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ABSTRACT
We introduce the LifeInsight 2.0 system – an enhanced version of
LifeInsight, built specifically for the sixth annual Lifelog Search
Challenge (LSC’23). LifeInsight 2.0 leverages the core functional-
ities of LifeInsight while incorporating significant improvements
to address performance bottlenecks. This refined architecture aims
to deliver superior search capabilities within the LSC’24. LifeIn-
sight 2.0 employs an ensemble approach combining two powerful
foundation models: CLIP (Contrastive Language-Image Pretraining)
and BLIP2 (Bootstrapping Language-Image Pretraining) model. In
addition, the system incorporates a temporal query mechanism and
an automatic query parser. The former enables LifeInsight 2.0 to
interpret queries that include time-based information, while the
latter specifically handles tasks involving question answering.

CCS CONCEPTS
• Information systems→Multimedia databases; Users and
interactive retrieval; Search interfaces; • Human-centered com-
puting→ Interactive systems and tools.
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1 INTRODUCTION
Technological advancements, including wearable devices, cameras,
location-tracking systems, and smartphones, have enabled us to
record our life experiences continuously. This process of constant
self-documentation is referred to as lifelogging. Lifelogging gener-
ates a substantial personal multimedia repository, termed lifelog
data, which encapsulates diverse facets of our everyday lives [7].
This data can encompass photos collected passively, GPS records,
and even physiological data. The release of a public lifelog dataset
through the Lifelog Search Challenge (LSC) has opened doors for
various research efforts in the field. This data empowers researchers
to explore how lifelogging can be harnessed to benefit users’ daily
lives. A key area of exploration, which is also the main focus of the
LSC, is the development of an "auxiliary memory assistant." This
intelligent system aims to act as a real-time search engine for users’
vast personal archives, allowing them to retrieve specific memories
instantly [8].

Lifelog data often involves large quantities of passively captured
images, lacking captions or labels beyond their metadata. This
metadata typically includes timestamps, locations, identified ob-
jects within the image, and any text detected in the scene. Early
lifelog retrieval systems, like LifeSeeker [14], lifeXplore [23], and
FIRST [11], relied heavily on metadata search through Database
Management Systems (DBMS) or Elastic Search. This limited their
ability to understand the meaning of the content. Nevertheless,
Vision-language models like CLIP [20] and BLIP [13] have opened
exciting possibilities in lifelog retrieval. These models enable seman-
tic search, allowing users to describe the desired content without
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needing exact keywords from the metadata. This eliminates the
need for complex query parsing and leads to significantly improved
search accuracy.

This paper presents LifeInsight 2.0 – a new iteration of the LifeIn-
sight system [17], specifically designed for the LSC’24 challenge
[8]. The key difference between the new and previous versions of
LifeInsight lies in adopting an ensemble technique. This approach,
demonstrably effective in enhancing AI system accuracy, allows
LifeInsight 2.0 to leverage the combined strengths of BLIP [13]
and CLIP [20] models for improved image-text retrieval, replac-
ing the prior version’s reliance solely on BLIP. Furthermore, we
introduce a temporal query mechanism that empowers users to for-
mulate queries incorporating temporal information. Additionally,
we provide an automatic query parser that streamlines user queries,
improving the system’s returned results. The concept behind this
feature draws inspiration from our previous work in the NTCIR-17
conference [18]. However, to further enhance our approach, we
have decided to use the more novel model (detailed in Subsection
4.4) for extracting the main context while keeping the Stanza model
[19] to handle named entity recognition.

In summary, we adapted the comprehensive lifelog retrieval sys-
tem LifeInsight 2.0 which was specially developed for the Seventh
Annual ACM Lifelog Search Challenge [8] by adding the following
enhancement:

(1) We cluster the lifelog moments into events based on the
context of the lifelog images, thereby reducing the number of
embeddings inserted into our vector database (Milvus 1 and
Elastic 2, increasing the searching speed of the LifeInsight
2.0 system.

(2) This paper explores the difference between utilizing an en-
semble technique combining CLIP [20] and BLIP [13] models
and solely relying on BLIP for image-text search.

(3) LifeInsight 2.0 utilizes large language models (LLMs) to con-
struct an automated query parser. This parser serves as a
preprocessing step, extracting conceptual information like
location, context, or time from user queries, thereby aug-
menting its search capabilities.

(4) LifeInsight 2.0 empowers users with a user-friendly tempo-
ral query mechanism, enabling them to formulate queries
incorporating temporal information and search for relevant
results.

2 RELATED RESEARCH
The Lifelog Search Challenge (LSC) has gained popularity over
the years, attracting more participants from various organizations.
This challenge focuses on creating interactive retrieval systems.
These systems aim to find specific images from a large collection
representing a person’s life events, all within a limited timeframe
and based on a user’s query.

Various systems, including Memoria [21], LifeSeeker [16], vit-
rivr [9], FIRST [29], and Myscéal [27], have offered multiple search
modalities based on concepts. Lifegraph [22] and LifeConcept [3]
utilized knowledge graphs and concept recommendation methods
like ConceptNet to facilitate retrieval by linking relevant concepts

1https://milvus.io/
2https://www.elastic.co/

with images. Other systems such as lifeXplore [24], PhotoCube [26],
and LifeMon [5] employed convolutional neural networks (CNNs)
like YOLOv4 [4] and traditional object detectors for content analy-
sis. These systems primarily used Database Management Systems
(DBMS) or Elasticsearch data retrieval mechanisms to align user
queries with visual concepts and metadata effectively. A number of
systems, including LifeSeeker 4.0 [15], E-Myscéal [28], Memento 2.0
[1], FIRST 3.0 [12], and Voxento [2], incorporated vision-language
pre-trained models, specifically the CLIP model [20]. These systems
demonstrated significant performance improvements in zero-shot
image-text retrieval compared to their previous versions.

Semantic-driven systems strive to extract insights not only from
visual content but also from the semantic context of the query
description, leading to more accurate results. For the LSC’23, we
created LifeInsight, a semantic-driven lifelog retrieval system. This
system leverages the BLIP vision-language pre-training model [13]
and incorporates various AI features to support the retrieval process
alongside the semantic search function.

3 OVERVIEW OF LIFEINSIGHT 2.0
3.1 System Overview
The overview of LifeInsight 2.0 is depicted in Figure 1, demon-
strating the improvements over the previous version. Specifically,
LifeInsight 2.0 can automatically transform an input query into a
semantic query, which includes context and concepts that aid in
searching within Elasticsearch. Furthermore, LifeInsight 2.0 incor-
porates multiple encoders, in this case, BLIP-2 [13] and CLIP [20],
to boost performance, as opposed to relying solely on BLIP-2 as in
the case of LifeInsight.

Figure 1: Overview of the LifeInsight 2.0 system.
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3.2 User Interface
LifeInsight 2.0’s main user interface builds upon the familiar de-
sign of LifeInsight [17] while offering enhanced functionality for
a more intuitive user experience. In response to user feedback re-
garding convenience, LifeInsight 2.0 positions the side tab bar on
the left side, a departure from the previous version’s right-side
placement. LifeInsight 2.0 retains the core chat interface experience
but streamlines the user experience by strategically adding and
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Figure 2: Relevant images displayed in LifeInsight 2.0

Figure 3: Detail information displayed in LifeInsight 2.0

removing buttons. In Figure 2, we showcase the key functionalities
of our LifeInsight 2.0 system. The right section of the user interface
displays retrieval results in a vertically scrollable panel.

Selecting an image from the retrieval results triggers a pop-
up window (as seen in Figure 3) with three distinct tabs. Each
tab provides a unique perspective on the chosen image collection,
including:

• Timeline: This tab displays temporally nearby images to
the selected image. Additionally, a vertical panel appears on
the right side of the pop-up window, showcasing enlarged
images from the previous and next moments.
• Location: This tab arranges all images taken at the same
location as the selected image by similarity score. This allows
the user to quickly find pictures taken at the same place as
the selected one and are visually similar to it.
• Visual Similarity: This tab displays visually identical im-
ages to the selected image, with an option to filter visually
similar photos captured at the same location. This feature
would enable users to find images with similar visual con-
tent, even if they were not taken at the same time or place
as the selected image.

4 MAIN COMPONENTS OF LIFEINSIGHT 2.0
4.1 Data Preprocessing
While LifeInsight 2.0 leverages data preprocessing techniques like
LifeInsight [17], we achieve superior performance by representing
each daily event as a single, compact vector instead of using all
individual event vectors. This is accomplished through an event
segmentation task (detailed in 4.2), which efficiently partitions all
daily images into distinct event categories. Our approach signifi-
cantly reduces the number of vectors and metadata stored in Milvus
and Elasticsearch, leading to dramatically improved search speed.
Additionally, it minimizes duplicate images, enabling users to find
relevant information more efficiently.

4.2 Event Segmentation
We employ a vector clustering approach to categorize images from
a day into distinct event groups. Each image is represented by a
feature vector. Clustering is performed based on the cosine similar-
ity between these vectors. We used a sequential process, where the
similarity score between a given vector and the centroid (average)
of each existing cluster is calculated. The vector is assigned to that
cluster if the score exceeds a predefined threshold. Otherwise, it is
compared to the centroids of other clusters. A new cluster is created
with the given vector as its initial member if no suitable cluster is
found.

4.3 Semantic Search
Unlike LifeInsight, which relied solely on Bootstrapping Language-
Image Pre-training (BLIP) [13], our system utilizes an ensemble com-
bining BLIP and Contrastive Language-Image Pre-training (CLIP)
[20]. This approach mitigates potential biases and enhances perfor-
mance. For instance, a given query 𝑞 will be encoded to a vector
®𝑞𝑏 (output when 𝑞 is fed into BLIP [13]), and a vector ®𝑞𝑐 (output
when 𝑞 is fed into CLIP [20]). The final input embedding vector is
formulated as follows:

®𝑞avg = 𝛽𝑐 ®𝑞𝑐 + 𝛽𝑏 ®𝑞𝑏
where 𝛽𝑏 (0.6 in LifeInsight 2.0) and 𝛽𝑐 (0.4 in LifeInsight 2.0) are
refined weights.

Similar to LifeInsight, the computation of image similarity, re-
sulting in a ranked list relevant to a specific query description, is
performed by Milvus 3. The Inner Product compares the distance
between embeddings in the vector space.

4.4 Automatic Query Parser
Unlike our previous system, LifeInsight [17], which relied solely on
raw user queries for semantic search, the enhanced LifeInsight 2.0
leverages an automatic query parser to extract key concepts like
main context, location, date, and time. This empowers LifeInsight
2.0 to understand user intent more effectively. The automatic query
parser in LifeInsight 2.0 utilizes two key components: the Python
Stanford NLP library (Stanza) [19] for named entity recognition
(NER) and the GEMMA-2B model [6] for parsing the main context
within a query. This enables LifeInsight 2.0 to excel at automatic

3https://milvus.io/

3

https://milvus.io/


LSC ’24, June 10, 2024, Phuket, Thailand Gia-Huy Vuong et al.

retrieval tasks and question-answering tasks. To illustrate the power
of automatic query parsing, let us consider some examples:

RAW INPUT: I was praying to small golden Buddha in a tunnel.
There were plants and offerings around the Buddha. It was inside of a
tourist park with a large ornamental tower. It was in September 2019
in Thailand. Following automatic query parsing within LifeInsight
2.0 the output will be:

Location: Thailand.

Date: September 2019.

Concepts: park, tower.

Main Context: Praying to a small golden Bud-
dha in a tunnel. There were offer-
ings around the Buddha. Inside of
a tourist park with a large orna-
mental tower. It was in September
2019.

RAW INPUT: Moments in which the lifelogger was praying to
a small golden Buddha in a tunnel. There were plants and offerings
around the Buddha. It was inside of a tourist park with a large orna-
mental tower. Following automatic query parsing within LifeInsight
2.0 the output will be:

Concepts: park, tower.

Main Context: Praying to a small golden Buddha
in a tunnel. There were offerings
around the Buddha. Inside of a
tourist park with a large ornamen-
tal tower.

RAW INPUT: I think it was the second time I visited the house with
the stone shed/hovel. The shed was under green trees on a beautiful
sunny day. It takes 2 hours to drive there and two hours to drive back
home. It was in the middle of Ireland on the 29th April 2020. Following
automatic query parsing within LifeInsight 2.0, the output will be:

Date: the 29th April 2020.

Location: Ireland.

Time: 2 hours, two hours.

Ordinal: second.

Concepts: time, house, stone, green, sunny,
day.

Main Context: Visiting the house with the stone
shed/hovel.
The shed was under green trees.
Driving to a place and driving
back home.
It was in the middle of Ireland.

RAW INPUT: After a short relaxing walk, I reached the edge of a
lake. There were mountains and trees, but very few people. It was a
cold day in Spring in Wicklow in 2019. Following automatic query
parsing within LifeInsight 2.0 the output will be:

Date: Spring, 2019.

Location: Wicklow.

Concepts: lake, people, day.

Main Context: After a short relaxingwalk.Moun-
tains and trees. It was a cold day
in Spring in Wicklow in 2019.

4.5 Temporal query mechanism
The power of the temporal query mechanism, which has been
proven over the years, is particularly evident in the VITRIVR sys-
tem. A paper titled “Multi-Stage Queries and Temporal Scoring in
VITRIVR” was published by Silvan Heller and his team, further
highlighting its effectiveness [10]. This technique’s power was also
showcased in the ViewsInsight system [30], a platform specifically
engineered for the Video Browser Showdown 2024 (VBS2024) [25].
Recognizing the mechanism’s proficiency in managing temporal
information during searches, we have seamlessly integrated it into
our system, LifeInsight 2.0, to address the challenges presented by
LSC’24 [8].

This mechanism relies on three user inputs which consist of the
main query and two temporal descriptions. The temporal descrip-
tions provide details about events occurring before and after the
event mentioned in the query. Within the system, the algorithm
extracts relevant information from these queries. Subsequently, it
updates the scores of the “now” query by considering the high-
est score from the “before” and “after” queries associated with the
same day. Finally, the algorithm generates a list of search results,
organized based on their newly updated scores.

The pseudo-code of this process is detailed in Algorithm 1. This
powerful feature is seamlessly integrated into the system, enabling
it to retrieve relevant results effectively. This makes the system
more efficient and user-friendly

5 SOME USAGE SCENARIOS
Query 1: I was praying to small golden Buddha in a tunnel. There
were plants and offerings around the Buddha. It was inside of a tourist
park with a large ornamental tower. It was in September 2019 in
Thailand.

When you enter a query like "praying golden Buddha in Thailand
2019," our system, LifeInsight 2.0, can automatically break it down.
It identifies the main context (praying golden Buddha) and refines
the search by extracting concepts like location (Thailand) and date
(2019). This process is illustrated in Figure 4.

Query 2: It was an outdoor outdoor kitchen. I remembered it was
BBQ party happening in 2020.

This query can be easily addressed using the visual search feature
in LifeInsight 2.0. Simply download an image of an "outdoor BBQ
kitchen" and upload it to LifeInsight 2.0’s search bar. The system
will then identify similar outdoor BBQ kitchen designs, providing
the most relevant results based on the image (shown in Fig 5).

Query 3: After a short relaxing walk, I reached the edge of a lake.
There were mountains.

With LifeInsight 2.0’s temporal query mechanism, you can do
just that. Simply enter “walking > reach the edge of a lake and

4
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Algorithm 1 Temporal Search Algorithm
Require: 𝑎, 𝑏, 𝑐 , 𝑟𝑎𝑛𝑔𝑒
1: // The variables 𝑎, 𝑏, and 𝑐 represent a before, now, and after

query, respectively.
2: // The variable 𝑟𝑎𝑛𝑔𝑒 represents the maximum duration when

before, now, and after events occur.
3: 𝐴 ← Dictionary containing information retrieved from the

system when 𝑎 (now query) is searched for.
4: 𝐵 ← Dictionary containing information retrieved from the

system when 𝑏 (now query) is searched for.
5: 𝐶 ← Dictionary containing information retrieved from the

system when 𝑐 (now query) is searched for.
6: for all 𝑏𝑖 in 𝐵 do
7: 𝐴1 ← {𝑎 𝑗 ∈ 𝐴1 | 𝑎 𝑗 .𝑑𝑎𝑡𝑒_𝑖𝑑 = 𝑏𝑖 .𝑑𝑎𝑡𝑒_𝑖𝑑 ∧𝑎 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈

(𝑏𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑟𝑎𝑛𝑔𝑒, 𝑏𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)}
8: 𝐶1 ← {𝑐 𝑗 ∈ 𝐶1 | 𝑐 𝑗 .𝑑𝑎𝑡𝑒_𝑖𝑑 = 𝑏𝑖 .𝑑𝑎𝑡𝑒_𝑖𝑑 ∧ 𝑐 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈

(𝑏𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑏𝑖 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑟𝑎𝑛𝑔𝑒)}
9: if 𝐴1 is not empty then
10: 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒_𝑎 ← Highest score in 𝐴1.
11: end if
12: if 𝐶1 is not empty then
13: 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒_𝑐 ← Highest score in 𝐶1.
14: end if
15: 𝑏𝑖 .score← 𝑏𝑖 .𝑠𝑐𝑜𝑟𝑒 +𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒_𝑎 +𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒_𝑐
16: end for
17: Sort 𝐵 in descending order based on updated scores
18: return Sorted 𝐵 as relevant image results

Figure 4: Utilize visual search to identify thematched frames.

mountains” (described in Fig 6) to search for images that transition
from walking to a view of a lake and mountains. In this example,
“walking” is the “before” event, and “reach the edge of a lake and
mountains” is the “after” event.

6 CONCLUSION
In conclusion, the LifeInsight 2.0 lifelog retrieval system is a com-
prehensive system that employs several mechanisms and features
to provide insightful and relevant search results for lifelog data. By
incorporating semantic search mechanisms from state-of-the-art

Figure 5: Utilize visual search to identify thematched frames.

Figure 6: Utilize visual search to identify thematched frames.

systems and focusing on using spatial information, LifeInsight 2.0
provides an effective approach for retrieving relevant information
from lifelog data. The use of the Bootstrapping Language-Image
Pre-training (BLIP) model for zero-shot image-text retrieval and
Elastic Search for filtering irrelevant images would enhance the
precision and recall scores of the system based on previous experi-
ments from other related systems with the same search mechanism.
The integration of visual similarity search functionality and explicit
relevance feedback enables the system to provide more accurate
search results, while AI-based query description rewriting and vi-
sual example generation features further support end-users during
the retrieval process.
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