Physics Informed Neural Networks:
Deployment and Evaluation in

Sparse Data Applications

Dinh Viet Cuong, B.Sc.

Supervised by Prof Mark Roantree

DC

Ollscoil Chathair
Bhaile Atha Cliath
Dublin City University

A thesis presented for the degree of Doctor of Philosophy

SCHOOL OF COMPUTING

DUBLIN CiTY UNIVERSITY

March 14, 2025

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy is entirely my own
work, and that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge breach any law of copyright, and has not
been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed (Typed Name): Dinh Viet Cuong
Student ID No.: 20214134
Date: 05/12/2024

i

Acknowledgements

Four years have passed in the blink of an eye. This thesis would not have been
possible without the encouragement, advice, and support of my advisors, friends,
and family.

Firstly, I would like to thank my advisor, Professor Mark Roantree, for his
guidance, which was essential to the completion of my thesis. I am grateful for
his patience, trust, and attention during my doctoral studies. Throughout these
challenging years, he granted me the freedom to pursue a variety of interesting
research topics. His constructive feedback on my work taught me how to conduct
meaningful research and greatly improved my critical thinking abilities.

I would also like to thank my colleagues—Dermot, Adam, Valerio, Vuong, Aidan,
Danham, and Uttran—for their collaboration and assistance in my studies, and for
their help in proofreading my thesis.

I wish to express my gratitude to my friends in Ireland—An, Phuc, Boi, Le, Long,
Bao, Khoi, Tu, and Khiem—for their friendship and support. An, for always being
by my side while working. Phuc, for being a gym companion and for our shared
interests in video games. Boi, for generously cooking delicious meals for me in three
years. Khoi, Le, Long, and Bao, for the enjoyable times we shared. Tu and Khiem,
for your assistance in Ireland. My life here would have been very dull without your
friendship.

I would like to thank my friends Phuc Hau, Thanh Nhan and Thanh Huyen.
Thank you, Phuc Hau and Thanh Nhan, for playing video games with me during the

most stressful time of my life during Covid. Phuc Hau is a brilliant guy; not only

1il

Physics Informed Neural Networks in Sparse Data Applications

did we study mathematics together, but I also appreciate his insights into Buddhism.
Thanh Nhan is a good travel companion and a good Chinese teacher. I would also
like to thank Hieu and Quoc for the little chats here and there.

I want to express my deep gratitude to my family, who have provided unwavering
support and constant encouragement throughout my life. My father is a gentleman
who has always been intelligent but had no opportunity to pursue higher education.
My mother is a hardworking woman who had to drop out of school at a very early
age to make a living. They have always believed that studying and knowledge are the
keys to becoming a good person and achieving success in life. I hope that the studies
I have undertaken so far will partly fulfill their dream of learning. Additionally, my
sister has always supported me throughout my life. I cannot imagine my life without
my family.

Lastly, I would like to acknowledge School of Computing at Dublin City Uni-
versity for providing a great environment to work in, and the financial support of
Taighde Eireann - Research Ireland through the Insight Centre for Data Analytics
(SFI/12/RC/2289_ P2).

iv

Physics Informed Neural Networks in Sparse Data Applications

I dedicate this thesis

to my father, Dinh Viet Quang,

to my mother, Nguyen Thi Huong,
who always support me in my life;

to science, and to my own dream.

Contents

1 Introduction
1.1 Introduction to Neural Networks and their Application Areas.
1.1.1 Issues with Neural Networks
1.1.2 Neural Network Architectures
1.1.3 Physics-Informed Neural Networks
1.2 Problem Statement oo

1.3 Thesis Structure

2 Problems & Datasets
2.1 Neural Networks
2.1.1 Exosome Classification
2.1.2 Oxygen Uptake
2.2 Graph Modeling
2.2.1 Graph Data Representation: Bike Sharing System
2.2.2 Graph Neural Networks: Air Quality
2.3 Physics-Informed Neural Networks
2.3.1 Physics Informed Neural Networks
2.3.2 Inverse Problems: External Forcing

2.3.3 Mosquito Population Modeling

3 Literature Review
3.1 Neural Networks

3.1.1 Disease Prediction Using Exosomes

vi

11

14
14
14
17
21
21
24
26
26
29
30

Physics Informed Neural Networks in Sparse Data Applications

3.1.2 Oxygen Uptake Estimation 36
3.2 Network Models 39
3.2.1 Transport Networks: Bike Sharing 39
3.2.2 Graph Neural Networks: Air Quality 42
3.3 Physics-Informed Neural Networks 46
3.3.1 Training Techniques 46
3.3.2 Learning Parameters 49
3.4 Conclusions 51
Deployment of Neural Networks in Real-Life Applications 54
4.1 Exosomes Classification Using Multi-Layer Perceptrons 55
4.1.1 Methodology 56
4.1.2 Experiments L 60
4.2 Predicting Oxygen Uptake in Athletes 64
4.2.1 Data Preprocessing 65
4.2.2 Neural Networks 66
423 Results. 72
4.3 Conclusions 7
Graph Neural Networks 80
5.1 Graph Modeling 81
5.2 Graph Analytics using a Travel Network 82
5.2.1 Problem 82
5.2.2 Methodology 83
5.2.3 Experiments 93
5.2.4 Analysis and Discussion 95
52,5 Conclusion 108
5.3 Air Quality Forecasting L. 109
5.3.1 Attention Mechanisms 109
5.3.2 Experiments 115

vii

Physics Informed Neural Networks in Sparse Data Applications

5.3.3 Conclusion. 119
54 Conclusions 119
Physics Informed Neural Networks 121
6.1 Introduction 122
6.2 PINN Framework Development 123
6.2.1 PINN Structure 123
6.2.2 ODE Normalization 126
6.2.3 Gradient Balancing oo 128
6.2.4 Causal Training 129
6.2.5 Domain Decomposition oL 131
6.3 Evaluation Step 1: Ablation Study using the Lorenz System 132
6.3.1 Forward Problem with T=2 133
6.3.2 Forward Problem with 7'=20 137
6.3.3 Inverse Problem L. 141
6.4 Validation Step 2: Mosquito Case Study 146
6.4.1 Forward Problem 147
6.4.2 Inverse Problem L. 151
6.5 Conclusion 154
PINN Optimization: Incorporating External Factors 156
7.1 Introduction 156
7.2 Incorporating External Factors 157
7.3 Evaluationo 162
731 ODEsystem 162
7.3.2 Experimental Configuration 163
733 Results. 165
7.4 Ablation Study 167
7.4.1 Model architectures 0L 170
7.4.2 Activation Functions for Non-negativity 172

viil

Physics Informed Neural Networks in Sparse Data Applications

7.5 Conclusions 176
Conclusions 178
8.1 Dissertation Overview 178

8.1.1 Chapter 4: Neural Networks in Real-Life Applications 178

8.1.2 Chapter 5: Graph Neural Networks 180

8.1.3 Chapter 6: Physics-Informed Neural Networks 181

8.1.4 Chapter 7: PINN Optimization 182
8.2 Contributions Lo 183
8.3 Suggestions for Further Research 186
Error Metrics 190
A.1 Regression Error oo 190
A.2 Classification Error o 191
Graph-based Bike Sharing System Analysis 192
B.1 Temporal Bike Graph Networks (Daily TBiGN) 192
B.2 Spatio-Temporal Bike Graph Networks (Monthly STBiGN) 195
B.3 Spatio-Temporal Bike Graph Networks (Hourly STBiGN) 200
Mosquito ODE system 204
C.1 Structural identifiability of mosquito system’s parameters 204
C.2 Parameter Sensitivity oo 204

X

List of Figures

2.1

2.2

2.3
2.4
2.5

3.1

4.1
4.2
4.3

4.4

An example exosome spectrum.
Examples of IMU raw data during 3 different activities: Treadmill

Running, Outdoor Running, and a Simulated Circuit. The blue line is

the z-axis, the orange line is the y-axis and the green line is the z-axis.

The 10 considered air quality monitoring stations in Hanoi, Vietnam .
Examples of air quality data at a station.

Meteorological measurements of the training period.

Literature Review Chapter Structure

Preprocessing Steps
Multi-Layer Perceptron Architecture
LSTM Layer Architecture. The LSTM cell is shared across time
steps. At each time step t, the cell receives the input x; from the
previous layer and the hidden state h;_; from previous time step. It
produces the new hidden state h;, which is passed to the next layer,
as well as the updated cell state ¢;. The initial state ¢_; and output
h_y are initialized as zero vectors.
An illustration of one-dimensional CNN architecture. In the con-
volutional layers, three kernels, each of size 3, slide along the time
dimension of the input to generate three feature channels. Red boxes
and arrows at the bottom left demonstrate a convolution computation

involving 1, x5 and x3 that results in a single output.

20
26
27
33

34

26
99

69

Physics Informed Neural Networks in Sparse Data Applications

4.5

4.6

4.7

5.1

0.2

(a) Linear correlation plot illustrating the relationship between pre-
dicted VO5 and measured VO, using the LSTM model with RAW
representation and sensor configuration C, achieving an R? value of
0.87. (b) Bland-Altman plot showing the differences between mea-
sured and predicted VO, values against their averages for all subjects
combined. Lo
Box plots of the residuals (predicted VOy minus measured VO,) across
different exercise conditions for the LSTM model using RAW data
representation and dataset C. The exercise conditions include baseline,
jogging, recoveryl, circuitl, recovery2, circuit2, and recovery3.
Comparison of measured VOq values (blue line) and breath-by-breath
VO, predictions (green line) for Subject 2 using the LSTM model with
RAW representation and dataset C. The left plot shows unsmoothed
predictions with a MAE of 3.374 mL - kg™', while the right plot
displays smoothed predictions with an MAE of 2.902 mL - kg™'. The
plots include different exercise and recovery phases, shaded as follows:
baseline and recovery phases (light blue), jogging (pink), and simulated

soccer circuit (light green). o L

Geographic Map overlaid with SBiGN. Each circle represents
a bike station and is sized according to its trip volume, with the 10
busiest stations (by trip volume) shown in red and all others in blue.
Lines represent routes between stations and are also sized by trip
volume; the 10 most frequently used routes are highlighted in red, and
the remaining routes are shown in blue.
Graph Analytics for Spatial Bike Graph Networks: Degree.
Each circle represents a bike station and is sized by its degree, with

the 10 highest-degree stations shown in red and all others in blue.

75

97

X1

Physics Informed Neural Networks in Sparse Data Applications

5.3

5.4

2.5

5.6

5.7

Graph Analytics for Spatial Bike Graph Networks: Closeness.
Each circle represents a bike station and is sized by its closeness
centrality, with the 10 highest-closeness stations shown in red and all
othersin blue.
Graph Analytics for Spatial Bike Graph Networks: Between-
ness. Each circle represents a bike station and is sized by its between-
ness centrality, with the 10 highest-betweenness stations shown in red
and all others in blue.
SBiGN Community Detection. Each circle represents a bike
station and is sized according to its trip volume. The node colors
indicate different communities, with four communities labeled: purple,

, , and red. Lines represent routes between
stations and are also sized by trip volume.
Rolling Window Monthly Clustering. This dendrogram shows
how monthly bike-sharing networks (each represented on the x-axis by
its start date) cluster based on their similarity. The y-axis indicates
the distance between these monthly networks, with lower values signi-
fying higher similarity. Horizontal lines connect two clusters at their
respective distance. Three primary clusters are detected: Restrictions,
Lockdown and Easing.
Geographical Plot of By Month Clusters. (Representation
Networks of the Restriction Cluster). Each circle represents a
bike station and is sized according to its trip volume, with the 10
busiest stations (by trip volume) shown in red and all others in blue.
Lines represent routes between stations and are also sized by trip
volume; the 10 most frequently used routes are highlighted in red, and

the remaining routes are shown in blue.

xii

Physics Informed Neural Networks in Sparse Data Applications

5.8

2.9

5.10

5.11
5.12

Geographical Plot of By Month Clusters. (Representation
Networks of the Lockdown Cluster). Each circle represents a
bike station and is sized according to its trip volume, with the 10
busiest stations (by trip volume) shown in red and all others in blue.
Lines represent routes between stations and are also sized by trip
volume; the 10 most frequently used routes are highlighted in red, and
the remaining routes are shown in blue.
Geographical Plot of By Month Clusters. (Representation
Networks of the Easing Cluster). Each circle represents a bike
station and is sized according to its trip volume, with the 10 busiest
stations (by trip volume) shown in red and all others in blue. Lines
represent routes between stations and are also sized by trip volume;
the 10 most frequently used routes are highlighted in red, and the
remaining routes are shown in blue.o
Daily Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different com-
munities, with four communities labeled: purple (small), ,
, and red. Lines represent routes between stations and
are sized by their correlation score. L.
Timeseries Communities in Daily STBiGNs

Temporal and Spatial Attention Layers

5.13 Proposed attention-based spatial-temporal neural network architecturel14

xiil

Physics Informed Neural Networks in Sparse Data Applications

6.1

6.2

6.3

6.4

6.5
6.6

Lorenz ODE system for the forward problem, with U ap-
proximation of the system state. System state u = (z,y, 2).
Subfigures (a), (b), and (c) respectively show the x, y, and z compo-
nents. There is only data point (blue dot) at ¢ = 0 serves as the initial
condition. The blue line represents the true solution u_ true while
the orange dashed line OdePINNg;adient+causal Closely apprximates the
target. Both OdePINNggina (brown dashed line with cross) and
OdePINN_,ysa1 (purple dashed line) are closely aligned with the null
solution.

Loss analysis of OdePINN framework with Lorenz system,

Lorenz ODE system, forward problem, U approximation of
the system state, using the first five models (excluding the
Domain Decomposition model). System state u = (z,y, z). Subfigures
(a), (b), and (c) respectively show the x, y, and z components. There
is only data point (blue dot) at ¢ = 0 serves as the initial condition.
None of the models successfully capture the dynamics of the reference
solution. L
Lorenz ODE system, forward problem, with U approximating
the system state. System state u = (z,y,z). The first three
plots depict the z, y, and z components, respectively, while the last
plot shows the loss and RMSE over the input time domain. The
PINN approximation (orange dashed line) closely follows the reference
solution (blue line) uptot=17.
Trade-off between the number of subdomains and accuracy.
Ground truth u and data provided to solve the Lorenz system inverse

problem.

139

Xiv

Physics Informed Neural Networks in Sparse Data Applications

6.7

6.8

6.9

© approximation of the physics parameters 0 = (o, p, 5) in the
Lorenz system inverse problem. Subfigures (a), (b), and (c) respec-
tively show the parameters o, p, and 3. The models OdePINN g qdient
(red dashed line) and OdePINN gadient+causal (Orange dashed line) pro-
vide reasonably accurate estimates, closely following the true solution
(blue line).
Mosquito ODE system, forward problem, U approximation
of the solution. Each plot depicts the evolution of a specific state in
the mosquito life cycle, with time on the z-axis and organism count
on the y-axis. Only one data point (blue dot) is provided to PINN at
t = 730. The PINN predictions (orange dashed line) accurately track
the reference solution (blue line) over time.
Mosquito ODE system, inverse problem, © approximation of
the system’s parameters. Each plot compares the approximated
values (orange) with the true values (blue) for different parameters

governing the mosquito population dynamics.

XV

Physics Informed Neural Networks in Sparse Data Applications

7.1

7.2
7.3
74
7.5
7.6
7.7

7.8

External PINN Framework. There are two groups of neural
networks, one named U for the system state (the upper blue box),
and the other named © for estimating the system parameters (the
lower blue box). There are two data for the loss computations, the
observations (t;,u;) (the upper green box) and the collocations points
t; (the lower green box). The data loss Lga, is computed based on
the observations (¢;,u;) and the outputs of the state neural network
U evaluated at t;. The ODE loss Lopg is calculated at random
collocation points t;, it involves the predictions of the state model
U at t; and the parameter model at A(t;) (the white blue-bordered
box), which are external factors at ¢;. Only the two neural networks
(the two blue boxes) are trained, while the function A is fixed. After
training, one can use the network © to predict parameters 6 at any
external factor values, as depicted by the bottom row of the figure.
FourierMLP and Multi-branch FourierMLP architecture.
Mosquito Population Simulations, Ay; + Ay, the training period. . .
Parameter fp prediction, the training period
Mosquito Population Simulations, A, + Ay, the validation period.
Parameter fp prediction, the validation period.
Non-negativity Activation Functions. The Soft Abs functions
with € = 107% and ¢ = 10~* appear very close in the plot, closely
resembling the positive part of ReLU and the identity function.
Parameter fp predictions with different output activation functions,

training period

. 160

161

. 166

166

. 168

169

. 173

xvi

Physics Informed Neural Networks in Sparse Data Applications

B.1

B.2

B.3

B.4

B.5

B.6

Daily Activity Networks. (Representation Networks of Week-
day Clusters). Each circle represents a bike station and is sized
according to its trip volume, with the 10 busiest stations (by trip
volume) shown in red and all others in blue. Lines represent routes
between stations and are also sized by trip volume; the 10 most fre-
quently used routes are highlighted in red, and the remaining routes
are shown in blue. Lo oo
Daily Activity Networks. (Representation Networks of Week-
end Clusters). Each circle represents a bike station and is sized
according to its trip volume, with the 10 busiest stations (by trip
volume) shown in red and all others in blue. Lines represent routes
between stations and are also sized by trip volume; the 10 most fre-
quently used routes are highlighted in red, and the remaining routes
are shown in blue.o Lo
Daily Activity Communities. Weekday. Each circle represents
a bike station and is sized according to its trip volume. The node
colors indicate different communities. Lines represent routes between
stations and are also sized by trip volume.
Daily Activity Communities. Weekend. Each circle represents
a bike station and is sized according to its trip volume. The node
colors indicate different communities. Lines represent routes between
stations and are also sized by trip volume.
STBiGN Network: Monthly Timescale. Each circle represents
a bike station and is sized by its strength. The node colors indicate
different communities, with four communities labeled: purple, bright
sky blue, , , and red. Lines represent routes
between stations and are sized by their correlation score.

Timeseries Communities in Monthly STBiGNs

Xvii

Physics Informed Neural Networks in Sparse Data Applications

B.7 Hourly Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different com-
munities, with three communities labeled: purple, , and
red. Lines represent routes between stations and are sized by their
correlation score. 201

B.8 Timeseries Communities in hourly STBiGNs 202

C.1 Structural identifiability of parameters over time in the
Mosquito inverse problem. The configuration is the same as
the experiment in Section 6.4.2 where the temperature is sine-shaped. 205

C.2 Sensitivity of parameters in mosquito dynamical system. . . . 205

xviii

List of Tables

2.1

2.2
2.3
24
2.5

4.1
4.2
4.3

4.4

4.5

Exosome Dataset. Each surface corresponds to a single sample,
and all spectra from the same surface are acquired under identical
conditions. Each surface yields 50 spectra, with each spectrum repre-
sented as a vector of approximately 2,050 absorbance values covering
the spectral range of 400 to 1,800 ecm™
Summary of the oxygen uptake dataset.
Dataset Overview
Summary of the air quality dataset.

Mosquito Data for Experiments

Hyper-Parameter Settings
Top Performing Models by Average Accuracy
Validation Confusion Matrix (Sum over folds). The rows represent
the true class labels, while the columns correspond to the model’s
predicted labels. For instance, the entry of 181 in the “Normal” row
and the “Hypo” column indicates that the model has misclassified 181
normal samples as hypoglycemic.
Test Confusion Matrix (Best Model). The rows represent the true
class labels, while the columns correspond to the model’s predicted
labels. For instance, the entry of 3 in the “Normal” row and the
“Hypo” column indicates that the model has misclassified 3 normal
samples as hypoglycemic.

MLP Hyper-parameters

Xix

Physics Informed Neural Networks in Sparse Data Applications

4.6
4.7
4.8

5.1
5.2
2.3
5.4

6.1

6.2

6.3

6.4

LSTM Hyper-parameters
1D-CNN Hyper-parameters.
Top-15 performance of neural network models. This table
presents the top 10 performing neural network models, ranked by their
valid RMSE. The table includes both RMSE and MAE metrics for
the validation and test sets. The unit of the metrics is mL - kg™' -
min~!. The best results, corresponding to the smallest error values,

are highlighted in bold, while the second-best results are underlined.

Node Strength in SBiGN 0.
Edge Weight in SBIGN L.
Node (station) Strength in Daily STBiGNs
Air quality 24-hour forecasting performance. Average metrics
computed over a 24-hour period with hourly predictions. Lower metric
values indicate better performance. The best result in each column is

highlighted in bold, while the second best is underlined.

Approximation errors in the inverse problem with Lorenz system
where smallest error values are best. Bold text highlight the best
performing models with respect to a specific metric and Underlined
numbers represent the second best performing model.
ODE Model Parameters. The unit of 7 is Celsius degree. All other
parameters have the unit of day !, except the c and 3.
Errors for Mosquito ODE Approximation Solution. The bold text
highlights the two lowest errors across the stages, representing the best

approximations, while the underline text identifies the two highest

errors, indicating the least accurate stages.
Mosquito ODE System’s Parameter Approximation Errors. The bold
text highlights the two lowest errors across the learned parameters

while the underline text identifies the two highest errors.

XX

Physics Informed Neural Networks in Sparse Data Applications

7.1

7.2

7.3

B.1
B.2
B.3
B.4

Error Metrics. Six metrics are presented: the first three are RMSE
metrics where lower values indicate better performance, and the last
three are peak metrics where higher values are better. The best results
for each metric are highlighted in bold. 170
Error Metrics from Parameters learned from PINNs with
different network architectures. The best results for each metric
are highlighted in bold, while the second best results are underlined. 172
Error Metrics from Parameters learned from PINNs with
different final activation functions. The best results for each

metric are highlighted in bold, while the second best results are

underlined. 174
Node Strength: Weekday vs Weekend 193
Edge Weights: Weekday vs Weekend 193
Node (station) Strength in Monthly STBiGNs 199
Node (station) Strength in Hourly STBiGNs 203

xx1

Physics Informed Neural Networks
Deployment and Evaluation in Sparse Data Applications

Dinh Viet Cuong

Abstract

Neural networks have demonstrated remarkable success in various domains but
they often struggle with generalization beyond their training data. To address
these limitations and enhance the robustness of machine learning models, this the-
sis explores the integration of domain knowledge into neural networks through
two approaches, network analysis and ordinary differential equations (ODEs). We
begin by investigating neural network performance in diverse tasks, such as hy-
perglycemia/hypoglycemia diagnosis using exosome profiles and oxygen uptake
estimation from sensor measurements. The study then progresses to more structured
data with complex networks.

Subsequently, we incorporate network structure into machine learning using
graph neural networks, applying this method to an air quality forecasting task where
locations and their correlations form a network. An alternative approach is then
investigated by integrating ODE systems describing dynamical systems into a data-
driven machine learning framework. This comprises the development of advanced
techniques to enable neural networks to learn underlying physics, including ODE
Normalization, Gradient Balancing, Causal Training, and Domain Decomposition.
These methods address challenges in training with stiff systems across large domains.

The frameworks in this research are then validated using simulated data for
the Lorenz system and a system of ODEs modelling mosquito populations. This
work is further developed to accommodate real-life observations, by making adjust-
ments to model inputs, neural network architecture, and activation functions. This

extended framework is then evaluated against real-world mosquito counts in an

Physics Informed Neural Networks in Sparse Data Applications

inverse problem setting, learning relationships between meteorological conditions
and mosquito development. Our results demonstrate that incorporating domain
knowledge into neural networks enhances model generalizability, improving both
accuracy and extrapolation capabilities. Moreover, this approach maintains the
explainability of the added knowledge while leveraging the flexibility of machine

learning models.

Chapter 1

Introduction

This research dissertation explores the use of machine learning, principally neural
networks in solving problems across real world application areas. It begins as a
journey to understand the strengths of these machine learning functions, identifying
weaknesses in the face of challenges presented by practical application areas such as
health, climate and sport. Often, these challenges result from the lack of sufficient
training data, an issue which is more commonplace than was expected when this
research was undertaken.

In this opening chapter, we provide an introduction and motivation for the different
studies presented, focusing on the advancements and applications of neural networks
across various domains. We begin with a brief overview of neural networks, describing
their biological inspiration, fundamental structure and learning mechanisms. We
then discuss the evaluation of architectures such as recurrent, convolutional and
graph neural networks, as well as the integration of physics laws that describe a
real-world phenomenon. We then outline the research questions that guide this
research, including the incorporation of prior knowledge, graph-based modeling
and the application of physics-informed neural networks for solving dynamical
systems. Finally, we present an overview of the dissertation’s structure and list of

the publications associated with this research.

Physics Informed Neural Networks in Sparse Data Applications

1.1 Introduction to Neural Networks and their
Application Areas

A neural network [1] is a mathematical model inspired by the biological neural
network in animals [2]. The computational unit of the model is a neuron. A neuron
receives inputs, typically real-valued numbers, either from other neurons or from data
representations. It processes these inputs to produce an output, also in the form of a
real valued number. Each input is associated with a weight, which represents the
importance of that input with respect to the overall output. The output of the neuron
is computed as the weighted sum of its inputs. This weighted sum can optionally pass
through an activation function, providing nonlinearity to the neuron. A neuron can
be thought as a decision maker, making decisions by weighting evidence from various
inputs. For example, consider deciding whether to go outside for a run. Factors
such as the current temperature outside, the probability it will rain, or your energy
level, the amount of time you have, all might play a role. Each factor is assigned
a weight based on its importance with the final decision based on the combined
information from these weighted factors. A single neuron is too simplistic to make
complex decisions on its own, combining multiple neurons together make it possible to
model more sophisticated decision making. Neurons are often organized into network
structures, where each node represents a neuron and a directed edge indicates that
the output of one neuron is the input to another. Usually organized into layers,
these layers consists of neurons that share a similar functionality. Layers receive
inputs from other layers and produce outputs that feed into other layers. Multi-layer
Perceptrons (MLP), described in [2], organize the neurons in a feed-forward manner,
with each layer being fully connected to both preceding and subsequent layers. Thus,
the first layer makes decisions directly on the input data, while subsequent layers
refine these decisions by building on outputs from previous layers. This arrangement
facilitates the learning of increasingly abstract representations, ultimately enabling

the modeling of complex decision-making processes.

Physics Informed Neural Networks in Sparse Data Applications

A single neuron, as well as the entire neural network as a whole, can learn to
make good decisions by adjusting the weight of each input, which are referred to
the trainable parameters of the neural network. The learning process of a neural
network can be performed automatically by a computer algorithm based on the
information provided by a set of samples, known as the training set. This training
is often formulated as an optimization problem, wherein an objective function, also
called the loss function, is minimized. The objective function is designed to reflect
reality, specifically matching the model with the training data or with specific domain
knowledge. The most common approach to training neural networks today is based
on the gradient descent method [3]. The method step-by-step updates the trainable
parameters by moving in the direction opposite to the gradient of the objective
function, which is the direction that reduces the loss.

The simplest form of neural network, linear regression (LR), was proposed as
early as 1795 by Johann Gauss [4]. Inspired by the computational model of biological
neurons proposed by [2], Frank Rosenblatt introduced the multi-layer perceptron
model in 1958 [1]. Rosenblatt’s MLP had the first hidden layer randomized and
non-trainable, while the output layer was learnt. In 1967, [5] trained MLPs with
stochastic gradient descent [6]. The algorithm updates model parameters based on
random subsets of training data, allowing for efficient and scalable optimization. It
remains one of the most widely used methods for training neural networks today. In
1970, Seppo Linnainmaa published the back-propagation algorithm, which provided an
efficient mechanism for calculating derivatives required in gradient-based optimization
methods [7]. Today, backpropagation is implemented widely in modern deep learning
frameworks, such as PyTorch [8] and TensorFlow [9].

Neural networks are now a core part of artificial intelligence (Al), machine learn-
ing (ML), and particularly deep learning today. They serve as a central driving force
behind various advancements. Many impactful applications use neural networks as
their machine learning model, including recommendation system [10], face recogni-

tion [11], object recognition [12], image generation [13], speech recognition [14], speech

Physics Informed Neural Networks in Sparse Data Applications

synthesis [15], Al assistant chatbots [16, 17], machine translation [18]. Neural net-
works have been successfully deployed across diverse fields, including healthcare [19],
bioinformatics [20], finance [21], agriculture [22], climate science [23], and information
technology [24], to name a few. In many cases, neural networks have outperformed

traditional machine learning models, achieving state-of-the-art results [25].

1.1.1 Issues with Neural Networks

Despite their impressive success, neural networks are inherently limited by several
challenges, particularly regarding the large volume of data required for effective
training [26, 27] and their poor generalization capabilities [28]. The predictions made
by a machine learning model can be considered as either interpolation, predicting
within the range of the training data, or extrapolation, predicting beyond the
distribution of the training samples. When sufficient training data is available, neural
networks have a high capacity to interpolate these examples, leading to accurate
decision-making [29]. However, when the data is sparse, meaning the unseen sample is
likely to fall out of the training distribution, resulting in a poor generalization from the
training biases and extrapolation. Furthermore, neural networks are frequently over-
parameterized in order to achieve strong performance [29]. Over-parameterization
lets these models learn highly complex mappings from the input space to the output
space. While this enables neural networks to model complex relationships within
the data, it also results in a very large hypothesis space, which allows them to fit
almost any dataset [30], irrespective of how well the learned mapping aligns with the
underlying nature of the data. This phenomenon, known as overfitting, degrades its

ability to perform well on unseen data.

1.1.2 Neural Network Architectures

To address these limitations, researchers have made significant improvements for
neural networks. The authors in [26, 31| identify several ways to incorporate prior

knowledge into neural networks, such as enhancing the neural network architecture

Physics Informed Neural Networks in Sparse Data Applications

and adding regularization terms in the loss function during training. The differences
in neural architectures arise from the design of individual neurons, the arrangement
of neurons within layers, and the overall arrangement of the layers themselves. These
structural differences significantly impact the performance and suitability of neural
network models for different tasks [32].

A neural network architecture that has been gaining considerable attention in
recent years is the Graph Neural Network (GNN), which is specifically designed
to manage the complexity of graph-structured data. A graph, also referred to as a
network, consists of a set of nodes (or vertices) and a set of edges (or links) that
establish connections between pairs of nodes. Typically, nodes represent entities
of interest, such as locations, stations, airports, assets, etc., while edges denote
relationships or connections between these nodes. The definition of these connections
can be derived from domain-specific knowledge, including physical connections,
semantic similarity, statistical correlations, and more. The idea behind GNN to
handle graph structures is to replicate the graph’s edges as connections among
neurons or layers within. As a result, GNNs can make predictions at a given node by
aggregating information from the node itself as well as from the nodes to which it is
connected. This aggregation mechanism allows GNNs to model interactions between
nodes and to capture complex relationships in the data, thus making GNNs suitable
to model structured data. In recent years, GNNs have emerged as a powerful machine
learning model capable of learning from complex network systems, as well as network
representations of flat data. The capabilities of GNN have been shown in many
areas, including social networks [33], transportation networks [34], chemistry [35],

climate [36], computer vision [37], and natural language processing [38].

1.1.3 Physics-Informed Neural Networks

Another effective approach to improving the performance of neural networks is by
improving the objective function, specifically through the addition of regularization

terms to the loss function. This addition encourages the model to converge to more

Physics Informed Neural Networks in Sparse Data Applications

preferable solutions, ultimately improving its performance. Regularization terms
can be utilized to incorporate scientific knowledge of the underlying processes into
the model. Domain experts often have prior knowledge about the relationships
present in the data, usually expressed in the form of mathematical equations. By
incorporating these equations into the objective function as additional regularization
terms, the model can be informed to learn solutions that are not only data-driven
but also consistent with established domain-specific knowledge. This approach is
often referred to as physics-informed neural networks (PINNs). For instance, [39]
incorporates the conservation laws of mass and momentum, along with equations de-
scribing the pressure-area relationship, to predict blood pressure in arterial networks.
Similarly, [40] used conservation laws to achieve energy consistency when emulating
climate models with neural networks. By embedding such physical laws into the
loss function, the trained neural network’s predictions become more physically con-
sistent, even for extrapolated samples, thereby significantly improving the model’s
generalization capabilities. Moreover, the integration of domain knowledge reduces
the reliance on large amounts of high-quality training data. With knowledge-based
regularization, the model can be trained effectively with less data, which does not
need to be of excellent quality [26]. This is particularly advantageous for applications

where acquiring high-quality data is challenging or costly.

1.2 Problem Statement

Motivated by the challenges and approaches presented above, this study aims to
extend the capabilities of neural networks for different tasks across heterogenos
domains. Thus, we investigate the applicability of different neural networks to
gain an understanding of their weaknesses for certain tasks but in particular, how
these machine learning models can be customized to better suit the task with which
they are faced. This will require a fairly broad set of investigations and analyses
but in doing so, we are asking one fundamental question: Can prior knowledge be

incorporated into neural networks to improve their overall predictive accuracy?

Physics Informed Neural Networks in Sparse Data Applications

Hypothesis. We hypothesize that integrating prior knowledge into neural
networks enhances their overall predictive performance, particularly in complex tasks
where there is limited data available.

Complex tasks often involve high-dimensional inputs, dynamic decision-making
processes, or relationships among entities, challenges that make simple models
insufficient and can require advanced algorithms. Neural networks, which often
contain tens of thousands of parameters, are powerful enough to handle a lot of
complex tasks. However, when the dataset is small (e.g., fewer than 1,000 or 10,000
samples), they often memorize the limited data (overfitting) rather than generalize it.
By incorporating domain knowledge, such as using graph representations to capture
relationships among entities or regularizing models with physical constraints, neural
networks can more effectively learn meaningful patterns while preserving physically
consistent predictions.

This is particularly valuable for machine learning problems where data collection is
expensive or time-consuming, limiting the available samples. In such cases, leveraging
prior knowledge helps mitigate overfitting, reduces the need for massive datasets, and
combines the power of data-driven models with the transparency and interpretability
of physics-based models. To test this hypothesis and the ways it could be explored,
we pose a series of research questions that will guide the direction of this study.

Research Question 1. How effectively can generic neural networks be deployed
as machine learning solutions in areas such as health and sports?

In order to address this research question, we explore the capabilities of con-
ventional neural network architectures in various application areas. We focus on
problems that are new and challenging, such as exosome classification in health and
oxygen uptake estimation in sports, where data is complex and limited. By applying
neural networks to these areas, we aim to identify how well they perform and what
limitations are exposed.

Research Question 2. Can graph neural networks be deployed to exploit the

structural information inherent in graph-based data?

Physics Informed Neural Networks in Sparse Data Applications

Graph models offer a powerful way to represent complex systems where entities
are interconnected, capturing relationships that traditional flat data representations
often overlook. In domains such as transportation and environmental science, the
interactions between components may play critical roles. For example, in a bike-
sharing system, the flow of bikes between stations forms a network that reflects user
mobility patterns and demand, which cannot be fully understood by analyzing stations
independently. Traditional neural networks struggle to capture these relationships
because they are not designed to exploit graph-structured data. GNNs have emerged
as a promising solution to this challenge, as they are specifically designed to process
and learn from graph-based data by considering both the features of the nodes and
the topology of the graph. By exploring this second research question, the goal is to
enhance neural networks to enabling the modeling of graph data, ultimately leading
to better predictive performance.

Research Question 3. Can neural networks be extended to accurately represent
and predict the behavior of dynamical systems governed by a system of ordinary
differential equations?

Purely data-driven neural networks often struggle to capture the underlying
physical laws that govern the data, leading to limited generalizability and inter-
pretability [28]. PINNs attempt to bridge this gap by embedding differential equations
directly into the learning process. However, training PINNs presents significant chal-
lenges, especially when dealing with stiff equations and multi-scale dynamics common
in real-world systems [26, 41, 42]. In this third research question, we would like to
address the training difficulties of PINNs, improving their capability to solve systems
of ordinary differential equations (ODESs). By overcoming these challenges, we can
train data-driven models that better adhere to physics-based dynamical systems,
particularly in complex, multi-scale scenarios like mosquito population dynamics.

Research Question 4. Can we determine how neural networks incorporate
external factors on dynamic system parameters and validate any solution using

real-world observational data?

10

Physics Informed Neural Networks in Sparse Data Applications

While PINNs have shown significant potential in solving inverse problems [26, 43],
they often neglect external factors that influence system dynamics. Accurate modeling
of biological systems, such as mosquito populations, requires taking into account
external influences such as meteorological conditions [44]. Incorporating external
forcing factors, such as air humidity and precipitation, is crucial for enhancing model
reliability and predictive accuracy [45-47]. Therefore, in this research question, the
goal is to extend the PINN framework to learn the effects of external factors on

dynamic system parameters directly from the data.

1.3 Thesis Structure

Throughout this dissertation, we present our work that addresses the posed research

questions. These contributions are supported by the following list of publications:

1. (PUB1) Ezosomes Classification from Surfaced Enhanced Raman Spectroscopic
Data Using a Multilayer Perception
Dinh Viet Cuong, John O’Sullivan, Nirod Kumar Sarang, Denise Burtenshaw,

Paul Cahill, Tia E Keyes and Mark Roantree (ready for submission)

2. (PUB2) Estimating Ozygen Uptake in Simulated Team Sports Using Machine
Learning Models and Wearable Sensor Data
Dermot Sheridan, Arne Jaspers, Dinh Viet Cuong, Tim Op De Beéck, Niall
M. Moyna, Toon T. de Beukelaar, Mark Roantree
PLOS ONE, February 2024

3. (PUB3) Analyzing Shared Bike Usage Through Graph-Based Spatio- Temporal
Modeling
Dinh Viet Cuong, V. M. Ngo, P. Cappellari and M. Roantree,
IEEE Open Journal of Intelligent Transportation Systems, vol. 5, pp. 115-131,
2024, doi: 10.1109/0JITS.2024.3350213

4. (PUB4) Graph-Based Optimisation of Network Ezpansion in a Dockless Bike

11

Physics Informed Neural Networks in Sparse Data Applications

Sharing System

Mark Roantree, Niamh Murphy, Dinh Viet Cuong, Vuong M. Ngo

2024 TEEE 40th International Conference on Data Engineering Workshops
(ICDEW), pp.48-55, 2024.

5. (PUB5) Managing Large Dataset Gaps in Urban Air Quality Prediction: DCU-
Insight-AQ at MediaFEval 2022
Dinh Viet Cuong, Phuc H Le-Khac, Adam Stapleton, Elke Eichlemann,
Mark Roantree, Alan F Smeaton
MediaEval’22: Multimedia Evaluation Workshop, January 13-15, 2023, Bergen,

Norway and Online, CEUR-WS Proceedings

6. (PUBG6) Adapting Physics-Informed Neural Networks to Improve ODE Opti-
mization in Mosquito Population Dynamics
Dinh Viet Cuong, Branislava Lali¢, Mina Petri¢, Binh Nguyen, Mark
Roantree

PLoS ONE 19(12): €0315762. https://doi.org/10.1371/journal.pone.0315762

7. (PUBTY) Physics-Based Dynamic Models Hybridisation Using Physics-Informed
Neural Networks
Dinh Viet Cuong*, Branislava Lalic*, Mina Petric, Vladimir Pavlovic, Ana

Firanj Sremac, Mark Roantree (Submitted for publication.)

The remainder of the dissertation is structured as follows:

o In Chapter 2, we present a detailed overview of the studies that form this disser-
tation. This chapter covers introductions to exosome classification and oxygen
uptake estimation, graph-based methodologies for analyzing bike-sharing sys-
tem data, and air quality forecasting. Additionally, we discuss the current state
of PINNs for both forward and inverse problems. A brief introduction to the

datasets used in the experiments is also included.

o In Chapter 3, we provide a comprehensive literature review across multiple

12

Physics Informed Neural Networks in Sparse Data Applications

domains relevant to this work. This includes the application of neural net-
works for exosome classification and oxygen uptake estimation, graph-based
approaches for analyzing bike-sharing system data, graph neural networks for
air quality forecasting, and related works of techniques for PINNs for forward

and inverse problems.

Chapter 4 addresses Research Question 1, focusing on the capability of
neural networks to tackle novel machine learning tasks. We present two
studies: exosome classification and oxygen uptake estimation. These works are

documented in PUB1 and PUBZ2, respectively.

In Chapter 5, we model data using graphs for Research Question 2. The first
part introduces a systematic framework for constructing and analyzing data
using graph representations, published in PUB3 and supported by PUBA4.
The second part presents a novel graph neural network approach for air quality

prediction, supported by PUBS5.

Chapter 6 investigates Research Question 3 which addresses difficulties in
training PINNs. Enhanced techniques are proposed to improve convergence
and accuracy when solving ODE systems, validated through the Lorenz system

and a case study on mosquito population dynamics. These results are published

in PUBSG6.

Chapter 7 examines Research Question 4, which seeks to improve PINNs for
parameter estimation in dynamical systems. The proposed method incorporates
the effects of external forcing on system behavior and is evaluated using
mosquito count observations. The proposed method is tested with observation

data of mosquito counts. This work is detailed in PUBY.

Finally, Chapter 8 summarizes the contributions of this dissertation and dis-

cusses its limitations and potential directions for future work.

13

Chapter 2

Problems & Datasets

In this chapter, we provide a detailed introduction to the projects explored in this dis-
sertation, along with an overview of the datasets used in each study. We first present
the application of neural networks to novel tasks, including exosome classification
using surface-enhanced Raman spectroscopy and oxygen uptake estimation from
wearable sensor data. Next, we introduce graph-based approaches, beginning with
the construction and analysis of bike-sharing system data as graphs and then the
development of graph neural networks with attention mechanisms. We then explore
physics-informed neural networks, focusing on improving their training methodolo-
gies and validating them on mosquito population modeling. Finally, we discuss
the application of PINNs to inverse problems in mosquito modeling, incorporating

enhancements to account for external forcing factors.

2.1 Neural Networks

2.1.1 Exosome Classification

Exosomes are tiny particles released by all cells and found in all body fluids. They
have shown to carry a proteomic profile that reflect the condition of their original
cells, which means they can provide a lot of information about a person’s health or

disease state [48]. Because of their widespread presence in the body fluids and a close

14

Physics Informed Neural Networks in Sparse Data Applications

relationship with their cells of origin, exosomes are becoming increasingly important
for diagnosing and treating various conditions. For example, they have been used
to discriminate between cancerous and non-cancerous cells, such as distinguishing
exosomes from pancreatic, lung, and breast cancer cell lines [49-51]. Exosomes have
also been used to evaluate disease progression [52].

Raman spectroscopy is a powerful tool for studying exosomes. It provides a
detailed molecular fingerprint of the sample. When combined with advanced data
analysis, Raman spectroscopy can provide valuable diagnostic output. To enhance
the amplitude of the signal, surface enhanced Raman spectroscopy is widely used,
particularly in bioanalysis [53, 54]. Using SERS to study exosomes has gained
popularity over the past few years, especially when paired with data analysis methods
that can effectively discriminate the signals. The initial focus of exosome analysis
using SERS has been linear data analysis techniques such as principal component
analysis (PCA) for classifying exosomes from various cellular origins. For example,
studies by [49] and [50] demonstrated the use of PCA and variants to differentiate
exosomes from pancreatic and lung cancer cell lines. However, linear methods often
face limitations when the replationship is nonlinear.

An alternative approach, neural network-based models, have shown significant
promise. The use of neural networks has been demonstrated to outperform traditional
linear models, thanks to their superior capability in extracting and learning non-linear
patterns from the data. Exosome SERS-based studies of breast cancer subtypes [51]
utilized a MLP model, achieving an impressive classification accuracy of 95.45%.
Similarly, deeper neural networks, including one-dimensional convolutional neural
networks (1D CNN) and residual networks (ResNet), have shown high performance in
classifying cancer-derived exosomes, such as in distinguishing lung cancer from healthy
controls [52]. These results indicate that neural networks are highly effective for
SERS analysis of exosomes. In this context, we would like to see if neural networks
can distinguish exosomes secreted from normal and dysfunctional human aortic

endothelial cells. These cells were grown under both normal and high blood sugar

15

Physics Informed Neural Networks in Sparse Data Applications

(hyperglycemic) conditions to simulate endothelial dysfunction, which is common in
cardiovascular inflammation.

Endothelial dysfunction is an early sign of developing atherosclerosis, especially
in people with type 2 diabetes (T2DM). Early detection of this dysfunction is
difficult because T2DM often starts without obvious symptoms. Therefore, we
need a way to distinguish between healthy blood vessel cells and those that are
starting to malfunction due to high blood sugar [55]. Exosomes released from
hyperglycemic endothelial cells might help us diagnose these early changes. Recent
research has shown that exosomes derived from endothelial cells play a crucial role in
the development of atherosclerosis [56]. Thus, analyzing circulating exosomes could
serve as an early biomarker for endothelial dysfunction. For this reason, it is crucial
to investigate the use of more robust models, like neural networks, to improve the

predictive accuracy for detecting this condition.

Dataset

Table 2.1 illustrates the breakdown of data. A total of 2,699 spectra were collected
from exosomes from normal media (i.e., healthy), those with hypoglycemia, and
those with hyperglycemia. They were recorded from 54 surfaces with each surface
yielding 50 spectra. Each spectrum consists of approximately 2,050 absorbance values
corresponding to the spectral range of 400 to 1,800 cm~!. An example spectrum is
illustrated in Figure 2.1. To reduce any potential negative impact of the imbalance
across classes on machine learning experiments, an even distribution across each

class is maintained with 18 surfaces or 900 spectra per class.

Table 2.1: Exosome Dataset. Fach surface corresponds to a single sample, and all
spectra from the same surface are acquired under identical conditions. Each surface
yields 50 spectra, with each spectrum represented as a vector of approximately 2,050

absorbance values covering the spectral range of 400 to 1,800 cm™!.

class Total Modeling set Test set

#surfaces | #spectra | #surfaces | #spectra | #surfaces | #spectra
Healthy | 18 899 16 799 2 100
Hypo 18 900 16 800 2 100
Hyper | 18 900 16 800 2 100

16

Physics Informed Neural Networks in Sparse Data Applications

Exosome Raw Spectrum

220

200 ~

180 ~

Absorbance

160

140 ~

120 -

400 600 800 1000 1200 1400 1600 1800
WaveNumber

Figure 2.1: An example exosome spectrum.

The dataset was randomly split into two subsets: a modeling set and a final test
set. Due to the fact that spectra from the same surface come from the same sample
and environment which make them very similar, spectra from the same surface are
kept in the same set. The test dataset consists of 6 surfaces, with 2 surfaces or 100
spectra per class while the modeling set has 48 surfaces in total and 16 surfaces or
800 spectra per class. Initially the modeling set is used for an 8-fold cross validation
hyper-parameter tuning. Then the set is again used as the training set for the final
neural network. At this point, the test dataset is used to determine the final accuracy

of the method.

2.1.2 Oxygen Uptake

Oxygen uptake (VO3), which measures the volume of oxygen consumed by the body
per unit of time, is an essential indicator of aerobic endurance [57]. For example,

soccer players with higher VO, max covering more total distance and intensity

17

Physics Informed Neural Networks in Sparse Data Applications

parameters during games, suggesting a direct relationship between high VO, max
and the ability to sustain greater physical demands [58]. Oxygen uptake is often
measured using maximal oxygen uptake tests, which are often performed in controlled
laboratory settings. This test involves analyzing the respiratory gases to calculate
oxygen uptake during a standardized exercise protocol. However, frequently taking
such invasive, standardized tests is often impractical, especially during competitive
periods. Therefore, it is important to find easier ways to track VO, over time, so
coaches and trainers can monitor training and fitness levels throughout the season.

Internal load, estimated oxygen uptake, primarily comes from the forces athletes
generate to move. These movements apply forces to the environment, which then react
back on the athlete’s body, creating external loads. While measuring internal load is
often expensive, and time-consuming, external load can be conveniently tracked using
lightweight, wearable sensors. Understanding how internal and external loads relate is
important because it helps us assess how an athlete is adapting to training, revealing
changes in their fitness level or fatigue [59]. However, accurately measuring these
movements is a challenge [60]. Among technologies for monitoring loads, like GPS
or local positioning systems [61], inertial measurement units (IMUs) are becoming
popular for tracking external load. An IMU typically combines 3-dimensional
accelerometers, gyroscopes, and magnetometers into one device, which captures
high-frequency data, making it ideal for monitoring high-intensity actions [62]. The
sensor signals are then processed into indicative metrics of external load, like mean
amplitude deviation [63], or accelerometry-based indicators by [64]. Wearable sensors
have also been used to estimate oxygen consumption by transforming their data into
different formats [63, 65, 66]. In this study, we aim to explore how well IMU devices
can predict oxygen uptake. Specifically, we experiment with different placements
of IMU sensors on the body to capture external loads and test different ways of
representing the sensor data for machine learning models.

Another challenge is to model the connection between data from wearable sensors

(external load) and the athlete’s internal response [60]. Classical machine learning

18

Physics Informed Neural Networks in Sparse Data Applications

models like random forests and XGBoost have shown promising results when using
inputs such as heart rate, breathing frequency, and body motion to estimate VO,
across different types of exercises, including walking, running, and cycling [65, 67, 68].
Despite that, these classical models often struggle with capturing complex, non-linear
relationships, especially when the data is sequential over time. Neural networks, such
as LSTM and temporal convolutional networks [69], have been employed to enhance
predictive accuracy and capture nonlinearities over time. Recent studies have shown
that these models outperform classical methods in estimating VO, during diverse
activities, leveraging inputs like heart rate, speed, and respiration to provide more
precise and personalized predictions [66, 70-72]. In Section 4.2, we compare the
performance of different neural network architectures, considering different sensor
placements and ways of representing data, to determine which approach works best
for estimating VO, during outdoor jogging and simulated team sports activities.
This comparison will help us understand the best method for using wearable sensors

to monitor oxygen consumption during high-intensity sports activities.

Data Collection

Data collection involved a group of 5 male team players where each participant
completed two separate sessions. The first session took place in a controlled laboratory
environment and included a resting phase, a sub-maximal exercise phase, and a
maximal graded exercise test on a treadmill. The second session was conducted on a
synthetic outdoor pitch and included a steady-state jogging trial and a simulated team
sports circuit, designed to mimic team sports activities. Throughout both sessions,
participants were equipped with multiple wearable sensors: a Cosmed K5 metabolic
gas analyser for breath-by-breath VO, measurements, a Zephyr BioHarness for heart
rate (HR) and breathing rate (BR) monitoring, and multiple Shimmer 3 inertial
measurement units placed on the torso, right tibia, and left wrist to capture high-
resolution motion data at 250 Hz. Figure 2.2 show examples of IMU raw data from

the Accelerometer and Gyroscope during Treadmill Running, Outdoor Running, and

19

Physics Informed Neural Networks in Sparse Data Applications

a Simulated Circuit. These sensors were synchronised to ensure accurate time-aligned

data across physiological and biomechanical domains.

204

1 H\ '“{‘\m‘ i ‘\‘(’f‘(““,\\“'\ Nﬂ ‘W J‘\ "{'{‘ w ﬂ‘q u \‘ ‘ ” |

Time

&

1

o

Acceleration
|
« o «

(a) Accelerometer signals during Treadmill (b) Gyroscope signals during Treadmill Run-

Running ning
’\ 1(
l

50 ' ’ l {
W
(c) Accelerometer signals during Outdoor (d) Gyroscopec signals during Outdoor Run-

Time Time
Running ning

\Jll t | ,
| ”’”‘"N f’,"n‘\\,“‘l‘?m}"{ '} “lﬁ\wh'

—204 ! -300

Angular Velocity
o

|
o o wu o O

Acceleration

i
-104 |
!

=151 H
H

Time Time

(e) Accelerometer signals during Simulated (f) Gyroscope signals during Simulated Cir-
Circuit cuit

Figure 2.2: Examples of IMU raw data during 3 different activities: Treadmill
Running, Outdoor Running, and a Simulated Circuit. The blue line is the z-axis,
the orange line is the y-axis and the green line is the z-axis.

Table 2.2 summarizes the dataset. The raw data consists of high-resolution sensor
data collected from multiple wearable devices. The dataset includes breath-by-breath
VO, measurements (in mL - kg™ - min~!), HR (beats per minute), and BR (breaths

per minute) at a sampling rate of 1 Hz. The IMU sensors capture six-axis motion data,

20

Physics Informed Neural Networks in Sparse Data Applications

including 3D accelerometer (z,y, z) and 3D gyroscope (angular velocity in z,y, 2),
at 250 Hz. These raw IMU signals are downsampled to 125 Hz to facilitate data
alignment with physiological parameters. The dataset also incorporates contextual
variables, such as activity labels (rest, treadmill running, outdoor running, and

simulated circuit) and individual participant characteristics (height, weight, age,

VOomax).
Table 2.2: Summary of the oxygen uptake dataset.
Description Value
Number of Subjects 5
Number of Columns 40

Oxygen uptake, Accelerometer,

Gyroscope, Heart rate, Breathing rate
Contextual Columns Height, Weight, Age, VOomax, Activity labels
Number of Rows 3,952,923

Breath Count 12,195

Total Duration of Data | 527 minutes

Sensor Columns

2.2 Graph Modeling

2.2.1 Graph Data Representation: Bike Sharing System

Modeling data as networks has gained considerable attention in the last two decades.
Network science provides powerful tools that yield insightful results in many different
areas, including social science ([73, 74]), transportation ([75, 76]), climate ([77, 78]),
biology ([79]), and brain activity ([80, 81]). A network, or graph, is composed of
nodes (vertices) and edges (links) that connect pairs of nodes. A common approach
to constructing networks involves treating spatial entities of interest as nodes, such
as cities, countries, grid cells, or transportation stations. Edges are used to represent
intrinsic connections, interactions, similarities in temporal behavior, or functional
relationships between nodes. A dataset can be transformed into a stationary network
for analyzing overall behavior, or into a time-varying network to explore the dynamic

nature of the system. Network analysis enables the identification of important

21

Physics Informed Neural Networks in Sparse Data Applications

locations, community structures, temporal patterns across locations, and interactions
between spatial elements over time.

In recent years, bike-sharing systems have become increasingly popular worldwide.
These systems offer a convenient way for travelers to pick up a bike, travel, and drop
it off. This approach offers a low-cost, efficient mode of transportation that addresses
the first-and-last mile problem, reduces urban traffic congestion, and increases the
overall efficiency of urban transportation systems. In addition, cycling is a healthy
and environmentally friendly means of travel. However, the rapid expansion of
bike-sharing systems also presents several challenging issues. The lack of bikes at
certain locations and the surplus at others can lead to a waste of resources and poor
user experiences. This raises the problem of effectively and efficiently rebalancing
the system. Understanding travel patterns and traffic demand is essential to solve
these challenges. Moreover, the distribution of pick-up and drop-off stations plays
a critical role in maintaining user satisfaction and system efficiency. Well-placed
stations provide great convenience for users, while too many stations can lead to
high maintenance costs. Thus, selecting optimal locations for stations is crucial for
managing a bike-sharing system effectively.

Traditionally, bike-sharing systems rely on docking stations placed at fixed
locations across a city, where customers could collect and return bikes. More recently,
dockless bike-sharing services have emerged, allowing bikes to be picked up and
dropped off at more flexible locations, referred to as virtual stations. It is the best
interest to continuously monitor bike usage and determine the optimal configuration
of these virtual stations. Essentially, the problem can be posed as follows: “How
similar is the current virtual station network to the optimal network configuration that
maximizes bike usage?” Normally, bike-sharing systems make their data available
in a tabular format. Additionally, station location and trip data must be accessible
at different levels of granularity to provide both a high-level overview of network
activity and more fine-grained analysis where needed. Any solution must account

for the fact that decisions made at a global level can have negative consequences

22

Physics Informed Neural Networks in Sparse Data Applications

for individual stations, while changes made locally to fix an issue may impact the
network as a whole. In Section 5.2, we would like to propose a systematic method
for applying complex networks in bike-sharing analysis. The framework should meet
requirements from bike sharing system that: is a high-level visualization to highlight
the busiest and least-used stations and routes, support time-based drill-downs for
analyzing sub-networks over flexible intervals, identify station similarities across
spatial and temporal dimensions, and conduct a comprehensive analysis of station
activity patterns in relation to all other stations to reveal both common and unique

travel behaviors.

Dataset

Our original dataset comprised data from 86 bike stations and recorded a total of
52,936 rentals between June 2020 and September 2021, as summarized in Table 2.3.
This dataset also includes detailed information on both pick-up and drop-off times
and locations. However, many entries in the dataset involve random pick-up and

drop-off locations, which require data cleaning before its integration into our graph

networks.
Table 2.3: Dataset Overview

Measures Original Dataset \ Cleaned Dataset
Duration of data June 2020 - Aug 2021

Station count 86 stations

Rental count 52,936 trips 36,181 trips
Max trips (per station) 2,775 trips 1,936 trips
Min trips (per station) 97 trips 82 trips

Firstly, we evaluate whether the pick-up and drop-off locations correspond to
existing stations. If these locations are within a 1km radius of at least one station,
they are reassigned to the nearest station. If they are located more than 1km away
from any station, they are excluded from the dataset. Additionally, trips have both
pick-up and drop-off locations at the same station, resulting in what we define as a
“loop-trip”. In this first step, 654 (approximately 1.2%) are reassigned, while 6,650

trips (around 12.5%) are removed.

23

Physics Informed Neural Networks in Sparse Data Applications

Secondly, certain trips in the original dataset may have been created due to system
errors or user mistakes. These errors could stem from app compatibility, mistakes in
app usage, and failures in properly starting or ending a trip. Specifically, very short
trips are defined as those lasting less than 10 minutes or covering a distance of less
than 100 meters, while very long trips are defined as those exceeding 1 day in duration.
The thresholds for these parameters are determined via a pre-experiment analysis
on the original dataset. As a result, in the second step, 10,105 trips (approximately
19%) are removed.

The cleaned dataset now contains 36,181 trips across 86 stations in Dublin city,
[reland, as summarized in Table 2.3. On average, there are 2,412 trips monthly
across all stations, with each station averaging 28 trips per month. The busiest
station recorded 1,936 trips over 15 months,equivalent to 129 trips per month, while
the least frequented station had only 82 trips over the same period, averaging 5 trips

per month.

2.2.2 Graph Neural Networks: Air Quality

Air quality, a critical aspect of environmental and public health, has gained increasing
prominence in recent years due to the rapid growth of urbanization and industrial-
ization [46, 82]. As air pollution continues to impact the health and well-being of
millions worldwide [83], the need to monitor and manage air quality has become
more urgent than ever. Air quality forecasting, a key component in addressing this
global challenge, serves as an indispensable tool for policymakers, researchers, and
citizens alike. By predicting future levels of air pollutants, air quality forecasting
enables informed decision-making and the implementation of effective strategies to
mitigate pollution, safeguard public health, and promote sustainable development.

One of the mainstream methods for air quality forecasting are mainly is data-
driven statistical approaches, commonly referred to as machine learning, have proven
effective in predicting air quality by relying on extensive historical data to identify

recurring patterns. Notable machine learning techniques include linear regression [84],

24

Physics Informed Neural Networks in Sparse Data Applications

multi-layer perceptron [85, 86], long short term memory [87, 88|, and graph neural
networks [89, 90]. However, current machine learning methods still face limitations
when it comes to effectively extracting patterns in the intricate time-space relation-
ships that govern air quality. Many existing models tend to focus on isolated spatial
or temporal dimensions, which may hinder their ability to fully capture the complex
inter-dependencies between time and space in air quality data. Other limitations
come from the mathematical model of the machine learning models. For instance,
RNNs typically employed for time series data, are known for their slow training and
prediction times due to their recurrent nature. RNNs also struggle to learn long-
term dependencies. In other models, graph neural networks can inherently capture
spatial relationships, they may not be effectively model the temporal dynamics of
spatial-temporal data, as the adjacency matrix is often predetermined or fixed along
the temporal axis.

To address these limitations, in Section 5.3, we introduce the attention mechanisms
into both spatial and temporal dimensions. Attention mechanisms enable the model
to identify which the most influential factors and allocate more focus on them. These
mechanisms have proven to be highly effective in enhancing the performance of
deep learning models across various domains, including natural language processing,
computer vision, signal processing, etc. By applying attention to both temporal
and spatial dimensions, information at a specific location is not only processed
individually but is also informed by data from other locations, the same happens
for information at a given timestep which is processed as a result of surrounding
timesteps or even those further away. Therefore employing temporal and spatial
attention layers concurrently enables the model to learn spatial-temporal information

simultaneously.

Dataset

Table 2.4 provides an overview of the dataset used in our experiments. The dataset

was collected from 10 monitoring stations located in Hanoi, Vietnam, over a period

25

Physics Informed Neural Networks in Sparse Data Applications

of more than 18 months, from January 1, 2020, to October 31, 2021. The locations of
these stations are shown in Figure 2.3. The dataset includes pollutant concentration
levels, specifically PM2.5 values, as well as auxiliary features such as temperature
and humidity. As an example, Figure 2.4 illustrates the PM2.5, humidity, and
temperature measurements recorded at a station throughout the data period. The
data was collected at intervals of a few minutes and subsequently pre-processed into
hourly timeframes. In total, the dataset comprises 115,600 records across the 10

stations, covering approximately 90% of the entire period.

Table 2.4: Summary of the air quality dataset.

Description Value

Locations 10 stations in Hanoi, Vietnam

Date Range January 1, 2020 — October 31, 2021
Columns PM2.5, Humidity, Temperature (Hourly Data)
Total Rows 115,600 rows

Figure 2.3: The 10 considered air quality monitoring stations in Hanoi, Vietnam

2.3 Physics-Informed Neural Networks

2.3.1 Physics Informed Neural Networks

Recent advancements in computational capabilities and the vast increase in data
availability have made data-driven approaches a leading strategy in both research

and applications. Typically, these approaches involve training neural networks to

26

Physics Informed Neural Networks in Sparse Data Applications

& o &S L LS &
v Qv QV Q QJ O Q Qv
,1,0 ,1,0 ,\9 ,1,0 ’19 ,19 ’1«0 ,1,0
DateTime
(a) PM2.5

100 +
90
80 -
70
60 -

Humidity (%)

50
40 -
30 A

0’0) 0’0 ¥ 0'\’ > \;0’\/ \;Q,b \;Q(o \;Q '»’00)
& & & & & & Q0 @
D D D D D D » D
DateTime

(b) Humidity

e

30 A

Temperatur

= = N N
o (S, o]
L L L f

S o N SN e &
& & & 9 & & 9 9
» » » » » D » »
DateTime

(c) Temperature

Figure 2.4: Examples of air quality data at a station.

27

Physics Informed Neural Networks in Sparse Data Applications

minimize discrepancies between model predictions and observed data. However, this
purely data-driven approach has some limitations, such as poor interpretability [91],
limited generalization on unseen data [28], and a need for large amounts of training
data [26].

Physics-informed neural networks [43] present an alternative for cases where the
data is governed by physical laws, often represented as differential equations. In this
approach, physical laws are embedded directly into the learning process by adding
extra loss functions, minimized along with the traditional data-fitting objective. This
approach attempts to both fit observational data and approximate the underlying
governing equations. As a result, PINNs are capable of respecting physical laws,
enhancing generalizability, and revealing latent patterns from data. This framework
can also solve forward problems (predicting system states) and inverse problems
(identifying system parameters) simultaneously. Applications of PINNs span a wide
range of fields, as surveyed in [26, 92-96].

Despite their potential, PINNs still face challenges in handling multi-scale and
stiff solutions [26, 41, 42]. Several advancements have been made to enhance
the original framework of PINNs introduced in [43]. These include new neural
network architectures [41, 42, 97, 98], adaptive activation functions [99, 100], and
improvements in multi-task training by adaptively adjusting loss weights [42, 101, 102].
Researchers have also experimented with the distribution of collocation points [103—
106], sequential learning approaches for preserving causality [107-110], and domain
decomposition methods to improve convergence and accuracy by training PINNs on
subdomains [111-113].

In Chapter 6, we aim to further extend the capabilities of PINNs to tackle
extremely complex and multi-scale dynamical systems, using mosquito population
modeling as a case study [44]. We propose a set of improvements aimed at overcom-
ing existing challenges in PINN training, which include systematic normalization
procedures, advanced loss weighting strategies for diverse scales of the governing

equations, more refined training phases for better initialization and convergence, and

28

Physics Informed Neural Networks in Sparse Data Applications

simplified domain decomposition techniques. By enhancing these methods, we aim
to make PINNs applicable to more complex, real-world dynamical systems. The
proposed method will be validated on the popular Lorenz system and applied to a
mosquito population model, an ODE system chosen for its practical relevance and

multi-scale dynamics across mosquito life stages within a large domain.

2.3.2 Inverse Problems: External Forcing

Physics-based dynamic models (PBDMs) are simplified representations of intricate
dynamical systems, capturing essential processes through a defined set of parameters
and variables. These models have extensive applications across research and technol-
ogy, ranging from predicting air temperature [114] to the spread of COVID-19 [115]
and cancer cell development [116]. “Physics-based modeling is powerful and effective
because it gives us a predictive window into the future based on understanding” [117].
This is possible because PBDM is designed to focus specifically on a particular class
of physical systems or processes, creating a generalized representation applicable
within that scope. However, the accuracy of PBDMs is highly dependent on their
parameterization, which is often suboptimal, resulting in uncertainties in their pre-
dictions. Refining these parameters is an inverse problem, where the objective is
to estimate model parameters based on observed data. This is a key challenge in
improving the performance of PBDMs. Solving inverse problems is essential for
enhancing both the predictive accuracy.

PINNSs offer a potentially powerful tool for solving inverse problems, especially
when dealing with limited data. PINNs have been applied to a diverse range of
inverse problems, including parameter estimation in nano-optics and metamateri-
als [118], subsurface flow modeling [119], structural engineering [120, 121], biological
systems [96, 122], civil structures [120], etc. However, existing implementations of
PINNs do not incorporate external factors that may influence system dynamics.

Accurate identification of both internal and external factors that influence the

state of a system over time is essential for ensuring the reliability and accuracy of

29

Physics Informed Neural Networks in Sparse Data Applications

model predictions. Data-driven determination of external forcing factors based on
historical data allows for the identification of new, or the better parameterization of
identified forcing factors and system responses. The identification of these forcing
factors and their modeling is an active research domain that lies at the intersection of
physical modeling and machine learning, and it extends into the areas of attribution
and causality analysis [45-47].

In Chapter 7, we build upon the PINN framework introduced in Chapter 6 where
only idealized annual variations in daily temperature is considered. However, based on
our understanding of mosquito population dynamics, we hypothesize that additional
meteorological factors such as air humidity and precipitation play a significant role
as external factors that influence the biological system. To incorporate a complete
set of measured meteorological data, we introduce a novel approach using parameter
networks that accept inputs from these meteorological conditions. Moreover, we
propose employing a Multi-branch Fourier-feature Multi-Layer Perceptron for the
parameter networks, which we expect to enhance generalization capabilities. Further-
more, we implement a modified absolute activation function that enforces parameter
non-negativity. The proposed framework is validated against real-world observational
data and benchmarked against traditional empirical formulas, demonstrating its

potential to improve upon existing models.

2.3.3 Mosquito Population Modeling

Arboviruses, transmitted by mosquitoes, can spread rapidly and cause major epi-
demics of diseases like malaria, dengue, Zika, Chikungunya, and West Nile Virus [123—
127]. Many approaches exist to model mosquito population dynamics and seasonal
variations to help predict disease risk, broadly categorized into mathematical and
statistical models. Mathematical models use laboratory and field data to parame-
terize life history traits such as the development and mortality rates of mosquito
life stages [44, 128-131]. Conversely, statistical models employ correlative and ma-

chine learning techniques to link vector abundance with various abiotic factors [132—-

30

Physics Informed Neural Networks in Sparse Data Applications

138]. Statistical models generally need long-term time-series data from mosquito
surveillance, which is labor-intensive and prone to multiple sources of bias.

In Chapters 6 and 7, we explore the feasibility of using PINNs trained on an
ODE model of mosquito population dynamics to bridge the gap between traditional
mathematical modeling and modern data-driven approaches. Our goal is to retain
the physical and biological constraints that govern these systems, while also taking

advantage of the power of data science and machine learning techniques.

Dataset

Table 2.5 summarizes the data used in our experiments in Chapter 7, which comprises
two distinct datasets collected from Petrovaradin, Serbia. The training dataset spans
from February 2016 to December 2017, covering 700 days, and includes 680 daily
records of mosquito trap counts. The test dataset, used for validation purposes, was
collected over a longer period from January 2000 to December 2007, encompassing
2,921 days. It consists of 179 weekly records gathered only during active mosquito
periods, a broader time scope with less frequent measurements. Both datasets focus

on counting the number of blood-seeking adult mosquitoes (Ay; + Ap).

Table 2.5: Mosquito Data for Experiments

Training Data \ Test Data
Location Petrovaradin, Serbia
Period Feb 2016 - Dec 2017 | Jan 2000 - Dec 2007
#Days 700 2921
Data Collection | Daily Weekly
#Records 680 179

We anticipate that not only air temperature, but also air humidity and precipita-
tion play active role of “forces” affecting our biological system. As external factors,
environmental factors considered include daily measurements of air temperature, rel-
ative humidity, and precipitation. Due to the absence of on-site meteorological data
during the study period, a linear regression model was developed using 2016,/2017

measurements from Petrovaradin and the Rimski Sancevi climate station. This

31

Physics Informed Neural Networks in Sparse Data Applications

model enables the estimation of meteorological values for the Petrovaradin site when
only Rimski Sancevi data are available.

As an example, Figures 2.5 plot the meteorological measurements over the two-
year training period. The air temperature has an average of 18.5 °C with a standard
deviation of 10, ranging from -8.9 °C to 40.3 °C. It shows a clear periodic pattern
resembling a sinusoidal wave, peaking during mid-year. In contrast, the relative
humidity averages 70.3% with a standard deviation of 13.6%, ranging from 34.5% to
100%. Tt exhibits less pronounced annual variation compared to temperature, with a
larger dip during the summer of the second year. Precipitation averaged 1.8 mm
with a standard deviation of 5.2 ranging from a minimum of 0.0 mm (indicating no
rainfall) to a maximum of 61.7 mm. Precipitation peaks occur in clusters of days,

likely corresponding to seasonal climatic events.

32

Physics Informed Neural Networks in Sparse Data Applications

Temperature (°C)

Relative Humidity (%)

Rainfall (mm)

30 4

20 4

10

=10 -

32

92

T T
152 212

T T T T
272 332 26 86
Day of Year

(a) Temperature

T T T T
146 206 266 326

100 +

90

80 A

70 4

60

50 4

40 -

32

92

T T
152 212

T T T T
272 332 26 86
Day of Year

(b) Relative Humidity

T T T T
146 206 266 326

60 -

50 A

40 A

30 ~

20 A

10 -

0_

A

32

92

152 212

272 332 26 86
Day of Year

(c) Rainfall

146 206 266 326

Figure 2.5: Meteorological measurements of the training period.

33

Chapter 3

Literature Review

In this chapter, we present a comprehensive literature review around neural network
and graph network deployment in real-world applications and also around more
customized forms of neural networks. Figure 3.1 outlines the chapter’s structure. In
terms of real world applications, the review focuses on related work for the domains
selected for this research: disease detection, oxygen uptake in athletes, air quality
detection and mobile networks. Finally, we present a literature review on physics-
informed neural networks, focusing on their training techniques and approaches to

managing the inverse problem associated with these types of neural networks.

Physics-Informed
Neural Networks
(Section 3.3)

Graph-based
Approaches

Neural Networks

(Section 3.1)

(Section 3.2)

* Exosome Classification
(Section 3.1.1)

* Oxygen Uptake Classification
(Section 3.1.2)

e Training Techniques
(Section 3.3.1)

e Learning Parameters

(Section 3.3.2)

 Bike Sharing System
(Section 3.2.1)

* Air Quality

(Section 3.2.2)

Figure 3.1: Literature Review Chapter Structure

34

Physics Informed Neural Networks in Sparse Data Applications

3.1 Neural Networks

3.1.1 Disease Prediction Using Exosomes

Discrimination of cancer cell-derived exosomes has been a primary focus in exosome
SERS studies. Carmicheal et al. [49] reported the SERS of exosomes from cell culture
medium, demonstrating that principal component differential function analysis (PC-
DFA) enabled effective classification of exosomes derived from both a healthy cell
line and two pancreatic cancer cell lines. Their model achieved a cross-validation
with 90.6% sensitivity and 97.1% specificity. Similarly, researchers in [50] conducted
several studies highlighting excellent discrimination between cancerous and non-
cancerous exosomes, using principal component analysis (PCA) to identify tumor-
derived fingerprints on gold nanoparticle substrates. The study demonstrated that
exosomes from two lung cancer cell lines could be effectively distinguished from
those originating from normal alveolar lung cells. Furthermore, the study [50] also
investigated specific surface protein compositions of exosomes from non-small cell
lung cancer cells, revealing strong correlations with several protein markers, which
suggested these proteins could serve as exosomal surface markers for cancer diagnosis.
PCA analysis was once again employed to differentiate these markers.

Recently, neural network-based methods have emerged as a promising approach
to enhance the analysis of SERS data. Neural networks have been applied in several
SERS exosome studies and appear to offer superior analytical power for evaluation
and discrimination of complex Raman signals and particularly for systems like
exosome SERS where there may be significant variation in SERS signature. In
examples to date, exosome SERS-based neural network analysis have been collected
from mixtures of exosomes [51, 52, 139]. Specifically, the authors in [139] illustrated
the potential of machine learning approaches in differentiating signals from exosomes
derived from distinct cell lines. Methodology by [51] employed neural networks to
distinguish SERS signals from exosomes derived from four breast cancer subtypes,

using 8265 SERS spectra to train a multi-layer perceptron (MLP) for this four-class

35

Physics Informed Neural Networks in Sparse Data Applications

classification task. Their model achieved an accuracy of 95.45%, outperforming
several other models, including principal component analysis with linear discriminant
analysis (PCA-LDA), partial least squares discriminant analysis (PLS-DA), support
vector machines (SVM), and one-dimensional convolutional neural networks (1D
CNN). Additionally, PCA analysis of the MLP’s second last layer was shown to be
able to evaluate surgical outcomes of breast cancer subtypes. In the study [52], a
deep neural network approach was used to classify exosomes from normal and lung
cancer cell lines. A one-dimensional residual convolutional neural network (similar to
ResNet [140]) was trained on 2150 SERS signals derived from 20 healthy controls and
43 lung cancer patients, achieving an accuracy of 95% with an area under the curve
(AUC) of 0.912. The values from the final layer were subsequently used to perform
PCA, which revealed that the similarity among exosome groups was proportional to
cancer progression.

Summary. Two primary approaches are used in exosome SERS signal classi-
fication: one approach employs the first few principal components, typically two,
from PCA to cluster the signals, while the other approach inputs the SERS signal
vectors directly into machine learning models, particularly neural networks. While
performances vary across studies, neural networks, including MLPs and CNNs, have
consistently shown superior results. These studies explore the capabilities of exosome
SERS signals in the context of cancer diagnostics.

We distinguish our research by taking these approaches further. Our investigation
will also focus on whether neural networks could discriminate exosomes secreted
from normal and dysfunctional human aortic endothelial cells (HUAECs) where
cells were grown under normal and hyperglycemic conditions to promote endothelial

dysfunction. This remains an open research topic for both biologists and chemists.

3.1.2 Oxygen Uptake Estimation

Many studies have focused on estimating oxygen uptake (VO,). Traditional methods

often rely on manually defined mathematical formulas that relate VO5 to predictor

36

Physics Informed Neural Networks in Sparse Data Applications

variables, with model parameters often holding physical or physiological meaning [141—
143]. While these models are more interpretable, they are limited by the number
of variables they can handle and the complexity of mathematically capturing their
relationships. Machine learning models have emerged as a powerful alternative for
estimating oxygen uptake, capable of complex nonlinear relationships [144].

Several studies have leveraged wearable sensors and machine learning to estimate
VO, during daily activities. Beltrame et al. [65] utilized data from wearable sensors,
such as heart rate, hip acceleration, ventilation, and breathing frequency, captured
by a smart shirt. They employed a random forest model to predict VOy dynamics.
Wang et al. [67] estimated VOq across various activities, including stationary postures
(lying, sitting, standing), walking, treadmill running, and recovery phases. Using data
from a medical-grade wearable vest transformed into features related to heart rate,
respiratory rate, lung ventilation, and exercise intensity, they applied XGBoost, linear
regression, and random forest models. The XGBoost model achieved the highest
accuracy, reducing mean absolute error by 54.7% compared to heart rate-only models.
In unsupervised daily activities, the work [145] used wearable sensors monitoring
heart rate, breathing rate, minute ventilation, total hip acceleration and physiological
inputs (sex, age, weight, height, and various vital signs) to predict VO, max via
support vector regression. The model showed a high correlation with traditional
cardiopulmonary exercise testing.

Focusing on treadmill walking, the study [68] used easily accessible inputs like
treadmill speed, grade, body mass, sex, exercise/recovery time, and heart rate.
They implemented a multilayer perceptron to optimize VO, dynamic predictions.
Amelard et al. [70] estimated VO, during cycle ergometer exercise using work
rate data and data provided by a smart shirt, including heart rate, breathing
frequency, and minute ventilation. Their results indicated that temporal convolutional
networks and long short-term memory networks outperformed random forest models
across various intensities. Further research by the same team demonstrated that

Temporal Convolutional Networks (TCNs) accurately predict slower VO, kinetics

37

Physics Informed Neural Networks in Sparse Data Applications

with increasing exercise intensity [71]. Davidson et al. [66] employed an inertial
navigation system combined with GPS and a heart rate monitor to estimate VO,
during walking and running. They trained an LSTM model using inputs like speed,
speed change, cadence, vertical oscillation, and heart rate. In cycling activities,
Zignoli et al. [72] trained personalized recurrent neural networks using heart rate,
mechanical power, cadence, and respiratory frequency. Their neural network approach
showed superior predictive power compared to traditional mathematical models for
VO, kinetics.

Véha-Ypya et al. [63] compared features derived from raw three-dimensional
acceleration signals during maximal track or treadmill tests. They found that the
mean amplitude deviation (MAD) metric performed well for walking, while other
metrics showed less consistent accuracy during running. Research by [146] highlighted
that incorporating gyroscope data with accelerometer readings can enhance fatigue
detection in runners.

Summary. Advancements in machine learning have significantly improved VOq
estimation by using data from wearable sensors and advanced neural networks.
These studies demonstrate enhanced accuracy over traditional methods by capturing
complex physiological dynamics across diverse activities, from daily living tasks
to structured exercises. Despite this work, there remains a gap in systematically
exploring how different combinations of inertial measurement unit (IMU) sensors, data
representations, and neural network architectures impact VO, estimation accuracy.
This research will address this gap by experimenting with various feature sets (IMU

sensor combinations) and evaluating different neural network models.

38

Physics Informed Neural Networks in Sparse Data Applications

3.2 Network Models

3.2.1 Transport Networks: Bike Sharing
Transport Network Construction

Complex network analysis techniques have been widely applied to study bike-sharing
systems across the globe. In these studies, bike-sharing data are represented through
network structures and by analyzing these networks, researchers can reveal funda-
mental characteristics of bike-sharing among the population. The construction of
networks varies based on the objectives of each analysis and network modeling varies
depending on the purpose of the analysis. Most commonly, traffic flows are analyzed
by viewing spatial locations as nodes, with trips forming edges between each trip’s
origin and destination [147-153].

Most of the systems studied are dock-based, meaning users must rent and return
bikes at designated stations. Therefore, these stations are typically considered as
nodes in network models. However, dockless systems, which allow users to pick up and
drop off bikes anywhere, introduce challenges in data representation and modeling,
requiring novel approaches. For example, authors in [147] divided the study area into
a grid of squares, treating each square as a node, while Yang et al. [148] modeled
physical road segments as nodes. Some studies employ an alternative approach by
grouping locations and representing each group as a single point in the network.
For instance, the study [149] classified bike stations based on their surrounding
environment, and researchers in [150] utilized clustering techniques to group stations.

Other methods for constructing complex networks have also been developed
to analyze bike-sharing systems. Batista et al. [151] constructed a network where
each node represents a specific region within which vehicles travel at the identical
average speed; nodes are connected if their corresponding regions are adjacent.
This network facilitates the study of relationships between factors such as average
travel distance or travel time and the levels of exhaust emissions along bike paths.

The authors in [152] trained a graph convolutional neural network to capture the

39

Physics Informed Neural Networks in Sparse Data Applications

correlations among stations and predict hourly demand at the station level. The
correlation matrix learned during this training process serves as the adjacency matrix
for constructing a network, offering insights into the spatial relationships between
stations. Additionally, Ghandeharioun et al. [153] developed road networks based on
pairwise edge correlations to estimate route travel times.

Although complex network analysis has been widely applied in studying bike-
sharing systems, the literature lacks a systematic framework for network construction
and analysis, especially with regard to optimizing networks to enhance their analytical
power. Furthermore, the potential of correlation-based networks to reveal spatiotem-
poral patterns remains largely unexplored within the context of bike-sharing systems
Therefore, this study aims to develop a formal framework for applying complex
network methodologies and to promote the use of correlation-based networks in

bike-sharing data analysis.

Network Dynamics

Beyond the static properties of networks, the evaluation of dynamics of bike-sharing
systems is also essential. Thus, constructed networks need to be aggregated over
different time intervals and periodicities. The choice of these intervals typically
depends on the analytical objectives or guidance from domain experts. For instance,
authors in [148] assessed the impact of a newly introduced metro line on travel flows
within a bike-sharing system in Nanchang, China, by comparing network structures
from five days before and after the metro’s introduction. Similarly, Jianmin et
al. [154] examined changes in bike-sharing systems in response to the outbreak and
recovery phases of the Covid-19 pandemic by analyzing networks projected onto
the pandemic waves. Studies by [155] and [156] also successfully identified distinct
patterns in bike usage across weekdays and weekends, as well as different times of
day, through network analysis.

In these studies, time interval selection is predetermined based on specific research

interests, which may not always be the ideal choice. Without domain knowledge,

40

Physics Informed Neural Networks in Sparse Data Applications

identifying patterns and anomalies across the time dimension and selecting relevant
periods for analysis can be challenging. Analyzing every individual time step would be
both time-consuming and inefficient. To address this, we propose a clustering-based
approach to group similar time steps, allowing for the analysis of these aggregated

representations instead.

Network Analysis

In terms of network analysis of bike-sharing networks, similar methodologies are often
used, including network metrics, community detection, and the use of visualization
tools supported by domain knowledge. Global metrics provide insights into the
overall structure of the network, while local metrics reveal the roles or properties of
individual nodes within it. Commonly used metrics include the number of nodes,
number of edges, as well as degree and strength, which indicate the level of activity
and connectivity at a given location [147, 157].

Austwick et al. [156] identified consistent patterns in strength and edge weight
distributions across networks constructed from various bike-sharing systems. Mean-
while, the studies [148, 154] recommended incorporating a diverse range of network
properties to capture multiple aspects of network structure. These properties include
connectivity metrics (such as degree and node flux), spatial distribution (like the
clustering coefficient), and interaction metrics (accessibility), as well as indicators of
network stability (network connectivity), efficiency (network efficiency), and equity
(Gini coefficient). Additionally, other centrality measures, such as betweenness and
PageRank, used by [148], have proven valuable in this context.

Community analysis, a prominent approach in network research, plays an essential
role in understanding the structure of networks. Community detection algorithms
partition the network into distinct communities, where nodes have stronger con-
nections within communities than between them. The Louvain algorithm [158] is
among the most widely used methods for this purpose. However, Shi et al. [150]

observed that different algorithms yield different community structures depending

41

Physics Informed Neural Networks in Sparse Data Applications

on the measurement criteria. Although network analysis techniques are now well-
established, they are typically applied to networks where edges represent trips. Our
goal is to extend these approaches, including visualization, metrics such as strength,
closeness, betweenness, local clustering coefficients, and community detection, to
more complex, correlation-based networks.

Summary. While numerous studies have applied network-based analyses to
bike-sharing systems, several key limitations remain in current research: (1) existing
studies lack more systematic methodologies for applying complex networks in bike-
sharing analysis; (2) network construction is frequently overlooked meaning this
process lacks the optimization necessary for more effective network analysis; (3)
when analyzing system dynamics, the choice of time periods mainly relies on domain
knowledge, such as grouping hourly data by similar patterns or identifying evolving
periods for stations; and (4) correlation networks hold potential for uncovering both
spatial and temporal patterns, yet their application in network analysis remains

under explored. Our approach will address each of the existing limitations.

3.2.2 Graph Neural Networks: Air Quality

Statistical methods, particularly neural networks, have become the most popular
approach to the air pollutant concentration forecasting problem [159]. Beyond simple
models like linear regression [160], support vector machines [161, 162], and MLP [85,
86], recent neural network architectures are designed to exploit both the time-series
nature of the inputs and the spatial information of the prediction locations and their
surroundings. Typically, recurrent neural networks such as long short-term memory
(LSTM) [163] and gated recurrent units (GRU) [164] are used for time-series data,
while graph neural networks (GNNs) [38] are used to model spatial relations among
prediction locations. Convolutional neural networks [165], popular in image and
signal processing, are also suitable for time-series data and can model spatial aspects
in air quality problems. Moreover, attention mechanisms have recently proven to

be powerful tools for modeling sequence inputs [18, 166], addressing scaling and

42

Physics Informed Neural Networks in Sparse Data Applications

long-term dependency issues in recurrent neural networks. Attention is also suitable
for more complex data structures like graphs and networks [167]. In this section,
we investigate some typical examples of applying these technologies to air quality
problems, covering recurrent neural networks, graph neural networks, and attention

mechanisms.

Recurrent Neural Networks

Recurrent neural networks are traditional neural networks for working with time-
series data, and air quality time-series are no exception [87, 88, 168-172]. Authors
in [170] introduce a novel encoder-decoder model with an improved LSTM and apply
it to air pollutant predictions. They modify the LSTM cells by adding new gates
to enable the model to learn better long-term features and temporal correlations
among different data features. The new architecture outperforms traditional LSTM
and GRU encoder-decoder models in air quality prediction across 10 cities in China.
The study [172] stacks time-delayed historical data from all monitoring stations
as input into an LSTM model, allowing both spatial information and temporal
correlations to be learned simultaneously within the LSTM cells. Researchers in [168]
use a model combining LSTM and fully connected neural networks to predict PM2.5
values over the next 48 hours. The LSTM component models local changes in
PM2.5 concentrations along with meteorological and weather features, while the fully
connected module combines outputs from the LSTM to model spatial correlations
among different locations within a city. Similarly, Wang et al. [169] apply a hybrid
sequence-to-sequence architecture to predict ground-level ozone concentrations in
Beijing, China, capable of handling both spatial and temporal data.

Summary. The above uses of recurrent neural networks are mostly for feature
extraction along the temporal dimension of the data. Spatial features are considered
either through fully connected layers or by stacking all data into a tensor. These
attempts at incorporating spatial structure into models remain overly simplistic and

should be further improved. Furthermore, one disadvantage of recurrent networks is

43

Physics Informed Neural Networks in Sparse Data Applications

their computational speed, as each time step requires outputs from the previous step,
leading to slow training and prediction for long sequences. Addressing this drawback
is necessary to scale to longer historical data and their boost applicability to real

world applications.

Graph Neural Networks

Graph neural networks (GNNs) are popular for modeling spatial structures and are
often combined with recurrent neural networks to learn spatiotemporal dependencies
in air quality forecasting [89, 90, 173-175]. Authors in [90] incorporate graph
convolutional layers and LSTM into a single neural network to model and forecast
future hourly PM2.5 concentrations. They construct a network structure between
air quality stations based on distances, allowing the model to extract spatial features
from each location and its neighbors. The extracted spatial signals are input into
an LSTM layer to model time-dependent patterns. The model, tested with data
from the North China Plain, shows superiority over traditional neural networks like
MLP and LSTM. Gao et al. [173] integrate graph structure into LSTM cell to form
a graph-based LSTM (GLSTM), where the cell considers information from other
locations based on a trainable adjacency matrix, enabling simultaneous learning of
spatial and temporal features. The trainable adjacency matrix allows the model
to learn spatial correlations automatically, showing positive results over previous
models [90] using data from Gansu Province, China. In contrast, Zhou et al. [174]
incorporate theory into the training of GNN-LSTM models, guiding the model to
learn theory-backed spatial information and improve generalizability. At larger scale,
the work [175] applies GNNs hierarchically at station and city levels, with edge
weights determined by geographic similarity and dynamically influenced by wind
direction, effectively capturing large-scale spatial correlations during training.

In general, GNNs have proven suitable for modeling spatial correlations. However,
current works often use a single adjacency matrix to represent spatial relationships,

which can be disadvantageous as these relationships can be dynamic and depend on

44

Physics Informed Neural Networks in Sparse Data Applications

many factors. More complex mechanisms in GNNs, such as attention, can provide

more powerful spatial modeling.

Attention Mechanism

Attention mechanisms have also been applied to enhance recurrent and graph neural
network architectures. In air quality problems, attention layers have been used either
to enhance LSTM/GRU networks [169, 176-178] or to model spatial interactions
between locations [179, 180]. When applied to the temporal dimension, attention
is usually used near the prediction stage, especially in the decoder part, where it is
most needed to give attention to proper timesteps. Authors in [176] use attention
layers to generate inputs to the decoder as weighted outputs of the encoder. [169]’s
model applies the attention mechanism right before making predictions. Similarly,
researchers in [178] apply attention-enhanced LSTM with features extracted from
images to forecast PM2.5 values. Tu et al. [177] improve the mechanism by adding a
“time decay factor,” making the model give more attention to recent time points and
reducing the impact of earlier information. Unlike traditional attention methods,
they also utilize hidden states of previous steps in the decoder during the attention
process, allowing the model to react to changes even in the predicted future.

Attention mechanisms also improve spatial graph neural networks by adaptively
weighting other locations based on the current input. Huang et al.[179] propose a
spatial attention operator based on graph attention networks [167] and embed it
into recurrent neural networks. They enhance attention by introducing a self-loop
normalized adjacency matrix constructed based on geographic distances, providing
additional geometric information. The study [180] proposes an attention-based
parallel neural network architecture for PM2.5 prediction, where attention is applied
to both temporal and spatial dimensions simultaneously, allowing the model to
extract spatial and temporal features concurrently before combining them for further
processing.

Summary. Attention mechanisms are generally used to support recurrent neural

45

Physics Informed Neural Networks in Sparse Data Applications

networks in the temporal dimension and as advanced GNN architectures. In domains
such as natural language processing, self-attention has completely replaced recurrent
mechanisms. Theoretically, this can also be applied to time-series data in areas such
as air quality prediction. Combining this temporal attention with spatial attention
will be a consideration for our research. Furthermore, attention mechanisms provide
a great tool for explainable machine learning, as they estimate the importance of

factors contributing to predictions.

3.3 Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) have recently attracted significant inter-
est as a promising approach for addressing problems involving partial differential
equations (PDEs), as proposed in the conventional PINN framework by [43]. These
frameworks have demonstrated their effectiveness in solving both forward [181] and
inverse problems [96, 182] related to simple dynamical systems governed by ordinary

differential equations (ODEs).

3.3.1 Training Techniques

While PINNs have proven effective in various scenarios, challenges remain in their ap-
plication to complex systems, particularly those exhibiting nonlinearities, multi-scale
behaviors, or chaotic dynamics [41]. To address these issues, advanced techinques,
including loss re-weighting [42, 101, 102, 183], data re-sampling [103-106], and

domain decomposition [111, 112] have been proposed.

Normalization

Normalization is a crucial yet often overlooked step in the training of PINNs. Moseley
et al. [113] employed a strategy involving the division of input domains and applying
individual input normalization beside a unified global output normalization within

their model computations. In the work [183], the authors recommended not only nor-

46

Physics Informed Neural Networks in Sparse Data Applications

malizing the inputs and outputs of the neural networks but also non-dimensionalizing
the differential equations in the objective functions. In the studies by [96, 184]
and [122], input and output scaling layers were added that multiply the inputs and
outputs by their average magnitudes, which occurs at the model level and thus affects

the objective functions and training efficiency.

Loss Re-weighting

PINNSs is a multi-task learning framework, incorporating multiple losses for data
fidelity and adherence to physical laws. Due to the different scaling and convergence
rates of these losses, imbalances can arise, potentially leading the model to converge
to incorrect solutions as one objective may disproportionately dominate the training
process. A common solution is the re-weighting of losses to achieve more balanced
training. Wang et al. [42] demonstrated that one of the primary training challenges
in PINNs stems from imbalanced gradients propagated from different losses. They
proposed an adaptive approach that adjusts the weights of the losses based on the
ratio between the maximum gradient magnitude of the physics loss and the mean
gradient magnitude of the data loss with respect to the model parameters. Similarly,
authors in [183] used the ratio of the Lo-norm of the gradients, while researchers
in [101] balanced the variances of the gradients. In the work [102], they applied
the Neural Tangent Kernel to demonstrate the faster convergence of physics law
losses compared to initial and boundary condition losses, proposing an algorithm

that equalizes their convergence rates by monitoring kernels of the losses.

Collocation Points

Collocation points (residual points), which are where physics constraints are mini-
mized, are traditionally sampled uniformly at random from the input domain. While
effective for simple systems, this approach is often not optimal for systems with steep
derivatives. To address this, residual-based adaptive refinement (RAR), proposed

by [103] iteratively identifies and incorporates new collocation points corresponding

47

Physics Informed Neural Networks in Sparse Data Applications

to the highest differential equation residuals. This adaptive strategy directs model
training toward the most challenging regions of the domain. Similar strategies have
been explored in [104], where collocation points are sampled based on a probability
distribution proportional to residuals, and in [105], where importance sampling
approximates the distribution using the 2-norm of loss gradients. In the study [106],
generative models were used to derive improved collocation point distributions.
Sequential training approaches, such as those in [108], divide the input domain
into subdomains and use predictions from earlier subdomains as initial conditions
for subsequent ones, while authors in [109] leverages predictions from all prior
subdomains to enable a single global approximation network. A progressive learning
framework is proposed in [107, 185], wherein collocation points are uniformly sampled
from a dynamically expanding subdomain. This strategy respects time causality,
enabling the accurate predictions of dynamical systems’ evolution. Wang et al. [110]
also emphasizes time causality by weighting the residuals to prioritize earlier time

points.

Domain Decomposition

For large input domains, PINNs often struggle to converge effectively. Domain
decomposition techniques alleviate this challenge by partitioning the domain into
smaller subdomains and training separate PINNs for each. Continuity and smoothness
across subdomain boundaries are enforced using additional interface losses. In the
work [111], two interface conditions are added: one ensuring continuity of solution and
the other enforcing conservation laws at the interfaces. For inverse problems, these
conditions extend to parameter values at the interfaces. These methods are extended
in [112] to accommodate general differential systems by ensuring the continuity of
equations themselves. In studies by [113, 186], an implicit approach is adopted
using a gating function. For practical applications where high-order smoothness is
less critical, we simplify the approach in [112] by enforcing only value continuity

at the interfaces. This strategy ensures initial condition consistency and maintains

48

Physics Informed Neural Networks in Sparse Data Applications

continuity across subdomains without introducing unnecessary complexity.
Summary. Applying PINNs to complex systems that exhibit non-linearities,
multi-scale behaviors, or chaotic dynamics remains a significant challenge. Advanced
training techniques such as normalization, loss re-weighting, sampling of collocation
points, and domain decomposition have been proposed to improve the training of
PINNs. While these approaches have demonstrated a degree of problem solving,
further improvements are necessary to make PINNs suited to highly multi-scale and
complex dynamical systems, such as mosquito population modeling in [44]. Adjust-
ments for more complex systems involve a systematic approach to normalization,
enhancing loss weighting strategies to accommodate diverse equation scales and
behaviors, incorporating more training phases to improve model initialization and

convergence, and simplifying domain decomposition approaches.

3.3.2 Learning Parameters

PINNs have demonstrated a powerful capability for solving inverse problems, with
numerous studies exploring their effectiveness in parameter estimation across various
domains. An inverse problem, in this context, refers to the process of determining
unknown parameters of a system from observed outputs. Traditionally, the approach
involves substituting the unknown parameters with trainable variables if these
parameters remain constant throughout the system, or replacing them with neural
networks that depend on coordinates if the parameters vary with the system state.
These trainable variables or neural networks are jointly trained with the neural
networks that approximate the state variables [43, 182]. For example, Chen et al. [118]
utilize this approach to solve inverse problems in nano-optics and metamaterials,
whereas authors in [119] apply it to subsurface flow problems by replacing the
unknown constitutive relationships with neural networks that take either time or the
system state as inputs, depending on the assumed dependencies of these relationships.

Similarly, researchers in [120] identify parameters in civil structures by applying

PINNSs to solve inverse problems, incorporating physical constraints into the loss

49

Physics Informed Neural Networks in Sparse Data Applications

function to ensure solutions remain physically and mechanically consistent. Nath
et al. [187] identify unknown parameters and predict the dynamic behavior of a
mean value model of a diesel engine. In addition to the main neural networks,
empirical models of other unknowns are replaced with pre-trained neural networks
trained beforehand with laboratory data. Furthermore, authors in [121] solve inverse
problems in structural engineering by leveraging transfer learning to fine-tune pre-
trained models for new training, thereby accelerating convergence and enhancing
robustness when handling sparse or noisy data. In the study of [188], PINNs
are applied to solve inverse problems in unsaturated groundwater flow, where the
problem is reformulated into a double-loop structure: the outer loop optimizes
unknown parameters using the global Cross Entropy algorithm [189], while the inner
loop employs a conventional gradient-based algorithm to solve the equations.

Work in [190] demonstrates the use of PINNs for parameter estimation in reduced-
order models of blood flow in the aorta. They employ a two-phase training procedure:
initially training the state neural network with fixed initialized parameters, followed
by simultaneous training of both the state and parameter networks. This splitting
approach facilitates better adaptation of the network to physical laws before esti-
mating specific parameters. Berardi et al. [191] apply inverse PINNs to transport
models in porous materials, incorporating an additional term into the loss function
to regularize the parameters toward reference values, thereby improving the accuracy
of ill-posed inverse problems. Jagtap et al. [192] investigate solving inverse problems
involving in supersonic flows, where they enforce positivity constraints on parameters
by applying a maximum function between the output of the neural network and a
small positive constant, similar to using a ReLU activation function. Method by [193]
applies PINNs to infer the peridynamic kernel for a nonlocal wave equation, leverag-
ing a radial basis function activation layer to enhance kernel shape approximation.
Non-negativity and symmetry requirements on the kernel function are enforced by
constraining trainable parameters and including symmetry terms in the loss function.

Research by [96] integrates ODEs into neural networks to infer system dynamics

50

Physics Informed Neural Networks in Sparse Data Applications

and estimate parameters for biological models, enhancing the neural networks with
additional feature layers to capture characteristics like periodicity or exponential
trends.

In nuclear reactor modeling, authors in [194] combined PINNs with the Theory
of Functional Connections to solve stiff ODE systems, such as Point Kinetics Equa-
tions. Similarly, Daryakenari et al. [122] integrated PINNs with eXtreme Theory of
Functional Connections and symbolic regression to estimate parameters and identify
missing physics in systems biology. In this framework, PINNs help integrate partial
prior knowledge about ODE systems while discovering unknown functions and esti-
mating parameters. The values derived from the neural networks after training are
utilized to derive mathematical formulas via symbolic regression. Similar methodolo-
gies are employed by [195, 196], and [197] to solve inverse problems involving the
Lorenz system, the Allen-Cahn equation, and reaction-diffusion models related to
Alzheimer’s disease, respectively.

Summary. The application of PINNs for solving inverse problems across various
domains relies on techniques reviewed in Section 3.3.1, including normalization,
loss balancing, and domain decomposition, with only minor adaptations. Most
studies solve inverse problems by directly learning the mapping from coordinates
to parameters, without incorporating external forces that influence the dynamics
of the system. However, research should consider the external forces that influence
internal system parameters and jointly learn the mapping from external factors to
system parameters alongside the system state. This approach would not only enable
neural networks to learn the relationships between external factors and the system
parameters but also allows the model to be reused under new data, which is not the

case with current methods.

3.4 Conclusions

In this chapter, we presented a comprehensive review of the literature on the

deployment of neural networks and graph networks in real-world applications, in

o1

Physics Informed Neural Networks in Sparse Data Applications

addition to the physics-informed neural networks. We examined how machine learning
and neural networks have been applied to disease prediction using exosomes and to
oxygen uptake estimation. We also explored the construction and analysis of complex
networks in bike-sharing systems and investigated neural network architectures for
air quality forecasting. Furthermore, we delved into the techniques needed when
applying PINNs to complex systems with nonlinearities and multi-scale behaviors,
discussing advanced training techniques such as normalization, loss re-weighting,
adaptive sampling, and domain decomposition for both forward problems and the
learning of dynamical system parameters.

Despite significant advancements, several gaps exist in current research across
multiple domains. In exosome SERS signal classification, it remains unexplored
whether neural networks can discriminate exosomes from normal and dysfunctional
cells. In oxygen uptake estimation, machine learning has improved accuracy using
data from wearable sensors and advanced neural networks. However, a systematic
exploration of how different combinations of inertial measurement unit sensors, data
representations, and neural network architectures affect VO, estimation accuracy is
lacking. In Chapter 4, we will address both of these issues through: the application
of neural networks; and by experimenting with various IMU sensor combinations,
exploring data representations, and evaluating different neural network models to
identify optimal configurations for VO, estimation.

In terms of complex network approach, graph-based analysis has been applied in
bike-sharing systems, but a framework for network construction and optimization is
lacking, especially correlation-based networks that can reveal spatiotemporal patterns.
In Chapter 5, these limitations are addressed by developing a framework for network
analysis, developing a clustering-based approach for time-step analysis, and extending
network techniques to more correlation-based networks. The same chapter will be used
to experiment with attention mechanisms to address the computational inefficiencies
of RNNs for long sequences and also to address the relianced by GNNs on static

adjacency matrices that fail to capture dynamic spatial relationships.

52

Physics Informed Neural Networks in Sparse Data Applications

In Chapters 6 and 7, we will address the limitations of PINNs by introducing a
normalization procedure, enhancing loss weighting strategies, incorporating additional
training phases, and simplifying domain decomposition approaches. We will also take
into account the effect of external factors on internal system parameters, learning

the mappings from these factors to the parameters.

33

Chapter 4

Deployment of Neural Networks in

Real-Life Applications

In this chapter, we investigate the suitability of neural networks in two applications
from two separate domains. In the first experiment, we investigate the application of
neural networks in a classification problem from exosome signals. Exosomes are small
extracellular vesicles secreted by all cell types. They have been widely indicated to
carry biomarkers within their content that can be used for diagnostic and prognostic
insight into disease within the sample. For this part of the research, we developed a
three-step preprocessing procedure to process Surface-Enhanced Raman Spectroscopy
Spectroscopy (SERS) signals, and then use Multi-Layer Perceptron (MLP) models
to distinguish the heterogeneity of exosome signals that secreted from normal and
dysfunctional human aortic endothelial cells.

In the second project, we further explore neural network variations in predicting
the Oxygen uptake in simulated team sports with wearable sensor signals. In sports,
precise evaluation of training status is essential for performance optimization and
injury risk reduction. This second study investigates the use of various neural network
architectures in estimating individual oxygen uptake (VO3) from wearable sensor
data during outdoor jogging and simulated team sports activities. The architectures

examined include MLP, long short-term memory (LSTM) networks and convolutional

o4

Physics Informed Neural Networks in Sparse Data Applications

neural networks (CNN). These models are evaluated using both raw features and

handcrafted features to assess their predictive performance.

4.1 Exosomes Classification Using Multi-Layer
Perceptrons

Exosomes are extracellular vesicles produced by all cells into virtually all body fluids.
Exosomes have been shown to have characteristics that reflect their originating cells
and the cells disease status [48]. They are rapidly emerging as important diagnostic
biomarkers. Raman spectroscopy and SERS offers a potentially powerful approach
to extract molecular-level fingerprint signals of the biomaterial profile of exosome
samples in diagnostic applications [198]. Interest in the application of SERS as
a means of exosome characterization has grown over the past 5 years or so, and
is critically enabled by using data analytical methods, capable of discriminating
complex aggregate signals that exosome SERS give rise to.

Endothelial dysfunction is a critical early indicator of subclinical atherosclerosis
associated with type 2 diabetes mellitus (T2DM) [199]. Due to the asymptomatic
nature of early and intermediate T2DM, early diagnosis before complications manifest
is a challenge. There is a need to develop methods for distinguishing between healthy
vascular endothelial cells and their dysfunctional "hyperglycaemic’ counterparts [55].
Exosomes released from dysfunctional ‘hyperglycaemic’ endothelial cells offer an
opportunity to diagnose early changes in cell functionality. This study aims to
investigate the potential of neural networks to differentiate between exosomes secreted
by normal and dysfunctional human aortic endothelial cells, cultured under normal,
hyperglycemic and hypoglycemic conditions.

The scripts associated with the project is available at https://github.com/

dinhvietcuongl1996/exosome-classification.

95

https://github.com/dinhvietcuong1996/exosome-classification
https://github.com/dinhvietcuong1996/exosome-classification

Physics Informed Neural Networks in Sparse Data Applications

= Exosome Signal
0.00020 4

0.00015 4

0.00010 4

Absorbance

0.00005 4

—— Raw Signal

| === Smoothed Signal
=== Background Signal 0.00000 -

400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600 1800
WaveNumber WaveNumber

(a) Smoothing & Background Estimation (b) Representative Smoothed Exosome Signal.

Figure 4.1: Preprocessing Steps

4.1.1 Methodology

In this section, we present our methodology for exosome spectrum prediction. Fig-
ures 4.1a illustrate the pre-processing steps for a spectrum. Initially, the raw input
spectrum undergoes smoothing to mitigate random fluctuations, predominantly
attributable to electronic instrumentation. Subsequently, we perform background
signal subtraction using automated background approximation. The resultant exo-
some signal is then input into a machine learning model to classify the spectrum as

originating from a healthy subject or one afflicted with hyperglycemia/hypoglycemia.

Data Pre-processing

In the pre-processing stage, the aim is to isolate the spectral signal originating
solely from exosomes, which is hypothesized to be the key informative factor for
distinguishing between normal and diseased spectra. This includes the removal of
random noise and background signals.

The initial preprocessing step aims to mitigate the impact of random noise on the
spectrum through the application of a simple moving average function. This method
involves a sliding window that traverses the spectrum sequence, computing the average
for each window position. The resulting average values are then concatenated to
produce the final smoothed output. This process is mathematically represented by

Equation 4.1, where W denotes the sliding window size, n represents the spectrum

56

Physics Informed Neural Networks in Sparse Data Applications

length, and s; corresponds to the smoothed value of the ith element. To maintain

consistent window sizes throughout the spectrum, the function implements symmetric

padding.
w1
1 2
S, = — Z xi+]~,0§2’<n (41)
w j=— W=l

The second preprocessing step approximates the background signal using the
ModPoly polynomial method [200]. This iterative process eliminates peaks from the
polynomial fit by replacing spectral data points with their corresponding estimated
background values where the former exceeds the latter. The background estimation is
then refit to the newly formed spectrum. This replacement and fitting cycle continues
until the background estimation stabilizes or a predefined iteration limit is reached.

Given a polynomial degree D, the algorithm can be described as having 4 steps:

1. Initialize t = s, where t serves a temporary holder for the spectrum that
does not include Raman peaks in it and as input for the polynomial fitting to

approximate the background.

2. Polynomial fitting: Let p(i) = co+cri+---+cqi,0 <i<m,cq € R,0<d < D
be a polynomial. Determine the coefficients ¢4, 0 < d < D that minimize the

squared error between p and t:

E= nzl (p(i) — t;)* = nzl (fj cqi® — ti> . (4.2)

The optimization solution is obtained through standard linear algebra tech-
niques [201]. The resulting polynomial p is considered an approximation of the

background.

3. Update t; = min(¢;, p(7)),0 < i < n, replacing values in ¢ with the background
estimation p where ¢t > p, thereby eliminating peaks in t for subsequent

background estimations.

4. Terminate the algorithm when ¢ = p for all ¢ or when the iteration count

o7

Physics Informed Neural Networks in Sparse Data Applications

exceeds a predetermined threshold; otherwise, repeat steps 2 to 4.

The final polynomial p represents the estimated background for the given s. The
resultant exosome signal z is computed as the difference between the smoothed signal
and the estimated background: = = s — p.

Before inputting into machine learning models, the spectrum must be normalized.
This step is necessary due to the differences in the intensity across spectra while
collecting the data, thereby facilitating the subsequent training of machine learning
models. Normalization is achieved by scaling each spectrum such that its integral
equals 1. Figure 4.1b shows an example of a normalized, background-removed

spectrum.

Neural Network Architecture

For the predictive model, we implement an MLP, which is also called a feed forward
fully-connected neural network [202]. The model has been proven to approximate
any functions [30] and demonstrated its capabilities in various domains.

[lustrated in Figure 4.2, a neural network is a directed graph where nodes are
neural units and the connections between them are the flow of information. Each
neuron (neural unit), depicted in Figure 4.2a, acts as a computational unit that
processes inputs and generates outputs. Each node’s output is a function of the
weighted sum of its inputs, followed by a nonlinear activation function. The non-
linearity enables MLPs to approximate highly nonlinear functions, enhancing their
flexibility. n example of an MLP architecture is shown in Figure 4.2b. The MLP
architecture organizes neurons into distinct layers: input layer receives the initial
data vector; hidden layers process information from previous layers; and output layer
produces the model’s final result.

In this task, the MLP model is used to estimate the conditional probability
P(c|z), where x represents a pre-processed spectrum vector of size 1 X n, and ¢ € C
denotes one of three classes: healthy, hyperglycemia, or hypoglycemia. The input

layer in used solely to pass the input vector to the network while the output layer

28

Physics Informed Neural Networks in Sparse Data Applications

(a) Computation within a neural unit that
processes n inputs z;,7 = 1,...,n to produce
an output y.

Hidden layers

Input Layer

NSRS NS Outout L
“’l“'ﬁ““«'{f’u\‘&%ﬁm@ﬁ*

> > {7 2, OTNELS
KL mOM‘mm KKK
—AY

¢ %

NS A DN LN LT v". ‘
V'\‘ V.l&‘* 'O\‘)QQ' V'O\Q;*"
> c»«vc»«vc»«v
WAV

(b) An MLP architecture comprising an input layer with 3 units, four hidden layers each
containing 5 units, and an output layer with a single unit.

Figure 4.2: Multi-Layer Perceptron Architecture

delivers the outputs (exosome classifications) of the MLP, again represented as a
single vector. Let [; denote the number of units in the i-th layer, where 0 < < L+ 1.

Specifically, Iy = n is the input layer size, while [;,; = 3 corresponds to the output

39

Physics Informed Neural Networks in Sparse Data Applications

layer size. The neural network is formulated in Equations 4.3.

a’ =
a' = max (ailei + b, 0) 1 <i<L (4.3)

z = aLWL+1 + pLtt

Pleila)= —— —i=0,1,2
€% + e*1 + e*2

Here, W € R%-1*l represents the real-valued weight matrix for layer i, b' € R
denotes the bias vector for layer i, and ¢;,7 = 0, 1,2 correspond to the three classes.
The max function operates element-wise, resulting in 2 € R3. The network parameters
Wt and b° are optimized to minimize the cross-entropy loss between predicted
probabilities and target distributions. We employ the Adam optimizer, a variant
of stochastic gradient descent, for parameter optimization [203]. To enhance model

generalization, we apply L2 regularization with a penalty parameter a.

4.1.2 Experiments

The dataset used in these experiments is presented in Section 2.1.1. In this section,

we describe experimental configurations and a discussion around results.

Model Selection

The aim of model selection is to identify the best performing neural network con-
figuration. As the dataset is relatively small, we conduct 8-fold cross validation.
For each iteration, one subset serves as the validation set, while the remaining 7
subsets are used as the training data. Therefore, in each turn (or fold), 6 surfaces or
300 spectra (100 per class) are used for validating and the neural network model is
trained with the remaining 2,100 spectra (700 per class).

The following hyper-parameters are considered for tuning: the smoothing window
size W; the background polynomial degree D; the number of hidden layers L; and the

weight decay rate a. The goal is to ensure that the average validation accuracy across

60

Physics Informed Neural Networks in Sparse Data Applications

all folds, is as high as possible. Table 4.1 displays all attempted hyper-parameter
values whose ranges were predetermined using an initial round of experiments. A
grid search over all values, which is 1,260 combinations, was conducted to find the

best performing models.

Table 4.1: Hyper-Parameter Settings

Hyper parameters | Values

|44 9; 17; 33; 65; 129

D 5; 6; 7;8;9; 10; 11

L 0; 1; 2; 3

« 1075 107°; 10~%; 1073; 10~%; 10~*; 1; 10; 100
Results

We use accuracy, recall, and precision metrics [204] (defined in Appendix A.2) to
evaluate a model’s performance. Macro-averaging is used across multiple classes.
Table 4.2 presents the top 5 models ranked by mean validation accuracy. The
highest performing models appear to perform equally at about 65% with a standard
deviation of 11%. Across all experiments, validation accuracy ranged from 50% to
82%, showing substantial variability. This variance can be attributed to the limited
size of the dataset. From the experiments, the best performing models suggest that

the MLP should have 2 or 3 hidden layers of 100 units.

Table 4.2: Top Performing Models by Average Accuracy

Rank | W | D | L | « Training Acc. | Validation Acc.
1 33 110 |2 |10.0 | 0.991 +0.004 | 0.652 £ 0.100
2 1716 [3]107°|1.0£0.0 0.651 £ 0.102
3 3316 |2]107%]1.04+0.0 0.650 £ 0.117
4 9 |6 [2]107°1.0£0.0 0.647 +0.110
5 7 1103 | 1071 | 0.985 4 0.007 | 0.646 £ 0.120

Observations and Discussion

We now use the accuracy metrics to construct 2 tables which enable a more detailed

analysis of the best performing model.

61

Physics Informed Neural Networks in Sparse Data Applications

Table 4.3 presents the validation confusion matrix as the sum of all confusion
matrices for the 8 validation sets described in the previous section. Meanwhile,
Table 4.4 presents the test confusion matrix resulting from the model that performs
best in validation. Our discussion focuses on the Table 4.4 with the test performance
on unseen data. The results demonstrate that the most accurate neural network
model performs well when classifying normal samples and achieves exceptionally high
accuracy with hypoglycemic samples. However, the model encounters difficulty in
distinguishing between normal and hyperglycemic samples, which is most likely due
to the presence of normal tissue in the hyperglycemic samples, a frequent byproduct
of the sample generation process. This observation raises the possibility that the
model’s predictive performance could be significantly higher if training and testing
were limited to hypoglycemic and hyperglycemic samples only, although we cannot

be sure without removing normal samples from the test data.

Table 4.3: Validation Confusion Matrix (Sum over folds). The rows represent the
true class labels, while the columns correspond to the model’s predicted labels. For
instance, the entry of 181 in the “Normal” row and the “Hypo” column indicates
that the model has misclassified 181 normal samples as hypoglycemic.

Normal | Hypo | Hyper Total Recall

Normal 443 181 175 799 0.551

Hypo 93 611 96 800 0.764

Hyper 158 132 510 800 0.638
Total 694 924 781

Precision | 0.638 | 0.661 | 0.653 | Accuracy: | 0.652

Table 4.4: Test Confusion Matrix (Best Model). The rows represent the true class
labels, while the columns correspond to the model’s predicted labels. For instance,
the entry of 3 in the “Normal” row and the “Hypo” column indicates that the model
has misclassified 3 normal samples as hypoglycemic.

Normal | Hypo | Hyper Total Recall

Normal 66 3 31 100 0.660

Hypo 5 81 14 100 0.810

Hyper 40 7 53 100 0.530
Total 111 91 98

Precision | 0.595 | 0.890 | 0.541 | Accuracy: | 0.667

Precision is a measure of exactness of positive predictions. The results for the

62

Physics Informed Neural Networks in Sparse Data Applications

Normal class shows a true positive rate of 66% and a false positive rate of 45%,
yielding a precision value of 59.5%. a true positive figure of 66% and a false positive
figure of 45%, resulting in a precision value of 59.5%. Notably, an overwhelming
majority (89%) of false positives stem from misclassifications of Hyperglycemia. This
provides further detail on where incorrect Normal predictions occur but perhaps,
strengthens the case for the hypoglycemia class being more detectable.

Among the three classes, hypoglycemia predictions are the least frequent, sug-
gesting that while these samples may be more challenging to detect, its predictions
are less likely to to be incorrect. In the Hypoglycemia column, the class has a true
positive figure of 81 with a false positive figure of just 10, yielding a precision of
89%. The majority (70%) of the false positives are attributed to the other diseased
class. While these results are high, it would also indicate that very strong results can
be expected if the model are presented exclusively with hypoglycemia and normal
samples. For Hyperglycemia, we achieved lowest overall predictive performance. In
contrast, hyperglycemia demonstrates the lowest overall predictive performance. This
class achieves a true positive value of 53% and a false positive rate of 44%, resulting
in a precision of 54%. The correlation with the Normal class is again evident, as 31
(70%) of the incorrect predictions are misclassified for Normal samples.

Recall is a measure of completeness defined as the percentage of positive samples
that are correctly classified as positive. For the Normal class, a low overall sensitivity
of 66% is observed, primarily attributable to the misclassification of 31% of Normal
samples as hyperglycemia Only 3 of the samples are incorrectly classified as hypo-
glycemia. The hypoglycemia class has more favorable results, with a high overall
score of 81%. The main source of error in this class is the misclassification of 14% of
hypoglycemic samples as hyperglycemia. Lastly, the sensitivity for hyperglycemia is
low at 53%, driven by a significant proportion (40%) of samples being incorrectly
classified as Normal.

Although our best model achieves 66.7% accuracy, which is promising as a first

demonstration of neural networks for SERS-based exosome classification of healthy

63

Physics Informed Neural Networks in Sparse Data Applications

vs. hyperglycemic and hypoglycemic states, it is not yet clinically practical. Other
SERS exosome studies report 90-95% accuracy [51, 52, 139], but those typically
target different diseases (often cancer). This result thus serves as an early benchmark,
and future efforts, expanding and refining the data collection, and exploring advanced
model architectures, are expected to improve performance.

Summary. For this experiment, we developed a methodology for predicting
exosome spectra to classify samples as originating from healthy subjects or those with
hyperglycemia or hypoglycemia. The approach involves pre-processing steps including
smoothing the raw spectra, background removal using the ModPoly method, and
normalization. A multi-layer perceptron was trained for the classification, achieving
an average validation accuracy of approximately 65%, with high precision and recall
in detecting hypoglycemia but had difficulties in distinguishing between normal and

hyperglycemic samples.

4.2 Predicting Oxygen Uptake in Athletes

In team sports, accurately assessing a player’s physical output during games and
training is crucial for coaches and sports scientists [205]. Physical adaptations
that are typically measured through fitness testing are often impractical during
competitive periods [206]. Finding a convenient way to monitor these changes is
essential to accurately assessing training loads and tracking athlete fitness [207].

Wearable devices such as Inertial Measurement Units (IMUs) have demonstrated
potential in estimating oxygen consumption (VOsy) across various physical activi-
ties [63, 64]. However, two challenges [60] still remain: firstly, determining optimal
IMU sensor configurations to effectively capture and quantify complex movements,
thereby enhancing VO, estimation accuracy; and secondly, identifying suitable models
for learning relationships between sensor-based measures and VO, values.

This second experiment aims to address these challenges by investigating the
prediction of individual oxygen uptake during outdoor running and simulated team

sports activities. We explore the efficacy of different data representations, including

64

Physics Informed Neural Networks in Sparse Data Applications

handcrafted features and raw sensor data, as well as various sensor combinations
positioned at different body locations. Furthermore, we conduct a comparative
analysis of multiple machine learning models to identify the most suitable algorithms
for this task.

The source code for this project is hosted on GitHub at https://github.com/

dinhvietcuongl1996/oxygen-uptake-estimation.

4.2.1 Data Preprocessing

Data collection is described in Section 2.1.2. This section presents the data prepro-
cessing for the experiments.

One of the goals in the experiments is to examine the influence of sensor placement
configurations on predictive accuracy. For this experiment, we constructed four
datasets, each comprising common baseline variables including the subject’s age,
height, weight, heart rate, breathing rate, the treadmill speed and the GPS speed,
activity categories (one of resting, treadmill running, outdoor running, or simulated
team sports activities), These datasets differ in their inclusion of IMU sensor data

from various on-body locations:

Dataset A: IMU Torso

Dataset B: IMU Torso + IMU Arm

Dataset C: IMU Torso + IMU Leg

Dataset D: IMU Torso + IMU Arm + IMU Leg

For each of the four configurations above, we develop two distinct data repre-
sentations for model inputs: RAW and MAD (Mean Amplitude Deviation) dataset.
The earlier representation is basically raw data with minor preprocessing while the
later one significantly transform the data into more information-condensed variables.
Both representations are organized into breath-based windows, typically spanning

2 to 6 seconds. We use 7 breaths (about 30 seconds) to predict the VOo value of

65

https://github.com/dinhvietcuong1996/oxygen-uptake-estimation
https://github.com/dinhvietcuong1996/oxygen-uptake-estimation

Physics Informed Neural Networks in Sparse Data Applications

the central breath. The key distinction lies in the sensor data: in MAD, all sensor
readings are transformed into mean amplitude deviation values, as described by the
formula in Equation 4.4. For the target variable, VO, values undergo smoothing
using a 31-point moving average window to mitigate interference noise [67]. This

preprocessing step reduces interference noise.

2

1 X 21X 1 & ?
i=1 i=1 i=1

In total, there are four dataset configurations, each of which can be combined
with two different input representations. This results in a total of eight combinations

that can be inputted into the predictive models.

4.2.2 Neural Networks

In this experiment, we evaluate the effectiveness of various neural network archi-
tectures for our specific task, encompassing models from simple linear regression,
multi-layer perceptrons (MLPs) to more complex structures such as, long short-term
memory networks (LSTMs), and convolutional neural networks (CNNs).

The input to the models, denoted as x, is structured as a matrix with dimensions
[np X ny]. The number of breaths ny, is set to 7, while the number of features ny
varies from 18 to 32, depending on the dataset and chosen representations. Let Fy,
represent a neural network with parameters (weights and biases) W. The model’s
output is given by § = Fy (x). We train these weights W by minimizing the mean
squared error between the predicted values ¢ and the actual values y, as described in

Equation 4.5.

o 1

N, dataset (

> (i~ Fw(w)® (4.5)

z;,y;) Edataset

For optimization, we use the Adam algorithm [203], a gradient-based method. To

mitigate overfitting, we apply L2 regularization which favors weights with smaller

66

Physics Informed Neural Networks in Sparse Data Applications

norms. We continue this section with a more detailed discussion of the neural network

architectures used in the experiment.

Linear Regression (LR)

LR is a straightforward yet powerful model commonly employed in various prob-
lems [208]. Tt characterizes the relationship between dependent and independent
variables by fitting a linear function to the observed data. In this model, each breath

is treated uniformly by flattening the input x to a vector of size n, x ny.

g=x-W+0b (4.6)

To make predictions, the model makes a linear transformation from R"™*"f to R
by multiplying the input with a weight matrix of size R™*"/ x 1. Additionally, a
scalar bias term b is added to enhance the model’s flexibility. The output is defined

in Equation 4.6.

Multi-Layer Perceptron

For this task, the MLP extends the capabilities of linear regression by introducing
non-linearity and additional complexity to the model [209]. This is achieved by
incorporating multiple layers, where each layer consists of a linear transformation
followed by a non-linear activation function. Here, we adjust the model described
Section 4.1.1 to accommodate the breath dimension in the input z, the input
undergoes a linear transformation that maps it to a common latent space of dimension
dias. Subsequently, the transformed data are flattened into a vector of size ny, - dy.,
which serves as the input to the MLP layers.

Specifically, let dy, ds, ..., dy, represent the sizes of the hidden layers 1,2,..., L
in the MLP, where dy = ny - dj,; is the dimension of the input vector to the MLP
and dyp = 1 is the output size. The parameter matrix Wy, for the initial linear

transformation is of size ny X dia, and W® denotes the parameter matrices of the

67

Physics Informed Neural Networks in Sparse Data Applications

MLP layers, with each matrix having dimensions d;_; X d;. The biases by,; and b(®
correspond to sizes n, and d;, respectively. The function ¢ represents an element-wise
non-linear activation function employed within the layers. The prediction of the

model is defined in Equations 4.7.

xo = flatten (z - Wiay + brag)
20 = g0 (x(l—l) WO 4 b(l)) A=1,2,...,L—1 (4.7)

§ =2 . w4 pd)

In our experiments, a grid search strategy is implemented to fine-tune the
architecture of the MLP. The hyper-parameter settings are detailed in Table 4.5,
where the number of layers varies from 1 to 4 and the number of neurons per layer
is set to either 32 or 64. The activation function employed is rectified linear unit
(ReLU). To reduce overfitting, a weight decay coefficient of 1074 is used, though no

dropout is applied.

Table 4.5: MLP Hyper-parameters

Hyper-parameter | Values
Number of layers | 1;2;3;4
Hidden layer size | 32;64
Weight decay 1074

Long Short-Term Memory (LSTM)

LSTM, a variant of recurrent neural networks, is specifically designed to process
sequence data similar to time series [163]. Figure 4.3 illustrates a typical LSTM layer.
This architecture uses recurrent mechanisms where a common LSTM cell sequentially
processes the input x; at each step t, producing the output h; and passing the hidden
cell state ¢; alongside h; to the next time step. The core idea of LSTM is its cell
state ¢ which carries temporal information across time steps. This state is controlled

by several gates within the LSTM cell that either add or remove information based

68

Physics Informed Neural Networks in Sparse Data Applications

on current inputs and previous outputs.

(A

Next Layer (Output layer/ LSTM layer / Dense Layer/ etc.)

*

LSTM Layer /

(A

Previous Layer (Input layer/ LSTM layer / etc.)
. J

Figure 4.3: LSTM Layer Architecture. The LSTM cell is shared across time
steps. At each time step ¢, the cell receives the input z; from the previous layer and
the hidden state h;_; from previous time step. It produces the new hidden state hy,
which is passed to the next layer, as well as the updated cell state ¢;. The initial
state c_; and output h_; are initialized as zero vectors.

Let dj, be the hidden size of a LSTM layer. Consider x1, o, ..., xr as the inputs
at time steps 1,2,...,T respectively, where each input vector is of dimension dy.
The LSTM layer parameters are organized as follows: the input gate has a weight
matrix W; and a bias vector b;; the forget gate has a weight matrix W, and a bias
vector by; the output gate has a weight matrix W, and a bias vector b,; and the cell
state is updated by a weight matrix W, and a bias b.. All of the weight matrices has
the size of dj, x (d, +dy) and all of the biases are of size dj,. Let o denote the sigmoid
function; [;] be the concatenation operator and * be element-wise multiplication. At
time step ¢, the input gate ;, the forget gate f;, the output gate o;, new candidate

value ¢, the cell state ¢; and output h; of the LSTM are defined in Equations 4.8.

69

Physics Informed Neural Networks in Sparse Data Applications

i = 0 ([xg] - Wi+ b;)

fi = o ([xe; heea] - Wy + by)

or = 0 ([xe; 1] - Wo + bo)

¢ = o ([wg; he_v] - We + be) (4.8)
G = fixci1+ i %G

hy = oy * tanh (¢;)

In our experiments, the breath dimension is treated as the time dimension, hence
fixing the dimension to 7. We employ a bidirectional LSTM architecture (BiLSTM),
allowing information flow in both directions across the time dimension. Furthermore,
the LSTM layers are stacked such that each LSTM layer’s output at a time step
serves as the input for the subsequent layer at the same step. The final output from
the middle time step of the last LSTM layer is passed to a fully connected layer for
generating predictions. The number of layers and layer size are tuned through a grid
search with parameters specified in Table 4.6, which explores configurations ranging
from one to four layers, each with 32 or 64 units. No dropout is employed; instead,
regularization is achieved through a weight decay of 10~* to mitigate overfitting.

Table 4.6: LSTM Hyper-parameters

Hyper-parameter | Values
Number of layers | 1;2;3;4
Hidden layer size | 32;64
Weight decay 10~*

Convolutional Neural Network (CNN)

CNNs are neural network architectures designed to process structured data effi-
ciently [210]. In particular, one-dimensional CNNs (1D-CNNs) are well-suited for
sequential data processing [211]. Figure 4.4 depicts the architecture of the one-

dimensional CNN layers. Each CNN layer consists of multiple kernels that slide along

70

Physics Informed Neural Networks in Sparse Data Applications

the temporal dimension, performing convolutional operations between the kernel
and segments of the input to extract local features. The core principle of CNNs is
that shared kernels evaluate how well different segments of the input match specific
patterns at each time step. This convolutional mechanism enables the network to
detect local patterns regardless of their position within the input sequence, thereby

enhancing the effectiveness of 1D-CNNs for sequential data.

ConviD

ConviD

Input

Figure 4.4: An illustration of one-dimensional CNN architecture. In the convolutional
layers, three kernels, each of size 3, slide along the time dimension of the input to
generate three feature channels. Red boxes and arrows at the bottom left demonstrate
a convolution computation involving x1, x5 and x3 that results in a single output.

Consider the input sequence z = (x1,2s,...,z7) to a 1D-CNN layer, z; corre-
sponds to time step ¢t and have a dimensionality of d;. Assume the layer has ny
kernels of size dj, represented by a tensor K of dimensions nj x di x dy. Let o
denote the activation function. The output of the 1D-CNN layer is defined as in
Equation 4.9, where ¥, ; is the output at time step ¢ for the i-th kernel. Indices that
are less than 0 or exceed the sequence length are defaulted to 0 (commonly referred

to as zero padding).

dkfl df
Yti =0 Z ZKi,k,j$t+k_ VT,CJ) (4.9)

k=0 j=1 ’]

In our experiment the CNN architecture treats the breath dimension as the time

dimension. In addition, multiple CNN layers are stacked to enable the network to

71

Physics Informed Neural Networks in Sparse Data Applications

learn more abstract temporal patterns. The output at the middle time step of the last
CNN layer is fed into a fully connected layer to produce the final predictions. Various
CNN configurations are explored via grid search to tune hyperparameters such as the
number of layers and the number of kernels. Values for the hyperparameters are listed
in Table 4.7. The CNN architectures vary in depth, ranging from 3 to 5 1D-CNN
layers, and in width, using either 32 or 64 kernels per layer. A fixed kernel size of 3
is employed across all layers, which allows for the capture of local temporal patterns
while the increasing depth enables the learning of broader contextual information.
The activation function used is ReLLU. Consistent with other models, we employ L2

regularization with a weight decay parameter of 1074,

Table 4.7: 1D-CNN Hyper-parameters

Hyper-parameter | Values
Number of layers | 3;4;5
Hidden layer size | 32;64
Kernel size 3
Weight decay 10~*

4.2.3 Results

Table 4.8 presents the top 15 performing configurations of the machine learning
models, ranked by validation RMSE. From the table, it can be seen that the MLP
model using the MAD representation and dataset A achieves the best performance on
the validation set, with a RMSE of 3.18 and MAE of 2.26. However, this model does
not generalize well to the test set, where it records an RMSE of 7.65 and MAE of
5.74. Conversely, the LSTM model with RAW representation and dataset A attains
the best results on the test set, achieving an RMSE of 4.98 and MAE of 3.70, while
maintaining comparatively low errors on the validation set (RMSE of 4.11 and MAE
of 3.30). Overall, all models except for LR demonstrate strong performance on the
validation set, but only BiLSTM excels on the test set. This suggests that while
MLP, CNN, and BiLLSTM are effective during training, BiLSTM may offer better

generalizability when applied to unseen data. Data representation also plays an

72

Physics Informed Neural Networks in Sparse Data Applications

important role. The MAD representation generally leads to better validation results
(ranking in the top 1-8 positions) but yields poorer results on the test set (test RMSE
greater than 6.6). In contrast, the RAW representation results in slightly lower
performance on the validation set (top 9-14, RMSE ranging from 3.97 to 4.20) but
provides superior performance on the test set, with RMSE values ranging from 5.0 to
5.7. For instance, the LSTM model using RAW representation and dataset A achieves
a test RMSE of 4.98, and the MLP model with datasets A and C achieves test RMSEs
of 5.74 and 5.70, respectively. This indicates that the choice of data representation
significantly affects a model’s ability to generalize. The RAW representation without
of handcrafted features allows deep models to extract generalizable features, whereas
the MAD representation may lose information compared to RAW, leading to poorer
generalization. Regarding sensor configurations, dataset C—which includes additional
sensors on the leg—provides the best performance for estimating oxygen consumption
when using the RAW representation and models such as LSTM or MLP. This implies
that these additional sensors capture patterns that generalize well. The variability
in validation performance across datasets may indicate that models are highly
overfitting to the validation set; however, overall, dataset C yields slightly better test
performance.

Figure 4.5a shows the relationship between predicted VO, and measured VOy
for the LSTM model using RAW data representation and dataset C. The coefficient
of determination, R?, is 0.87, indicating a strong correlation between the predicted
and measured VO, values. This high R? value suggests that the LSTM model
explains 87% of the variability in the measured VO, data. The predicted values
consistently align closely with the measured values, demonstrating good model
performance. Figure 4.5b presents a Bland-Altman plot showing the difference
between measured and predicted VO, values against their average. This plot helps
identify any systematic bias and the limits of agreement (LoA) for the predictions.
The calculated bias is 0.50 mL/min, indicating a slight overprediction on average.

The upper LoA is 10.24 mL-kg™*-min~", and the lower LoA is -9.23 mL-kg™*-min~".

73

Physics Informed Neural Networks in Sparse Data Applications

Table 4.8: Top-15 performance of neural network models. This table presents
the top 10 performing neural network models, ranked by their valid RMSE. The table
includes both RMSE and MAE metrics for the validation and test sets. The unit
of the metrics is mL - kg™' - min~'. The best results, corresponding to the smallest
error values, are highlighted in bold, while the second-best results are underlined.

Rank Dataset Data Repr. Model Valid RMSE Valid MAE Test RMSE Test MAE

1 A MAD MLP 3.18 2.26 7.65 5.74
2 D MAD MLP 3.25 2.34 6.83 5.30
3 B MAD MLP 3.30 2.38 7.00 5.34
4 C MAD CNN 3.34 2.55 6.67 4.98
5 B MAD CNN 3.41 2.59 6.87 5.12
6 C MAD MLP 3.65 2.74 6.64 4.89
7 A MAD CNN 3.66 2.74 7.29 5.76
8 D MAD CNN 3.67 2.50 7.34 5.46
9 B RAW MLP 3.97 3.00 7.75 5.85
10 D RAW BiLSTM 3.98 3.07 5.94 4.38
11 C RAW BIiLSTM 4.11 3.30 4.98 3.70
12 A RAW CNN 4.13 3.23 6.10 4.59
13 A RAW MLP 4.13 3.08 0.74 4.33
14 C RAW MLP 4.20 3.35 5.70 4.33
15 C MAD BiLSTM 4.28 3.49 7.94 5.90

This range reflects the spread of differences between measured and predicted values.
Most data points lie within these LoAs, suggesting that the model’s predictions are

generally accurate.

45 R-squared: 0.87 v . o Bias: 0.50
Upper LoA: 10.24

Lower LoA: -9.23

&

8

Predicted VO2 (mL-min)
8 b

Difference between Measured and Predicted VO2 (mL-min)
g | |

5 10 15 20 25 30 35 40 45 5 10 15 25 30 35 40 45
Measured VO2 (mL-min) Average of Measured and Predicted VO2 (mL-min)
(a) Linear Correlation plot (b) Bland-Altman plot

Figure 4.5: (a) Linear correlation plot illustrating the relationship between predicted
VO, and measured VO, using the LSTM model with RAW representation and sensor
configuration C, achieving an R? value of 0.87. (b) Bland-Altman plot showing the
differences between measured and predicted VO, values against their averages for all
subjects combined.

Figure 4.6 illustrates the residuals (predicted VO2 minus measured VO;) across
different exercise conditions for the LSTM model using RAW data representation

and dataset C. The exercise conditions include baseline, jogging, recoveryl, circuitl,

74

Physics Informed Neural Networks in Sparse Data Applications

recovery2, circuit2, and recovery3. The box plots reveal that the model generally
exhibits a median residual close to zero across the different exercise conditions,
indicating minimal prediction bias. However, there is noticeable variability in
the residuals, particularly during the recovery phases. The model predicts more

consistently during circuit activities than during the baseline and recovery phases.

baseline Ii 4"- L
Jogging [] m0047 4'“0 “ene 4 - "

recovery1 * HE | I:“ L2 2 B J

dreuit1 (X li IG: NN D 400 2 e 0
recovery2 “M‘Oﬁ:ll I L] "

drcuit2 L] L 222 |— —I L L XN B NI NI
recovery3 " » l— —|

-15 -10 -5 0 5 10 15 20
Residuals of Predicted - Measured VO2 (mL-min)

Exercise Condition

Figure 4.6: Box plots of the residuals (predicted VO, minus measured VOz) across
different exercise conditions for the LSTM model using RAW data representation
and dataset C. The exercise conditions include baseline, jogging, recoveryl, circuitl,
recovery2, circuit2, and recovery3.

Figure 4.7 displays a comparison of breath-by-breath measured VO, values (blue
line) versus predicted VO, values (green line) obtained from the LSTM model using
RAW representation and dataset C. While the predicted VO, values generally mirror
the overall trend of the measured data, notable deviations are observed during
exercise and recovery phases. The model effectively captures the general pattern of
VO, fluctuations but exhibits challenges with precise tracking. During high-intensity
exercise periods, significant discrepancies between the predicted and measured VO,
values become apparent. The predicted values often overshoot or undershoot the

peaks of the measured data, indicating difficulty in accurately estimating VO, levels

75

Physics Informed Neural Networks in Sparse Data Applications

during increased physical activity. In the recovery phases, the model’s predictions
do not closely follow the rapid decreases in VO, observed, sometimes lagging behind
or leading ahead of the actual changes. These inconsistencies suggest that the model
struggles to accurately capture the oxygen kinetics during recovery periods. Finally,
the model demonstrates limitations in tracking rapid changes in VO,, particularly

during transitions between exercise and rest.

)
)

VO2 (mL-min|

Breath-by-Breath Breath by-Breath

(a) Unsmoothed predictions (b) Smoothed predictions

Figure 4.7: Comparison of measured VO, values (blue line) and breath-by-breath VO,
predictions (green line) for Subject 2 using the LSTM model with RAW representation
and dataset C. The left plot shows unsmoothed predictions with a MAE of 3.374
mL - kg™, while the right plot displays smoothed predictions with an MAE of 2.902
mL-kg™'. The plots include different exercise and recovery phases, shaded as follows:
baseline and recovery phases (light blue), jogging (pink), and simulated soccer circuit
(light green).

Our pilot study is the first to explore VO, estimation specifically during simulated
team-sport exercise, making a direct comparison to existing treadmill or cycling
research less straightforward; however, within the broader context of studies [66, 68,
70-72], our results achieved are similar. We do encounter challenges in transitions
between different intensities, partly because our training dataset did not fully capture
the rapid changes observed in the test phase. Even so, the performance achieved with
raw IMU data and LSTM architectures highlights the feasibility of wearable-based
VO5 monitoring in team-sports scenarios. Our findings serve as an important starting
point in future work on athlete monitoring.

Summary. In this second study, we evaluated a range of neural network models to
predict individual oxygen uptake during outdoor running and simulated team sports

activities, using four sensor configurations and two data representations. While the

76

Physics Informed Neural Networks in Sparse Data Applications

MLP with MAD representation and torso sensor data achieves the lowest validation
error, it does not generalize well to the test set. Conversely, the BiLSTM model using
raw data from torso and leg sensors demonstrated better test performance. However,
the models exhibit limitations in precisely tracking rapid VO, changes during high-
intensity exercise and recovery phases, highlighting challenges in capturing oxygen

kinetics during transitions between activity and rest.

4.3 Conclusions

In this chapter, we examined the capabilities of neural networks in two distinct tasks
across different domains: exosome classification and oxygen uptake estimation. In the
first project, we developed a methodolgy for classifying healthy, hyperglycemic, and
hypoglycemic conditions using SERS spectra from exosomes. The approach involves
smoothing the raw input spectrum and subtracting the estimated background signal,
leaving the exosome signal, which is then fed into a MLP model for classification.
The method yields promising results, achieving an overall accuracy of 66.7%. The
primary challenge encountered by the classifier is the strong correlation between
hyperglycemic and normal samples. Additionally, the model tends to misclassify
hypoglycemic samples in favor of hyperglycemic ones. Despite these challenges, the
result suggests that this method is effective in capturing and analyzing exosomes,
demonstrating its potential for distinguishing subtle differences in complex and
heterogeneous Raman signatures from various cell models.

In the second project, we investigated the use of a range of neural network
architectures to estimate individual oxygen uptake during simulated team sports
activities using wearable sensor data. As part of this study, we investigated different
sensor configurations, including torso placement with additional sensors placed on
the arm, leg, or both. While results showed no substantial advantage of deep
learning models over the baseline MLP model in terms of predictive performance, it
was possible to uncover some interesting results. The best-performing MLP model

achieves a MAE of 3.79 mL - kg~! - min~!, slightly higher than the LSTM model,

7

Physics Informed Neural Networks in Sparse Data Applications

which achieves an MAE of 3.69. While deep learning models such as LSTM and
CNN demonstrate strong performance with raw sensor data, MLP models remain
competitive, particularly when using MAD data representations. The choice of
sensor placement configuration also had a significant impact on performance, with
multi-sensor setups, such as torso and leg (Dataset C) or torso and arm (Dataset B),
yielding the most accurate predictions.

Through these two tasks, the different forms of neural network demonstrated
robust performance across different domains, solving different problems. However,
these methods still exhibit certain limitations. First, the model architectures do
not fully exploit the information contained within the inputs. In the exosome
classification task, the entire exosome signal is input into the machine learning models
with minimal pre-processing. This could be one of the reasons why the predictive
performance does not reach practical levels. In the oxygen uptake prediction task,
two representations are provided to the machine learning models: raw sensor signals
and a mildly transformed version. Although the transformation does not improve
performance on the test sets, it shows marginally lower errors on the validation
sets, which are technically still unseen data. Moreover, while LSTM and 1D-CNN
models can leverage the temporal nature of the data, they may not fully capture
the complex relational structures inherent in the data. The good performance of the
LSTM in the second task further underlines how specialized architectures can be
effective in capturing complex dependencies, suggesting that future research may
benefit from more specialized models such as GNNs that explicitly leverage data
structure. Therefore, in Chapter 5, we will adopt a graph-based approach, where
exosome or sensor data are represented as networks whose structure encodes potential
interactions or dependencies. We employ graph neural networks because they are
specifically designed to learn from graph-structured data, thereby providing a more
expressive way to model inter-dependencies and potentially improve performance.

Secondly, neural networks experience significant overfitting. As model complexity

increases, the risk of overfitting grows, with only marginal improvements observed

78

Physics Informed Neural Networks in Sparse Data Applications

over simpler models. In the oxygen uptake prediction task, the performance of MLPs
and more complex architectures is comparable across different data representations,
with both approaches ranking among the top-performing models. A plausible
explanation is that deeper models may overfit not only the training data but also
the validation data. While we used L2 regularization, cross-validation, and early
stopping to mitigate the risk of overfitting, this problem and challenge persists. A
popular approach to address overfitting is to introduce a regularization term into
the objective function, guiding the training process to favor model properties that
are more likely to generalize well. This regularization term can often be informed by
domain-specific knowledge of the underlying process. In Chapters 6 and 7, we adopt
the approach of physics-informed neural networks, which incorporate a regularization
term into the objective function to ensure that the trained neural networks adhere
to physical laws. This hybrid approach leverages domain knowledge, in the form
of differential equations describing the system’s dynamics, while maintaining the

flexibility of neural networks to learn from the provided data.

79

Chapter 5

Graph Neural Networks

In Chapter 4, we evaluated the capabilities of neural networks on two separate real
world machine learning tasks. While neural networks are regarded as performing
strongly across a wider range of applications, achieving robust performance requires
the incorporation of more extensive domain knowledge. This may require more
careful data analysis and the use of more complex architectures to effectively capture
intricate patterns. One approach to making neural networks more powerful and
potentially more interpretable is to adopt a graph-based structure for the neural
network. The concept here is to merge graph-based modeling with a neural network
machine learning function to improve its performance. To develop this approach, we
first conduct a sizeable research project using graph analytics and then introduce
some of our learnings to develop a graph-based neural network. To continue to align
with our research goals, we conduct these research problems on real world problems
and datasets. In Section 5.1, we provide a general introduction to graph models and
then in Section 5.2, use a series of graph analytics to measure, evaluate and make
predictions using a shared bicycle network. We then present our work on building a
graph-based neural network in Section 5.3 and evaluate this novel function in air

quality prediction.

80

Physics Informed Neural Networks in Sparse Data Applications

5.1 Graph Modeling

Modeling data as networks has received considerable attention in the last two
decades [212, 213]. A network (or graph) consists of a set of nodes (vertices) and
a set of edges (links) connecting pairs of nodes. Nodes typically represent entities
of interest, while edges denote specific relationships or interactions between these
entities. Analyzing networks constructed from data provides several advantages over
traditional tabular representations, such as enhanced data visualization, the ability to
identify influential components or critical relationships through network metrics, and
the detection of patterns, connectivity, and modular structures through community
detection algorithms. Additionally, constructing complex networks facilitates the
application of an advanced variant of neural networks known as graph neural networks
(GNNs). By leveraging a graph representation, GNNs can effectively regulate the
flow of information, enabling each node to aggregate information from itself and its
immediate neighbors. This allows for the discovery of potential relational patterns
embedded within the graph structure.

In this chapter, we take the approach of complex network analysis and graph
neural networks in two separate projects. In the first one, we introduce a network-
based methodology for the spatial-temporal analysis of transportation data. The
proposed method involves several steps, each providing a distinct perspective on
the data. First, exploratory statistical analysis is conducted to summarize and gain
a comprehensive understanding of the dataset. Next, transportation networks are
constructed to describe how individuals move through the transportation system.
The dynamics of these flow networks are then examined by constructing a series of
flow networks over different time intervals to capture changes in movement patterns
over time. Finally, the spatial-temporal behaviors of stations are investigated by
building correlation networks that represent temporal similarities in activity patterns.

In the second project, we propose a novel graph neural network designed to
enhance spatio-temporal feature extraction for air quality forecasting. Our method-

ology integrates an attention mechanism that adaptively assigns weights to different

81

Physics Informed Neural Networks in Sparse Data Applications

factors, thereby improving prediction accuracy. By applying attention layers to both
temporal and spatial dimensions, the model is able to simultaneously learn critical
spatio-temporal features. The proposed model is validated using air quality data
collected from 10 monitoring stations in Hanoi, Vietnam, over a period of more than
one year. The results show improvements compared to baseline methods as well as
the interpretability of the model.

The implementations for these two projects can be found at:

o Bike-sharing system network analysis: https://github.com/dinhvietcuong1996/

networks-bike-sharing-system,

» Spatio-temporal attention-based air quality forecasting https://github.com/

dinhvietcuong1996/SpaTemAtt-Air

5.2 Graph Analytics using a Travel Network

In this section, we introduce a dataset which captures a network of bike trips over
a 2 year period and a series of analyses that exploit a graph model to gain new
insights. Bike sharing systems have been gaining widespread popularity globally,
offering significant convenience to travelers. These systems allow users to pick up a
bike, travel to their destination, and return the bike at any convenient location. This
approach presents a low-cost and efficient mode of urban transportation. Additionally,
bike sharing addresses the challenge of first-and-last mile connectivity and alleviates
traffic congestion in cities, thereby contributing to increased efficiency of the overall
transportation system. Furthermore, cycling is a healthy, environmentally friendly

alternative for urban mobility.

5.2.1 Problem

Recently, bike sharing providers have introduced dockless bike sharing services,
allowing users to pick up and drop off bikes at more informal locations, often

referred to as wvirtual stations. Given the flexibility of virtual stations, providers

82

https://github.com/dinhvietcuong1996/networks-bike-sharing-system
https://github.com/dinhvietcuong1996/networks-bike-sharing-system
https://github.com/dinhvietcuong1996/SpaTemAtt-Air
https://github.com/dinhvietcuong1996/SpaTemAtt-Air

Physics Informed Neural Networks in Sparse Data Applications

are incentivized to monitor bike usage and determine the optimal configuration of
these stations. In essence, the challenge lies in assessing “how closely the currently
deployed network of virtual stations approximates the configuration that optimizes
bike usage”. Bike sharing data is typically made available in tabular form, such data
is often limited in its ability to model and analyze this type of problem. Moreover,
data related to station locations and trips must be analyzed at varying levels of
granularity to provide both a comprehensive view of network activity as well as
detailed insights where needed. Any proposed solution must take into account that
decisions made at a global level may have adverse effects on individual stations, while
local adjustments to the network topology could impact the global system negatively.

Specifically, a series of research questions can be articulated as follows:

Research Question 1. How can a detailed overview of the most and least

active stations and routes be created?

e Research Question 2. Is it possible to drill-down using the time dimension

to better understand these levels of activity?

« Research Question 3. Spatial similarities can be identified as part of RQ1
and temporal similarities can be observed as part of RQ2. Is it possible to
combine these dimensions to identify stations that exhibit similar characteristics

over specific time intervals?

* Research Question 4. A more advanced global analysis involves understand-
ing the relationship between each station and all other stations in terms of
activity. Can a station’s pattern be defined by its activity over time so that

two stations are related if their patterns are similar?

5.2.2 Methodology
Preliminaries

In general, there is no single network structure for a particular dataset and researchers

generally measure or compare different graph structures according to their needs.

83

Physics Informed Neural Networks in Sparse Data Applications

Based on the types of analyses planed, we developed different structures to meet
different requirements.

Spatial Graph Network. The Spatial Graph Network (SGN) is the most
fundamental form of network. In this network, nodes are linked by undirected edges,
where an edge between two nodes is established if at least one trip has occurred
between the origin node (source) and the destination node (target). The SGN offers a
comprehensive, aggregated perspective on the network’s topology and the volume of
activities within it. Each edge is further associated by a weight, which quantifies the
total number of trips that have taken place along the route connecting the two nodes

over the entire period of interest. More formally, the SGN is defined in Def. 5.1.

Definition 5.1 (Spatial Graph Network) The SGN is a pair SGN = (S, J),
where S is the set of nodes (vertices), and J denotes the set of edges connecting
these nodes. A node (or vertex) s € S is described as a pair s = (lat,lon), where lat
and lon correspond to the latitude and longitude, respectively, specifying the spatial
location of the node. An edge j € J is defined as a triple j = (o,d, a), where o,d € S
are the origin and destination nodes of the edge, and a represents the activity between

these two vertices.

Temporal Graph Network. The aggregated nature of the SGN can hide
important details and the dynamic evolution of networks over time. To address this
limitation and allow for the study of network evolution, it is essential to explicitly
incorporate time as a dimension within the graph. Segmenting data, especially graph
or unstructured data, enables more granular analysis and improves efficiency in terms
of query response times [214].

For the above reason, we introduce the temporal graph network (TGN). A TGN
is defined as an ordered sequence of graphs, where each graph represents the state of
the network at a specific moment in time. In other words, each graph in the TGN
provides a snapshot of the SGN during a time window, over the course of the period
of interest. The TGN facilitates a more detailed analysis of the network by allowing

for comparisons between different projections of the graph, thereby supporting the

84

Physics Informed Neural Networks in Sparse Data Applications

examination of the network’s evolution over time. Formally, a TGN is defined in

Definition 5.2.

Definition 5.2 (Temporal Graph Network) A TGN is a set TGN = {SGN1,
SGN,, ..., SGN 1}, where SGN; represents a time-bounded SGN , capturing the state
of the network during a specific time interval. FEach SGN; is a pair SGN; = (S, K),
where a node s € S is described by the pair s = (lat,lon), corresponding to its spatial
coordinates. An edge k € K is defined as the tuple k = (o, d,t, 9, a), representing the
volume of activity between two nodes during a specific time interval. Here, o,d € S
are the origin and destination nodes, t is the starting time point of the observation
period, O is the duration, and a represents the volume of activity between nodes o

and d during the observation period from t over the interval §.

Spatio-Temporal Graph Network. The Spatio-Temporal Graph Network
(STGN) has fundamentally different characteristics compared to previous graph
representations. In the STGN, the edges model the similarity between two nodes
(vertices) based on the temporal patterns in their activities. This allows the data
to be analyzed as timeseries patterns [215], facilitating the identification of trends,
seasonal or cyclical components, irregularities, and potentially, the diversity within

the data [216]. The STGN is defined formally in Def. 5.3.

Definition 5.3 (Spatio-Temporal Graph Network) A STGN is a tuple STGN
(S, H, Ty, T.), where S represents the set of nodes (vertices), and H denotes the set of
edges connecting these nodes. Ty marks the starting point of the network observation,
while T, represents the time at which the observation ends. Each node (vertex) s € S
is a pair s = (lat,lon), where lat and lon represent the latitude and longitude of
the spatial location of the node. An edge h € H is a triple h = (s1, $3,7), where s;
and sy € S are two nodes, and r denotes the similarity value between them. This
similarity is calculated based on the temporal patterns of their activities observed over

the series of time periods.

85

Physics Informed Neural Networks in Sparse Data Applications

Network Constructions

Bike-sharing systems, as time-evolving networks, can be characterized by three
core features: space, time, and activity volume. Space and time can be considered
dimensions, whereas activity is a measure whose value depends on how one looks at
the dimensions. In this context, we model the bike-sharing system as a graph network
that analyzes activity (trips) with respect to one or more dimensions. Specifically,
we construct three types of networks, based on the generic network types defined in
Section 5.2.2. The first network type focuses solely on the spatial dimension. The
second network, while still incorporating spatial properties, focuses on the temporal
dimension for the purpose of analysis. The third network integrates both spatial
and temporal dimensions. Each network type offers greater analytical power and
complexity than the preceding one. However, simpler networks are easier to construct,
and as the cost of building more complex networks increases, it is important to
understand the strengths and limitations of each network type. In the following
sections, we will discuss the construction of these networks, the analyses each allows,
and their applications.

Spatial Bike Graph Network. We construct a Spatial Bike Graph Network
(SBiGN) based on the SGN framework to capture the spatial characteristics of
bike-sharing usage, particularly station connections and the volume of trips between
stations. This representation is invaluable for analyzing the traffic flow within the
transportation system. In a straightforward sense, the nodes of the SBiGN represent
bike stations, while the edges correspond to trips (journeys) made between these
stations. Each edge is associated with a weight, reflecting the total number of trips
occurring along the route between the two connected stations over the entire period

of interest. A formal definition of the SBiGN is provided in Def. 5.4.

Definition 5.4 (Spatial Bike Graph Network) The SBiGN is a pair SGN =
(S,J), following the structure outlined in Def. 5.1, where each node corresponds to a
bike station and each edge represents journeys (trips) between stations. Additionally,

the activity a between two stations can be interpreted as the cardinality, or the total

86

Physics Informed Neural Networks in Sparse Data Applications

number, of trips made along that route.

We refine the SBiGN by removing statistically insignificant data, which introduce
noise and reduce the effectiveness of the analysis. First, we identify and remove
weak edges, defined as edges with relatively low weight values compared to the
overall network aggregation. This is a common step in network optimization [217],
where large numbers of insignificant data points can slow down the analysis without
providing substantial new insights. The threshold for edge removal is chosen to
ensure the network remains strongly connected, thereby preserving the well-defined
nature of network algorithms such as closeness and betweenness, while also reduc-
ing the network’s size. Hence, this optimization improves both the quality and
efficiency of the analysis. A binary search version of the threshold algorithm is
outlined in Algorithm 5.1. The network’s strongly connected property is continually
verified to ensure that the network’s connectivity remains with the threshold. The
is_strongly_connected function ensures that all nodes in the network are reachable

from any given starting node, as described in [218].

Algorithm 5.1 find_threshold(edges): Binary Search to find the largest threshold
for strong connectivity from edge.

Require: edges <+ A list of all edges in the network, each with a weight
Ensure: threshold: Largest threshold value for strong connectivity, NULL if there
is none.
edgeV alues <— unique weights extracted from edges sorted in ascending order
low < 0
high < length(edgeV alues) — 1
threshold <— NULL
while low < high do
mid Vn’gh;—low
network < build__network(edges, edgeV alues[mid))
> Removes edges with weight < edgeV alues[mid|
if is_strongly connected(network) then
threshold < edgeV alues|mid]
low <— maid + 1
else
high < mid — 1
14: end if
15: end while
16: return threshold

— = =
w2

87

Physics Informed Neural Networks in Sparse Data Applications

Secondly, we remove looping edges, which are defined as edges where the source
and destination nodes are the same (i.e., bike trips that originate and terminate
at the same station). These edges contribute little to the overall analysis and may
introduce complications for certain graph algorithms. However, loops could be a
meaningful aspect of the transportation system’s behavior, and thus, they should be
examined within a separate network.

For analytical purposes, one key advantage of the spatial graph is its ability to be
overlaid onto a geographical map of the bike-sharing network’s deployment area. In
line with Requirement 1, Figure 5.1 illustrates the SBiGN using data collected over
a 15-month period from June 2020 to August 2021, enabling the clear identification
of the busiest stations and the spatial distribution of high-activity stations. In this
visualization, node size is proportional to the total number of trips either originating
from or ending at the station. The ten most active stations are highlighted in red,
while other stations are shown in blue. Only the top 10% of edges (most frequently
used routes) are displayed in red and the remaining routes in blue.

Temporal Bike Graph Network. From a practical standpoint, we construct a
Temporal Bike Graph Network (TBiGN) by generating a sequence of time-bounded
SBiGNs, as defined in Def. 5.5. The TBiGN follows a specified temporal order and
a predetermined time scale, with each SBiGN; capturing network activity within a
specific time interval.

These intervals can have any duration and may or may not overlap. This
flexibility is essential for modeling how temporally adjacent networks reflect the
system’s evolution over time. The choice of intervals influences the degree of similarity
between successive networks. Intuitively, shorter intervals result in networks that are
less similar but allow for a more granular representation of system dynamics, aligning
with Requirement 2 outlined in the introduction. In contrast, longer intervals
may produce more similar networks due to the aggregation of data over extended
periods. However, this comes at the expense of overlooking certain aspects of system

evolution. Longer intervals are nonetheless necessary for capturing broader temporal

88

Physics Informed Neural Networks in Sparse Data Applications

Coolock
° Raheny
Casteeknock North Bull
Island
Phoenix T
Ballyfermot
Dugy,
‘ e
(in * Donnybregk ’0‘%/,
Clonskeagh ®
Bla
DUNDRUM * ° Monke
Tallaght
Knocklyon Dalk
alkey

Figure 5.1: Geographic Map overlaid with SBiGN. Each circle represents a
bike station and is sized according to its trip volume, with the 10 busiest stations
(by trip volume) shown in red and all others in blue. Lines represent routes between
stations and are also sized by trip volume; the 10 most frequently used routes are
highlighted in red, and the remaining routes are shown in blue.

properties such as seasonality and stationarity [216].

Definition 5.5 (Temporal Bike Graph Network) A TBiGN is a set TBiGN
= {SBiGN;y,SBiGNy, ..., SBiGNr}, where SBiGN; is a time-bounded SBiGN
and is described as a pair SGN; = (S, K). This corresponds to Def. 5.2, where each
node and edge in SGN; corresponds to a bike station and a route, respectively, within

the associated SBiGN;.

For bike-sharing graph networks, time intervals are typically defined over hours,
days, or weeks to facilitate the analysis of periodic and seasonal patterns. In
addressing Requirement 3, these networks are subsequently clustered into groups,
with the centroid of each cluster representing the entire group for analysis. This
approach simplifies the analysis of a large set of graphs, allowing the focus to be

placed on a smaller subset of centroid graphs.

89

Physics Informed Neural Networks in Sparse Data Applications

Spatio-Temporal Bike Graph Network. The Spatio-Temporal Bike Graph
Network (STBiGN) is designed to use STGNs as a fundamental building block and
is defined in Def. 5.6. This type of network is used to address Requirement 4
where a different perspective on station-by-station correlation can be explored.

The construction of STBiGN involves three steps:

1. In the first step, a time series is generated for each station based on a specified
timescale. Typically, the analysis is performed over contiguous, non-overlapping
intervals such as hourly, daily, weekly, monthly, or yearly periods. This allows
for the exploration of periodic patterns in the transportation system, such as
morning and evening rush hours. Once the timescale is known, each station is
represented by a time series reflecting the number of trips within each time-step

window, enabling the study of station activity over the defined timescale.

2. In the second step, a similarity score is computed for every pair of stations

using the Pearson correlation coefficient, as defined in Equation 5.1.

Slony) — Tt =) (5~ 7) -

S D) S - 9)

Here, (x;) and (y;) are two time series of length n is the number of time steps
in which activity is measured. The mean values T and 7 are the averages of x
and y, respectively. The Pearson correlation coefficient, which measures the
linear relationship between the two variables, is in the range —1 <r < 1. As
most network algorithms operate on non-negative edge weights, the coefficient

is normalized to a range of 0 to 1 using the transformation S(z,y) = (S(z,y) +

1)/2.

3. In the final step, STBiGN is constructed based on the correlation matrix of
the Pearson coefficients. The matrix of all normalized similarity scores forms
the adjacency matrix of the network. In this network, each node represents
a station, and an edge always exists between every pair of stations, with the

edge weight corresponding to the computed similarity score. To improve the

90

Physics Informed Neural Networks in Sparse Data Applications

usability of network metrics such as closeness, betweenness, and local clustering
coefficients—which perform poorly on fully connected or weighted networks,
statistically insignificant (weak) edges are removed. During this edge-trimming

step, the strongly connected property of the network is maintained.

Definition 5.6 (Spatio-Temporal Bike Graph Network) A STBiGN is a tu-
ple STGN = (S, H,Ts, T.), in accordance with Def. 5.3, where a node and an edge

in STGN; refer to a bike station and a trip in ST BiGN;, respectively.

Graph Metrics

The primary techniques for analyzing the structure of both SGN/TGN and SBiGN/TBiGN
are centered around centrality metrics. These metrics provide quantitative measures
of a node’s importance within the network [219, 220]. When analyzing centrality
metrics, particular attention should be given to nodes with exceptionally high scores,

as these nodes may either represent outliers or play crucial roles in the networks.

Graph Metrics for SBiGN and TBiGN

o Strength. Node strength is defined as the sum of the weights of the edges con-
necting a node to its immediate neighbors [221]. In the context of SBiGN/TBiGN,
the edge weight represents the volume of activity (i.e., the number of trips).
Therefore, the strength of a station is the total number of trips occurring to or

from that station.

o Degree. A node’s degree is the number of edges connecting it to adjacent
nodes, which is the number of nodes the node is directly connected to [222].
In the SBiGN/TBiGN, the degree of a station represents the number of other

stations with which it shares at least one trip.

e Closeness. Closeness centrality measures how close, on average, a node is
to all other nodes in the network [223, 224]. The distance between nodes is
defined as the length of the shortest path, or the minimum number of hops

(routes) between them. In SBiGN/TBiGN, a station’s closeness score quantifies

91

Physics Informed Neural Networks in Sparse Data Applications

how centrally located it is in relation to all other stations, reflecting its role in

overall movement across the network.

o« Betweenness. Betweenness centrality indicates how often a node lies on
the shortest paths between other node pairs [224, 225]. A high betweenness
score suggests that the station plays a key role in network connectivity. In
SBiGN/TBIiGN, stations with high betweenness scores often serve as “bridges”

or critical waypoints that connect different parts of the network.

e Local Clustering Coefficient. The local clustering coefficient measures the
likelihood that a node’s neighbors are also connected to one another [226]. In
the context of SBIGN/TBiGN, a high local clustering coefficient suggests that
travelers departing from a station are likely to move between only a few closely

interconnected stations.

o« Communities. Communities refer to groups of nodes that are more densely
connected with each other than with nodes outside the group [158, 227]. In the
SBiGN/TBiGN, a community represents a cluster of stations where a higher
proportion of trips occur within the community than between stations outside

of it.

Graph Metrics for STBiGN. The same graph metrics are employed as in the
previous graphs. But due to the difference in nature of STBiGN, the interpretation
of these metrics in such correlation-based networks [228-230] differs based on the

network’s construction and definitions:

o Strength. Node strength, defined as the sum of scaled correlations connected
to the node, reflects the degree of similarity between the station and other

stations in terms of their activity patterns.

e Degree. In a STGN, the degree is the number of stations that exhibit similar

behavior to the station under observation.

92

Physics Informed Neural Networks in Sparse Data Applications

o Closeness. In the context of a STGN, closeness is defined as the minimum
number of significant similarities that form a path between two stations. The
greater the distance between two stations, the less similar their temporal

activity patterns.

 Betweenness. In this case, betweenness centrality measures a station’s role
in connecting groups of similar stations. Stations with high betweenness scores

typically show similarity to multiple distinct groups.

o Local clustering coefficient. A high local clustering coefficient in a STGN
indicates that a station’s neighboring stations are also likely to be similar to
one another. Stations with high coefficients form groups with more or less the

same activity patterns.

o« Communities. Hence connections are built based on the similarity of stations’

activity time series Members of the same community share common temporal

patterns in their activity.

5.2.3 Experiments

The dataset used for the experiments is described in Section 2.2.1.

Materials and Tools

The programming environment uses Python, with several key libraries for experiments,
including Scipy [231], Matplotlib [232], and NetworkX [233]. Pandas [234] is utilized
for data processing, analysis, and graph construction while Matplotlib is used for
data visualization. Graph visualizations are produced using Google Maps API [235]
in combination with NetworkX. The Neo4j graph database [236] is used to manage
and store all graphs. Additionally Neo4j’s Graph Data Science Library [237], with
built-in centrality metrics and community detection algorithms, is used for all network

metrics.

93

Physics Informed Neural Networks in Sparse Data Applications

Network Constructions

SBiGN. As described in Def. 5.4, stations are modeled as nodes in the SBiGN,
and are linked by undirected, weighted edges if at least one trip occurred between
them in the 15-month period. The weight of each edge is the total number of trips,
counting both directions. To enhance the analysis, loop edges and weak links are
removed from the SBiGN.

To identify and remove weak connections, we progressively lower the edge weight
threshold until the network achieves strong connectivity. In the experiment, the
final threshold is set at 11 trips by Algorithm 5.1. The resulting network density,
calculated as the ratio of actual edges to potential edges, is approximately 19%.
Following the removal of 9,544 loop trips and 7,920 trips associated with weak links,
the final SBiGN consists of 18,717 trips connected by 686 edges, with the number of
nodes unchanged at 86.

TBiGNs. TBiGNs are used to analyze movement patterns with specific time
intervals. In this experiment, daily and monthly graph projections are constructed
to enable detailed and broader analyses, respectively.

For daily analysis, 7 TBiGNs are generated, representing each day of the week,
using data spanning 66 weeks within the 15-month period from June 2020 to August
2021. These 7 TBiGNs are clustered into two groups: “weekday,” comprising 5
TBiGNs for weekdays, and “weekend,” comprising 2 TBiGNs for the weekend days.
Similar to the SBiGN, loop trips and weak links were removed from the TBiGNs.
In this case, weak links are defined as edges with fewer than 5 trips. On average,
approximately 1,364 loop trips are removed per day, accounting for 26.4% of the
data, along with 551 trips of weak edges, representing 10.6%.

For broader monthly analysis, monthly TBiGNs are used to examine variations
in network activity across a monthly timeframe. A rolling window of 4 weeks size,
starting at week 1, slides one week at a time. This results in 63 networks covering the
66-week period June 2020 to August 2021. Nodes represent stations, and edges are

weighted by the number of trips occurring within each 4-week window. In addition

94

Physics Informed Neural Networks in Sparse Data Applications

to removing loop trips, the network is further optimized by eliminating edges with
fewer than 3 trips, using a weekly threshold of 0.75 trips per week. On average,
around 384 trips are removed from each TBiGN, totaling of 1,628 trips (23.6%).

STBiGN. Spatio-Temporal Graphs enable the analysis of temporal patterns
occurring between spatial locations. We build three levels of granularity for analyzing
the similarity between stations across temporal dimensions: hourly, where the 24
hourly intervals are averaged across the entire dataset; daily, where each day of the
week is averaged, and monthly, where a single monthly value is calculated for each
station over the 15 months of the study.

A typical investigation for this type of network examines the similarity of the
growth of stations over time. Nodes are stations and an edge connects two stations
based on the degree of similarity in their trips volumes over the analyzed time period.
The edge weight is the Pearson correlation coefficient between two stations’ timeseries.
Similarity is considered significant only when the correlation coefficient exceeds the
threshold value of T' = 0.533. This threshold ensures strong network connectivity
while minimizing the number of edges. The network’s density, which indicates how
well connected the graph is, is 0.098. This is calculated as #edges/#possible Edges.
In STBiGNs, the higher the value the greater the similarity between any pair of
stations. In contrast, lower density values can indicate stations with more distinctive

travel patterns.

5.2.4 Analysis and Discussion

In this section, we validate our research using the networks constructed in Section 5.2.3
against the set of requirements outlined in Section 5.2.1. There are 6 parts that
reflect the different types of analyses and different levels of granularity. However,
we only present in details two parts, the monthly temporal networks and daily
spatio-temporal networks. Other discussions, including spatial bike graph, daily
temporal graph, monthly spatio-temporal graph and hourly spatio-temporal graph,

are similar in terms of techniques and are presented in the Appendix B.

95

Physics Informed Neural Networks in Sparse Data Applications

4.2.2.1 Spatial Bike Graph Networks (SBiGN)

Basic graph analytics are applied to analyze bike movement across the entire network.
Table 5.1 lists stations in descending order according to their strength values.
Notably, the station at Fairview Avenue Lower has the highest strength at 1,478,
closely followed by centrally located stations such as Mountjoy Square South (1,385),
Criminal Courts of Justice (1,350), Grand Canal Docks (1,322) and O’Connell Street
(1,272). The decline in station strength follows a slightly negative-exponential trend,
near linearity. Small stations tend to have very few trips over the observation period,
often fewer than several dozen. Interestingly, many of these small stations are
situated near larger, higher-traffic stations.

Table 5.1: Node Strength in SBiGN

Station Strength
Fairview Avenue Lower 1,478
Mountjoy Square South northside opposite No. 40-45 1,385
Outside Criminal Courts of Justice 1,350
Grand Canal Docks, outside Fresh 1,322
Beside Penneys O’Connell Street 1,272
Benson Street 43
Start of St. Stephen’s Green terrace. 43
Pearse Street, outside Subway 26
Phibsborough Rd, outside Broadstone Hall Studen... 23
Merrion Square North opposite Oscar Wilde House 11

Table 5.2 presents the edge weights. The most frequently traveled routes are
predominantly associated with commuting trips or follow the coastal line between
Blackrock and Monkstown. The edge weights exhibit an exponential decrease, with
the most popular routes having nearly twice the weight of the third most popular
route. Unsurprisingly, the least traveled routes have negligible weights. While some
stations rank highly in both node strength and edge weight metrics, there are notable
differences in the patterns of route and station popularity. Station strength displays
a more gradual decline, whereas route popularity decreases more sharply.

Figures 5.2 to 5.4 highlight key geographical areas, with the size of a station’s

node representing its relative importance. In Figure 5.2, degree of a station is closely

96

Physics Informed Neural Networks in Sparse Data Applications

Table 5.2: Edge Weight in SBiGN

Source Target Weight
Dun Laoghaire Dart Honeypark Neptune Way 247
Criminal Courts of Justice | Phoenix Park Gate 243
Blackrock Main St. Dun Laoghaire Dart 190
Drumcondra Road Upper | Fairview Avenue Lower 179
Dun Laoghaire Dart Sandycove Beach 165
End of Adelaide Road Talbot Hotel Stillorgan 11
Richmond Row Dun Laoghaire Dart 11
Sandymout Village Dun Laoghaire Dart 11
Grand Canal Docks Seapoint 11
Ballsbridge Monkstown 11

correlated with its strength, except for the Monkstown station, which High-degree
nodes, depicted in red, are typically located in residential areas, acting as hubs for

people traveling to and from these regions.

~ Coolock
P Rahen
Casteeknock ® y
® A ® North Bull
°3 Labre ;‘ e © Island
Phoenix Park .-° @
o & %
Ballyfermot ®'e ® &
.‘ ¥ .. ®
o
o @ 2 .Smd)ﬂ'nount
A hy .. ° Dub/f};
(n Donnybrogk ‘9@
Clonskeagh ®
Bla®rock
DUNDRUM ® ° Monkstow®e
Tallaght L
Knocklyon H
Dalkey

Figure 5.2: Graph Analytics for Spatial Bike Graph Networks: Degree. Each
circle represents a bike station and is sized by its degree, with the 10 highest-degree
stations shown in red and all others in blue.

The closeness metric offers further insights into the significance of stations

97

Physics Informed Neural Networks in Sparse Data Applications

Coolock
P p ® Raheny
Castkrgcb o o North Bull
< ‘ o O Island
Phoenix Park ()

Ballyfermot > }\

L/

@
og‘
o : Smdﬁnount
Dypy:
.) by,
(N ® Don%ybrow !OQ?}
Clonskeagh®
Bla&roc‘
DUNDRUM o ¢ Mon@towlg
Tallaght
Knocklyon F

Dalkey

Figure 5.3: Graph Analytics for Spatial Bike Graph Networks: Closeness.
Each circle represents a bike station and is sized by its closeness centrality, with the
10 highest-closeness stations shown in red and all others in blue.

within the network. Stations with high closeness scores (depicted in red in Figure 5.3)
are well-connected to numerous other stations, whereas stations with lower scores
tend to be more isolated. The top 10 stations in terms of closeness are located in
the city center, underscoring their extensive connectivity with stations across Dublin.
The network’s average closeness score is 0.59, indicating that, on average, a station
is approximately 1.7 trips away from other stations. As closeness values exhibit
minimal variation across the stations, this suggests that there is no clear standout
station that serves as a central hub for reaching many other stations via existing
trips. As a result, the removal or closure of any single station would not significantly
disrupt movement across the entire network.

In Figure 5.4, stations with high betweenness scores are highlighted in red.
These stations are primarily located along the river in the city center or in the

Blackrock area. If an isolated, high-betweenness station like Blackrock is to close, it

98

Physics Informed Neural Networks in Sparse Data Applications

Coolock

Raheny

Castleknock Y North Bull

Cabra y)\ Island

e
o D'ElblTn.

Phoenix Park

° o ;
Ballyfermot ®. "%, ([
. ® ' Sgndymount
@ DUb'
\ @ . /i
In ' Donnybrook 05’?}
Clonskeagh °
Bla&rock
DUNDRUM < Monkstowf .
Tallaght X
Knocklyon
Dalkey

Figure 5.4: Graph Analytics for Spatial Bike Graph Networks: Betweenness.
Each circle represents a bike station and is sized by its betweenness centrality, with
the 10 highest-betweenness stations shown in red and all others in blue.

could potentially divide the network into separate segments and limiting bike rentals
and movement within their respective networks.

The final analysis of the SBiGN focuses on identifying communities based solely on
spatial data, as depicted in Figure 5.5, where nodes of the same color represent stations
belonging to the same community. Four communities are identified: the north-east
(purple), the north-west (bright aqua), the south-city group (pale chartreuse) and the
south-suburban (Blackrock and Monkstown) area (red). It is interesting that three
of these communities are located close to the city center, with two on the north side
and one on the south side. This indicates a more widespread use of the bike-sharing
system in the northern part of the city, potentially indicating that more customers
utilize the bikes for work or reflecting underlying socioeconomic factors. The fourth
community, located in the Blackrock-Monkstown area, is relatively isolated from the

other three, being far from Dublin’s city center. Trips within this community are

99

Physics Informed Neural Networks in Sparse Data Applications

typically along the coastline or from nearby residential areas to the coast, with limited
interaction between this community and the others. This finding is particularly
interesting as it reveals the presence of isolated communities with minimal overlap,

suggesting that bikes remain “trapped” within the network.

Coolock
Raheny
SRR North Bull
Island
Ballyfermot
Cdymount
Dypy;
fin "”’&?L
Clonskeagh ®
B
DUNDRUM ° Monksto
Tallaght
Knocklyon
Dalkey

Figure 5.5: SBiGN Community Detection. Each circle represents a bike station
and is sized according to its trip volume. The node colors indicate different commu-
nities, with four communities labeled: purple, , , and red.
Lines represent routes between stations and are also sized by trip volume.

SBiGNs: Summary In SBiGNs, we addressed Requirement 1 by providing
a high-level visualization. The information contained in Tables 5.1 and 5.2, along
with Figures 5.2 to 5.5, provides additional insights and context to the network
visualization. These include key metrics such as strength, degree, closeness, and
betweenness, as well as the identification of station communities and the weights

of routes over the 15-month period.

100

Physics Informed Neural Networks in Sparse Data Applications

4.2.2.2 Temporal Bike Graph Networks (Monthly TBiGN)

We employed agglomerative hierarchical clustering using Euclidean distance, as
described in [238], to generate a dendrogram illustrating network changes over time.
Figure 5.6 displays the results of hierarchical clustering on a series of monthly basic
networks, with the z-axis representing the start date of each 4-week period. The
analysis reveals three distinct clusters: the first spans the period from June 2, 2020,
to November 15, 2020; the second extends from November 2, 2020, to July 4, 2021;
and the third covers the timeframe from June 28, 2021, to the end of August 2021.
These clusters closely correlate with two major phases of COVID-19: lockdowns
(restrictions, lockdowns) and reopenings (easing). This alignment illustrates how
significant events, such as the pandemic, influenced network dynamics over time in
the monthly temporal graphs.

Figures 5.7 to 5.9 depict the temporal evolution of the three distinct TBiGN

clusters, providing insights into the differences among these clusters over time.

e Restrictions Cluster. The first cluster, representing the period from June
to mid-November 2020 (Figure 5.7), shows that network activity was largely
concentrated at a limited number of key stations and routes, primarily involving
Phoenix Park and Fairview Park to the city center. Notably, although activity
is focused near the city, the biggest stations and routes are distributed across

several central areas rather than being concentrated in a single location.

e Lockdown Cluster. During the second cluster, which corresponds to the
stricter lockdown period from November 2020 to early July 2021 (Figure 5.8),
overall activity levels decline significantly. The size of the top stations and
routes also diminishes, with the top 10 most active stations shifting away from

the western part of Dublin.

« Easing Cluster. In the third cluster, covering July and August 2021 (Fig-
ure 5.9), activity levels almost return to pre-lockdown levels. During this

period, the most active stations are located within the city center, with major

101

Physics Informed Neural Networks in Sparse Data Applications

50 - [:]Lockdown

Restrictions

40 - l . I Easing

20 A

10 -

Figure 5.6: Rolling Window Monthly Clustering. This dendrogram shows how
monthly bike-sharing networks (each represented on the x-axis by its start date)
cluster based on their similarity. The y-axis indicates the distance between these
monthly networks, with lower values signifying higher similarity. Horizontal lines
connect two clusters at their respective distance. Three primary clusters are detected:
Restrictions, Lockdown and Easing.

routes connecting residential areas to the central urban zone.

Furthermore, this type of graph addressed Requirement 3 by clustering the
monthly TBiGNs over time. Figures 5.7 to 5.9 provide information regarding the
strength of stations and the weight of edges within the clusters, which correspond
to the periods of COVID-19 restrictions, lockdown, and subsequent easing phases.

TBiGNs: Summary In TBiGNs, we addressed Requirement 2 by presenting
daily TBiGNs categorized and normalized into a weekday TBiGN and a weekend
TBiGN. The data found in Tables B.1 and B.2, as well as Figures B.1, B.2, B.3 and B.4
provides insights into various aspects, including strength and communities of

stations, weight of edges, and activity networks (illustrating strength and weight).

102

Physics Informed Neural Networks in Sparse Data Applications

. Coolock
’ Raheny
Castéeknock North Bull
Island
Phoenix
Ballyfermot .
e
\ [_— Ub'!.
In Donnybrook JO‘%},
Greenhills
Clonskeagh *
Bla
DUNDRUM < Monksto
Tallaght
Knocklyon ¢ Dalk
alkey

Figure 5.7: Geographical Plot of By Month Clusters. (Representation
Networks of the Restriction Cluster). Each circle represents a bike station and
is sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

4.2.2.3 Spatio-Temporal Bike Graph Networks (Daily STBiGN)

Dimensional modeling and analysis [239] often follows a hierarchical approach,
particularly when analyzing data over time. Higher-level abstractions can reveal
periods that need more detailed investigation. A daily correlation network offers a
day-by-day analysis over a specified period, where activities are aggregated by day.
In this network, two stations are connected when their activities exhibit similarity
based on daily comparisons. The timeseries for each station is represented as a vector
of length 7, with each entry proportional to the total number of trips occurring on a
specific day of the week. An edge between two stations is kept only if the Pearson
correlation coefficient between their respective timeseries exceeds a threshold 7. The

aim is to select a low threshold while maintaining a strongly connected network.

103

Physics Informed Neural Networks in Sparse Data Applications

Coolock
P Raheny
Cast&ekn.ock North Bull
Island
Phoenix Park\
Ballyfermot
1 . Dupy;
in & DonnybroQk fo‘%}
Greenhills .
Clonskeagh °
Bla
DUNDRUM < * Monksto
Tallaght
Knocklyon Dalk
alkey

Figure 5.8: Geographical Plot of By Month Clusters. (Representation
Networks of the Lockdown Cluster). Each circle represents a bike station and
is sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

For the experiments, we set T' = 0.609, resulting in a network density D = 0.238.
Figure 5.10 depicts the daily correlation network for the entire dataset. Only the top
5 percent of edges are visualized, with node colors representing the detected clusters.
The top 10 most correlated edges are highlighted in red, while all other edges are
shown in blue.

In the day-of-week correlation network (Figure 5.10), three major communities
and one smaller, three-member community are identified. The cardinalities of the
communities are as follows: the purple community comprises 3 stations, the bright
aqua community includes 31 stations, the pale chartreuse community contains 34
stations, and the red community consists of 18 stations. The spatial distribution

of these communities shows some influence from their geographic locations. The

104

Physics Informed Neural Networks in Sparse Data Applications

y Coolock
o » Raheny
Castleknock AN N> North Bull
« Cabra ///./\ Island
Phoenix Park
Ballyfermot
. . Pubyj,
in Donnybrook 3
Greenbhills . \
Clonskeagh
Blad®rock
DUNDRUM \ * Monksto
Tallaght ;
Knocklyon Dalk
alkey

Figure 5.9: Geographical Plot of By Month Clusters. (Representation
Networks of the Easing Cluster). Each circle represents a bike station and is
sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

largest community (pale chartreuse) is mainly in the south of Dublin, including the
entire Blackrock-Monkstown area but also includes some stations in the Phoenix
Park. The bright aqua community is primarily around the River Liffey, while the
red nodes are distributed across the central and northern areas of Dublin. The
pale chartreuse community demonstrates strong connectivity, with many stations
showing high strength, including Castleknock, which ranks as the highest strength
station. This identifies that the stations in this community exhibit highly similar
activity patterns. In contrast, the bright aqua community consists of stations with
noticeably lower strength and lacks strong connections. Meanwhile, although the red
community has fewer members, its stations are still strongly connected.

Figure 5.11 displays the daily time series for each community, with the values

105

Physics Informed Neural Networks in Sparse Data Applications

Coolock
® Raheny

North Bull
Island

Greenhills

DUNDRUM

Tallaght
Knocklyon
Dalkey

Figure 5.10: Daily Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different communities, with
four communities labeled: purple (small), , , and red.
Lines represent routes between stations and are sized by their correlation score.

averaged. Generally, the Moby Move service tends to experience higher activity levels
on weekends, particularly on Saturdays. Through analysis using simpler network
models, it is identified that the pale chartreuse stations can be classified as weekend
stations. These stations show very low activity during weekdays, but trip numbers
increase sharply starting on Fridays, reaching their peak on Sundays. Similarly,
the red stations exhibit reduced activity on Mondays and Tuesdays, with a steady
level of activity throughout the remainder of the week, peaking on Saturdays. In
contrast, the bright aqua stations operate as weekday stations, where the service is
predominantly used on weekdays.

Table 5.3 follows the same format as Table B.3, but focuses on identifying
the strongest stations based on daily correlations. The variance in strengths and
average correlation coefficients is notably higher, ranging from 0.31 to 0.74. This

greater variability indicates that more distinct patterns should emerge, leading to

106

Physics Informed Neural Networks in Sparse Data Applications

== Community ID 19
Community ID 48
Community ID 56

= Community ID 72

0.19 A

=

Percent of trips over a week

© © © © © © ©

= P = = = = =

N w i ul o ~ o)
L 1 1 L 1 1 1

Mon Tue Wed Thu Fri Sat Sun
Day of Week

Figure 5.11: Timeseries Communities in Daily STBiGNs

the formation of larger communities within the network. This also suggests the

characteristics of these communities are more distinguishable.

Table 5.3: Node (station) Strength in Daily STBiGNs

Station Strength | Avg. Cor. | #Pos | #Neu | #Neg
Castleknock 63.1 0.742 62 18 5
Luke Street 62.8 0.739 63 17 5!
Irishtown Rd 62.5 0.735 62 16 7
Westmoreland street 34.4 0.405 6 43 36
Blessington Street 30.4 0.358 7 29 49
Warehouse 26.5 0.312 12 23 50

STBiGNs: Summary In the STBiGNs analysis, we addressed Requirement
4 by providing correlation networks that highlight the strength, weight, and
communities, as well as timeseries communities and station strength. These
were analyzed at three temporal levels: Monthly (Figures B.5 and B.6, and Table B.3),
Daily (Figures 5.10 and 5.11, and Table 5.3), Hourly (Figures B.7 and B.8, and

107

Physics Informed Neural Networks in Sparse Data Applications

Table B.4). These outputs provide insights into the relationships between each station
and all other stations, as well as the relationships between different communities,

based on timeseries comparisons.

5.2.5 Conclusion

In this section, we introduce a graph-based modeling framework designed to analyze
the dynamics of a bike sharing system. The goal is to have high-level visualizations
of network activity levels; facilitate the examination of spatial regions over speci-
fied time intervals and identify stations that exhibit similar connectivity based on
spatio-temporal metrics. Three types of networks are constructed: Spatial Bike
Graph Networks, Temporal Bike Graph Networks, and Spatio-Temporal Bike Graph
Networks. Each type provides unique insights, ranging from high-level activity
patterns to granular temporal trends and correlations between station activities. The
analysis revealed critical aspects such as centrality metrics, community structures,
and temporal activity trends.

The Spatial Graph Networks, the simplest to construct, are effective at identifying
high-traffic stations. Metrics like closeness and betweenness provide insights into
popular station-to-station trips and critical “bridge” stations whose removal could
segment the network, indicating where new stations may be needed. Temporal Graph
Networks incorporate temporal granularity to capture both long-term trends (e.g.,
seasonal patterns, effects of COVID-19) and specific events. Finally, Spatio-Temporal
Graph Networks allow comparison of activity patterns across stations, identifying
similar behavior despite geographic differences, unique patterns, and anomalies within
network communities.

The findings show that graph-based representations can capture spatio-temporal
relationships and complex patterns in the data. Consequently, integrating graph
structures into neural network models is promising, as these structures can guide
neural networks to autonomously capture spatio-temporal information. In the next

section, we take this approach by applying a novel GNN architecture to the problem

108

Physics Informed Neural Networks in Sparse Data Applications

of air quality forecasting. This model leverages attention mechanisms to adaptively
learn the connections between stations, thereby extracting relevant spatio-temporal

features.

5.3 Air Quality Forecasting

In Section 5.2, we modeled spatio-temporal data, such as that from a bike-sharing
system, using a graph-based representation. In this section, however, we aim
to leverage the advantages of graph representations within a machine learning
context, specifically through graph neural networks (GNNs). These models enable
the automatic learning of structural features and relationships among entities within
the graph.

In particular, we introduce a novel graph neural network designed to enhance
spatio-temporal feature extraction for forecasting air quality. Our approach incorpo-
rates an attention mechanism that dynamically assigns different weights to various
factors. By applying attention layers to both the temporal and spatial dimensions,
the model is capable of simultaneously learning spatio-temporal features that affect
the prediction outcome. Again, maintaining our goal of real world problems and
associated data, we validate our proposed model using air quality data collected

from 10 monitoring stations in Hanoi, Vietnam, spanning a period of over one year.

5.3.1 Attention Mechanisms

The core concept of our proposed neural network architecture is the incorporation of
attention mechanism layers into both the temporal and spatial dimensions, stacking
them in a manner that enables the model to capture spatio-temporal patterns from
the input data. The attention mechanisms employed in this architecture are inspired
by the self-attention approach in natural language processing [18], as well as graph
attention networks [167]. Specifically, at each timestep or location, features are

transformed into three distinct vector representations: query, key, and value vectors.

109

Physics Informed Neural Networks in Sparse Data Applications

Queries and keys, along with separately trained temporal and spatial representations
for each timestep or location, are used to compute the weights between any pair
of timesteps or locations. The output of the layer is a weighted average of the
value vectors, where the weights are determined by the calculated pairwise weights.
This adaptive weighting allows the model to dynamically respond to the current
state of the input, while the separate temporal and spatial representations capture
the average correlations within the underlying process. The temporal and spatial
layers are stacked in a structure similar to the approach used in [240], where each
spatio-temporal block consists of two temporal modules with a spatial module
positioned between them. In this way, the model integrates both temporal and
spatial information by alternating between temporal and spatial layers.

Formally, the problem and our proposed solution are defined as follows. Let
zo € R¥¥T*F0 represent the input data, where S is the number of locations, 7" is the
number of historical timesteps, and Fy denotes the size of the feature space. Let
y € R9*% represent the air pollutant concentrations in the next 24 hours at each
monitoring station, and let f represent the relationship between historical data and
future air quality. Our objective is to build a model, denoted f , that estimates air
quality, g = f (x), based on the historical data z. The architecture of the model
comprises a series of temporal attention layers (T'emAtt) and spatial attention layers
(SpaAtt). Figure 5.12 shows the architecture of the layer. A detailed description of

the entire architecture will be provided in the rest of the section.

Temporal Attention Layer

RT*F represents the input at a given location. The temporal attention

Assume x €
layer processes this input and generates temporally enriched features a. This layer
consists of two components: a self-attention sub-layer, which captures temporal
patterns, and a feed-forward sub-layer, which further refines these temporal features.

In the self-attention sub-layer, the layer computes weights w;, (Formulas 5.2)

that determine the significance of timestep u to timestep t. These weights are

110

Physics Informed Neural Networks in Sparse Data Applications

|]

Dense
Dense L)
Weighted Weighted P
G D E—— Sum
Sofimax Softmax
))
Similarity Similarity

REE2NE S
V - -
‘ ' ‘ ‘..Embedding }—»o

x X

(a) Temporal Attention Layer (b) Spatial Attention

Figure 5.12: Temporal and Spatial Attention Layers

derived by applying a softmax function to the dot product between two nonlinear
transformations of the input: the query vector () and the key vector K. Temporal
embeddings are incorporated into the query and key transformations to differentiate

between timesteps.

Qt = WQ(%t + bQ) + B

wy,, = softmax(Q; - K,)

In the Equations 5.2, W and Wg are matrices of size A x I, bg and b are bias
vectors of size A, and E; and F, are temporal embeddings.

The output is then calculated as a weighted sum of another input transformation,

111

Physics Informed Neural Networks in Sparse Data Applications

V, in Equations 5.3, Where Wy € RF*F and by € RY.

V, = ReLU(Wyay + by), Vu (5.3)

‘/t/ = Z wt,uVu

The processed temporal features are then passed through a feed-forward layer
applied independently to each timestep ¢, described in Equation 5.4, where Wgp €

RE*F and bpp € RY are the feed-forward layer parameters.

a; = RGLU(WFF‘/t, —+ bFF) (54)

This architecture enables the layer to extract temporal features adaptively, based
on the inputs at each location. It calculates the importance of different timesteps,
taking into account both the input at the location and the relative time lags, as
captured by the temporal embeddings. It is important to note that the above
equations apply to a single location; hence, the computed weights vary across
locations, allowing the model to consider spatial information embedded within the

input data.

Spatial Attention Layer

Similar to the temporal attention layer, the attention mechanism is applied along the
spatial dimension in the same manner, treating monitoring stations analogously to
timesteps. Thus, when extracting features at a specific location, the spatial attention
layer assesses the importance of other locations, including the current location itself.
0 Let o € R¥*F represent the input to the layer at a single timestep, where S denotes
the number of locations and F' represents the feature space. The output a, for
location s is computed as in Equations 5.5. Here, Wg, Wi, Wy, Wgp and bg, b, by,
brr are the model parameters of appropriate sizes, and F is the spatial embedding

for location s.

112

Physics Informed Neural Networks in Sparse Data Applications

2's =z, + E,

Qs = Wolz + bq)

K, = Wg(z, +bx)

Vi = ReLU(Wy 2, + by), Vu (5.5)
e = softmax(Q, - K.

‘/5, = Z ws,uVu

as = ReLUWgppV! + bpr)

It is important to note that these equations pertain to a single timestep. The at-
tention weights can vary across different timesteps, allowing the model to incorporate

temporal information embedded in the input.

Network Architecture

To facilitate spatio-temporal feature extraction, we structure the temporal and spatial
layers into a spatio-temporal block. Following a similar approach to [240], we design
the block with two temporal layers at the beginning and end, and one spatial layer
in between, as depicted in Figure 5.13a. The rationale behind this design is that
historical data at a given location provides a more reliable basis for predicting future
behavior at that location. Thus, processing along the temporal dimension takes
precedence over the spatial dimension. The block begins with a temporal attention
layer to extract time-aware features before integrating information from related
locations via the spatial attention layer. Subsequently, the block reconfirms these
features by processing them again through a temporal layer. The outputs of this
block incorporate features from both spatial and temporal dimensions. The block
can be formalized as follows in equation The outputs produced by the block contain
features from both spatial and temporal dimensions. The block can be formulated

as Equation 5.6, where z; is the feature vector generated by the previous layer, and

113

Physics Informed Neural Networks in Sparse Data Applications

2141 is the output of the block.

f

|
Temporal Layer
t
Spatial Layer
t
Temporal Layer

. gpatial-temporal Blcc¢

(a) Spatial-temporal Attention Block

| Dense |
. Spatial-temporal
Block

‘ Spatial-temporal

Block

| Dense |

(b) Entire Architecture

Figure 5.13: Proposed attention-based spatial-temporal neural network architecture

x141 = SPBlock(x;) = TemAtt(SpaAtt(TemAtt(x;))) (5.6)

As in many traditional deep learning architectures, we stack multiple spatio-

temporal blocks to enable the model to learn increasingly deep features. The complete

architecture of our proposed attention-based spatio-temporal neural network is

illustrated in Figure 5.13b. First, the raw inputs are transformed into a new vector

space using a dense layer to facilitate feature processing in subsequent layers. The

transformed inputs are then passed through a series of spatio-temporal blocks to

generate spatio-temporal features. The final predictions are made using a fully

connected layer that processes the outputs of the spatio-temporal blocks. Formally,

let x¢ denote the raw input, and let L represent the number of spatio-temporal blocks.

The air quality prediction is given by Formulas 5.7, where Winput, Woutputs brmput,

114

Physics Informed Neural Networks in Sparse Data Applications

and boyiue are the model parameters, and the activation function is set to ReLU.

xry = ReLU(WInputxO + bInput)
xp41 = SPBlock(x;),l=1...L (5.7)

y= WOutputh—&-l + bOutput

After conducting extensive experiments, we determined that the optimal number
of spatio-temporal blocks L is 2. Using more layers increases the risk of overfitting
due to the growing number of trainable parameters, while fewer layers result in
shallow spatio-temporal patterns and underfitting. The optimal attention size A for
the temporal and spatial layers lies between 32 and 64, while the hidden size should
be in the range of 128 to 256. It is important that the attention size remains smaller
than the feature size to prevent the model from overreacting to minor changes in the
input, while the feature size should be sufficiently large to capture more information.
Of course choosing these hyperparameters that are too small or too large can lead to
underfitting or overfitting during model training. We set the number of timesteps T’
to 7 days, enabling the model to learn weekly patterns, as longer historical data did
not improve performance and increased computation time.

Given that air pollutant concentration forecasting is a regression task requiring a
real-valued output, we train our model using the least mean squared error (MSE)
loss function. The model parameters are optimized via backpropagation using the
Adam optimizer [203], with a learning rate of 10~*. Early stopping is employed when

the validation loss ceases to decrease.

5.3.2 Experiments

In this section, we begin by providing a detailed description of the dataset used to
evaluate our proposed method. This is followed by a discussion on the preprocessing
steps, including the generation and splitting of the training samples. Then we outline

the experimental setup and present the results using appropriate evaluation metrics.

115

Physics Informed Neural Networks in Sparse Data Applications

Data Preprocessing

The dataset used for the experiments is described in Section 2.2.2.

To prepare the data for neural network training, we utilize a sliding window
approach with a window size of T' + 24, where T represents the number of historical
timesteps, and 24 corresponds to the number of hours to be predicted into the
future. The window slides over time, generating one training sample for each window.
With T' = 7 days, this process yields 12,940 data samples. For missing values, we
apply short-term interpolation by considering data up to 3 days before and after the
missing values when performing linear interpolation, adjusted for weekly periodicity.
For larger gaps, we either fill the missing data with seasonal mean values or apply
masking during training and prediction, provided the models support masking.

To train and evaluate the models, we divide the dataset into three subsets: the
training set, used for model training; the validation set, employed to select optimal
hyperparameters; and the test set, used to evaluate model performance. Specifically,
we use the first 12 months of data, accounting for approximately 66% of the dataset,
for training. The subsequent 3 months (roughly 16%) are used for validation, and
the final 3 months are reserved for testing. This train-validation-test split reflects
real-world applications, where air quality prediction models are trained and validated
on recent data and then deployed for predictions over a few months before being

retrained.

Experiments

For comparison, we implement several baseline models ranging from traditional
machine learning approaches to more complex architectures commonly used in
timeseries-related tasks. These models include XGBoost [241], linear regression
(LR), multi-layer perceptrons (MLP), support vector machines (SVM), and long
short-term memory networks (LSTM) [163]. In addition, we re-implement established
models specifically designed for air quality prediction, such as GNN-LSTM [90] and

GLSTM [173]. All models are re-implemented using Pytorch in Python, with the

116

Physics Informed Neural Networks in Sparse Data Applications

exception of XGBoost, for which we utilize its own Python package. Regarding
our proposed approach, we train three different architectures: temporal attention
models (TemAtt), spatial attention models (SpaAtt), and the proposed spatio-
temporal attention models (SpaTemAtt). All models are trained on the same training
dataset, with hyperparameter tuning and model selection based on performance
on the validation set. For each model type, we conduct extensive training and
hyperparameter optimization to ensure optimal performance.

We evaluate the performance of our methods using standard metrics commonly
applied in regression tasks: root mean squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE). Detailed descriptions of these

metrics are provided in Appendix A.1.

Results

Table 5.4 show the results of the experiment. From the table, it can be seen
that the performances are quite similar across different models, with only slight
variations. The Temporal Attention (TemAtten) model achieves the lowest RMSE
on the validation set (28.06), suggesting its effectiveness in capturing temporal
patterns during training. However, on the test set, the Spatial-Temporal Attention
(Spa-TemAtten) model yields the best RMSE (29.01), marginally outperforming
the GLSTM model (29.06). Interestingly, the simple Linear Regression (LR) model
achieved the lowest MAE on the validation set (14.75) and the second-best MAE on
the test set (18.46), closely behind the LSTM-GNN model, which recorded the lowest
test set MAE (18.42). Comparing the LSTM and Temporal Attention (TemAtten)
models, we observe that TemAtten outperformed LSTM on the validation set in
terms of RMSE (28.06 vs. 30.16), indicating that the attention mechanism enhances
the model’s ability to learn temporal features during validation. Notably, the Spa-
TemAtten, LSTM-GNN, and GLSTM models exhibited strong performance on the
test set, demonstrating their effectiveness in simultaneously capturing both spatial and

temporal dimensions. Despite the expectation that advanced models incorporating

117

Physics Informed Neural Networks in Sparse Data Applications

attention mechanisms and graph structures would significantly outperform simpler
models, the improvements observed are marginal. This finding suggests that, in
scenarios with limited available training data, such as this forecasting task, the

advantages of more complex architectures may be diminished.

Table 5.4: Air quality 24-hour forecasting performance. Average metrics
computed over a 24-hour period with hourly predictions. Lower metric values
indicate better performance. The best result in each column is highlighted in bold,
while the second best is underlined.

] Model \ RMSE-Valid \ MAE-Valid \ RMSE-Test \ MAE-Test ‘
LR 30.14 14.75 29.24 18.46
MLP 29.14 15.68 30.15 20.23
LSTM 30.16 15.31 29.57 18.93
LSTM-GNN 30.19 15.31 29.52 18.42
GLSTM 30.11 15.21 29.06 18.48
TemAtten 28.06 15.60 31.05 21.65
SpaAtten 30.01 15.70 29.47 18.98
SpaTemAtten | 28.55 14.80 29.01 18.57

Furthermore, examining the optimal configurations of the TemAtten, SpaAtten,
and SpaTemAtten models reveals patterns regarding the temporal and spatial de-
pendencies captured by the models. For the TemAtten model, the best-performing
time windows are [24, 48, 168] hours, while for the SpaTemAtten model, they are [24,
48, 24, 48]. This indicates that, although long-term dependencies (e.g., 168 hours,
or one week) along the time dimension are important for accurate predictions, the
model still prioritizes short-term information (24 and 48 hours) before incorporating
longer-term patterns. This sequential approach suggests that the model first captures
local short-term dynamics before extending its focus to more distant time intervals,
thereby improving its temporal feature extraction. Similarly, in the case of spatial
attention models, the optimal distance thresholds for neighboring stations are [2, 4]
kilometers for SpaAtten, and [2, 4, 2, 4] kilometers for SpaTemAtten. This implies
that the model focuses initially on nearby stations (within 2 kilometers) before

expanding its attention to those at greater distances (up to 4 kilometers).

118

Physics Informed Neural Networks in Sparse Data Applications

5.3.3 Conclusion

In this project, we have proposed an attention-based deep learning architecture
specifically tailored to handle spatio-temporal data, and we have validated its
effectiveness in the context of air quality forecasting. The methodology incorporates
attention mechanisms in both the temporal and spatial dimensions, enabling the
model to effectively learn spatio-temporal features. The model processes the input
through a series of spatio-temporal blocks, each consisting of alternating temporal
and spatial attention layers, starting with the temporal layer.

In these attention layers, nodes represent either timesteps or locations, while the
directed edge weights reflect the relative importance of one node to another. The
output at each node is calculated as a weighted average of the features from its
neighboring nodes, including itself. We also introduce a spatio-temporal mask, which
limits the attention to nodes within a certain radius. This radius expands as the
model progresses through deeper layers, allowing the model to focus on nearby, more
relevant factors first—those that are likely the primary drivers of forecasting—before
considering influences on a larger scale.

The proposed architecture not only demonstrates improved predictive performance
but also enhances model interpretability. It addresses several shortcomings of existing
approaches, such as the slow computational speed and weak long-term dependency
modeling of LSTM networks, as well as the static nature of traditional graph neural
networks. However, the results also indicate that the performance improvement is
marginal compared to simpler models like linear regression. This suggests that the
proposed architecture may offer limited benefits when the available training data is

small.

5.4 Conclusions

In this chapter, we explored the use of graph-based representations in two distinct

projects. In the first project, we demonstrated the effectiveness of graph structures

119

Physics Informed Neural Networks in Sparse Data Applications

for analyzing bike-sharing data. This representation provides a more intuitive and
insightful way to analyze data compared to traditional tabular formats, offering
unique perspectives on the underlying relationships.

In the second project, we extended the concept of spatio-temporal graphs by
integrating it into a newly proposed neural network architecture. In this architecture,
attention layers treat locations or time steps as nodes in a graph, and adaptively
calculate the weights between them based on the input data and inherent character-
istics of the stations or time lags. This approach allows for the automatic extraction
of spatio-temporal features, adapting to the specific properties of the input.

While the results are promising, the use of graph-based neural networks for
problems with sparse data does not lead to significant improvements. The model
is prone to overfitting, particularly when working with small or noisy time series
datasets. This is due to the relatively large architecture compared to conventional
models. Stronger regularization techniques are essential to mitigate overfitting and
ensure proper generalization. In physics, it is often assumed that data follows
certain governing equations, which can serve as a powerful form of regularization.
In subsequent chapters, we will explore this approach, aiming to enhance model

generalization by incorporating such domain-specific assumptions.

120

Chapter 6

Physics Informed Neural Networks

In the previous two chapters, we explored the capabilities of neural networks across
different domains. In Chapter 4, challenges from two domain areas, medical and
human performance, were examined using fairly traditional neural networks with
varying degrees of performance. However, pure neural network-based approaches, with
the complexity of the models, exhibit limitations such as poor interpretability [91],
poor generalization [28], and the necessity for substantial training data [26]. In
Chapter 5, we then examined graph based machine learning and a graph-neural
network combination, which again provided interesting results and outcomes but it
is still possible that the full power of neural networks is not being reached. For this
reason, we adopt a different approach in this chapter which is physics-informed neural
networks (PINN), a more integrated methodology of neural networks and dynamical
models which can be used in domains such as epidemiology [242], entomology [243],
fluid dynamics, material science [26], to name but a few.

The chapter is structured as follows: in Section 6.1, we present our hypotheses for
addressing the current limitations of PINNs; Section 6.2 describes our PINN frame-
work as applied to a system of ordinary differential equations (ODEs), incorporating
our proposed enhancements; in Section 6.3, we conduct an ablation study using
the Lorenz system to assess the contributions of each component in our framework;
Section 6.4 explores the broader impact and potential applications of our approach

through a model of mosquito population dynamics; and finally, we provide concluding

121

Physics Informed Neural Networks in Sparse Data Applications

remarks in Section 6.5.

6.1 Introduction

The goal of this chapter is to investigate the integration of domain knowledge,
specifically in the form of physics equations, into data-driven methodologies, with
the chosen application area of mosquito population modeling. This ODE system
serves as an useful test case for the PINN approach. It was chosen as validation for
not only for its practical application in real-world but also for its characteristics,
including multi-scale behavior and an exceptionally large input domain, which pose
significant challenges for the PINN framework.

By incorporating the equations of dynamical systems, this approach potentially
reduces data requirements while preserving the robustness of deep learning. How-
ever, current Physics-Informed Neural Network (PINN) frameworks have not yet
reached sufficient maturity for real-world ODE systems, particularly those exhibiting
extreme multi-scale behavior such as mosquito population dynamics [26, 41, 42]. For
instance, [42] demonstrated that PINN convergence can be hindered by gradient
imbalances arising from multiple loss terms. Similarly, [111] showed that training
PINNSs over large domains with complex solutions is challenging, requiring the domain
to be broken down. Given such difficulties, we pose the following research question:
Can neural networks be extended to accurately represent and predict the behavior of
dynamical systems governed by a system of ordinary differential equations?

This chapter addresses one of our fundamental research questions through several
research tasks aimed at enhancing convergence and accuracy when simultaneously
training with data and physics losses. These tasks involve improvements specifically
tailored for ODE systems. Firstly, we propose that normalizing individual ODE
equations, in addition to the traditional normalization of neural network inputs and
outputs, can significantly improve PINN training efficiency. Secondly, we propose
that balancing the gradients back-propagated from the losses to the training weights

is crucial for achieving a convergence of the optimization. Furthermore, for scenarios

122

Physics Informed Neural Networks in Sparse Data Applications

with limited training data (e.g., only initial conditions), gradually expanding the
training time domain may facilitate the system’s adherence to the inherent time
causality of ODE systems. Lastly, training separate models for distinct input
domains could reduce optimization complexity, thereby enhancing convergence and
accuracy. Based on these assumptions, a PINN framework was developed with
several improvements for forward and inverse problems for ODE systems with a case
study application in modeling the dynamics of mosquito populations. Here, forward
problems involve predicting system behavior given known parameters, whereas inverse
problems focus on estimating unknown parameters from observed data. To evaluate
our approach, we conduct experiments using simulated data from the Lorenz
system and our mosquito population case study.

The implementation of our PINN framework, including experiments, is available

on GitHub: https://github.com/dinhvietcuong1996/pinn-mosquito.

6.2 PINN Framework Development

This section begins with a formulation of the problem over a number of steps, followed
by a description of additional techniques which further enhance the performance of

the framework.

6.2.1 PINN Structure

Let u(t) denote a V-dimensional vector representing the state of a dynamical system
at any given time ¢ € [0,7]. This dynamical system u is governed by a set of F’

ODEs as expressed in Equation 6.1.

d .
%:f(l)(t7u70), i=1,2,...F (6.1)

In Equation 6.1, the system’s behavior is influenced by a set of parameters

6, which might or might not be known in advance. The functions f® are pre-

123

https://github.com/dinhvietcuong1996/pinn-mosquito

Physics Informed Neural Networks in Sparse Data Applications

defined and characterize the system’s dynamics. Given a set of observations
D, = {(t1,u1), (t2,u2),...,(t;,u;),... } at various time points, our objective is to de-
termine a solution u and potentially # that simultaneously satisfies these observations
while maintaining consistency with the governing ODEs.

In the conventional PINN [43], a neural network U (parameterized by W), is used
to approximate the solution u. For inverse problems where some or all parameters
6 are unknown, neural networks O are used to predict these unknown values ;.
For simplicity, the set of all parameters, including the known or ones to be learnt by
neural networks, are denoted by © and treated as neural networks. Let W = Wy, Wg
represent the complete set of trainable parameters. The task can then be formulated
as an optimization problem, where training the parameters W aims to minimize a

multi-task objective function defined in Equation 6.3.

W = argminy, £ (6.2)

1 F
£ - Edata + F ;)\iﬁf(i) (63)

The loss terms in 6.3 are defined in equations 6.4 and 6.5.

1

‘Cdata = F Z (U<tz) - Ui)2 (64)
u (tiyui)EDu
1 |dUu 2

Lo = N, Ej: i FO (5, U(ty), 6(t5)) (6.5)

In the Equations 6.4 and 6.5, U(t;) and ©(¢;) represent the neural network
outputs evaluated at time ¢;. Minimizing Lgat. reduces the discrepancy between
network predictions and observed data, while minimizing L ensures the neural
network U adheres to the differential equations with minimal error. The weights \;
serve as balancing factors between data fitting and physics dynamics. Ny denotes the

number of residual points randomly sampled from a distribution u, typically uniform.

124

Physics Informed Neural Networks in Sparse Data Applications

We resample the residual points at every training step to ensure that the losses are
minimized everywhere in the entire period. Overall, by minimizing this total loss
function £, the networks can simultaneously fit observed data and approximate the
underlying dynamic rules.

The optimization of the loss function is achieved through gradient-based algo-
rithms. These algorithms iteratively update the parameters W in directions that
reduce the loss function, based on the gradients VL. The update rule is formulated

as in Equation 6.6.

F
Wnew - old — UVW‘C - Wold —n (vWEdata + Z)\ZVW‘Cf(Z)> (66)

1=0

where 7 denotes the learning rate, which determines the magnitude of each step
taken in the direction opposite to the gradient. For this optimization process, the
Adam variant of gradient descent in PINN training [203] is used. The computation
of gradients, whether it involves differentiating the network U with respect to time ¢
or the loss function £ with respect to W, is computed by automatic differentiation
provided by deep learning frameworks such as PyTorch [8].

The universal approximation theorem [30] posits that Multi-Layer Perceptrons
(MLPs) [244] can approximate any continuous function on a given domain, provided
sufficient complexity characterized by the number of units. For an MLP comprising L
layers, the mathematical formulation describing its layer-wise operation is presented

in Equation 6.7.

O =g
RO — a(W@h(l*” + b(l))’g =1,....,.L—1 (6.7)

hL) = W pE=1) o (L)

Here, x denotes the network input, h) represents the hidden state at layer [, W®
and b are the parameters of layer [, and o is the activation function. We employ the

GELU activation function [245] due to its smooth properties, which are crucial for

125

Physics Informed Neural Networks in Sparse Data Applications

differential problems and offer advantages over the ReLLU function. The initialization
of the MLP’s weights and biases is performed using the Glorot scheme [246].
While the “vanilla” PINN framework described above demonstrates adequate
approximation capabilities for relatively simple ODE systems, it often encounters
difficulties in converging to satisfactory solution when dealing with more complex
systems, particularly those exhibiting extreme stiffness, chaotic behavior, or multi-
scale characteristics. For these reasons, approaches for enhancing PINN training in

both forward and inverse problems involving ODE systems, are now presented.

6.2.2 ODE Normalization

Neural networks typically operate optimally with inputs and outputs in the range
[-1, 1]. For values outside this range, data normalization plays a critical role in the
machine learning workflow, ensuring that both input and output variables remain
within a suitable range. In the context of PINNs, this normalization process requires
careful consideration, as any transformation necessitates corresponding modifications
to the ODE systems. For this reason, a systematic approach to normalization using
PINNs with ODEs was designed during this research. Specifically, we employ the
MIN-MAX normalization scheme for input and output variables, namely ¢, u, and 6.

For the input variable (time t), we apply the transformation presented in Equa-
tion 6.8, where [Tinin, Tmax] denotes the time domain over which the models are
trained. This transformation effectively normalizes the time variable ¢ to the range

1, 1].

V=2 ——2 (6.8)

For the normalization of neural network outputs, we define £,,4L,, £9, and Ly as
the lower and upper bounds for v and #, respectively. These bounds are dimension-

specific within the dynamical system. In cases where the ranges are small, we adjust

126

Physics Informed Neural Networks in Sparse Data Applications

the bounds around the mean as £ = min(£, M — 1) and U = min(L, M + 1) where
M = % is the middle point. These bounds can be estimated through various
methods, including analysis of collected data, inference from domain knowledge, or
via approximate simulations. The normalization of variables u and 6 at a normalized

time t' is subsequently computed using Equations 6.9 and 6.10, respectively.

u'(t) = w 2—1<=ult)=W{)+ 1)%;2“ + £, (6.9)
0'(t') = w D1 e 0 = (O () + 1) ; S ig, (6.10)

Following the normalization above, the transformed variables t’, v/, and 6’ now vary
within the range [-1, 1]. Thus, it becomes advantageous to employ neural networks
U and © as surrogate models for «' and @', rather than directly approximating u
and 6. After the transformations in Equations 6.9 and 6.10, it is necessary to adapt
the loss functions accordingly. When computing %' and applying Equation 6.1, we

arrive at Equation 6.11.

du’ 2 du 2

w2 W 2)
dt U, — L, dt B 0, — guf (t7u7 0) (6.11)

Instead of using objective functions 6.4 and 6.5, we now consider the alternative

formulations 6.12 and 6.13.

- 1 ’ 'LL]' — Su 2
1 aUu 2 w,— L, Uy — Ly
. = R OO I ! v e !
£ =3 2[5~ gt (b 0+ 0BT 0 + 02
(6.13)

These modifications to the objective functions not only attempt to balance the

127

+5)

Physics Informed Neural Networks in Sparse Data Applications

data loss and ODE terms, but also across ODE components. This re-scaling strategy
proves particularly advantageous in scenarios where variables exhibit substantial scale
differences, whether due to their intrinsic characteristics or the units of measurement.
By normalizing these variables, the risk of any single variable dominating others is
mitigated and thus, equilibrating the impact of each term on the training process.
This is similar to the concepts and assumptions in the Glorot initialization for neural

networks [246].

6.2.3 Gradient Balancing

As this is a multi-task problem, it has different objective functions (e.g. Equation
6.3). A previous study [42] identified gradient imbalance between Vyy Lgu, and
Vw Ly in the update rule 6.6 as a critical failure point in PINN training. The
differential equation residual loss often dominates due to system stiffness, causing the
model to prioritize ODE constraint optimization over matching initial, boundary, or
data observations. This can lead to convergence to a trivial null solution that violates
data conditions. We address this issue by adopting and extending the approach
in [42], adjusting the weights A based on statistics from the gradients Vi Lyaua
and Vi Lw. Our extension to ODE systems involves individually assigning and
adjusting weights for each differential equation. We set the weights for data to
1 and each of the component weights); is adjusted individually, to ensure that
every equation in the system is given equal importance while still aligning with the
importance given to data. This extension is crucial, as the scale and complexity of
each equation differs, necessitating distinct treatment during training.

This gradient-balancing algorithm is described in Algorithm 6.1. All weights
A; are initialized to 1 and updated every N steps. The weight \; s computed
as the ratio between the mean of absolute values of gradient Vi Lgu, and the
maximum of the absolute values for the gradients of VL. To mitigate the
inherent volatility of gradient descent, we update weights \; using a moving average

formula (Equation 6.15). The recommended values for hyper-parameters o and N in

128

Physics Informed Neural Networks in Sparse Data Applications

the original study [42] are a = [0.5,0.9]. However, we set N = 100, and tune « in

extreme cases a = 0.99,0.9,0.5, or set N =1 with a = 0.

Algorithm 6.1 gradient_ balancing()

Require: step < current training step; a smoothing factor; updates are made every
N steps
Ensure: re-calculating \; such that gradients from different loss terms are balanced
if step = 0 then
Initialize \; <~ 1,Vi=1,... F
end if
if step mod N = 0 then
Compute i by

‘VW‘cdata’
max {‘Vwﬁfu)

>

=1,...,F (6.14)

e

where |V Lgata| is the average of the absolute gradients over all model parameters

W. R
Adjust the weights \; by

)

N—a-N+(1—a)\,i=1,... . F (6.15)

end if

6.2.4 Causal Training

When training PINNs, particularly in scenarios with sparse data, it is crucial to
consider the causal effect [110]. Conventional PINN models are typically trained to
adhere to differential equations across the entire input domain (i.e. time domain
[0,T]) simultaneously. However, this can lead to a problematic scenario where the
model satisfies these rules at later time points ¢ without proper management at earlier
points. This discrepancy creates a situation where efforts to conform to ODEs at one
point may result in violations at others during the learning process. Furthermore, if
the penalty for not following ODEs at earlier points outweighs the fitting at later
points, the model may get stuck in a local minimum, no longer capable of satisfying
ODEs over the entire period. To address this issue, we adopt a causal approach
to training where the task of meeting the data conditions is given priority while

ensuring that the model complies with ODEs on a small time window near ¢t = 0

129

Physics Informed Neural Networks in Sparse Data Applications

first before gradually extending the window toward t = T.
This study implements a three-phase training process: data fitting, progressive

causal training, and final tuning described as follows:

1. Firstly, the data fitting phase focuses exclusively on matching data conditions
by training with the data loss term Lg.:.. This establishes a starting point for

the model, facilitating subsequent adherence to differential equations.

2. The progressive causal training phase adopts the growing-interval approach
from [185]. We gradually teach the models to follow the differential equations
starting from a small interval and slowly covering more domain as the training
progresses. Both data and ODE loss terms are included, with ODE residual
points t; for L in Equation 6.5 sampled from an expanding interval. Given
N, update steps in this phase, at the ns-th step, residual points are uniformly

no

sampled from the interval [O, > T}.

3. The final tuning phase employs both loss terms, with residual points sampled
from the entire time period. This phase refines and enhances the learned

solutions.

The training process mainly happens during the second and third stages, with
the first stage being the shortest. This is because neural networks can sometimes
learn, too quickly, how to fit the given data. The first phase is set to 5,000-10,000
steps. The progressive causal phase requires a longer duration as the model needs
to successfully reduce the errors to a certain level before it can extend its learning
to new areas. For systems that do not reliably converge, the number of steps for
this phase should be sufficiently high. We set this phase to last between 50,000 and
100,000 steps to ensure thorough learning. In the fine-tuning phase, an early stopping
approach is implemented. Model performance is evaluated every 1,000 steps using
an evaluation loss function where all weights A are set to 1.0. Training terminates
when no performance improvement is observed after several consecutive evaluations.

All step counts are selected via a trial-and-error process based on our experimental

130

Physics Informed Neural Networks in Sparse Data Applications

outcomes.

6.2.5 Domain Decomposition

Domain decomposition is an effective strategy for training PINNs when the solution
exhibits high complexity within specific time intervals or when the target input
domain is excessively large, which is frequently encountered in real-world applications.
This approach is particularly valuable in extrapolation problems where data in the
period of interest is scarce or nonexistent. In such scenarios, the solution’s behavior
is heavily determined by the model’s ability to satisfy the ODE constrains, which
is a challenging task due to issues such as causal effect violation [110] or gradient
imbalance [42]. By partitioning the domain, the method reduces the domain that the
models are trained on and subsequently, reduces the complexity of the optimization
task.

In particular, we partition the input domain into S non-overlapping subdomains,
denoted as Dy = [Ts_1,Ts|,s =1,...,5, with T} = 0,Ts = T. For each subdomain
Dy, a neural network U, is defined. The goal is to train each U, to approximate the
solution u within its respective subdomain D,. Let D¥ = [T,_1 — O, T, + O] be the
extended subdomain of D,. Each extended subdomain D} is treated in a separate
PINN problem, trained using the framework described in Section 6.2, including
the normalization and gradient balancing. Starting from the first subdomain Dy,
the model is trained with the initial condition data D, provided by users. For
subsequent subdomains D7, training data D, is generated by the previously trained
model U,_; in the overlapped domain [Ts_1,T5_1 + O]. The volume of generated
data is potentially unlimited, we set the number from 10 to 100. This iterative
process continues until the entire domain is covered. The final solution is obtained
by combining the predictions as specified in Equation 6.16, in which each model Ug

makes predictions on its corresponding non-overlapped domains.

131

Physics Informed Neural Networks in Sparse Data Applications

Ut)=> 1p,(t) - Us(t),vt € [0,T) (6.16)

This divide-and-conquer scheme offers several advantages in training PINNs.
Firstly, it reduces the complexity of the overall problem into many smaller less-
complex problems. Secondly, it reduces the gradient explosion issue which has been a
persistent challenge in PINN training. Additionally, the method allows customization
of models in each subdomain, enhancing the individual and overall convergence and

accuracy.

6.3 Evaluation Step 1: Ablation Study using the
Lorenz System

For the first phase in our validation, we evaluate the effectiveness of the PINN-based
solution using the Lorenz system [247], a set of three coupled, nonlinear differential

equations widely employed for assessing ODEs.

o =oy—a)

W =g(p—2)—y (6.17)
dz __

S =xy-— Bz

This system is known for its chaotic behavior and is described in Equation 6.17,
where where z, y, and z denote the state variables at time ¢, while o, p, and 3
represent the system’s physical parameters. The evaluation uses two temporal
domains: a shorter duration with 7' = 2.0 and a longer duration with 7" = 40.0. The
shorter duration is used to evaluate the impact of ODE Normalization, Gradient
Balancing, and Causal Training on model performance while the longer duration

is employed to investigate the effectiveness of Domain Decomposition in managing

132

Physics Informed Neural Networks in Sparse Data Applications

extended temporal intervals.
The following set of models were created to provide as detailed a validation as

possible.
1. OdePINNgiginai: Original framework without additional techniques.

2. OdePINNyseiine: ODE Normalization only. This model represents a baseline

model for the more complex models below.
3. OdePINNgyagient: ODE Normalization, Gradient Balancing.
4. OdePINN_ uusai: ODE Normalization, Causal Training.

5. OdePINNg adient+causai: ODE Normalization, Gradient Balancing, and Causal

Training.

6. OdePINNgradient+causal+domain: ODE Normalization, Gradient Balancing, Causal

Training, and Domain Decomposition.

We conduct experiments on both forward and inverse problems using the Lorenz
system. The first five models are evaluated with T" = 2.0, while the sixth model
OdePINN g adient+causal+domain 15 assessed on the forward problem over a duration of
T = 20.0. The generation of training and ground-truth reference data uses a well-
established numerical method for solving ODE systems [248], implemented within

the Scipy library in Python [231].

6.3.1 Forward Problem with T=2

In this section, we explore how the techniques described in Section 6.2 work together,

including ODE Normaliztion, Gradient Balancing, Causal Training and Domain

Decomposition. They are particularly tested on their extrapolation capabilities in

forward problem scenarios using the Lorenz system. The data loss condition L4, is

constrained to a single data point at the initial condition (x,y,z) = (1,1,1) at t = 0.

The physical parameters are maintained constant throughout: o = 10, p = 28, and
8

= 3, all of which are known to the framework.

133

Physics Informed Neural Networks in Sparse Data Applications

The framework employs an MLP, U, to approximate the solution u. The archi-
tecture of U consists of four hidden layers, each comprising 100 units, with GELU
activation functions applied throughout all hidden layers. For Gradient Balancing, the
hyperparameters a and N are (0.99,100) after a hyper-parameter selection process.
In the absence of Gradient Balancing, ;s is set at a constant value of 1.0 throughout
training. Three phases of Causal Training are configured as follows: an initial phase
of 1,000 steps; a second phase of 199,000 steps; and a final phase incorporating
early stopping up to 100,000 steps. When Causal Training is deactivated, the model
bypasses the first two phases, proceeding directly to the final phase with training of
300,000 steps without early stopping.

Figure 6.1 illustrates the solution approximations produced by the five models.

In order of increasing performance, they are:

e OdePINNgigina1 exhibits a tendency to converge towards the null solution,

primarily due to the dominant influence of ODE loss.

e OdePINN_ uusa, while effectively capturing the system’s dynamics, deviates
from the correct initial condition and ultimately converges to the trivial null

solution, similar to the original model.

o The baseline model successfully captures the general shape of the solution but
struggles to simultaneously satisfy both the initial condition and the governing

differential equations.

e OdePINNgyagiens achieves improved alignment with the initial condition but
fails to adequately satisfy the physics constraints, resulting in an inaccurate

approximation of the correct solution.

e OdePINNgyadient+causal demonstrates superior performance, exhibiting close

convergence to the true solution compared to the other models.

In summary, OdePINNgadient+causal €ffectively combines both methodologies, en-

suring adherence to the initial condition while minimizing ODE loss. This dual

134

Physics Informed Neural Networks in Sparse Data Applications

201 —u_true

=~ original
—-=- baseline

151
-=~- gradient

—-=- causal

- = gradient+causal
data

104

(a) = dimension (b) y dimension

50

40

30 A

N

20 A

104

0

O.E)O 0,‘25 0.50 0.‘75 1,60 l.éS 1.‘50 1.‘75 2.60
t

(¢) z dimension

Figure 6.1: Lorenz ODE system for the forward problem, with U approxi-
mation of the system state. System state u = (z,y, z). Subfigures (a), (b), and
(c) respectively show the z, y, and z components. There is only data point (blue dot)
at t = 0 serves as the initial condition. The blue line represents the true solution

u_true while the orange dashed line OdePINN g adient+causal Closely apprximates the
target. Both OdePINN,yigina (brown dashed line with cross) and OdePINN ausal
(purple dashed line) are closely aligned with the null solution.

approach enables more accurate approximation of the true solution, as evidenced
in Figure 6.2. Evaluation losses, computed across the entire period with weighting
coefficients A\; maintained at 1.0, are presented in Figure 6.2a; OdePINNgiginal is
not shown as the losses are at different scales but its approximation is similar to
OdePINNcaysal- The figure shows that the OdePINNgyadient+causal model achieves a
remarkably low final total loss of 1.6 - 10~%, significantly lower than OdePINN, a1
at 2.2-1073. The remaining models exhibit higher losses of 0.046 and 0.056, with the
baseline model showing marginally better performance. Comparative error analysis

reveals that Gradient Balancing substantially enhances convergence towards the

135

Physics Informed Neural Networks in Sparse Data Applications

data loss term Lgq¢,. Data losses for OdePINNgqient and OdePINNg adient+causal are
recorded at 1.4 - 1078 and 8.9 - 10 respectively, again significantly lower than the
approximately 1072 or 1072 observed in other models. Although OdePINNgadient
achieves a notably lower data loss, its total loss is 6.3 - 1072, marginally higher than
the baseline model’s 4.5 - 1072 due to an increased ODE loss. This technique enables
the neural network to more effectively satisfy the initial condition but simultane-
ously makes it more challenging to minimize the ODE loss, thereby contributing to
higher ODE and overall losses. Further details of this method are provided in [42].
Ultimately, the root mean squared error between the gradient model and the true
solution is 11.9, slightly better than the baseline model’s RMSE of 12.18, though
both values remain considerably far from the true solution.

While Gradient Balancing improves performance considerably, it does not address
causal effects, necessitating the implementation of Causal Training. The Gradient
Balancing technique averages gradients across different time points, resulting in
scenarios illustrated in Figure 6.2b. At later times (t=1.5 or t=2.0), the model
rapidly minimizes physics constraints to a negligible level of 107° early in the training
process. Within the domain ¢ € [1.0,2.0], the model converges to the null solution
(as shown in Figure 6.1), satisfying the ODE system. However, at earlier times (t=0
or t=0.5), the model consistently struggles throughout the training duration. We
hypothesize that this premature convergence of the ODE constraints at later times
traps the model in a local minimum, preventing it from satisfying the constraints
at earlier times and thus resulting in an inaccurate solution approximation. To
address this, we employ a Causal Training strategy that trains the physics-laws
term using residual points drawn from a progressively expanding interval. This
approach ensures adherence to system dynamics at earlier times before progressing
to later times, thereby respecting causal effects. Figure 6.2c illustrates the expanding
domain in which the model complies with the differential equations as training
advances, with behavior outside this domain remaining arbitrary. Ultimately, the

OdePINNgradient+causal model effectively combines these techniques, minimizing both

136

Physics Informed Neural Networks in Sparse Data Applications

10° 5

SR
S 9

H
<

Losses (logyo scale)
ODE Errors

H
°
IS

H
9
i

| === Data Loss
W ODE Loss
1078 mmm Total Loss

H
2
4,

baseline gradlent causal gradlent+causal 6 50600 lDOIOOD lSdOOD 200‘000 250‘000 300600
Model Step

(a) Loss Terms across final models se- (b) ODE errors of the OdePINNg,adient

lecting through Early Stopping. The model at different time ¢ during the

bar is upside down, the lower the better. training. The model struggles at ¢ = [0,0.5],
motivating the need for Causal Training.

30

,
#7 —— u_true
” L]
- —— step=10k
- == step=50k
207 Pead —— step=100k
P == step=150k
- == step=200k
10 1

~104

—20

(c) The z-value Approximation Solution
U of the model OdePINN,,dient+causal
at different steps during the training.
The plot shows the progression of the neural
network U during training.

Figure 6.2: Loss analysis of OdePINN framework with Lorenz system,
t €[0,2.0]

data and physics losses to achieve a highly accurate solution approximation.

6.3.2 Forward Problem with 7" = 20

The effectiveness of domain decomposition is demonstrated in this section by solving
the Lorenz system over an extended temporal domain from ¢t = 0 to 7" = 20.0. The

initial condition is set at (1,1, 1), with constant, known parameters o = 10, p = 28,

137

Physics Informed Neural Networks in Sparse Data Applications

and = %.

Figure 6.3 presents the results the larger domain. None of the models closely
approximate the reference solution. The models OdePINNy,cline and OdePINN g qdient
exhibit some capability to learn the initial condition and partially adhere to the
ODE equations. However, their errors grow substantially by ¢ = 0.75, causing their
divergence from the true solution and leading to convergence toward a trivial constant
solution beyond ¢t = 3. The remaining models,OdePINNiginai, OdePINN 601 and
OdePINNgadient + causal display a similar behavior to that observed in the T = 2
experiment, converging toward a null solution. These inaccuracies can be attributed
to the expanded domain, which increases the complexity of the solution. Therefore,
Domain Decomposition is applied to manage the challenges introduced by the larger
domain size.

The domain is partitioned into 40 subdomains, each spanning 0.6 units with an
overlap of 0.05 at both ends. Each subdomain is independently modeled and trained
using a distinct neural network. The predictions from the preceding subdomain,
uniformly distributed over 100 points within the overlapped region, serve as data
conditions for the subsequent subdomain. Hyper-parameters remain consistent across
all subdomains. The neural network U is structured as an MLP with four hidden
layers, each comprising 100 units and utilizing the GELU activation function. The
training process is limited to a maximum of 150,000 steps, initiating with a 5,000-step
phase dedicated to data fitting, followed by 100,000 steps of causal training, with
the remaining steps allocated for final tuning. The gradient balancing weights, \;,
are updated every 100 steps using a smoothing factor of @ = 0.99.

Figure 6.4 presents the solution approximated by the proposed framework, along-
side a plot of training losses and Root Mean Squared Error (RMSE) relative to
ground truth data. The model demonstrates reasonably accurate prediction of the
system’s evolution. Initially, the RMSE is approximately 5 - 10~%, but it increases
exponentially as ¢ progresses, escalating to 1072 at t = 8, 107! at ¢t = 13, and reaching

an error magnitude of 10! by the period’s end. The final four subdomains (12.5

138

Physics Informed Neural Networks in Sparse Data Applications

X y
—y_true
=~ original

20 A

154

—-=- baseline 201
[——- dient
10 1 Aaha gradie
Mt As—
AR ’

A
[N
A
Y

-20

—=- causal
y 7 —~ = gradient+causal

—y—

-5 4

~10

-15

T T T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

(a) = dimension (b) y dimension

50

40

30 4

N

20 4

104

04 J B e T

OjO 2j5 5?0 7;5 16.0 12‘.5 15‘.0 17IA5 26.0
t

(c) z dimension

Figure 6.3: Lorenz ODE system, forward problem, U approximation of the
system state, using the first five models (excluding the Domain Decomposition
model). System state u = (z,y, z). Subfigures (a), (b), and (c) respectively show
the z, y, and z components. There is only data point (blue dot) at ¢ = 0 serves as
the initial condition. None of the models successfully capture the dynamics of the
reference solution.

to 20.0) exhibit notable approximation errors. This substantial error accumulation
towards the period’s end is understandable given that the Lorenz system is highly
sensitive to initial conditions where minor predictive inaccuracies can significantly
alter future states. As a result, initial training errors rapidly accumulate over time,
resulting in an RMSE of up to 10 by the end of the time period. The training data
loss consistently remains below 1074, frequently dropping to the 107° level. Errors
related to physical constraints are maintained at the 1073 level, indicating satisfaction
of physical laws with ODE loss approaching zero. Notably, losses peak in solution
regions characterized by sharp changes, correspondingly resulting in steep RMSE

increases. On a positive front, the framework exhibits consistent performance across

139

Physics Informed Neural Networks in Sparse Data Applications

all subdomains However, the evident accumulation of errors highlights a potential

limitation of the technique, suggesting areas for further refinement and improvement.

2041

i\ f\ /
10 /| \ \ /\J
/ A
A\ \
< o LA\ A\
L~ ~ A ~ ~l A~ s N alVs N 2Va'Va Wikl \ AN i A /N
-10 4 A INATN SINATN NS S NS\ B\ViRY \ / NN Yi
AV \/ Vi \ \/
A

—20 4

i N
a4 [\ A .
| - A, TR AT AN P [
[R A S IAL AL A IS I AL A NN /N NTAW \ N N IRV A BN LS
~ - SN N S INSINANY N RN\ LS IN Y, fi\ o Y AR
20 — True A A% VAV TV ERY \J

Predicted
Overlapped Region

10 4 . Dataloss
. —— ODE Loss
07 RMSE

0= WWWMMmMMI

1075 4 L

Figure 6.4: Lorenz ODE system, forward problem, with U approximating
the system state. System state u = (x,y, z). The first three plots depict the z,
y, and z components, respectively, while the last plot shows the loss and RMSE
over the input time domain. The PINN approximation (orange dashed line) closely
follows the reference solution (blue line) up to ¢ = 17.

Figure 6.5 illustrates the relationship between the number of training steps and
the RMSE across various subdomain configurations. The number of training steps
scales linearly with the increase in subdomains, with each subdomain requiring
approximately 200,000 to 300,000 steps—equivalent to around 30 minutes on the
NVIDIA GeForce RTX 4090 GPU used for all experiments. The figure reveals a
trade-off between the number of subdomains and model accuracy: as the number of
subdomains increases, the RMSE decreases exponentially, though this comes at the
expense of longer training durations. When the number of subdomains are low, such
as 1 or 5, the training domain remains overly large, leading the model to converge
towards the null solution and yielding a high RMSE of 13.4. As the number of
subdomains increases, starting from 10, each subdomain’s training area is reduced,
simplifying the solution complexity within each subdomain. This reduction leads to
a decrease in RMSE, dropping to 4.1 with 10 subdomains and reaching 1.13 with

40 subdomains. These findings suggest that cumulative errors can be effectively

140

Physics Informed Neural Networks in Sparse Data Applications

minimized by subdividing the domain further, enabling the model to achieve finer

accuracy levels within each subdomain.

14
100000 -
P)
80000 -
L 10
w
[oX
et
wn
2 60000 1 s
£ L
E)]
= =
“6 o
[
€ 40000 A :
3
=
L4
20000 -
L2
0 -

1 5 10 20 40
Number of Subdomains

Figure 6.5: Trade-off between the number of subdomains and accuracy.

6.3.3 Inverse Problem

In this section, the inverse problem is addressed by using a substantially larger
dataset. The framework solution simultaneously predicts physics parameters and
interpolates the system state from several observations of the state.

Once again, experiments use the Lorenz system, on this occasion over the time
domain t € [0,2.0], with time-varying physical parameters defined as o = 1 sin (27t)+
10, p = —sm (27Tt+) + 28, and § = %. These formulas are unknown to the
framework and must be learned. Initial conditions are set to (1,1,1), consistent
with previous experiments. The training dataset comprises 21 simulated data points
evenly distributed across the input domain, resulting in a dataset dimension of (21, 3).

Figure 6.6 illustrates the reference solution achieved from the simulation described

141

Physics Informed Neural Networks in Sparse Data Applications

and the 21 data points provided to the PINN system. This solution, with varying
parameters in this experiment, displays a notably more chaotic behavior compared
to the solution in the forward problem setting in Section 6.3.1. However, the data
points available provide general information about the solution for the framework to

solve the problem.

Values

Figure 6.6: Ground truth u and data provided to solve the Lorenz system inverse
problem.

The framework configuration is consistent with previously described experiments.
The main neural network U maintains its structure, comprising an MLP with four
hidden layers, each containing 100 units and using GELU activation. Three additional,
distinct neural networks © are implemented to model the three physical parameters
of the dynamical system. These networks each consist of four hidden layers with 10
units, employing GELU activation for all hidden layers. All networks incorporate
the time variable ¢t as input to capture the temporal dynamics of the parameters.
In terms of training enhancements, Gradient Balancing is used with the weights of
the objective function, \;, adjusted every N = 100 steps using a smoothing factor

of @ = 0.99. The Causal Training approach involves an initial data fitting phase

142

Physics Informed Neural Networks in Sparse Data Applications

of 10,000 steps, reflecting the increased data availability, followed by progressive
causal training and a final tuning phase, conducted over 200,000 and 100,000 steps,
respectively.

Figure 6.7 illustrates the approximation of the dynamical system’s parameters
by the neural network ©. While all models demonstrate the ability to capture
general parameter trends, they exhibit inherent inaccuracies. The original and
baseline models show substantial errors, particularly in regions of high derivatives
of u with respect to time ¢, as observed within the interval [0,0.5] and at ¢t = 2.0
in Figure 6.6. Among the models, OdePINNgagiens achieves the most accurate
parameter approximations across most of the domain, but encounters difficulties
near t = 2.0 In this inverse setting, with variable unknown system parameters,
non-unique solutions for v and € arise in the absence of sufficient data. Consequently,
OdePINNgqqient tends to favor solutions with smaller magnitude derivatives, resulting
in significant discrepancies from the reference solution. Conversely, OdePINN_,usa1
typically exhibits error accumulation towards higher values of ¢, with noticeable
inaccuracies in estimating parameters such as ¢ and p beyond ¢ = 1.15, as shown in
Figure 6.7. This pattern of error propagation is consistently observed throughout
our study. The combined model, OdePINNgadient+causal, mirrors the performance of
OdePINNgqdient, maintaining reasonable accuracy until the domain’s far end.

Table 6.1 presents further detail of the errors associated with the interpolation
of u and the estimation of parameters 6, benchmarked against the ground truth
data. Table rows are organized by error metrics which are calculated as described
in Appendix A.1. Each group shows the corresponding errors for the approximated
solutions (columns x, y, z and the average u) and for the learned parameters (columns
a, (3, v and the average) across the 5 models. The original model exhibits the
highest errors, with RMSE values of 3.9564 for v and 52.4141 for 6, alongside
MDAPE of 2.6219 and 24.5114, respectively. The baseline model shows marginal
improvements over the original model but still incurs relatively high errors. In

contrast, OdePINNg;adient demonstrates significant accuracy improvements, recording

143

Physics Informed Neural Networks in Sparse Data Applications

sigma rho
50

—— theta_true
=== original
—-=- baseline
—-=- gradient
—-=- causal

~ -~ gradient+causal y

45 4

35 I

\
S e
1 |} ~ J
g
30 4 1 \
4 1 ‘
25 Il v \ P
1 p 2
1
1

204

T
]
1
I
I
i
40 4 1
i
I
i
]
I
I
i

rho

©

154

104

175 2.00

=
e
o

T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25

(a) o parameter (b) p parameter

beta

w
<

O.bO 0.‘25 0.‘50 0,‘75 1,60 1,‘25 1.:’70 175 2.60

(c) B parameter

Figure 6.7: © approximation of the physics parameters 6 = (o, p, #) in the
Lorenz system inverse problem. Subfigures (a), (b), and (c) respectively show
the parameters o, p, and 5. The models OdePINNggient (red dashed line) and
OdePINN g adient+causal (Orange dashed line) provide reasonably accurate estimates,
closely following the true solution (blue line).

the lowest errors across all evaluated metrics for both u and 6. It achieves an RMSE
of 0.2525 for u and 0.7195 for 6, with MAE values of 0.0472 and 0.1602, and MDAPE
scores below 0.01% for both variables. The causal model records the best RMSE
for u at 0.1039, although its performance on other metrics does not surpass that
of the gradient model. OdePINNg adient+causal, Which integrates the approaches of
the preceding two models, does not achieve top scores in any specific category but
secures the second-best results, including impressive MDAPE values below 0.01%
and 0.06%.

The final training stage of OdePINNg adient+causal Te€Plicates the entire training
process of the model. The initial two phases of causal training contribute minimally to

overall performance improvement. This is a characteristic that is mainly attributed

144

Physics Informed Neural Networks in Sparse Data Applications

Table 6.1: Approximation errors in the inverse problem with Lorenz system where
smallest error values are best. Bold text highlight the best performing models
with respect to a specific metric and Underlined numbers represent the second best
performing model.

Model Metric x Y z U ‘ o p 6] 0

original 4.4453 4.9325 1.6939 3.9564 | 5.4294 90.5381 3.8850 52.4141
baseline 3.4995 2.8182 0.6591 2.6219 | 8.4507 41.5828 1.3683 24.5114
gradient RMSE 0.1011 0.3556 0.2336 0.2525 | 0.8727 0.8498 0.2629 0.7195
causal 0.1363 0.0949 0.0692 0.1039 | 1.3853 24592 0.0740 1.6302
gradient+causal 0.0862 0.3760 0.2659 0.2705 | 1.2593 0.8922 0.3316 0.9114
original 1.7002 1.0028 0.3667 1.0232 | 3.6059 47.0012 1.4000 17.3357
baseline 0.9579 0.6687 0.2430 0.6232 | 3.1751 10.9855 0.5066 4.8891
gradient MAE 0.0207 0.0759 0.0449 0.0472 | 0.2116 0.2078 0.0611 0.1602
causal 0.0844 0.0654 0.0452 0.0650 | 0.7099 1.3002 0.0472 0.6858
gradient+-causal 0.0192 0.0904 0.0543 0.0546 | 0.2845 0.2590 0.0827 0.2087
original 0.0063 0.0064 0.0015 0.0025 | 0.1271 0.0127 0.0058 0.0200
baseline 0.0019 0.0029 0.0016 0.0019 | 0.0382 0.0114 0.0086 0.0162
gradient MDAPE 0.0001 0.0002 0.0001 0.0001 | 0.0005 0.0005 0.0003 0.0004
causal 0.0004 0.0012 0.0016 0.0013 | 0.0175 0.0044 0.0074 0.0090
gradient+causal 0.0000 0.0001 0.0001 0.0001 | 0.0006 0.0003 0.0007 0.0006
original 0.2562 0.2450 0.0703 0.2086 | 2.7147 16.1675 3.8850 9.7271
baseline 0.2017 0.1400 0.0274 0.1426 | 4.2253 7.4255 1.3683 4.9955
gradient nRMSE 0.0058 0.0177 0.0097 0.0121 | 0.4364 0.1517 0.2629 0.3069
causal 0.0021 0.0025 0.0008 0.0019 | 0.2210 0.0608 0.0156 0.1326
gradient+causal 0.0079 0.0162 0.0140 0.0132 | 0.5519 0.1572 0.3124 0.3772

145

Physics Informed Neural Networks in Sparse Data Applications

to the ability of a sufficiently large dataset to establish a robust initialization,
thereby reducing the relative advantage of the first two phases. On the other hand,
OdePINNgradient+causal, With its shorter training duration compared to others, does
not achieve performance levels comparable to those of the Gradient-Balancing model.

Summary. These ablation experiments indicate that the proposed method
individually enhance the performance of PINNs. ODE Normalization outperforms
the original framework in both forward and inverse settings. Integrating Gradient
Balancing and Causal Training in the forward problem with limited data addresses
issues of gradient imbalance and temporal causality, resulting in more accurate
approximations. However, in the inverse problem with more data, Gradient Balancing
alone is enough to achieve good parameter estimation and state interpolation, as
the abundance of data diminishes the advantage provided by Causal Training. This
suggests that the role of Causal Training is more pronounced in scenarios with sparse
data. In the larger domain setting (7' = 20), domain decomposition proved essential
for managing errors in solving the Lorenz system. There is a trade-off between
accuracy and training time with a greater number of subdomains yielding better

results but requiring more computational resources.

6.4 Validation Step 2: Mosquito Case Study

In addition to using the Lorenz system, our PINN framework is also validated in the
practical environment of dynamical modeling of the mosquito population. We apply
our approach to the ODE-based model of mosquito population dynamics proposed
by [128]. The model divides the mosquito life cycle into 10 stages: Egg (E), Larva
(L), Pupa (P), Emerging Adults (A.,,), Nulliparous Bloodseeking Adults (A),
Nulliparous Gestating Adults (A1), Nulliparous Ovipositing Adults (A,1), Parous
Bloodseeking Adults (Aj), Parous Gestating Adults (Age) and Parous Oviposit-
ing Adults (Ay,2). These stages are interconnected through a system of ordinary
differential equations, as presented in Equation 6.18.

Parameters for the experiment are explained in Table 6.2. These system param-

146

Physics Informed Neural Networks in Sparse Data Applications

eters vary with temperature and are based on data specific to the Culex pipiens
spieces [44]. This ODE system serves as a useful validation, as it is both practically
relevant and exemplifies multi-scale behavior across the mosquito life stages, with a
relatively large input domain. These characteristics present significant challenges for

the original PINN framework, which struggles to achieve convergence for this system.

B =y o(BrAn + BoAw) — (g + fB)E

&b = fpE— (m (1+2)+fr) L

= fLL— (mp+ fp)P

Wem = fpoe " <1+$) P —(ma +7aem) Aem

B = Yo Aem — (M + pir + 70) Ay (6.18)
d;‘fl = YavAn — (ma + fag)Ag

dsigl = fAQAgl - (mA + o + IVAO)Aol

dgfz - VAO(ADI + AOQ) - (mA -+ L + ’}/Ab)AbQ

P2 = Ay — (ma + fag)Age

df;z‘iﬂ = ngAg? - (mA + o + %40)1402

This part of the evaluation comprises two problems: first is a forward problem
solving the mosquito population dynamics given an initial condition; and second
is an inverse problem determining mortality and growth rates from available data.
Experiments are conducted under varying temperature conditions, where the tem-
perature changes according to a sine function 7 = 10sin (27r%> + 10 with time ¢

measured in days.

6.4.1 Forward Problem

For the forward problem, the objective is to solve the mosquito population dynamics
using only a single data point: the initial condition. We employ a numerical
method [248] for simulating the ODEs, available in Python Scipy library [231] The

data point at ¢ = 730 (two years into the simulation) is selected as the initial condition

147

Physics Informed Neural Networks in Sparse Data Applications

Table 6.2: ODE Model Parameters. The unit of 7 is Celsius degree. All other parameters have

the unit of day~

1 except the o and S.

’ Parameter \ Description Value
T Temperature
YAem Development rate of emerging adults 1.143
Y Ab Development rate of bloodseeking adults 0.885
VAo Ovipositing adult development rate 2
fe(>0) | Egg development rate 0.16 - <e[0'105(7_10)] — 6[0'105(38_10)_5307(38_7—)]>
fr Pupa development rate 0.021 - <e[0'162(7_10)] — 6[0'162(38_10)_5.307(38_7)]))
fr Larva development rate fp*x1.65
fag(>0) | Development rate of gestating adults T
mg Egg mortality rate mg = g
mr, Larval mortality rate exp [—7/2] + pr
mp Pupa mortality rate exp [—7/2] + pp
ma(> pa) | Mortality rate of Ab, —0.005941 + 0.002965 - 7
g Minimum egg mortality rate 0
(L1, Minimum larval mortality rate 0.0304
p Minimum pupa mortality rate 0.0146
Lhem Mortality rate during emergence 0.1
L Mortality rate during bloodseeking 0.08
1A Minimum adult mortality rate é
Kr, Carrying capacity for larvae 8108
Kp Carrying capacity for pupae 107
o Sex ratio at emergence 0.5
I6] Number of eggs per Ao f1 = 141(np), P = 80(p)

for training a PINN over the interval [730,1096] days. We use the data point at
t = 730 (two years into the simulation) as the starting point and train a PINN for
the period from 730 to 1,096 days. The simulated data within this period serve
as the ground truth for model performance evaluation. The advanced techniques
presented in the Section 6.2, including ODE normalization, domain decomposition,
gradient balancing and causal training, are implemented as part of this evaluation.

The time domain is divided into 12 subdomains where for each, they undergo a
three-phase training process: 10,000 steps of data fitting followed by 100,000 steps
of causal training; the final phase uses early stopping, stops after 100 evaluations
without improvement. Lower and upper bounds for each domain are derived from

ground truth data. The solution neural network U is configured as an MLP with 4

148

Physics Informed Neural Networks in Sparse Data Applications

Table 6.3: Errors for Mosquito ODE Approximation Solution. The bold text high-
lights the two lowest errors across the stages, representing the best approximations,
while the underline text identifies the two highest errors, indicating the least accurate
stages.

Stage RMSE MAE MDAPE nRMSE
E 56107.947877 28619.218663 0.001900 0.000407
L 144952.348476 82367.593703 0.000759 0.000308
P 243295.690709 123936.043785 0.002170 0.001325
Aem 398.308537 175.715612 0.001821 0.001106
Abl 342.155798 161.987210 0.001782 0.000850
Agl 42095.722155 20403.707941 0.002158 0.019350
Aol 34.564301 16.196719 0.003921 0.000293
Ab2 102.456176 50.194130 0.002831 0.000217
Ag2 7853.480625 4466.414135 0.001567 0.004155
Ao2 19.229490 9.978838 0.002394 0.000138

Overall 92296.312508 26020.705074 0.001918 0.006291

hidden layers, each comprising 100 units and utilizing GELU activation functions.
The subdomains are trained sequentially, with predictions from the overlapping
region of preceding subdomain models serving as initial conditions for subsequent
domains.

Figure 6.8 presents the results of solving the mosquito population dynamics as a
forward problem, with corresponding error metrics detailed in Table 6.3. The trained
neural network demonstrates remarkable performance in extrapolation, providing
a reasonably accurate approximation of the solution, as illustrated in Figure 6.8.
However, towards the end of the time period, notable accumulated error can be
observed in A, and Ay stages.

Table 6.3 reveals a substantial overall RMSE of 92,296. Error magnitudes exhibit
significant variation across mosquito life stages, ranging from 19 in the Ao2 stage
to 243,295 in the P stage, likely attributable to scale differences among these
stages. MAE follows a similar pattern, spanning from 10 (Ao2 stage) to 123,936
(P stage), with a mean of 26,021. Despite these high RMSE and MAE values,
the Median Absolute Percentage Error (MDAPE) remains relatively low, averaging
0.19%, indicating generally robust performance from a machine learning perspective.

MDAPE tends to be lower for stages with larger scales, suggesting that stages with

149

Physics Informed Neural Networks in Sparse Data Applications

700000

600000

500000

400000

300000

200000

100000

0

200000

150000

100000

50000

250000

200000

150000

100000

50000

1e8 L 1le8 P
35
8
3.0
25
6
2.0
4 15
1.0
2
05
0 0.0
750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100
Aem Abl 1e6 Agl
800000
4
700000
600000
3
500000
400000
2
300000
200000 1
100000
0 0
750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100
Aol Ab2 1e6 Ag2
35
800000
3.0
600000 25
2.0
400000
15
10
200000
05
0 0.0
750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100 750 800 850 900 950 1000 1050 1100
Ao2
1.0 1.0
08 0.8
06 06
04 04
02 02
- 0.0 - - 0.0 - -
750 800 850 900 950 1000 1050 1100 0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.4 06 08 1.0

Figure 6.8: Mosquito ODE system, forward problem, U approximation of
the solution. Each plot depicts the evolution of a specific state in the mosquito
life cycle, with time on the z-axis and organism count on the y-axis. Only one data
point (blue dot) is provided to PINN at ¢t = 730. The PINN predictions (orange
dashed line) accurately track the reference solution (blue line) over time.

150

Physics Informed Neural Networks in Sparse Data Applications

larger scales are more tolerant of minor errors. For instance, the L stage exhibits
the lowest MDAPE (0.0759%) despite having the second-highest RMSE and MAE.
Conversely, the Aol stage presents the highest MDAPE (0.3921%) while maintaining
relatively lower RMSE and MAE values.

6.4.2 Inverse Problem

In solving inverse problems, the goal is to use available data to estimate 10 of
parameters identified in Table 6.2. Three parameters (Yaem, Y4 and 7y4,) are treated
as constants and are represented by learnable parameters that remain constant over
time. The seven parameters (fg, fp, fr, fag, mr, mp and m,) vary over time with
neural networks using time as input to estimate these parameters.

This experiment is conducted under identical conditions and temperatures as
previous evaluation studies. Simulation data is generated over a three-year period,
spanning from day 0 to day 1096, employing the numerical method described in [248].
For data conditioning, daily observations from t = 730 to ¢t = 1096 are utilized,
encompassing 367 days with 10 data points each. The solution u and the ODE
parameters # are obtained from the simulation data as ground truth.

With this setup, the high data volumes allow for the use of simpler techniques.
Due to significant differences in the number of instances across various stages, ODE
normalization and gradient balancing are implemented. Domain decomposition and
causal training are not employed (the number of subdomains is set to 1, and the count
for the first two phases is set to 0), as the data condition with sufficient observations
provides a robust foundation for framework convergence. Boundaries for the system
states and ODE parameters are determined based on simulation data. For the neural
network solution U, a MLP architecture is deployed, comprising 4 hidden layers with
100 units each and employing the GELU activation function. Constant parameters
are represented by individual trainable weights, while time-dependent parameters
are each modeled using a smaller MLP structure. These smaller networks consist of

four hidden layers with 10 units per layer, also using the GELU activation function.

151

Physics Informed Neural Networks in Sparse Data Applications

Table 6.4: Mosquito ODE System’s Parameter Approximation Errors. The bold text
highlights the two lowest errors across the learned parameters while the underline text
identifies the two highest errors.

Parameter RMSE MAE MDAPE
YAem 0.042639 0.042639 0.037304
Y Ab 0.034216 0.034216 0.038662
Yo 0.072417 0.072417 0.036208
fE 0.015570 0.012633 0.039964
fp 0.004646 0.003270 0.078140
fr 0.002816 0.001982 0.078126
fag 0.002769 0.001784 0.094168
mr, 0.286959 0.137099 0.125888
mp 0.291548 0.139703 0.259069
m 0.002848 0.001828 0.033566
Mean 0.132615 0.044757 0.059045

Figure 6.9 illustrates the system parameters learned through the PINN frame-
work. The plots generally demonstrate accurate parameter approximations, although
notable inaccuracies are observed, particularly for parameters m; and mp within
the domain [943,1064]. Error metrics, as detailed in Table 6.4, where the mean
RMSE is 0.132615. Parameters my and mp contribute the highest errors at 0.286959
and 0.291548, respectively, while fa, and f; present the lowest RMSE values at
0.002769 and 0.002816, respectively. The MAE closely aligns with RMSE trends,
averaging 0.044757. The highest MAE values correspond to my, (0.137099) and mp
(0.139703), while the lowest are associated with f4, (0.001982) and f;, (0.001784).
he MDAPE averages 5.9%, with m 4 demonstrating the lowest error at 3.3566%. The
three constants (Yaem, Yap, and 7y4,) range between 3.62% and 3.87%. The errors for
my, and mp are notably higher at 12.59% and 25.91%, respectively.

The results can be interpreted as follows: during colder periods, specifically
within the day range of 943 to 1,064 where air temperature falls below 5.0°C, the
mosquito population rapidly declines to zero (with the exception of Agl and Ag2),
as illustrated in Figure 6.8. This situation makes it challenging to gather useful
information, negatively affecting the ability to determine several system parameters,

dL

especially my and mp which are primarily derived from equations related to

152

Physics Informed Neural Networks in Sparse Data Applications

- gamma_Aem gamma_Ab gamma_~Ao
1.0
0.8
0.6
0.4
0.2
0.0
true pred true pred true pred
day day day
fE fp fL
—— theta_true —— theta_true —— theta_true
035 -~ theta_pred 005 -~ theta_pred | 0.030 -~ theta_pred
030 0.04 0.025
025 0.020
0.03
0.20 0.015
0.02
0.15 0.010
0.01
0.10 0.005
| /
/ = ' N
1 SN - 1 R,
0.05 0001 ¢ 0.000{ ¢
800 900 1000 1100 800 900 1000 1100 800 900 1000 1100
day day day
f_Ag m_L m_P
0.16 —— theta_true 10 — theta_true 1.0{ — theta_true
B ~=~ theta_pred B ~=~ theta_pred ~ == theta_pred
0.14
0.12 08
0.10
0.6
0.08
0.06 0.4
0.04
0.2
0.02
0.00 0.0
800 900 1000 1100 800 900 1000 1100 800 900 1000 1100
day day day
m_A
—— theta_true
==~ theta_pred
0.050
0.045
0.040
0.035
0.030
0.025
-

800 900 1000 1100
day

Figure 6.9: Mosquito ODE system, inverse problem, © approximation of the
system’s parameters. Each plot compares the approximated values (orange) with
the true values (blue) for different parameters governing the mosquito population
dynamics.

and %. Conversely, parameters Yaem, Yap and 74, remain constant over time,

which makes them simpler to accurately estimate, as evidenced by their relatively

153

Physics Informed Neural Networks in Sparse Data Applications

low MDAPE. Meanwhile, parameters such as my and fa,, which are involved in
multiple differential equations, tend to receive more consistent and stable information
and gradients. From a mathematical perspective, the target parameters are not
structurally identifiable across the entire input domain due to the system configuration
(see Appendix C.1). This lack of structural identifiability can lead to inaccuracies in
the approximations generated by PINNs.

Summary. The PINN framework developed for this research demonstrated
a quite accurate approximation of the mosquito dynamical system, despite the
challenges posed by extreme multi-scale behaviors and a large input domain. Our
approach successfully normalizes the system states and parameters onto the same
scale with an even optimization. The results show strong accuracy, particularly
in high-temperature domains where information is redundant. However, due to
inherent structural identifiability limitations, the model fails in terms of accurately

approximating parameters within the low-temperature domain.

6.5 Conclusion

In this chapter, we introduced a hybrid framework based on Physics informed Neural
Networks that integrates physical laws into data-driven machine learning models.
This framework is specifically designed to solve systems of ordinary differential
equations and was validated using both the Lorenz system and a case study modeling
mosquito population dynamics. The approach comprises a multi-task learning
strategy, incorporating multiple components in the objective function: one for
data fitting and several for weakly enforcing physical constraints. The framework
also includes several advanced techniques, including domain decomposition, ODE
normalization, gradient balancing, and causal training. To evaluate the effectiveness
of this approach, we conducted an ablation study using the Lorenz system before
addressing the complex problem of modeling mosquito population dynamics.

Our findings demonstrate that ODE Normalization and Gradient Balancing

techniques played a crucial role in stabilizing the training process. These meth-

154

Physics Informed Neural Networks in Sparse Data Applications

ods effectively prevent individual components of the loss function from exerting
disproportionate influence on the optimization and thus, mitigate against prema-
ture convergence to suboptimal solutions. Causal Training preserves the temporal
causality inherent in the dynamical system. This aspect is crucial for achieving
accurate model predictions, especially in scenarios requiring extrapolation beyond
the scope of the training data. Furthermore, Domain Decomposition demonstrates
its effectiveness in managing significantly large input domains, particularly in forward
problem scenarios. The results also confirm the framework’s efficacy in modeling
mosquito population dynamics, highlighting its potential for application within the
field of ecology.

However, the PINN framework presented in this chapter still reveals certain limi-
tations. In the inverse problem setup, the PINN tends to favor solutions with smaller
gradients that still met the data and ODE constraints. The current implementation
considers only time as an input, neglecting external factors. This restriction signifi-
cantly limits the model’s predictive performance in real-world applications, as the
coordination inputs and encoded physical laws may not fully capture the underlying
mechanisms of the processes. Allowing external variables would not only enhance
performance but also increase the framework’s flexibility. While the framework has
demonstrated promising results on test systems, its compatibility with real-world
data remains to be tested. In Chapter 7, we will address two of these limitations
by allowing external variables as inputs and testing the method against real-world

mosquito count data, thereby advancing the practical applicability of our approach.

155

Chapter 7

PINN Optimization: Incorporating

External Factors

In Chapter 6, we developed a methodology to incorporate ordinary differential
equations (ODEs) into a machine learning framework, one which incorporated
solutions for both forward and inverse problems in dynamical systems. However,
the framework’s inability to consider external variables may limit its applicability in
certain scenarios. Furthermore, the framework’s evaluation was limited to simulated
data in the chapter, potentially under-representing its true capabilities when applied
to real-world observations. This chapter aims to address these limitations through an
inverse problem case study using the same mosquito population case study presented

in Chapter 6.

7.1 Introduction

We begin with an overview of our approach to the final research question which had

two parts.

1. By incorporating external variables into the parameter surrogate models, PINNs
can learn the mapping from external factors to the dynamical system’s param-
eters. This part directly addresses the problem by establishing a connection

between external factors and system parameters.

156

Physics Informed Neural Networks in Sparse Data Applications

2. Additional modifications to the neural network architecture, including fixed
Fourier transformations, customized non-negative output activation functions,
and adoption of a multi-branch structure, can enhance PINN’s training process
and accuracy. This second part attempts to improve the stability and efficiency
of training, as well as the generalizability of the resulting models, particularly

in scenarios with limited observational data.

To meet these goals, a novel approach using physics-informed neural networks
was developed to learn the mapping from external conditions to internal parameters
of dynamical systems. This approach replaces time-dependent parameters with
neural networks that map external variables to system parameters. The external-
to-internal neural networks are designed with a dual-branch architecture to capture
both year-to-year patterns and residual fluctuations. Furthermore, we implement a
modified absolute activation function to ensure parameter positivity. These neural
networks, along with the system state’s neural network, are jointly trained to
optimize a multi-task objective function, which not only learns from observational
data but also enforces adherence to underlying dynamical laws. We evaluate this
method through a case study on mosquito population modeling, comparing its
performance against traditional empirical parameter estimation. Results indicate that
the learned parameters improve the accuracy of the dynamical system, demonstrating
the potential of this data-driven, hybrid approach in dynamical modeling.

The implementation of this framework is publicly available at https://github.

com/dinhvietcuong1996/pinn-external.

7.2 Incorporating External Factors

Consider a dynamical system defined by a state vector u(t) over the time interval
[0,T]. The system’s behavior is influenced by external factors represented by the
vector a(t), which affect the internal parameters 6(a(t)). The evolution of the state

u is described by a system of ODEs as shown in Equation 7.1.

157

https://github.com/dinhvietcuong1996/pinn-external
https://github.com/dinhvietcuong1996/pinn-external

Physics Informed Neural Networks in Sparse Data Applications

d .
dfllj:f(l)(t;u70>7 1217277F (71)

A set of observations D, = {(t1,u1), (t2, u2), ..., (tj,u;),...} is provided, along
with a predefined function A : ¢ — A(t) that approximates the external variables
a(t) with sufficient accuracy. It is important to note that some variables of the
system state v may be costly or impossible to collect, so these observations may
only cover part of the states. The primary objective is to determine a mapping from
the external factors a to the system parameters 0, such that the resulting state u
not only corresponds to the observed data D, but also satisfies the ODE system
described in Equation 7.1. Thus, this approach to inverse problem modeling seeks to
integrate data-driven learning with the underlying physical principles represented by
the ODEs.

In this framework, the state u is approximated by a neural network U that maps
time t to the estimated state u(t). Simultaneously, each unknown parameter is
represented by a neural network © that takes A(t) values as inputs and generates
the corresponding parameter values. These neural networks are jointly optimized to

minimize the objective function 7.2, which compromises loss terms 7.3 and 7.4.

1 F
L= £data + EODE = ﬁdata + F Z Aiﬁf(i) (72)
=1
1 2
*Cdata = F Z (U(tz) - ul) (7 3)

1 dU

Ly = N, ; i FO A, U(t), O(A(ty)) (7.4)

In loss functions 7.2, 7.3 and 7.4, \; represents weights that balance the objectives

within the loss function. N, denotes the number of state observations, while Ny

158

Physics Informed Neural Networks in Sparse Data Applications

represents the number of collocation points ¢; randomly sampled from the interval
[0, T]. In cases where the observed state is incomplete, unavailable entries are masked
out in the calculation of the data loss term Lguq.

The objective function consists of two components: Lgat, Which ensures that the
predictions generated by the model U closely align with the observed data, and L
which minimizes the ODE residuals. Through the simultaneous optimization of these
terms, we aim to derive a system state and parameter set that not only fits the
empirical observations but also adheres to the ODE system.

The above framework is extended from the PINN framework presented in Chap-
ter 6, and is depicted in Figure 7.1 where the function A (the white blue-bordered
box) is newly added. The method introduces a novel aspect by employing parameter
networks © that accept inputs from the function A values, illustrated by the arrow
from Function A (the upper white blue-bordered box) to the neural network © (the
lower blue box). These trained networks are reusable for predicting parameters under
any external conditions, as depicted the arrows leading from inference A values (the
lower blue-bordered box) through the model ©. Additionally, the method includes
the implementation of a Multi-branch Fourier-feature Multi-Layer Perceptron (Multi-
branch FourierMLP) for these parameter networks to enhance their generalization
capabilities. Finally, a new output activation function is introduced to enforce
positivity constraints on both the system state and parameters.

FourierMLP [249] was implemented for the neural network architecture. It has
demonstrated significant enhancements in both convergence speed and accuracy for
PINN training [41] The FourierMLP, given an input z, produces an output y as in

Equations 7.5.

RO = [cos (Bx) ; sin (Bx)]
hO = g, (WORED 4 p®) 1 =1,... L —1 (7.5)

Y= b, (W(L)h(L—l) + b(L))

159

Physics Informed Neural Networks in Sparse Data Applications

}

@— _____________ Laara U (), u;)
values FourierMLP U
Lons (U ()0 (4()))

Multi-branch
FourierMLP ©

¢ values

Predicted
0 values

Inference
Avalues

]
|
i

Figure 7.1: External PINN Framework. There are two groups of neural networks,
one named U for the system state (the upper blue box), and the other named ©
for estimating the system parameters (the lower blue box). There are two data
for the loss computations, the observations (t;,u;) (the upper green box) and the
collocations points ¢; (the lower green box). The data loss L4, is computed based on
the observations (%;,u;) and the outputs of the state neural network U evaluated at
t;. The ODE loss Lopg is calculated at random collocation points ¢;, it involves the
predictions of the state model U at t; and the parameter model at A(t;) (the white
blue-bordered box), which are external factors at ¢;. Only the two neural networks
(the two blue boxes) are trained, while the function A is fixed. After training, one
can use the network © to predict parameters 6 at any external factor values, as
depicted by the bottom row of the figure.

In Equations 7.5, B denotes a random matrix with entries drawn from a normal
distribution N'(0,0). W® and b represent the weights and biases of appropriate
dimensions, respectively. During training, B remains fixed while the weights and
biases are optimized. L denotes the number of hidden layers, and ¢; represents
the element-wise activation function applied to hidden layers. The Gaussian Error
Linear Unit (GeLU) activation function [245] is used for ¢, providing a smooth
non-linearity to the model. To ensure non-negativity of state and parameters, we
introduce a soft absolute function as the output activation ¢, in Formula 7.6, where

¢ is empirically set to 107 based on experimental results.

dlr) =vVat+e—+VereR (7.6)

The high-dimensional nature of external variables A(t), coupled with limited

training data, often leads to poor generalization in trained models. To address this

160

Physics Informed Neural Networks in Sparse Data Applications

issue, we propose a multi-branch architecture for the external-to-parameter networks
O, as illustrated in Figure 7.2. This architecture comprises multiple branches, each
consisting of a separate FourierMLP that processes a distinct group of inputs. The
outputs from these specialized branches are then aggregated in subsequent layers to

generate the final prediction.

/ Multi-branch FourierMLP \

Lo
/

-)

Figure 7.2: FourierMLP and Multi-branch FourierMLP architecture

X L layers

The proposed architecture can be formally described as follows: Let ™M), ... (™
represent n distinet groups of external factors. Each input vector () is independently
processed by a corresponding FourierMLP® branch. The resultant outputs from
these branches undergo summation, followed by an activation function ¢,. This is

mathematically expressed by the Equation 7.7.

Y= <Z FourierMLP® (w“’)) : (7.7)

The optimization of the objective function is performed using the gradient-based

Adam optimizer [203]. All differentiation operations, including ODE derivatives

161

Physics Informed Neural Networks in Sparse Data Applications

and optimization gradients, are computed via automatic differentiation provided by
the PyTorch framework [8]. To enhance convergence and accuracy, we implement
ODE normalization and gradient balancing techniques as proposed in [243]. ODE
normalization rescales neural network inputs and outputs, reformulating the ODE loss
function to maintain these quantities within reasonable ranges. Gradient balancing
adaptively adjusts the weights \; throughout training to maintain balance across
tasks in multi-objective optimization. Furthermore, we resample the collocation
points for ODE residual calculations at each training step, drawing from a uniform
distribution over the time domain. To facilitate convergence, we initially train the
networks using solely the data loss, enabling the network U to capture the general
solution shape before training both objectives. Lastly, in scenarios where the function
A is not directly available but its measurements are abundant, we train a separate
FourierMLP to approximate this function. This neural network is frozen during the

PINN training process, serving as a fixed input to the main model.

7.3 Evaluation

In this section, a series of experiments are presented which are used to evaluate
the extended PINN framework. The data used for the experiments is described in

Section 2.3.3.

7.3.1 ODE system

In this experiment, we apply our proposed methodology to an inverse problem
using the same mosquito ODE system in Chapter 6 but repeated here to assist
with interpreting Equations 7.8. The mosquito life cycle is divided into 10 stages:
Egg (E), Larva (L), Pupa (P), Emerging Adults (A.,,), Nulliparous Bloodseeking
Adults (Ap1), Nulliparous Gestating Adults (A,1), Nulliparous Ovipositing Adults
(Ao1), Parous Bloodseeking Adults (Ay), Parous Gestating Adults (Ay2) and Parous

Ovipositing Adults (Ayg).

162

Physics Informed Neural Networks in Sparse Data Applications

The system dynamics are described by the set of ODEs described in Equations 7.8.

G = 70(B1Ao + BoAs) — (e + fr)E

&L =fpE—(my(1+ L)+ f1)L

P = f;L— (mp+ fp)P

e foe™™ () P (g 4) A

W =y Ao — (Ma + i + Ya0) An (7.8)
d‘g—fl = YapApt — (ma + fag)Ag

d?lz;)l = ngAgl - (mA + oy + 7A0)A01

Wiz = oy (Aor + Ava) — (Ma + e + Ya0) s

dﬁ? = YapApz — (ma + fag)Ag2

oz = fr.Ap — (Ma+ e + Va0) Aoz

The parameters in Equations 7.8, already detailed in Table 6.2, are referred to as
empirical formulas and serve as a baseline for our analysis.

The main goal is to learn a mapping from meteorological measurements to system
parameters of the system and then validate this mapping by applying the trained
models to infer parameters from unseen data. These predicted parameters are then
used to simulate the mosquito population. Sensitivity analysis (Appendix C.2) reveals
that the Pupa development rate fp (and correspondingly, the larva development
rate f;, = 1.65fp) exerts the most significant influence on the overall system state,

particularly on the quantity Ay + Aye. Therefore, we choose to learn the parameter

fp.

7.3.2 Experimental Configuration

The experiment begins with the preprocessing of mosquito data and the establishment
of lower and upper bounds for all data columns, a crucial step for ODE Normalization.
A simulation is executed using parameters derived from climate condition data via
empirical formulas. The resulting state values from this simulation serve to define

the bounds for the system state. Collected mosquito counts are rescaled to align with

163

Physics Informed Neural Networks in Sparse Data Applications

the bounds, and a 5-day-window Spline smoothing is applied to reduce data noise.
Parameter bounds are determined by the values obtained from empirical formulas,
while climate data bounds are set based on available measurements.

For the training process which used the 2-year dataset, the function A defined
over the time domain plays a critical role. A FourierMLP is trained to interpolate
meteorological measurements for any real-valued time ¢ within the domain. This
model’s architecture consists of 256 Fourier features, followed by three hidden layers,
each containing 128 units. The model generates two sets of external features: one
comprising three meteorological variables (temperature, humidity, and precipitation),
and another representing the day of the year, ranging from 0 to 365.

The architecture of the neural networks is structured as follows: The system
state network U consists of 256 Fourier features followed by three hidden layers,
each containing 128 units. For the parameter network, a dual-branch FourierMLP
is implemented, where each branch has a layer of 128 Fourier features and three
hidden layers of 64 units. The first branch processes 7-day historical meteorological
data, while the second branch uses day-of-year as input. This configuration enables
the latter branch to capture intrinsic annual patterns, while the former learns the
impact of meteorological conditions on mosquito development rates. Both networks
utilize GELU activation functions in their hidden layers and employ the soft absolute
function (Equation 7.6) to enforce non-negativity.

The neural network A is trained for 300,000 epochs, with the checkpoint yielding
the lowest root mean squared error (RMSE) being saved. PINN training initially
focuses solely on data loss for 10,000 steps, followed by 290,000 steps incorporating
the full objective function. PINN checkpoints are saved every 500 steps, and we select
the one yielding the best RMSE when simulating with PINN-learned parameters.
PINN checkpoints are saved every 500 steps, and the model producing the lowest
RMSE when simulating with PINN-learned parameters is selected as the final model.
This model is subsequently validated using the designated validation dataset.

Results are presented by comparing simulations using PINN-learned parame-

164

Physics Informed Neural Networks in Sparse Data Applications

ters against those using baseline parameters, using graphical representations and
quantitative metrics. For PINN-learned simulations, we utilize the initial conditions
extracted from the trained network U in the training period for the 7-year validation
dataset. Baseline simulations, in contrast, adopt an initial condition of 300 for each
state vector component, aligning with the work in [44]. To ensure comparability,
all simulation outputs and observational data are normalized to the [0, 1] range for
metric calculations. Our validation metrics include the root mean squared error
(RMSE) between Ay + Ay, the RMSE of the weekly difference in Ay + Ay, and
the 7-day 0.2-prominence peak detection recall, precision, and F1-score.

The experiment is implemented in Python, leveraging PyTorch for neural network
architecture and optimization tasks. We accelerate the training process using a
GeForce GTX 4090 GPU. All simulations are executed via SciPy [231], employing
its finite-difference ODE solver [248]. The peak detection algorithm is also from this

package.

7.3.3 Results

Figure 7.3 shows the simulation results using empirical formula parameters and PINN-
derived parameters, alongside smoothed observation data. Figure 7.4 illustrates
the parameter fp. The PINN simulation demonstrates a close fit to the training
data, yielding an RMSE of 42,060 (0.029 normalized), which is significantly lower
than the empirical formula’s RMSE of 453,863 (0.248 normalized). This indicates
the PINN’s successful learning of the parameter fp to match observed data. The
learned development rate fp predominantly remains near zero throughout the year,
exhibiting small peaks around day-of-year 60-90, corresponding to a minor surge
in mosquito populations. The most significant peaks are observed around day 160,
aligning with annual peaks in mosquito counts. Notably, the prediction of fp shows
unexpected peaks at the end and beginning of the calendar year, likely a false peak
due to the near-zero number of mosquitoes during this period providing limited

information for learning. In contrast, the parameters derived from the empirical

165

Physics Informed Neural Networks in Sparse Data Applications

formula exhibit a nearly linear relationship with temperature. This leads to an
earlier-than-observed explosion in mosquito numbers in the second year and higher-

than-expected populations during summer and later periods.

1.0 A —— Observed Data
—— Python ODE Solver with Formula- parameters
——— Python ODE Solver with PINN-learnt parameters

0.8 1

0.6

0.4

0.2

0.0

32 62 92 122 152 182 212 242 272 302 332 362 26 56 86 116 146 176 206 236 266 296 326 356
Day of Year

Figure 7.3: Mosquito Population Simulations, Ap; + Apg, the training period.

—— Empirical Formula
—— PINN prediction

32 62 92 122 152 182 212 242 272 302 332 362 26 56 86 116 146 176 206 236 266 296 326 356
Day of year

Figure 7.4: Parameter fp prediction, the training period

Figure 7.5 illustrates the Ay + Ape values from simulations during the validation
period, along with weekly observed mosquito counts. Both simulations demonstrate
the ability to capture general patterns of annual mosquito population dynamics. The
Formula-based simulation predicts elevated populations over an extended period,

spanning from approximately day 100 to day 300 of the year. In contrast, the

166

Physics Informed Neural Networks in Sparse Data Applications

PINN simulation appears to more accurately predict population explosions, typically
occurring around day 180 and rapidly decaying after day 250. However, both
simulations exhibit a slower population decay compared to observed data. Regarding
peak detection, the Formula-based simulation tends to identify a higher number of
peaks, potentially reducing its precision, although it still fails to capture observed
peaks accurately. The PINN method, on the other hand, is more conservative but
still aligning more closely with significant observed peaks.

The respective fp predictions are plotted in Figure 7.6. The parameter predictions
for the validation period exhibit similar characteristics to those of the training period.
Notable features include a prominent peak around days 160-180, minor peaks between
days 60-90, and a substantial spike at the beginning of the year. The differences across
the years are visually hard to identify, primarily attributable to minor fluctuations
in climatic conditions. However, these seemingly small differences lead to significant
variations in mosquito population dynamics. A more comprehensive analysis of these
predictions, beyond the scope of this study, would be necessary to draw further
conclusions.

Table 7.1 presents error metrics between the Formula and PINN parameters for
validation simulations. The PINN method demonstrates superior performance across
all metrics. Notably, PINN achieves lower RMSE values for overall error (0.1791),
weekly differences (0.1728), and second-order weekly differences (0.2927) compared
to the Formula approach, with the figures 0.2622, 0.2054 and 0.3328, respectively.
In peak detection, PINN substantially outperforms the Formula method, with
higher recall (0.5625 vs 0.1250), precision (0.6250 vs 0.0938), and F1 score (0.5667 vs
0.1071). These results suggest that PINN offers added information into the parameter

prediction, expressed by more accurate simulations and peak prediction capabilities.

7.4 Ablation Study

For an ablation study, we investigate how the additions of neural network archi-

tectures and the activation function affect the performance of the framework. The

167

Physics Informed Neural Networks in Sparse Data Applications

Year 2000 Year 2001
1.0 —— Observed Data 1.0
@ Observed Peaks
0.8 1 @ Dy Peaks 0.8
0.6 - @ Hy Peaks 0.6
0.4 4 0.4 1
0.2 A 0.2 4
0.0 T T u T T T T 0.0 —t T f T T T T
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2002 Year 2003
1.0 1.0 |
0.8 1 0.8 1
0.6 - 0.6 1
0.4 A 0.4 4
0.2 A 0.2
0.0 y T T T T T T 0.0 T T T T T T T T
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2004 Year 2005
1.0 1 1.0
0.8 1 0.8 1
0.6 A 0.6 1
0.4 A 0.4 4
0.2 A 0.2 4
0.0 T T f T T T T 0.0 T T T T T T T —
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2006 Year 2007
1.0 1.0 A
0.8 1 0.8 1
0.6 A 0.6 1
0.4 0.4 1
0.2 A 0.2 4
0.0 r ¢ . T T T * 0.0 At / T T T .
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year

Figure 7.5: Mosquito Population Simulations, A,; + Ay, the validation period.

168

Physics Informed Neural Networks in Sparse Data Applications

Year 2000 Year 2001
0.16
—— Empirical Formula
0.14 1 —— PINN prediction 0.14 4
0.12 4 0.12
0.10 4 0.10 |
0.08 - 0.08
0.06 - 0.06
0.04 0.04
0.02 0.02 1
0.00 A 0.00 A
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2002 Year 2003
0.16 1
0.14 4
0.14
0.12 A
0.12 1
0.10 A 0104
0.08 - 0.08 -
0.06 1 0.06
0.04 4 0.04
0.02 4 0.02 A
0.00{ 0.00 - W
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2004 Year 2005
0.14 4 0.14
0.12 4 0.12 A
0.10 4 0.10 A
0.08 - 0.08 -
0.06 - 0.06 -
0.04 - 0.04 -
0.02 4 0.02 -
0.00 A 0004 ™
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year
Year 2006 Year 2007
0.16
0.14 4 0.144
0.12 4 0.12 1
0.10 4 0.10 4
0.08 A 0.08
0.06 - 0.06
0.04 4 0.04
0.02 A 0.02 A N
0.00 A 0.00
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Day of Year Day of Year

Figure 7.6: Parameter fp prediction, the validation period.

169

Physics Informed Neural Networks in Sparse Data Applications

Table 7.1: Error Metrics. Six metrics are presented: the first three are RMSE
metrics where lower values indicate better performance, and the last three are
peak metrics where higher values are better. The best results for each metric are
highlighted in bold.

Formula PINN
RMSE 0.262200 0.179100
Weekly Diff RMSE 0.205400 0.172800
Weekly 2nd Diff RMSE 0.332800 0.292700
Recall Peak 0.125000 0.562500
Precision Peak 0.093800 0.625000
F1 Peak 0.107100 0.566700

experimental procedure is the same as in Section 7.3. Specifically we first train
PINNs using data from the training period, during which the model learns how
meteorological variables affect the mosquito parameters. Then, the trained parameter
network is used to predict parameters for the test period, and these parameters are
substituted into the ODE system to simulate the mosquito population which is the
population predictions. The difference is that we vary one component at a time
while keeping all other factors constant to observe the effect of each change. We
first examine the architecture of the neural networks and then the non-negativity

activation function.

7.4.1 Model architectures

In this experiment, we aim to assess the effect of Fourier feature layers and the
branching architecture of neural networks on the performance of the framework. We

consider four configurations of neural network architectures:

1. MLP: All of the neural networks for the system state U and system parameters
© use standard MLPs, similar to those in Chapter 6 and in conventional

PINNs [43].

2. FourierMLP: All of the neural networks U and © use FourierMLPs, similar

to those in [41].

3. Branched MLP: For comparison, we use a branched version of the MLP,

170

Physics Informed Neural Networks in Sparse Data Applications

which is similar to the multi-branch Fourier MLP described in Section 7.3, but
the Fourier layer is replaced with a normal fully connected layer, making each
branch a standard MLP. This multi-branch MLP is used for the parameter

networks O, while the state network remains an MLP.

4. Branched FourierMLP: Finally, our proposed architecture, which is the same
as in Section 7.3, uses a FourierMLP for the network U and a multi-branch

FourierMLP for the parameters ©.

As the accuracy of PINNs does not heavily depend on the capacities of the neural
networks [108], it was only necessary to experiment with one hyperparameter setting
for each configuration. The hyperparameters for the neural networks of the four
configurations are set as follows: for all the state networks, we utilize a network with
four hidden layers; the first hidden layer has 256 units, and the three subsequent
hidden layers each have 128 units. For the parameter networks, the non-branched
versions use a similar setting: one layer of 256 units and three layers of 128 units. For
the branched versions, each branch uses half the number of units, that is, 128 units
for the first hidden layer and 64 units for the other three. All other hyperparameters
are set the same as in Section 7.3, including the use of the GELU activation function
for hidden layers and the soft absolute function with e = 10~* for the output.

Table 7.2 presents the simulation error metrics obtained when simulating the
mosquito dynamical models using the parameter fp learned from the four different
neural network configurations. It can be seen that PINNs across all architectures
outperform the empirical formula. Our proposed architecture, the Branched Fouri-
erMLP, achieves the best overall performance, exhibiting the lowest RMSE and the
highest scores in peak detection metrics. When comparing the standard MLP to its
branched counterpart, we observe that the RMSE values are similar (0.1937 for MLP
vs 0.1979 for Branched MLP), but the Branched MLP exhibits marginal improve-
ments in peak detection metrics. Specifically, the peak recall increases from 0.1458
to 0.2708, the precision peak from 0.3750 to 0.4375, and the peak Fl-score from

0.2083 to 0.2917. This suggests that the branching architecture enhances the model’s

171

Physics Informed Neural Networks in Sparse Data Applications

capacity to capture features relevant to peak occurrences, such as annual patterns.
Interestingly, the standard MLP outperforms the FourierMLP in terms of RMSE
(0.1937 vs 0.2479), suggesting that the FourierMLP may be overfitting the data due to
its higher complexity. However, when the FourierMLP is integrated into a branched
architecture, as in Branched FourierMLP, the model not only mitigates overfitting
but also leverages the Fourier features to capture periodic patterns more effectively.
The Branched FourierMLP achieves a lower RMSE of 0.1791 compared to both the
standard MLP and the FourierMLP, and it significantly improves peak detection
metrics over both models. These results suggest that the branching architecture
allows the neural network to generalize better while the Fourier features enable it to
capture periodic components in the data. The combination between the branching
structure and Fourier features in the Branched FourierMLP contributes to its superior

performance, making it a robust framework for learning system parameters in PINNs.

Table 7.2: Error Metrics from Parameters learned from PINNs with differ-
ent network architectures. The best results for each metric are highlighted in
bold, while the second best results are underlined.

MLP FourierMLP Branched MLP Branched FourierMLP

RMSE 0.193658 0.247858 0.197923 0.179100
Diff RMSE 0.187189 0.207561 0.191858 0.172800
2nd Diff RMSE 0.314825 0.348473 0.312093 0.292700
Recall Peak 0.145833 0.166667 0.270833 0.562500
Precision Peak 0.375000 0.085714 0.437500 0.625000
F1 Peak 0.208333 0.101010 0.291667 0.566700

7.4.2 Activation Functions for Non-negativity

In this experiment, the aim is to explore different activation functions to enforce
the non-negativity of system parameters and states. All of the considered functions
are plotted in Figure 7.7. The baseline activation function is the identity function,
which returns the exact input provided to it. Other popular activation functions that
express the non-negativity property are ReLU and its smoothed version, Softplus [250].
While ReLU and Softplus are popular activation functions, they suffer from the

critical drawback of causing dying neurons [251]. This phenomenon occurs when the

172

Physics Informed Neural Networks in Sparse Data Applications

input to the ReLU is negative, resulting in zero gradient propagation and causing
the neuron to stop learning. This problem is exacerbated when applied to PINNSs.
As discussed in Chapter 6, PINNs often converge to the trivial zero solution, which
is precisely how dying neurons are triggered. This convergence causes PINNs to

become stuck at a local minimum and prevents further learning.

2.0

1.5 1

1.0 A

0.5 1

> 0.0

—0.5 A

—1.01 —— Identity function y = x
—— RelU
—— Softplus

—1.54 —— Absolute value
—— Soft Abs (eps=1e-06)
—— Soft Abs (eps=0.0001)

Soft Abs (eps=0.01)
-2.0 T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 7.7: Non-negativity Activation Functions. The Soft Abs functions with
e = 107% and € = 10~* appear very close in the plot, closely resembling the positive
part of ReLLU and the identity function.

To address this issue, we propose using the absolute value function to impose
non-negativity on the states and parameters. The absolute value function effectively
fixes the zero-gradient problem by ensuring a non-zero gradient in the negative
domain. However, the original absolute value function makes it difficult for the model
to optimize values to zero, as the gradient is discontinuous at 0.0. Therefore, we
propose using a soft version of the absolute value function, called SoftAbs, defined

in Equation 7.6. When ¢ is small, the differences from the standard absolute value

173

Physics Informed Neural Networks in Sparse Data Applications

function are minimal, as seen in Figure 7.7, but Soft Abs is significantly more effective,
as we will demonstrate in our experiments.

Table 7.3 shows the error metrics obtained from simulations using parameters
learned by PINNs with different output activation functions. Overall, the Soft Abs
activation function with € = 10~* demonstrates superior performance across multiple
metrics. It achieves the highest scores in all three peak detection metrics, and ranks
second in RMSE and third in first-order difference error. Other configurations of the
Soft Abs function also exhibit significant improvements, particularly in peak detection
and second-order difference errors. For example, SoftAbs with € = 1075 attains the
lowest second-order difference RMSE of 0.2853 and achieves the second-highest peak
F1-score of 0.5083. Abs improves peak detection compared to ReLU and the identity
function; however, its performance in RMSE metrics is limited. These results suggest
that softening the derivatives of the absolute value function aids the model in better
detecting peaks while maintaining comparable RMSE values. ReLLU achieves the
lowest first-order difference RMSE at 0.1706, while the identity activation function
comes second in overall RMSE with a value of 0.1637. This performance can be
attributed to our re-selection procedure, which involves simulating training period

after training.

Table 7.3: Error Metrics from Parameters learned from PINNs with differ-
ent final activation functions. The best results for each metric are highlighted in
bold, while the second best results are underlined.

Identity =~ ReLU Softplus Abs e=10% e=10"% e=10"?

RMSE 0.1637 0.1868 0.1981 0.2008 0.1903 0.1791 0.1558
Diff RMSE 0.1768 0.1706 0.1916 0.1787 0.1748 0.1728 0.1809
2nd Diff RMSE 0.3031 0.2927 0.3138 0.3080 0.2853 0.2927 0.3194
Recall Peak 0.2708 0.0416 0.2083 0.2500 0.4583 0.5625 0.3333
Precision Peak 0.2708 0.1250 0.3125 0.4375 0.6250 0.6250 0.5000
F1 Peak 0.2500 0.0625 0.2083 0.3005 0.5083 0.5667 0.3625

For comparative analysis, Figure 7.8 plots the predictions of the learned pupa
development rate fp over the training period using three different activation functions:
Identity, ReLU, and SoftAbs with e = 107*. In the intervals from day 160 to 210

in the first year and from day 140 to 200 in the second year, all three models

174

Physics Informed Neural Networks in Sparse Data Applications

approximately agree on the values learned. This convergence is attributed to the
high mosquito activity during these periods, which results in increased observational
mosquito counts and thus, provides information for the models to learn. The critical
differences among the models lie in the range of about days 50 to 90 in both years.
During these periods, the SoftAbs activation function effectively captures the small
peaks in mosquito counts by predicting surges in the corresponding fp. In contrast,
the ReLU activation function encounters difficulties in learning values near zero, with
predictions remaining mostly zero during these intervals. This issue arises due to the
dying neuron phenomenon, where neurons become inactive and are unable to learn
once their outputs reach zero. The Identity activation function fails to satisfy the
non-negative constraints in the physical modeling of mosquito populations, making
its predictions unrealistic. Nevertheless, the Identity function achieves the lowest
RMSE on the training data, a performance attributable to its relaxed constraints,

which allow for a better fit to the data despite violating physical plausibility.

—— Identity
—— RelU
0.15 4 —— SoftAbs

0.10 -

0.05 A

-0.05

32 62 92 122 152 182 212 242 272 302 332 362 26 56 86 116 146 176 206 236 266 296 326 356

Nav of vear

Figure 7.8: Parameter fp predictions with different output activation functions,
training period

It is important to note that the models are selected based on the simulation errors
evaluated on the training data, which may not be the fully converged checkpoints
of the training process. In our experiments, the selected models utilizing ReLLU

and Softplus activation functions correspond to early training stages In experiment,

175

Physics Informed Neural Networks in Sparse Data Applications

the models with ReLLU and Softplus are selected in the first few training steps,
at 11,000 and 12,000 out of a total of 300,000 training steps, when the training
loss had not yet been fully minimized. This observation suggests that the target
checkpoints for these two activation functions may not reside at local minima in the
loss landscape, introducing uncertainty into the PINN training process. In contrast,
models employing the Identity, Abs, and Soft Abs activation functions were selected
at later stages of training, around 250,000 out of 300,000 training steps, where the

training loss was more thoroughly minimized.

7.5 Conclusions

In this chapter, novel enhancements to the PINN approach were introduced for inverse
problems. The proposed modifications not only facilitate learning the influence of
external factors on the internal parameters of dynamical systems but also enhance
the generalization capability of the learned model to unseen data. Where parameter
networks incorporate external values as inputs rather than time as in conventional
PINN approaches, this enables direct learning of parameters with respect to external
factors while trying to adhere to observed data and physical laws simultaneously.
Secondly, the multi-branch architecture for parameter networks allows for separate
processing of different input feature types, thereby improving the capture of each
feature group’s impact on the parameters. The proposed methods were applied
to a case study in mosquito population modeling, aiming to learn the impact of
meteorological conditions on mosquito development rates. Comparative analysis
revealed that PINN-derived parameters outperformed traditional parameter formulas
in several metrics, including the errors of the population curve, its first- and second-
order derivatives, and peak detection metrics (recall, precision, and Fl-score). These
results demonstrate the successful integration of a data-driven, highly complex neural
network model with a dynamical system governed by ODEs, specifically in the
context of mosquito population modeling.

An ablation study further reinforces the effectiveness of our proposed modifications.

176

Physics Informed Neural Networks in Sparse Data Applications

By comparing different neural network architectures, we observe that the multi-branch
FourierMLP architecture significantly outperforms traditional MLP, FourierMLP
and multi-branch MLP, achieving lower RMSE and higher peak detection metrics.
The results show that the branching structure greatly improves the ability to predict
population peaks; and when combined with Fourier features, the model’s capability
to capture these peaks is enhanced even further. These findings from the ablation
study validate our proposals in PINN frameworks for dynamical systems.

Overall, these experiments demonstrate the significant benefit of incorporat-
ing prior knowledge into neural networks as demonstrated by improved predictive

accuracy across a substantial set of experimental evaluations.

177

Chapter 8

Conclusions

In this final chapter, we conclude the dissertation by briefly summarizing the different
steps taken in this research. We then highlight the contributions and novel aspects

of our work. Finally, we suggest some opportunities for further research in this area.

8.1 Dissertation Overview

In this section, we summarize the outputs from this body of research by re-examining
the initial hypothesis and the degree to which the research question have been
effectively addressed. In broad terms, it is our belief that we have successfully
demonstrated our hypothesis that integrating prior knowledge into neural networks
does enhance overall predictive performance. We will now briefly revisit those initial

research questions and how they were addressed.

8.1.1 Chapter 4: Neural Networks in Real-Life Applications

Neural networks, inspired by biological neurons, have become a cornerstone of
modern artificial intelligence and machine learning. It has advanced numerous
fields, achieving state-of-the-art results in many applications. In the first part of this
research, we applied neural networks to two new machine learning challenges: exosome
classification and oxygen uptake modeling to address the first research question: How

effectively can generic neural networks be deployed as machine learning solutions in

178

Physics Informed Neural Networks in Sparse Data Applications

areas such as health and sports?

Exosome Classification. In the first task, we addressed the challenge of
classifying exosome-derived SERS spectra into healthy, hyperglycemic, and hypo-
glycemic classes. The aim was to evaluate if neural networks could successfully
distinguish between exosome signals derived from endothelial cells cultured under
different conditions. We adopted a multi-step preprocessing approach that included
smoothing, background signal removal, and normalization to prepare the spectral
data for machine learning models. The classification model used in this study was a
Multi-Layer Perceptron (MLP).

Results indicated that the MLP model achieved a moderate overall accuracy of
approximately 66.7%. While it demonstrated promising performance, particularly
for identifying hypoglycemic samples, challenges emerged in distinguishing between
normal and hyperglycemic conditions. This difficulty could be attributed to inherent
similarities in the spectral profiles of normal and hyperglycemic samples, possibly
due to the presence of normal-like tissue in hyperglycemic samples. The approach
showed positive results in capturing distinguishing features from heterogeneous and
complex Raman signals. These findings underscored the potential for using machine
learning in general and importantly, the specific application of neural networks for
health diagnostics.

Oxygen Uptake Estimation. The second task attempted to predict individual
oxygen uptake using wearable sensor data collected during jogging and team based
activities. Several neural network models are evaluated, including linear regression,
MLP, long short-term memory networks (LSTM), and one-dimensional convolutional
neural networks (1D-CNN). The results highlighted that MLP model performed well,
achieving a validation RMSE of 3.18. However, the BiLSTM model demonstrated
the best generalizability, achieving a test RMSE of 4.98.

Research Question 1: How effectively can generic neural networks
be deployed as machine learning solutions in areas such as health and

sports? In conclusion, our empirical studies in Exosome Classification and Oxygen

179

Physics Informed Neural Networks in Sparse Data Applications

Uptake Estimation indicate that neural networks can indeed provide decent predictive
performance in health diagnostics and sports science. Fro exosome classification, a
MLP achieved an over accuracy of approximately 66.7% in distinguishing healthy,
hyperglycemic and hypoglycemic classes, while for oxygen uptake estimation, an
MLP and a BiLSTM demonstrated strong performance (RMSE of 3.18 on validation
and 4.98 on test, respectively). However, in both cases, dataset size and data
complexity limited the models’ ability to generalize fully. Hence, while generic neural
networks are feasible and beneficial, they often demand careful data processing,
feature engineering, and sufficient training samples to achieve practical performance
levels. This led us to experiment with a different form of neural network for the next

step in our research.

8.1.2 Chapter 5: Graph Neural Networks

To approach the next question, if graph neural networks could be deployed to exploit
the structural information in graphs, we began by modeling data as graph with a
case study of bike sharing sytems. We developed three types of network structures:
Spatial Bike Graph Networks (SBiGN), Temporal Bike Graph Networks (TBiGN),
and Spatio-Temporal Bike Graph Networks (STBiGN). For analysis, we applied
traditional graph metrics such as degree, strength, closeness, and betweenness, along
with community detection algorithms to identify groups of stations with similar
characteristics. The analysis revealed valuable insights beyond what traditional flat
data could offer as we could understand not only the activity levels of individual
stations but also the relationships and community structures within the network.
Thus, graph-based representations were demonstrated to enhance spatio-temporal
data analysis.

In the second part of our study, we developed a novel neural network architecture
to predict air quality using an attention-based graph neural network. The weighting
in attention layer helped learning the graph structure and the weighted sum of

transformed features aggregated information from neighboring stations. The results

180

Physics Informed Neural Networks in Sparse Data Applications

showed that the Spatio-Temporal Attention model achieved marginal improvements
in predictive accuracy compared to simpler models like conventional neural networks.
The attention mechanism allowed the model to learn adaptive weights between
locations and historical steps, which contributed to slightly better performance.
However, the gains were modest due to the limited size of the training dataset,
suggesting that these advanced features might be more effective in scenarios with
richer data.

Research Question 2: Can graph neural networks be deployed to exploit
the structural information inherent in graph-based data? In Chapter 5,
modeling bike-sharing data and air-quality data as graphs showed that leveraging
structural information yields additional insights and marginally improved predictions
over simpler models. By constructing Spatial Bike Graph Networks, Temporal
Bike Graph Networks, and Spatio-Temporal Bike Graph Networks, we uncovered
relationships and community structures that would have been difficult to observe with
traditional, “flat” datasets. Furthermore, an attention-based GNN for air-quality
forecasting provided slightly better predictive accuracy—although the improvement
was modest, partly due to a limited training set. Overall, these results confirm that
GNNs can indeed exploit graph structure, but they also highlight the need for more

robust regularization and richer data to realize their full potential.

8.1.3 Chapter 6: Physics-Informed Neural Networks

The third research question asked if it was possible to train neural networks to
accurately represent and predict the behavior of dynamical systems, when governed
by a system of ordinary dynamical equations. For this task, we investigated the
usage of Physics Informed Neural Networks (PINNs). Specifically, we developed
a PINN framework with enhanced techniques to not only train neural networks
to approximate the solution of systems of ODEs, but also solve related inverse
problems. Methodological contributions included ODE normalization for balancing

scales, gradient balancing to minimize the imbalance in gradients across multiple

181

Physics Informed Neural Networks in Sparse Data Applications

scales of ODEs, multi-phase training to preserve temporal causality in the system’s
dynamics, and simplifed domain decomposition for problems with large domains.
These techniques were ablationally validated using both the Lorenz system and a
complex mosquito population dynamics model.

Research Question 3: Can neural networks be extended to accurately
represent and predict the behavior of dynamical systems governed by
a system of ordinary differential equations? We demonstrated in Chapter 6
that Physics-Informed Neural Networks can be successfully adapted to solve forward
and inverse problems for systems of ODEs. Through techniques such as ODE
normalization, gradient balancing, multi-phase training, and simplified domain
decomposition, our approach provided accurate approximations of both the Lorenz
system and a mosquito population model. These enhancements mitigated common
challenges such as multi-scale imbalances and convergibility. We showed that neural
networks integrated with domain knowledge (i.e., the governing ODEs) can indeed
learn and predict complex dynamical behaviors. This bridged the gap between data-
driven and physics-informed approaches, demonstrating great potential for real-world
applications in ecological systems and beyond. However, a final step would require

that we attempt to apply the framework with real-life observations and validations.

8.1.4 Chapter 7: PINN Optimization

In the final part of this study, we attempted applying PINNs into real world ap-
plications using actual observations. Specifically, our objective was to estimate
the parameters in the case study of mosquito population modeling. This research
addressed the final research question regarding the ability of neural networks to learn
the effects of external factors on dynamic system parameters. Firstly, parameter
neural networks take the external factors as input directly, in contrast to traditional
PINNSs that use coordinates. Secondly, these networks are designed as a multi-branch
MLP, augmented with Fourier features. Lastly, a non-negative activation function

is proposed for all the neural networks requiring non-negativity constraints. These

182

Physics Informed Neural Networks in Sparse Data Applications

methodological proposals are to improve the generalization of the learned parameters
on unseen external factors.

Research Question 4: Can we determine how neural networks incor-
porate external factors on dynamic system parameters and validate any
solution using real-world observational data? In Chapter 7, we extended
PINNs by introducing parameter neural networks to map external factors (e.g.,
temperature) directly to system parameters. Using multi-branch architectures and
Fourier features, this method learned to generalize parameter values for unseen
external conditions in a real-world mosquito dynamics case. Despite some limita-
tions—such as interpretability issues, inaccuracies under zero-value observations, and
the challenge of identifying initial conditions—our results show that neural networks
can capture the impact of external factors on ODE-based system parameters more
effectively than traditional empirical formulas. The final piece of research further
enhanced the ability of physics-informed neural networks to solve inverse problems,
highlighting the potentials of data-driven parameter identification in guided-physics

dynamics modeling.

8.2 Contributions

« Exosome Classification. This research presents a novel combination of
surface-enhanced Raman spectroscopy (SERS) with a neural network to clas-
sify exosomes derived from normal and dysfunctional human aortic endothelial
cells. The key contributions in the machine learning aspect include: (1) the ap-
plication of a feed-forward neural network for spectral classification, a three-step
data preprocessing pipeline (smoothing, background removal, and normaliza-
tion) to enhance SERS signal quality, and an extensive hyperparameter search
(1,260 configurations) to fine-tune the MLP model. The results demonstrate
that the model effectively distinguishes hypoglycemic samples but faces chal-
lenges in differentiating hyperglycemic and normal samples, highlighting the

complexity of exosome-derived spectral signatures. Other novelty includes

183

Physics Informed Neural Networks in Sparse Data Applications

the leverage of Al with peptide modified plasmonic pore arrays for exosome

classification in the context of endothelial dysfunction.

o Oxygen Uptake Estimation. This pilot study represents the first application
of ML models to predict VO, during simulated team sports activities using
wearable sensor data. We examine the influence of different sensor configu-
rations, revealing that multi-sensor setups (e.g., combining torso with leg or
arm sensors) can improve prediction accuracy. We compare multiple regression
techniques, from traditional linear regression to advanced deep learning models
such as LSTM, CNN, and MLP, and evaluates their performance using both raw
and engineered (MAD-based) features. By employing a leave-one-subject-out
cross-validation approach, the study closely mimics real-world scenarios, demon-
strating that these non-invasive, real-time monitoring techniques can provide
personalized physiological feedback critical for optimizing athletic performance

and reducing injury risk.

e Bike Sharing System. This study introduces a unified, graph-based frame-
work for analyzing bike-sharing usage by integrating both spatial and temporal
dimensions into a multi-level network model. Its contributions include the
development of three types of networks—Spatial Bike Graph Networks, Tem-
poral Bike Graph Networks, and Spatio-Temporal Bike Graph Networks, that
progressively incorporate greater granularity and complexity to capture overall
traffic flow, temporal dynamics, and hidden patterns of station similarity, re-
spectively. Algorithms are proposed to optimize network construction, such as
thresholding methods for trimming weak edges while preserving strong connec-
tivity, and clustering techniques for automatically grouping time intervals with
similar network structures. The framework not only enhances visualization
and quantitative analysis through centrality metrics and community detection

but also provides insights for network optimization.

e Graph Neural Networks for Air Quality Forecasting. The work intro-

184

Physics Informed Neural Networks in Sparse Data Applications

duces a novel neural network architecture that integrates attention mechanisms
in both spatial and temporal dimensions to enhance air quality forecasting. By
stacking temporal attention layers before and after a spatial attention layer,
the model simultaneously learns and fuses complex spatio-temporal dependen-
cies while offering interpretability through adaptive weight assignments. This
approach overcomes key limitations of traditional recurrent and graph neural
networks—such as slow training, limited long-term dependency capture, and
fixed spatial relations, and demonstrates improved predictive performance on

real-world air quality data from Hanoi, Vietnam.

Adapting Physics-Informed Neural Networks to Improve ODE Opti-
mization in Mosquito Population Dynamics. This research introduces a
novel PINN framework specifically designed for complex ODE systems, incor-
porating several key innovations to enhance stability and accuracy. The ap-
proach normalizes the differential equations and assigns individualized gradient-
balancing weights to each equation, ensuring a well-balanced optimization
process. It employs a three-phase training strategy along with a progressive
causal training method, which gradually expands the time interval to pre-
serve temporal causality throughout training. Additionally, the framework
simplifies domain decomposition while still effectively managing large temporal
domains. These enhancements stabilize training, prevent convergence to trivial
solutions, and enable robust solutions for both forward and inverse problems,
as demonstrated on the Lorenz system and a mosquito population dynamics

model.

Incorporating External Factors to PINNs. The last piece of work intro-
duces a novel enhancement to PINNs for inverse problems by incorporating
external factors into parameter neural networks, enabling PINNs to learn
the mapping from external conditions to system parameters. Additionally,
it proposes a multi-branch FourierMLP architecture for parameter networks,

effectively capturing different feature types separately, and introduces a SoftAbs

185

Physics Informed Neural Networks in Sparse Data Applications

activation function to enforce non-negativity while avoiding dying neuron issues
common in ReLLU and Softplus. The approach is validated through a mosquito
population modeling case study, demonstrating superior accuracy over tradi-
tional empirical parameter estimation, particularly in capturing seasonal peaks
and generalizing to unseen data. An ablation study further confirms the effec-
tiveness of these contributions, establishing a more robust and generalizable

PINN framework for dynamical systems.

8.3 Suggestions for Further Research

Despite the promising findings, the studies and results presented in this dissertation
have several areas for improvement. When exploring neural networks in health in
Chapter 4, the exosome classification model showed a positive but impractical
accuracy. The degraded performance was also likely due to the small dataset size
that restricted the model capabilities. Additionally, the use of only raw spectra with
minimal feature engineering makes neural networks harder to effectively learn the
underlying information. Furthermore, apart from the MLP architecture, other neural
network architectures were not fully explored. Future research could focus on applying
feature engineering approaches, such as detecting peaks, which represent important
characteristics in Raman spectra. Classical statistical features or Fourier-based
features may also be valuable for improving the model. Moreover, exploring more
advanced architectures, such as convolutional neural networks or long short-term
memory networks, could uncover deeper features, thereby enhancing classification
accuracy for spectra data.

In the investigation of neural networks in sports in Chapter 4, the oxygen uptake
project also had similar weaknesses. The small dataset size limited the ability of deep
neural network models, such as LSTMs and CNNs, to generalize and increased the risk
of overfitting. The manual feature engineering for some models introduced potential
biases and limited scalability. Also the predefined input window sizes may not have

fully captured the variability in movement patterns and physiological responses.

186

Physics Informed Neural Networks in Sparse Data Applications

Additionally, the computational efficiency of the models for real-time VO, prediction
was not assessed, leaving potential latency concerns unaddressed for wearable device
applications. Directions for further research could be expanding the dataset to include
more diverse participants and fitness levels. Leveraging data augmentation and
transfer learning could also potentially improve models’ performance and efficiency.
Exploring more windows of data could optimize computational efficiency, making the
models more suitable for deployment in wearable systems. Moreover, other advanced
architectures, like Transformers, temporal convolution networks, could better capture
complex temporal dependencies.

When modeling and analyzing bike sharing data as graphs, certain limitations
of the proposed framework prevent it from practical usage. Firstly, there is no
fully functional software tool to automate the construction and analysis of these
networks. The time scales used, such as hourly or daily analysis, are selected based
on heuristics, potentially missing more complex temporal patterns that data-driven
methods could capture. Moreover, only correlation was used for the spatio-temporal
networks, other possible ways to uncover relationships could provide deeper insights.
The available graph metrics and algorithms are not rich, which may result in an
incomplete understanding of the network’s structure. In future work, one can develop
a software tool to automate these analyses, adopting adaptive data-driven approaches
for time scale selection, exploring advanced spatio-temporal methods such as causality
detection, and developing graph metrics and algorithms to gain a knowledge out
of the networks. These enhancements will make the framework more robust and
applicable to a wider range of real-world problems.

In Chapter 5, the proposed attention-based spatio-temporal graph neural net-
work for air quality forecasting has critical limitations of overfitting, making its
improvement over other models negligible. Moreover, the model’s reliance on prede-
fined spatial and temporal thresholds reduces its adaptability to varying geographical
contexts or unseen data, as these thresholds may not universally capture the under-

lying relationships. Additionally, while attention mechanisms provide some degree of

187

Physics Informed Neural Networks in Sparse Data Applications

interpretability, the explainability of the model’s decisions is underexplored, making
it difficult to fully understand the impact of specific features or temporal patterns.
Furthermore, the attention mechanism itself is limited to a restricted number of
time steps due to the computations needed, which restricts its capacity to capture
longer temporal dependencies. To address these limitations, stronger regularization
techniques should be incorporated to mitigate overfitting, potentially leveraging
domain-specific knowledge such as physical laws governing air quality dynamics.
Also, developing adaptive methods to learn spatial and temporal thresholds from
data is needed to increase the model’s flexibitility. Finally, an exploration of the
model’s explainability is essential to provide deeper insights into the air quality
forecasting process and to enhance trust in the model’s predictions.

In the development of PINNs in Chapter 6, some areas require further
improvement. Firstly, the domain decomposition approach was only evaluated on
forward problems, its applicability to inverse problems was untested. Secondly,
the framework was validated on a limited set of systems, the Lorenz system and a
mosquito population model, its effectiveness across a broader range of ODE systems
is still in question. Moreover, the focus of the development has primarily been
on accuracy, without sufficient attention to computational efficiency or training
time. Furthermore, significant error accumulation over extended prediction domain
hindered long-term predictive accuracy. In the future, we would like to evaluate the
framework on a more diverse set of systems, including systems related to climate.
Future development of the method should take into account the convergence speed
and resource requirements. Lastly, the error accumulation suggests for further
refinement and improvement of the framework.

When attempting to apply PINNs to actual mosquito data in Chapter 7,
the current method has certain drawbacks. Firstly, the learned mapping remains
a black box, lacking the explainability factor is crucial for mosquito control and
entomology in general. Although the parameter network decomposes its predictions

by separating feature groups, its potential for explainability is highly unexplored.

188

Physics Informed Neural Networks in Sparse Data Applications

Secondly, the learned models exhibit certain inaccuracies, particularly during periods
of zero-value observations. Potential solutions may involve regularization techniques
that leverage information from more informative training periods. Lastly, dynamical
system simulations are inherently sensitive to initial conditions. The present study
employs a fixed initial condition, which may not accurately represent the actual state
of the system. Further investigation is required to develop more robust methods
for identifying initial conditions based on available information. These limitations
underscore the need for continued refinement of the proposed approach to enhance

its applicability and reliability in real-world scenarios.

189

Appendix A

Error Metrics

A.1 Regression Error

Let y;,i =1..., M be M reference values and ;,7 = 1..., M are the corresponding
predictions. Let £ and U be the pre-defined lower and upper bounds for the values.
The error metrics used in this paper, including Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Median Absolute Percenrage Error (MDAPE) and

Root Mean Squared normalized Error (nRMSE) are defined as followed

1 M A
RMSE = J -9 (A1)
1 M
MAE = M;\yi—yil (A.2)
MDAPE = median; ('y"’_ﬁi') (A.3)
Yi
RMSE
MSE = . A4
nRMS T (A4)

The values of these metrics range from 0 to oo, with lower values indicating better

model performance.

190

Physics Informed Neural Networks in Sparse Data Applications

A.2 Classification Error

In the context of classification problems, let y; and ;, where i = 1,..., M, denote
the true class labels and corresponding predictions for M samples, respectively. The
classification accuracy is defined as

il = - } s

accuracy =

where |A] is the cardinality of set A.
For a specific class ¢, three metrics, precision, recall, and F1-score are formulated

as follows:

{ilyi=c, i =ci=1,...,M}|
{ilgi =ci=1,...,M}|
Ny =c, i =c,i=1,...,M
recallcz|{l|yzl ¢y .CZ }| (A.?)
{ily; =c,i=1,..., M}|

2 - precision . - recall,.
fl-score. = P — < (A.8)
precision, + recall,

precision, =

In case there are multiple classes, the overall score can be averaged from class-
specific metrics in two scenarios: macro or weighted. Macro-averaging simply
calculate the unweighted average, does not take into account the number of samples
in each class. In weighted averaging, the weights are the number of samples of the
class, emphasizes the class with larger sample size.

All of the above metrics are bounded between 0 and 1, with higher values

indicating better classification performance.

191

Appendix B

Graph-based Bike Sharing System

Analysis

B.1 Temporal Bike Graph Networks (Daily TBiGN)

Table B.1 the top 5 stations with the highest strength, categorized by weekdays
and weekends, and sorted by their weekday strength. Station strength, used as a
measure of popularity, has been normalized to a daily value to facilitate comparison
between the 5-day weekday period and the 2-day weekend period. The table reveals
that the five busiest weekend stations also rank among the top 20 on weekdays,
while the five busiest weekday stations remain within the top 50 during weekends.
This indicates a notable difference in station usage patterns between weekdays and
weekends. However, it is worth noting that three of the top 5 weekday stations also
are also in top 5 of weekends. Exceptions to these trends include Warehouse and
Mountjoy Square, where most trips are concentrated during weekdays, likely due to
commuting patterns. Conversely, Dun Laoghaire Dart (station) and Blackrock Main
St. serve as popular weekend destinations.

When analyzing the most frequently traveled routes, as illustrated by their
weights in Table B.2, a similar variance is observed. Notably, the top five weekend

routes are also found within the top seven weekday routes. Additionally, the node

192

Physics Informed Neural Networks in Sparse Data Applications

Table B.1: Node Strength: Weekday vs Weekend

Station Weekday Weekend

Strength | Rank | Strength | Rank
Fairview Avenue Lower 155.0 1 145.5 3
Mountjoy Square South 116.8 2 110.5 8
Warehouse 113.2 3 15.5 50
Criminal Courts of Justice 102.2 4 191.0 1
Ranelagh Village 102.0 5 123.0 5
Dun Laoghaire Dart 97.8 7 169.5 2
Blackrock Main St. 48.8 20 134.5 4

strength values in both weekday and weekend networks exhibit an exponential decline,
similar to the trend observed in the SBiGN network, though with a steeper rate
of decline. Likewise, edge weights in the weekday and weekend TBiGN networks
show an exponential decrease comparable to that of the SBiGN network. As with
Table B.1, edge weight values have been normalized to allow for a comparison between
the 5-day weekday and 2-day weekend periods.

Table B.2: Edge Weights: Weekday vs Weekend

Source Tareet Weekday Weekend

& Wgt. | Rank | Wgt. | Rank
Dun Laoghaire | Honeypark
Dart Neptune Way 360 1] 3lo 3
Criminal Courts | Phoenix
of Justice Park Gate 29.6 2| 475 1
Drumcondra Fairview
Road Upper Avenue Lower 26.2 3| 240 5
DCU Glasnevin | Drumcondra Rd | 23.4 4 9.0 38
Warehouse Old Finglas 23.0 5| 55| 73

Road

Dun Laoghaire | At The Forty
Dart Foot 20.8 6| 30.5 4
Blackrock Dun Laoghaire
Main St. Dart 19.8 7| 449 2

Figures B.1 and B.2 illustrate the strength of stations and the weight of
edges for the weekday and weekend networks, respectively. The main difference

between these networks is that weekday connections displayed by large red edges are

193

Physics Informed Neural Networks in Sparse Data Applications

predominantly between residential areas and office areas, particularly in northern
Dublin. In contrast, weekend networks show more trips between the city center and

the Blackrock-Monkstown area, likely representing leisure activities.

Coolock
P Raheny
Castéeknock North Bull
Island
Phoenix F
Ballyfermot
DUb/'
\ °
in ° Donnybregk !053:_9,,
Greenhills
Clonskeagh ®
Bla
DUNDRUM <€ * Monksto
Tallaght
Knocklyon Dalk
alkey

Figure B.1: Daily Activity Networks. (Representation Networks of Weekday
Clusters). Each circle represents a bike station and is sized according to its trip
volume, with the 10 busiest stations (by trip volume) shown in red and all others in
blue. Lines represent routes between stations and are also sized by trip volume; the
10 most frequently used routes are highlighted in red, and the remaining routes are
shown in blue.

Figures B.3 and B.4 depict the community structures within the weekday and
weekend networks, respectively. The weekend network exhibits four distinct com-
munities, whereas the weekday network shows more spatially mixed communities,
particularly around the central areas of Dublin. In both networks, the Blackrock-
Monkstown area forms an independent community. Moreover, stations with strong
suburban connections belong to the same community throughout the week. This
suggests that on weekdays, users tend to follow established routes, supported by a
few highly connected edges, which in turn generate many distinct communities. In

contrast, on weekends, users travel over a broader spatial area in a less predictable

194

Physics Informed Neural Networks in Sparse Data Applications

~ Coolock
Iy Raheny
North Bull
Island
- ° Dubf
in . Donnybrogk =\ !I)@c‘;}
Greenbhills

Clonskeagh‘°

DUNDRUM
Tallaght

Knocklyon
Dalkey

Figure B.2: Daily Activity Networks. (Representation Networks of Weekend
Clusters). Each circle represents a bike station and is sized according to its trip
volume, with the 10 busiest stations (by trip volume) shown in red and all others in
blue. Lines represent routes between stations and are also sized by trip volume; the
10 most frequently used routes are highlighted in red, and the remaining routes are
shown in blue.

manner, leading to larger and more interconnected communities.

B.2 Spatio-Temporal Bike Graph Networks (Monthly

STBiGN)

It is crucial to clarify that large nodes in STBiGNs do not necessarily indicate that
the corresponding stations are popular with a high volume of trips. Rather, they
reflect a greater number of stations share similar characteristics, even two low-activity
stations can exhibit large node values. Furthermore, the edges in these correlation
networks are less influenced by geographical locations and more by the properties

of the surrounding station areas. In essence, this graph highlights stations with

195

Physics Informed Neural Networks in Sparse Data Applications

Coolock
Raheny
Castéeknock North Bull
Island
Phoenix F
Ballyfermot
DUb,"
\ o
in ° Donnybregk !05’@,
Greenhills P
Clonskeagh °
Bla
DUNDRUM ® ° Monksto
Tallaght
Knocklyon Dalk
alkey

Figure B.3: Daily Activity Communities. Weekday. Each circle represents
a bike station and is sized according to its trip volume. The node colors indicate
different communities. Lines represent routes between stations and are also sized by
trip volume.

analogous temporal patterns, where similar trip patterns occur at corresponding time
intervals. Figure B.5 illustrates this network overlaid on a map of Dublin, revealing
the detection of five distinct communities.

Overall, the transportation system experiences growth up until August 2020,
followed by a decline in early 2021. For the remainder of the year, the total
number of trips nearly returns to its previous peak, a trend reflected in the TBiGN
graphs, but captured here with greater granularity. Figure B.6 plots the averaged
monthly timeseries (for every month in the dataset) for the communities identified in
Figure B.5, offering insights into the reasons why certain stations (nodes) clustered
into communities in distinct areas of the city. It is important to note that community
IDs serve merely as labels, and no inference is made from the label numbers. In
terms of community size: community 15 (purple) consists of 13 stations; community

57 (bright sky blue) contains 26 stations; community 64 (mint green) includes 15

196

Physics Informed Neural Networks in Sparse Data Applications

Coolock

Raheny

North Bull
Island

Ballyfermot

. ‘ N\
in) ’Doncﬁybroqk
Greenhills N
Clonskeagh ®
DUNDRUM
Tallaght
Knocklyon

Dalkey

Figure B.4: Daily Activity Communities. Weekend. Each circle represents
a bike station and is sized according to its trip volume. The node colors indicate
different communities. Lines represent routes between stations and are also sized by
trip volume.

stations; community 65 (pastel orange) has 20 stations; and community 69 (red)
comprises 12 stations. The bright sky blue stations, primarily located in the southern
part of the city center, and the red stations, which encompass the areas surrounding
the city center, exhibit rapid growth during the first few months, followed by a sharp
decline in activity in January 2021. While the red stations nearly fully recover their
activity levels, the bright sky blue stations show only a marginal increase in trip
numbers thereafter. The mint green stations, mainly situated north of the city center,
and the pastel orange stations, mostly located in the suburbs, demonstrate steady
growth, with a slight decline observed for the mint green stations. Lastly, the purple
stations, concentrated in the southern region where Dublin connects with Blackrock,
initially show growth in activity but remained relatively stable throughout most of
the period, with a slight decrease noted in the final months.

To gain deeper insights, it is necessary to analyze some of the raw data in more

197

Physics Informed Neural Networks in Sparse Data Applications

Coolock
g Raheny

o North Bull
Island

Castteknoch

in SOV &
RN, %
Greenhills \‘\\§\
Clonskeagh
N N:
N
DUNDRUM N
Tallaght
Knocklyon

Dalkey

Figure B.5: STBiGN Network: Monthly Timescale. Each circle represents
a bike station and is sized by its strength. The node colors indicate different
communities, with four communities labeled: purple, bright sky blue, ,

, and red. Lines represent routes between stations and are sized by
their correlation score.

detail. Table B.3 shows the node strength, the average weights, and the number of
stations that exhibit positive, neutral, or negative correlations with each node in the
monthly STBiGN. The columns are defined as follows: Strength refers to the sum
of the weights connecting a station to all other stations; Avg. Cor. represents the
average correlation weight for the station; #Pos, #Neu, #Neg indicate the number of
stations that are positively, neutrally, or negatively correlated with the station. The
thresholds for correlation are determined as 0.65 and 0.35. A station is considered to
have a positive correlation with another if the weight between them is w > 0.65, a
negative relationship if w < 0.35, and otherwise, the relationship is deemed neutral.

A full version of Table B.3 would contain 86 rows, for the purpose of this discussion
we focus on stations with high, low, and neutral strength. Stations with the highest

strength, such as DCU Alpha and Rathmines, are regarded as central nodes, showing

198

Physics Informed Neural Networks in Sparse Data Applications

0.12 -
0.10 -
>
<
=
S
2 0.08 -
(2]
o
S
4 0.06 A
=
o
O
o 0.04 -
o = Community ID 15
m COmMmMmunity ID 57
0.02 A Community ID 64
Community ID 65
= Community ID 69

2020/06 2020/09 2020/12 2021/03 2021/06
Day of Week

Figure B.6: Timeseries Communities in Monthly STBiGNs

Table B.3: Node (station) Strength in Monthly STBiGNs

Station Strength | Avg. Cor. | #Pos | #Neu | #Neg
DCU Alpha 52.9 0.622 40 43 2
Rathmines 52.5 0.618 36 48 1
Dun Laoghaire Dart 52.5 0.618 33 o1 1
Pearse Street 43.8 0.515 15 59 11
Rathgar 43.7 0.514 23 38 24
Cathal Brugha Street 42.1 0.496 18 46 21
Sandymout Village 42.1 0.495 13 62 10
Irishtown Rd 38.4 0.451 14 43 28
Parnell Street 38.3 0.451 6 56 23
Phoenix Park Gate 34.6 0.407 10 37 38

significant similarity to 47% and 42% of the other stations, respectively. This
indicates that these stations are valuable for more detailed study (possibly using
more granular networks) to better understand the activity patterns of a large portion

of the network. Interestingly, both stations are part of the purple community, which

199

Physics Informed Neural Networks in Sparse Data Applications

exhibits mixed correlation patterns with other communities. Neutral stations, with
average correlation coefficients around 0.5, such as Pearse Street and Sandymount
Village, show minimal correlation with other stations. This could imply that these
stations are less useful for further analysis, as their activity patterns are almost
equally positively and negatively correlated with other stations. Stations with low
strength, such as Phoenix Park Gate, Parnell Street, and Irishtown Road, display
temporal similarities with only a small number of other stations (up to 14) and
show either no correlation or are negatively correlated with the majority of stations
However, these stations may still be of interest for analysis, as they demonstrate

unique and potentially distinctive activity patterns.

B.3 Spatio-Temporal Bike Graph Networks (Hourly

STBiGN)

Hourly correlation networks provide an analysis of activity patterns on an hourly
basis. the timeseries for each station consists of 24 points, each corresponding to
one hour of the day. Each timeseries entry is proportional to the total number of
trips occurring at a specific hour at the station. As before, edges between nodes
are formed based on Pearson correlation coefficients, using a threshold of 7' = 0.737
and resulting in a network density of D = 0.370. Figure B.7 illustrates the hourly
correlation network, which consists of three distinct communities. Community 13
(purple) contains 38 stations, Community 26 (mint green) includes 40 stations, and
Community 77 (red) has 8 stations. The sizes of nodes and edges are proportional
to the sum of the correlation coefficients of nodes and edges, respectively. Only
the top 5% of edges are displayed in the figure, with node colors indicating their
respective clusters. The top 10 most correlated edges are highlighted in red, while
the remaining edges are shown in charcoal.

The hourly correlation network detects two large communities, alongside one

smaller community. The mint green community concentrates in central Dublin,

200

Physics Informed Neural Networks in Sparse Data Applications

o Coolock
> g Raheny
Cas&knxag‘\ Ay ‘ North Bull
ML AN : ::’.\. Island
Phoenix Park _/
Ballyfermot
in
Greenhills
DUNDRUM
Tallaght
Knocklyon H

Dalkey

Figure B.7: Hourly Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different communities, with
three communities labeled: purple, , and red. Lines represent routes
between stations and are sized by their correlation score.

while the purple community surrounds it, primarily located in suburban areas. The
small red community is scattered across a wide geographic area. Stations within
the central mint green community exhibit the highest strength scores, indicating
a well-connected group with strong similarities. However, many of the strongest
edges representing the highest correlations are found within the purple community,
despite the lower station strengths in this group. This indicates that the activity
patterns among purple community stations are well-defined. As observed in the
daily networks, stations can be strongly connected even when geographically distant,
indicating that remote stations may share underlying characteristics, such as similar
commuting behaviors or other social activities.

Figure B.8 plots the average timeseries for the three communities, using the same
colors as in Figure B.7. The mint green community shows peak activity during the

afternoons and evenings, particularly between 3 p.m. and 7 p.m., with fewer trips

201

Physics Informed Neural Networks in Sparse Data Applications

occurring in the mornings. In contrast, the purple community experiences higher
activity levels in the mornings and around noon, with a decrease in the afternoon.
The small red community provides limited data, except for a noticeable peak around

7 p.m.

= Community ID 13
Community ID 26
= Community ID 77

0.10

©

o

©
1

0.06 -

0.04

Percent of trips over a day

0.02 -

0.00 -

0 5 10 15 20
Hour of Day

Figure B.8: Timeseries Communities in hourly STBiGNs

Similar to the monthly and daily analysis, Table B.4 displays node strength for
the hourly network, with a threshold of 7" = 0.65. Given that all stations follow
a similar pattern, characterized by limited activity at night and increased activity
during the day, it is unsurprising that even stations with the lowest strength still
reach values as high as 55.1, corresponding to an average edge weight of 0.648. This
indicates that these stations are significantly correlated with half of the other stations.
On the other hand, the stations with the highest strength, such as Grand Canal
Docks and Criminal Courts of Justice, exhibit strong correlations with nearly all
other stations. These stations are typically major hubs with high traffic volumes,

making it understandable that they share diverse behaviors and patterns with other

202

Physics Informed Neural Networks in Sparse Data Applications

stations, as revealed in the fine-grained hourly STBiGNs.

Table B.4: Node (station) Strength in Hourly STBiGNs

Station Strength | Avg. Cor. | Pos | Neu | Neg
Grand Canal Docks 75.1 0.883 84 1 0
Irishtown Rd 75.0 0.882 85 0 0
Criminal Courts 75.0 0.882 | 83 p 0
of Justice

Dean Street 62.6 0.737 81 4 0
Clanbrassil St Lower 56.8 0.669 43 42 0
Warehouse 55.1 0.648 45 40 0

Having now generated all three types of STBiGNs using the entire dataset, the
degree of heterogeneity observed between the three graphs is both surprising and
unexpected. No single station consistently appears in the top 5 across all three
networks. Only Irishtown Road ranks in the top 5 of two STBiGNs, placing 3rd in
the daily network and 2nd in the hourly network. Extending the analysis to the
top 10 stations yields similar results—mno station appears in all three graphs. Only
Rathmines, which ranks 2nd in the monthly network and 6th in the daily network and
Dun Laoghaire Dart, which ranks 3rd in the monthly and 7th in the daily network,
appear in two top 10 rankings. Stations exhibit distinct similarity patterns when

analyzed at different levels of temporal granularity.

203

Appendix C

Mosquito ODE system

C.1 Structural identifiability of mosquito system’s
parameters

Shown in figure C.1. Structural identifiability is achieved by expressing the system as
a system of linear equations, the parameters as unknown variables, and then analyzing
the reduced row-echelon form of the coefficient matrix, performed separately for each
time t. In the figure, identifiable parameters are defined as free parameters which
can get arbitrary values. The values are rounded to 6-digit precision, aligning with

the PINN’s level of precision after training.

C.2 Parameter Sensitivity

In order to identify the most influential parameters within the mosquito dynamical
system, we conduct a sensitivity analysis. This involves systematically modifying
parameters and observing their effects on the system state. Ten parameters are
examined: Yaem, YAbs Yaos JE, [Py fr, fag,mp, mp, and my, all of which are listed
in Table 6.2. Each parameter was independently adjusted at all time points ¢
by —10%, —5%, +5%, and +10% of its original value, while maintaining all other

parameters constant. The system is then simulated under these modified parameters

204

Physics Informed Neural Networks in Sparse Data Applications

Identifiability of Parameters

gamma_~Aem I Non-ldentifiable
Identifiable

gamma_Ab

gamma_Ao -
fE-
P

L

T T T T T T T T T T T 1
730 759 790 820 850 880 209 939 969 1001 1035 1065 1095

Figure C.1: Structural identifiability of parameters over time in the
Mosquito inverse problem. The configuration is the same as the experiment in
Section 6.4.2 where the temperature is sine-shaped.

using the Python ODE Solver. The root mean squared error (RMSE) is computed
between the new Ay; + Aye values and those obtained from the unmodified parameter

set.

25000 4

20000 -

& 15000 1

Total RM

10000 A

5000 -

Parameters

Figure C.2: Sensitivity of parameters in mosquito dynamical system.

The average RMSE across the four modification levels for each parameter is
depicted in Figure C.2. The analysis reveals that the pupa development rate fp has
the most pronounced effect on the adult blood-seeking mosquito population Ay + Aps.

The development rate of blood-seeking adults f4,, which directly influences Ay; and

205

Physics Informed Neural Networks in Sparse Data Applications

App in the system equations, shows a slightly less impact. Parameters fa, and mx
demonstrate minor effects, while other parameters such as yae, and va, exhibit

negligible influence on the Ay + Ay quantity.

206

Bibliography

Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),

p. 386.

Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics 5

(1943), pp. 115-133.

Claude Lemaréchal. “Cauchy and the gradient method”. In: Doc Math Ezxtra

251.254 (2012), p. 10.

Stephen M Stigler. “Gauss and the invention of least squares”. In: the Annals

of Statistics (1981), pp. 465-474.

Shunichi Amari. “A theory of adaptive pattern classifiers”. In: IEEE Transac-

tions on Electronic Computers 3 (1967), pp. 299-307.

Herbert Robbins and Sutton Monro. “A stochastic approximation method”.

In: The annals of mathematical statistics (1951), pp. 400-407.

Seppo Linnainmaa. “Taylor expansion of the accumulated rounding error”.

In: BIT Numerical Mathematics 16.2 (1976), pp. 146-160.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: ArXiv abs/1912.01703 (2019).

Martin Abadi et al. TensorFlow: A system for large-scale machine learning.

2016.

207

Physics Informed Neural Networks in Sparse Data Applications

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks for
YouTube Recommendations”. In: Proceedings of the 10th ACM Conference on
Recommender Systems. RecSys "16. Boston, Massachusetts, USA: Association
for Computing Machinery, 2016, pp. 191-198. 1SBN: 9781450340359.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A unified
embedding for face recognition and clustering”. In: 2015 IEEFE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2015,
pp. 815-823.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “ You Only
Look Once: Unified, Real-Time Object Detection ”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA,
USA: IEEE Computer Society, June 2016, pp. 779-788.

[an Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adver-
sarial Nets”. In: Advances in Neural Information Processing Systems. Ed. by
7. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger.

Vol. 27. Curran Associates, Inc., 2014.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho,
and Yoshua Bengio. “Attention-Based Models for Speech Recognition”. In:
Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugivama, and R. Garnett. Vol. 28. Curran Associates,
Inc., 2015.

Aéron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray
Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio”. In: Speech
Synthesis Workshop. 2016.

OpenAl et al. GPT-/ Technical Report. 2024.

208

Physics Informed Neural Networks in Sparse Data Applications

[19]

[20]

[21]

23]

Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across

millions of tokens of context. 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All you
Need”. In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

Shahab Shamshirband, Mahdis Fathi, Abdollah Dehzangi, Anthony Theodore
Chronopoulos, and Hamid Alinejad-Rokny. “A review on deep learning ap-
proaches in healthcare systems: Taxonomies, challenges, and open issues”. In:

Journal of Biomedical Informatics 113 (2021), p. 103627.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek,
Anna Potapenko, et al. “Highly accurate protein structure prediction with

AlphaFold”. In: nature 596.7873 (2021), pp. 583-589.

Shuochen Bi and Yufan Lian. “Advanced Portfolio Management in Finance
using Deep Learning and Artificial Intelligence Techniques: Enhancing Invest-
ment Strategies through Machine Learning Models”. In: Journal of Artificial
Intelligence Research 4.1 (2024), pp. 233-298.

Ishana Attri, Lalit Kumar Awasthi, Teek Parval Sharma, and Priyanka Rathee.
“A review of deep learning techniques used in agriculture”. In: FEcological

Informatics 77 (2023), p. 102217. 1SSN: 1574-9541.

Veronika Eyring, William D Collins, Pierre Gentine, Elizabeth A Barnes,
Marcelo Barreiro, Tom Beucler, Marc Bocquet, Christopher S Bretherton,
Hannah M Christensen, Katherine Dagon, et al. “Pushing the frontiers in

climate modelling and analysis with machine learning”. In: Nature Climate

Change 14.9 (2024), pp. 916-928.

209

Physics Informed Neural Networks in Sparse Data Applications

[24]

[25]

[26]

[27]

28]

[30]

[31]

32]

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. “Code
llama: Open foundation models for code”. In: arXiv preprint arXiv:2308.12950
(2023).

Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine learning and

deep learning”. In: Electronic Markets 31.3 (2021), pp. 685-695.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang. “Physics-informed machine learning”. In: Nature

Reviews Physics 3.6 (June 2021), pp. 422-440. 1SSN: 2522-5820.

Gary Marcus. “Deep Learning: A Critical Appraisal”. In: arXiv preprint
arXiv:1801.00631 (2018).

Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, and Peng Cui. “A
Survey on Evaluation of Out-of-Distribution Generalization”. In: ArXiv

abs/2403.01874 (2024).

Lei Wu, Zhanxing Zhu, et al. “Towards understanding generalization of deep
learning: Perspective of loss landscapes”. In: arXiv preprint arXiv:1706.10239
(2017).

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. “Mul-
tilayer feedforward networks with a nonpolynomial activation function can
approximate any function”. In: Neural Networks 6.6 (1993), pp. 861-867. ISSN:
0893-6080.

Zijun Cui, Tian Gao, Kartik Talamadupula, and Qiang Ji. “Knowledge-
augmented deep learning and its applications: A survey”. In: IEEFE Transac-

tions on Neural Networks and Learning Systems (2023).

Benjamin D. Haeffele and René Vidal. “Global Optimality in Neural Net-
work Training”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 4390-4398.

210

Physics Informed Neural Networks in Sparse Data Applications

[33]

[34]

[35]

[36]

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and
Dawei Yin. “Graph Neural Networks for Social Recommendation”. In: CoRR

abs/1902.07243 (2019).

Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-temporal Graph Convolu-
tional Neural Network: A Deep Learning Framework for Traffic Forecasting”.

In: CoRR abs/1709.04875 (2017).

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. “Protein Interface
Prediction using Graph Convolutional Networks”. In: Advances in Neural
Information Processing Systems. Ed. by 1. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran

Associates, Inc., 2017.

Hernan Lira, Luis Marti, and Nayat Sanchez-Pi. “A Graph Neural Network
with Spatio-Temporal Attention for Multi-Sources Time Series Data: An

Application to Frost Forecast”. In: Sensors 22.4 (2022). 1SSN: 1424-8220.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convolu-

tional Networks for Skeleton-Based Action Recognition”. In: CoRR abs/1801.07455

(2018).

Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: CoRR abs/1609.02907 (2016).

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John
A. Detre, and Paris Perdikaris. “Machine learning in cardiovascular flows
modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI
data using physics-informed neural networks”. In: Computer Methods in

Applied Mechanics and Engineering 358 (2020), p. 112623. 1sSN: 0045-7825.

Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. Achieving
Conservation of Energy in Neural Network Emulators for Climate Modeling.

2019.

211

Physics Informed Neural Networks in Sparse Data Applications

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Sifan Wang, Hanwen Wang, and Paris Perdikaris. “On the eigenvector bias
of Fourier feature networks: From regression to solving multi-scale PDEs
with physics-informed neural networks”. In: Computer Methods in Applied
Mechanics and Engineering 384 (2021), p. 113938. 1sSN: 0045-7825.

Sifan Wang, Yujun Teng, and Paris Perdikaris. “Understanding and miti-
gating gradient pathologies in physics-informed neural networks”. In: ArXiv

abs/2001.04536 (2020).

M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In: Journal of Computa-

tional Physics 378 (2019), pp. 686-707. 1SSN: 0021-9991.

Mina Petri¢. “Modelling the Influence of Meteorological Conditions on Mosquito
Vector Population Dynamics (Diptera, Culicidae)”. English. PhD thesis. Bel-

gium: Ghent University, 2020, p. 214. 1SBN: 9798505568446.

Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N
Balasubramanian. “Neural network attributions: A causal perspective”. In:

International Conference on Machine Learning. PMLR. 2019, pp. 981-990.

R. S. Sokhi et al. “Advances in air quality research — current and emerging
challenges”. In: Atmospheric Chemistry and Physics 22.7 (2022), pp. 4615
4703.

Qiao Kang, Baiyu Zhang, Yiqi Cao, Xing Song, Xudong Ye, Xixi Li, Hongjing
Wu, Yuanzhu Chen, and Bing Chen. “Causal Prior-Embedded Physics-Informed
Neural Networks and a Case Study on Metformin Transport in Porous Media”.

In: Water Research (2024), p. 121985.

Aneta Zebrowska, Karol Jelonek, Sujan Mondal, Marta Gawin, Katarzyna
Mrowiec, Piotr Widtak, Theresa Whiteside, and Monika Pietrowska. “Pro-
teomic and metabolomic profiles of T cell-derived exosomes isolated from

human plasma”. en. In: Cells 11.12 (June 2022), p. 1965.

212

Physics Informed Neural Networks in Sparse Data Applications

[49]

[52]

[53]

[54]

Joseph Carmicheal, Chihiro Hayashi, Xi Huang, Lei Liu, Yao Lu, Alexey
Krasnoslobodtsev, Alexander Lushnikov, Prakash G. Kshirsagar, Asish Patel,
Maneesh Jain, Yuri L. Lyubchenko, Yongfeng Lu, Surinder K. Batra, and
Sukhwinder Kaur. “Label-free characterization of exosome via surface en-
hanced Raman spectroscopy for the early detection of pancreatic cancer”. In:
Nanomedicine: Nanotechnology, Biology and Medicine 16 (2019), pp. 88-96.
ISSN: 1549-9634.

Hyunku Shin, Hyesun Jeong, Jaena Park, Sunghoi Hong, and Yeonho Choi.
“Correlation between Cancerous Exosomes and Protein Markers Based on
Surface-Enhanced Raman Spectroscopy (SERS) and Principal Component
Analysis (PCA)”. In: ACS Sensors 3.12 (2018). PMID: 30381940, pp. 2637—
2643.

Yangcenzi Xie, Xiaoming Su, Yu Wen, Chao Zheng, and Ming Li. “Artificial
Intelligent Label-Free SERS Profiling of Serum Exosomes for Breast Cancer
Diagnosis and Postoperative Assessment”. In: Nano Letters 22.19 (2022).
PMID: 36149810, pp. 7910-7918.

Hyunku Shin, Seunghyun Oh, Soonwoo Hong, Minsung Kang, Daehyeon Kang,
Yong-gu Ji, Byeong Hyeon Choi, Ka-Won Kang, Hyesun Jeong, Yong Park,
Sunghoi Hong, Hyun Koo Kim, and Yeonho Choi. “Early-Stage Lung Cancer
Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating
Exosomes”. In: ACS Nano 14.5 (2020). PMID: 32286793, pp. 5435-5444.

Lauren E Jamieson, Steven M Asiala, Kirsten Gracie, Karen Faulds, and
Duncan Graham. “Bioanalytical measurements enabled by surface-enhanced
Raman scattering (SERS) probes”. In: Annual Review of Analytical Chemistry
10.1 (2017), pp. 415-437.

Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng,
Ren Hu, and Bin Ren. “Surface-enhanced Raman spectroscopy for bioanalysis:

reliability and challenges”. In: Chemical reviews 118.10 (2018), pp. 4946-4980.

213

Physics Informed Neural Networks in Sparse Data Applications

[55]

[56]

[57]

[58]

[61]

Yacob Pinchevsky, Neil Butkow, Frederick J Raal, Tobias Chirwa, and Alan
Rothberg. “Demographic and clinical factors associated with development of
type 2 diabetes: A review of the literature”. en. In: Int. J. Gen. Med. 13 (Mar.

2020), pp. 121-129.

Kirsty M. Danielson and Saumya Das. “Extracellular Vesicles in Heart Disease:
Excitement for the Future?” In: Journal of Circulating Biomarkers 2.1 (Jan.

2014).

Cristian Osgnach and Pietro Enrico di Prampero. “Metabolic power in team
sports-Part 2: aerobic and anaerobic energy yields”. In: International journal

of sports medicine 39.08 (2018), pp. 588-595.

Robin T Thorpe, Anthony J Strudwick, Martin Buchheit, Greg Atkinson,
Barry Drust, and Warren Gregson. “Monitoring fatigue during the in-season
competitive phase in elite soccer players”. In: International journal of sports

physiology and performance 10.8 (2015), pp. 958-964.

Shona L Halson. “Monitoring training load to understand fatigue in athletes”.

en. In: Sports Med. 44 Suppl 2.52 (Nov. 2014), S139-47.

Janina Helwig, Janik Diels, Mareike Ro6ll, Hubert Mahler, Albert Gollhofer, Kai
Roecker, and Steffen Willwacher. “Relationships between External, Wearable
Sensor-Based, and Internal Parameters: A Systematic Review”. en. In: Sensors
23.2 (Jan. 2023). Number: 2 Publisher: Multidisciplinary Digital Publishing
Institute, p. 827. 1SSN: 1424-8220.

Martin Buchheit and Ben Michael Simpson. “Player-tracking technology:
half-full or half-empty glass?” In: International journal of sports physiology

and performance 12.s2 (2017), S2-35.

Niels Jensby Nedergaard, Uwe Kersting, and Mark Lake. “Using accelerometry
to quantify deceleration during a high-intensity soccer turning manoeuvre”.

In: Journal of sports sciences 32.20 (2014), pp. 1897-1905.

214

Physics Informed Neural Networks in Sparse Data Applications

[63]

[64]

[65]

Henri Vaha-Ypyé, Jakob Bretterhofer, Pauliina Husu, Jana Windhaber,
Tommi Vasankari, Sylvia Titze, and Harri Sievinen. “Performance of Different
Accelerometry-Based Metrics to Estimate Oxygen Consumption during Track
and Treadmill Locomotion over a Wide Intensity Range”. en. In: Sensors
23.11 (Jan. 2023). Number: 11 Publisher: Multidisciplinary Digital Publishing
Institute, p. 5073. 1SSN: 1424-8220.

Carlos D Gomez-Carmona, José Pino-Ortega, Braulio Sanchez-Urena, Sergio J
Ibanez, and Daniel Rojas-Valverde. “Accelerometry-based external load indi-
cators in sport: too many options, same practical outcome?” In: International

Journal of Environmental Research and Public Health 16.24 (2019), p. 5101.

Thomas Beltrame, Robert Amelard, Alexander Wong, and Richard Hughson.
“Prediction of oxygen uptake dynamics by machine learning analysis of wear-

able sensors during activities of daily living”. In: Scientific Reports 7 (Apr.

2017), p. 45738.

Pavel Davidson, Huy Trinh, Sakari Vekki, and Philipp Miiller. “Surrogate
Modelling for Oxygen Uptake Prediction Using LSTM Neural Network”. en.
In: Sensors 23.4 (Jan. 2023). Number: 4 Publisher: Multidisciplinary Digital

Publishing Institute, p. 2249. 1SSN: 1424-8220.

Zhao Wang, Qiang Zhang, Ke Lan, Zhicheng Yang, Xiaolin Gao, Anshuo
Wu, Yi Xin, and Zhengbo Zhang. “Enhancing instantaneous oxygen uptake
estimation by non-linear model using cardio-pulmonary physiological and
motion signalsEnhancing instantaneous oxygen uptake estimation by non-
linear model using cardio-pulmonary physiological and motion signals”. In:

Frontiers in Physiology 13 (2022). 1SSN: 1664-042X.

Thomas Beltrame, Robert Amelard, Rodrigo Villar, Mohammad J. Shafiee,
Alexander Wong, and Richard L. Hughson. “Estimating oxygen uptake and

energy expenditure during treadmill walking by neural network analysis of

215

Physics Informed Neural Networks in Sparse Data Applications

[70]

[72]

73]

[74]

easy-to-obtain inputs”. en. In: Journal of Applied Physiology 121.5 (Nov.
2016). Number: 5, pp. 1226-1233. 1sSN: 8750-7587, 1522-1601.

Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
“Temporal convolutional networks for action segmentation and detection”.

In: proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 156-165.

Robert Amelard, Eric T. Hedge, and Richard L. Hughson. “Temporal con-
volutional networks predict dynamic oxygen uptake response from wearable
sensors across exercise intensities”. en. In: npj Digital Medicine 4.1 (Nov. 2021).

Number: 1 Publisher: Nature Publishing Group, pp. 1-8. 1SSN: 2398-6352.

Eric T. Hedge, Robert Amelard, and Richard L. Hughson. “Prediction of
oxygen uptake kinetics during heavy-intensity cycling exercise by machine-
learning analysis”. In: Journal of Applied Physiology (May 2023). Publisher:

American Physiological Society. 1SSN: 8750-7587.

Andrea Zignoli, Alessandro Fornasiero, Matteo Ragni, Barbara Pellegrini,
Federico Schena, Francesco Biral, and Paul B. Laursen. “Estimating an
individual’s oxygen uptake during cycling exercise with a recurrent neural
network trained from easy-to-obtain inputs: A pilot study”. en. In: PLOS
ONE 15.3 (Mar. 2020). Publisher: Public Library of Science, ¢0229466. I1SSN:
1932-6203.

Akrati Saxena, Pratishtha Saxena, Harita Reddy, and Ralucca Gera. “A Sur-
vey on Studying the Social Networks of Students”. In: CoRR abs/1909.05079
(2019).

Louise Ryan and Alessio D’Angelo. “Changing times: Migrants’ social network
analysis and the challenges of longitudinal research”. In: Social Networks 53
(2018). The missing link: Social network analysis in migration and transna-

tionalism, pp. 148-158. 1SSN: 0378-8733.

216

Physics Informed Neural Networks in Sparse Data Applications

[75]

[77]

78]

[80]

[81]

Luis E.C. Rocha. “Dynamics of air transport networks: A review from a
complex systems perspective”. In: Chinese Journal of Aeronautics 30.2 (2017),

pp. 469-478. 1sSN: 1000-9361.

Nam Huynh and Johan Barthelemy. “A comparative study of topological
analysis and temporal network analysis of a public transport system”. In:
International Journal of Transportation Science and Technology (2021). 1SSN:

2046-0430.

Jingfang Fan, Jun Meng, Yosef Ashkenazy, Shlomo Havlin, and Hans Joachim
Schellnhuber. “Network analysis reveals strongly localized impacts of El Nifio”.
In: Proceedings of the National Academy of Sciences 114.29 (2017), pp. 7543~
7548.

Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt, Bodo Bookhagen,
Brian Hoskins, and Jiirgen Kurths. “Complex networks reveal global pattern
of extreme-rainfall teleconnections”. In: Nature 566.7744 (Feb. 2019), pp. 373~
377. I1SSN: 1476-4687.

Xingyi Li, Wenkai Li, Min Zeng, Ruiqing Zheng, and Min Li. “Network-based
methods for predicting essential genes or proteins: a survey”. In: Briefings in

Bioinformatics 21.2 (Feb. 2019), pp. 566-583. 1SSN: 1477-4054.

Yuhui Du, Zening Fu, and Vince D. Calhoun. “Classification and Prediction
of Brain Disorders Using Functional Connectivity: Promising but Challeng-
ing”. eng. In: Frontiers in neuroscience 12 (Aug. 2018). PMC6088208[pmcid],
pp. 525-525. 1SSN: 1662-4548.

Paola Valsasina, Milagros Hidalgo de la Cruz, Massimo Filippi, and Maria A.
Rocca. “Characterizing Rapid Fluctuations of Resting State Functional Con-
nectivity in Demyelinating, Neurodegenerative, and Psychiatric Conditions:
From Static to Time-Varying Analysis”. eng. In: Frontiers in neuroscience 13

(July 2019). PMC6636554[pmcid], pp. 618-618. 1SSN: 1662-4548.

217

Physics Informed Neural Networks in Sparse Data Applications

[82]

[86]

[87]

[33]

Lu Bai, Jianzhou Wang, Xuejiao Ma, and Haiyan Lu. “Air pollution forecasts:
An overview”. In: International journal of environmental research and public

health 15.4 (2018), p. 780.

Marilena Kampa and Elias Castanas. “Human health effects of air pollution”.

In: Environmental pollution 151.2 (2008), pp. 362-367.

Sumita Gulati, Anshul Bansal, Ashok Pal, Nitin Mittal, Abhishek Sharma,
and Fikreselam Gared. “Estimating PM2. 5 utilizing multiple linear regression

and ANN techniques”. In: Scientific Reports 13.1 (2023), p. 22578.

Mahanijah Md Kamal, Rozita Jailani, and Ruhizan Liza Ahmad Shauri.
“Prediction of Ambient Air Quality Based on Neural Network Technique”. In:
2006 4th Student Conference on Research and Development. 2006, pp. 115

119.

Davor Z. Antanasijevi¢, Viktor V. Pocajt, Dragan S. Povrenovi¢, Mirjana D.
Risti¢, and Aleksandra A. Peri¢-Gruji¢. “PM10 emission forecasting using
artificial neural networks and genetic algorithm input variable optimization”.
In: Science of The Total Environment 443 (2013), pp. 511-519. 1SSN: 0048-
9697.

Jorge Loy-Benitez, Paulina Vilela, Qian Li, and ChangKyoo Yoo. “Sequential
prediction of quantitative health risk assessment for the fine particulate
matter in an underground facility using deep recurrent neural networks”.
In: Ecotoxicology and Environmental Safety 169 (2019), pp. 316-324. 1SSN:
0147-6513.

Xingcheng Lu, Yu Hin Sha, Zhenning Li, Yeqi Huang, Wanying Chen, Duohong
Chen, Jin Shen, Yiang Chen, and Jimmy C.H. Fung. “Development and
application of a hybrid long-short term memory — three dimensional variational
technique for the improvement of PM2.5 forecasting”. In: Science of The Total

Environment 770 (2021), p. 144221. 1SSN: 0048-9697.

218

Physics Informed Neural Networks in Sparse Data Applications

[89]

[90]

[91]

[93]

[94]

[95]

Yijun Lin, Nikhit Mago, Yu Gao, Yaguang Li, Yao-Yi Chiang, Cyrus Shahabi,
and José Luis Ambite. “Exploiting Spatiotemporal Patterns for Accurate
Air Quality Forecasting Using Deep Learning”. In: Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. SIGSPATIAL ’18. Seattle, Washington: Association for
Computing Machinery, 2018, pp. 359-368. 1SBN: 9781450358897

Yanlin Qi, Qi Li, Hamed Karimian, and Di Liu. “A hybrid model for spa-
tiotemporal forecasting of PM2.5 based on graph convolutional neural network
and long short-term memory”. In: Science of The Total Environment 664

(2019), pp. 1-10. 18sN: 0048-9697.

Waddah Saeed and Christian Omlin. “Explainable Al (XAI): A systematic
meta-survey of current challenges and future opportunities”. In: Knowledge-

Based Systems 263 (2023), p. 110273. 1sSN: 0950-7051.

Chayan Kumar Banerjee, Kien Nguyen, Clinton Fookes, and George E. Kar-
niadakis. “Physics-Informed Computer Vision: A Review and Perspectives”.

In: ArXiv abs/2305.18035 (2023).

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em
Karniadakis. “Physics-informed neural networks (PINNs) for fluid mechanics:

a review”. In: Acta Mechanica Sinica 37 (2021), pp. 1727-1738.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang
Su, and Jun Zhu. Physics-Informed Machine Learning: A Survey on Problems,

Methods and Applications. 2023.

Chayan Kumar Banerjee, Kien Nguyen, Clinton Fookes, and Maziar Raissi.
“A Survey on Physics Informed Reinforcement Learning: Review and Open

Problems”. In: ArXiv abs/2309.01909 (2023).

Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. “Systems
biology informed deep learning for inferring parameters and hidden dynamics”.

In: PLOS Computational Biology 16.11 (Nov. 2020), pp. 1-19.

219

Physics Informed Neural Networks in Sparse Data Applications

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Han Gao, Luning Sun, and Jian-Xun Wang. “PhyGeoNet: Physics-informed
geometry-adaptive convolutional neural networks for solving parameterized
steady-state PDEs on irregular domain”. In: Journal of Computational Physics

428 (Mar. 2021), p. 110079. 1sSN: 0021-9991.

Pu Ren, Chengping Rao, Yang Liu, Jian-Xun Wang, and Hao Sun. “PhyCRNet:
Physics-informed convolutional-recurrent network for solving spatiotemporal
PDEs”. In: Computer Methods in Applied Mechanics and Engineering 389
(2022), p. 114399. 1SSN: 0045-7825.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Adaptive
activation functions accelerate convergence in deep and physics-informed
neural networks”. In: Journal of Computational Physics 404 (2020), p. 109136.

ISSN: 0021-9991.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Locally
adaptive activation functions with slope recovery for deep and physics-informed
neural networks”. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 476.2239 (July 2020), p. 20200334. 1SSN:
1471-2946.

Suryanarayana Maddu, Dominik Sturm, Christian L. Miiller, and Ivo F
Sbalzarini. “Inverse Dirichlet weighting enables reliable training of physics
informed neural networks”. In: Machine Learning: Science and Technology

3.1 (Feb. 2022), p. 015026.

Sifan Wang, Xinling Yu, and Paris Perdikaris. “When and why PINNs fail
to train: A neural tangent kernel perspective”. In: Journal of Computational

Physics 449 (2022), p. 110768. 1SSN: 0021-9991.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. “DeepXDE:
A Deep Learning Library for Solving Differential Equations”. In: SIAM Review
63.1 (2021), pp. 208-228.

220

Physics Informed Neural Networks in Sparse Data Applications

[104]

[105]

[106]

107]

[108]

[109]

[110]

111]

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. “A com-
prehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks”. In: Computer Methods in Applied Mechan-
ics and Engineering 403 (2023), p. 115671. 1sSN: 0045-7825.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. “Effi-
cient training of physics-informed neural networks via importance sampling”.
In: Computer-Aided Civil and Infrastructure Engineering 36.8 (2021), pp. 962—
977.

Kejun Tang, Xiaoliang Wan, and Chao Yang. “DAS-PINNs: A deep adaptive
sampling method for solving high-dimensional partial differential equations”.

In: Journal of Computational Physics 476 (2023), p. 111868. 1SsN: 0021-9991.

Colby L. Wight and Jia Zhao. “Solving Allen-Cahn and Cahn-Hilliard Equa-
tions Using the Adaptive Physics Informed Neural Networks”. In: Communi-

cations in Computational Physics 29.3 (2021), pp. 930-954. 1SsN: 1991-7120.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby,
and Michael W. Mahoney. Characterizing possible failure modes in physics-

informed neural networks. 2021.

Revanth Mattey and Susanta Ghosh. “A novel sequential method to train
physics informed neural networks for Allen Cahn and Cahn Hilliard equations”.
In: Computer Methods in Applied Mechanics and Engineering 390 (2022),

p. 114474, 18SN: 0045-7825.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. “Respecting causality
is all you need for training physics-informed neural networks”. In: ArXiv

abs,/2203.07404 (2022).

Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. “Conserva-
tive physics-informed neural networks on discrete domains for conservation
laws: Applications to forward and inverse problems”. In: Computer Methods

in Applied Mechanics and Engineering 365 (2020), p. 113028. 1sSN: 0045-7825.

221

Physics Informed Neural Networks in Sparse Data Applications

112]

[113]

114]

[115]

[116]

[117]

18]

[119]

Ameya D Jagtap and George Em Karniadakis. “Extended physics-informed
neural networks (xpinns): A generalized space-time domain decomposition
based deep learning framework for nonlinear partial differential equations”.

In: Communications in Computational Physics 28.5 (2020), pp. 2002-2041.

Benjamin Moseley, A. Markham, and Tarje Nissen-Meyer. “Finite basis physics-
informed neural networks (FBPINNs): a scalable domain decomposition ap-
proach for solving differential equations”. In: Advances in Computational

Mathematics 49 (2021), pp. 1-39.

E Scott Krayenhoff and James A Voogt. “A microscale three-dimensional
urban energy balance model for studying surface temperatures”. In: Boundary-

Layer Meteorology 123 (2007), pp. 433-461.

Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John
Edmunds, Sebastian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D
Munday, et al. “Early dynamics of transmission and control of COVID-19: a
mathematical modelling study”. In: The lancet infectious diseases 20.5 (2020),
pp. 553-H58.

Abicumaran Uthamacumaran and Hector Zenil. “A review of mathematical
and computational methods in cancer dynamics”. In: Frontiers in oncology

12 (2022), p. 850731.

Omar Ghattas and Karen Willcox. “Learning physics-based models from data:
perspectives from inverse problems and model reduction”. In: Acta Numerica

30 (2021), pp. 445-554.

Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. “Physics-
informed neural networks for inverse problems in nano-optics and metamate-

rials”. In: Opt. Express 28.8 (Apr. 2020), pp. 11618-11633.

A. M. Tartakovsky, C. Ortiz Marrero, Paris Perdikaris, G. D. Tartakovsky;,
and D. Barajas-Solano. “Physics-Informed Deep Neural Networks for Learning

Parameters and Constitutive Relationships in Subsurface Flow Problems”. In:

222

Physics Informed Neural Networks in Sparse Data Applications

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

Water Resources Research 56.5 (2020). e2019WR026731 10.1029/2019WR026731,
e2019WRO026731.

Xin-Yu Guo and Sheng-En Fang. “Structural parameter identification using
physics-informed neural networks”. In: Measurement 220 (2023), p. 113334.
ISSN: 0263-2241.

Chen Xu, Ba Trung Cao, Yong Yuan, and Giunther Meschke. “Transfer
learning based physics-informed neural networks for solving inverse problems
in engineering structures under different loading scenarios”. In: Computer
Methods in Applied Mechanics and Engineering 405 (2023), p. 115852. ISSN:

0045-7825.

Nazanin Ahmadi Daryakenari, Mario De Florio, Khemraj Shukla, and George
Em Karniadakis. “Al-Aristotle: A physics-informed framework for systems
biology gray-box identification”. In: PLOS Computational Biology 20.3 (Mar.
2024), pp. 1-33.

World Health Organisation. Chikungunya. en. https://www.who.int /health-

topics/chikungunya. Accessed: 2024-05-08.

World Health Organisation. Dengue and severe dengue. en. https://www.who.int /news-

room /fact-sheets/detail/dengue-and-severe-dengue. Accessed: 2024-05-08.

World Health Organisation. Fact sheet about malaria. en. https://www.who.int /news-

room/fact-sheets/detail /malaria. Accessed: 2024-05-08.

World Health Organisation. Zika virus disease. en. https://www.who.int/health-

topics/zika-virus-disease. Accessed: 2024-05-08.

World Health Organisation. West Nile virus. en. https://www.who.int /news-

room/fact-sheets/detail /west-nile-virus. Accessed: 2024-05-08.

Priscilla Cailly, Annelise Tran, Thomas Balenghien, Grégory L’Ambert, Céline
Toty, and Pauline Ezanno. “A climate-driven abundance model to assess
mosquito control strategies”. en. In: Ecological Modelling 227 (Feb. 2012),
pp. 7-17. 18sN: 0304-3800.

223

Physics Informed Neural Networks in Sparse Data Applications

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Richard A. Erickson, Steven M. Presley, Linda JS Allen, Kevin R. Long, and
Stephen B. Cox. “A stage-structured, Aedes albopictus population model”.
In: Ecological Modelling 221.9 (2010), pp. 1273-1282.

Giovanni Marini, Daniele Arnoldi, Frederic Baldacchino, Gioia Capelli, Giorgio
Guzzetta, Stefano Merler, Fabrizio Montarsi, Annapaola Rizzoli, and Roberto
Rosa. “First report of the influence of temperature on the bionomics and
9

population dynamics of Aedes koreicus, a new invasive alien species in Europe.’

eng. In: Parasites & vectors 12.1 (Nov. 2019), p. 524. 1SSN: 1756-3305.

Lizhong Qiang, Bin-Guo Wang, and Xiao-Qiang Zhao. “A Stage-Structured
Population Model with Time-Dependent Delay in an Almost Periodic Envi-
ronment”. en. In: Journal of Dynamics and Differential Equations 34.1 (Mar.

2022), pp. 341-364. 1SSN: 1572-9222.

Marcelo Otero, Hernan G. Solari, and Nicolas Schweigmann. “A stochastic
population dynamics model for Aedes aegypti: formulation and application
to a city with temperate climate”. In: Bulletin of mathematical biology 68.8

(2006). Publisher: Springer, pp. 1945-1974.

Ting-Wu Chuang, Edward L. Ionides, Randall G. Knepper, William W.
Stanuszek, Edward D. Walker, and Mark L. Wilson. “Cross-correlation map
analyses show weather variation influences on mosquito abundance patterns

in Saginaw County, Michigan, 1989-2005". In: Journal of medical entomology
49.4 (2012). Publisher: Oxford University Press Oxford, UK, pp. 851-858.

Collin B. Edwards and Elizabeth E. Crone. “Estimating abundance and
phenology from transect count data with GLMs”. en. In: Oikos 130.8 (Aug.
2021), pp. 1335-1345. 18sN: 0030-1299, 1600-0706.

Olugbenga O. Oluwagbemi, Christen M. Fornadel, Ezekiel F. Adebiyi, Douglas
E. Norris, and Jason L. Rasgon. “ANOSPEX: a stochastic, spatially explicit

model for studying Anopheles metapopulation dynamics”. In: PloS one 8.7

(2013). Publisher: Public Library of Science, e68040.

224

Physics Informed Neural Networks in Sparse Data Applications

[136]

[137]

138

[139]

[140]

141]

[142]

Antoine Guisan and Wilfried Thuiller. “Predicting species distribution: offering
more than simple habitat models”. In: Ecology letters 8.9 (2005). Publisher:

Wiley Online Library, pp. 993-1009.

Daniele Da Re, Wim Van Bortel, Friederike Reuss, Ruth Miiller, Sebastien
Boyer, Fabrizio Montarsi, Silvia Ciocchetta, Daniele Arnoldi, Giovanni Marini,
Annapaola Rizzoli, Gregory L’Ambert, Guillaume Lacour, Constantianus J. M.
Koenraadt, Sophie O. Vanwambeke, and Matteo Marcantonio. “dynamAedes:

a unified modelling framework for invasive Aedes mosquitoes”. In: Parasites

& Vectors 15.1 (Nov. 2022), p. 414. 1SSN: 1756-3305.

Daniele Da Re, Giovanni Marini, Carmelo Bonannella, Fabrizio Laurini, Mattia
Manica, Nikoleta Anicic, Alessandro Albieri, Paola Angelini, Daniele Arnoldi,
and Federica Bertola. Inferring the seasonal dynamics and abundance of

an invasive species using a spatio-temporal stacked machine learning model.

Publisher: EcoEvoRxiv. 2023.

Ugur Parlatan, Mehmet Ozgun Ozen, Ibrahim Kecoglu, Batuhan Koyuncu,
Hulya Torun, Davod Khalafkhany, Irem Loc, Mehmet Giray Ogut, Fatih Inci,
Demir Akin, Thsan Solaroglu, Nesrin Ozoren, Mehmet Burcin Unlu, and Utkan
Demirci. “Label-Free Identification of Exosomes using Raman Spectroscopy

and Machine Learning”. In: Small 19.9 (2023), p. 2205519.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015), pp. 770-778.

Samuel L. Wilcox, Ryan M. Broxterman, and Thomas J. Barstow. “Construct-
ing quasi-linear Vo2 responses from nonlinear parameters”. In: Journal of

Applied Physiology 120.2 (2016). PMID: 26565018, pp. 121-129.

Andrew M. Jones and Mark Burnley. “Oxygen uptake kinetics: an underap-
preciated determinant of exercise performance.” In: International journal of

sports physiology and performance 4 4 (2009), pp. 524-32.

225

Physics Informed Neural Networks in Sparse Data Applications

[143]

[144]

[145]

[146]

[147]

[148]

[149]

J. R. Stirling, M. S. Zakynthinaki, and V. Billat. “Modeling and Analysis of
the Effect of Training on VO, Kinetics and Anaerobic Capacity”. In: Bulletin
of Mathematical Biology 70.5 (July 2008), pp. 1348-1370. 1SSN: 1522-9602.

Andrea Zignoli, Alessandro Fornasiero, Enrico Bertolazzi, Barbara Pellegrini,
Federico Schena, Francesco Biral, and Paul B. Laursen. “State-of-the art
concepts and future directions in modelling oxygen consumption and lactate
concentration in cycling exercise”. en. In: Sport Sciences for Health 15.2 (Aug,.

2019). Number: 2, pp. 295-310. 1SSN: 1824-7490, 1825-1234.

Maria Cecilia Moraes Frade, Thomas Beltrame, Mariana de Oliveira Gois,
Allan Pinto, Silvia Cristina Garcia de Moura Tonello, Ricardo da Silva Torres,
and Aparecida Maria Catai. “Toward characterizing cardiovascular fitness
using machine learning based on unobtrusive data”. In: PLOS ONE 18.3
(Mar. 2023), pp. 1-18.

Pengfei Chang, Cenyi Wang, Yiyan Chen, Guodong Wang, and Aming Lu.
“Identification of runner fatigue stages based on inertial sensors and deep
learning”. In: Frontiers in Bioengineering and Biotechnology 11 (2023). 1SSN:

2296-4185.

Hui Zhang, Chengxiang Zhuge, Jianmin Jia, Baiying Shi, and Wei Wang.
“Green travel mobility of dockless bike-sharing based on trip data in big cities:
A spatial network analysis”. In: Journal of Cleaner Production 313 (2021),
p. 127930. 18SN: 0959-6526.

Yuanxuan Yang, Alison Heppenstall, Andy Turner, and Alexis Comber. “A
spatiotemporal and graph-based analysis of dockless bike sharing patterns to
understand urban flows over the last mile”. In: Computers, Environment and

Urban Systems 77 (2019), p. 101361. 1SSN: 0198-9715.

[I-Jung Seo and Jaehee Cho. “Structural Features of Public Bicycle Trans-

portation Networks over Times of the Day: The Case of Seoul Public Bicycle”.

226

Physics Informed Neural Networks in Sparse Data Applications

[150]

[151]

[152]

[153]

[154]

[155]

[156]

In: 2022 IEEFE International Conference on Big Data and Smart Computing
(BigComp). 2022, pp. 5-8.

XiaoYing Shi, Yang Wang, Fanshun Lv, Wenhui Liu, Dewen Seng, and Fei Lin.
“Finding communities in bicycle sharing system”. In: Journal of Visualization

22.6 (Dec. 2019), pp. 1177-1192. 1SSN: 1875-8975.

Sérgio F. A. Batista, Mostafa Ameli, and Moénica Menéndez. “On the Char-
acterization of Eco-Friendly Paths for Regional Networks”. In: IEEFE Open

Journal of Intelligent Transportation Systems 4 (2023), pp. 204-215.

Lei Lin, Zhengbing He, and Srinivas Peeta. “Predicting station-level hourly
demand in a large-scale bike-sharing network: A graph convolutional neural
network approach”. In: Transportation Research Part C: Emerging Technolo-

gies 97 (2018), pp. 258-276. 1sSN: 0968-090X.

Zahra Ghandeharioun and Anastasios Kouvelas. “Link Travel Time Estimation
for Arterial Networks Based on Sparse GPS Data and Considering Progressive
Correlations”. In: IEEE Open Journal of Intelligent Transportation Systems
3 (2022), pp. 679-694.

Jianmin Jia, Chunsheng Liu, Xiaohan Wang, Hui Zhang, and Yan Xiao.
“Understanding bike-sharing mobility patterns in response to the COVID-19
pandemic”. In: Cities 142 (2023), p. 104554. 18SN: 0264-2751.

Pierre Borgnat, Celine Robardet, Jean-Baptiste Rouquier, Patrice Abry,
Patrick Flandrin, and Eric Fleury. “Shared Bicycles in a City: A Signal
Processing and Data Analysis Perspective”. In: Advances in Complex Systems

14 (June 2011).

Martin Zaltz Austwick, Oliver O’Brien, Emanuele Strano, and Matheus Viana.
“The Structure of Spatial Networks and Communities in Bicycle Sharing

Systems”. In: PLOS ONE 8.9 (Sept. 2013), pp. 1-17.

227

Physics Informed Neural Networks in Sparse Data Applications

[157]

[158]

[159]

[160]

[161]

[162]

[163)]

[164]

Yi Yao, Yifang Zhang, Lixin Tian, Nianxing Zhou, Zhilin Li, and Minggang
Wang. “Analysis of Network Structure of Urban Bike-Sharing System: A Case
Study Based on Real-Time Data of a Public Bicycle System”. In: Sustainability
11.19 (2019). 18SN: 2071-1050.

Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. “Parallel
heuristics for scalable community detection”. In: Parallel Computing 47 (2015),

pp- 19-37. 1sSN: 0167-8191.

Bo Zhang, Yi Rong, Ruihan Yong, Dongming Qin, Maozhen Li, Guojian Zou,
and Jianguo Pan. “Deep learning for air pollutant concentration prediction: A

review”. In: Atmospheric Environment 290 (2022), p. 119347. 1sSN: 1352-2310.

Bernardo S. Beckerman, Michael Jerrett, Randall V. Martin, Aaron van
Donkelaar, Zev Ross, and Richard T. Burnett. “Application of the dele-
tion/substitution/addition algorithm to selecting land use regression models
for interpolating air pollution measurements in California”. In: Atmospheric

Environment 77 (2013), pp. 172-177. 18sN: 1352-2310.

Zhong-hua Li and Jun Yang. “PM-25 forecasting use reconstruct phase space
LS-SVM”. In: 2010 The 2nd Conference on Environmental Science and Infor-

mation Application Technology. Vol. 1. 2010, pp. 143-146.

P.J. Garcia Nieto, F. Sanchez Lasheras, E. Garcia-Gonzalo, and F.J. de Cos
Juez. “PM10 concentration forecasting in the metropolitan area of Oviedo
(Northern Spain) using models based on SVM, MLP, VARMA and ARIMA:
A case study”. In: Science of The Total Environment 621 (2018), pp. 753-761.
ISSN: 0048-9697.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9.8 (Nov. 1997), pp. 1735-1780. 1SSN: 0899-7667.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
“Empirical evaluation of gated recurrent neural networks on sequence model-

ing”. In: arXiv preprint arXiv:1412.8555 (2014).

228

Physics Informed Neural Networks in Sparse Data Applications

165

[166]

[167]

168

169

[170]

171]

[172]

[173]

Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech,
and time series”. In: The Handbook of Brain Theory and Neural Networks.

Cambridge, MA, USA: MIT Press, 1998, pp. 255-258. 1SBN: 0262511029.

Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: ArXiv 1409 (Sept.
2014).

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. Graph Attention Networks. 2017.

Jiachen Zhao, Fang Deng, Yeyun Cai, and Jie Chen. “Long short-term mem-
ory - Fully connected (LSTM-FC) neural network for PM2.5 concentration
prediction”. In: Chemosphere 220 (2019), pp. 486-492. 1sSN: 0045-6535.

Hong-Wei Wang, Xiao-Bing Li, Dongsheng Wang, Juanhao Zhao, Hong-di
He, and Zhong-Ren Peng. “Regional prediction of ground-level ozone using a
hybrid sequence-to-sequence deep learning approach”. In: Journal of Cleaner

Production 253 (2020), p. 119841. 18SN: 0959-6526.

Bo Zhang, Guojian Zou, Dongming Qin, Yunjie Lu, Yupeng Jin, and Hui Wang.
“A novel Encoder-Decoder model based on read-first LSTM for air pollutant
prediction”. In: Science of The Total Environment 765 (2021), p. 144507. 1SSN:

0048-9697.

Ricardo Navares and José L. Aznarte. “Predicting air quality with deep
learning LSTM: Towards comprehensive models”. In: Ecological Informatics

55 (2020), p. 101019. 1SSN: 1574-9541.

Xiang Li, Ling Peng, Xiaojing Yao, Shaolong Cui, Yuan Hu, Chengzeng
You, and Tianhe Chi. “Long short-term memory neural network for air
pollutant concentration predictions: Method development and evaluation”. In:

Environmental Pollution 231 (2017), pp. 997-1004. 1sSN: 0269-7491.

Xi Gao and Weide Li. “A graph-based LSTM model for PM2.5 forecasting”.
In: Atmospheric Pollution Research 12.9 (2021), p. 101150. 1SSN: 1309-1042.

229

Physics Informed Neural Networks in Sparse Data Applications

[174]

[175]

[176]

[177]

[178]

[179]

[180]

181]

Hongye Zhou, Feng Zhang, Zhenhong Du, and Renyi Liu. “A theory-guided
graph networks based PM2.5 forecasting method”. In: Environmental Pollution

293 (2022), p. 118569. 1sSN: 0269-7491.

Jiahui Xu, Ling Chen, Mingqi Lv, Chaoqun Zhan, Sanjian Chen, and Jian
Chang. “HighAir: A Hierarchical Graph Neural Network-Based Air Quality
Forecasting Method”. In: CoRR abs/2101.04264 (2021).

Pengcheng Jia, Nianwen Cao, and Shaobo Yang. “Real-time hourly ozone
prediction system for Yangtze River Delta area using attention based on
a sequence to sequence model”. In: Atmospheric Environment 244 (2021),

p. 117917. 18SN: 1352-2310.

Xin-Yu Tu, Bo Zhang, Yu-Peng Jin, Guo-Jian Zou, Jian-Guo Pan, and
Mao-Zhen Li. “Longer Time Span Air Pollution Prediction: The Attention
and Autoencoder Hybrid Learning Model”. In: Mathematical Problems in
Engineering 2021 (June 2021), p. 5515103. 1sSN: 1024-123X.

Bo Zhang, Ziyao Geng, Hanwen Zhang, and Jianguo Pan. “Densely connected
convolutional networks with attention long short-term memory for estimating
PM2.5 values from images”. In: Journal of Cleaner Production 333 (2022),

p. 130101. 18SN: 0959-6526.

Yu Huang, Josh Jia-Ching Ying, and Vincent S. Tseng. “Spatio-attention
embedded recurrent neural network for air quality prediction”. In: Knowledge-

Based Systems 233 (2021), p. 107416. 1sSN: 0950-7051.

Jiaqi Zhu, Fang Deng, Jiachen Zhao, and Hao Zheng. “Attention-based parallel
networks (APNet) for PM2.5 spatiotemporal prediction”. In: Science of The

Total Environment 769 (2021), p. 145082. 1sSN: 0048-9697.

Hubert Baty and L T Baty. “Solving differential equations using physics
informed deep learning: a hand-on tutorial with benchmark tests”. In: ArXiv

abs/2302.12260 (2023).

230

Physics Informed Neural Networks in Sparse Data Applications

[182]

[183)

[184]

[185]

[186]

[187]

[188]

Ebenezer O. Oluwasakin and Abdul Q. M. Khaliq. “Optimizing Physics-
Informed Neural Network in Dynamic System Simulation and Learning of

Parameters”. In: Algorithms 16.12 (2023). 1SSN: 1999-4893.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An

Expert’s Guide to Training Physics-informed Neural Networks. 2023.

John H. Lagergren, John T. Nardini, Ruth E. Baker, Matthew J. Simpson, and
Kevin B. Flores. “Biologically-informed neural networks guide mechanistic

modeling from sparse experimental data”. In: PLOS Computational Biology

16.12 (Dec. 2020), pp. 1-29.

Hubert Baty. Solving stiff ordinary differential equations using physics in-
formed neural networks (PINNs): simple recipes to improve training of vanilla-

PINNs. 2023.

Patrick Stiller, Friedrich Bethke, Maximilian Bohme, Richard Pausch, Sunna
Torge, Alexander Debus, Jan Vorberger, Michael Bussmann, and Nico Hoff-
mann. “Large-Scale Neural Solvers for Partial Differential Equations”. In:
Driving Scientific and Engineering Discoveries Through the Convergence of
HPC, Big Data and Al Ed. by Jeffrey Nichols, Becky Verastegui, Arthur
‘Barney’ Maccabe, Oscar Hernandez, Suzanne Parete-Koon, and Theresa
Ahearn. Cham: Springer International Publishing, 2020, pp. 20-34. I1SBN:
978-3-030-63393-6.

Kamaljyoti Nath, Xuhui Meng, Daniel J. Smith, and George Em Karniadakis.
“Physics-informed neural networks for predicting gas flow dynamics and

unknown parameters in diesel engines”. In: Scientific Reports 13.1 (Aug.

2023). 1SSN: 2045-2322.

Sigurdur Mar Valsson Ivan Depina Saket Jain and Hrvoje Gotovac. “Applica-
tion of physics-informed neural networks to inverse problems in unsaturated
groundwater flow”. In: Georisk: Assessment and Management of Risk for

Engineered Systems and Geohazards 16.1 (2022), pp. 21-36.

231

Physics Informed Neural Networks in Sparse Data Applications

[189)]

[190]

[191]

[192]

193]

[194]

195

[196]

Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer.
“Chapter 3 - The Cross-Entropy Method for Optimization”. In: Handbook
of Statistics. Ed. by C.R. Rao and Venu Govindaraju. Vol. 31. Handbook of

Statistics. Elsevier, 2013, pp. 35-59.

Jeremias Garay, Jocelyn Dunstan, Sergio Uribe, and Francisco Sahli Costabal.
“Physics-informed neural networks for parameter estimation in blood flow
models”. In: Computers in Biology and Medicine 178 (2024), p. 108706. 1SSN:

0010-4825.

Marco Berardi, Fabio Vito Difonzo, and Matteo Icardi. “Inverse Physics-
Informed Neural Networks for transport models in porous materials”. In:

ArXiv abs/2407.10654 (2024).

Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis.
“Physics-informed neural networks for inverse problems in supersonic flows”.

In: Journal of Computational Physics 466 (2022), p. 111402. 1ssN: 0021-9991.

Fabio Difonzo, Luciano Lopez, and Sabrina Pellegrino. “Physics informed neu-
ral networks for an inverse problem in peridynamic models”. In: Engineering

with Computers (Mar. 2024), pp. 1-10.

Enrico Schiassi, Mario De Florio, Barry D. Ganapol, Paolo Picca, and Roberto
Furfaro. “Physics-informed neural networks for the point kinetics equations for
nuclear reactor dynamics”. In: Annals of Nuclear Energy 167 (2022), p. 108833.
ISSN: 0306-4549.

Mario De Florio, Ioannis G. Kevrekidis, and George Em Karniadakis. “Al-
Lorenz: A physics-data-driven framework for Black-Box and Gray-Box identi-
fication of chaotic systems with symbolic regression”. In: Chaos, Solitons €

Fractals 188 (2024), p. 115538. 18SN: 0960-0779.

Elham Kiyani, Khemraj Shukla, George Em Karniadakis, and Mikko Kart-
tunen. “A framework based on symbolic regression coupled with eXtended

Physics-Informed Neural Networks for gray-box learning of equations of mo-

232

Physics Informed Neural Networks in Sparse Data Applications

197]

198

199]

200]

201]

202]

203)]

[204]

[205]

tion from data”. In: Computer Methods in Applied Mechanics and Engineering
415 (2023), p. 116258. 1SSN: 0045-7825.

Zhen Zhang, Zongren Zou, Ellen Kuhl, and George Em Karniadakis. “Discov-
ering a reaction—diffusion model for Alzheimer’s disease by combining PINNs
with symbolic regression”. In: Computer Methods in Applied Mechanics and
Engineering 419 (2024), p. 116647. 1sSN: 0045-7825.

Pu Chen, Aiguo Shen, Xiaodong Zhou, and Jiming Hu. “Bio-Raman spec-
troscopy: a potential clinical analytical method assisting in disease diagnosis”.

en. In: Anal. Methods 3.6 (2011), p. 1257.

Michael A Gimbrone Jr and Guillermo Garcia-Cardena. “Endothelial cell
dysfunction and the pathobiology of atherosclerosis”. en. In: Clirc. Res. 118.4
(Feb. 2016), pp. 620—636.

Chad A Lieber and Anita Mahadevan-Jansen. “Automated method for sub-
traction of fluorescence from biological Raman spectra”. en. In: Appl. Spectrosc.

57.11 (Nov. 2003), pp. 1363-1367.

Eva Ostertagova. “Modelling using polynomial regression”. en. In: Procedia

Eng. 48 (2012), pp. 500-506.

Fionn Murtagh. “Multilayer perceptrons for classification and regression”. en.

In: Neurocomputing 2.5-6 (July 1991), pp. 183-197.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. 2017.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques. 3rd ed. The Morgan Kaufmann Series in Data Management

Systems. Oxford, England: Morgan Kaufmann, June 2011.

Franco M Impellizzeri, lan Shrier, Shaun J McLaren, Aaron J Coutts, Alan
McCall, Katie Slattery, Annie C Jeffries, and Judd T Kalkhoven. “Under-
standing training load as exposure and dose”. en. In: Sports Med. 53.9 (Sept.
2023), pp. 1667-1679.

233

Physics Informed Neural Networks in Sparse Data Applications

206]

1207]

208]

209]

[210]

[211]

212]

213]

Steven H Doeven, Michel S Brink, Wouter G P Frencken, and Koen A P
M Lemmink. “Impaired player—coach perceptions of exertion and recovery
during match congestion”. In: Int. J. Sports Physiol. Perform. 12.9 (Oct.
2017), pp. 1151-1156.

Mathieu Lacome, Ben Simpson, Nick Broad, and Martin Buchheit. “Monitor-
ing players’ readiness using predicted heart-rate responses to soccer drills”.

en. In: Int. J. Sports Physiol. Perform. 13.10 (Nov. 2018), pp. 1273-1280.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. 1SBN:
0387310738.

Evangelos Rozos, Panayiotis Dimitriadis, Katerina Mazi, and Antonis D.
Koussis. “A Multilayer Perceptron Model for Stochastic Synthesis”. en. In:
Hydrology 8.2 (June 2021). Number: 2 Publisher: Multidisciplinary Digital

Publishing Institute, p. 67. 1SSN: 2306-5338.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature

521.7553 (May 2015), pp. 436-444. 1SSN: 1476-4687.

Rafael Schild Reusch, Leonardo Rezende Juracy, and Fernando Gehm Moraes.
“Assessment and Optimization of 1D CNN Model for Human Activity Recogni-
tion”. In: 2022 XII Brazilian Symposium on Computing Systems Engineering
(SBESC). Nov. 2022, pp. 1-7.

Dinh Viet Cuong, Vuong M. Ngo, Paolo Cappellari, and Mark Roantree.
“Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Mod-
eling”. In: IEEE Open Journal of Intelligent Transportation Systems 5 (2024),

pp. 115-131.

Mark Roantree, Niamh Murphy, Dinh Viet Cuong, and Vuong M. Ngo.
“Graph-Based Optimisation of Network Expansion in a Dockless Bike Sharing
System”. In: 2024 IEEFE 40th International Conference on Data Engineering

Workshops (ICDEW). 2024, pp. 48-55.

234

Physics Informed Neural Networks in Sparse Data Applications

214]

[215]

216

[217)

[218]

[219]

[220]

[221]

[222]

[223]

Mark Roantree and Jun Liu. “A heuristic approach to selecting views for
materialization”. In: Software: Practice and Experience 44.10 (2014), pp. 1157
1179.

James Hamilton. Time Series Analysis. Princeton University Press, 1994.

Fouad Bahrpeyma, Mark Roantree, Paolo Cappellari, Michael Scriney, and
Andrew McCarren. “A Methodology for Validating Diversity in Synthetic
Time Series Generation”. In: MethodsX 8 (2021), p. 101459. 1SSN: 2215-0161.

Dong Xin, Jiawei Han, Xiaolei Li, Zheng Shao, and Benjamin W. Wah.
“Computing Iceberg Cubes by Top-Down and Bottom-Up Integration: The
StarCubing Approach”. In: IEEE Transactions on Knowledge and Data Engi-

neering 19.1 (2007), pp. 111-126.

Kurt Mehlhorn, Stefan Naher, and Peter Sanders. “Engineering DFS-Based
Graph Algorithms”. In: ArXiv abs/1703.10023 (2017).

Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J. Zaki.
“Is There a Best Quality Metric for Graph Clusters?” In: Machine Learning
and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2011,
pp. 44-59. 1SBN: 978-3-642-23780-5.

J. M. Hernéndez and P. V. Mieghem. Classification of graph metrics. Tech. rep.
Technical report. 2628 CD Delft: Faculty of Electrical Engineering, Mathe-

matics, and Computer Science, Delft University of Technology, Nov. 2011.

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. “The
architecture of complex weighted networks”. In: Proceedings of the National

Academy of Sciences 101.11 (2004), pp. 3747-3752.

Linton C. Freeman. “Centrality in social networks conceptual clarification”.

In: Social Networks 1.3 (1978), pp. 215-239. 1SSN: 0378-8733.

Gert Sabidussi. “The centrality index of a graph”. In: Psychometrika 31.4
(Dec. 1966), pp. 581-603. 1SSN: 1860-0980.

235

Physics Informed Neural Networks in Sparse Data Applications

[224]

[225]

[226]

[227)

228

[229]

[230]

[231]

232]

233

Ulrik Brandes and Christian Pich. “CENTRALITY ESTIMATION IN LARGE
NETWORKS”. In: International Journal of Bifurcation and Chaos 17.07
(2007), pp. 2303-2318.

Linton C. Freeman. “A Set of Measures of Centrality Based on Betweenness”.

In: Sociometry 40.1 (1977), pp. 35—41. 1SsN: 00380431.

Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of ‘small-world’

networks”. In: Nature 393.6684 (June 1998), pp. 440-442. 1SSN: 1476-4687.

Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3
(2010), pp. 75-174. 1sSN: 0370-1573.

Mikail Rubinov and Olaf Sporns. “Complex network measures of brain con-
nectivity: uses and interpretations”. en. In: Neuroimage 52.3 (Oct. 2009),

pp. 1059-1069.

Karsten Steinhaeuser, Nitesh V. Chawla, and Auroop R. Ganguly. “Complex
networks as a unified framework for descriptive analysis and predictive mod-
eling in climate science”. In: Statistical Analysis and Data Mining: The ASA
Data Science Journal 4.5 (2011), pp. 497-511.

J. F. Donges, Y. Zou, N. Marwan, and J. Kurths. “Complex networks in
climate dynamics”. In: The European Physical Journal Special Topics 174.1
(July 2009), pp. 157-179. 1sSN: 1951-6401.

Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17 (2020), pp. 261-272.

J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90-95.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network
structure, dynamics, and function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference (SciPy2008). Ed. by Géael Varoquaux, Travis
Vaught, and Jarrod Millman. Pasadena, CA USA, Aug. 2008, pp. 11-15.

236

Physics Informed Neural Networks in Sparse Data Applications

[234]

235

[236]

237]

238

239

240

[241]

[242]

The pandas development team. pandas-dev/pandas: Pandas. Version latest.

Feb. 2020.

Google. Google Maps API. https://developers.google.com/maps. Ac-
cessed: 2023-12-01.

Neodj, Inc. Neo4j Graph Database. https://neodj.com/. Accessed: 2023-12-
01.

Neodj, Inc. Neo4j’s Graph Data Science Library. https://neo4j.com/docs/

graph-data-science/current/. Accessed: 2023-12-01.

P. Baby K. Sasirekha. “Agglomerative Hierarchical Clustering Algorithm- A
Review”. In: International Journal of Scientific and Research Publications 3

(Mar. 2013).

Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete

Guide to Dimensional Modeling. Wiley, 2011.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-Temporal Graph Convo-
lutional Networks: A Deep Learning Framework for Traffic Forecasting”. In:
Proceedings of the Twenty-Seventh International Joint Conference on Arti-
ficial Intelligence. International Joint Conferences on Artificial Intelligence

Organization, July 2018.

Tiangi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting
System”. In: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,
USA: ACM, 2016, pp. 785-794. 1SBN: 978-1-4503-4232-2.

Shuai Han, Lukas Stelz, Horst Stoecker, Lingxiao Wang, and Kai Zhou.
“Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks”. In: Journal of the Franklin Institute 361.6 (2024), p. 106671.

ISSN: 0016-0032.

237

https://developers.google.com/maps
https://neo4j.com/
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/

Physics Informed Neural Networks in Sparse Data Applications

[243]

[244]

[245]

[246]

[247]

248

[249]

[250]

Dinh Viet Cuong, Branislava Lali¢, Mina Petri¢, Nguyen Thanh Binh, and
Mark Roantree. “Adapting physics-informed neural networks to improve ODE

optimization in mosquito population dynamics”. In: PLOS ONE 19.12 (Dec.
2024), pp. 1-30.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall

PTR, 1994.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUS).
2023.

Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye
Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning Research.
Chia Laguna Resort, Sardinia, Italy: PMLR, May 2010, pp. 249-256.

Edward Norton Lorenz. “Deterministic nonperiodic flow”. In: Journal of the

Atmospheric Sciences 20 (1963), pp. 130-141.

Linda Petzold. “Automatic Selection of Methods for Solving Stiff and Nonstiff
Systems of Ordinary Differential Equations”. In: SIAM Journal on Scientific

and Statistical Computing 4.1 (1983), pp. 136-148.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,
Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron,
and Ren Ng. “Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 7537-7547.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: Proceedings of the fourteenth international conference
on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings. 2011, pp. 315-323.

238

Physics Informed Neural Networks in Sparse Data Applications

[251] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. “Dying
relu and initialization: Theory and numerical examples”. In: arXiv preprint

arXiv:1903.06733 (2019).

239

	Introduction
	Introduction to Neural Networks and their Application Areas
	Issues with Neural Networks
	Neural Network Architectures
	Physics-Informed Neural Networks

	Problem Statement
	Thesis Structure

	Problems & Datasets
	Neural Networks
	Exosome Classification
	Oxygen Uptake

	Graph Modeling
	Graph Data Representation: Bike Sharing System
	Graph Neural Networks: Air Quality

	Physics-Informed Neural Networks
	Physics Informed Neural Networks
	Inverse Problems: External Forcing
	Mosquito Population Modeling

	Literature Review
	Neural Networks
	Disease Prediction Using Exosomes
	Oxygen Uptake Estimation

	Network Models
	Transport Networks: Bike Sharing
	Graph Neural Networks: Air Quality

	Physics-Informed Neural Networks
	Training Techniques
	Learning Parameters

	Conclusions

	Deployment of Neural Networks in Real-Life Applications
	Exosomes Classification Using Multi-Layer Perceptrons
	Methodology
	Experiments

	Predicting Oxygen Uptake in Athletes
	Data Preprocessing
	Neural Networks
	Results

	Conclusions

	Graph Neural Networks
	Graph Modeling
	Graph Analytics using a Travel Network
	Problem
	Methodology
	Experiments
	Analysis and Discussion
	Conclusion

	Air Quality Forecasting
	Attention Mechanisms
	Experiments
	Conclusion

	Conclusions

	Physics Informed Neural Networks
	Introduction
	PINN Framework Development
	PINN Structure
	ODE Normalization
	Gradient Balancing
	Causal Training
	Domain Decomposition

	Evaluation Step 1: Ablation Study using the Lorenz System
	Forward Problem with T=2
	Forward Problem with T=20
	Inverse Problem

	Validation Step 2: Mosquito Case Study
	Forward Problem
	Inverse Problem

	Conclusion

	PINN Optimization: Incorporating External Factors
	Introduction
	Incorporating External Factors
	Evaluation
	ODE system
	Experimental Configuration
	Results

	Ablation Study
	Model architectures
	Activation Functions for Non-negativity

	Conclusions

	Conclusions
	Dissertation Overview
	Chapter 4: Neural Networks in Real-Life Applications
	Chapter 5: Graph Neural Networks
	Chapter 6: Physics-Informed Neural Networks
	Chapter 7: PINN Optimization

	Contributions
	Suggestions for Further Research

	Error Metrics
	Regression Error
	Classification Error

	Graph-based Bike Sharing System Analysis
	Temporal Bike Graph Networks (Daily TBiGN)
	Spatio-Temporal Bike Graph Networks (Monthly STBiGN)
	Spatio-Temporal Bike Graph Networks (Hourly STBiGN)

	Mosquito ODE system
	Structural identifiability of mosquito system's parameters
	Parameter Sensitivity

