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Abstract—The rapid advancements in Large Language Models
(LLMs) and Vision-Language Models (VLMs) have shown great
potential in medical diagnostics, particularly in radiology, where
datasets such as X-rays are paired with human-generated diag-
nostic reports. However, a significant research gap exists in the
neuroimaging field, especially for conditions such as Alzheimer’s
disease, due to the lack of comprehensive diagnostic reports that
can be utilized for model fine-tuning. This paper addresses this
gap by generating synthetic diagnostic reports using GPT-4o-mini
on structured data from the OASIS-4 dataset, which comprises
663 patients. Using the synthetic reports as ground truth for
training and validation, we then generated neurological reports
directly from the images in the dataset leveraging the pre-trained
BiomedCLIP and T5 models. Our proposed method achieved
a BLEU-4 score of 0.1827, ROUGE-L score of 0.3719, and
METEOR score of 0.4163, revealing its potential in generating
clinically relevant and accurate diagnostic reports.

Index Terms—LLMs, VLMs, Healthcare, Neuroimaging, MRI

I. INTRODUCTION

Degenerative diseases are conditions that gradually damage
and destroy parts of the cells of the nervous system, par-
ticularly in areas such as the brain. These diseases typically
develop slowly, and the effects and symptoms generally mani-
fest in the later stages. Among the most common degenerative
diseases is Alzheimer’s, which is estimated to currently affect
6.9 million Americans aged 65 or older, and remains the
fifth-leading cause of death [1]. Alzheimer’s disease (AD)
develops in different stages, and is the most common cause of
dementia, accounting for 60-80% of all cases [2]. Currently,
there is no definitive cure; however, early diagnosis of this
condition can lead to a slowdown in its progression and an
improvement in the patient’s quality of life. To meet the
need for fast and accurate diagnoses, there is an increasing
reliance on automatic diagnostic systems based on machine
learning methods. Diagnostic reports provide essential textual
descriptions and are important for the early diagnosis and
treatment of the disease. The interpretation of these reports
can indeed influence patient outcomes. However, interpreting
biomedical images to generate diagnostic reports can take a
considerable amount of time, even for the most experienced
clinicians [1], [3], [4].

Deep learning methods, particularly those based on Con-
volutional Neural Networks (CNNs) and transformer archi-

tectures, have shown great potential in the detection of
Alzheimer’s disease, thanks to their ability to learn complex
patterns and representations from large-scale datasets [5].
However, the use of CNNs presents several limitations, such
as the inability to capture long-term dependencies and the
absence of an attention mechanism. Furthermore, these models
are frequently criticized for their lack of interpretability. The
hierarchical and non-linear nature of their processing can make
it challenging to understand how they arrive at a particular
decision [6]. Additionally, one of the main challenges is the
efficient integration of medical images with structured data.
Despite the potential benefits of combining these data, their
integration can affect the quality of classification performance.
To address these limitations, recent research has explored the
potential of more advanced language models and multimodal
approaches. These models can process and integrate various
data types, showing promising results in terms of accuracy
and interpretability for Alzheimer’s disease [7]. Transformers
leverage their attention mechanisms to capture global contex-
tual information, which can make them more interpretable in
decision-making processes particularly for tasks that require
understanding long-range dependencies or a comprehensive
view of the context [8]–[10].

To the best of our knowledge, the generation of synthetic
diagnostic reports for Alzheimer’s disease using multimodal
approaches has not been previously explored in the literature.
Specifically, our research question in this work is to determine
how synthetic diagnostic reports can bridge the gap between
existing neuroimaging datasets and the training requirements
of Visual Language Models (VLMs) and Large Language
Models (LLMs) for Alzheimer’s diagnosis. With this in mind,
the main contributions of our work are as follows:

• We generate synthetic diagnostic reports to address the
lack of textual data in neuroimaging, facilitating the fine-
tuning of multimodal models for Alzheimer’s diagnosis;

• We propose a framework using BiomedCLIP and T5 to
combine visual features from MR images with clinical
descriptions, extending multimodal model applications
to neuroimaging datasets with a particular focus on the
OASIS;

• We integrate MR images and clinical data to analyze both



visual and non-visual information, capturing relationships
between brain morphology and cognitive decline to im-
prove diagnostic accuracy;

• Finally, we evaluate the quality of the generated reports
using BLEU, ROUGE, and METEOR metrics on the
OASIS-4 dataset, using synthetic reports as ground truth.

The structure of the paper is as follows. Section II provides
an overview of the recent use of LLMs and VLMs for
generating diagnostic reports based on biomedical images,
emphasizing the challenges in neuroimages. The OASIS co-
horts are presented in Section III, with a particular focus on
the main cohort: OASIS-4. Section IV provides an overview
of the models, techniques, and overall approach used in the
study. Section V presents the results obtained from the models,
analyzing their performance and the quality of the generated
reports, while highlighting strengths and areas for improve-
ment. Finally, Section VI concludes the study, discusses the
model’s current limitations, and outlines some directions for
future research.

II. RELATED WORK

A. Current Advancements in LLMs and VLMs
LLMs and VLMs, trained on vast datasets, have recently

shown incredible performance in diagnostic report generation,
significantly enhancing accuracy and consistency [7], [11]. The
development of foundation models has been crucial, impacting
various applications in language processing and computer vi-
sion. Foundation models such as CLIP (Contrastive Language-
Image Pretraining) and PaLM are particularly notable for their
ability to be adapted to various tasks without requiring signifi-
cant modifications to their parameters [4]. These models utilize
enormous amounts of data and computational resources during
training; this enables them to generalize effectively across
various domains. The integration of multimodal data, such as
text and images, has been particularly effective, allowing these
models to generate coherent text across different modalities.
For example, models like CLIP create visual representations
associated with linguistic descriptions, making it possible to
perform complex image-text alignment tasks [12].

In the biomedical domain, several models that employ these
advancements have been developed. For example, Biomed-
CLIP [13] combines textual and visual information to map
medical images and text into a common representation space.
Based on the CLIP architecture, BiomedCLIP employs two
separate encoders: a PubMedBERT-based textual encoder and
an advanced version of a Vision Transformer (ViT) pretrained
on the PMC-15M dataset, a large collection of 15 million
image-text pairs extracted from scientific articles in PubMed
Central (PMC). This multimodal approach allows Biomed-
CLIP to perform well in the alignment of image-text pairs
specifically in the medical field. In addition, Med-PaLM 2
has shown excellent results in extracting relevant clinical
information and generating detailed medical reports, achieving
86.5% accuracy on the MedQA dataset, a benchmark based
on the USMLE style dataset [4], [11]. Despite these advance-
ments, LLM-based chatbots often generate responses that,

while promising, are not reliable enough for real-world clinical
settings, highlighting the need for further refinement [11]. One
of the most prominent LLMs explored in this study is the
T5 model (Text-to-Text Transfer Transformer) [14], [15]. T5
is a unified framework for natural language processing tasks,
treating every NLP problem as a text-to-text task. It utilizes
a modified encoder-decoder transformer, and its architecture
was trained on the Colossal Clean Crawled Corpus (C4) [16]
dataset using a span corruption objective. In this paper, several
model variants were tested: T5-small (60 million parameters),
T5-base (220 million parameters), and T5-large (770 million
parameters).

In terms of VLM applications, studies have been conducted
on the use of VLMs in biomedical image analysis by integrat-
ing LLMs with Computer-Aided Diagnosis (CAD) networks
for clinical applications. For instance, Wang et al. combined
existing LLMs with CAD networks, demonstrating how these
models can be applied to diagnostic tasks [17]. Similarly, Yan
et al. explored the performance of ChatGPT-4V on simple
medical Visual Question Answering (VQA) tasks. Although
the results are promising, they find it unsuitable for real-world
diagnostic scenarios due to its inability to efficiently handle
complex medical visual tasks [18].

B. Challenges of AI Models in Neuroimaging

To date, the application of these models in the field of
neuroimaging remains underexplored. Neuroimaging data are
characterized by high complexity and variability, making it
challenging to directly transfer the methodologies developed
for other biomedical fields to this domain. Although models
like LLaVA-Med, Biomed-GPT, and Geneformer have been
successfully applied in fields such as radiology, pathology,
and general medical imaging analysis, their use in specialized
areas like Alzheimer’s disease diagnosis has not yet been
thoroughly investigated. For instance, Med-PaLM 2, one of the
leading generalist AI models, has achieved excellent results in
broader biomedical tasks such as MedQA, but its application in
specific domains like Alzheimer’s disease diagnosis remains
unexplored. Therefore, the performance of these models in
such diagnostic contexts could be poor [4], [11], [17].

C. Relevant Datasets

The most commonly used datasets for training Vision-
Language Models (VLMs) in automatic diagnosis and di-
agnostic report generation are MIMIC-CXR, IU-Xray, and
CXR-PRO. These datasets primarily focus on chest radio-
graphic images and include comprehensive textual diagnostic
reports [19]. In the field of Alzheimer’s disease, notable
datasets include the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [20], Open Access Series of Imaging Stud-
ies (OASIS) [21], and Australian Imaging, Biomarkers and
Lifestyle (AIBL) [22]. These datasets contain a significant
amount of multimodal data, such as magnetic resonance imag-
ing, MRI, and positron emission tomography (PET) images,
alongside structured data related to cognitive tests, disease



status evaluations, genetic biomarkers and volumetric seg-
mentations extracted using FreeSurfer [23]. However, unlike
radiology datasets, such as MIMIC-CXR and IU-Xray, these
comprehensive neuroimaging datasets do not include com-
plete diagnostic reports associated with the medical images,
an essential element for fine-tuning VLMs and subsequent
validation. This is precisely one of the main challenges we
aim to address in this work.

In summary, the main differences between our paper and
the related work lie in three aspects. First, we propose the
generation of synthetic diagnostic reports to address the lack
of textual descriptions in neuroimaging datasets, particularly
for the training of advanced language models. Second, our
approach emphasizes the integration of visual transformer and
language transformer models, which enhances the diagnostic
capabilities through a more effective multimodal data fusion.
Finally, we introduce a methodology for selecting relevant
structured data from datasets such as OASIS-4, enabling the
generation of clinically relevant and accurate synthetic reports.

III. OASIS DATASETS

The Open Access Series of Imaging Studies (OASIS)
dataset was selected for its accessibility and the completeness
of the data it contains. Developed through research initiatives
conducted at the Washington University Knight Alzheimer
Disease Research Center, this dataset includes comprehensive
clinical and neuroimaging information and comprises four
cohorts: OASIS-1 and OASIS-2, which mainly contain MR
images and basic demographic information without detailed
structured data. OASIS-3 and OASIS-4, instead, also include
clinical and cognitive assessments, as well as FreeSurfer
segmentations, in addition to MR images [24].

A. OASIS-1

OASIS-1 [24] is a cross-sectional dataset comprising 416
subjects, aged between 18 and 96 years. Each subject un-
derwent 3 to 4 T1-weighted MRI scans, acquired in a single
scanning session. Among these subjects, 100 individuals aged
over 60 have been diagnosed with very mild to moderate
Alzheimer’s disease. A subgroup of 20 patients underwent a
second imaging session within 90 days of the initial visit.
The dataset includes 434 MRI T1w sessions along with
basic clinical and demographic data such as age, gender, and
cognitive status. The images were preprocessed and segmented
using the FreeSurfer software to extract brain volumes.

B. OASIS-2

OASIS-2 [25] is a longitudinal dataset comprising 150 sub-
jects, aged between 60 and 96 years. Each subject underwent
multiple scans in two or more visits, at least one year apart,
for a total of 373 imaging sessions. Among these subjects,
72 remained nondemented throughout the study, 64 were
diagnosed as demented at the initial visit (including 51 with
mild to moderate Alzheimer’s disease), and 14 transitioned
from a nondemented state to a diagnosis of dementia in
subsequent visits. The dataset includes detailed clinical and

cognitive data, such as neuropsychometric and diagnostic
evaluations like Clinical Dementia Rating (CDR) and Mini-
Mental State Examination (MMSE), enabling the monitoring
of disease progression over time.

C. OASIS-3

The OASIS-3 [26] dataset is a retrospective collection of
data from 1379 participants gathered over the course of 30
years. The cohort includes 755 cognitively normal adults and
622 individuals with various degrees of cognitive decline, aged
42 to 95 years.

• Imaging: OASIS-3 contains 2842 MRI sessions with
various sequences, such as T1w, T2w, FLAIR, ASL,
SWI, DTI, and resting-state BOLD. Additionally, there
are 2157 PET sessions, using tracers like PIB, AV45, and
FDG to study brain metabolism and amyloid accumula-
tion;

• Clinical and cognitive data: The clinical evaluations
include standardized measures such as the CDR and
cognitive tests like the MMSE. Genetic data, such as
APOE status, are also included;

• Processing: MR imaging data were processed using the
FreeSurfer software to obtain volumetric segmentations,
including the hippocampus, amygdala, and other brain
regions involved in neurodegenerative diseases [27].

D. OASIS-4

The OASIS-4 [28] dataset includes 663 participants aged
21 to 94 years, evaluated for memory disorders or dementia.
OASIS-4 represents an independent dataset focused on clini-
cal, cognitive, and neuroimaging data.

• Imaging: OASIS-4 includes 676 MRI sessions for struc-
tural brain analysis, but unlike OASIS-3, it does not
include PET sessions;

• Clinical and cognitive data: Clinical evaluations include
neuropsychometric tests and biomarker measurements.
Diagnostic tools such as the CDR and MMSE are also
used in this cohort;

• Processing: The images of the patients in this dataset
have been processed using FreeSurfer to extract volumet-
ric segmentations of areas involved in neurodegenerative
diseases.

The most informative datasets for model training are OASIS-
3 and OASIS-4. In the development of this work, particular
reference will be made to the OASIS-4 dataset, as OASIS-3 is
more suitable for longitudinal studies. The Table I summarizes
the content of the two datasets.

IV. METHODOLOGY

This section illustrates the methodology adopted to address
the research questions. The workflow is organized into three
phases: data preprocessing, model training, and validation. The
process starts with the preprocessing of structured clinical data
and neuroimaging data, followed by the generation of synthetic
reports from these data, which will be used as ground truth



TABLE I
CHARACTERISTICS OF OASIS-3 AND OASIS-4 COHORTS.

Characteristic OASIS-3 OASIS-4

Number of participants 1379 663
Participant age range 42-95 years 21-94 years

Data types Longitudinal, neuroimaging, clinical, cognitive Clinical, neuropsychometric, MRI
MRI sessions 2842 676
PET sessions 2157 None

Focus Aging and Alzheimer’s disease Memory disorders, dementia

for model training and validation. Subsequently, state-of-the-
art VLMs and LLMs are integrated for fine-tuning. Finally, the
generated reports are validated using natural language gener-
ation metrics to ensure clinical relevance and accuracy. Fig. 1
shows the data preparation process that will subsequently be
used by the state-of-the-art VLM BiomedCLIP and the LLM
T5, while Fig. 2 provides a complete overview of the proposed
methodology for model training, validation, and testing.

A. Preprocessing of Structured Data

The structured data from the OASIS-4 dataset required
extensive preprocessing to address missing values and nor-
malize variables. In some cases, patients had incomplete
entries in the structured data, while in others, corresponding
FreeSurfer volumetric measurements were missing. To ensure
data consistency and reliability, only patients with complete
clinical and imaging data, obtained within one year of the MRI
visit, were selected, resulting in a final cohort of 468 patients.
The clinical, neuropsychometric, and imaging datasets were
then merged using the patient ID as a key, with values
aligned according to visit days. Subsequently, files containing
clinical, neuropsychometric, and cognitive scores were used
to create a cohesive dataset for the subsequent generation
of synthetic diagnostic reports. The structured data selected
for preliminary tests includes values such as CDR, Sumbox
(sum of boxes), MMSE, and final diagnosis, providing detailed
clinical information on the cognitive status of patients. The
created dataset also includes volumetric measurements of brain
areas such as the left hippocampus and right hippocampus. The
combination of cognitive, clinical, and anatomical data offers
a comprehensive overview of each patient’s health status,
making it possible to generate accurate synthetic reports.

B. Generation of Synthetic Diagnostic Reports

Since the available neuroimaging datasets do not provide
complete textual reports associated with MR images, it was
necessary to generate synthetic reports to serve as ground
truth for the training and validation of the models. To this
end, the GPT-4o-mini API was used in combination with the
Bio ClinicalBERT model to generate clinically relevant texts.
Bio ClinicalBERT is a variant of the BERT (Bidirectional En-
coder Representations from Transformers) model, trained on
corpora of clinical texts to improve its effectiveness in under-
standing medical domain concepts. In combination with GPT-
4o-mini, which facilitates text generation, Bio ClinicalBERT
enriched the descriptions with relevant clinical details based on

the available structured data [29], [30]. The choice of GPT-4o-
mini as the report generation model was due to a compromise
between the cost of the API usage and the quality of the
synthetic reports generated.

The generation process involves several key steps. First, the
structured data underwent a phase of normalization and feature
extraction. Specifically, predefined ranges were set to catego-
rize clinical variables such as MMSE, CDR, and hippocampal
volumes into qualitative descriptions to ensure consistency
in report generation. Following this preprocessing phase, the
structured data were tokenized using the Bio ClinicalBERT
tokenizer. These tokenized inputs were then passed through
Bio ClinicalBERT to extract relevant features. A specific
prompt was created to guide GPT-4o-mini in generating syn-
thetic texts. The prompt instructed the model to generate
reports of 100-150 words, emphasizing appropriate medical
terminology, with a temperature setting of 0.7 to better mimic
real clinical scenarios. We note that while clinical validation
of the synthetic reports by expert clinicians is crucial for
improving the model’s performance, it is not the key focus
of this paper but will be part of our future work.

C. Preprocessing of T1-Weighted MR Images

The T1-weighted MR images were preprocessed to provide
visual input to the BiomedCLIP model. Preprocessing was
applied to the entire 3D volume of each MRI scan. The
images were initially converted to the RAS (Right, Anterior,
Superior) orientation for standardization. Subsequently, the
intensity values were normalized to fall within the range of 0
to 1 using the 2nd and 98th percentiles to clip intensity values
and reduce outliers [31]. A Gaussian filter with a value of 0.5
was used to reduce noise in the images. This value was chosen
to balance noise reduction with the preservation of relevant
anatomical details. Higher values compromise the definition
of brain structures, while lower values are less effective in
noise reduction. Additionally, a gamma correction with an
exponent of 0.8 was applied to enhance the contrast of the
images. Finally, background noise was removed by setting
intensity values below the 1st percentile threshold to zero,
retaining only the diagnostically significant regions of the
image. After preprocessing, 2D slices were extracted from
the 3D volumes along the axial, coronal, and sagittal planes,
selecting a fixed number of central slices for each orientation
to ensure comprehensive brain representation.



Fig. 1. Data preparation workflow for structured data, MR images, and
segmentation volumes.

D. Training and Validation of the Models

The training process for automatic text report generation
consists of two main phases executed on workstation equipped
with an NVIDIA GeForce RTX 4090 GPU:

• Fine-tuning of the BiomedCLIP model to generate
embeddings from the MRI slices of the patients;

• Fine-tuning of the T5 model to generate textual diagnos-
tic reports based on the numerical embeddings previously
extracted.

1) Fine-Tuning and Validation of the BiomedCLIP Multi-
modal Model: The model was adapted to the OASIS dataset
and synthetic reports through the PEFT (Parameter-Efficient
Fine-Tuning) library [32]. Specifically, the LoRA (Low-Rank
Adaptation) [33] technique was used, which allows for effi-
cient model fine-tuning by modifying only a small portion
of the parameters. Specifically, LoRA was applied to the
model’s q_proj and v_proj modules. The LoRA con-
figurations used for fine-tuning include an adaptation factor
r = 10, a parameter lora alpha = 32, and a dropout value of
lora dropout = 0.3.

For training, three distinct datasets were created using
scikit-learn’s train test split function: a training set (70%),
a validation set (20%), and a test set (10%), generated from
MR images and synthetic reports of the OASIS dataset. The
multiple MRI slices of each subject are associated with the
same synthetic report, allowing the model to learn to associate
various brain regions with the overall medical description. The
multimodal inputs (images and text) are preprocessed using the
BiomedCLIP processor, necessary for tokenizing the reports
and converting the images into tensors. During the training
phase, which was conducted for 100 epochs with a batch size
of 64, the embeddings generated for images and text were
compared using a CosineEmbeddingLoss function. This loss
function is based on cosine similarity and helps the model
learn to align the image and text embeddings. The similarity
target value was set to 1 to maximize the similarity between the
image and text embeddings. An attention-weighted mechanism
is also used to compute the weighted average of embeddings
for each patient, aggregating information obtained from mul-
tiple MRI slices. This process enables the model to learn
multimodal relationships between brain images and textual
reports, giving more importance to slices that are more relevant
to the report content. Model optimization is carried out using

the AdamW algorithm, with an initial learning rate of 1e− 5
and a weight decay of 0.01. Early stopping with a patience of
10 epochs and gradient clipping with a maximum norm of 1.0
were also implemented to prevent overfitting and stabilize the
training. Validation is performed using the same loss function,
and attention-weighted mechanism, calculating the similarity
score between the embeddings for each patient. The learning
rate is dynamically adjusted using the ReduceLROnPlateau
scheduler, which reduces the learning rate when the validation
loss reaches the plateau. Finally, the aggregated embeddings
of images and text are extracted and saved for each patient to
be subsequently used by the T5 model.

2) Fine-Tuning and Validation of the T5 Model: Below is
the procedure for using the large variant of the T5 model. The
methodology was also tested with the small and base variants
by selecting the corresponding model size during the configu-
ration phase. The fine-tuning of the T5 model was performed
using the multimodal embeddings generated by BiomedCLIP
and diagnostic reports. The final objective is to generate
complete clinical reports based on MRI representations and
combined textual information. The optimization process of T5
consists of several phases. To improve the model’s robustness
and generalization, data augmentation techniques were applied
during fine-tuning. Data augmentation is applied to both image
embeddings and text reports, as follows:

• Embedding augmentation: random Gaussian noise
(with a standard deviation of 0.1) is added to the image
embeddings to handle small fluctuations in the input data;

• Text augmentation: 10% of the words in the reports
are replaced with synonyms from the NLTK WordNet
database [34], [35], selected using a random sampling
strategy.

Initially, the embeddings extracted from BiomedCLIP are
combined with the synthetic textual reports of each patient.
Before integration into T5, a projection network was intro-
duced to adapt the dimensionality of the embeddings produced
by BiomedCLIP (512 dimensions) to the dimensions required
by T5 large (1024 dimensions). The projection layer consists
of a linear layer, followed by a LayerNorm layer and a dropout
layer (rate = 0.2) to prevent overfitting and normalize the
projected inputs. The diagnostic reports are tokenized and
encoded with the T5 tokenizer, maintaining a maximum length
of 512 tokens.

During fine-tuning the training data is organized in batches
of 4 samples. To prevent overfitting, early stopping criteria
is applied, terminating the training if no improvement in the
validation loss is observed for 15 consecutive epochs. The
CrossEntropyLoss function is used to compare the reports
generated by the model with the reference reports. For model
optimization, the AdamW algorithm is used with a learning
rate of 1e− 4 and a weight decay of 0.05. The ReduceLROn-
Plateau scheduler is used to dynamically reduce the learning
rate based on validation loss values with a patience of 10
epochs and a factor of 0.5. Additionally, gradient clipping
with a maximum norm of 1.0 is applied to stabilize training.
The report generation phase uses sampling techniques such as



Fig. 2. Overview of the methodology, showing data preprocessing, model fine-tuning, and evaluation phases.

top− k(k = 10) and top− p(p = 0.9) with a temperature of
0.6 to balance diversity and coherence in the generated reports.

E. Testing and Evaluation of the T5 Model

The model performance evaluation was carried out using
natural language generation metrics. Specifically, Bilingual
Evaluation Understudy (BLEU), Metric for Evaluation of
Translation with Explicit Ordering (METEOR), and Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) were
selected [7], [19].

1) BLEU Score: This metric was originally used to evaluate
the quality of machine-generated translations by comparing
them to one or more reference translations. The BLEU score
calculates a precision-based metric by counting the number of
n-grams (continuous sequences of n items) in the generated
text that match any reference translation. In the evaluation of
the reports, precision was calculated for n-grams with values
ranging from 1 to 4 (BLEU-1, BLEU-2, BLEU-3, BLEU-4):

Precision(n) =
# overlapping n-grams

# all n-grams (model-generated)
(1)

The BLEU-n score formula is reported below:

BLEU-n = BP × 1

n
exp

(
n∑

k=1

log (Precision(k))

)
(2)

Where BP refers to the brevity penalty and is calculated as:

BP =

{
1 if c ≥ r

e(1−
r
c ) if c < r

(3)

Where c is the length of the model-generated text, and r is the
length of the reference text. The BLEU score ranges from 0 to

1, with values closer to 1 indicating better agreement with the
reference text. In the code implementation, the BLEU score
was calculated using the NLTK library, specifically by using
the sentence bleu function [34]. The BLEU score for 1 to 4
n-grams was computed both for each individual patient with
respect to the reference text and at the corpus level.

2) ROUGE Score: ROUGE is a set of metrics used to
evaluate the overlap between the model-generated text and the
human reference text, where ROUGE-n measures the overlap
of n-grams between the two. ROUGE captures both precision
and recall, providing a more balanced evaluation. The metric
is calculated as follows:

ROUGE-n =
# overlapping n-grams

# all n-grams in the reference text
(4)

ROUGE-L, on the other hand, focuses on measuring the
longest common subsequence between the model-generated
text Y and the reference text X . It is calculated using the
following formula:

ROUGE-L =
(1 + β2)×R× P

(R+ P × β2)
(5)

Where R = LCS(X,Y )
m and P = LCS(X,Y )

n . Here, m is the
length of X , n is the length of Y , and LCS(X,Y ) is the
length of the longest common subsequence between X and
Y . The parameter β controls the weight given to precision
(P ) and recall (R) based on the specific task and their
relative importance. The ROUGE scores range from 0 to 1,
where 1 indicates a perfect similarity between the generated
text and the reference text. In the code implementation, the
RougeScorer function from the rouge score library was used.



Additionally, the ROUGE score was computed at the corpus
level using BootstrapAggregator [36].

3) METEOR Score: This evaluation metric is based on the
harmonic mean of unigram precision and recall, with recall
weighted higher than precision. This metric is designed to be
less strict compared to other metrics and considers the fluency
and meaning of generated text. Specifically, it is calculated as
follows:

METEOR =
10× P ×R

R+ 9× P
× (1− Penalty) (6)

where
R =

# overlapping 1-grams
# 1-grams in a reference text

(7)

P =
# overlapping 1-grams

# 1-grams in a model-generated text
(8)

Penalty =
1

2
×
(

# chunks
# overlapping 1-grams

)3

(9)

and chunks are groups of adjacent 1-grams in the model-
generated text that overlap with adjacent 1-grams in the
reference text. The METEOR score ranges from 0 to 1 and was
computed using the NLTK library. In this study, the score was
computed at the level of individual reports, and then the av-
erage was taken. The METEOR score is specifically designed
to provide a detailed evaluation at the sentence level, unlike
other metrics such as BLEU and ROUGE. This characteristic
stems from the fact that METEOR not only considers word
matches but also incorporates advanced linguistic features,
such as synonym handling, stemming, and semantic matching
[37].

V. RESULTS AND DISCUSSION

This section presents the preliminary results obtained using
the three versions of the T5 model: small, base, and large,
evaluated on the OASIS-4 dataset as described in Section III.
Specifically, the corpus-level scores (Table II) for the following
metrics are reported: BLEU-1, BLEU-2, BLEU-3, BLEU-4,
ROUGE-1, ROUGE-2, ROUGE-L (using the F1 score), and
METEOR.

The results show similar performance across the T5 model
variants, with some slight differences. The T5-small model
achieved higher BLEU scores compared to T5-base and T5-
large, particularly for BLEU-1 (0.5617) and BLEU-4 (0.1858).
This suggests that the smaller model might be more effective
at generating n-grams that match the reference text. On the
other hand, the T5-large model showed superior performance
in terms of ROUGE-1 (0.5908), ROUGE-2 (0.2565), and
ROUGE-L (0.3719). These results indicate that the larger
model might produce outputs that better capture the overall
structure and coherence of the text, generating longer se-
quences that align more closely with the reference text. As
for the METEOR score, the T5-small and T5-large models
achieved similar results (0.4167 and 0.4163, respectively),
while at the corpus level, the T5-base model outperformed
the other two (0.4271).

The boxplot in Fig. 3 illustrates the quartile distribution
of the evaluation metrics, and Table III provides a detailed
analysis of the main metrics. For the BLEU-4 score, although
the median values are comparable across all three models,
the 75th percentile is slightly higher for T5-Small (0.2207)
compared to the other models. However, as highlighted in the
boxplot 3, T5-Small shows greater variability than T5-Base
and T5-Large, indicating less stable performance. Regarding
ROUGE-1 and ROUGE-L, the median and third quartile
values for T5-Large (0.5951 and 0.6324 for ROUGE-1, 0.3784
and 0.4092 for ROUGE-L) demonstrate the model’s ability to
generate text that better aligns with the structure and coherence
of the reference text. These results are further confirmed by
Fig. 3, where T5-Large shows narrower interquartile ranges
and fewer extreme values, leading to more consistent and
robust performance compared to T5-Small and T5-Base.

The Table IV shows a comparison of the performance of the
T5 model in its three variants (small, base, and large) based
on different dataset splitting ratios (Train/Validation/Test). The
results indicate that the 70/20/10 split provides the best overall
results for the BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L,
and METEOR metrics, followed by the 60/30/10 configuration
and finally the 80/10/10 configuration, which demonstrates
the worst performance among the three ratios. The 70/20/10
split configuration provides overall better results as shown by
the following metrics: BLEU-4 (T5-Large: 0.1827), ROUGE-1
(T5-Large: 0.5908), ROUGE-2 (T5-Large: 0.2565), ROUGE-
L (T5-Large: 0.3719), and METEOR (T5-Base: 0.4271). This
indicates that a split with a higher percentage of training data
and a balanced proportion of validation data leads to more
promising results. In contrast, a smaller amount of validation
data, as seen in the 80/10/10 configuration, hinders overfitting
control, reducing the model’s generalization capabilities. In
conclusion, the table highlights that the 70/20/10 configuration
is optimal for all T5 model variants, as it ensures a better
balance between training and validation data, resulting in
improved report accuracy and consistency.

Fig. 4 shows an example of a text report generated using
the T5-large model, which achieved the best results among its
outputs in terms of ROUGE-1 (0.6854), ROUGE-2 (0.4076),
ROUGE-L (0.5540), and BLEU-4 (0.3245) scores. Comparing
the generated report with the reference text, several obser-
vations can be made. The overall structure of the generated
report closely aligns with the ground truth, adhering to a
format similar to that of the synthetic reports. In terms of
diagnostic accuracy, the generated report correctly identifies
the diagnosis of Alzheimer’s Disease Dementia, as reported
in the reference text. However, there are some differences.
For instance, the model generated the phrase “very mild
cognitive impairment”, whereas the ground truth indicates the
condition as “mild”. Additionally, the Sumbox assessment is
described as “very mild” in the generated text, while in the
ground truth it is reported as having a “moderate impact”.
There are also differences in the description of hippocampal
atrophy. In fact, the generated report mentions “mild atrophy”,
while the reference text indicates “severe atrophy”. A lexical



TABLE II
CORPUS SCORES FOR T5 MODEL VARIANTS

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

T5-Small 0.5617 0.3758 0.2632 0.1858 0.5864 0.2542 0.3625 0.4167
T5-Base 0.5512 0.3699 0.2604 0.1820 0.5784 0.2517 0.3660 0.4271
T5-Large 0.5519 0.3711 0.2604 0.1827 0.5908 0.2565 0.3719 0.4163

Fig. 3. Boxplot comparison of BLEU, ROUGE, and METEOR evaluation metrics for T5-Small, T5-Base, and T5-Large models on the OASIS-4 dataset.

TABLE III
DISTRIBUTION OF EVALUATION METRICS ACROSS T5 MODEL VARIANTS

(QUARTILES)

Metric Model 25% 50% (Median) 75%

BLEU-1 T5-Small 0.5106 0.5556 0.5982
T5-Base 0.4842 0.5408 0.5881
T5-Large 0.5054 0.5388 0.5777

BLEU-4 T5-Small 0.1093 0.1741 0.2207
T5-Base 0.1259 0.1773 0.2119
T5-Large 0.1202 0.1758 0.2175

ROUGE-1 T5-Small 0.5346 0.5878 0.6297
T5-Base 0.5300 0.5752 0.6247
T5-Large 0.5576 0.5951 0.6324

ROUGE-L T5-Small 0.3046 0.3604 0.4074
T5-Base 0.3207 0.3541 0.4196
T5-Large 0.3163 0.3784 0.4092

METEOR T5-Small 0.3660 0.4142 0.4501
T5-Base 0.3566 0.3913 0.4349
T5-Large 0.3632 0.3962 0.4440

inaccuracy was also observed, as the model generated the non-
existent word “hippopulation”, which likely resulted from an
unintended fusion of two words.

In summary, the generated report shows an overall structure
that is consistent with the ground truth; however, discrepancies
and clinical details highlight the need for further refinement
to improve its overall accuracy.

VI. CONCLUSION AND FUTURE WORK

This study proposes an innovative approach to address the
limitations of VLMs and LLMs in the field of neuroimaging
diagnostics by using structured clinical data and MR images
to generate diagnostic reports. BiomedCLIP and T5 were
utilized with OASIS-4 data, demonstrating the potential of
creating a framework capable of generating diagnostic reports
for Alzheimer’s disease. Our preliminary results indicate that
the proposed methodology can effectively integrate visual
information and textual data to produce clinically detailed de-
scriptions for neurodegenerative diseases such as Alzheimer’s.

However, there are some limitations that should be noted
for an accurate interpretation of the results and to guide
future research. One key limitation is the sample size used



TABLE IV
COMPARISON OF METRICS FOR DIFFERENT TRAIN/VAL/TEST RATIOS

Model Ratio BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

T5-Small 60/30/10 0.5375 0.3522 0.2396 0.1621 0.5624 0.2329 0.3477 0.3837
T5-Small 70/20/10 0.5617 0.3758 0.2632 0.1858 0.5864 0.2542 0.3625 0.4167
T5-Small 80/10/10 0.5384 0.3518 0.2409 0.1660 0.5602 0.2318 0.3433 0.3874

T5-Base 60/30/10 0.5588 0.3663 0.2498 0.1707 0.5828 0.2441 0.3602 0.3980
T5-Base 70/20/10 0.5512 0.3699 0.2604 0.1820 0.5784 0.2517 0.3660 0.4271
T5-Base 80/10/10 0.5572 0.3647 0.2509 0.1723 0.5732 0.2361 0.3541 0.3943

T5-Large 60/30/10 0.5461 0.3535 0.2379 0.1586 0.5690 0.2338 0.3445 0.3867
T5-Large 70/20/10 0.5519 0.3711 0.2604 0.1827 0.5908 0.2565 0.3719 0.4163
T5-Large 80/10/10 0.5552 0.3624 0.2432 0.1624 0.5701 0.2314 0.3447 0.3922

Fig. 4. Generation of a textual report using BiomedCLIP and T5-large and comparison with the ground truth.

in this study. The study only employed data from the OASIS-
4 cohort, resulting in a relatively small sample size of 468
patients after preprocessing. This sample size is significantly
lower than the datasets typically used for training VLMs and
LLMs, which often require thousands of samples to achieve
robust generalization [4], [11], [17], [38]. Consequently, the
limited sample size affects the generalizability of the model.
Another limitation concerns the choice of structured data and
imaging modalities. For these preliminary results, only specific
cognitive scores and measures were selected, and the study
focused on a single imaging modality (MRI), excluding other
potentially informative modalities such as PET. These choices
in the use of clinical and imaging data may have limited
the model’s ability to learn important features, potentially
affecting its diagnostic accuracy and completeness. Expanding
the model to incorporate additional imaging modalities and a
broader range of clinical variables may improve its robustness
and clinical relevance. Furthermore, while the use of synthetic
reports is an innovative and effective approach for facilitating
model learning, the lack of clinical validation for these reports
remains a key limitation. Validation by clinical experts is
critical for ensuring the quality, accuracy, and real-world
relevance of the generated reports.

Addressing these limitations will be a key focus of future
research. We plan to expand the study to other imaging
modalities such as PET, including not only the OASIS cohort-
4 but also other cohorts from the same dataset and from other
datasets such as ADNI and AIBL. This expansion will provide
a more comprehensive view of Alzheimer’s pathology and
improve the model’s accuracy and generalizability. Future re-
search will also focus on optimizing the model’s performance
by improving the integration between VLMs and LLMs,
experimenting with new configurations, and optimizing the
model’s architecture. Furthermore, collaborations with clinical
experts will be sought to validate the generated reports, ensur-
ing greater clinical relevance and contributing to the overall
reliability of the proposed methodology. Finally, the current
framework will also be explored for other neurodegenerative
diseases beyond Alzheimer’s to assess its applicability in
different diagnostic contexts. This will require adapting the
model to handle different types of neuroimaging data.

ACKNOWLEDGMENT

This work has emanated from research supported in part by
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