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ABSTRACT Federated Learning (FL) paradigm has been very popular in the implementation of 5G and
beyond communication systems as it provides necessary security for the users in terms of data. However, the
FL paradigm is still vulnerable to model inversion attacks, which allow malicious attackers to reconstruct
data by using the trained model gradients. Such attacks can be carried out using generative adversarial
networks (GANs), generative models, or by backtracking the model gradients. A zero-trust mechanism
involves securing access and interactions with model gradients under the principle of ”never trust, always
verify.” This proactive approach ensures that sensitive information, such as model gradients, is kept private,
making it difficult for adversaries to infer the private details of the users. This paper proposes a zero-trust
based Block Encryption LAyer (BELA) module that provides defense against the model inversion attacks
in FL settings. The BELA module mimics the Batch normalization (BN) layer in the deep neural network
architecture that considers the random sequence. The sequence and the parameters are private to each client,
which helps in providing defense against the model inversion attacks. We also provide extensive theoretical
analysis to show that the proposed module is integratable in a variety of deep neural network architectures.
Our experimental analysis on four publicly available datasets and various network architectures show that
the BELA module can increase the mean square error (MSE) up to 194% when a reconstruction attempt
is performed by an adversary using existing state-of-the-art methods.

INDEX TERMS Zero-Trust, Model Inversion Attacks, Block Encryption LAyer, Federated Learning, 5G/6G
systems.

I. INTRODUCTION

THE introduction of fifth generation (5G) communica-
tion systems brought the emerging technologies such

as Internet of Things (IoT), artificial intelligence (AI), net-
work slicing, software defined networks, network function
virtualization, and smart sensors, together for advancing

connectivity and fulfilling the user demands. For instance,
IoT and smart sensors in 5G enable heterogeneous devices
to connect to the network, acquire data in real-time, and
use services related to connectivity, automation, and com-
munication. Similarly, network slicing divides the network
virtually for specific users and manages communication
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between them. However, with the recent change of land-
scape concerning AI methods and the users inclined to use
them in an ubiquitous manner, the demand for number of
connections, latency requirements, and high bandwidth has
been increased drastically [1], [2]. Many researchers have
suggested that the 5G communication system will not be
able to cater such demands while adapting to rapid devel-
opments in the field of AI [1], [2]. Researchers are working
towards the development of beyond 5G networks to meet
the requirements of large-scale networks, accommodate vast
number of edge devices, and integrate seamlessly with AI
technologies. This will significantly improve the efficiency
and operation of communication networks.
Existing works have extensively proposed sixth generation
(6G) communication systems to be the answer for the
growing needs associated with 5G systems concerned with
the bandwidth, connectivity, latency, and scalability [3].
However, researchers have also identified challenges that
revolve around heterogeneity, softwarization of radio access
networks, compliance with diverse technologies, complexity
of aerial base stations, full integration and adoption of AI
technologies, and security [4]. The security is one of the
major problems assumed to be associated with 6G networks
due to its interconnected and distributed nature. However,
this interconnected nature of AI in 6G networks exposes
the ecosystem to privacy breaches and cyberthreats, which
could compromise sensitive data or infrastructure [3], [4].
For instance, consider an example of a smart healthcare
system in a 6G-powered city that uses AI to support real-time
healthcare services. Such services utilize wearable health
monitors that continuously track vital signs and report to
cloud-based AI systems for analysis, autonomous ambu-
lances that navigate using AI powered by real-time traffic
and environmental data, and AI-assisted surgery performed
remotely through AR devices and tactile robotics. These
systems are vulnerable to data poisoning attacks, where ma-
licious attackers can inject poisoned data through wearable
devices. An example of this would be false health alerts, such
as fake cardiac arrhythmias sent to cloud servers, causing
unnecessary medical responses. They are also vulnerable to
model inversion attacks, which can exploit an AI model
used for real-time navigation to reconstruct sensitive data,
such as the location of hospitals or routes frequently used
by ambulances.
Many studies have proposed the use of a distributed learning
paradigm called Federated Learning to address data security
issues as it allows the edge devices to train the model locally
or collaboratively without sending the data to the server.
The server then collects the gradients from the models that
are locally computed in order to aggregate for constructing
a global model, which is then shared back with the edge
devices. In the above training cycle, the data never leaves
the owner, which makes the Federated Learning paradigm
interesting to the service provider as well as users. Although
Federated Learning provides necessary privacy to the data,

it is still vulnerable to the model privacy attacks such as
model inversion that led to the reconstruction of sensitive
data. A key previous work [5] introduced for the first time
the attack on the gradients coining the term Deep Leakage
from Gradients (DLG), whose goal is to reconstruct the data.
Since the DLG proposal, many studies have tried to improve
the attack efficiency [6]–[9] as well as propose a defense
mechanism against the model inversion [10]–[12].
In addition, other works have observed the effects of model
inversion attacks in the context of potential 5G / 6G com-
munication networks [4] and vehicular networks [9]. The
studies show that such an attack not only disrupts the
communication services and harms an individual’s identity
by recreating sensitive information but also causes financial
and emotional losses. The true gradient using the DLG was
obtained by optimizing randomly initialized data with its
associated label in an iterative manner. Once the training
was complete, it was assumed that the randomly initialized
data converged to the true gradient. Some existing studies [7]
have pointed out DLG’s limitation towards the sensitivity
and training instability when varying resolution and batch
size. An improved version of DLG (iDLG) [7] used the
Softmax layer to analytically compute the ground-truth label
using the gradient of the loss. A stable version of DLG
named inverting gradient [6] was proposed that used a
loss function based on magnitude-invariant cosine-similarity.
Recently, an approach named generative model inversion
(GGL) was proposed in [13] that aims to generate similar
data while leveraging a pretrained GAN. Similar data are
generated by assuming the true label (identical to iDLG)
and then optimizing the generated output through matching
gradients. It should be noted that GGL does not aim to
reconstruct the original data, rather it generates a similar
data that belongs to the data distribution, used for training
the pretrained GAN. Such methods recover sensitive training
data (e.g., images and labels) from gradients shared during
collaborative training, such as FL. By leveraging a more
accurate analysis of gradient updates, the aforementioned
methods expose vulnerabilities in gradient-sharing protocols,
highlighting the potential privacy risks in AI model training.
Similarly to the design of model inversion attacks, some
studies have also proposed related defense mechanisms to
cope with the aforementioned attacks in the context of 5G/6G
communication and vehicular networks. These methods in-
clude data sanitization [14], [15], gradient perturbation [5],
[10], intentional adversarial attacks [12], hybrid methods
[17], [18], and fusion rating scheme [16], respectively. Some
of the methods are either not effective to the model inversion
attack or degrade the performance of the system enough to
limit its realization in real world systems, especially when
using cryptography. In this regard, we refer to a recent
study [18] that highlighted the relationships between FL
settings, its architectural design, and factors such as number
of iterations, activation function, resolution, and batch size
before the gradient exchange. The findings in the study are
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compliant with some of the existing works as well, such
as the assumption of the activation function to be twice
differentiable and impact of modifying number of iterations
on inversion performance. This study provides an insight
regarding the transformations when applying encryption on
a model in FL settings.
With the emergence of data and model security threats,
researchers have emphasized the design of zero-trust security
frameworks that are based on the principle of compulsive
verification. From the data perspective, zero-trust frame-
works continuously authenticate the data transmission along
with periodic analysis to ensure the security. However, in
terms of model security, a very limited literature is available
that employ zero-trust security frameworks. A particular
study that focuses on the verification process was proposed
in [19]. The study proposed a concept of digital passports
that is responsible for performing transformational param-
eters in a normalization layer through passport functions.
A digital passport for deep learning network parameters
is a cryptographic mechanism that embeds unique, veri-
fiable credentials within a model’s parameters to ensure
authenticity, traceability, and protection against unauthorized
modifications or theft. The method [19] is designed to verify
the ownership of the neural network. The study highlights
that if the ownership of the neural network is forged (fake
digital passport function), severe degradation in network’s
inference performance will be observed.
Considering the model inversion problems in FL settings,
we proposed a zero-trust block encryption layer network
(BELANet) to provide defense against model inversion
attacks. The study provides a theoretical basis that the
feature maps obtained from batch normalization, convolu-
tional, and fully-connected layers possess the information
concerning reconstruction of data. The same information
is also available with the gradients, especially when the
backward propagation is carried out. We also show that the
model inversion is only applicable when the gradient spaces
between local and global models are aligned. Based on this
assumption, we propose a zero-trust transformational block
encoder that misaligns and secures the gradient spaces with
an authentication mechanism while maintaining the aggrega-
tion process in FL settings. A randomly generated sequence
for authentication mechanism and maintaining zero-trust is
passed through fully connected layers, while mimicking as
batch normalization layer. We show with our experiments
that the proposed BELANet driven by the zero-trust principle
is effective in defending the network against model inversion
attacks. We also show that the reconstruction of data by
the malicious attacker would not be possible without prior
knowledge of the authentication mechanism and information
concerning the BELA module parameters. The contributions
of this work are summarized as follows:

• A zero-trust based BELANet is proposed for defense
against model inversion attacks.

FIGURE 1. Differentiating classical, AI assisted 5G, and 6G networks

FIGURE 2. AI-Assisted O-RAN architecture and associated vulnerabilities
concerning AI-model attacks. O-RU: Open RAN Radio Units, O-DU: Open RAN
Distributed Units, O-CU: Open RAN Centralized Unit, and RIC: RAN Intelligent
Controller.

• We proposed the BELA module that utilizes trainable
encrypted parameters customized to each user in an FL
setting.

• We provide theoretical analysis to show the validity of
the BELA module’s integration in deep neural network
architectures.

• Extensive experiments are carried out to validate the
efficacy of BELANet against model inversion attacks.

Subsequently, we structure the paper as follows: We con-
solidate the literature review based on the model inversion
and defense methods in Section II. The details regarding the
proposed methods are presented in Section III. Section IV
provides an in-depth experimental evaluation and compara-
tive analysis. Finally, the concluding remarks and potential
future works are outlined in Section V.

II. Attack Vulnerabilities in 5G/6G
Although the model inversion attack is a general security
vulnerability when it comes to the adoption of AI/ML
techniques, the impact of such an attack in the overall system
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depends on the network architecture and the application
itself. As BELANet is proposed for 5G/6G systems, we
establish a foundation to provide an abstract integration
example in this section.
Although the native 5G networks did not use AI’s integration
in communication networks, the current 3rd Generation
Partnership Project (3GPP) standardization, which maintains
cellular standards, has proposed the integration of AI in
5G networks [36], [37]. The primary AI integration in 5G
networks is mainly considered for air interface that could
be applied in the domain of mobility optimization, load
balancing, network energy saving, vehicular communication
in autonomous vehicles, positioning, beam management, and
channel-state information feedback. There are also other
associated applications suggested in 3GPP Release 18; how-
ever, we have only listed a few of them. It should be
noted that the 3GPP does not provide guidelines regarding
AI model training or its development. Instead, it provides
guidelines for building common evaluation methods and
frameworks while integrating AI with air interface functions.
6G networks are still in their infancy, however, it is ap-
parent that the AI/ML will be fundamental aspect of 6G
communication systems. 6G is also considered to be an AI-
native network, which suggests that the network is natively
built in a way to run AI/ML models for all its related tasks.
An example of the network design flow is shown in Figure
1, where the native 5G networks, AI assisted 5G networks
and 6G networks are differentiated, accordingly. It can be
visualized that the current 5G networks leverages AI/ML
for each of the specific functions in order to optimize the
performs. For the 6G networks, it is assumed that the entire
air interface would use deep neural networks for achieving
optimal performance.
Given the dependency of current 5G and 6G networks on
AI services, it is apparent that models will be trained and
transmitted to the receiver via the wireless channel. This is
the basic assumption of a model inversion attack, where an
attacker can potentially acquire the transmitted AI model
and reconstruct the data. The BELANet can be used to
make the trainable parameters private for each encoding,
modulation, and front-end unit, preventing the attacker from
reconstructing the data from the acquired trained model.
A similar case can be discussed for the Open Radio Access
Network (O-RAN) alliance outside of 3GPP, which explores
the use of AI/ML services for network management and
orchestration. For instance, the O-RAN alliance has a RAN
Intelligent Controller (RIC) that leverages AI/ML models to
optimize applications. The RIC also hosts a variety of rApps
and xApps, designed to run AI/ML services in near real-
time and non-real-time. It is expected that the functionality
of xApps and rApps will grow further with the expansion of
the O-RAN ecosystem. In such a use case, where the RIC
supports a number plate recognition app or an application
that performs facial analysis, it is potentially vulnerable to
model inversion attacks. If an attacker acquires just the

trained model, it may lead to the privacy leakage of user
data. An example of the AI-assisted O-RAN architecture is
shown in Figure 2.

III. Related Works
This section provides a brief review of the literature on model
inversion attacks and associated defenses in FL settings. The
emergence of model inversion attacks that can reconstruct
the private training data from compromised gradients pose a
significant threat to the privacy preservation of collaborative
and centralized training algorithms. Membership inference
attack is associated with exploiting training data in a
centralized learning setting [20] that determines if the data
belongs to the training distribution or not. In collaborative
learning systems, the seminal work DLG [5] was the first
to propose an attack method for the reconstruction of data
from compromised gradients. The study in [6] improved
the DLG method in terms of stability and efficiency by
proposed a loss function based on magnitude invariant
cosine similarity. Khowaja et al. [9] improved the DLG
method by using a better generative adversarial network
(GAN) architecture to reconstruct the private data from
model inversion. The study in [21] proposed the method
of gradient inversion in alternative spaces (GIAS), which
indicates that compromised gradients are not enough to
recreate the data; therefore, they used a pre-trained model
for revealing the data. The study in [8] proposed a way to
obtain the ground-truth labels from the last fully connected
layers of the network, which is then used to augment the
compromised gradients using batch normalization statistics,
thus improving the quality of data reconstruction. Most
of the aforementioned methods were used for general
recognition methods.
Some studies have put forth more efforts on the design
of GAN methods to improve the reconstruction method
from model inversion attacks. The study [22] proposed
a GAN network that generates the dataset from model
inversion which closely approximates the distribution of
the training data. The study in [23] proposed mGAN-AI,
a method that performs auxiliary identification using the
proposed multitask discriminator and then generates the
data from model inversion. The study in [24] designs a
combined loss function along with encoders to optimize the
shadow models and their gradients for main classification
tasks. In this process, the shadow models are capable of
generating features that could be used for recreating the
private data. The study [9] improved the GAN architecture
to design an attack mechanism to recreate the data and
then used model poisoning to corrupt the samples. The
model is then sent for the aggregation process in the FL
setting, resulting in a degradation of performance with
each passing communication round. GGL method [13]
was also recently proposed that generates fake data using
GANs whose parameter weights are kept fixed. The trainable
parameters are then passed through GGL as input. The GGL
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method then employs the Covariance Matrix Adaptation
Evolution Strategy [13] to reduce the similarity between
the private data and the GAN generated data. Some of the
aforementioned methods have been proposed in the context
of 5G/6G and vehicular communication networks, however,
they are limited to the design of attack methods only.
In recent years, many studies have tried to develop an
efficient method to propose defense against inversion
attacks to improve model security. These methods
include secure multiparty computation, homomorphic
encryption, differential privacy, data sanitization, and
gradient perturbation [4]. The study in [7] proposed the
addition of Laplacian and Gaussian noise to prevent the
model inversion. The experiments revealed that the model
inversion attack failed when the noise variance exceeds 10−2,
however it also affects the model performance. In [25] a
data perturbation method was proposed to protect the model
from model inversion attacks that avoid compromising
the model’s performance. Similarly to the aforementioned
approach, a differential privacy-based method was proposed
in [17], which adds decay noise to the training data of each
client. Although the noise injection helps in preventing
the model inversion, it significantly degrades the model’s
inference performance as well. In addition, a computational
cost overhead is added as the noise is injected into all
training data from the client. Wang et al. [26] proposed
a method Outpost that also depends on the addition of
noise to the gradients in order to cope with model inversion
attacks. The method uses Fisher Information Matrix to
determine the level of noise to be added to the gradients
at each iteration. The method suggests that it achieves
a better trade-off in terms of resiliency to attacks and
computational overhead. The method in [12] added an
intentional adversarial attack at the client side to train the
model. Subsequently, the method uses the proximal gradient
layer to recover from the adversarial attack on the server
side to improve the inference performance. Meanwhile, the
attacker was unable to recreate the training data. However,
the computational cost of training the PGSL is high in
comparison to existing methods. In addition, PGSL is
limited in terms of scalability, making it unsuitable for
5G/6G systems. The method in [16] proposed a zero-trust
based self-supervised learning paradigm and generative AI
methods to detect whether the sample belonged to training
data distribution or not. During the downstream task, the
method was trained with shared weights to detect poisoned
or clean samples. The method provides an adequate defense
against model poisoning, but is not adequate for model
inversion attacks. Recently, a study [20] proposed the
zero-trust method to defend against model inversion by
training shadow models with joint loss function with the
main classification model. The shadow models can either
be used to attack the trained models or can be used to
provide defense against model inversion. However, the
computational cost for training such models is quite high,

FIGURE 3. Depicting the impact of BELANet on model inversion. {Le f t} A
smart car enabled with facial recognition feed the data to the training model
and sends it to the roadside unit, where the malicious attacker reconstructs
the data from the shared gradient. {Right} A smart car enabled with facial
recognition feed the data to the training model with Block Encryption Layer.
The attacker is unable to reconstruct the data from the gradients.

which makes it unrealizable for time-sensitive applications.

We also provide a comparative analysis between the
proposed work and the existing defense methods in Table
1. Table 1 differentiates the proposed work from existing
ones in terms of the method used, flexibility (the ability of
the defense method to be applicable to different network
architectures and domains), setting (the ability of the defense
method to handle independent and identically distributed
(IID) data and non-IID data), theoretical guarantee, and
whether the parameters are trainable. It can be seen that
the proposed method, along with Soteria and ZETA, are
the only ones that propose the parameters to be trainable.
To the best of our knowledge, this is the first work to
provide a block encryption layer module based on zero-trust
principles for defense against model inversion attacks using
trainable encryption parameters customized for each user
in FL settings, which is feasible for deployment in 5G/6G
communication networks.

IV. Proposed Method
An overview of the BELANet module is shown in Figure
3. In this section, we provide the details regarding the
correlation of gradient information with the input and asso-
ciated labels during the backpropagation process. We further
show that the reconstruction of data from model inversion
can only be performed if the latent spaces are aligned.
Using the above assumptions, we provide details regarding
the proposed transformational block encryptor module to
cope with model inversion attack. Lastly, we present details
regarding the integration of the proposed module in FL
settings.

A. GRADIENT CORRELATION
The model inversion attack assumes that the data can be
reconstructed using gradients. Several studies including [6]
have established the fact that the information regarding the
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TABLE 1. A comparison of Existing defense approaches with the proposed one. The ✓,×,� refers to the available, not available, and partially available

respectively.

Approach Defense Method Flexibility Setting Theoretical Guarantee Trainable
IDLG [7] Input Perturbation ✓ × ✓ ×

Chamikara et al. [25] Input Perturbation × × � ×

Wei et al. [17] Input Perturbation × × � ×

Outpost [26]
Input Perturbation
Fisher Information Matrix

✓ ✓ � ✓

Soteria [10] Input Perturbation � � ✓ ✓

PGSL [12] Adversarial Attack × � � ×

ZETA [24] Shadow Models × � � ✓

Sun et al. [38] Parameter Encryption ✓ � � ×

Kim and Park [39]
Masking, Clipping,
Pruning and Noise

× � � ×

Proposed
BN Parameter Encryption,
Zero-Trust Principles

✓ ✓ ✓ ✓

input data is embedded in the derivative of the loss value
obtained from the output of the fully connected (FC) layer.
Similarly, the chain rule can be used on the gradient of other
layers to independently compute the input of the FC layer.
Let us consider that the input and its corresponding label
are denoted by X, y, respectively. Considering X, y, we can
compute the derivative of the function F, also known as the
gradient, using the Jacobian matrix as follows.

∂F
∂X
=


∂F1
∂X1

· · ·
∂F1
∂Xp

...
. . .

...
∂Fq
∂X1

· · ·
∂Fq
∂Xp

 (1)

where p and q represent the length of the vectors. The chain
rule is then applied to the gradients, i.e., G(F(X)) suggesting
that the inner function is differentiable with respect to X
and the outer function is continuous and differentiable,
respectively. The chain rule can be mathematically expressed
as ∂G

∂X =
∂G
∂F
∂F
∂X . In order to show the correlation between

the gradients, input and associated labels, let us assume a
linear regression example having a mean square error loss
function that is represented as Loss(X, y) =

∑
(ϑ·X−y)2

Q , where
ϑ represents weights and Q refers to the number of samples.
The derivative of Loss(X, y) with respect to ϑ can then be
computed as follows.

∂Loss
∂ϑ

=
∂

∂ϑ

∑
q(ϑ · Xq − yq)2

Q

=
1
Q

∑
q

2 · (ϑ · Xq − yq) ·
∂(ϑ · Xq − yq)

∂ϑ

=

∑
q 2 · Xq · (ŷ − yq)

Q

(2)

The above derivation provides the basis that the input data, its
associated label, and the gradients are positively correlated.
Thus, we can conclude that the model inversion can be used
to reconstruct the input data.
The above finding remains valid for a classification task

with a non-linear neural network, as we use the same
methods for gradient computation to reduce the error. Let
us consider a neural network with an activation layer, two
FC layers, and one softmax layer. The model considering the
forward propagation and cross entropy loss function can be
mathematically described as Loss = CE(ŷ, y). The notation
ŷ describes the predicted output which can be written as
ŷ = so f tmax(z). Here z is the function of input feature map
f map, parameter weights ρ ∈ RQc×Qhn , and bias bz ∈ R

Qc×1,
which can be expressed as z = f map ·ρ+bz. The feature map
is derived from the rectified linear unit (ReLU) activation
function, i.e. f map = ReLU(v), where v is the function of
input data X, parameter weights ϑ ∈ RQhn×QX , and bias bv ∈

RQhn×1. The notations Qc and Qhn correspond to the number
of classes and number of hidden nodes, respectively. The
derivative of the ReLU function ∂ReLU(X)

∂X = sgn(ReLU(X)),
which suggests that it would yield 1 if X > 0 and 0,
otherwise. Considering that the derivative of loss function
yields (ŷ − y)T , the output layer gradient using chain rule
can be mathematically written as

∂Loss
∂bz

= (ŷ − y)T (3)

∂Loss
∂ρ

= f map · (ŷ − y)T (4)

The above derivation of the gradients are compliant with
the observations in studies [7], [8]. Equation 3 shows that
the gradients provide the information regarding labels while
Equation 4 shows that the gradients embed the information
regarding the feature maps, which can be used to recreate
the input in FL settings as follows

f map =

X · ϑ + bv, if X · ϑ + bv > 0
0, otherwise

(5)
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∂Loss
∂ϑ

=
∂Loss
∂z

∂z
∂ f map

∂ f map
∂v

∂v
∂ϑ

= (ŷ − y)T · ρ · sgn( f map) · X

=

(ŷ − y)T · ρ · X, if f map > 0
0, otherwise

(6)

∂Loss
∂bv

=
∂Loss
∂z

∂z
∂ f map

∂ f map
∂v

∂v
∂bv

= (ŷ − y)T · ρ · sgn( f map)

=

(ŷ − y)T · ρ, if f map > 0
0, otherwise

(7)

where ρ = ρ′−ζ(ŷ−y)T · f map represents the current iteration
weight while the ρ′ refers to the previous iterations’ weight,
and ζ represents the learning rate. The above derivation
is based on the assumption that bv and ϑ are known in
the FL system, which is typically the case. Considering
the above derivation, it can simply be deduced that there
is a positive correlation between the gradients, input, and
associated labels, and also the model inversion from each
layer can help in reconstructing X.
A convolutional neural network (CNN) architecture consists
of two changes compared to the one described above. The
first is the cross-multiplication, i.e., v = ϑ ⊗ X + bv, and
the addition of a flatten layer after the activation function,
i.e., f map′ = f latten( f map). It can be deduced from the
above derivations that the gradients will still be positively
correlated with the data and associated labels. Therefore,
it can be deduced that the data can be reconstructed from
the model inversion attacks. The assumptions concerning
the correlation of gradients with the data and labels are in
accordance with some of the existing works [7], [8], which
also suggests that the quality of reconstruction increases with
the inference accuracy.
Recently, many studies suggest to employ a batch normal-
ization layer in convolutional neural networks to address
the problem of vanishing gradients which occurs when the
values from the input are saturated concerning the activation
function [7], [8]. Values are normalized with normal distri-
bution using the batch normalization layer, which helps to
cope with the vanishing gradients problem. We want to show
that the gradients are positively correlated with the data and
associated labels, even when the batch normalization layer
is employed in the CNN. Let us represent BN = {v1 · · · vM}

a minibatch, where M represents the size of the minibatch.
The BN layer is defined by the mean µBN =

1
M
∑

m vm and
variance σ2

BN =
1
M
∑

m(vm − µBN)2. We can define the output
of the BN function as BN = β+ v̂ · γ, where β and γ are the
hyperparameters associated with the BN layer. The notation
v̂ is defined as v−µBN√

σ2
BN+ϵ

, where ϵ is added to avoid getting

∞ as result. Based on the BN layer computation, we can
use the same network that we defined for the deep neural
network and adding further the BN layer and the flatten layer
for representing a convolutional neural network with batch

normalization layer. The BN layer will be added after the first
convolutional layer, i.e. BN = Fβ,γ(v), and the flatten layer
will be added after the f map layer, which is represented
as f map′ = f latten( f map). The minor changes to the deep
neural network can be made as pointed out above for the
CNN description. We can then compute the derivative of the
loss function with respect to the hyperparameters of the BN
layer as follows

∂Loss
∂β

=
∂Loss
∂BN

∂BN
∂β
= ρ · sign( f map) · (ŷ − y) (8)

∂Loss
∂γ

=
∂Loss
∂BN

∂BN
∂γ
= ρ · sign( f map) · (ŷ − y) · v̂ (9)

The aforementioned equations indicate that the gradients
from the BN layer are positively correlated with the input and
associated labels. However, we need to verify if the gradient
of the network is positively correlated with the data and
associated labels. To do so, we must consider the input of the
BN layer to compute the derivative of the loss function, i.e.
∂Loss
∂v . In order to apply the chain rule for computing ∂Loss

∂v ,
we need to determine ∂Loss

∂µBN
, ∂Loss
∂σ2

BN
, and ∂Loss

∂v̂ . We derive the
aforementioned derivative functions as follows
∂Loss
∂µBN

=
∂Loss
∂v̂

∂v̂
∂µBN

+
∂Loss
∂σ2

BN

∂σ2
BN

∂µBN

=
∂Loss
∂σ2

BN

·
−2(v − µBN)

M
+
∂Loss
∂v̂

−1√
σ2

BN + ϵ

(10)

where ∂Loss
∂σ2

BN
and ∂Loss

∂v̂ are given as

∂Loss
∂σ2

BN

=
∂Loss
∂BN

∂BN
∂v̂

∂v̂
∂σ2

BN

=
−1
2
∂Loss
∂v̂

· (σ2
BN + ϵ)

− 3
2 · (v − µBN)

(11)

∂Loss
∂v̂

=
∂Loss
∂BN

∂BN
∂v̂
= γ · ρ · sgn( f map) · (ŷ − y) (12)

The derivation of loss function with respect to the input can
be then be computed as follows

∂Loss
∂v

=
∂Loss
∂µBN

∂µBN

∂v
+
∂Loss
∂σ2

BN

∂σ2
BN

∂v
+
∂Loss
∂v̂
∂v̂
∂v

=
∂Loss
∂µBN

·
1
M
+
∂Loss
∂σ2

BN

·
2(v − µBN)

M

+
∂Loss
∂v̂

·
1√
σ2

BN + ϵ

(13)

When considering a FL system, it is assumed that the
gradient for each layer are available. These gradients can be
accessed by a malicious server to recreate the data, accord-
ingly. For instance, whether it is a deep neural network or a
shallow learning method, Equation 9 holds the information
related to the data as well as BN’s hyperparameter that is
correlated to the feature maps extracted from input data. The
correlation of the γ with the feature map can be observed in
the Equations 10 and 11, respectively. We also show that the
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information regarding the input data is available in the output
shown in Equation 13, which can be used to initiate an attack
using model inversions. From the above computations, we
can conclude that for any CNN, if the gradients for BN layer,
convolutional layer, and fully connected layer, are known to
the attacker, it is possible for the attacker to backtrack the
gradients for recreating the data and associated labels.

B. PROPOSED MODEL INVERSION DEFENSE
We propose a block encryption layer network (BELANet)
that introduces the BELA module, specifically with the batch
normalization layer, which uses a trainable encryption layer
to prevent model inversion in FL settings. We show that
our proposal is simple yet effective and does not hinder
the training process since the module is twice differentiable,
which is one of the requirements to train the convolu-
tional neural network. We consider the same convolutional
neural network, i.e., an input layer, a convolutional layer
(v = ϑ ⊗ X + bv), the feature maps of the convolutional
layer ( f map = α · v + λ), the activation function that
extracts the feature map (Act = ReLU( f map)), flatten layer
(Act′ = f latten(Act)), FC layer (FC = ρ·Act′+bFC), softmax
layer (ŷ = so f tmax(FC)), and the cross entropy loss function
(Loss = CE(ŷ, y)). We add our BELA module before the
extraction of feature maps from the first convolutional layer.
The hyperparameters α and λ are defined as Wα · RS + bα
and Wλ · RS + bλ, respectively. The notation RS refers to
the random sequence, Wα and Wλ are the trainable weights,
while bα and bλ are their respective biases. The partial
derivatives with respect to α and λ for the loss function are
given below.

∂Loss
∂λ

= (ŷ − y) · RS · rho · sgn(Act) (14)

∂Loss
∂α

= (ŷ − y) · RS · v̂ · ρ · sgn(Act) (15)

Since the proposed method is based on zero-trust princi-
ple, the RS and associated weights with the BELA module
are to be kept private, i.e. not shared with the server, which
would help the model to defend itself against model inversion
attacks. To prove its efficacy, we compute the gradient of the
loss with respect to v̂, which results in
∂Loss
∂v̂

=
∂Loss
∂ f map

∂ f map
∂v̂

=
∂Loss
∂ f map

· (α · RS + bα) · ρ · sgn( f map) · (ŷ − y)

(16)
As the RS and associated weights are private, the parame-

ters α and λ cannot be computed and subsequently, equations
10, 11, and 13 cannot be solved. However, equation 12 can
be solved, but the attacker would be unable to determine
f map = α · v + λ, as the parameters cannot be determined
through gradients. Based on the above computations, we
show that by employing the BELA module in the CNN, the
attacker would be unable to get the feature maps, thus, by
extension, cannot recreate the private data.

C. BELA MODULE
In this work, we propose the BELA module. The block is
assumed to be implementable in any CNN architecture. We
have two trainable parameters in the BELA module, i.e., α
and λ. Both parameters yield a dimension size similar to the
number of channels in the convolutional layer denoted by
D. The BELA module is placed as a camouflage to the BN
layer; therefore, the two aforementioned parameters mimic
the shift and scale transformational changes. The encryption
in the BELA module is defined by the random generated
sequence (RS) having length K, therefore, the weight of
the BELA module yields the dimension RK×D. Based on
the aforementioned information, we can define the trainable
parameters as α = Wα · RS + bα and λ = Wλ · RS + bλ.
Subsequently, the embedding function Emb for the input and
BELA module can be defined as

Emb(X,RS ) = α · (ϑ ⊗ X) + λ (17)

As the proposed BELA module is designed for the FL
settings, it is therefore necessary to explain its integration.
In this regard, we provide the steps for local training and
model aggregation as follows.

• The server initializes the BELA module and distributes
the models to the client.

• Each client generates its own RS and trains the network
locally.

• The server aggregates the models from the client while
excluding the BELA module gradients.

• The global model is then sent to the clients.
• The client updates the global model locally while

freezing the BELA module.

The process continues in a similar fashion while looping
through the aforementioned steps. It should be noted that
during the whole process the RS and the parameters are
secured with the client locally, i.e. they never leave the
owner. Therefore, the proposed BELA module prevents the
gradients from model inversion attacks.

V. EXPERIMENTAL SETUP AND ANALYSIS
This section presents details on the datasets used to evaluate
the efficacy of the proposed approach. We present two sets
of experiments. The first set employs various CNN network
architectures to demonstrate that the BELA module can be
integrated without compromising performance. Furthermore,
the first set of experiments also provides an experimental
analysis of the defense against model inversion attacks by
applying DLG [5], GGL [13], and SPIN [9].
The second set of experiments compares the proposed
BELANet with existing defense strategies such as Soteria
[10], GradDefense [11], and Outpost [26], against DLG and
csDLG [6] attack methods. For the second experiment, we
used the PLATO1 framework to evaluate the efficacy of the
proposed approach against gradient leakage attacks in FL

1https://github.com/TL-System/plato
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TABLE 2. The accuracies are reported on CIFAR 10, CIFAR 100, and MNIST trained with VGG-16, ResNet-20, ResNet-34, and LeNet architecture. The best results

are highlighted with bold and underline face while the second-best results are highlighted with bold and Italic face.

Dataset CIFAR 10 CIFAR 100 MNIST

Model VGG-16 ResNet-20 ResNet-34 VGG-16 ResNet-20 ResNet-34 LeNet

BELA (224 * 224) (32 * 32) (224 * 224) (224 * 224) (32 * 32) (224 * 224) (32 * 32)

Centralized Learning × 88.62 90.34 91.15 62.92 66.70 72.91 97.63
Centralized Learning ✓ 90.68 89.05 93.12 73.22 66.87 77.90 97.60
Federated Learning × 87.27 90.37 88.50 60.30 57.91 67.59 97.25

Federated Learning ✓ 92.27 87.29 92.66 72.61 60.17 75.91 97.19

settings. For Soteria, GradDefense, and Outpost, we use the
same settings as proposed in their studies. We adopt the
attack settings as proposed in [26], where the attack methods
are trained for 3K iterations using the L-BFGS optimizer.

A. DATASETS
For the evaluation of the proposed work using first set
of experiments, we employ five benchmark datasets,
i.e. CIFAR-10 [27], CIFAR-100 [27], MNIST [28], and
ILSVRC [29]. For the second set of experiments, we
evaluate the proposed approach and perform a comparative
analysis on the CIFAR-10 [27] and EMNIST [40], datasets.
The reason for choosing the previously mentioned datasets
is twofold. First, these datasets have been widely adopted in
similar studies. Second, their varying complexity and image
resolutions provide a sense of generalization and promote
wider adoption of the proposed method. We evaluate the
experimental results using the Similarity Index Measure
(SSIM) [30], the Learned Perceptual Image Patch Similarity
(LPIPS) [31], the Peak Signal-to-Noise Ratio (PSNR), and
the Mean Square Error (MSE). In order to directly match the
true data and the reconstructed data, we set the batch size
to 1. The metrics LPIPS and MSE measure the similarity
between two patches and the pixel-wise L2 difference
between the true and reconstructed data, respectively. A
lower value for both of them indicates that the similarity
and performance are high. SSIM measures the structural
similarity between the true and reconstructed image, while
PSNR assesses the quality of the reconstructed data against
the true data using the logarithmic scale. We employ
ResNet34 [32] and VGG16 [33] to measure the LPIPS
score. The RS length is set to 1024. The implementation
of the proposed method is performed using the PyTorch
framework [34]. We employ ResNet20 for CIFAR100,
and ResNet34 on ILSVRC2012. The output dimension of
ResNet20 and ResNet34 is 16 and 64, respectively.

B. PERFORMANCE ASSESSMENT ON ACCURACY
We assess the performance with respect to accuracy using
four scenarios. The first is with a centralized training strategy
without using the BELA module. The second is with a
centralized training strategy with the BELA module. The
third is the FL straining strategy without the BELA module,

and the last is the FL strategy with the BELA module. For the
aggregation process, we employed the Federated Averaging
(FedAvg) method. We employ ResNet [32], VGGNet [33],
and LeNet [35], as our base architectures to assess per-
formance against the classification task. We experimented
with seven configurations and four scenarios, while training
a total of 28 CNN models to provide the aforementioned
performance assessment. We report the experimental results
in Table 1.
We have observed that the centralized learning scheme
achieves the best results for each of the datasets. However, if
the centralized learning is equipped with the BELA module,
it achieves the best results on CIFAR 10 and CIFAR 100
while achieving the second best result on MNIST. We have
also observed that the FL training scheme equipped with the
BELA module achieves the second best result on CIFAR 10
and CIFAR 100 datasets. However, on MNIST, the difference
in accuracy between the best results and FL scheme with
BELA module is 0.44%. The results show that the BELA
module does not decay the performance in terms of accuracy
in the recognition tasks. The improvement with BELA in the
FL scheme in CIFAR 10 was observed when using VGG-16
and ResNet-34 to be 5. 0%, 4. 2%, respectively. Similarly,
improvement with BELA was observed in the FL scheme in
CIFAR 100 when using VGG-16, ResNet-20, and ResNet-
34 as 12. 31%, 2. 26%, and 8. 32%, respectively. The only
time performance was degraded with the BELA module was
in CIFAR 10 when trained with ResNet-20. The decline in
accuracy was noted to be 3.08%. Overall, it can be said
that the BELA module contributes to the improvement in
performance, especially when the resolution is increased to
224*244, accordingly.
Table 1 provides an average accuracy computed from all the
local clients. In the BELA module, every client creates a
personalized model when trained with their own unique RS
and BELA module parameters. In this regard, we select an
optimal model from each client from over all training rounds
to show the accuracy. We used a total of 3 clients in our
experiment. Furthermore, we also add the accuracy results
from a model that is initialized with random weights to the
BELA module along with a randomly generated sequence.
The results of this experiment are shown in Table 2. The
results show that the LeNet on the MNIST dataset yields
the largest performance gap of approximately 87% while the
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TABLE 3. Client-wise reported accuracies for FL scheme with BELA module

Dataset CIFAR 10 CIFAR 100 MNIST

Model VGG-16 ResNet-20 ResNet-34 VGG-16 ResNet-20 ResNet-34 LeNet

Random 92.46 78.45 91.27 71.08 27.97 68.57 10.66

Clients
Client 1 92.40 88.26 92.23 71.74 61.92 76.30 97.43

Client 2 92.78 86.42 92.63 72.57 61.28 76.17 97.45

Client 3 93.27 87.83 92.78 72.61 61.71 76.28 97.21

FIGURE 4. Qualitative comparison of Model Inversion Attack for Image Reconstruction with and without BELA module on MNIST, CIFAR-10, and CIFAR-100 with
varying network architectures.

lowest performance gap of 0. 81% was observed on VGG-
16 trained using CIFAR 10. We believe that the largest gap
in LeNet is directly proportional to the size of the network
as well as the number of parameters, as the LeNet is the
smallest network amongst all.

C. DEFENSE AGAINST MODEL INVERSION ATTACKS
As mentioned earlier, we employed three state-of-the-art
attack methods, i.e., DLG [5], GGL [13], and SPIN [9]
to evaluate the efficacy of the proposed BELA module for
the defense mechanism. The reason for choosing the afore-
mentioned methods is their strong capability of performing
model inversion attacks as well as their implementation,
which is publicly available. The resolution and batch size
of 32 × 32 and 1 were used for CIFAR-100, CIFAR-10,
and MNIST when trained with LeNet and ResNet20. For
ResNet34, we considered the resolution of 256 × 256 to
comply with the SPIN method. The qualitative results against
the aforementioned model inversion attacks and for the
proposed BELA module are shown in Fig. 4.
The results clearly demonstrate that DLG and SPIN, both

are capable of reconstructing the data on MNIST, CIFAR-10,
and CIFAR-100. It is also observed that the reconstruction
is better with larger-resolution data compared to smaller-
resolution data. The results with the BELA module are also
shown in Fig. 4. The DLG method mainly targets the feature
space, but due to the use of the BELA module, the DLG
cannot reconstruct the data on either of the datasets with
varying architectures. We can see some patterns emerging
when using SPIN with larger resolution data; however,
as will be shown in the quantitative analysis, the pattern
emergence does not help in data reconstruction, accordingly.
We also present the quantitative analysis for the model
inversion attacks with and without the BELA module in
Table 3. We evaluated the efficacy of the proposed method
with respect to SSIM, LPIPS, PSNR, and MSE. The value of
the evaluation metrics are computed between the true data
and the reconstructed data. The results provide consistent
traits when using different methods, datasets, or network ar-
chitectures. These traits include lower similarity when using
the BELA module, lower LPIPS values, lower PSNR, and
higher MSE. For instance, the MSE when using DLG using
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TABLE 4. Comparative Analysis of the defense against model inversion attacks using DLG, SPIN and GGL with and without BELA module. The metric computation

is carried out using the true and reconstructed data.

Method Dataset Model
SSIM LPIPS-A LPIPS-V PSNR MSE

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

DLG

MNIST

LeNet
(32*32)

0.719 0.002 0.11 0.53 0.25 0.67 32.65 25.49 50.04 143.76

DLG
ResNet-20

(32*32)
0.996 0.007 0.01 0.32 0.06 0.62 46.95 27.78 1.54 102.34

SPIN
LeNet

(32*32)
0.998 0.107 0.01 0.43 0.01 0.68 51.94 27.56 0.34 104.08

SPIN
ResNet-20

(32*32)
0.996 0.008 0.01 0.35 0.03 0.63 47.05 27.98 1.59 101.97

DLG

CIFAR-10

LeNet
(32*32)

0.718 0.001 0.06 0.29 0.16 0.52 40.87 27.75 30.14 99.39

DLG
ResNet-20

(32*32)
0.964 0.046 0.01 0.27 0.02 0.47 40.38 29.14 9.43 85.88

DLG
ResNet-34
(256*256)

0.946 0.139 0.05 0.61 0.03 0.49 37.94 28.41 14.55 71.59

SPIN
LeNet

(32*32)
1.00 0.100 0.01 0.25 0.01 0.48 48.52 28.29 0.75 91.78

SPIN
ResNet-20

(32*32)
0.982 0.049 0.01 0.23 0.01 0.42 39.85 27.86 8.42 86.12

SPIN
ResNet-34
(256*256)

0.953 0.165 0.02 0.52 0.02 0.45 37.56 29.41 15.55 71.59

DLG

CIFAR-100

LeNet
(32*32)

0.858 0.007 0.05 0.35 0.07 0.47 39.09 27.85 24.44 101.30

DLG
ResNet-20

(32*32)
0.998 0.082 0.02 0.25 0.02 0.45 47.52 27.29 1.78 100.65

DLG
ResNet-34
(256*256)

0.913 0.154 0.04 0.51 0.05 0.51 37.28 28.09 33.55 84.59

SPIN
LeNet

(32*32)
0.998 0.084 0.02 0.27 0.02 0.48 47.52 27.65 1.03 100.12

SPIN
ResNet-20

(32*32)
0.962 0.031 0.02 0.23 0.02 0.44 37.85 27.86 20.42 98.79

SPIN
ResNet-34
(256*256)

0.915 0.157 0.03 0.54 0.04 0.47 33.56 28.13 34.55 84.59

DLG
ILSVRC

ResNet-34
(256*256)

0.928 0.268 0.04 0.45 0.06 0.43 37.97 29.36 13.33 63.36

SPIN
ResNet-34
(256*256)

0.931 0.272 0.03 0.47 0.05 0.39 38.22 29.36 13.87 63.29

GGL
ResNet-34
(256*256)

0.229 0.174 0.38 0.45 0.39 0.46 29.79 28.22 63.22 86.59

ResNet-20 without BELA module is 1.54, however with the
BELA module, the MSE is increased to 102.34, therefore
the percentage difference yields around 194%. Similarly to
the DLG method, SPIN and GGL yield similar results for
all datasets and network architectures. From the results, it
was observed that the BELA module is quite effective with
DLG and SPIN. As the GGL method generates true data with
respect to structure and semantics, the similarity results are
better for GGL; however, it can be observed that the GGL
method’s reconstruction capability is still restricted when
using the BELA module. From the aforementioned results,

we can deduce that the BELA module is quite capable of
providing defense against model inversion attacks.

D. Comparison with existing Defense methods
We evaluate our proposed defense method and compare it
with existing approaches using the CIFAR-10 and EMNIST
datasets. Specifically, we compare our approach with the
Soteria, GradDefense, and Outpost methods. Our evaluation
is conducted with only one client participating, and the attack
is carried out in the first round of training. To make the attack
stronger, we did not apply the learning rate scheduler, weight
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TABLE 5. Characteristics of employed scenarios for the validation of defense

strategies.

Scenario Attack Dataset BatchSize Samples Epoch

1
DLG

csDLG
EMNIST 1 1 1

2
DLG

csDLG
EMNIST 1 2 1

3
DLG

csDLG
CIFAR-10 1 1 1

4
DLG

csDLG
CIFAR-10 16 16 1

decay, or momentum in the SGD optimizer. The results
presented are the average of 10 trials with the worst defense
results, respectively. This evaluation is in line with existing
methods [26]. We evaluated our method and compared it
with the existing one in four scenarios for each attack.
The characteristics of each scenario are defined in Table 5.
We present the results for each scenario using the Soteria,
GradDefense, Outpost, and proposed approaches, measured
by SSIM, LPIPS, and MSE, respectively, in Table 6. Overall,
the csDLG attack method yields better reconstruction results
compared to the DLG method. It can be seen that MSE is
the most inconsistent evaluation metric, in accordance with
[26]. However, the proposed BELA achieves the best and
second-best results in terms of LPIPS and SSIM. The results
demonstrate that BELANet provides the most generalized
defense across all scenarios, datasets, attack methods, and
evaluation metrics.

VI. CONCLUSION
The zero-trust systems are getting popular for providing
defense against variety of attacks in the next-generation
communication systems. FL systems provide data security,
as the data never leave the owner; however, the same
cannot be said for the model parameters. FL systems can
benefit from zero-trust systems by implementing a defense
mechanism which does not trust the server by keeping some
of the parameters private in order to restrain the attacker
from reconstructing data. We propose the Transformational
Block Encryptor (BELA) module in FL setting that is based
on a zero-trust system. The BELA module mimics the BN
layer in the CNN network architecture. The parameters
for the BELA module are optimized during training, while
the parameter values are kept private. Each of the clients
have their own parameters, so even though the attacker get
their hands on any of the client’s parameters, it is difficult
to reconstruct the data from a global model. We provide
theoretical analysis for the model inversion attack using
deep neural networks and convolutional neural networks. We
also provide a detailed analysis on performance assessment
and the defense mechanism against model inversion attacks.
The results prove that the BELA module is quite effective
in providing defense against model inversion attacks in FL

setting while not compromising on the accuracy.

As future research, we plan to test the BELA module
in a Federated Learning-based testbed on communication-
related data, such as channel coding and optimization, to
assess its integrity in vehicular networks. Additionally, we
aim to enhance the BELA module with quantum encryption
to further secure the trained model from model inversion
attacks.
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