [29], the cluster-specific error variance σ2

jϵ is modeled using the

random correlation −1 < ρj(x,x∗) < 1 between the true covariate xS and the NDB covariate
xS∗, simulating the NDB error structure. This method utilizes the NDB noise generation
technique introduced by Klau et al. (2021) [30], and it is given by:

σ2
jϵ =

V(xS)

ρ2
j(xS ,xS∗)

− V(xS) (36)

Therefore, the selection of cluster-specific random correlations ρ1(xS ,xS∗), . . . ρJ(xS ,xS∗)

can lead to variations in the error severity in the NDB covariate xS∗. We generate three
simulation datasets, based on the LGPIF dataset, corresponding to different error rate
Rϵx scenarios in xS∗, with error rates set at 1%, 10%, and 40% (we raise the question of
whether an NDB covariate with an excessive error rate (e.g., >50%) is worth including at
all, suggesting that it might be better to exclude such a covariate). The definition of error
rate that we use is:

Rϵx =
ΣH

h=1|x
S∗
h − xS

h |
ΣH

h=1xS
h

:


0.01 (1%) error rate in xS∗ for dataset A.

0.1 (10%) error rate in xS∗ for dataset B.

0.4 (40%) error rate in xS∗ for dataset C.

(37)

Candidate models: As noted earlier, our goal is to determine the optimal scaling factor
ζ, which varies depending on the error rate Rϵx —1%, 10%, 40%—in the NDB covariate xS∗.
The performance of the hierarchical GLM, with the corresponding optimal ζ for each error
rate, is then compared to that of the SIMEX method. Figure 4 presents the development
process for four distinct risk premium models, facilitating a comprehensive comparison
between the Gustafson correction method and SIMEX within the Bayesian hierarchical
GLM and traditional GLM frameworks.

Each model, labeled (A) through (D), is designed to systematically assess the impact
of different error rates in the NDB covariate xS∗. Model (A) , built using the true covariates
within the hierarchical GLM framework, serves as the gold standard and provides a
performance benchmark. This benchmark is critical for evaluating the effectiveness of the
correction methods. In contrast, Model (B) highlights the detrimental effect (model risk)
of using the NDB covariate xS∗ in the same hierarchical GLM framework. It is essential
to compare this error-prone Model (B) with Model (C), which incorporates Gustafson’s
correction, and Model (D), which applies the SIMEX correction with conventional GLM.
The purpose of this comparison is to assess how well these correction methods mitigate the
negative effects of NDB errors in the covariate xS∗.
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Figure 4. Four candidate models—(A) to (D)—for risk premium development. Specifically, Models
(B), (C), and (D) need to be thoroughly compared across various error rates Rϵx —1%, 10%, 40%—in
the NDB covariate x∗.

Choice of hyperparameters: To run the Gibbs sampler for the hierarchical
models—Model (A), -(B), and -(C)—in Figure 4, flat priors are selected on the hyperparam-
eters ϕ : {m0, δ, q0, Λ, ρu1, ρu2, ρv1, ρv2, c0, d0, g0, h0} as outlined in Equation (21) through
(24) and Equation (26):

{m0 = βF
GLM, m0 = βS

GLM, δ = 0.01, δ = 0.01} for βF
0 and βS

0

{q
0
= p + 2, q0 = p + 2, Λ = ΣF

GLM, Λ = ΣS
GLM} for ΣF

β0
and ΣS

β0

{ρ
u1

= 0.125, ρu1 = 0.125, ρ
u2

= 1.5, ρu2 = 1.5} for uF
0 and uS

0

{ρ
v1

= 8, ρv1 = 8, ρ
v2

= 1, ρv2 = 1} for vF
0 and vS

0

{cF
0 = 0.5, cS

0 = 0.5, dF
0 = 0.5, dS

0 = 0.5} for λ2F and λ2S

{gF
0 = 0.5, gS

0 = 0.5, hF
0 = 0.5, hS

0 = 0.5} for πF and πS

(38)

where βF
GLM, βS

GLM denote the naïve GLM coefficient vectors, serving as initial values for
the Gibbs sampler. The variable p represents the number of covariates in the model, while
ΣF

GLM, ΣS
GLM are the variance–covariance matrices obtained from the naïve GLM output.

The values specified in Equation (38) are meticulously chosen based on preliminary findings
from a trial run of the Gibbs sampler with randomly assigned starting values. While using
inappropriate initial values may lead to less efficient posterior samples, it can still yield
some samples that shed light on the true posterior distribution behavior. By employing the
Method of Moments technique [31], we can gain insights into the nature of these posterior
samples, guiding our selection of starting values to improve the Gibbs sampler’s efficiency.

4.3. Model Validation

To assess the effectiveness of the proposed models in the following section, the meth-
ods outlined below will be utilized:
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• LPPD: To assess predictive performance in the Bayesian context, we can employ the
Log Pointwise Predictive Density (LPPD) [32], which captures model uncertainty
through the complete posterior distribution. LPPD is calculated by averaging the log-
predictive likelihood for each data point across posterior samples θ1, . . . θM as follows:

LPPD(Ȳ1, . . . , ȲH , X1, . . . , XH , θ) =
H

∑
h=1

ln
( 1

M

M

∑
m=1

L(θm; Ȳh, Xh)
)

(39)

The likelihood function takes values from 0 to 1 (since it is a probability function),
resulting in LPPD values from −∞ to 0. Multiplying LPPD by −2 yields values similar
to Mean Squared Error (MSE), where a perfect fit equals zero and a poor fit results
in a large positive value [33]. Note that LPPD emphasizes predictive performance.
This is because LPPD not only assesses how well the model fits the training data
but also evaluates its generalization to new, unseen data by incorporating parameter
uncertainty from the full posterior distribution [32].

• DKL: The Kullback–Leibler Divergence DKL quantifies how one probability distribu-
tion differs from another by comparing their entropies H[.] [34]. Among the compet-
ing models, the one with the minimized DKL is preferred. For our predictive model
L(θ; Ȳh, X) and target model P(θtrue; Ȳh, X), DKL(P, L) = H[P, L]− H[P] for our model
can be computed as:

DKL = −
H

∑
h=1

ln
(

L(θ; Ȳh, Xh)
)
· P(θtrue; Ȳh, Xh) +

H

∑
h=1

ln
(

P(θtrue; Ȳh, Xh)
)
· P(θtrue; Ȳh, Xh) (40)

where ∑H
h=1 ln

(
L(θ; Ȳh, Xh)

)
is the LPPD discussed previously. We aim to iden-

tify which candidate model achieves a larger decrease in DKL and the extent of
that reduction.

• SSPE + SAPE: Prediction performance can be evaluated by measuring the discrepancy
between predicted and observed values using the Sum of Square Error (SSE) criterion.
Specifically, the Sum of Square Prediction Error (SSPE) and the Sum of Absolute
Prediction Error (SAPE) can be used to assess different facets of accuracy. SSPE focuses
on squared differences between predicted values g(Xh) and actual values Ȳh, while
SAPE calculates the absolute differences across all observations h = 1, . . . H:

SSPE:
H

∑
h=1

(
g(Xh)− Ȳh

)2 (41a)

SAPE:
H

∑
h=1

|g(Xh)− Ȳh| (41b)

SSPE and SAPE assess prediction performance differently. SSPE penalizes large devia-
tions more heavily, while SAPE treats all deviations equally by focusing on absolute
differences. Given the skewed nature of our outcome Ȳh, where outliers may be com-
mon, SAPE is preferred. This approach considers each data point equally important,
making it unnecessary to disproportionately penalize larger errors, particularly when
we are concerned with potential outliers [13].

• CTE: The final aspect of this validation process is assessing risk within the predictive
distributions, specifically through the Conditional Tail Expectation (CTE), defined
as follows:

CTE(q) = E[ Ȳh|Ȳh > Qq(Ȳh) ], q ∈ (0, 1) (42)

where Qq(Ȳh) is the qth quantile of the predictive distribution. The CTE analyzes the
tail behavior of predictive distributions to provide insights into expected aggregate
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losses (risk premium) under extreme conditions [35]. A lower CTE value indicates the
model predicts less severe losses in extreme scenarios.

We outline several criteria for model validation, including (1) LPPD, (2) DKL, (3) SSPE,
(4) SAPE, and (5) CTE. In the upcoming section, these metrics are used to evaluate the
performance and accuracy of our proposed models in predicting risk premiums.

4.4. Results with LGPIF (H = 1679)

We construct a training set with 1276 records for modeling and a test set with
403 records for validation. As shown in Figure 4, Model (A) serves as the gold standard,
Model (B) represents a flawed model that reflects real-world risks, Model (C) applies the
Gustafson correction, and Model (D) utilizes the SIMEX correction within a traditional GLM
framework. We systematically evaluate the performance of Model (B), -(C), and -(D) across
three scenarios with varying error rates Rϵx = 0.01, Rϵx = 0.1, and Rϵx = 0.4 in the NDB
covariate xS∗. Additionally, we compare the effects of the scaling factor 0 < ζ < 1 in Model
(C) and -(D) within each error rate scenario. For each hierarchical GLM model, Model (A),
-(B), and -(C) shown in Figure 4, we run two independent Markov chains with M = 60,000
iterations of Gibbs sampling, following Algorithm S2 in Part 2 of the Supplementary Ma-
terials. Since Model (A) is the gold standard, the focus is on comparing Model (B), -(C),
and -(D) across datasets with error rates Rϵx = 0.01, Rϵx = 0.1, and Rϵx = 0.4. Model (C)
employs the Gustafson correction with scaling factors ζ = {0.1, . . . , 0.9}. Within each Gibbs
sampling iteration in Model (A), -(B), and -(C), a Metropolis–Hastings (MH) technique is
embedded to update the outcome parameters—βF

j , ψj, βS
j , σ2

j —as conjugate priors are not
available. The initial 10,000 iterations are treated as burn-in and discarded. Convergence
is confirmed using the Brooks–Gelman statistic [36], ensuring the adequate mixing of the
chains. For Model (D), a conventional GLM, parameters are estimated using the Maximum
Likelihood Estimation (MLE) method.

The aggregate claim amount model f (Sh|XF, XS, ξh, ψ, µh, σ2), representing the risk
premium function, is derived by integrating these two gold standard models through
Monte Carlo simulation: the (i) estimated claim count model f (Nh|XF, ξh, ψ) and the
(ii) estimated claim amount model f (Ȳh|XS, µh, σ2) (detailed results for each gold standard
model are provided in Part 4 of the Supplementary Materials). The integration process
begins by simulating a claim count sample Nh for a policy h. This sample is drawn from
the claim count model f (Nh|XF, ξh, ψ). Subsequently, for each drawn claim count Nh,
a corresponding set of claim amount samples is generated. These samples are obtained
from the claim amount model f (Ȳh|XS, µh, σ2). This iterative process is repeated numerous
times, allowing for the construction of a comprehensive distribution of aggregate claims
Sh for a policy h [37]. The resulting predictive distribution of the aggregate claim amount
modeling is illustrated in Figure 5.

This figure compares the cluster-wise distributions of the aggregate claim amount Sh

on a log scale with the overall distribution of Sh. This comparison facilitates the evaluation
of each cluster’s risk profile and its impact on the total aggregate claim. Significantly,
the distribution for ‘Cluster 2’ (shown as a dotted blue curve) closely resembles the shape
of the overall distribution, indicating a substantial contribution to the overall risk premium.

In what follows, we will examine the results of Model (A), -(B), -(C), and -(D), focusing
exclusively on the claim amount component Ȳh|XS∗ ∼ LogN(µh = ln

(
E[Ȳh|XS∗]

)
−

1
2 σ2

j , σ2
j ) (log-normal GLM). As outlined in Section 4.2, we account for scenarios where

the covariates associated with the negative binomial outcome Nh are complete, while
the continuous covariate XS for the claim amount outcome is subject to Non-Differential
Berkson (NDB) measurement errors. Our focus will center on the log-normal outcome Ȳh

and its associated NDB covariate XS∗ within the hierarchical modeling framework.
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Figure 5. Model (A) Result V: A histogram of the overall expected aggregate claim amount on a log
scale, overlaid with the individual cluster-wise distributions lnSh|XF, XS.

Comparisons [Model (B) vs. Model (C) vs. Model (D)]: As illustrated in Figure 4, this
experiment evaluates which candidate models, Model (C) and -(D), yield results closest to
the gold standard, Model (A). Specifically, we compare Model (C), utilizing the Gustafson
correction, with Model (D), which employs the SIMEX correction. Model (A), -(B), and -
(C) are developed within the Bayesian hierarchical GLM framework, while Model (D)
is constructed in the conventional GLM framework, providing a frequentist perspective.
Additionally, a sensitivity analysis for the claim amount model is conducted to determine
the optimal scaling factor value ζ, leveraging the prior knowledge: T2

j = (1 − ζ)λ̂2
j .

Table 2 presents a comparison of the marginal posterior means of the scale parameter
σ2

j obtained from Model (A), -(B), and -(C). Each hierarchical GLM describes the log-normal

outcome: Ȳh|XS ∼ LogN(µh = ln
(
E[Ȳh|XS]

)
− 1

2 σ2
j , σ2

j ). Additional comparisons of the
marginal posterior means of the GLM coefficients β j are provided in Tables 3 and 4, which
also include the results from the sensitivity analysis on the optimal scaling factor ζ.

We first examine Model (B), which incorporates the NDB covariate xS∗, introducing
model risk. Our investigation focuses on how the parameter estimates—the scale parameter
σ2 and the GLM coefficients β—vary with increasing error rates Rϵx , reflecting different
degrees of model risk. As seen in Tables 2–4, estimates from Model (B) consistently show
an upward trend in response to higher error rates (Rϵx : 0.01 → Rϵx : 0.40). Both the scale
parameter σ2 and the GLM coefficients β0, β2 (intercept and binary covariate) inflate, while
β1 (linked to xS∗) decreases across all clusters j = 1, . . . , 6. This pattern aligns with the
expectation that as the error rate Rϵx increases, the added noise results in greater variability
in the outcomes, causing a proportional rise in the scale parameter σ2. The consistent
directional shift in the coefficient β1, tied to the NDB covariate xS∗, indicates that xS∗

follows a systematic trend characteristic of NDB error.
Turning to Model (C), which applies the Gustafson correction technique, we observe

that as the error rate Rϵx increases, the parameter estimates from Model (C) progressively
align with those of the gold standard, Model (A), with the values falling within the credible
intervals established by Model (A). This alignment is a promising indicator of our correction
method’s effectiveness. Note that a key aspect of our error correction technique is the
selection of an optimal scaling factor ζ. Tables 2–4 highlight that Model (C) performs best
within the scaling factor range 0.5 ≤ ζ ≤ 0.7. This suggests that the relationship between
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the conditional error variance terms—V(x∗|x) and V(x∗|z)—is largely captured in this
window of ζ as reflected by the prior knowledge: T2

j = (1 − ζ)λ̂2
j in Equation (34).

Table 2. Comparison of the scale parameter σ2
j estimates from the hierarchical log-normal GLMs in

Model (A), -(B), and -(C) across risk clusters j = 1, . . . , 6. The largest LPPD values are highlighted
in bold.

Model Scale Parameter Estimates σ2
j

Model (A)
Gold

standard

σ2
j=1 3.35 with 95% Credible Interval: {1.04 ≤ σ2

j=1 ≤ 9.85}
σ2

j=2 3.44 with 95% Credible Interval: {1.05 ≤ σ2
j=2 ≤ 10.01}

σ2
j=3 3.22 with 95% Credible Interval: {1.02 ≤ σ2

j=3 ≤ 9.48}
σ2

j=4 3.40 with 95% Credible Interval: {1.04 ≤ σ2
j=4 ≤ 9.78}

σ2
j=5 3.40 with 95% Credible Interval: {1.23 ≤ σ2

j=5 ≤ 10.13}
σ2

j=6 3.23 with 95% Credible Interval: {1.01 ≤ σ2
j=6 ≤ 9.65}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model (B)
Before

correction

σ2
j=1 3.36 3.38 3.59

σ2
j=2 3.44 3.51 3.65

σ2
j=3 3.26 3.38 3.46

σ2
j=4 3.43 3.58 3.67

σ2
j=5 3.44 3.57 3.65

σ2
j=6 3.28 3.45 3.51

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model (C)
After

correction

σ2
j=1 3.28 3.30 3.33 3.22 3.32 3.56 3.36 3.34 3.31

σ2
j=2 3.37 3.38 3.41 3.29 3.46 3.48 3.46 3.45 3.33

σ2
j=3 3.19 3.22 3.34 3.26 3.26 3.57 3.24 3.23 3.21

σ2
j=4 3.27 3.31 3.48 3.31 3.35 3.61 3.41 3.38 3.36

σ2
j=5 3.10 3.29 3.49 3.25 3.35 3.57 3.42 3.38 3.35

σ2
j=6 3.11 3.29 3.33 3.39 3.32 3.57 3.26 3.25 3.19

LPPD (×103) −16.79 −16.77 −16.78 −16.41 −16.39 −16.41 −16.19 −16.20 −16.21

Table 3. Comparison of the GLM intercept β0j estimates from the hierarchical log-normal GLMs
(claim amount component) in Model (A), -(B), and -(C) across risk clusters j = 1, . . . , 6. The largest
LPPD values are highlighted in bold.

Model Intercept Parameter Estimates βj0

Model (A)
Gold

standard

β0j=1 7.18 with 95% Credible Interval: {4.98 ≤ β0j=1 ≤ 9.32}
β0j=2 7.69 with 95% Credible Interval: {5.50 ≤ β0j=2 ≤ 9.71}
β0j=3 6.37 with 95% Credible Interval: {4.11 ≤ β0j=3 ≤ 8.86}
β0j=4 7.36 with 95% Credible Interval: {3.83 ≤ β0j=4 ≤ 10.52}
β0j=5 7.14 with 95% Credible Interval: {3.83 ≤ β0j=5 ≤ 10.32}
β0j=6 7.36 with 95% Credible Interval: {4.87 ≤ β0j=6 ≤ 10.46}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model (B)
Before

correction

β0j=1 7.28 8.89 9.40
β0j=2 7.72 9.14 9.51
β0j=3 6.44 8.82 9.28
β0j=4 7.33 9.28 9.52
β0j=5 7.12 9.37 9.57
β0j=6 7.46 9.11 9.72

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model (C)
After

correction

β0j=1 6.08 7.24 7.29 6.86 7.28 8.03 7.21 7.09 6.81
β0j=2 7.35 8.07 8.21 7.37 8.12 8.43 7.56 7.39 7.24
β0j=3 5.20 6.07 6.21 5.93 6.19 7.25 6.35 6.11 5.87
β0j=4 6.40 7.33 7.87 6.91 7.53 8.16 7.39 7.14 6.73
β0j=5 6.52 6.95 7.20 6.23 6.94 7.28 7.18 7.15 7.11
β0j=6 6.20 7.40 7.48 6.87 7.27 7.67 7.39 7.15 6.42

LPPD (×103) −16.79 −16.77 −16.78 −16.41 −16.39 −16.41 −16.19 −16.20 −16.21
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The challenge, however, lies in identifying the optimal range of ζ values for a specific
error rate Rϵx in the covariate x∗. Our findings from this LGPIF experiment show that
when ζ deviates from the 0.5 ≤ ζ ≤ 0.7 range, Model (C)’s corrections become ineffective,
often performing worse than the erroneous Model (B). This worsens as the error rate Rϵx

increases, which is expected, because a higher error rate implies greater bias, making it
much harder for the model to correct. Interestingly, our experimental results suggest that
the optimal ζ range can be effectively identified by evaluating the LPPD for each modeling
result, as the LPPD reflects the degree of predictive performance. This reflects how closely
the estimated parameter values align with the gold standard. Therefore, by searching
for the modeling results with the maximum LPPD, we can systematically pinpoint the
optimal ζ, leading to enhanced correction performance without requiring access to the gold
standard data.

Our LGPIF experimental results are further analyzed in Figure 6 and Table 5 for the
error rate Rϵx = 0.01, Figure 7 and Table 6 for the error rate Rϵx = 0.10, and Figure 8
and Table 7 for the error rate Rϵx = 0.40. For comparisons, Tables 5–7 present (i) LPPD,
(ii) SSPE, (iii) SAPE, and (iv) Kullback–Leibler Divergence (DKL) for the individual claim
amount model f (Ȳh|XS) as well as CTEs for the aggregate claim amount model f (Sh|XF, XS)

within each error rate scenario. The results from Model (D), traditional GLM with SIMEX
correction, are also included. Figures 6–8 display histograms of the testing set across
all clusters j = 1, . . . , 6, comparing the out-of-sample prediction curves from Model (C)
(blue) against the gold standard Model (A) (red) and the erroneous Model (B) (dotted).
The prediction curve for Model (D) is omitted due to its subpar performance.

As expected, Tables 5–7 show that the gold standard model, Model (A), achieves the
highest LPPD value of −16,155.90, while the naïve model with model risk, Model (B),
consistently exhibits the lowest LPPD values across datasets with varying error rates. Note
that the LPPD for the GLM-based SIMEX method is unavailable, as LPPD calculations
require posterior densities. Applying Gustafson corrections in Model (C) produces LPPD
values of −16,770.85 with ζ = 0.6 for an error rate 0.01, −16,370.44 with ζ = 0.6 for an error
rate 0.10, and −16,188.31 with ζ = 0.5 for an error rate 0.40, closely aligning with the LPPD
of the error-free gold standard model, Model (A). This result aligns with other metrics,
such as SSPE and SAPE, across different error rate scenarios. The erroneous model with
model risk, Model (B), consistently exhibits the highest SSPE and SAPE values, reflecting
its weaker predictive performance. In contrast, the Gustafson correction model, Model
(C), achieves significantly lower SSPE and SAPE values, closely approximating those of
the gold standard model, Model (A). Additionally, as the error rate increases, Model (C)
increasingly outperforms the SIMEX method, Model (D), underscoring its robustness.

The effectiveness of the Gustafson correction technique is further substantiated by
DKL, which quantifies the distance between the estimated distribution produced by Model
(B) and Model (C) and the target (gold standard) distribution, Model (A). A smaller DKL

value indicates a more accurate error correction. Notably, as shown in Tables 5–7, within the
range of 0.5 ≤ ζ ≤ 0.7, Model (C) exhibits a reduction in DKL from 0.61 to 0.33 as the
error rate increases from Rϵx = 0.01 to Rϵx = 0.40. This trend suggests that the Gustafson
correction effectively mitigates the impact of the NDB covariate, thereby enhancing the
model’s fidelity to the true data distribution as error rates rise. It is important to note that
Model (D), a GLM with SIMEX, is excluded from this analysis due to its frequentist nature,
which does not yield the LPPD values necessary for this divergence assessment.

In the Conditional Tail Expectation (CTE) analysis, the predictive distribution gener-
ated by the Gustafson correction in Model (C) exhibits thicker tails compared to Model
(D), with higher CTE values of CTE 95% = 269,656 at Rϵx = 0.01 , CTE 95% = 281,371
at Rϵx = 0.10, CTE 95% = 278,099 at Rϵx = 0.40. Notably, the CTE values of Model (C)
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do not demonstrate a consistent trend across the varying error rate scenarios. However,
the higher CTE values in Model (C) suggest that while the Gustafson correction enhances
the model’s overall predictive accuracy, the underlying hierarchical GLM may effectively
address extreme values or outliers. This indicates a potential improvement in the model’s
applicability in contexts where accurately capturing outliers is essential.

Table 4. Comparison of the GLM slope β1j, β2j estimates from the hierarchical log-normal GLMs
(claim amount component) in Model (A), -(B), and -(C) across risk clusters j = 1, . . . , 6. The largest
LPPD values are highlighted in bold.

Model Slope Parameter Estimates βj1; βj2

Model (A)
Gold

standard

β1j=1 0.31 with 95% Credible Interval: {0.03 ≤ β1j=1 ≤ 0.62}
β1j=2 0.24 with 95% Credible Interval: {−0.04 ≤ β1j=2 ≤ 0.59}
β1j=3 0.43 with 95% Credible Interval: {0.09 ≤ β1j=3 ≤ 0.67}
β1j=4 0.33 with 95% Credible Interval: {−0.10 ≤ β1j=4 ≤ 0.84}
β1j=5 0.34 with 95% Credible Interval: {−0.12 ≤ β1j=5 ≤ 0.89}
β1j=6 0.29 with 95% Credible Interval: {−0.08 ≤ β1j=6 ≤ 0.67}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model (B)
Before

correction

β1j=1 0.29 0.06 0.01
β1j=2 0.24 0.04 0.01
β1j=3 0.42 0.07 0.01
β1j=4 0.32 0.07 0.01
β1j=5 0.34 0.06 0.01
β1j=6 0.28 0.06 0.01

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model (C)
After

correction

β1j=1 0.56 0.38 0.21 0.38 0.36 0.27 0.34 0.38 0.42
β1j=2 0.38 0.26 0.11 0.34 0.27 0.20 0.21 0.33 0.38
β1j=3 0.83 0.56 0.32 0.52 0.48 0.39 0.43 0.47 0.51
β1j=4 0.47 0.32 0.28 0.41 0.35 0.26 0.37 0.42 0.48
β1j=5 0.81 0.41 0.29 0.34 0.31 0.28 0.36 0.39 0.45
β1j=6 0.55 0.40 0.31 0.31 0.26 0.19 0.31 0.34 0.38

Model (A)
Gold

standard

β2j=1 0.24 with 95% Credible Interval: {−0.55 ≤ β2j=1 ≤ 1.01}
β2j=2 0.21 with 95% Credible Interval: {−0.47 ≤ β2j=2 ≤ 0.82}
β2j=3 0.12 with 95% Credible Interval: {−0.67 ≤ β2j=3 ≤ 0.94}
β2j=4 0.08 with 95% Credible Interval: {−1.06 ≤ β2j=4 ≤ 0.59}
β2j=5 -0.12 with 95% Credible Interval: {−1.05 ≤ β2j=5 ≤ 0.60}
β2j=6 0.17 with 95% Credible Interval: {−0.63 ≤ β2j=6 ≤ 0.67}

Error rate Rϵx in x∗: 0.01 Error rate Rϵx in x∗: 0.10 Error rate Rϵx in x∗: 0.40

Model (B)
Before

correction

β2j=1 0.27 0.31 0.38
β2j=2 0.24 0.34 0.40
β2j=3 0.13 0.32 0.40
β2j=4 0.09 0.17 0.22
β2j=5 0.10 0.12 0.17
β2j=6 0.12 0.23 0.36

ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7 ζ : 0.5 ζ : 0.6 ζ : 0.7

Model (C)
After

correction

β2j=1 0.17 0.26 0.29 0.19 0.28 0.31 0.25 0.23 0.19
β2j=2 0.23 0.27 0.31 0.18 0.23 0.28 0.24 0.21 0.18
β2j=3 0.07 0.11 0.19 0.07 0.12 0.17 0.19 0.17 0.15
β2j=4 0.01 0.03 0.11 0.11 0.13 0.18 0.10 0.07 0.02
β2j=5 −0.11 −0.14 0.16 −0.21 −0.15 −0.07 −0.16 −0.19 −0.21
β2j=6 0.12 0.19 0.21 0.08 0.17 0.21 0.16 0.12 0.09

LPPD (×103) −16.79 −16.77 −16.78 −16.41 −16.39 −16.41 −16.19 −16.20 −16.21

Upon inspection of Figures 6–8, it is clear that the Gustafson correction (Model (C),
blue curve) effectively mitigates the model risk from the NDB covariate (Model (B), dotted
curve) because the corrected hierarchical GLM curves (Model (C), blue) align closely with
that of the gold standard curve (Model (A), red) across all clusters j = 1, . . . 6, particularly in
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scenarios with higher error rates: Rϵx = 0.40 in Figure 8. However, a slight gap still persists
between Model (A) and -(C), indicating that the correction, while beneficial, has limitations.

In contrast, Model (B) demonstrates significant distortions, including extreme varia-
tions and multiple peaks that worsen with increasing error rates. Although both Model
(B) and -(C) are derived from the same LGPIF dataset, the Gustafson correction in Model
(C) appears to effectively restore the properties of the original distribution, particularly
pronounced at higher error rates such as Rϵx = 0.40. This improvement is observed with
scaling factors in the range 0.5 ≤ ζ ≤ 0.7, suggesting that the relationship between V(x∗|x)
and V(x∗|z) in the LGPIF dataset is characterized by this range of ζ. Consequently, further
investigation may be warranted using different datasets where V(x∗|x) and V(x∗|z) have
relationships defined by a different range of scaling factors.

Table 5. Comparison of predictive performances among three Bayesian hierarchical GLMs—Model
(A), -(B), and -(C)—and the GLM-based SIMEX, based on the LGPIF data with a covariate error rate
of Rϵx = 0.01 and a scaling factor of ζ = 0.6.

ζ = 0.6
Rϵx = 0.01 Feature

Model (A)
Gold

Standard

Model (B)
with

Model Risk

Model (C)
Gustafson
Correction

Model (D)
SIMEX

Correction

f (lnȲh|XS)

LPPD −16,155.90 −17,437.59 −16,770.85 -
SSPE 784.52 817.16 798.89 816.80
SAPE 415.21 422.53 419.83 421.60
DKL 0.00 1.28 0.61 -

f (lnSh|XF, XS)

CTE 10% 48,782.40 42,995.64 49,599.75 45,237.36
CTE 50% 81,593.58 89,103.11 82,218.10 78,736.26
CTE 90% 209,761.38 226,599.19 196,273.16 121,342.20
CTE 95% 274,996.31 260,859.33 269,656.52 170,487.20

Table 6. Comparison of predictive performances among three Bayesian hierarchical GLMs—Model
(A), -(B), and -(C)—and the GLM-based SIMEX, based on the LGPIF data with a covariate error rate
of Rϵx = 0.10 and a scaling factor of ζ = 0.6.

ζ = 0.6
Rϵx = 0.10 Feature

Model (A)
Gold

Standard

Model (B)
with

Model Risk

Model (C)
Gustafson
Correction

Model (D)
SIMEX

Correction

f (lnȲh|XS)

LPPD −16,155.90 −17,731.03 −16,390.44 -
SSPE 784.52 840.02 795.07 892.72
SAPE 415.21 430.22 418.68 439.92
DKL 0.00 1.57 0.41 -

f (lnSh|XF, XS)

CTE 10% 48,782.40 50,222.22 49,764.81 45,846.51
CTE 50% 81,593.58 84,118.93 83,595.88 73,558.45
CTE 90% 209,761.38 233,257.58 221,359.16 129,851.81
CTE 95% 274,996.31 295,325.47 281,371.20 164,324.93

Table 7. Comparison of predictive performance results among three Bayesian hierarchical
GLMs—Model (A), -(B), and -(C)—and the GLM-based SIMEX, based on the LGPIF data with
a covariate error rate of Rϵx = 0.40 and a scaling factor of ζ = 0.5.

ζ = 0.5
Rϵx = 0.40 Feature

Model (A)
Gold

Standard

Model (B)
with

Model Risk

Model (C)
Gustafson
Correction

Model (D)
SIMEX

Correction

f (lnȲh|XS)

LPPD −16,155.90 −18,058.43 −16,188.31 -
SSPE 784.52 861.44 793.50 954.04
SAPE 415.21 437.73 417.36 532.72
DKL 0.00 1.94 0.33 -
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Table 7. Cont.

ζ = 0.5
Rϵx = 0.40 Feature

Model (A)
Gold

Standard

Model (B)
with

Model Risk

Model (C)
Gustafson
Correction

Model (D)
SIMEX

Correction

f (lnSh|XF, XS)

CTE 10% 48,782.40 54,671.42 49,155.18 54,716.98
CTE 50% 81,593.58 89,824.04 84,038.84 75,489.60
CTE 90% 209,761.38 233,321.29 223,497.02 174,000.54
CTE 95% 274,996.31 295,939.47 278,098.80 186,720.87

Figure 6. Curve alignment under the condition of ‘error rate Rϵx = 0.01’ with ζ = 0.6: cluster-wise
histograms (for j = 1, . . . 6) of the observed claim amount Yh on a log scale and the out-of-sample
predictive densities obtained from Model (A), -(B), and -(C).
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Figure 7. Curve alignment under the condition of ‘error rate Rϵx = 0.10’ with ζ = 0.6: cluster-wise
histograms (for j = 1, . . . 6) of the observed claim amount Yh on a log scale and the out-of-sample
predictive densities obtained from Model (A), -(B), and -(C).

Figure 8. Cont.
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Figure 8. Curve alignment under the condition of ‘error rate = 0.40’ with ζ = 0.5: cluster-wise
histograms (for j = 1, . . . 6) of the observed claim amount Yh on a log scale and the out-of-sample
predictive densities obtained from Model (A), -(B), and -(C).

5. Discussion
This paper proposes a novel hierarchical GLM framework to estimate insurance risk

premium with the incorporation of the heterogeneity and NDB covariate, outlined in
research questions RQ1 and RQ2. Our proposed model presents overall good empirical
performance results in retrieving the original error-free parameter values, which suggests
that it is worth considering the Gustafson correction boosted with the hierarchical Bayesian
framework to avoid the impact of the NDB errors. Ultimately, we seek to develop practical
guidelines for selecting the optimal scaling factor with the Gustafson correction in the
absence of gold standard data.

Regarding RQ1, we initially analyzed the partial pooling effect of a hierarchical
GLM as a solution for addressing heterogeneity. Given the predetermined risk clusters
j = 1, . . . , 6, we observed the highest LPPD value from the gold standard model, indicating
an improvement in predictive power compared to other conventional GLM models. This
suggests that the effect of heterogeneity is effectively mitigated. For RQ2, we expanded
the model by incorporating Gustafson correction into the hierarchical GLM framework
to mitigate the model risk linked to the NDB covariate. Throughout our experiments, we
demonstrated the impact of the model risk when using a naïve model built on the NDB
covariate. This model misspecification led to significant distortion in the spread and created
extreme modality in the predictive distribution. In this context, we showed how applying
the Gustafson correction within the same framework effectively ‘restores’ the predictive
distribution’s original spread and characteristics. The NDB error mitigation was further
confirmed by additional performance metrics such as LPPD, SSPE, SAPE, DKL, etc.

A key aspect of our hybrid modeling framework to handle NDB covariates is the
choice of scaling factor ζ, which our findings demonstrate to be crucial in error correction.
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Specifically, ζ moderates the contribution of λ̂2 : V(x∗|z) to explaining T2 :V(x∗|x), guiding
adjustments of the erroneous parameters. Notably, we found that both the scaling factor
ζ and the error rates Rϵx in the NDB covariate are crucial, requiring careful calibration
for optimal results. To determine the ideal ζ, we devised a rule of thumb relying on
the maximum LPPD value, providing a path forward without access to gold-standard
data. For the error rates Rϵx in the NDB covariate, our experimental results indicate that
the hierarchical GLM equipped with the Gustafson correction performs consistently well
across different error rate scenarios, particularly within the range of scaling factor such
as 0.5 ≤ ζ ≤ 0.7. However, these numbers suggest a relatively strong degree of relation
between λ̂2 : V(x∗|z) and T2 :V(x∗|x), as reflected by the prior knowledge: T2

j = (1− ζ)λ̂2
j

in Equation (34). Furthermore, the optimal range of ζ appears to be dataset dependent,
as it is likely unique to each one. Varying relationships among covariates can lead to
distinct ranges for ζ. Indeed, we have yet to explore other datasets where this degree of
relation is characterized by a different range of ζ. It can be important to investigate how
the performance of the correction varies across different error rate scenarios when the
optimal ζ is ranged differently. This leaves room for further research to fully understand
the implications of ζ on model performance.

Future Work

There are several concerns regarding our hierarchical GLM risk premium modeling
equipped with Gustafson correction.

(a) Dimensionality: In our current analysis, we have limited our focus to two covariates—
one binary and one continuous—for the sake of simplicity. However, it is imperative
to explore more intricate datasets that encompass a greater variety of covariates. In the
Bayesian framework, as the number of covariates increases, the complexity of the
likelihood components—essentially the models representing these covariates—also
expands. This escalation may introduce additional noise or unobserved structures that
could compromise the stability of the resulting predictive distributions [22]. There-
fore, conducting further investigations into the challenges posed by high-dimensional
covariates within the hierarchical GLM framework presents an opportunity for en-
hancing model robustness and accuracy.

(b) Reliability of risk clusters: As a parametric Bayesian approach, fixed risk clusters
in the hierarchical GLM framework have several downsides that merit further ex-
ploration. Above all, if the predetermined risk clusters are not entirely accurate,
this can lead to additional bias and possibly reduce model validity [21]. However,
when the fixed clusters are indeed correct, the partial pooling mechanism within the
hierarchical GLM framework demonstrates its superiority, effectively leveraging the
structure of the data while improving parameter estimates. Thus, future research
should investigate more flexible Bayesian clustering methods that allow for dynamic
cluster adjustments.

(c) Granularity of error rates: In the development of simulation data, we sought to
determine the error rate at which the Gustafson correction becomes ineffective. Our
findings indicate that for error rates Rϵx below 0.01, the application of the correction
is generally unwarranted, as model risk remains minimal under such conditions.
In the range of error rates from 0.10 to 0.50, the correction demonstrated its utility.
Specifically, it was effective when the scaling factor 0.5 ≤ ζ ≤ 0.7, as the hidden
relation between λ̂2 : V(x∗|z) and T2 :V(x∗|x) in the LGPIF dataset is explained by the
range of ζ. However, we hypothesize that at error rates exceeding 0.50, the correction
may encounter considerable limitations in its effectiveness, despite our identification
of the optimal range for ζ. It is noteworthy that this specific scenario has not yet
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been explored in our study, indicating a potential avenue for future research utilizing
different datasets.

(d) Scalability of posterior simulation: Lastly, we proposed an examination of the scala-
bility of posterior simulations utilizing our Gibbs sampler. Our empirical analysis,
particularly with the LGPIF dataset, demonstrates that the hierarchical GLM frame-
work maintains stable performance with sample sizes up to H ≤ 2000. However,
the impact of larger sample sizes, specifically those exceeding 10,000, has not been
addressed within the scope of this paper. As the volume of data increases, it raises
critical questions regarding the computational efficiency of our hierarchical GLM
framework, particularly given the heightened demand for computational resources
and the potential for performance degradation as noted in the studies of Ni et al.
(2020) [38]. This aspect becomes increasingly significant in contexts where insurance
loss data are anticipated to accumulate over time, necessitating a thorough exploration
of the framework’s capacity to scale effectively while maintaining performance.
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Nomenclature
The following variables and functions are used in this manuscript:

i = 1, . . . , Nh observation index i in policy h.
h = 1, . . . , H policy index h with sample (policy) size H.
j = 1, . . . , J cluster index for J clusters.
nj number of observations in cluster j.
Yhi, Nh ith individual loss amount and loss count in a policy h.
Yj(hi), Nj(h) ith individual loss amount and loss count in a policy h in a cluster j.
Sh outcome variable as ΣiYhi in a policy h.
X = {XF, XS} list of covariate matrices (including XS, XS) for both frequency and severity.
XF : {xF, zF} matrix of covariates (including xF, zF) for claim count outcome (Frequency).

XS : {xS, zS}
matrix of covariates (including xS, zS) for claim amount outcome (Severity).
Focusing solely on severity, we omit the superscript ‘s’ for simplicity.
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X : {x, z}
matrix of covariates (including zS, xS) for claim amount outcome (Severity).
Focusing solely on severity, we omit the superscript ‘s’ for simplicity.

XF
h : {xF

h , zF
h} vector of covariates in policy h (Frequency).

xF vector of continuous covariate (Frequency).
zF vector of binary covariate (Frequency).
xF

h individual value of continuous covariate in policy h (Frequency).
zF

h individual value of binary covariate in policy h (Frequency).
XS

h : {xS
h , zS

h} vector of covariates in policy h (Severity).

xS vector of continuous covariate, and x∗ indicates the mismeasurement (Sever-
ity).

zS vector of binary covariate (Severity).

xS
h

individual value of continuous covariate, and x∗h indicates the mismeasure-
ment in policy h (Severity).

zS
h individual value of binary covariate in policy h (Severity).

Xh : {xh, zh} vector of covariates in policy h.
x vector of continuous covariate, and x∗ indicates the mismeasured.
z vector of binary covariate.

xh
individual value of continuous covariate, and x∗h indicates the mismeasure-
ment in policy h.

zh individual value of binary covariate in policy h.
p0(·) parameter model (for prior).
p(·) parameter model (for posterior).
f0(·) data model (for continuous cluster).
f (·) data model (for discrete cluster).
E[ · ], V[ · ] expectation and variance as point estimates.
ϕ(·) probability density function of Standard Gaussian density.
Φ(·) cumulative density function of Standard Gaussian density.

θj
set of parameters-β, σ2-associated with the outcome model f (Y|X) for j clus-

ter (posterior sample: θ
(∗)
j ).

wj
set of parameters-π, µ, λ2-associated with the covariate models f (X) for j
cluster (posterior sample: w(∗)

j ).

ωj cluster weights (mixing coefficient) for j cluster (finalized sample: ω
(∗)
j ).

β j : {β j0, β j1, β j2} regression coefficient vector for a mean outcome estimation.

β0, Σβ0

vector of initial regression coefficients and variance–covariance matrix,
i.e., σ̂2(XTX)−1 = XTX(ΣY − ΣŶ)T(ΣY − ΣŶ)/(n − p) obtained from the
baseline multivariate Gamma regression of ΣŶ > 0.

σ2
j cluster-wise variance or scale parameter for the outcome.

πj proportion parameter for Bernoulli covariate.
µj location parameter for Gaussian covariate x.
λ2

j dispersion parameter for Gaussian covariate x.

κj : {κj0, κj1}
regression coefficient vectors to explain the mean of the unobserved Gaussian
covariate x|z.

T2
j

variance parameter for x∗|x to indicate the contamination level in the mea-
surement model.

m0, δ hyperparameters of Multivariate Normal for βS
0 .

q0, Λ hyperparameters of Inverse Wishart density for ΣS
β0

.

u0, v0 hyperparameters of Inverse Gamma density for σ2
j .

ρu1, ρu2 hyperparameters of Fink’s function for u0.
ρv1, ρv2 hyperparameters of Gamma density for v0.
µ0, λ2

j hyperparameters of Gaussian density of µj.

c0, d0 hyperparameters of Inverse Gamma density for λ2
j

g0, h0 hyperparameters of Beta density for πj.
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K1 :


1 z1
...

...
1 znj

 nj × 2 matrix to compute Σ
nj

h=1(x∗h − κ̂j0 − κ̂j1zh)
2.

K2 :

 ∑
nj

h=1 x∗h

∑
nj

h=1 x∗hzh

 2 × 1 matrix to compute Σ
nj

h=1(x∗h − κ̂j0 − κ̂j1zh)
2.

βF
j : {βF

j0, βF
j1, βF

j2} regression coefficient vector for a mean claim count (Frequency) estimation.

βS
j : {βS

j0, βS
j1, βS

j2} regression coefficient vector for a mean claim amount (Severity) estimation.

ξh, ψ
parameters—ξh (number of failure) and ψ (number of success)—for negative
binomial.

βF
0 , ΣF

β0

vector of initial regression coefficients and variance–covariance matrix ob-
tained from the baseline multivariate Poisson regression of N̂ > 0.

βS
0 , ΣS

β0

vector of initial regression coefficients and variance–covariance matrix ob-
tained from the baseline multivariate Gamma regression of Ŷ > 0.

uF
0 , vF

0 hyperparameters of Inverse Gamma density for ψj.
uS

0 , vS
0 hyperparameters of Inverse Gamma density for σ2

j .

m0, δ hyperparameters of Multivariate Normal for βF
0 .

q
0
, Λ hyperparameters of Inverse Wishart density for ΣF

β0
.

ρ
u1

, ρ
u2

hyperparameters of Fink’s function for uF
0 .

ρ
v1

, ρ
v2

hyperparameters of Gamma density for vF
0 .

βS+
0 , ΣS+

β0
, uS+

0 , vS+
0

communal hyperparameters for partial pooling in a hierarchical GLM (claim
amount).

βF+
0 , ΣF+

β0
, uF+

0 , vF+
0

communal hyperparameters for partial pooling in a hierarchical GLM (claim
count).

β̂ j : {β̂ j0, β̂ j1, β̂ j2}
regression coefficient vector for a mean outcome estimation based on NDB
covariate x∗ (before correction).

σ̂2
j

cluster-wise variance or scale parameter for the outcome based on NDB
covariate x∗ (before correction).

ξ̂ j
skewness parameter for log skew-normal outcome based on NDB covariate
x∗ (before correction).

λ̂2
j

dispersion parameter for Gaussian covariate x|z based on NDB covariate x∗

(before correction).

κ̂j : {κ̂j0, κ̂j1}
regression coefficient vectors to explain the mean of the unobserved Gaus-
sian covariate x|z based on NDB covariate x∗ (before correction).

κ̃, Σ̃κ hyperparameters of Multivariate Normal for κ.

Rϵx

error rate, representing the proportion of the total noise relative to the total
true values within an NDB covariate.

σ2
jϵ variance of an NDB error.

ρj(x,x∗) correlation between the true covariate and the NDB covariate in cluster j.
ϵ NDB measurement error

1/δ

Variance inflation factor as a ratio of the virtual sample size to the observa-
tion sample size, representing the impact of the prior. The default choice is
1/δ = 100. See Sharples (1990) [39].

L(·) likelihood function of the current model.
P(·) likelihood function of the target model.

θ(old) : {β
S(old)
j ,

initial value of outcome parameters for the MH algorithm.σ
2(old)
j , β

F(old)
j ,

ψ
(old)
j }
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θ(new) : {β
S(new)
j ,

candidate value of outcome parameters sampled for the MH algorithm.σ
2(new)
j , β

F(new)
j ,

ψ
(new)
j }

θ(∗) : {β
S(∗)
j ,

finalized value of outcome parameters for the MH algorithm.σ
2(∗)
j , β

F(∗)
j ,

ψ
(∗)
j }

Acronym List
NDB Non-Differential
LPPD Log Pointwise Predictive Density
DKL Kullback–Leibler Divergence
SSPE Sum of Square Prediction Error
SAPE Sum of Absolute Prediction Error
CTE Conditional Tail Expectation
NB Negative Binomial Distribution
N Normal (Gaussian) Distribution
LogN Lognormal Distribution
MVN Multivariate Normal Distribution
Ga Gamma Distribution
Beta Beta Distribution
InvGa Inverse Gamma Distribution
IW Inverse Wishart Distribution
LGPIF Local Government Property Insurance Fund
GLM Generalized Linear Model
GAM Generalized Additive Model
MARS Multivariate Adaptive Regression Spline
RC Regression Calibration
SIMEX Simulation Extrapolation
WLS Weighted Least Squares
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