
Physics Informed Neural Networks:

Deployment and Evaluation in

Sparse Data Applications

Dinh Viet Cuong, B.Sc.

Supervised by Prof Mark Roantree

A thesis presented for the degree of Doctor of Philosophy

School of Computing

Dublin City University

March 14, 2025

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my own

work, and that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge breach any law of copyright, and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed (Typed Name): Dinh Viet Cuong

Student ID No.: 20214134

Date: 05/12/2024

ii

Acknowledgements

Four years have passed in the blink of an eye. This thesis would not have been

possible without the encouragement, advice, and support of my advisors, friends,

and family.

Firstly, I would like to thank my advisor, Professor Mark Roantree, for his

guidance, which was essential to the completion of my thesis. I am grateful for

his patience, trust, and attention during my doctoral studies. Throughout these

challenging years, he granted me the freedom to pursue a variety of interesting

research topics. His constructive feedback on my work taught me how to conduct

meaningful research and greatly improved my critical thinking abilities.

I would also like to thank my colleagues—Dermot, Adam, Valerio, Vuong, Aidan,

Danham, and Uttran—for their collaboration and assistance in my studies, and for

their help in proofreading my thesis.

I wish to express my gratitude to my friends in Ireland—An, Phuc, Boi, Le, Long,

Bao, Khoi, Tu, and Khiem—for their friendship and support. An, for always being

by my side while working. Phuc, for being a gym companion and for our shared

interests in video games. Boi, for generously cooking delicious meals for me in three

years. Khoi, Le, Long, and Bao, for the enjoyable times we shared. Tu and Khiem,

for your assistance in Ireland. My life here would have been very dull without your

friendship.

I would like to thank my friends Phuc Hau, Thanh Nhan and Thanh Huyen.

Thank you, Phuc Hau and Thanh Nhan, for playing video games with me during the

most stressful time of my life during Covid. Phuc Hau is a brilliant guy; not only

iii

Physics Informed Neural Networks in Sparse Data Applications

did we study mathematics together, but I also appreciate his insights into Buddhism.

Thanh Nhan is a good travel companion and a good Chinese teacher. I would also

like to thank Hieu and Quoc for the little chats here and there.

I want to express my deep gratitude to my family, who have provided unwavering

support and constant encouragement throughout my life. My father is a gentleman

who has always been intelligent but had no opportunity to pursue higher education.

My mother is a hardworking woman who had to drop out of school at a very early

age to make a living. They have always believed that studying and knowledge are the

keys to becoming a good person and achieving success in life. I hope that the studies

I have undertaken so far will partly fulfill their dream of learning. Additionally, my

sister has always supported me throughout my life. I cannot imagine my life without

my family.

Lastly, I would like to acknowledge School of Computing at Dublin City Uni-

versity for providing a great environment to work in, and the financial support of

Taighde Éireann - Research Ireland through the Insight Centre for Data Analytics

(SFI/12/RC/2289_P2).

iv

Physics Informed Neural Networks in Sparse Data Applications

I dedicate this thesis

to my father, Dinh Viet Quang,

to my mother, Nguyen Thi Huong,

who always support me in my life;

to science, and to my own dream.

v

Contents

1 Introduction 3

1.1 Introduction to Neural Networks and their Application Areas 4

1.1.1 Issues with Neural Networks 6

1.1.2 Neural Network Architectures 6

1.1.3 Physics-Informed Neural Networks 7

1.2 Problem Statement . 8

1.3 Thesis Structure . 11

2 Problems & Datasets 14

2.1 Neural Networks . 14

2.1.1 Exosome Classification . 14

2.1.2 Oxygen Uptake . 17

2.2 Graph Modeling . 21

2.2.1 Graph Data Representation: Bike Sharing System 21

2.2.2 Graph Neural Networks: Air Quality 24

2.3 Physics-Informed Neural Networks 26

2.3.1 Physics Informed Neural Networks 26

2.3.2 Inverse Problems: External Forcing 29

2.3.3 Mosquito Population Modeling 30

3 Literature Review 34

3.1 Neural Networks . 35

3.1.1 Disease Prediction Using Exosomes 35

vi

Physics Informed Neural Networks in Sparse Data Applications

3.1.2 Oxygen Uptake Estimation 36

3.2 Network Models . 39

3.2.1 Transport Networks: Bike Sharing 39

3.2.2 Graph Neural Networks: Air Quality 42

3.3 Physics-Informed Neural Networks 46

3.3.1 Training Techniques . 46

3.3.2 Learning Parameters . 49

3.4 Conclusions . 51

4 Deployment of Neural Networks in Real-Life Applications 54

4.1 Exosomes Classification Using Multi-Layer Perceptrons 55

4.1.1 Methodology . 56

4.1.2 Experiments . 60

4.2 Predicting Oxygen Uptake in Athletes 64

4.2.1 Data Preprocessing . 65

4.2.2 Neural Networks . 66

4.2.3 Results . 72

4.3 Conclusions . 77

5 Graph Neural Networks 80

5.1 Graph Modeling . 81

5.2 Graph Analytics using a Travel Network 82

5.2.1 Problem . 82

5.2.2 Methodology . 83

5.2.3 Experiments . 93

5.2.4 Analysis and Discussion . 95

5.2.5 Conclusion . 108

5.3 Air Quality Forecasting . 109

5.3.1 Attention Mechanisms . 109

5.3.2 Experiments . 115

vii

Physics Informed Neural Networks in Sparse Data Applications

5.3.3 Conclusion . 119

5.4 Conclusions . 119

6 Physics Informed Neural Networks 121

6.1 Introduction . 122

6.2 PINN Framework Development . 123

6.2.1 PINN Structure . 123

6.2.2 ODE Normalization . 126

6.2.3 Gradient Balancing . 128

6.2.4 Causal Training . 129

6.2.5 Domain Decomposition . 131

6.3 Evaluation Step 1: Ablation Study using the Lorenz System 132

6.3.1 Forward Problem with T=2 133

6.3.2 Forward Problem with T = 20 137

6.3.3 Inverse Problem . 141

6.4 Validation Step 2: Mosquito Case Study 146

6.4.1 Forward Problem . 147

6.4.2 Inverse Problem . 151

6.5 Conclusion . 154

7 PINN Optimization: Incorporating External Factors 156

7.1 Introduction . 156

7.2 Incorporating External Factors . 157

7.3 Evaluation . 162

7.3.1 ODE system . 162

7.3.2 Experimental Configuration 163

7.3.3 Results . 165

7.4 Ablation Study . 167

7.4.1 Model architectures . 170

7.4.2 Activation Functions for Non-negativity 172

viii

Physics Informed Neural Networks in Sparse Data Applications

7.5 Conclusions . 176

8 Conclusions 178

8.1 Dissertation Overview . 178

8.1.1 Chapter 4: Neural Networks in Real-Life Applications 178

8.1.2 Chapter 5: Graph Neural Networks 180

8.1.3 Chapter 6: Physics-Informed Neural Networks 181

8.1.4 Chapter 7: PINN Optimization 182

8.2 Contributions . 183

8.3 Suggestions for Further Research . 186

A Error Metrics 190

A.1 Regression Error . 190

A.2 Classification Error . 191

B Graph-based Bike Sharing System Analysis 192

B.1 Temporal Bike Graph Networks (Daily TBiGN) 192

B.2 Spatio-Temporal Bike Graph Networks (Monthly STBiGN) 195

B.3 Spatio-Temporal Bike Graph Networks (Hourly STBiGN) 200

C Mosquito ODE system 204

C.1 Structural identifiability of mosquito system’s parameters 204

C.2 Parameter Sensitivity . 204

ix

List of Figures

2.1 An example exosome spectrum. 17

2.2 Examples of IMU raw data during 3 different activities: Treadmill

Running, Outdoor Running, and a Simulated Circuit. The blue line is

the x-axis, the orange line is the y-axis and the green line is the z-axis. 20

2.3 The 10 considered air quality monitoring stations in Hanoi, Vietnam . 26

2.4 Examples of air quality data at a station. 27

2.5 Meteorological measurements of the training period. 33

3.1 Literature Review Chapter Structure 34

4.1 Preprocessing Steps . 56

4.2 Multi-Layer Perceptron Architecture 59

4.3 LSTM Layer Architecture. The LSTM cell is shared across time

steps. At each time step t, the cell receives the input xt from the

previous layer and the hidden state ht−1 from previous time step. It

produces the new hidden state ht, which is passed to the next layer,

as well as the updated cell state ct. The initial state c−1 and output

h−1 are initialized as zero vectors. 69

4.4 An illustration of one-dimensional CNN architecture. In the con-

volutional layers, three kernels, each of size 3, slide along the time

dimension of the input to generate three feature channels. Red boxes

and arrows at the bottom left demonstrate a convolution computation

involving x1, x2 and x3 that results in a single output. 71

x

Physics Informed Neural Networks in Sparse Data Applications

4.5 (a) Linear correlation plot illustrating the relationship between pre-

dicted VO2 and measured VO2 using the LSTM model with RAW

representation and sensor configuration C, achieving an R2 value of

0.87. (b) Bland-Altman plot showing the differences between mea-

sured and predicted VO2 values against their averages for all subjects

combined. 74

4.6 Box plots of the residuals (predicted VO2 minus measured VO2) across

different exercise conditions for the LSTM model using RAW data

representation and dataset C. The exercise conditions include baseline,

jogging, recovery1, circuit1, recovery2, circuit2, and recovery3. 75

4.7 Comparison of measured VO2 values (blue line) and breath-by-breath

VO2 predictions (green line) for Subject 2 using the LSTM model with

RAW representation and dataset C. The left plot shows unsmoothed

predictions with a MAE of 3.374 mL · kg−1, while the right plot

displays smoothed predictions with an MAE of 2.902 mL · kg−1. The

plots include different exercise and recovery phases, shaded as follows:

baseline and recovery phases (light blue), jogging (pink), and simulated

soccer circuit (light green). 76

5.1 Geographic Map overlaid with SBiGN. Each circle represents

a bike station and is sized according to its trip volume, with the 10

busiest stations (by trip volume) shown in red and all others in blue.

Lines represent routes between stations and are also sized by trip

volume; the 10 most frequently used routes are highlighted in red, and

the remaining routes are shown in blue. 89

5.2 Graph Analytics for Spatial Bike Graph Networks: Degree.

Each circle represents a bike station and is sized by its degree, with

the 10 highest-degree stations shown in red and all others in blue. . . 97

xi

Physics Informed Neural Networks in Sparse Data Applications

5.3 Graph Analytics for Spatial Bike Graph Networks: Closeness.

Each circle represents a bike station and is sized by its closeness

centrality, with the 10 highest-closeness stations shown in red and all

others in blue. 98

5.4 Graph Analytics for Spatial Bike Graph Networks: Between-

ness. Each circle represents a bike station and is sized by its between-

ness centrality, with the 10 highest-betweenness stations shown in red

and all others in blue. 99

5.5 SBiGN Community Detection. Each circle represents a bike

station and is sized according to its trip volume. The node colors

indicate different communities, with four communities labeled: purple,

bright aqua, pale chartreuse, and red. Lines represent routes between

stations and are also sized by trip volume. 100

5.6 Rolling Window Monthly Clustering. This dendrogram shows

how monthly bike-sharing networks (each represented on the x-axis by

its start date) cluster based on their similarity. The y-axis indicates

the distance between these monthly networks, with lower values signi-

fying higher similarity. Horizontal lines connect two clusters at their

respective distance. Three primary clusters are detected: Restrictions,

Lockdown and Easing. 102

5.7 Geographical Plot of By Month Clusters. (Representation

Networks of the Restriction Cluster). Each circle represents a

bike station and is sized according to its trip volume, with the 10

busiest stations (by trip volume) shown in red and all others in blue.

Lines represent routes between stations and are also sized by trip

volume; the 10 most frequently used routes are highlighted in red, and

the remaining routes are shown in blue. 103

xii

Physics Informed Neural Networks in Sparse Data Applications

5.8 Geographical Plot of By Month Clusters. (Representation

Networks of the Lockdown Cluster). Each circle represents a

bike station and is sized according to its trip volume, with the 10

busiest stations (by trip volume) shown in red and all others in blue.

Lines represent routes between stations and are also sized by trip

volume; the 10 most frequently used routes are highlighted in red, and

the remaining routes are shown in blue. 104

5.9 Geographical Plot of By Month Clusters. (Representation

Networks of the Easing Cluster). Each circle represents a bike

station and is sized according to its trip volume, with the 10 busiest

stations (by trip volume) shown in red and all others in blue. Lines

represent routes between stations and are also sized by trip volume;

the 10 most frequently used routes are highlighted in red, and the

remaining routes are shown in blue. 105

5.10 Daily Correlation Network. Each circle represents a bike station

and is sized by its strength. The node colors indicate different com-

munities, with four communities labeled: purple (small), bright aqua,

pale chartreuse, and red. Lines represent routes between stations and

are sized by their correlation score. 106

5.11 Timeseries Communities in Daily STBiGNs 107

5.12 Temporal and Spatial Attention Layers 111

5.13 Proposed attention-based spatial-temporal neural network architecture114

xiii

Physics Informed Neural Networks in Sparse Data Applications

6.1 Lorenz ODE system for the forward problem, with U ap-

proximation of the system state. System state u = (x, y, z).

Subfigures (a), (b), and (c) respectively show the x, y, and z compo-

nents. There is only data point (blue dot) at t = 0 serves as the initial

condition. The blue line represents the true solution u_true while

the orange dashed line OdePINNgradient+causal closely apprximates the

target. Both OdePINNoriginal (brown dashed line with cross) and

OdePINNcausal (purple dashed line) are closely aligned with the null

solution. 135

6.2 Loss analysis of OdePINN framework with Lorenz system,

t ∈ [0, 2.0] . 137

6.3 Lorenz ODE system, forward problem, U approximation of

the system state, using the first five models (excluding the

Domain Decomposition model). System state u = (x, y, z). Subfigures

(a), (b), and (c) respectively show the x, y, and z components. There

is only data point (blue dot) at t = 0 serves as the initial condition.

None of the models successfully capture the dynamics of the reference

solution. 139

6.4 Lorenz ODE system, forward problem, with U approximating

the system state. System state u = (x, y, z). The first three

plots depict the x, y, and z components, respectively, while the last

plot shows the loss and RMSE over the input time domain. The

PINN approximation (orange dashed line) closely follows the reference

solution (blue line) up to t = 17. 140

6.5 Trade-off between the number of subdomains and accuracy. 141

6.6 Ground truth u and data provided to solve the Lorenz system inverse

problem. 142

xiv

Physics Informed Neural Networks in Sparse Data Applications

6.7 Θ approximation of the physics parameters θ = (σ, ρ, β) in the

Lorenz system inverse problem. Subfigures (a), (b), and (c) respec-

tively show the parameters σ, ρ, and β. The models OdePINNgradient

(red dashed line) and OdePINNgradient+causal (orange dashed line) pro-

vide reasonably accurate estimates, closely following the true solution

(blue line). 144

6.8 Mosquito ODE system, forward problem, U approximation

of the solution. Each plot depicts the evolution of a specific state in

the mosquito life cycle, with time on the x-axis and organism count

on the y-axis. Only one data point (blue dot) is provided to PINN at

t = 730. The PINN predictions (orange dashed line) accurately track

the reference solution (blue line) over time. 150

6.9 Mosquito ODE system, inverse problem, Θ approximation of

the system’s parameters. Each plot compares the approximated

values (orange) with the true values (blue) for different parameters

governing the mosquito population dynamics. 153

xv

Physics Informed Neural Networks in Sparse Data Applications

7.1 External PINN Framework. There are two groups of neural

networks, one named U for the system state (the upper blue box),

and the other named Θ for estimating the system parameters (the

lower blue box). There are two data for the loss computations, the

observations (ti, ui) (the upper green box) and the collocations points

tj (the lower green box). The data loss Ldata is computed based on

the observations (ti, ui) and the outputs of the state neural network

U evaluated at ti. The ODE loss LODE is calculated at random

collocation points tj, it involves the predictions of the state model

U at tj and the parameter model at A(tj) (the white blue-bordered

box), which are external factors at tj. Only the two neural networks

(the two blue boxes) are trained, while the function A is fixed. After

training, one can use the network Θ to predict parameters θ at any

external factor values, as depicted by the bottom row of the figure. . 160

7.2 FourierMLP and Multi-branch FourierMLP architecture 161

7.3 Mosquito Population Simulations, Ab1 + Ab2, the training period. . . . 166

7.4 Parameter fP prediction, the training period 166

7.5 Mosquito Population Simulations, Ab1 + Ab2, the validation period. . 168

7.6 Parameter fP prediction, the validation period. 169

7.7 Non-negativity Activation Functions. The Soft Abs functions

with ϵ = 10−6 and ϵ = 10−4 appear very close in the plot, closely

resembling the positive part of ReLU and the identity function. . . . 173

7.8 Parameter fP predictions with different output activation functions,

training period . 175

xvi

Physics Informed Neural Networks in Sparse Data Applications

B.1 Daily Activity Networks. (Representation Networks of Week-

day Clusters). Each circle represents a bike station and is sized

according to its trip volume, with the 10 busiest stations (by trip

volume) shown in red and all others in blue. Lines represent routes

between stations and are also sized by trip volume; the 10 most fre-

quently used routes are highlighted in red, and the remaining routes

are shown in blue. 194

B.2 Daily Activity Networks. (Representation Networks of Week-

end Clusters). Each circle represents a bike station and is sized

according to its trip volume, with the 10 busiest stations (by trip

volume) shown in red and all others in blue. Lines represent routes

between stations and are also sized by trip volume; the 10 most fre-

quently used routes are highlighted in red, and the remaining routes

are shown in blue. 195

B.3 Daily Activity Communities. Weekday. Each circle represents

a bike station and is sized according to its trip volume. The node

colors indicate different communities. Lines represent routes between

stations and are also sized by trip volume. 196

B.4 Daily Activity Communities. Weekend. Each circle represents

a bike station and is sized according to its trip volume. The node

colors indicate different communities. Lines represent routes between

stations and are also sized by trip volume. 197

B.5 STBiGN Network: Monthly Timescale. Each circle represents

a bike station and is sized by its strength. The node colors indicate

different communities, with four communities labeled: purple, bright

sky blue, mint green, pastel orange, and red. Lines represent routes

between stations and are sized by their correlation score. 198

B.6 Timeseries Communities in Monthly STBiGNs 199

xvii

Physics Informed Neural Networks in Sparse Data Applications

B.7 Hourly Correlation Network. Each circle represents a bike station

and is sized by its strength. The node colors indicate different com-

munities, with three communities labeled: purple, mint green, and

red. Lines represent routes between stations and are sized by their

correlation score. 201

B.8 Timeseries Communities in hourly STBiGNs 202

C.1 Structural identifiability of parameters over time in the

Mosquito inverse problem. The configuration is the same as

the experiment in Section 6.4.2 where the temperature is sine-shaped. 205

C.2 Sensitivity of parameters in mosquito dynamical system. . . . 205

xviii

List of Tables

2.1 Exosome Dataset. Each surface corresponds to a single sample,

and all spectra from the same surface are acquired under identical

conditions. Each surface yields 50 spectra, with each spectrum repre-

sented as a vector of approximately 2,050 absorbance values covering

the spectral range of 400 to 1,800 cm−1. 16

2.2 Summary of the oxygen uptake dataset. 21

2.3 Dataset Overview . 23

2.4 Summary of the air quality dataset. 26

2.5 Mosquito Data for Experiments . 31

4.1 Hyper-Parameter Settings . 61

4.2 Top Performing Models by Average Accuracy 61

4.3 Validation Confusion Matrix (Sum over folds). The rows represent

the true class labels, while the columns correspond to the model’s

predicted labels. For instance, the entry of 181 in the “Normal” row

and the “Hypo” column indicates that the model has misclassified 181

normal samples as hypoglycemic. 62

4.4 Test Confusion Matrix (Best Model). The rows represent the true

class labels, while the columns correspond to the model’s predicted

labels. For instance, the entry of 3 in the “Normal” row and the

“Hypo” column indicates that the model has misclassified 3 normal

samples as hypoglycemic. 62

4.5 MLP Hyper-parameters . 68

xix

Physics Informed Neural Networks in Sparse Data Applications

4.6 LSTM Hyper-parameters . 70

4.7 1D-CNN Hyper-parameters . 72

4.8 Top-15 performance of neural network models. This table

presents the top 10 performing neural network models, ranked by their

valid RMSE. The table includes both RMSE and MAE metrics for

the validation and test sets. The unit of the metrics is mL · kg−1 ·

min−1. The best results, corresponding to the smallest error values,

are highlighted in bold, while the second-best results are underlined. 74

5.1 Node Strength in SBiGN . 96

5.2 Edge Weight in SBiGN . 97

5.3 Node (station) Strength in Daily STBiGNs 107

5.4 Air quality 24-hour forecasting performance. Average metrics

computed over a 24-hour period with hourly predictions. Lower metric

values indicate better performance. The best result in each column is

highlighted in bold, while the second best is underlined. 118

6.1 Approximation errors in the inverse problem with Lorenz system

where smallest error values are best. Bold text highlight the best

performing models with respect to a specific metric and Underlined

numbers represent the second best performing model. 145

6.2 ODE Model Parameters. The unit of τ is Celsius degree. All other

parameters have the unit of day−1, except the σ and β. 148

6.3 Errors for Mosquito ODE Approximation Solution. The bold text

highlights the two lowest errors across the stages, representing the best

approximations, while the underline text identifies the two highest

errors, indicating the least accurate stages. 149

6.4 Mosquito ODE System’s Parameter Approximation Errors. The bold

text highlights the two lowest errors across the learned parameters

while the underline text identifies the two highest errors. 152

xx

Physics Informed Neural Networks in Sparse Data Applications

7.1 Error Metrics. Six metrics are presented: the first three are RMSE

metrics where lower values indicate better performance, and the last

three are peak metrics where higher values are better. The best results

for each metric are highlighted in bold. 170

7.2 Error Metrics from Parameters learned from PINNs with

different network architectures. The best results for each metric

are highlighted in bold, while the second best results are underlined. 172

7.3 Error Metrics from Parameters learned from PINNs with

different final activation functions. The best results for each

metric are highlighted in bold, while the second best results are

underlined. 174

B.1 Node Strength: Weekday vs Weekend 193

B.2 Edge Weights: Weekday vs Weekend 193

B.3 Node (station) Strength in Monthly STBiGNs 199

B.4 Node (station) Strength in Hourly STBiGNs 203

xxi

Physics Informed Neural Networks

Deployment and Evaluation in Sparse Data Applications

Dinh Viet Cuong

Abstract

Neural networks have demonstrated remarkable success in various domains but

they often struggle with generalization beyond their training data. To address

these limitations and enhance the robustness of machine learning models, this the-

sis explores the integration of domain knowledge into neural networks through

two approaches, network analysis and ordinary differential equations (ODEs). We

begin by investigating neural network performance in diverse tasks, such as hy-

perglycemia/hypoglycemia diagnosis using exosome profiles and oxygen uptake

estimation from sensor measurements. The study then progresses to more structured

data with complex networks.

Subsequently, we incorporate network structure into machine learning using

graph neural networks, applying this method to an air quality forecasting task where

locations and their correlations form a network. An alternative approach is then

investigated by integrating ODE systems describing dynamical systems into a data-

driven machine learning framework. This comprises the development of advanced

techniques to enable neural networks to learn underlying physics, including ODE

Normalization, Gradient Balancing, Causal Training, and Domain Decomposition.

These methods address challenges in training with stiff systems across large domains.

The frameworks in this research are then validated using simulated data for

the Lorenz system and a system of ODEs modelling mosquito populations. This

work is further developed to accommodate real-life observations, by making adjust-

ments to model inputs, neural network architecture, and activation functions. This

extended framework is then evaluated against real-world mosquito counts in an

1

Physics Informed Neural Networks in Sparse Data Applications

inverse problem setting, learning relationships between meteorological conditions

and mosquito development. Our results demonstrate that incorporating domain

knowledge into neural networks enhances model generalizability, improving both

accuracy and extrapolation capabilities. Moreover, this approach maintains the

explainability of the added knowledge while leveraging the flexibility of machine

learning models.

2

Chapter 1

Introduction

This research dissertation explores the use of machine learning, principally neural

networks in solving problems across real world application areas. It begins as a

journey to understand the strengths of these machine learning functions, identifying

weaknesses in the face of challenges presented by practical application areas such as

health, climate and sport. Often, these challenges result from the lack of sufficient

training data, an issue which is more commonplace than was expected when this

research was undertaken.

In this opening chapter, we provide an introduction and motivation for the different

studies presented, focusing on the advancements and applications of neural networks

across various domains. We begin with a brief overview of neural networks, describing

their biological inspiration, fundamental structure and learning mechanisms. We

then discuss the evaluation of architectures such as recurrent, convolutional and

graph neural networks, as well as the integration of physics laws that describe a

real-world phenomenon. We then outline the research questions that guide this

research, including the incorporation of prior knowledge, graph-based modeling

and the application of physics-informed neural networks for solving dynamical

systems. Finally, we present an overview of the dissertation’s structure and list of

the publications associated with this research.

3

Physics Informed Neural Networks in Sparse Data Applications

1.1 Introduction to Neural Networks and their

Application Areas

A neural network [1] is a mathematical model inspired by the biological neural

network in animals [2]. The computational unit of the model is a neuron. A neuron

receives inputs, typically real-valued numbers, either from other neurons or from data

representations. It processes these inputs to produce an output, also in the form of a

real valued number. Each input is associated with a weight, which represents the

importance of that input with respect to the overall output. The output of the neuron

is computed as the weighted sum of its inputs. This weighted sum can optionally pass

through an activation function, providing nonlinearity to the neuron. A neuron can

be thought as a decision maker, making decisions by weighting evidence from various

inputs. For example, consider deciding whether to go outside for a run. Factors

such as the current temperature outside, the probability it will rain, or your energy

level, the amount of time you have, all might play a role. Each factor is assigned

a weight based on its importance with the final decision based on the combined

information from these weighted factors. A single neuron is too simplistic to make

complex decisions on its own, combining multiple neurons together make it possible to

model more sophisticated decision making. Neurons are often organized into network

structures, where each node represents a neuron and a directed edge indicates that

the output of one neuron is the input to another. Usually organized into layers,

these layers consists of neurons that share a similar functionality. Layers receive

inputs from other layers and produce outputs that feed into other layers. Multi-layer

Perceptrons (MLP), described in [2], organize the neurons in a feed-forward manner,

with each layer being fully connected to both preceding and subsequent layers. Thus,

the first layer makes decisions directly on the input data, while subsequent layers

refine these decisions by building on outputs from previous layers. This arrangement

facilitates the learning of increasingly abstract representations, ultimately enabling

the modeling of complex decision-making processes.

4

Physics Informed Neural Networks in Sparse Data Applications

A single neuron, as well as the entire neural network as a whole, can learn to

make good decisions by adjusting the weight of each input, which are referred to

the trainable parameters of the neural network. The learning process of a neural

network can be performed automatically by a computer algorithm based on the

information provided by a set of samples, known as the training set. This training

is often formulated as an optimization problem, wherein an objective function, also

called the loss function, is minimized. The objective function is designed to reflect

reality, specifically matching the model with the training data or with specific domain

knowledge. The most common approach to training neural networks today is based

on the gradient descent method [3]. The method step-by-step updates the trainable

parameters by moving in the direction opposite to the gradient of the objective

function, which is the direction that reduces the loss.

The simplest form of neural network, linear regression (LR), was proposed as

early as 1795 by Johann Gauss [4]. Inspired by the computational model of biological

neurons proposed by [2], Frank Rosenblatt introduced the multi-layer perceptron

model in 1958 [1]. Rosenblatt’s MLP had the first hidden layer randomized and

non-trainable, while the output layer was learnt. In 1967, [5] trained MLPs with

stochastic gradient descent [6]. The algorithm updates model parameters based on

random subsets of training data, allowing for efficient and scalable optimization. It

remains one of the most widely used methods for training neural networks today. In

1970, Seppo Linnainmaa published the back-propagation algorithm, which provided an

efficient mechanism for calculating derivatives required in gradient-based optimization

methods [7]. Today, backpropagation is implemented widely in modern deep learning

frameworks, such as PyTorch [8] and TensorFlow [9].

Neural networks are now a core part of artificial intelligence (AI), machine learn-

ing (ML), and particularly deep learning today. They serve as a central driving force

behind various advancements. Many impactful applications use neural networks as

their machine learning model, including recommendation system [10], face recogni-

tion [11], object recognition [12], image generation [13], speech recognition [14], speech

5

Physics Informed Neural Networks in Sparse Data Applications

synthesis [15], AI assistant chatbots [16, 17], machine translation [18]. Neural net-

works have been successfully deployed across diverse fields, including healthcare [19],

bioinformatics [20], finance [21], agriculture [22], climate science [23], and information

technology [24], to name a few. In many cases, neural networks have outperformed

traditional machine learning models, achieving state-of-the-art results [25].

1.1.1 Issues with Neural Networks

Despite their impressive success, neural networks are inherently limited by several

challenges, particularly regarding the large volume of data required for effective

training [26, 27] and their poor generalization capabilities [28]. The predictions made

by a machine learning model can be considered as either interpolation, predicting

within the range of the training data, or extrapolation, predicting beyond the

distribution of the training samples. When sufficient training data is available, neural

networks have a high capacity to interpolate these examples, leading to accurate

decision-making [29]. However, when the data is sparse, meaning the unseen sample is

likely to fall out of the training distribution, resulting in a poor generalization from the

training biases and extrapolation. Furthermore, neural networks are frequently over-

parameterized in order to achieve strong performance [29]. Over-parameterization

lets these models learn highly complex mappings from the input space to the output

space. While this enables neural networks to model complex relationships within

the data, it also results in a very large hypothesis space, which allows them to fit

almost any dataset [30], irrespective of how well the learned mapping aligns with the

underlying nature of the data. This phenomenon, known as overfitting, degrades its

ability to perform well on unseen data.

1.1.2 Neural Network Architectures

To address these limitations, researchers have made significant improvements for

neural networks. The authors in [26, 31] identify several ways to incorporate prior

knowledge into neural networks, such as enhancing the neural network architecture

6

Physics Informed Neural Networks in Sparse Data Applications

and adding regularization terms in the loss function during training. The differences

in neural architectures arise from the design of individual neurons, the arrangement

of neurons within layers, and the overall arrangement of the layers themselves. These

structural differences significantly impact the performance and suitability of neural

network models for different tasks [32].

A neural network architecture that has been gaining considerable attention in

recent years is the Graph Neural Network (GNN), which is specifically designed

to manage the complexity of graph-structured data. A graph, also referred to as a

network, consists of a set of nodes (or vertices) and a set of edges (or links) that

establish connections between pairs of nodes. Typically, nodes represent entities

of interest, such as locations, stations, airports, assets, etc., while edges denote

relationships or connections between these nodes. The definition of these connections

can be derived from domain-specific knowledge, including physical connections,

semantic similarity, statistical correlations, and more. The idea behind GNN to

handle graph structures is to replicate the graph’s edges as connections among

neurons or layers within. As a result, GNNs can make predictions at a given node by

aggregating information from the node itself as well as from the nodes to which it is

connected. This aggregation mechanism allows GNNs to model interactions between

nodes and to capture complex relationships in the data, thus making GNNs suitable

to model structured data. In recent years, GNNs have emerged as a powerful machine

learning model capable of learning from complex network systems, as well as network

representations of flat data. The capabilities of GNN have been shown in many

areas, including social networks [33], transportation networks [34], chemistry [35],

climate [36], computer vision [37], and natural language processing [38].

1.1.3 Physics-Informed Neural Networks

Another effective approach to improving the performance of neural networks is by

improving the objective function, specifically through the addition of regularization

terms to the loss function. This addition encourages the model to converge to more

7

Physics Informed Neural Networks in Sparse Data Applications

preferable solutions, ultimately improving its performance. Regularization terms

can be utilized to incorporate scientific knowledge of the underlying processes into

the model. Domain experts often have prior knowledge about the relationships

present in the data, usually expressed in the form of mathematical equations. By

incorporating these equations into the objective function as additional regularization

terms, the model can be informed to learn solutions that are not only data-driven

but also consistent with established domain-specific knowledge. This approach is

often referred to as physics-informed neural networks (PINNs). For instance, [39]

incorporates the conservation laws of mass and momentum, along with equations de-

scribing the pressure-area relationship, to predict blood pressure in arterial networks.

Similarly, [40] used conservation laws to achieve energy consistency when emulating

climate models with neural networks. By embedding such physical laws into the

loss function, the trained neural network’s predictions become more physically con-

sistent, even for extrapolated samples, thereby significantly improving the model’s

generalization capabilities. Moreover, the integration of domain knowledge reduces

the reliance on large amounts of high-quality training data. With knowledge-based

regularization, the model can be trained effectively with less data, which does not

need to be of excellent quality [26]. This is particularly advantageous for applications

where acquiring high-quality data is challenging or costly.

1.2 Problem Statement

Motivated by the challenges and approaches presented above, this study aims to

extend the capabilities of neural networks for different tasks across heterogenos

domains. Thus, we investigate the applicability of different neural networks to

gain an understanding of their weaknesses for certain tasks but in particular, how

these machine learning models can be customized to better suit the task with which

they are faced. This will require a fairly broad set of investigations and analyses

but in doing so, we are asking one fundamental question: Can prior knowledge be

incorporated into neural networks to improve their overall predictive accuracy?

8

Physics Informed Neural Networks in Sparse Data Applications

Hypothesis. We hypothesize that integrating prior knowledge into neural

networks enhances their overall predictive performance, particularly in complex tasks

where there is limited data available.

Complex tasks often involve high-dimensional inputs, dynamic decision-making

processes, or relationships among entities, challenges that make simple models

insufficient and can require advanced algorithms. Neural networks, which often

contain tens of thousands of parameters, are powerful enough to handle a lot of

complex tasks. However, when the dataset is small (e.g., fewer than 1,000 or 10,000

samples), they often memorize the limited data (overfitting) rather than generalize it.

By incorporating domain knowledge, such as using graph representations to capture

relationships among entities or regularizing models with physical constraints, neural

networks can more effectively learn meaningful patterns while preserving physically

consistent predictions.

This is particularly valuable for machine learning problems where data collection is

expensive or time-consuming, limiting the available samples. In such cases, leveraging

prior knowledge helps mitigate overfitting, reduces the need for massive datasets, and

combines the power of data-driven models with the transparency and interpretability

of physics-based models. To test this hypothesis and the ways it could be explored,

we pose a series of research questions that will guide the direction of this study.

Research Question 1. How effectively can generic neural networks be deployed

as machine learning solutions in areas such as health and sports?

In order to address this research question, we explore the capabilities of con-

ventional neural network architectures in various application areas. We focus on

problems that are new and challenging, such as exosome classification in health and

oxygen uptake estimation in sports, where data is complex and limited. By applying

neural networks to these areas, we aim to identify how well they perform and what

limitations are exposed.

Research Question 2. Can graph neural networks be deployed to exploit the

structural information inherent in graph-based data?

9

Physics Informed Neural Networks in Sparse Data Applications

Graph models offer a powerful way to represent complex systems where entities

are interconnected, capturing relationships that traditional flat data representations

often overlook. In domains such as transportation and environmental science, the

interactions between components may play critical roles. For example, in a bike-

sharing system, the flow of bikes between stations forms a network that reflects user

mobility patterns and demand, which cannot be fully understood by analyzing stations

independently. Traditional neural networks struggle to capture these relationships

because they are not designed to exploit graph-structured data. GNNs have emerged

as a promising solution to this challenge, as they are specifically designed to process

and learn from graph-based data by considering both the features of the nodes and

the topology of the graph. By exploring this second research question, the goal is to

enhance neural networks to enabling the modeling of graph data, ultimately leading

to better predictive performance.

Research Question 3. Can neural networks be extended to accurately represent

and predict the behavior of dynamical systems governed by a system of ordinary

differential equations?

Purely data-driven neural networks often struggle to capture the underlying

physical laws that govern the data, leading to limited generalizability and inter-

pretability [28]. PINNs attempt to bridge this gap by embedding differential equations

directly into the learning process. However, training PINNs presents significant chal-

lenges, especially when dealing with stiff equations and multi-scale dynamics common

in real-world systems [26, 41, 42]. In this third research question, we would like to

address the training difficulties of PINNs, improving their capability to solve systems

of ordinary differential equations (ODEs). By overcoming these challenges, we can

train data-driven models that better adhere to physics-based dynamical systems,

particularly in complex, multi-scale scenarios like mosquito population dynamics.

Research Question 4. Can we determine how neural networks incorporate

external factors on dynamic system parameters and validate any solution using

real-world observational data?

10

Physics Informed Neural Networks in Sparse Data Applications

While PINNs have shown significant potential in solving inverse problems [26, 43],

they often neglect external factors that influence system dynamics. Accurate modeling

of biological systems, such as mosquito populations, requires taking into account

external influences such as meteorological conditions [44]. Incorporating external

forcing factors, such as air humidity and precipitation, is crucial for enhancing model

reliability and predictive accuracy [45–47]. Therefore, in this research question, the

goal is to extend the PINN framework to learn the effects of external factors on

dynamic system parameters directly from the data.

1.3 Thesis Structure

Throughout this dissertation, we present our work that addresses the posed research

questions. These contributions are supported by the following list of publications:

1. (PUB1) Exosomes Classification from Surfaced Enhanced Raman Spectroscopic

Data Using a Multilayer Perception

Dinh Viet Cuong, John O’Sullivan, Nirod Kumar Sarang, Denise Burtenshaw,

Paul Cahill, Tia E Keyes and Mark Roantree (ready for submission)

2. (PUB2) Estimating Oxygen Uptake in Simulated Team Sports Using Machine

Learning Models and Wearable Sensor Data

Dermot Sheridan, Arne Jaspers, Dinh Viet Cuong, Tim Op De Beéck, Niall

M. Moyna, Toon T. de Beukelaar, Mark Roantree

PLOS ONE, February 2024

3. (PUB3) Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal

Modeling

Dinh Viet Cuong, V. M. Ngo, P. Cappellari and M. Roantree,

IEEE Open Journal of Intelligent Transportation Systems, vol. 5, pp. 115-131,

2024, doi: 10.1109/OJITS.2024.3350213

4. (PUB4) Graph-Based Optimisation of Network Expansion in a Dockless Bike

11

Physics Informed Neural Networks in Sparse Data Applications

Sharing System

Mark Roantree, Niamh Murphy, Dinh Viet Cuong, Vuong M. Ngo

2024 IEEE 40th International Conference on Data Engineering Workshops

(ICDEW), pp.48-55, 2024.

5. (PUB5) Managing Large Dataset Gaps in Urban Air Quality Prediction: DCU-

Insight-AQ at MediaEval 2022

Dinh Viet Cuong, Phuc H Le-Khac, Adam Stapleton, Elke Eichlemann,

Mark Roantree, Alan F Smeaton

MediaEval’22: Multimedia Evaluation Workshop, January 13–15, 2023, Bergen,

Norway and Online, CEUR-WS Proceedings

6. (PUB6) Adapting Physics-Informed Neural Networks to Improve ODE Opti-

mization in Mosquito Population Dynamics

Dinh Viet Cuong, Branislava Lalić, Mina Petrić, Binh Nguyen, Mark

Roantree

PLoS ONE 19(12): e0315762. https://doi.org/10.1371/journal.pone.0315762

7. (PUB7) Physics-Based Dynamic Models Hybridisation Using Physics-Informed

Neural Networks

Dinh Viet Cuong*, Branislava Lalic*, Mina Petric, Vladimir Pavlovic, Ana

Firanj Sremac, Mark Roantree (Submitted for publication.)

The remainder of the dissertation is structured as follows:

• In Chapter 2, we present a detailed overview of the studies that form this disser-

tation. This chapter covers introductions to exosome classification and oxygen

uptake estimation, graph-based methodologies for analyzing bike-sharing sys-

tem data, and air quality forecasting. Additionally, we discuss the current state

of PINNs for both forward and inverse problems. A brief introduction to the

datasets used in the experiments is also included.

• In Chapter 3, we provide a comprehensive literature review across multiple

12

Physics Informed Neural Networks in Sparse Data Applications

domains relevant to this work. This includes the application of neural net-

works for exosome classification and oxygen uptake estimation, graph-based

approaches for analyzing bike-sharing system data, graph neural networks for

air quality forecasting, and related works of techniques for PINNs for forward

and inverse problems.

• Chapter 4 addresses Research Question 1, focusing on the capability of

neural networks to tackle novel machine learning tasks. We present two

studies: exosome classification and oxygen uptake estimation. These works are

documented in PUB1 and PUB2, respectively.

• In Chapter 5, we model data using graphs for Research Question 2. The first

part introduces a systematic framework for constructing and analyzing data

using graph representations, published in PUB3 and supported by PUB4.

The second part presents a novel graph neural network approach for air quality

prediction, supported by PUB5.

• Chapter 6 investigates Research Question 3 which addresses difficulties in

training PINNs. Enhanced techniques are proposed to improve convergence

and accuracy when solving ODE systems, validated through the Lorenz system

and a case study on mosquito population dynamics. These results are published

in PUB6.

• Chapter 7 examines Research Question 4, which seeks to improve PINNs for

parameter estimation in dynamical systems. The proposed method incorporates

the effects of external forcing on system behavior and is evaluated using

mosquito count observations. The proposed method is tested with observation

data of mosquito counts. This work is detailed in PUB7.

• Finally, Chapter 8 summarizes the contributions of this dissertation and dis-

cusses its limitations and potential directions for future work.

13

Chapter 2

Problems & Datasets

In this chapter, we provide a detailed introduction to the projects explored in this dis-

sertation, along with an overview of the datasets used in each study. We first present

the application of neural networks to novel tasks, including exosome classification

using surface-enhanced Raman spectroscopy and oxygen uptake estimation from

wearable sensor data. Next, we introduce graph-based approaches, beginning with

the construction and analysis of bike-sharing system data as graphs and then the

development of graph neural networks with attention mechanisms. We then explore

physics-informed neural networks, focusing on improving their training methodolo-

gies and validating them on mosquito population modeling. Finally, we discuss

the application of PINNs to inverse problems in mosquito modeling, incorporating

enhancements to account for external forcing factors.

2.1 Neural Networks

2.1.1 Exosome Classification

Exosomes are tiny particles released by all cells and found in all body fluids. They

have shown to carry a proteomic profile that reflect the condition of their original

cells, which means they can provide a lot of information about a person’s health or

disease state [48]. Because of their widespread presence in the body fluids and a close

14

Physics Informed Neural Networks in Sparse Data Applications

relationship with their cells of origin, exosomes are becoming increasingly important

for diagnosing and treating various conditions. For example, they have been used

to discriminate between cancerous and non-cancerous cells, such as distinguishing

exosomes from pancreatic, lung, and breast cancer cell lines [49–51]. Exosomes have

also been used to evaluate disease progression [52].

Raman spectroscopy is a powerful tool for studying exosomes. It provides a

detailed molecular fingerprint of the sample. When combined with advanced data

analysis, Raman spectroscopy can provide valuable diagnostic output. To enhance

the amplitude of the signal, surface enhanced Raman spectroscopy is widely used,

particularly in bioanalysis [53, 54]. Using SERS to study exosomes has gained

popularity over the past few years, especially when paired with data analysis methods

that can effectively discriminate the signals. The initial focus of exosome analysis

using SERS has been linear data analysis techniques such as principal component

analysis (PCA) for classifying exosomes from various cellular origins. For example,

studies by [49] and [50] demonstrated the use of PCA and variants to differentiate

exosomes from pancreatic and lung cancer cell lines. However, linear methods often

face limitations when the replationship is nonlinear.

An alternative approach, neural network-based models, have shown significant

promise. The use of neural networks has been demonstrated to outperform traditional

linear models, thanks to their superior capability in extracting and learning non-linear

patterns from the data. Exosome SERS-based studies of breast cancer subtypes [51]

utilized a MLP model, achieving an impressive classification accuracy of 95.45%.

Similarly, deeper neural networks, including one-dimensional convolutional neural

networks (1D CNN) and residual networks (ResNet), have shown high performance in

classifying cancer-derived exosomes, such as in distinguishing lung cancer from healthy

controls [52]. These results indicate that neural networks are highly effective for

SERS analysis of exosomes. In this context, we would like to see if neural networks

can distinguish exosomes secreted from normal and dysfunctional human aortic

endothelial cells. These cells were grown under both normal and high blood sugar

15

Physics Informed Neural Networks in Sparse Data Applications

(hyperglycemic) conditions to simulate endothelial dysfunction, which is common in

cardiovascular inflammation.

Endothelial dysfunction is an early sign of developing atherosclerosis, especially

in people with type 2 diabetes (T2DM). Early detection of this dysfunction is

difficult because T2DM often starts without obvious symptoms. Therefore, we

need a way to distinguish between healthy blood vessel cells and those that are

starting to malfunction due to high blood sugar [55]. Exosomes released from

hyperglycemic endothelial cells might help us diagnose these early changes. Recent

research has shown that exosomes derived from endothelial cells play a crucial role in

the development of atherosclerosis [56]. Thus, analyzing circulating exosomes could

serve as an early biomarker for endothelial dysfunction. For this reason, it is crucial

to investigate the use of more robust models, like neural networks, to improve the

predictive accuracy for detecting this condition.

Dataset

Table 2.1 illustrates the breakdown of data. A total of 2,699 spectra were collected

from exosomes from normal media (i.e., healthy), those with hypoglycemia, and

those with hyperglycemia. They were recorded from 54 surfaces with each surface

yielding 50 spectra. Each spectrum consists of approximately 2,050 absorbance values

corresponding to the spectral range of 400 to 1,800 cm−1. An example spectrum is

illustrated in Figure 2.1. To reduce any potential negative impact of the imbalance

across classes on machine learning experiments, an even distribution across each

class is maintained with 18 surfaces or 900 spectra per class.

Table 2.1: Exosome Dataset. Each surface corresponds to a single sample, and all
spectra from the same surface are acquired under identical conditions. Each surface
yields 50 spectra, with each spectrum represented as a vector of approximately 2,050
absorbance values covering the spectral range of 400 to 1,800 cm−1.

class Total Modeling set Test set
#surfaces #spectra #surfaces #spectra #surfaces #spectra

Healthy 18 899 16 799 2 100
Hypo 18 900 16 800 2 100
Hyper 18 900 16 800 2 100

16

Physics Informed Neural Networks in Sparse Data Applications

Figure 2.1: An example exosome spectrum.

The dataset was randomly split into two subsets: a modeling set and a final test

set. Due to the fact that spectra from the same surface come from the same sample

and environment which make them very similar, spectra from the same surface are

kept in the same set. The test dataset consists of 6 surfaces, with 2 surfaces or 100

spectra per class while the modeling set has 48 surfaces in total and 16 surfaces or

800 spectra per class. Initially the modeling set is used for an 8-fold cross validation

hyper-parameter tuning. Then the set is again used as the training set for the final

neural network. At this point, the test dataset is used to determine the final accuracy

of the method.

2.1.2 Oxygen Uptake

Oxygen uptake (VO2), which measures the volume of oxygen consumed by the body

per unit of time, is an essential indicator of aerobic endurance [57]. For example,

soccer players with higher VO2 max covering more total distance and intensity

17

Physics Informed Neural Networks in Sparse Data Applications

parameters during games, suggesting a direct relationship between high VO2 max

and the ability to sustain greater physical demands [58]. Oxygen uptake is often

measured using maximal oxygen uptake tests, which are often performed in controlled

laboratory settings. This test involves analyzing the respiratory gases to calculate

oxygen uptake during a standardized exercise protocol. However, frequently taking

such invasive, standardized tests is often impractical, especially during competitive

periods. Therefore, it is important to find easier ways to track VO2 over time, so

coaches and trainers can monitor training and fitness levels throughout the season.

Internal load, estimated oxygen uptake, primarily comes from the forces athletes

generate to move. These movements apply forces to the environment, which then react

back on the athlete’s body, creating external loads. While measuring internal load is

often expensive, and time-consuming, external load can be conveniently tracked using

lightweight, wearable sensors. Understanding how internal and external loads relate is

important because it helps us assess how an athlete is adapting to training, revealing

changes in their fitness level or fatigue [59]. However, accurately measuring these

movements is a challenge [60]. Among technologies for monitoring loads, like GPS

or local positioning systems [61], inertial measurement units (IMUs) are becoming

popular for tracking external load. An IMU typically combines 3-dimensional

accelerometers, gyroscopes, and magnetometers into one device, which captures

high-frequency data, making it ideal for monitoring high-intensity actions [62]. The

sensor signals are then processed into indicative metrics of external load, like mean

amplitude deviation [63], or accelerometry-based indicators by [64]. Wearable sensors

have also been used to estimate oxygen consumption by transforming their data into

different formats [63, 65, 66]. In this study, we aim to explore how well IMU devices

can predict oxygen uptake. Specifically, we experiment with different placements

of IMU sensors on the body to capture external loads and test different ways of

representing the sensor data for machine learning models.

Another challenge is to model the connection between data from wearable sensors

(external load) and the athlete’s internal response [60]. Classical machine learning

18

Physics Informed Neural Networks in Sparse Data Applications

models like random forests and XGBoost have shown promising results when using

inputs such as heart rate, breathing frequency, and body motion to estimate VO2

across different types of exercises, including walking, running, and cycling [65, 67, 68].

Despite that, these classical models often struggle with capturing complex, non-linear

relationships, especially when the data is sequential over time. Neural networks, such

as LSTM and temporal convolutional networks [69], have been employed to enhance

predictive accuracy and capture nonlinearities over time. Recent studies have shown

that these models outperform classical methods in estimating VO2 during diverse

activities, leveraging inputs like heart rate, speed, and respiration to provide more

precise and personalized predictions [66, 70–72]. In Section 4.2, we compare the

performance of different neural network architectures, considering different sensor

placements and ways of representing data, to determine which approach works best

for estimating VO2 during outdoor jogging and simulated team sports activities.

This comparison will help us understand the best method for using wearable sensors

to monitor oxygen consumption during high-intensity sports activities.

Data Collection

Data collection involved a group of 5 male team players where each participant

completed two separate sessions. The first session took place in a controlled laboratory

environment and included a resting phase, a sub-maximal exercise phase, and a

maximal graded exercise test on a treadmill. The second session was conducted on a

synthetic outdoor pitch and included a steady-state jogging trial and a simulated team

sports circuit, designed to mimic team sports activities. Throughout both sessions,

participants were equipped with multiple wearable sensors: a Cosmed K5 metabolic

gas analyser for breath-by-breath VO2 measurements, a Zephyr BioHarness for heart

rate (HR) and breathing rate (BR) monitoring, and multiple Shimmer 3 inertial

measurement units placed on the torso, right tibia, and left wrist to capture high-

resolution motion data at 250 Hz. Figure 2.2 show examples of IMU raw data from

the Accelerometer and Gyroscope during Treadmill Running, Outdoor Running, and

19

Physics Informed Neural Networks in Sparse Data Applications

a Simulated Circuit. These sensors were synchronised to ensure accurate time-aligned

data across physiological and biomechanical domains.

(a) Accelerometer signals during Treadmill
Running

(b) Gyroscope signals during Treadmill Run-
ning

(c) Accelerometer signals during Outdoor
Running

(d) Gyroscopec signals during Outdoor Run-
ning

(e) Accelerometer signals during Simulated
Circuit

(f) Gyroscope signals during Simulated Cir-
cuit

Figure 2.2: Examples of IMU raw data during 3 different activities: Treadmill
Running, Outdoor Running, and a Simulated Circuit. The blue line is the x-axis,
the orange line is the y-axis and the green line is the z-axis.

Table 2.2 summarizes the dataset. The raw data consists of high-resolution sensor

data collected from multiple wearable devices. The dataset includes breath-by-breath

VO2 measurements (in mL · kg−1 ·min−1), HR (beats per minute), and BR (breaths

per minute) at a sampling rate of 1 Hz. The IMU sensors capture six-axis motion data,

20

Physics Informed Neural Networks in Sparse Data Applications

including 3D accelerometer (x, y, z) and 3D gyroscope (angular velocity in x, y, z),

at 250 Hz. These raw IMU signals are downsampled to 125 Hz to facilitate data

alignment with physiological parameters. The dataset also incorporates contextual

variables, such as activity labels (rest, treadmill running, outdoor running, and

simulated circuit) and individual participant characteristics (height, weight, age,

VO2max).

Table 2.2: Summary of the oxygen uptake dataset.

Description Value
Number of Subjects 5
Number of Columns 40

Sensor Columns Oxygen uptake, Accelerometer,
Gyroscope, Heart rate, Breathing rate

Contextual Columns Height, Weight, Age, VO2max, Activity labels
Number of Rows 3,952,923
Breath Count 12,195
Total Duration of Data 527 minutes

2.2 Graph Modeling

2.2.1 Graph Data Representation: Bike Sharing System

Modeling data as networks has gained considerable attention in the last two decades.

Network science provides powerful tools that yield insightful results in many different

areas, including social science ([73, 74]), transportation ([75, 76]), climate ([77, 78]),

biology ([79]), and brain activity ([80, 81]). A network, or graph, is composed of

nodes (vertices) and edges (links) that connect pairs of nodes. A common approach

to constructing networks involves treating spatial entities of interest as nodes, such

as cities, countries, grid cells, or transportation stations. Edges are used to represent

intrinsic connections, interactions, similarities in temporal behavior, or functional

relationships between nodes. A dataset can be transformed into a stationary network

for analyzing overall behavior, or into a time-varying network to explore the dynamic

nature of the system. Network analysis enables the identification of important

21

Physics Informed Neural Networks in Sparse Data Applications

locations, community structures, temporal patterns across locations, and interactions

between spatial elements over time.

In recent years, bike-sharing systems have become increasingly popular worldwide.

These systems offer a convenient way for travelers to pick up a bike, travel, and drop

it off. This approach offers a low-cost, efficient mode of transportation that addresses

the first-and-last mile problem, reduces urban traffic congestion, and increases the

overall efficiency of urban transportation systems. In addition, cycling is a healthy

and environmentally friendly means of travel. However, the rapid expansion of

bike-sharing systems also presents several challenging issues. The lack of bikes at

certain locations and the surplus at others can lead to a waste of resources and poor

user experiences. This raises the problem of effectively and efficiently rebalancing

the system. Understanding travel patterns and traffic demand is essential to solve

these challenges. Moreover, the distribution of pick-up and drop-off stations plays

a critical role in maintaining user satisfaction and system efficiency. Well-placed

stations provide great convenience for users, while too many stations can lead to

high maintenance costs. Thus, selecting optimal locations for stations is crucial for

managing a bike-sharing system effectively.

Traditionally, bike-sharing systems rely on docking stations placed at fixed

locations across a city, where customers could collect and return bikes. More recently,

dockless bike-sharing services have emerged, allowing bikes to be picked up and

dropped off at more flexible locations, referred to as virtual stations. It is the best

interest to continuously monitor bike usage and determine the optimal configuration

of these virtual stations. Essentially, the problem can be posed as follows: “How

similar is the current virtual station network to the optimal network configuration that

maximizes bike usage?” Normally, bike-sharing systems make their data available

in a tabular format. Additionally, station location and trip data must be accessible

at different levels of granularity to provide both a high-level overview of network

activity and more fine-grained analysis where needed. Any solution must account

for the fact that decisions made at a global level can have negative consequences

22

Physics Informed Neural Networks in Sparse Data Applications

for individual stations, while changes made locally to fix an issue may impact the

network as a whole. In Section 5.2, we would like to propose a systematic method

for applying complex networks in bike-sharing analysis. The framework should meet

requirements from bike sharing system that: is a high-level visualization to highlight

the busiest and least-used stations and routes, support time-based drill-downs for

analyzing sub-networks over flexible intervals, identify station similarities across

spatial and temporal dimensions, and conduct a comprehensive analysis of station

activity patterns in relation to all other stations to reveal both common and unique

travel behaviors.

Dataset

Our original dataset comprised data from 86 bike stations and recorded a total of

52,936 rentals between June 2020 and September 2021, as summarized in Table 2.3.

This dataset also includes detailed information on both pick-up and drop-off times

and locations. However, many entries in the dataset involve random pick-up and

drop-off locations, which require data cleaning before its integration into our graph

networks.

Table 2.3: Dataset Overview

Measures Original Dataset Cleaned Dataset
Duration of data June 2020 - Aug 2021
Station count 86 stations
Rental count 52,936 trips 36,181 trips
Max trips (per station) 2,775 trips 1,936 trips
Min trips (per station) 97 trips 82 trips

Firstly, we evaluate whether the pick-up and drop-off locations correspond to

existing stations. If these locations are within a 1km radius of at least one station,

they are reassigned to the nearest station. If they are located more than 1km away

from any station, they are excluded from the dataset. Additionally, trips have both

pick-up and drop-off locations at the same station, resulting in what we define as a

“loop-trip”. In this first step, 654 (approximately 1.2%) are reassigned, while 6,650

trips (around 12.5%) are removed.

23

Physics Informed Neural Networks in Sparse Data Applications

Secondly, certain trips in the original dataset may have been created due to system

errors or user mistakes. These errors could stem from app compatibility, mistakes in

app usage, and failures in properly starting or ending a trip. Specifically, very short

trips are defined as those lasting less than 10 minutes or covering a distance of less

than 100 meters, while very long trips are defined as those exceeding 1 day in duration.

The thresholds for these parameters are determined via a pre-experiment analysis

on the original dataset. As a result, in the second step, 10,105 trips (approximately

19%) are removed.

The cleaned dataset now contains 36,181 trips across 86 stations in Dublin city,

Ireland, as summarized in Table 2.3. On average, there are 2,412 trips monthly

across all stations, with each station averaging 28 trips per month. The busiest

station recorded 1,936 trips over 15 months,equivalent to 129 trips per month, while

the least frequented station had only 82 trips over the same period, averaging 5 trips

per month.

2.2.2 Graph Neural Networks: Air Quality

Air quality, a critical aspect of environmental and public health, has gained increasing

prominence in recent years due to the rapid growth of urbanization and industrial-

ization [46, 82]. As air pollution continues to impact the health and well-being of

millions worldwide [83], the need to monitor and manage air quality has become

more urgent than ever. Air quality forecasting, a key component in addressing this

global challenge, serves as an indispensable tool for policymakers, researchers, and

citizens alike. By predicting future levels of air pollutants, air quality forecasting

enables informed decision-making and the implementation of effective strategies to

mitigate pollution, safeguard public health, and promote sustainable development.

One of the mainstream methods for air quality forecasting are mainly is data-

driven statistical approaches, commonly referred to as machine learning, have proven

effective in predicting air quality by relying on extensive historical data to identify

recurring patterns. Notable machine learning techniques include linear regression [84],

24

Physics Informed Neural Networks in Sparse Data Applications

multi-layer perceptron [85, 86], long short term memory [87, 88], and graph neural

networks [89, 90]. However, current machine learning methods still face limitations

when it comes to effectively extracting patterns in the intricate time-space relation-

ships that govern air quality. Many existing models tend to focus on isolated spatial

or temporal dimensions, which may hinder their ability to fully capture the complex

inter-dependencies between time and space in air quality data. Other limitations

come from the mathematical model of the machine learning models. For instance,

RNNs typically employed for time series data, are known for their slow training and

prediction times due to their recurrent nature. RNNs also struggle to learn long-

term dependencies. In other models, graph neural networks can inherently capture

spatial relationships, they may not be effectively model the temporal dynamics of

spatial-temporal data, as the adjacency matrix is often predetermined or fixed along

the temporal axis.

To address these limitations, in Section 5.3, we introduce the attention mechanisms

into both spatial and temporal dimensions. Attention mechanisms enable the model

to identify which the most influential factors and allocate more focus on them. These

mechanisms have proven to be highly effective in enhancing the performance of

deep learning models across various domains, including natural language processing,

computer vision, signal processing, etc. By applying attention to both temporal

and spatial dimensions, information at a specific location is not only processed

individually but is also informed by data from other locations, the same happens

for information at a given timestep which is processed as a result of surrounding

timesteps or even those further away. Therefore employing temporal and spatial

attention layers concurrently enables the model to learn spatial-temporal information

simultaneously.

Dataset

Table 2.4 provides an overview of the dataset used in our experiments. The dataset

was collected from 10 monitoring stations located in Hanoi, Vietnam, over a period

25

Physics Informed Neural Networks in Sparse Data Applications

of more than 18 months, from January 1, 2020, to October 31, 2021. The locations of

these stations are shown in Figure 2.3. The dataset includes pollutant concentration

levels, specifically PM2.5 values, as well as auxiliary features such as temperature

and humidity. As an example, Figure 2.4 illustrates the PM2.5, humidity, and

temperature measurements recorded at a station throughout the data period. The

data was collected at intervals of a few minutes and subsequently pre-processed into

hourly timeframes. In total, the dataset comprises 115,600 records across the 10

stations, covering approximately 90% of the entire period.

Table 2.4: Summary of the air quality dataset.

Description Value
Locations 10 stations in Hanoi, Vietnam
Date Range January 1, 2020 – October 31, 2021
Columns PM2.5, Humidity, Temperature (Hourly Data)
Total Rows 115,600 rows

Figure 2.3: The 10 considered air quality monitoring stations in Hanoi, Vietnam

2.3 Physics-Informed Neural Networks

2.3.1 Physics Informed Neural Networks

Recent advancements in computational capabilities and the vast increase in data

availability have made data-driven approaches a leading strategy in both research

and applications. Typically, these approaches involve training neural networks to

26

Physics Informed Neural Networks in Sparse Data Applications

(a) PM2.5

(b) Humidity

(c) Temperature

Figure 2.4: Examples of air quality data at a station.

27

Physics Informed Neural Networks in Sparse Data Applications

minimize discrepancies between model predictions and observed data. However, this

purely data-driven approach has some limitations, such as poor interpretability [91],

limited generalization on unseen data [28], and a need for large amounts of training

data [26].

Physics-informed neural networks [43] present an alternative for cases where the

data is governed by physical laws, often represented as differential equations. In this

approach, physical laws are embedded directly into the learning process by adding

extra loss functions, minimized along with the traditional data-fitting objective. This

approach attempts to both fit observational data and approximate the underlying

governing equations. As a result, PINNs are capable of respecting physical laws,

enhancing generalizability, and revealing latent patterns from data. This framework

can also solve forward problems (predicting system states) and inverse problems

(identifying system parameters) simultaneously. Applications of PINNs span a wide

range of fields, as surveyed in [26, 92–96].

Despite their potential, PINNs still face challenges in handling multi-scale and

stiff solutions [26, 41, 42]. Several advancements have been made to enhance

the original framework of PINNs introduced in [43]. These include new neural

network architectures [41, 42, 97, 98], adaptive activation functions [99, 100], and

improvements in multi-task training by adaptively adjusting loss weights [42, 101, 102].

Researchers have also experimented with the distribution of collocation points [103–

106], sequential learning approaches for preserving causality [107–110], and domain

decomposition methods to improve convergence and accuracy by training PINNs on

subdomains [111–113].

In Chapter 6, we aim to further extend the capabilities of PINNs to tackle

extremely complex and multi-scale dynamical systems, using mosquito population

modeling as a case study [44]. We propose a set of improvements aimed at overcom-

ing existing challenges in PINN training, which include systematic normalization

procedures, advanced loss weighting strategies for diverse scales of the governing

equations, more refined training phases for better initialization and convergence, and

28

Physics Informed Neural Networks in Sparse Data Applications

simplified domain decomposition techniques. By enhancing these methods, we aim

to make PINNs applicable to more complex, real-world dynamical systems. The

proposed method will be validated on the popular Lorenz system and applied to a

mosquito population model, an ODE system chosen for its practical relevance and

multi-scale dynamics across mosquito life stages within a large domain.

2.3.2 Inverse Problems: External Forcing

Physics-based dynamic models (PBDMs) are simplified representations of intricate

dynamical systems, capturing essential processes through a defined set of parameters

and variables. These models have extensive applications across research and technol-

ogy, ranging from predicting air temperature [114] to the spread of COVID-19 [115]

and cancer cell development [116]. “Physics-based modeling is powerful and effective

because it gives us a predictive window into the future based on understanding” [117].

This is possible because PBDM is designed to focus specifically on a particular class

of physical systems or processes, creating a generalized representation applicable

within that scope. However, the accuracy of PBDMs is highly dependent on their

parameterization, which is often suboptimal, resulting in uncertainties in their pre-

dictions. Refining these parameters is an inverse problem, where the objective is

to estimate model parameters based on observed data. This is a key challenge in

improving the performance of PBDMs. Solving inverse problems is essential for

enhancing both the predictive accuracy.

PINNs offer a potentially powerful tool for solving inverse problems, especially

when dealing with limited data. PINNs have been applied to a diverse range of

inverse problems, including parameter estimation in nano-optics and metamateri-

als [118], subsurface flow modeling [119], structural engineering [120, 121], biological

systems [96, 122], civil structures [120], etc. However, existing implementations of

PINNs do not incorporate external factors that may influence system dynamics.

Accurate identification of both internal and external factors that influence the

state of a system over time is essential for ensuring the reliability and accuracy of

29

Physics Informed Neural Networks in Sparse Data Applications

model predictions. Data-driven determination of external forcing factors based on

historical data allows for the identification of new, or the better parameterization of

identified forcing factors and system responses. The identification of these forcing

factors and their modeling is an active research domain that lies at the intersection of

physical modeling and machine learning, and it extends into the areas of attribution

and causality analysis [45–47].

In Chapter 7, we build upon the PINN framework introduced in Chapter 6 where

only idealized annual variations in daily temperature is considered. However, based on

our understanding of mosquito population dynamics, we hypothesize that additional

meteorological factors such as air humidity and precipitation play a significant role

as external factors that influence the biological system. To incorporate a complete

set of measured meteorological data, we introduce a novel approach using parameter

networks that accept inputs from these meteorological conditions. Moreover, we

propose employing a Multi-branch Fourier-feature Multi-Layer Perceptron for the

parameter networks, which we expect to enhance generalization capabilities. Further-

more, we implement a modified absolute activation function that enforces parameter

non-negativity. The proposed framework is validated against real-world observational

data and benchmarked against traditional empirical formulas, demonstrating its

potential to improve upon existing models.

2.3.3 Mosquito Population Modeling

Arboviruses, transmitted by mosquitoes, can spread rapidly and cause major epi-

demics of diseases like malaria, dengue, Zika, Chikungunya, and West Nile Virus [123–

127]. Many approaches exist to model mosquito population dynamics and seasonal

variations to help predict disease risk, broadly categorized into mathematical and

statistical models. Mathematical models use laboratory and field data to parame-

terize life history traits such as the development and mortality rates of mosquito

life stages [44, 128–131]. Conversely, statistical models employ correlative and ma-

chine learning techniques to link vector abundance with various abiotic factors [132–

30

Physics Informed Neural Networks in Sparse Data Applications

138]. Statistical models generally need long-term time-series data from mosquito

surveillance, which is labor-intensive and prone to multiple sources of bias.

In Chapters 6 and 7, we explore the feasibility of using PINNs trained on an

ODE model of mosquito population dynamics to bridge the gap between traditional

mathematical modeling and modern data-driven approaches. Our goal is to retain

the physical and biological constraints that govern these systems, while also taking

advantage of the power of data science and machine learning techniques.

Dataset

Table 2.5 summarizes the data used in our experiments in Chapter 7, which comprises

two distinct datasets collected from Petrovaradin, Serbia. The training dataset spans

from February 2016 to December 2017, covering 700 days, and includes 680 daily

records of mosquito trap counts. The test dataset, used for validation purposes, was

collected over a longer period from January 2000 to December 2007, encompassing

2,921 days. It consists of 179 weekly records gathered only during active mosquito

periods, a broader time scope with less frequent measurements. Both datasets focus

on counting the number of blood-seeking adult mosquitoes (Ab1 + Ab2).

Table 2.5: Mosquito Data for Experiments

Training Data Test Data
Location Petrovaradin, Serbia
Period Feb 2016 - Dec 2017 Jan 2000 - Dec 2007
#Days 700 2921
Data Collection Daily Weekly
#Records 680 179

We anticipate that not only air temperature, but also air humidity and precipita-

tion play active role of “forces” affecting our biological system. As external factors,

environmental factors considered include daily measurements of air temperature, rel-

ative humidity, and precipitation. Due to the absence of on-site meteorological data

during the study period, a linear regression model was developed using 2016/2017

measurements from Petrovaradin and the Rimski Sancevi climate station. This

31

Physics Informed Neural Networks in Sparse Data Applications

model enables the estimation of meteorological values for the Petrovaradin site when

only Rimski Sancevi data are available.

As an example, Figures 2.5 plot the meteorological measurements over the two-

year training period. The air temperature has an average of 18.5 ◦C with a standard

deviation of 10, ranging from -8.9 ◦C to 40.3 ◦C. It shows a clear periodic pattern

resembling a sinusoidal wave, peaking during mid-year. In contrast, the relative

humidity averages 70.3% with a standard deviation of 13.6%, ranging from 34.5% to

100%. It exhibits less pronounced annual variation compared to temperature, with a

larger dip during the summer of the second year. Precipitation averaged 1.8 mm

with a standard deviation of 5.2 ranging from a minimum of 0.0 mm (indicating no

rainfall) to a maximum of 61.7 mm. Precipitation peaks occur in clusters of days,

likely corresponding to seasonal climatic events.

32

Physics Informed Neural Networks in Sparse Data Applications

(a) Temperature

(b) Relative Humidity

(c) Rainfall

Figure 2.5: Meteorological measurements of the training period.

33

Chapter 3

Literature Review

In this chapter, we present a comprehensive literature review around neural network

and graph network deployment in real-world applications and also around more

customized forms of neural networks. Figure 3.1 outlines the chapter’s structure. In

terms of real world applications, the review focuses on related work for the domains

selected for this research: disease detection, oxygen uptake in athletes, air quality

detection and mobile networks. Finally, we present a literature review on physics-

informed neural networks, focusing on their training techniques and approaches to

managing the inverse problem associated with these types of neural networks.

Figure 3.1: Literature Review Chapter Structure

34

Physics Informed Neural Networks in Sparse Data Applications

3.1 Neural Networks

3.1.1 Disease Prediction Using Exosomes

Discrimination of cancer cell-derived exosomes has been a primary focus in exosome

SERS studies. Carmicheal et al. [49] reported the SERS of exosomes from cell culture

medium, demonstrating that principal component differential function analysis (PC-

DFA) enabled effective classification of exosomes derived from both a healthy cell

line and two pancreatic cancer cell lines. Their model achieved a cross-validation

with 90.6% sensitivity and 97.1% specificity. Similarly, researchers in [50] conducted

several studies highlighting excellent discrimination between cancerous and non-

cancerous exosomes, using principal component analysis (PCA) to identify tumor-

derived fingerprints on gold nanoparticle substrates. The study demonstrated that

exosomes from two lung cancer cell lines could be effectively distinguished from

those originating from normal alveolar lung cells. Furthermore, the study [50] also

investigated specific surface protein compositions of exosomes from non-small cell

lung cancer cells, revealing strong correlations with several protein markers, which

suggested these proteins could serve as exosomal surface markers for cancer diagnosis.

PCA analysis was once again employed to differentiate these markers.

Recently, neural network-based methods have emerged as a promising approach

to enhance the analysis of SERS data. Neural networks have been applied in several

SERS exosome studies and appear to offer superior analytical power for evaluation

and discrimination of complex Raman signals and particularly for systems like

exosome SERS where there may be significant variation in SERS signature. In

examples to date, exosome SERS-based neural network analysis have been collected

from mixtures of exosomes [51, 52, 139]. Specifically, the authors in [139] illustrated

the potential of machine learning approaches in differentiating signals from exosomes

derived from distinct cell lines. Methodology by [51] employed neural networks to

distinguish SERS signals from exosomes derived from four breast cancer subtypes,

using 8265 SERS spectra to train a multi-layer perceptron (MLP) for this four-class

35

Physics Informed Neural Networks in Sparse Data Applications

classification task. Their model achieved an accuracy of 95.45%, outperforming

several other models, including principal component analysis with linear discriminant

analysis (PCA-LDA), partial least squares discriminant analysis (PLS-DA), support

vector machines (SVM), and one-dimensional convolutional neural networks (1D

CNN). Additionally, PCA analysis of the MLP’s second last layer was shown to be

able to evaluate surgical outcomes of breast cancer subtypes. In the study [52], a

deep neural network approach was used to classify exosomes from normal and lung

cancer cell lines. A one-dimensional residual convolutional neural network (similar to

ResNet [140]) was trained on 2150 SERS signals derived from 20 healthy controls and

43 lung cancer patients, achieving an accuracy of 95% with an area under the curve

(AUC) of 0.912. The values from the final layer were subsequently used to perform

PCA, which revealed that the similarity among exosome groups was proportional to

cancer progression.

Summary. Two primary approaches are used in exosome SERS signal classi-

fication: one approach employs the first few principal components, typically two,

from PCA to cluster the signals, while the other approach inputs the SERS signal

vectors directly into machine learning models, particularly neural networks. While

performances vary across studies, neural networks, including MLPs and CNNs, have

consistently shown superior results. These studies explore the capabilities of exosome

SERS signals in the context of cancer diagnostics.

We distinguish our research by taking these approaches further. Our investigation

will also focus on whether neural networks could discriminate exosomes secreted

from normal and dysfunctional human aortic endothelial cells (HuAECs) where

cells were grown under normal and hyperglycemic conditions to promote endothelial

dysfunction. This remains an open research topic for both biologists and chemists.

3.1.2 Oxygen Uptake Estimation

Many studies have focused on estimating oxygen uptake (VO2). Traditional methods

often rely on manually defined mathematical formulas that relate VO2 to predictor

36

Physics Informed Neural Networks in Sparse Data Applications

variables, with model parameters often holding physical or physiological meaning [141–

143]. While these models are more interpretable, they are limited by the number

of variables they can handle and the complexity of mathematically capturing their

relationships. Machine learning models have emerged as a powerful alternative for

estimating oxygen uptake, capable of complex nonlinear relationships [144].

Several studies have leveraged wearable sensors and machine learning to estimate

VO2 during daily activities. Beltrame et al. [65] utilized data from wearable sensors,

such as heart rate, hip acceleration, ventilation, and breathing frequency, captured

by a smart shirt. They employed a random forest model to predict VO2 dynamics.

Wang et al. [67] estimated VO2 across various activities, including stationary postures

(lying, sitting, standing), walking, treadmill running, and recovery phases. Using data

from a medical-grade wearable vest transformed into features related to heart rate,

respiratory rate, lung ventilation, and exercise intensity, they applied XGBoost, linear

regression, and random forest models. The XGBoost model achieved the highest

accuracy, reducing mean absolute error by 54.7% compared to heart rate-only models.

In unsupervised daily activities, the work [145] used wearable sensors monitoring

heart rate, breathing rate, minute ventilation, total hip acceleration and physiological

inputs (sex, age, weight, height, and various vital signs) to predict VO2 max via

support vector regression. The model showed a high correlation with traditional

cardiopulmonary exercise testing.

Focusing on treadmill walking, the study [68] used easily accessible inputs like

treadmill speed, grade, body mass, sex, exercise/recovery time, and heart rate.

They implemented a multilayer perceptron to optimize VO2 dynamic predictions.

Amelard et al. [70] estimated VO2 during cycle ergometer exercise using work

rate data and data provided by a smart shirt, including heart rate, breathing

frequency, and minute ventilation. Their results indicated that temporal convolutional

networks and long short-term memory networks outperformed random forest models

across various intensities. Further research by the same team demonstrated that

Temporal Convolutional Networks (TCNs) accurately predict slower VO2 kinetics

37

Physics Informed Neural Networks in Sparse Data Applications

with increasing exercise intensity [71]. Davidson et al. [66] employed an inertial

navigation system combined with GPS and a heart rate monitor to estimate VO2

during walking and running. They trained an LSTM model using inputs like speed,

speed change, cadence, vertical oscillation, and heart rate. In cycling activities,

Zignoli et al. [72] trained personalized recurrent neural networks using heart rate,

mechanical power, cadence, and respiratory frequency. Their neural network approach

showed superior predictive power compared to traditional mathematical models for

VO2 kinetics.

Vähä-Ypyä et al. [63] compared features derived from raw three-dimensional

acceleration signals during maximal track or treadmill tests. They found that the

mean amplitude deviation (MAD) metric performed well for walking, while other

metrics showed less consistent accuracy during running. Research by [146] highlighted

that incorporating gyroscope data with accelerometer readings can enhance fatigue

detection in runners.

Summary. Advancements in machine learning have significantly improved VO2

estimation by using data from wearable sensors and advanced neural networks.

These studies demonstrate enhanced accuracy over traditional methods by capturing

complex physiological dynamics across diverse activities, from daily living tasks

to structured exercises. Despite this work, there remains a gap in systematically

exploring how different combinations of inertial measurement unit (IMU) sensors, data

representations, and neural network architectures impact VO2 estimation accuracy.

This research will address this gap by experimenting with various feature sets (IMU

sensor combinations) and evaluating different neural network models.

38

Physics Informed Neural Networks in Sparse Data Applications

3.2 Network Models

3.2.1 Transport Networks: Bike Sharing

Transport Network Construction

Complex network analysis techniques have been widely applied to study bike-sharing

systems across the globe. In these studies, bike-sharing data are represented through

network structures and by analyzing these networks, researchers can reveal funda-

mental characteristics of bike-sharing among the population. The construction of

networks varies based on the objectives of each analysis and network modeling varies

depending on the purpose of the analysis. Most commonly, traffic flows are analyzed

by viewing spatial locations as nodes, with trips forming edges between each trip’s

origin and destination [147–153].

Most of the systems studied are dock-based, meaning users must rent and return

bikes at designated stations. Therefore, these stations are typically considered as

nodes in network models. However, dockless systems, which allow users to pick up and

drop off bikes anywhere, introduce challenges in data representation and modeling,

requiring novel approaches. For example, authors in [147] divided the study area into

a grid of squares, treating each square as a node, while Yang et al. [148] modeled

physical road segments as nodes. Some studies employ an alternative approach by

grouping locations and representing each group as a single point in the network.

For instance, the study [149] classified bike stations based on their surrounding

environment, and researchers in [150] utilized clustering techniques to group stations.

Other methods for constructing complex networks have also been developed

to analyze bike-sharing systems. Batista et al. [151] constructed a network where

each node represents a specific region within which vehicles travel at the identical

average speed; nodes are connected if their corresponding regions are adjacent.

This network facilitates the study of relationships between factors such as average

travel distance or travel time and the levels of exhaust emissions along bike paths.

The authors in [152] trained a graph convolutional neural network to capture the

39

Physics Informed Neural Networks in Sparse Data Applications

correlations among stations and predict hourly demand at the station level. The

correlation matrix learned during this training process serves as the adjacency matrix

for constructing a network, offering insights into the spatial relationships between

stations. Additionally, Ghandeharioun et al. [153] developed road networks based on

pairwise edge correlations to estimate route travel times.

Although complex network analysis has been widely applied in studying bike-

sharing systems, the literature lacks a systematic framework for network construction

and analysis, especially with regard to optimizing networks to enhance their analytical

power. Furthermore, the potential of correlation-based networks to reveal spatiotem-

poral patterns remains largely unexplored within the context of bike-sharing systems

Therefore, this study aims to develop a formal framework for applying complex

network methodologies and to promote the use of correlation-based networks in

bike-sharing data analysis.

Network Dynamics

Beyond the static properties of networks, the evaluation of dynamics of bike-sharing

systems is also essential. Thus, constructed networks need to be aggregated over

different time intervals and periodicities. The choice of these intervals typically

depends on the analytical objectives or guidance from domain experts. For instance,

authors in [148] assessed the impact of a newly introduced metro line on travel flows

within a bike-sharing system in Nanchang, China, by comparing network structures

from five days before and after the metro’s introduction. Similarly, Jianmin et

al. [154] examined changes in bike-sharing systems in response to the outbreak and

recovery phases of the Covid-19 pandemic by analyzing networks projected onto

the pandemic waves. Studies by [155] and [156] also successfully identified distinct

patterns in bike usage across weekdays and weekends, as well as different times of

day, through network analysis.

In these studies, time interval selection is predetermined based on specific research

interests, which may not always be the ideal choice. Without domain knowledge,

40

Physics Informed Neural Networks in Sparse Data Applications

identifying patterns and anomalies across the time dimension and selecting relevant

periods for analysis can be challenging. Analyzing every individual time step would be

both time-consuming and inefficient. To address this, we propose a clustering-based

approach to group similar time steps, allowing for the analysis of these aggregated

representations instead.

Network Analysis

In terms of network analysis of bike-sharing networks, similar methodologies are often

used, including network metrics, community detection, and the use of visualization

tools supported by domain knowledge. Global metrics provide insights into the

overall structure of the network, while local metrics reveal the roles or properties of

individual nodes within it. Commonly used metrics include the number of nodes,

number of edges, as well as degree and strength, which indicate the level of activity

and connectivity at a given location [147, 157].

Austwick et al. [156] identified consistent patterns in strength and edge weight

distributions across networks constructed from various bike-sharing systems. Mean-

while, the studies [148, 154] recommended incorporating a diverse range of network

properties to capture multiple aspects of network structure. These properties include

connectivity metrics (such as degree and node flux), spatial distribution (like the

clustering coefficient), and interaction metrics (accessibility), as well as indicators of

network stability (network connectivity), efficiency (network efficiency), and equity

(Gini coefficient). Additionally, other centrality measures, such as betweenness and

PageRank, used by [148], have proven valuable in this context.

Community analysis, a prominent approach in network research, plays an essential

role in understanding the structure of networks. Community detection algorithms

partition the network into distinct communities, where nodes have stronger con-

nections within communities than between them. The Louvain algorithm [158] is

among the most widely used methods for this purpose. However, Shi et al. [150]

observed that different algorithms yield different community structures depending

41

Physics Informed Neural Networks in Sparse Data Applications

on the measurement criteria. Although network analysis techniques are now well-

established, they are typically applied to networks where edges represent trips. Our

goal is to extend these approaches, including visualization, metrics such as strength,

closeness, betweenness, local clustering coefficients, and community detection, to

more complex, correlation-based networks.

Summary. While numerous studies have applied network-based analyses to

bike-sharing systems, several key limitations remain in current research: (1) existing

studies lack more systematic methodologies for applying complex networks in bike-

sharing analysis; (2) network construction is frequently overlooked meaning this

process lacks the optimization necessary for more effective network analysis; (3)

when analyzing system dynamics, the choice of time periods mainly relies on domain

knowledge, such as grouping hourly data by similar patterns or identifying evolving

periods for stations; and (4) correlation networks hold potential for uncovering both

spatial and temporal patterns, yet their application in network analysis remains

under explored. Our approach will address each of the existing limitations.

3.2.2 Graph Neural Networks: Air Quality

Statistical methods, particularly neural networks, have become the most popular

approach to the air pollutant concentration forecasting problem [159]. Beyond simple

models like linear regression [160], support vector machines [161, 162], and MLP [85,

86], recent neural network architectures are designed to exploit both the time-series

nature of the inputs and the spatial information of the prediction locations and their

surroundings. Typically, recurrent neural networks such as long short-term memory

(LSTM) [163] and gated recurrent units (GRU) [164] are used for time-series data,

while graph neural networks (GNNs) [38] are used to model spatial relations among

prediction locations. Convolutional neural networks [165], popular in image and

signal processing, are also suitable for time-series data and can model spatial aspects

in air quality problems. Moreover, attention mechanisms have recently proven to

be powerful tools for modeling sequence inputs [18, 166], addressing scaling and

42

Physics Informed Neural Networks in Sparse Data Applications

long-term dependency issues in recurrent neural networks. Attention is also suitable

for more complex data structures like graphs and networks [167]. In this section,

we investigate some typical examples of applying these technologies to air quality

problems, covering recurrent neural networks, graph neural networks, and attention

mechanisms.

Recurrent Neural Networks

Recurrent neural networks are traditional neural networks for working with time-

series data, and air quality time-series are no exception [87, 88, 168–172]. Authors

in [170] introduce a novel encoder-decoder model with an improved LSTM and apply

it to air pollutant predictions. They modify the LSTM cells by adding new gates

to enable the model to learn better long-term features and temporal correlations

among different data features. The new architecture outperforms traditional LSTM

and GRU encoder-decoder models in air quality prediction across 10 cities in China.

The study [172] stacks time-delayed historical data from all monitoring stations

as input into an LSTM model, allowing both spatial information and temporal

correlations to be learned simultaneously within the LSTM cells. Researchers in [168]

use a model combining LSTM and fully connected neural networks to predict PM2.5

values over the next 48 hours. The LSTM component models local changes in

PM2.5 concentrations along with meteorological and weather features, while the fully

connected module combines outputs from the LSTM to model spatial correlations

among different locations within a city. Similarly, Wang et al. [169] apply a hybrid

sequence-to-sequence architecture to predict ground-level ozone concentrations in

Beijing, China, capable of handling both spatial and temporal data.

Summary. The above uses of recurrent neural networks are mostly for feature

extraction along the temporal dimension of the data. Spatial features are considered

either through fully connected layers or by stacking all data into a tensor. These

attempts at incorporating spatial structure into models remain overly simplistic and

should be further improved. Furthermore, one disadvantage of recurrent networks is

43

Physics Informed Neural Networks in Sparse Data Applications

their computational speed, as each time step requires outputs from the previous step,

leading to slow training and prediction for long sequences. Addressing this drawback

is necessary to scale to longer historical data and their boost applicability to real

world applications.

Graph Neural Networks

Graph neural networks (GNNs) are popular for modeling spatial structures and are

often combined with recurrent neural networks to learn spatiotemporal dependencies

in air quality forecasting [89, 90, 173–175]. Authors in [90] incorporate graph

convolutional layers and LSTM into a single neural network to model and forecast

future hourly PM2.5 concentrations. They construct a network structure between

air quality stations based on distances, allowing the model to extract spatial features

from each location and its neighbors. The extracted spatial signals are input into

an LSTM layer to model time-dependent patterns. The model, tested with data

from the North China Plain, shows superiority over traditional neural networks like

MLP and LSTM. Gao et al. [173] integrate graph structure into LSTM cell to form

a graph-based LSTM (GLSTM), where the cell considers information from other

locations based on a trainable adjacency matrix, enabling simultaneous learning of

spatial and temporal features. The trainable adjacency matrix allows the model

to learn spatial correlations automatically, showing positive results over previous

models [90] using data from Gansu Province, China. In contrast, Zhou et al. [174]

incorporate theory into the training of GNN-LSTM models, guiding the model to

learn theory-backed spatial information and improve generalizability. At larger scale,

the work [175] applies GNNs hierarchically at station and city levels, with edge

weights determined by geographic similarity and dynamically influenced by wind

direction, effectively capturing large-scale spatial correlations during training.

In general, GNNs have proven suitable for modeling spatial correlations. However,

current works often use a single adjacency matrix to represent spatial relationships,

which can be disadvantageous as these relationships can be dynamic and depend on

44

Physics Informed Neural Networks in Sparse Data Applications

many factors. More complex mechanisms in GNNs, such as attention, can provide

more powerful spatial modeling.

Attention Mechanism

Attention mechanisms have also been applied to enhance recurrent and graph neural

network architectures. In air quality problems, attention layers have been used either

to enhance LSTM/GRU networks [169, 176–178] or to model spatial interactions

between locations [179, 180]. When applied to the temporal dimension, attention

is usually used near the prediction stage, especially in the decoder part, where it is

most needed to give attention to proper timesteps. Authors in [176] use attention

layers to generate inputs to the decoder as weighted outputs of the encoder. [169]’s

model applies the attention mechanism right before making predictions. Similarly,

researchers in [178] apply attention-enhanced LSTM with features extracted from

images to forecast PM2.5 values. Tu et al. [177] improve the mechanism by adding a

“time decay factor,” making the model give more attention to recent time points and

reducing the impact of earlier information. Unlike traditional attention methods,

they also utilize hidden states of previous steps in the decoder during the attention

process, allowing the model to react to changes even in the predicted future.

Attention mechanisms also improve spatial graph neural networks by adaptively

weighting other locations based on the current input. Huang et al.[179] propose a

spatial attention operator based on graph attention networks [167] and embed it

into recurrent neural networks. They enhance attention by introducing a self-loop

normalized adjacency matrix constructed based on geographic distances, providing

additional geometric information. The study [180] proposes an attention-based

parallel neural network architecture for PM2.5 prediction, where attention is applied

to both temporal and spatial dimensions simultaneously, allowing the model to

extract spatial and temporal features concurrently before combining them for further

processing.

Summary. Attention mechanisms are generally used to support recurrent neural

45

Physics Informed Neural Networks in Sparse Data Applications

networks in the temporal dimension and as advanced GNN architectures. In domains

such as natural language processing, self-attention has completely replaced recurrent

mechanisms. Theoretically, this can also be applied to time-series data in areas such

as air quality prediction. Combining this temporal attention with spatial attention

will be a consideration for our research. Furthermore, attention mechanisms provide

a great tool for explainable machine learning, as they estimate the importance of

factors contributing to predictions.

3.3 Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) have recently attracted significant inter-

est as a promising approach for addressing problems involving partial differential

equations (PDEs), as proposed in the conventional PINN framework by [43]. These

frameworks have demonstrated their effectiveness in solving both forward [181] and

inverse problems [96, 182] related to simple dynamical systems governed by ordinary

differential equations (ODEs).

3.3.1 Training Techniques

While PINNs have proven effective in various scenarios, challenges remain in their ap-

plication to complex systems, particularly those exhibiting nonlinearities, multi-scale

behaviors, or chaotic dynamics [41]. To address these issues, advanced techinques,

including loss re-weighting [42, 101, 102, 183], data re-sampling [103–106], and

domain decomposition [111, 112] have been proposed.

Normalization

Normalization is a crucial yet often overlooked step in the training of PINNs. Moseley

et al. [113] employed a strategy involving the division of input domains and applying

individual input normalization beside a unified global output normalization within

their model computations. In the work [183], the authors recommended not only nor-

46

Physics Informed Neural Networks in Sparse Data Applications

malizing the inputs and outputs of the neural networks but also non-dimensionalizing

the differential equations in the objective functions. In the studies by [96, 184]

and [122], input and output scaling layers were added that multiply the inputs and

outputs by their average magnitudes, which occurs at the model level and thus affects

the objective functions and training efficiency.

Loss Re-weighting

PINNs is a multi-task learning framework, incorporating multiple losses for data

fidelity and adherence to physical laws. Due to the different scaling and convergence

rates of these losses, imbalances can arise, potentially leading the model to converge

to incorrect solutions as one objective may disproportionately dominate the training

process. A common solution is the re-weighting of losses to achieve more balanced

training. Wang et al. [42] demonstrated that one of the primary training challenges

in PINNs stems from imbalanced gradients propagated from different losses. They

proposed an adaptive approach that adjusts the weights of the losses based on the

ratio between the maximum gradient magnitude of the physics loss and the mean

gradient magnitude of the data loss with respect to the model parameters. Similarly,

authors in [183] used the ratio of the L2-norm of the gradients, while researchers

in [101] balanced the variances of the gradients. In the work [102], they applied

the Neural Tangent Kernel to demonstrate the faster convergence of physics law

losses compared to initial and boundary condition losses, proposing an algorithm

that equalizes their convergence rates by monitoring kernels of the losses.

Collocation Points

Collocation points (residual points), which are where physics constraints are mini-

mized, are traditionally sampled uniformly at random from the input domain. While

effective for simple systems, this approach is often not optimal for systems with steep

derivatives. To address this, residual-based adaptive refinement (RAR), proposed

by [103] iteratively identifies and incorporates new collocation points corresponding

47

Physics Informed Neural Networks in Sparse Data Applications

to the highest differential equation residuals. This adaptive strategy directs model

training toward the most challenging regions of the domain. Similar strategies have

been explored in [104], where collocation points are sampled based on a probability

distribution proportional to residuals, and in [105], where importance sampling

approximates the distribution using the 2-norm of loss gradients. In the study [106],

generative models were used to derive improved collocation point distributions.

Sequential training approaches, such as those in [108], divide the input domain

into subdomains and use predictions from earlier subdomains as initial conditions

for subsequent ones, while authors in [109] leverages predictions from all prior

subdomains to enable a single global approximation network. A progressive learning

framework is proposed in [107, 185], wherein collocation points are uniformly sampled

from a dynamically expanding subdomain. This strategy respects time causality,

enabling the accurate predictions of dynamical systems’ evolution. Wang et al. [110]

also emphasizes time causality by weighting the residuals to prioritize earlier time

points.

Domain Decomposition

For large input domains, PINNs often struggle to converge effectively. Domain

decomposition techniques alleviate this challenge by partitioning the domain into

smaller subdomains and training separate PINNs for each. Continuity and smoothness

across subdomain boundaries are enforced using additional interface losses. In the

work [111], two interface conditions are added: one ensuring continuity of solution and

the other enforcing conservation laws at the interfaces. For inverse problems, these

conditions extend to parameter values at the interfaces. These methods are extended

in [112] to accommodate general differential systems by ensuring the continuity of

equations themselves. In studies by [113, 186], an implicit approach is adopted

using a gating function. For practical applications where high-order smoothness is

less critical, we simplify the approach in [112] by enforcing only value continuity

at the interfaces. This strategy ensures initial condition consistency and maintains

48

Physics Informed Neural Networks in Sparse Data Applications

continuity across subdomains without introducing unnecessary complexity.

Summary. Applying PINNs to complex systems that exhibit non-linearities,

multi-scale behaviors, or chaotic dynamics remains a significant challenge. Advanced

training techniques such as normalization, loss re-weighting, sampling of collocation

points, and domain decomposition have been proposed to improve the training of

PINNs. While these approaches have demonstrated a degree of problem solving,

further improvements are necessary to make PINNs suited to highly multi-scale and

complex dynamical systems, such as mosquito population modeling in [44]. Adjust-

ments for more complex systems involve a systematic approach to normalization,

enhancing loss weighting strategies to accommodate diverse equation scales and

behaviors, incorporating more training phases to improve model initialization and

convergence, and simplifying domain decomposition approaches.

3.3.2 Learning Parameters

PINNs have demonstrated a powerful capability for solving inverse problems, with

numerous studies exploring their effectiveness in parameter estimation across various

domains. An inverse problem, in this context, refers to the process of determining

unknown parameters of a system from observed outputs. Traditionally, the approach

involves substituting the unknown parameters with trainable variables if these

parameters remain constant throughout the system, or replacing them with neural

networks that depend on coordinates if the parameters vary with the system state.

These trainable variables or neural networks are jointly trained with the neural

networks that approximate the state variables [43, 182]. For example, Chen et al. [118]

utilize this approach to solve inverse problems in nano-optics and metamaterials,

whereas authors in [119] apply it to subsurface flow problems by replacing the

unknown constitutive relationships with neural networks that take either time or the

system state as inputs, depending on the assumed dependencies of these relationships.

Similarly, researchers in [120] identify parameters in civil structures by applying

PINNs to solve inverse problems, incorporating physical constraints into the loss

49

Physics Informed Neural Networks in Sparse Data Applications

function to ensure solutions remain physically and mechanically consistent. Nath

et al. [187] identify unknown parameters and predict the dynamic behavior of a

mean value model of a diesel engine. In addition to the main neural networks,

empirical models of other unknowns are replaced with pre-trained neural networks

trained beforehand with laboratory data. Furthermore, authors in [121] solve inverse

problems in structural engineering by leveraging transfer learning to fine-tune pre-

trained models for new training, thereby accelerating convergence and enhancing

robustness when handling sparse or noisy data. In the study of [188], PINNs

are applied to solve inverse problems in unsaturated groundwater flow, where the

problem is reformulated into a double-loop structure: the outer loop optimizes

unknown parameters using the global Cross Entropy algorithm [189], while the inner

loop employs a conventional gradient-based algorithm to solve the equations.

Work in [190] demonstrates the use of PINNs for parameter estimation in reduced-

order models of blood flow in the aorta. They employ a two-phase training procedure:

initially training the state neural network with fixed initialized parameters, followed

by simultaneous training of both the state and parameter networks. This splitting

approach facilitates better adaptation of the network to physical laws before esti-

mating specific parameters. Berardi et al. [191] apply inverse PINNs to transport

models in porous materials, incorporating an additional term into the loss function

to regularize the parameters toward reference values, thereby improving the accuracy

of ill-posed inverse problems. Jagtap et al. [192] investigate solving inverse problems

involving in supersonic flows, where they enforce positivity constraints on parameters

by applying a maximum function between the output of the neural network and a

small positive constant, similar to using a ReLU activation function. Method by [193]

applies PINNs to infer the peridynamic kernel for a nonlocal wave equation, leverag-

ing a radial basis function activation layer to enhance kernel shape approximation.

Non-negativity and symmetry requirements on the kernel function are enforced by

constraining trainable parameters and including symmetry terms in the loss function.

Research by [96] integrates ODEs into neural networks to infer system dynamics

50

Physics Informed Neural Networks in Sparse Data Applications

and estimate parameters for biological models, enhancing the neural networks with

additional feature layers to capture characteristics like periodicity or exponential

trends.

In nuclear reactor modeling, authors in [194] combined PINNs with the Theory

of Functional Connections to solve stiff ODE systems, such as Point Kinetics Equa-

tions. Similarly, Daryakenari et al. [122] integrated PINNs with eXtreme Theory of

Functional Connections and symbolic regression to estimate parameters and identify

missing physics in systems biology. In this framework, PINNs help integrate partial

prior knowledge about ODE systems while discovering unknown functions and esti-

mating parameters. The values derived from the neural networks after training are

utilized to derive mathematical formulas via symbolic regression. Similar methodolo-

gies are employed by [195, 196], and [197] to solve inverse problems involving the

Lorenz system, the Allen-Cahn equation, and reaction-diffusion models related to

Alzheimer’s disease, respectively.

Summary. The application of PINNs for solving inverse problems across various

domains relies on techniques reviewed in Section 3.3.1, including normalization,

loss balancing, and domain decomposition, with only minor adaptations. Most

studies solve inverse problems by directly learning the mapping from coordinates

to parameters, without incorporating external forces that influence the dynamics

of the system. However, research should consider the external forces that influence

internal system parameters and jointly learn the mapping from external factors to

system parameters alongside the system state. This approach would not only enable

neural networks to learn the relationships between external factors and the system

parameters but also allows the model to be reused under new data, which is not the

case with current methods.

3.4 Conclusions

In this chapter, we presented a comprehensive review of the literature on the

deployment of neural networks and graph networks in real-world applications, in

51

Physics Informed Neural Networks in Sparse Data Applications

addition to the physics-informed neural networks. We examined how machine learning

and neural networks have been applied to disease prediction using exosomes and to

oxygen uptake estimation. We also explored the construction and analysis of complex

networks in bike-sharing systems and investigated neural network architectures for

air quality forecasting. Furthermore, we delved into the techniques needed when

applying PINNs to complex systems with nonlinearities and multi-scale behaviors,

discussing advanced training techniques such as normalization, loss re-weighting,

adaptive sampling, and domain decomposition for both forward problems and the

learning of dynamical system parameters.

Despite significant advancements, several gaps exist in current research across

multiple domains. In exosome SERS signal classification, it remains unexplored

whether neural networks can discriminate exosomes from normal and dysfunctional

cells. In oxygen uptake estimation, machine learning has improved accuracy using

data from wearable sensors and advanced neural networks. However, a systematic

exploration of how different combinations of inertial measurement unit sensors, data

representations, and neural network architectures affect VO2 estimation accuracy is

lacking. In Chapter 4, we will address both of these issues through: the application

of neural networks; and by experimenting with various IMU sensor combinations,

exploring data representations, and evaluating different neural network models to

identify optimal configurations for VO2 estimation.

In terms of complex network approach, graph-based analysis has been applied in

bike-sharing systems, but a framework for network construction and optimization is

lacking, especially correlation-based networks that can reveal spatiotemporal patterns.

In Chapter 5, these limitations are addressed by developing a framework for network

analysis, developing a clustering-based approach for time-step analysis, and extending

network techniques to more correlation-based networks. The same chapter will be used

to experiment with attention mechanisms to address the computational inefficiencies

of RNNs for long sequences and also to address the relianced by GNNs on static

adjacency matrices that fail to capture dynamic spatial relationships.

52

Physics Informed Neural Networks in Sparse Data Applications

In Chapters 6 and 7, we will address the limitations of PINNs by introducing a

normalization procedure, enhancing loss weighting strategies, incorporating additional

training phases, and simplifying domain decomposition approaches. We will also take

into account the effect of external factors on internal system parameters, learning

the mappings from these factors to the parameters.

53

Chapter 4

Deployment of Neural Networks in

Real-Life Applications

In this chapter, we investigate the suitability of neural networks in two applications

from two separate domains. In the first experiment, we investigate the application of

neural networks in a classification problem from exosome signals. Exosomes are small

extracellular vesicles secreted by all cell types. They have been widely indicated to

carry biomarkers within their content that can be used for diagnostic and prognostic

insight into disease within the sample. For this part of the research, we developed a

three-step preprocessing procedure to process Surface-Enhanced Raman Spectroscopy

Spectroscopy (SERS) signals, and then use Multi-Layer Perceptron (MLP) models

to distinguish the heterogeneity of exosome signals that secreted from normal and

dysfunctional human aortic endothelial cells.

In the second project, we further explore neural network variations in predicting

the Oxygen uptake in simulated team sports with wearable sensor signals. In sports,

precise evaluation of training status is essential for performance optimization and

injury risk reduction. This second study investigates the use of various neural network

architectures in estimating individual oxygen uptake (VO2) from wearable sensor

data during outdoor jogging and simulated team sports activities. The architectures

examined include MLP, long short-term memory (LSTM) networks and convolutional

54

Physics Informed Neural Networks in Sparse Data Applications

neural networks (CNN). These models are evaluated using both raw features and

handcrafted features to assess their predictive performance.

4.1 Exosomes Classification Using Multi-Layer

Perceptrons

Exosomes are extracellular vesicles produced by all cells into virtually all body fluids.

Exosomes have been shown to have characteristics that reflect their originating cells

and the cells disease status [48]. They are rapidly emerging as important diagnostic

biomarkers. Raman spectroscopy and SERS offers a potentially powerful approach

to extract molecular-level fingerprint signals of the biomaterial profile of exosome

samples in diagnostic applications [198]. Interest in the application of SERS as

a means of exosome characterization has grown over the past 5 years or so, and

is critically enabled by using data analytical methods, capable of discriminating

complex aggregate signals that exosome SERS give rise to.

Endothelial dysfunction is a critical early indicator of subclinical atherosclerosis

associated with type 2 diabetes mellitus (T2DM) [199]. Due to the asymptomatic

nature of early and intermediate T2DM, early diagnosis before complications manifest

is a challenge. There is a need to develop methods for distinguishing between healthy

vascular endothelial cells and their dysfunctional ’hyperglycaemic’ counterparts [55].

Exosomes released from dysfunctional ‘hyperglycaemic’ endothelial cells offer an

opportunity to diagnose early changes in cell functionality. This study aims to

investigate the potential of neural networks to differentiate between exosomes secreted

by normal and dysfunctional human aortic endothelial cells, cultured under normal,

hyperglycemic and hypoglycemic conditions.

The scripts associated with the project is available at https://github.com/

dinhvietcuong1996/exosome-classification.

55

https://github.com/dinhvietcuong1996/exosome-classification
https://github.com/dinhvietcuong1996/exosome-classification

Physics Informed Neural Networks in Sparse Data Applications

(a) Smoothing & Background Estimation (b) Representative Smoothed Exosome Signal.

Figure 4.1: Preprocessing Steps

4.1.1 Methodology

In this section, we present our methodology for exosome spectrum prediction. Fig-

ures 4.1a illustrate the pre-processing steps for a spectrum. Initially, the raw input

spectrum undergoes smoothing to mitigate random fluctuations, predominantly

attributable to electronic instrumentation. Subsequently, we perform background

signal subtraction using automated background approximation. The resultant exo-

some signal is then input into a machine learning model to classify the spectrum as

originating from a healthy subject or one afflicted with hyperglycemia/hypoglycemia.

Data Pre-processing

In the pre-processing stage, the aim is to isolate the spectral signal originating

solely from exosomes, which is hypothesized to be the key informative factor for

distinguishing between normal and diseased spectra. This includes the removal of

random noise and background signals.

The initial preprocessing step aims to mitigate the impact of random noise on the

spectrum through the application of a simple moving average function. This method

involves a sliding window that traverses the spectrum sequence, computing the average

for each window position. The resulting average values are then concatenated to

produce the final smoothed output. This process is mathematically represented by

Equation 4.1, where W denotes the sliding window size, n represents the spectrum

56

Physics Informed Neural Networks in Sparse Data Applications

length, and si corresponds to the smoothed value of the ith element. To maintain

consistent window sizes throughout the spectrum, the function implements symmetric

padding.

si = 1
W

W −1
2∑

j=− W −1
2

xi+j, 0 ≤ i < n (4.1)

The second preprocessing step approximates the background signal using the

ModPoly polynomial method [200]. This iterative process eliminates peaks from the

polynomial fit by replacing spectral data points with their corresponding estimated

background values where the former exceeds the latter. The background estimation is

then refit to the newly formed spectrum. This replacement and fitting cycle continues

until the background estimation stabilizes or a predefined iteration limit is reached.

Given a polynomial degree D, the algorithm can be described as having 4 steps:

1. Initialize t = s, where t serves a temporary holder for the spectrum that

does not include Raman peaks in it and as input for the polynomial fitting to

approximate the background.

2. Polynomial fitting: Let p(i) = c0 + c1i+ · · ·+ cdid, 0 ≤ i < n, cd ∈ R, 0 ≤ d ≤ D

be a polynomial. Determine the coefficients cd, 0 ≤ d ≤ D that minimize the

squared error between p and t:

E =
n−1∑
i=0

(p(i)− ti)2 =
n−1∑
i=0

(
D∑

d=0
cdid − ti

)2

. (4.2)

The optimization solution is obtained through standard linear algebra tech-

niques [201]. The resulting polynomial p is considered an approximation of the

background.

3. Update ti = min(ti, p(i)), 0 ≤ i < n, replacing values in t with the background

estimation p where t > p, thereby eliminating peaks in t for subsequent

background estimations.

4. Terminate the algorithm when t = p for all i or when the iteration count

57

Physics Informed Neural Networks in Sparse Data Applications

exceeds a predetermined threshold; otherwise, repeat steps 2 to 4.

The final polynomial p represents the estimated background for the given s. The

resultant exosome signal x is computed as the difference between the smoothed signal

and the estimated background: x = s− p.

Before inputting into machine learning models, the spectrum must be normalized.

This step is necessary due to the differences in the intensity across spectra while

collecting the data, thereby facilitating the subsequent training of machine learning

models. Normalization is achieved by scaling each spectrum such that its integral

equals 1. Figure 4.1b shows an example of a normalized, background-removed

spectrum.

Neural Network Architecture

For the predictive model, we implement an MLP, which is also called a feed forward

fully-connected neural network [202]. The model has been proven to approximate

any functions [30] and demonstrated its capabilities in various domains.

Illustrated in Figure 4.2, a neural network is a directed graph where nodes are

neural units and the connections between them are the flow of information. Each

neuron (neural unit), depicted in Figure 4.2a, acts as a computational unit that

processes inputs and generates outputs. Each node’s output is a function of the

weighted sum of its inputs, followed by a nonlinear activation function. The non-

linearity enables MLPs to approximate highly nonlinear functions, enhancing their

flexibility. n example of an MLP architecture is shown in Figure 4.2b. The MLP

architecture organizes neurons into distinct layers: input layer receives the initial

data vector; hidden layers process information from previous layers; and output layer

produces the model’s final result.

In this task, the MLP model is used to estimate the conditional probability

P (c|x), where x represents a pre-processed spectrum vector of size 1× n, and c ∈ C

denotes one of three classes: healthy, hyperglycemia, or hypoglycemia. The input

layer in used solely to pass the input vector to the network while the output layer

58

Physics Informed Neural Networks in Sparse Data Applications

(a) Computation within a neural unit that
processes n inputs xi, i = 1, . . . , n to produce
an output y.

(b) An MLP architecture comprising an input layer with 3 units, four hidden layers each
containing 5 units, and an output layer with a single unit.

Figure 4.2: Multi-Layer Perceptron Architecture

delivers the outputs (exosome classifications) of the MLP, again represented as a

single vector. Let li denote the number of units in the i-th layer, where 0 ≤ i ≤ L + 1.

Specifically, l0 = n is the input layer size, while lL+1 = 3 corresponds to the output

59

Physics Informed Neural Networks in Sparse Data Applications

layer size. The neural network is formulated in Equations 4.3.

a0 = x

ai = max
(
ai=1W

i + bi, 0
)

, 1 ≤ i ≤ L (4.3)

z = aLW L+1 + bL+1

P (ci|x) = ezi

ez0 + ez1 + ez2
, i = 0, 1, 2

Here, W i ∈ Rli−1×li represents the real-valued weight matrix for layer i, bi ∈ Rli

denotes the bias vector for layer i, and ci, i = 0, 1, 2 correspond to the three classes.

The max function operates element-wise, resulting in z ∈ R3. The network parameters

W i and bi are optimized to minimize the cross-entropy loss between predicted

probabilities and target distributions. We employ the Adam optimizer, a variant

of stochastic gradient descent, for parameter optimization [203]. To enhance model

generalization, we apply L2 regularization with a penalty parameter α.

4.1.2 Experiments

The dataset used in these experiments is presented in Section 2.1.1. In this section,

we describe experimental configurations and a discussion around results.

Model Selection

The aim of model selection is to identify the best performing neural network con-

figuration. As the dataset is relatively small, we conduct 8-fold cross validation.

For each iteration, one subset serves as the validation set, while the remaining 7

subsets are used as the training data. Therefore, in each turn (or fold), 6 surfaces or

300 spectra (100 per class) are used for validating and the neural network model is

trained with the remaining 2,100 spectra (700 per class).

The following hyper-parameters are considered for tuning: the smoothing window

size W ; the background polynomial degree D; the number of hidden layers L; and the

weight decay rate α. The goal is to ensure that the average validation accuracy across

60

Physics Informed Neural Networks in Sparse Data Applications

all folds, is as high as possible. Table 4.1 displays all attempted hyper-parameter

values whose ranges were predetermined using an initial round of experiments. A

grid search over all values, which is 1,260 combinations, was conducted to find the

best performing models.

Table 4.1: Hyper-Parameter Settings

Hyper parameters Values
W 9; 17; 33; 65; 129
D 5; 6; 7; 8; 9; 10; 11
L 0; 1; 2; 3
α 10−6; 10−5; 10−4; 10−3; 10−2; 10−1; 1; 10; 100

Results

We use accuracy, recall, and precision metrics [204] (defined in Appendix A.2) to

evaluate a model’s performance. Macro-averaging is used across multiple classes.

Table 4.2 presents the top 5 models ranked by mean validation accuracy. The

highest performing models appear to perform equally at about 65% with a standard

deviation of 11%. Across all experiments, validation accuracy ranged from 50% to

82%, showing substantial variability. This variance can be attributed to the limited

size of the dataset. From the experiments, the best performing models suggest that

the MLP should have 2 or 3 hidden layers of 100 units.

Table 4.2: Top Performing Models by Average Accuracy

Rank W D L α Training Acc. Validation Acc.
1 33 10 2 10.0 0.991± 0.004 0.652± 0.100
2 17 6 3 10−5 1.0± 0.0 0.651± 0.102
3 33 6 2 10−4 1.0± 0.0 0.650± 0.117
4 9 6 2 10−5 1.0± 0.0 0.647± 0.110
5 7 10 3 10−1 0.985± 0.007 0.646± 0.120

Observations and Discussion

We now use the accuracy metrics to construct 2 tables which enable a more detailed

analysis of the best performing model.

61

Physics Informed Neural Networks in Sparse Data Applications

Table 4.3 presents the validation confusion matrix as the sum of all confusion

matrices for the 8 validation sets described in the previous section. Meanwhile,

Table 4.4 presents the test confusion matrix resulting from the model that performs

best in validation. Our discussion focuses on the Table 4.4 with the test performance

on unseen data. The results demonstrate that the most accurate neural network

model performs well when classifying normal samples and achieves exceptionally high

accuracy with hypoglycemic samples. However, the model encounters difficulty in

distinguishing between normal and hyperglycemic samples, which is most likely due

to the presence of normal tissue in the hyperglycemic samples, a frequent byproduct

of the sample generation process. This observation raises the possibility that the

model’s predictive performance could be significantly higher if training and testing

were limited to hypoglycemic and hyperglycemic samples only, although we cannot

be sure without removing normal samples from the test data.

Table 4.3: Validation Confusion Matrix (Sum over folds). The rows represent the
true class labels, while the columns correspond to the model’s predicted labels. For
instance, the entry of 181 in the “Normal” row and the “Hypo” column indicates
that the model has misclassified 181 normal samples as hypoglycemic.

Normal Hypo Hyper Total Recall
Normal 443 181 175 799 0.551
Hypo 93 611 96 800 0.764
Hyper 158 132 510 800 0.638
Total 694 924 781

Precision 0.638 0.661 0.653 Accuracy: 0.652

Table 4.4: Test Confusion Matrix (Best Model). The rows represent the true class
labels, while the columns correspond to the model’s predicted labels. For instance,
the entry of 3 in the “Normal” row and the “Hypo” column indicates that the model
has misclassified 3 normal samples as hypoglycemic.

Normal Hypo Hyper Total Recall
Normal 66 3 31 100 0.660
Hypo 5 81 14 100 0.810
Hyper 40 7 53 100 0.530
Total 111 91 98

Precision 0.595 0.890 0.541 Accuracy: 0.667

Precision is a measure of exactness of positive predictions. The results for the

62

Physics Informed Neural Networks in Sparse Data Applications

Normal class shows a true positive rate of 66% and a false positive rate of 45%,

yielding a precision value of 59.5%. a true positive figure of 66% and a false positive

figure of 45%, resulting in a precision value of 59.5%. Notably, an overwhelming

majority (89%) of false positives stem from misclassifications of Hyperglycemia. This

provides further detail on where incorrect Normal predictions occur but perhaps,

strengthens the case for the hypoglycemia class being more detectable.

Among the three classes, hypoglycemia predictions are the least frequent, sug-

gesting that while these samples may be more challenging to detect, its predictions

are less likely to to be incorrect. In the Hypoglycemia column, the class has a true

positive figure of 81 with a false positive figure of just 10, yielding a precision of

89%. The majority (70%) of the false positives are attributed to the other diseased

class. While these results are high, it would also indicate that very strong results can

be expected if the model are presented exclusively with hypoglycemia and normal

samples. For Hyperglycemia, we achieved lowest overall predictive performance. In

contrast, hyperglycemia demonstrates the lowest overall predictive performance. This

class achieves a true positive value of 53% and a false positive rate of 44%, resulting

in a precision of 54%. The correlation with the Normal class is again evident, as 31

(70%) of the incorrect predictions are misclassified for Normal samples.

Recall is a measure of completeness defined as the percentage of positive samples

that are correctly classified as positive. For the Normal class, a low overall sensitivity

of 66% is observed, primarily attributable to the misclassification of 31% of Normal

samples as hyperglycemia Only 3 of the samples are incorrectly classified as hypo-

glycemia. The hypoglycemia class has more favorable results, with a high overall

score of 81%. The main source of error in this class is the misclassification of 14% of

hypoglycemic samples as hyperglycemia. Lastly, the sensitivity for hyperglycemia is

low at 53%, driven by a significant proportion (40%) of samples being incorrectly

classified as Normal.

Although our best model achieves 66.7% accuracy, which is promising as a first

demonstration of neural networks for SERS-based exosome classification of healthy

63

Physics Informed Neural Networks in Sparse Data Applications

vs. hyperglycemic and hypoglycemic states, it is not yet clinically practical. Other

SERS exosome studies report 90–95% accuracy [51, 52, 139], but those typically

target different diseases (often cancer). This result thus serves as an early benchmark,

and future efforts, expanding and refining the data collection, and exploring advanced

model architectures, are expected to improve performance.

Summary. For this experiment, we developed a methodology for predicting

exosome spectra to classify samples as originating from healthy subjects or those with

hyperglycemia or hypoglycemia. The approach involves pre-processing steps including

smoothing the raw spectra, background removal using the ModPoly method, and

normalization. A multi-layer perceptron was trained for the classification, achieving

an average validation accuracy of approximately 65%, with high precision and recall

in detecting hypoglycemia but had difficulties in distinguishing between normal and

hyperglycemic samples.

4.2 Predicting Oxygen Uptake in Athletes

In team sports, accurately assessing a player’s physical output during games and

training is crucial for coaches and sports scientists [205]. Physical adaptations

that are typically measured through fitness testing are often impractical during

competitive periods [206]. Finding a convenient way to monitor these changes is

essential to accurately assessing training loads and tracking athlete fitness [207].

Wearable devices such as Inertial Measurement Units (IMUs) have demonstrated

potential in estimating oxygen consumption (VO2) across various physical activi-

ties [63, 64]. However, two challenges [60] still remain: firstly, determining optimal

IMU sensor configurations to effectively capture and quantify complex movements,

thereby enhancing VO2 estimation accuracy; and secondly, identifying suitable models

for learning relationships between sensor-based measures and VO2 values.

This second experiment aims to address these challenges by investigating the

prediction of individual oxygen uptake during outdoor running and simulated team

sports activities. We explore the efficacy of different data representations, including

64

Physics Informed Neural Networks in Sparse Data Applications

handcrafted features and raw sensor data, as well as various sensor combinations

positioned at different body locations. Furthermore, we conduct a comparative

analysis of multiple machine learning models to identify the most suitable algorithms

for this task.

The source code for this project is hosted on GitHub at https://github.com/

dinhvietcuong1996/oxygen-uptake-estimation.

4.2.1 Data Preprocessing

Data collection is described in Section 2.1.2. This section presents the data prepro-

cessing for the experiments.

One of the goals in the experiments is to examine the influence of sensor placement

configurations on predictive accuracy. For this experiment, we constructed four

datasets, each comprising common baseline variables including the subject’s age,

height, weight, heart rate, breathing rate, the treadmill speed and the GPS speed,

activity categories (one of resting, treadmill running, outdoor running, or simulated

team sports activities), These datasets differ in their inclusion of IMU sensor data

from various on-body locations:

• Dataset A: IMU Torso

• Dataset B: IMU Torso + IMU Arm

• Dataset C: IMU Torso + IMU Leg

• Dataset D: IMU Torso + IMU Arm + IMU Leg

For each of the four configurations above, we develop two distinct data repre-

sentations for model inputs: RAW and MAD (Mean Amplitude Deviation) dataset.

The earlier representation is basically raw data with minor preprocessing while the

later one significantly transform the data into more information-condensed variables.

Both representations are organized into breath-based windows, typically spanning

2 to 6 seconds. We use 7 breaths (about 30 seconds) to predict the VO2 value of

65

https://github.com/dinhvietcuong1996/oxygen-uptake-estimation
https://github.com/dinhvietcuong1996/oxygen-uptake-estimation

Physics Informed Neural Networks in Sparse Data Applications

the central breath. The key distinction lies in the sensor data: in MAD, all sensor

readings are transformed into mean amplitude deviation values, as described by the

formula in Equation 4.4. For the target variable, VO2 values undergo smoothing

using a 31-point moving average window to mitigate interference noise [67]. This

preprocessing step reduces interference noise.

MADxyz =

√√√√√(1
N

N∑
i=1
|xi − x|

)2

+
(

1
N

N∑
i=1
|yi − y|

)2

+
(

1
N

N∑
i=1
|zi − z|

)2

(4.4)

In total, there are four dataset configurations, each of which can be combined

with two different input representations. This results in a total of eight combinations

that can be inputted into the predictive models.

4.2.2 Neural Networks

In this experiment, we evaluate the effectiveness of various neural network archi-

tectures for our specific task, encompassing models from simple linear regression,

multi-layer perceptrons (MLPs) to more complex structures such as, long short-term

memory networks (LSTMs), and convolutional neural networks (CNNs).

The input to the models, denoted as x, is structured as a matrix with dimensions

[nb × nf]. The number of breaths nb is set to 7, while the number of features nf

varies from 18 to 32, depending on the dataset and chosen representations. Let FW

represent a neural network with parameters (weights and biases) W . The model’s

output is given by ŷ = FW (x). We train these weights W by minimizing the mean

squared error between the predicted values ŷ and the actual values y, as described in

Equation 4.5.

L = 1
Ndataset

∑
(xi,yi)∈dataset

(yi − FW (xi))2 (4.5)

For optimization, we use the Adam algorithm [203], a gradient-based method. To

mitigate overfitting, we apply L2 regularization which favors weights with smaller

66

Physics Informed Neural Networks in Sparse Data Applications

norms. We continue this section with a more detailed discussion of the neural network

architectures used in the experiment.

Linear Regression (LR)

LR is a straightforward yet powerful model commonly employed in various prob-

lems [208]. It characterizes the relationship between dependent and independent

variables by fitting a linear function to the observed data. In this model, each breath

is treated uniformly by flattening the input x to a vector of size nb × nf .

ŷ = x ·W + b (4.6)

To make predictions, the model makes a linear transformation from Rnb×nf to R

by multiplying the input with a weight matrix of size Rnb×nf × 1. Additionally, a

scalar bias term b is added to enhance the model’s flexibility. The output is defined

in Equation 4.6.

Multi-Layer Perceptron

For this task, the MLP extends the capabilities of linear regression by introducing

non-linearity and additional complexity to the model [209]. This is achieved by

incorporating multiple layers, where each layer consists of a linear transformation

followed by a non-linear activation function. Here, we adjust the model described

Section 4.1.1 to accommodate the breath dimension in the input x, the input

undergoes a linear transformation that maps it to a common latent space of dimension

dlat. Subsequently, the transformed data are flattened into a vector of size nb · dlat,

which serves as the input to the MLP layers.

Specifically, let d1, d2, . . . , dL represent the sizes of the hidden layers 1, 2, . . . , L

in the MLP, where d0 = nb · dlat is the dimension of the input vector to the MLP

and dL = 1 is the output size. The parameter matrix Wlat for the initial linear

transformation is of size nf × dlat, and W (l) denotes the parameter matrices of the

67

Physics Informed Neural Networks in Sparse Data Applications

MLP layers, with each matrix having dimensions dl−1 × dl. The biases blat and b(l)

correspond to sizes nb and dl, respectively. The function ϕ represents an element-wise

non-linear activation function employed within the layers. The prediction of the

model is defined in Equations 4.7.

x0 = flatten (x ·Wlat + blat)

x(l) = ϕ(l)
(
x(l−1) ·W (l) + b(l)

)
, l = 1, 2, . . . , L− 1 (4.7)

ŷ = x(L−1) ·W (L) + b(L)

In our experiments, a grid search strategy is implemented to fine-tune the

architecture of the MLP. The hyper-parameter settings are detailed in Table 4.5,

where the number of layers varies from 1 to 4 and the number of neurons per layer

is set to either 32 or 64. The activation function employed is rectified linear unit

(ReLU). To reduce overfitting, a weight decay coefficient of 10−4 is used, though no

dropout is applied.

Table 4.5: MLP Hyper-parameters

Hyper-parameter Values
Number of layers 1; 2; 3; 4
Hidden layer size 32; 64
Weight decay 10−4

Long Short-Term Memory (LSTM)

LSTM, a variant of recurrent neural networks, is specifically designed to process

sequence data similar to time series [163]. Figure 4.3 illustrates a typical LSTM layer.

This architecture uses recurrent mechanisms where a common LSTM cell sequentially

processes the input xt at each step t, producing the output ht and passing the hidden

cell state ct alongside ht to the next time step. The core idea of LSTM is its cell

state c which carries temporal information across time steps. This state is controlled

by several gates within the LSTM cell that either add or remove information based

68

Physics Informed Neural Networks in Sparse Data Applications

on current inputs and previous outputs.

Figure 4.3: LSTM Layer Architecture. The LSTM cell is shared across time
steps. At each time step t, the cell receives the input xt from the previous layer and
the hidden state ht−1 from previous time step. It produces the new hidden state ht,
which is passed to the next layer, as well as the updated cell state ct. The initial
state c−1 and output h−1 are initialized as zero vectors.

Let dh be the hidden size of a LSTM layer. Consider x1, x2, . . . , xT as the inputs

at time steps 1, 2, . . . , T respectively, where each input vector is of dimension df .

The LSTM layer parameters are organized as follows: the input gate has a weight

matrix Wi and a bias vector bi; the forget gate has a weight matrix Wf and a bias

vector bf ; the output gate has a weight matrix Wo and a bias vector bo; and the cell

state is updated by a weight matrix Wc and a bias bc. All of the weight matrices has

the size of dh× (dh + df) and all of the biases are of size dh. Let σ denote the sigmoid

function; [;] be the concatenation operator and ∗ be element-wise multiplication. At

time step t, the input gate it, the forget gate ft, the output gate ot, new candidate

value c̃t, the cell state ct and output ht of the LSTM are defined in Equations 4.8.

69

Physics Informed Neural Networks in Sparse Data Applications

it = σ ([xt; ht−1] ·Wi + bi)

ft = σ ([xt; ht−1] ·Wf + bf)

ot = σ ([xt; ht−1] ·Wo + bo)

c̃t = σ ([xt; ht−1] ·Wc + bc) (4.8)

ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh (ct)

In our experiments, the breath dimension is treated as the time dimension, hence

fixing the dimension to 7. We employ a bidirectional LSTM architecture (BiLSTM),

allowing information flow in both directions across the time dimension. Furthermore,

the LSTM layers are stacked such that each LSTM layer’s output at a time step

serves as the input for the subsequent layer at the same step. The final output from

the middle time step of the last LSTM layer is passed to a fully connected layer for

generating predictions. The number of layers and layer size are tuned through a grid

search with parameters specified in Table 4.6, which explores configurations ranging

from one to four layers, each with 32 or 64 units. No dropout is employed; instead,

regularization is achieved through a weight decay of 10−4 to mitigate overfitting.

Table 4.6: LSTM Hyper-parameters

Hyper-parameter Values
Number of layers 1; 2; 3; 4
Hidden layer size 32; 64
Weight decay 10−4

Convolutional Neural Network (CNN)

CNNs are neural network architectures designed to process structured data effi-

ciently [210]. In particular, one-dimensional CNNs (1D-CNNs) are well-suited for

sequential data processing [211]. Figure 4.4 depicts the architecture of the one-

dimensional CNN layers. Each CNN layer consists of multiple kernels that slide along

70

Physics Informed Neural Networks in Sparse Data Applications

the temporal dimension, performing convolutional operations between the kernel

and segments of the input to extract local features. The core principle of CNNs is

that shared kernels evaluate how well different segments of the input match specific

patterns at each time step. This convolutional mechanism enables the network to

detect local patterns regardless of their position within the input sequence, thereby

enhancing the effectiveness of 1D-CNNs for sequential data.

Figure 4.4: An illustration of one-dimensional CNN architecture. In the convolutional
layers, three kernels, each of size 3, slide along the time dimension of the input to
generate three feature channels. Red boxes and arrows at the bottom left demonstrate
a convolution computation involving x1, x2 and x3 that results in a single output.

Consider the input sequence x = (x1, x2, . . . , xT) to a 1D-CNN layer, xt corre-

sponds to time step t and have a dimensionality of df . Assume the layer has nk

kernels of size dk, represented by a tensor K of dimensions nk × dk × df . Let σ

denote the activation function. The output of the 1D-CNN layer is defined as in

Equation 4.9, where yt,i is the output at time step t for the i-th kernel. Indices that

are less than 0 or exceed the sequence length are defaulted to 0 (commonly referred

to as zero padding).

yt,i = σ

dk−1∑
k=0

df∑
j=1

Ki,k,jx
t+k−

⌊
dk
2

⌋
,j

 (4.9)

In our experiment the CNN architecture treats the breath dimension as the time

dimension. In addition, multiple CNN layers are stacked to enable the network to

71

Physics Informed Neural Networks in Sparse Data Applications

learn more abstract temporal patterns. The output at the middle time step of the last

CNN layer is fed into a fully connected layer to produce the final predictions. Various

CNN configurations are explored via grid search to tune hyperparameters such as the

number of layers and the number of kernels. Values for the hyperparameters are listed

in Table 4.7. The CNN architectures vary in depth, ranging from 3 to 5 1D-CNN

layers, and in width, using either 32 or 64 kernels per layer. A fixed kernel size of 3

is employed across all layers, which allows for the capture of local temporal patterns

while the increasing depth enables the learning of broader contextual information.

The activation function used is ReLU. Consistent with other models, we employ L2

regularization with a weight decay parameter of 10−4.

Table 4.7: 1D-CNN Hyper-parameters

Hyper-parameter Values
Number of layers 3; 4; 5
Hidden layer size 32; 64
Kernel size 3
Weight decay 10−4

4.2.3 Results

Table 4.8 presents the top 15 performing configurations of the machine learning

models, ranked by validation RMSE. From the table, it can be seen that the MLP

model using the MAD representation and dataset A achieves the best performance on

the validation set, with a RMSE of 3.18 and MAE of 2.26. However, this model does

not generalize well to the test set, where it records an RMSE of 7.65 and MAE of

5.74. Conversely, the LSTM model with RAW representation and dataset A attains

the best results on the test set, achieving an RMSE of 4.98 and MAE of 3.70, while

maintaining comparatively low errors on the validation set (RMSE of 4.11 and MAE

of 3.30). Overall, all models except for LR demonstrate strong performance on the

validation set, but only BiLSTM excels on the test set. This suggests that while

MLP, CNN, and BiLSTM are effective during training, BiLSTM may offer better

generalizability when applied to unseen data. Data representation also plays an

72

Physics Informed Neural Networks in Sparse Data Applications

important role. The MAD representation generally leads to better validation results

(ranking in the top 1–8 positions) but yields poorer results on the test set (test RMSE

greater than 6.6). In contrast, the RAW representation results in slightly lower

performance on the validation set (top 9–14, RMSE ranging from 3.97 to 4.20) but

provides superior performance on the test set, with RMSE values ranging from 5.0 to

5.7. For instance, the LSTM model using RAW representation and dataset A achieves

a test RMSE of 4.98, and the MLP model with datasets A and C achieves test RMSEs

of 5.74 and 5.70, respectively. This indicates that the choice of data representation

significantly affects a model’s ability to generalize. The RAW representation without

of handcrafted features allows deep models to extract generalizable features, whereas

the MAD representation may lose information compared to RAW, leading to poorer

generalization. Regarding sensor configurations, dataset C—which includes additional

sensors on the leg—provides the best performance for estimating oxygen consumption

when using the RAW representation and models such as LSTM or MLP. This implies

that these additional sensors capture patterns that generalize well. The variability

in validation performance across datasets may indicate that models are highly

overfitting to the validation set; however, overall, dataset C yields slightly better test

performance.

Figure 4.5a shows the relationship between predicted VO2 and measured VO2

for the LSTM model using RAW data representation and dataset C. The coefficient

of determination, R2, is 0.87, indicating a strong correlation between the predicted

and measured VO2 values. This high R2 value suggests that the LSTM model

explains 87% of the variability in the measured VO2 data. The predicted values

consistently align closely with the measured values, demonstrating good model

performance. Figure 4.5b presents a Bland-Altman plot showing the difference

between measured and predicted VO2 values against their average. This plot helps

identify any systematic bias and the limits of agreement (LoA) for the predictions.

The calculated bias is 0.50 mL/min, indicating a slight overprediction on average.

The upper LoA is 10.24 mL ·kg−1 ·min−1, and the lower LoA is -9.23 mL ·kg−1 ·min−1.

73

Physics Informed Neural Networks in Sparse Data Applications

Table 4.8: Top-15 performance of neural network models. This table presents
the top 10 performing neural network models, ranked by their valid RMSE. The table
includes both RMSE and MAE metrics for the validation and test sets. The unit
of the metrics is mL · kg−1 ·min−1. The best results, corresponding to the smallest
error values, are highlighted in bold, while the second-best results are underlined.

Rank Dataset Data Repr. Model Valid RMSE Valid MAE Test RMSE Test MAE
1 A MAD MLP 3.18 2.26 7.65 5.74
2 D MAD MLP 3.25 2.34 6.83 5.30
3 B MAD MLP 3.30 2.38 7.00 5.34
4 C MAD CNN 3.34 2.55 6.67 4.98
5 B MAD CNN 3.41 2.59 6.87 5.12
6 C MAD MLP 3.65 2.74 6.64 4.89
7 A MAD CNN 3.66 2.74 7.29 5.76
8 D MAD CNN 3.67 2.50 7.34 5.46
9 B RAW MLP 3.97 3.00 7.75 5.85

10 D RAW BiLSTM 3.98 3.07 5.94 4.38
11 C RAW BiLSTM 4.11 3.30 4.98 3.70
12 A RAW CNN 4.13 3.23 6.10 4.59
13 A RAW MLP 4.13 3.08 5.74 4.33
14 C RAW MLP 4.20 3.35 5.70 4.33
15 C MAD BiLSTM 4.28 3.49 7.94 5.90

This range reflects the spread of differences between measured and predicted values.

Most data points lie within these LoAs, suggesting that the model’s predictions are

generally accurate.

(a) Linear Correlation plot (b) Bland-Altman plot

Figure 4.5: (a) Linear correlation plot illustrating the relationship between predicted
VO2 and measured VO2 using the LSTM model with RAW representation and sensor
configuration C, achieving an R2 value of 0.87. (b) Bland-Altman plot showing the
differences between measured and predicted VO2 values against their averages for all
subjects combined.

Figure 4.6 illustrates the residuals (predicted VO2 minus measured VO2) across

different exercise conditions for the LSTM model using RAW data representation

and dataset C. The exercise conditions include baseline, jogging, recovery1, circuit1,

74

Physics Informed Neural Networks in Sparse Data Applications

recovery2, circuit2, and recovery3. The box plots reveal that the model generally

exhibits a median residual close to zero across the different exercise conditions,

indicating minimal prediction bias. However, there is noticeable variability in

the residuals, particularly during the recovery phases. The model predicts more

consistently during circuit activities than during the baseline and recovery phases.

Figure 4.6: Box plots of the residuals (predicted VO2 minus measured VO2) across
different exercise conditions for the LSTM model using RAW data representation
and dataset C. The exercise conditions include baseline, jogging, recovery1, circuit1,
recovery2, circuit2, and recovery3.

Figure 4.7 displays a comparison of breath-by-breath measured VO2 values (blue

line) versus predicted VO2 values (green line) obtained from the LSTM model using

RAW representation and dataset C. While the predicted VO2 values generally mirror

the overall trend of the measured data, notable deviations are observed during

exercise and recovery phases. The model effectively captures the general pattern of

VO2 fluctuations but exhibits challenges with precise tracking. During high-intensity

exercise periods, significant discrepancies between the predicted and measured VO2

values become apparent. The predicted values often overshoot or undershoot the

peaks of the measured data, indicating difficulty in accurately estimating VO2 levels

75

Physics Informed Neural Networks in Sparse Data Applications

during increased physical activity. In the recovery phases, the model’s predictions

do not closely follow the rapid decreases in VO2 observed, sometimes lagging behind

or leading ahead of the actual changes. These inconsistencies suggest that the model

struggles to accurately capture the oxygen kinetics during recovery periods. Finally,

the model demonstrates limitations in tracking rapid changes in VO2, particularly

during transitions between exercise and rest.

(a) Unsmoothed predictions (b) Smoothed predictions

Figure 4.7: Comparison of measured VO2 values (blue line) and breath-by-breath VO2
predictions (green line) for Subject 2 using the LSTM model with RAW representation
and dataset C. The left plot shows unsmoothed predictions with a MAE of 3.374
mL · kg−1, while the right plot displays smoothed predictions with an MAE of 2.902
mL ·kg−1. The plots include different exercise and recovery phases, shaded as follows:
baseline and recovery phases (light blue), jogging (pink), and simulated soccer circuit
(light green).

Our pilot study is the first to explore VO2 estimation specifically during simulated

team-sport exercise, making a direct comparison to existing treadmill or cycling

research less straightforward; however, within the broader context of studies [66, 68,

70–72], our results achieved are similar. We do encounter challenges in transitions

between different intensities, partly because our training dataset did not fully capture

the rapid changes observed in the test phase. Even so, the performance achieved with

raw IMU data and LSTM architectures highlights the feasibility of wearable-based

VO2 monitoring in team-sports scenarios. Our findings serve as an important starting

point in future work on athlete monitoring.

Summary. In this second study, we evaluated a range of neural network models to

predict individual oxygen uptake during outdoor running and simulated team sports

activities, using four sensor configurations and two data representations. While the

76

Physics Informed Neural Networks in Sparse Data Applications

MLP with MAD representation and torso sensor data achieves the lowest validation

error, it does not generalize well to the test set. Conversely, the BiLSTM model using

raw data from torso and leg sensors demonstrated better test performance. However,

the models exhibit limitations in precisely tracking rapid VO2 changes during high-

intensity exercise and recovery phases, highlighting challenges in capturing oxygen

kinetics during transitions between activity and rest.

4.3 Conclusions

In this chapter, we examined the capabilities of neural networks in two distinct tasks

across different domains: exosome classification and oxygen uptake estimation. In the

first project, we developed a methodolgy for classifying healthy, hyperglycemic, and

hypoglycemic conditions using SERS spectra from exosomes. The approach involves

smoothing the raw input spectrum and subtracting the estimated background signal,

leaving the exosome signal, which is then fed into a MLP model for classification.

The method yields promising results, achieving an overall accuracy of 66.7%. The

primary challenge encountered by the classifier is the strong correlation between

hyperglycemic and normal samples. Additionally, the model tends to misclassify

hypoglycemic samples in favor of hyperglycemic ones. Despite these challenges, the

result suggests that this method is effective in capturing and analyzing exosomes,

demonstrating its potential for distinguishing subtle differences in complex and

heterogeneous Raman signatures from various cell models.

In the second project, we investigated the use of a range of neural network

architectures to estimate individual oxygen uptake during simulated team sports

activities using wearable sensor data. As part of this study, we investigated different

sensor configurations, including torso placement with additional sensors placed on

the arm, leg, or both. While results showed no substantial advantage of deep

learning models over the baseline MLP model in terms of predictive performance, it

was possible to uncover some interesting results. The best-performing MLP model

achieves a MAE of 3.79 mL · kg−1 · min−1, slightly higher than the LSTM model,

77

Physics Informed Neural Networks in Sparse Data Applications

which achieves an MAE of 3.69. While deep learning models such as LSTM and

CNN demonstrate strong performance with raw sensor data, MLP models remain

competitive, particularly when using MAD data representations. The choice of

sensor placement configuration also had a significant impact on performance, with

multi-sensor setups, such as torso and leg (Dataset C) or torso and arm (Dataset B),

yielding the most accurate predictions.

Through these two tasks, the different forms of neural network demonstrated

robust performance across different domains, solving different problems. However,

these methods still exhibit certain limitations. First, the model architectures do

not fully exploit the information contained within the inputs. In the exosome

classification task, the entire exosome signal is input into the machine learning models

with minimal pre-processing. This could be one of the reasons why the predictive

performance does not reach practical levels. In the oxygen uptake prediction task,

two representations are provided to the machine learning models: raw sensor signals

and a mildly transformed version. Although the transformation does not improve

performance on the test sets, it shows marginally lower errors on the validation

sets, which are technically still unseen data. Moreover, while LSTM and 1D-CNN

models can leverage the temporal nature of the data, they may not fully capture

the complex relational structures inherent in the data. The good performance of the

LSTM in the second task further underlines how specialized architectures can be

effective in capturing complex dependencies, suggesting that future research may

benefit from more specialized models such as GNNs that explicitly leverage data

structure. Therefore, in Chapter 5, we will adopt a graph-based approach, where

exosome or sensor data are represented as networks whose structure encodes potential

interactions or dependencies. We employ graph neural networks because they are

specifically designed to learn from graph-structured data, thereby providing a more

expressive way to model inter-dependencies and potentially improve performance.

Secondly, neural networks experience significant overfitting. As model complexity

increases, the risk of overfitting grows, with only marginal improvements observed

78

Physics Informed Neural Networks in Sparse Data Applications

over simpler models. In the oxygen uptake prediction task, the performance of MLPs

and more complex architectures is comparable across different data representations,

with both approaches ranking among the top-performing models. A plausible

explanation is that deeper models may overfit not only the training data but also

the validation data. While we used L2 regularization, cross-validation, and early

stopping to mitigate the risk of overfitting, this problem and challenge persists. A

popular approach to address overfitting is to introduce a regularization term into

the objective function, guiding the training process to favor model properties that

are more likely to generalize well. This regularization term can often be informed by

domain-specific knowledge of the underlying process. In Chapters 6 and 7, we adopt

the approach of physics-informed neural networks, which incorporate a regularization

term into the objective function to ensure that the trained neural networks adhere

to physical laws. This hybrid approach leverages domain knowledge, in the form

of differential equations describing the system’s dynamics, while maintaining the

flexibility of neural networks to learn from the provided data.

79

Chapter 5

Graph Neural Networks

In Chapter 4, we evaluated the capabilities of neural networks on two separate real

world machine learning tasks. While neural networks are regarded as performing

strongly across a wider range of applications, achieving robust performance requires

the incorporation of more extensive domain knowledge. This may require more

careful data analysis and the use of more complex architectures to effectively capture

intricate patterns. One approach to making neural networks more powerful and

potentially more interpretable is to adopt a graph-based structure for the neural

network. The concept here is to merge graph-based modeling with a neural network

machine learning function to improve its performance. To develop this approach, we

first conduct a sizeable research project using graph analytics and then introduce

some of our learnings to develop a graph-based neural network. To continue to align

with our research goals, we conduct these research problems on real world problems

and datasets. In Section 5.1, we provide a general introduction to graph models and

then in Section 5.2, use a series of graph analytics to measure, evaluate and make

predictions using a shared bicycle network. We then present our work on building a

graph-based neural network in Section 5.3 and evaluate this novel function in air

quality prediction.

80

Physics Informed Neural Networks in Sparse Data Applications

5.1 Graph Modeling

Modeling data as networks has received considerable attention in the last two

decades [212, 213]. A network (or graph) consists of a set of nodes (vertices) and

a set of edges (links) connecting pairs of nodes. Nodes typically represent entities

of interest, while edges denote specific relationships or interactions between these

entities. Analyzing networks constructed from data provides several advantages over

traditional tabular representations, such as enhanced data visualization, the ability to

identify influential components or critical relationships through network metrics, and

the detection of patterns, connectivity, and modular structures through community

detection algorithms. Additionally, constructing complex networks facilitates the

application of an advanced variant of neural networks known as graph neural networks

(GNNs). By leveraging a graph representation, GNNs can effectively regulate the

flow of information, enabling each node to aggregate information from itself and its

immediate neighbors. This allows for the discovery of potential relational patterns

embedded within the graph structure.

In this chapter, we take the approach of complex network analysis and graph

neural networks in two separate projects. In the first one, we introduce a network-

based methodology for the spatial-temporal analysis of transportation data. The

proposed method involves several steps, each providing a distinct perspective on

the data. First, exploratory statistical analysis is conducted to summarize and gain

a comprehensive understanding of the dataset. Next, transportation networks are

constructed to describe how individuals move through the transportation system.

The dynamics of these flow networks are then examined by constructing a series of

flow networks over different time intervals to capture changes in movement patterns

over time. Finally, the spatial-temporal behaviors of stations are investigated by

building correlation networks that represent temporal similarities in activity patterns.

In the second project, we propose a novel graph neural network designed to

enhance spatio-temporal feature extraction for air quality forecasting. Our method-

ology integrates an attention mechanism that adaptively assigns weights to different

81

Physics Informed Neural Networks in Sparse Data Applications

factors, thereby improving prediction accuracy. By applying attention layers to both

temporal and spatial dimensions, the model is able to simultaneously learn critical

spatio-temporal features. The proposed model is validated using air quality data

collected from 10 monitoring stations in Hanoi, Vietnam, over a period of more than

one year. The results show improvements compared to baseline methods as well as

the interpretability of the model.

The implementations for these two projects can be found at:

• Bike-sharing system network analysis: https://github.com/dinhvietcuong1996/

networks-bike-sharing-system;

• Spatio-temporal attention-based air quality forecasting https://github.com/

dinhvietcuong1996/SpaTemAtt-Air

5.2 Graph Analytics using a Travel Network

In this section, we introduce a dataset which captures a network of bike trips over

a 2 year period and a series of analyses that exploit a graph model to gain new

insights. Bike sharing systems have been gaining widespread popularity globally,

offering significant convenience to travelers. These systems allow users to pick up a

bike, travel to their destination, and return the bike at any convenient location. This

approach presents a low-cost and efficient mode of urban transportation. Additionally,

bike sharing addresses the challenge of first-and-last mile connectivity and alleviates

traffic congestion in cities, thereby contributing to increased efficiency of the overall

transportation system. Furthermore, cycling is a healthy, environmentally friendly

alternative for urban mobility.

5.2.1 Problem

Recently, bike sharing providers have introduced dockless bike sharing services,

allowing users to pick up and drop off bikes at more informal locations, often

referred to as virtual stations. Given the flexibility of virtual stations, providers

82

https://github.com/dinhvietcuong1996/networks-bike-sharing-system
https://github.com/dinhvietcuong1996/networks-bike-sharing-system
https://github.com/dinhvietcuong1996/SpaTemAtt-Air
https://github.com/dinhvietcuong1996/SpaTemAtt-Air

Physics Informed Neural Networks in Sparse Data Applications

are incentivized to monitor bike usage and determine the optimal configuration of

these stations. In essence, the challenge lies in assessing “how closely the currently

deployed network of virtual stations approximates the configuration that optimizes

bike usage”. Bike sharing data is typically made available in tabular form, such data

is often limited in its ability to model and analyze this type of problem. Moreover,

data related to station locations and trips must be analyzed at varying levels of

granularity to provide both a comprehensive view of network activity as well as

detailed insights where needed. Any proposed solution must take into account that

decisions made at a global level may have adverse effects on individual stations, while

local adjustments to the network topology could impact the global system negatively.

Specifically, a series of research questions can be articulated as follows:

• Research Question 1. How can a detailed overview of the most and least

active stations and routes be created?

• Research Question 2. Is it possible to drill-down using the time dimension

to better understand these levels of activity?

• Research Question 3. Spatial similarities can be identified as part of RQ1

and temporal similarities can be observed as part of RQ2. Is it possible to

combine these dimensions to identify stations that exhibit similar characteristics

over specific time intervals?

• Research Question 4. A more advanced global analysis involves understand-

ing the relationship between each station and all other stations in terms of

activity. Can a station’s pattern be defined by its activity over time so that

two stations are related if their patterns are similar?

5.2.2 Methodology

Preliminaries

In general, there is no single network structure for a particular dataset and researchers

generally measure or compare different graph structures according to their needs.

83

Physics Informed Neural Networks in Sparse Data Applications

Based on the types of analyses planed, we developed different structures to meet

different requirements.

Spatial Graph Network. The Spatial Graph Network (SGN) is the most

fundamental form of network. In this network, nodes are linked by undirected edges,

where an edge between two nodes is established if at least one trip has occurred

between the origin node (source) and the destination node (target). The SGN offers a

comprehensive, aggregated perspective on the network’s topology and the volume of

activities within it. Each edge is further associated by a weight, which quantifies the

total number of trips that have taken place along the route connecting the two nodes

over the entire period of interest. More formally, the SGN is defined in Def. 5.1.

Definition 5.1 (Spatial Graph Network) The SGN is a pair SGN = ⟨S, J⟩,

where S is the set of nodes (vertices), and J denotes the set of edges connecting

these nodes. A node (or vertex) s ∈ S is described as a pair s = ⟨lat, lon⟩, where lat

and lon correspond to the latitude and longitude, respectively, specifying the spatial

location of the node. An edge j ∈ J is defined as a triple j = ⟨o, d, a⟩, where o, d ∈ S

are the origin and destination nodes of the edge, and a represents the activity between

these two vertices.

Temporal Graph Network. The aggregated nature of the SGN can hide

important details and the dynamic evolution of networks over time. To address this

limitation and allow for the study of network evolution, it is essential to explicitly

incorporate time as a dimension within the graph. Segmenting data, especially graph

or unstructured data, enables more granular analysis and improves efficiency in terms

of query response times [214].

For the above reason, we introduce the temporal graph network (TGN). A TGN

is defined as an ordered sequence of graphs, where each graph represents the state of

the network at a specific moment in time. In other words, each graph in the TGN

provides a snapshot of the SGN during a time window, over the course of the period

of interest. The TGN facilitates a more detailed analysis of the network by allowing

for comparisons between different projections of the graph, thereby supporting the

84

Physics Informed Neural Networks in Sparse Data Applications

examination of the network’s evolution over time. Formally, a TGN is defined in

Definition 5.2.

Definition 5.2 (Temporal Graph Network) A TGN is a set TGN = {SGN 1,

SGN 2, . . . ,SGN T}, where SGNi represents a time-bounded SGN , capturing the state

of the network during a specific time interval. Each SGNi is a pair SGNi = ⟨S, K⟩,

where a node s ∈ S is described by the pair s = ⟨lat, lon⟩, corresponding to its spatial

coordinates. An edge k ∈ K is defined as the tuple k = ⟨o, d, t, δ, a⟩, representing the

volume of activity between two nodes during a specific time interval. Here, o, d ∈ S

are the origin and destination nodes, t is the starting time point of the observation

period, δ is the duration, and a represents the volume of activity between nodes o

and d during the observation period from t over the interval δ.

Spatio-Temporal Graph Network. The Spatio-Temporal Graph Network

(STGN) has fundamentally different characteristics compared to previous graph

representations. In the STGN, the edges model the similarity between two nodes

(vertices) based on the temporal patterns in their activities. This allows the data

to be analyzed as timeseries patterns [215], facilitating the identification of trends,

seasonal or cyclical components, irregularities, and potentially, the diversity within

the data [216]. The STGN is defined formally in Def. 5.3.

Definition 5.3 (Spatio-Temporal Graph Network) A STGN is a tuple STGN =

⟨S, H, Ts, Te⟩, where S represents the set of nodes (vertices), and H denotes the set of

edges connecting these nodes. Ts marks the starting point of the network observation,

while Te represents the time at which the observation ends. Each node (vertex) s ∈ S

is a pair s = ⟨lat, lon⟩, where lat and lon represent the latitude and longitude of

the spatial location of the node. An edge h ∈ H is a triple h = ⟨s1, s2, r⟩, where s1

and s2 ∈ S are two nodes, and r denotes the similarity value between them. This

similarity is calculated based on the temporal patterns of their activities observed over

the series of time periods.

85

Physics Informed Neural Networks in Sparse Data Applications

Network Constructions

Bike-sharing systems, as time-evolving networks, can be characterized by three

core features: space, time, and activity volume. Space and time can be considered

dimensions, whereas activity is a measure whose value depends on how one looks at

the dimensions. In this context, we model the bike-sharing system as a graph network

that analyzes activity (trips) with respect to one or more dimensions. Specifically,

we construct three types of networks, based on the generic network types defined in

Section 5.2.2. The first network type focuses solely on the spatial dimension. The

second network, while still incorporating spatial properties, focuses on the temporal

dimension for the purpose of analysis. The third network integrates both spatial

and temporal dimensions. Each network type offers greater analytical power and

complexity than the preceding one. However, simpler networks are easier to construct,

and as the cost of building more complex networks increases, it is important to

understand the strengths and limitations of each network type. In the following

sections, we will discuss the construction of these networks, the analyses each allows,

and their applications.

Spatial Bike Graph Network. We construct a Spatial Bike Graph Network

(SBiGN) based on the SGN framework to capture the spatial characteristics of

bike-sharing usage, particularly station connections and the volume of trips between

stations. This representation is invaluable for analyzing the traffic flow within the

transportation system. In a straightforward sense, the nodes of the SBiGN represent

bike stations, while the edges correspond to trips (journeys) made between these

stations. Each edge is associated with a weight, reflecting the total number of trips

occurring along the route between the two connected stations over the entire period

of interest. A formal definition of the SBiGN is provided in Def. 5.4.

Definition 5.4 (Spatial Bike Graph Network) The SBiGN is a pair SGN =

⟨S, J⟩, following the structure outlined in Def. 5.1, where each node corresponds to a

bike station and each edge represents journeys (trips) between stations. Additionally,

the activity a between two stations can be interpreted as the cardinality, or the total

86

Physics Informed Neural Networks in Sparse Data Applications

number, of trips made along that route.

We refine the SBiGN by removing statistically insignificant data, which introduce

noise and reduce the effectiveness of the analysis. First, we identify and remove

weak edges, defined as edges with relatively low weight values compared to the

overall network aggregation. This is a common step in network optimization [217],

where large numbers of insignificant data points can slow down the analysis without

providing substantial new insights. The threshold for edge removal is chosen to

ensure the network remains strongly connected, thereby preserving the well-defined

nature of network algorithms such as closeness and betweenness, while also reduc-

ing the network’s size. Hence, this optimization improves both the quality and

efficiency of the analysis. A binary search version of the threshold algorithm is

outlined in Algorithm 5.1. The network’s strongly connected property is continually

verified to ensure that the network’s connectivity remains with the threshold. The

is_strongly_connected function ensures that all nodes in the network are reachable

from any given starting node, as described in [218].

Algorithm 5.1 find_threshold(edges): Binary Search to find the largest threshold
for strong connectivity from edge.
Require: edges← A list of all edges in the network, each with a weight
Ensure: threshold: Largest threshold value for strong connectivity, NULL if there

is none.
1: edgeV alues← unique weights extracted from edges sorted in ascending order
2: low ← 0
3: high← length(edgeV alues)− 1
4: threshold← NULL
5: while low ≤ high do
6: mid←

⌊
high+low

2

⌋
7: network ← build_network(edges, edgeV alues[mid])
8: ▷ Removes edges with weight < edgeV alues[mid]
9: if is_strongly_connected(network) then

10: threshold← edgeV alues[mid]
11: low ← mid + 1
12: else
13: high← mid− 1
14: end if
15: end while
16: return threshold

87

Physics Informed Neural Networks in Sparse Data Applications

Secondly, we remove looping edges, which are defined as edges where the source

and destination nodes are the same (i.e., bike trips that originate and terminate

at the same station). These edges contribute little to the overall analysis and may

introduce complications for certain graph algorithms. However, loops could be a

meaningful aspect of the transportation system’s behavior, and thus, they should be

examined within a separate network.

For analytical purposes, one key advantage of the spatial graph is its ability to be

overlaid onto a geographical map of the bike-sharing network’s deployment area. In

line with Requirement 1, Figure 5.1 illustrates the SBiGN using data collected over

a 15-month period from June 2020 to August 2021, enabling the clear identification

of the busiest stations and the spatial distribution of high-activity stations. In this

visualization, node size is proportional to the total number of trips either originating

from or ending at the station. The ten most active stations are highlighted in red,

while other stations are shown in blue. Only the top 10% of edges (most frequently

used routes) are displayed in red and the remaining routes in blue.

Temporal Bike Graph Network. From a practical standpoint, we construct a

Temporal Bike Graph Network (TBiGN) by generating a sequence of time-bounded

SBiGNs, as defined in Def. 5.5. The TBiGN follows a specified temporal order and

a predetermined time scale, with each SBiGNi capturing network activity within a

specific time interval.

These intervals can have any duration and may or may not overlap. This

flexibility is essential for modeling how temporally adjacent networks reflect the

system’s evolution over time. The choice of intervals influences the degree of similarity

between successive networks. Intuitively, shorter intervals result in networks that are

less similar but allow for a more granular representation of system dynamics, aligning

with Requirement 2 outlined in the introduction. In contrast, longer intervals

may produce more similar networks due to the aggregation of data over extended

periods. However, this comes at the expense of overlooking certain aspects of system

evolution. Longer intervals are nonetheless necessary for capturing broader temporal

88

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.1: Geographic Map overlaid with SBiGN. Each circle represents a
bike station and is sized according to its trip volume, with the 10 busiest stations
(by trip volume) shown in red and all others in blue. Lines represent routes between
stations and are also sized by trip volume; the 10 most frequently used routes are
highlighted in red, and the remaining routes are shown in blue.

properties such as seasonality and stationarity [216].

Definition 5.5 (Temporal Bike Graph Network) A TBiGN is a set TBiGN

= {SBiGN1, SBiGN2, . . . , SBiGNT}, where SBiGNi is a time-bounded SBiGN

and is described as a pair SGNi = ⟨S, K⟩. This corresponds to Def. 5.2, where each

node and edge in SGNi corresponds to a bike station and a route, respectively, within

the associated SBiGNi.

For bike-sharing graph networks, time intervals are typically defined over hours,

days, or weeks to facilitate the analysis of periodic and seasonal patterns. In

addressing Requirement 3, these networks are subsequently clustered into groups,

with the centroid of each cluster representing the entire group for analysis. This

approach simplifies the analysis of a large set of graphs, allowing the focus to be

placed on a smaller subset of centroid graphs.

89

Physics Informed Neural Networks in Sparse Data Applications

Spatio-Temporal Bike Graph Network. The Spatio-Temporal Bike Graph

Network (STBiGN) is designed to use STGNs as a fundamental building block and

is defined in Def. 5.6. This type of network is used to address Requirement 4

where a different perspective on station-by-station correlation can be explored.

The construction of STBiGN involves three steps:

1. In the first step, a time series is generated for each station based on a specified

timescale. Typically, the analysis is performed over contiguous, non-overlapping

intervals such as hourly, daily, weekly, monthly, or yearly periods. This allows

for the exploration of periodic patterns in the transportation system, such as

morning and evening rush hours. Once the timescale is known, each station is

represented by a time series reflecting the number of trips within each time-step

window, enabling the study of station activity over the defined timescale.

2. In the second step, a similarity score is computed for every pair of stations

using the Pearson correlation coefficient, as defined in Equation 5.1.

S(x, y) =
∑n

i=1 (xi − x) (yi − y)√∑n
i=1 (xi − x)

√∑n
i=1 (yi − y)

. (5.1)

Here, (xi) and (yi) are two time series of length n is the number of time steps

in which activity is measured. The mean values x and y are the averages of x

and y, respectively. The Pearson correlation coefficient, which measures the

linear relationship between the two variables, is in the range −1 ≤ r ≤ 1. As

most network algorithms operate on non-negative edge weights, the coefficient

is normalized to a range of 0 to 1 using the transformation S(x, y) = (S(x, y) +

1)/2.

3. In the final step, STBiGN is constructed based on the correlation matrix of

the Pearson coefficients. The matrix of all normalized similarity scores forms

the adjacency matrix of the network. In this network, each node represents

a station, and an edge always exists between every pair of stations, with the

edge weight corresponding to the computed similarity score. To improve the

90

Physics Informed Neural Networks in Sparse Data Applications

usability of network metrics such as closeness, betweenness, and local clustering

coefficients—which perform poorly on fully connected or weighted networks,

statistically insignificant (weak) edges are removed. During this edge-trimming

step, the strongly connected property of the network is maintained.

Definition 5.6 (Spatio-Temporal Bike Graph Network) A STBiGN is a tu-

ple STGN = ⟨S, H, Ts, Te⟩, in accordance with Def. 5.3, where a node and an edge

in STGNi refer to a bike station and a trip in STBiGNi, respectively.

Graph Metrics

The primary techniques for analyzing the structure of both SGN/TGN and SBiGN/TBiGN

are centered around centrality metrics. These metrics provide quantitative measures

of a node’s importance within the network [219, 220]. When analyzing centrality

metrics, particular attention should be given to nodes with exceptionally high scores,

as these nodes may either represent outliers or play crucial roles in the networks.

Graph Metrics for SBiGN and TBiGN

• Strength. Node strength is defined as the sum of the weights of the edges con-

necting a node to its immediate neighbors [221]. In the context of SBiGN/TBiGN,

the edge weight represents the volume of activity (i.e., the number of trips).

Therefore, the strength of a station is the total number of trips occurring to or

from that station.

• Degree. A node’s degree is the number of edges connecting it to adjacent

nodes, which is the number of nodes the node is directly connected to [222].

In the SBiGN/TBiGN, the degree of a station represents the number of other

stations with which it shares at least one trip.

• Closeness. Closeness centrality measures how close, on average, a node is

to all other nodes in the network [223, 224]. The distance between nodes is

defined as the length of the shortest path, or the minimum number of hops

(routes) between them. In SBiGN/TBiGN, a station’s closeness score quantifies

91

Physics Informed Neural Networks in Sparse Data Applications

how centrally located it is in relation to all other stations, reflecting its role in

overall movement across the network.

• Betweenness. Betweenness centrality indicates how often a node lies on

the shortest paths between other node pairs [224, 225]. A high betweenness

score suggests that the station plays a key role in network connectivity. In

SBiGN/TBiGN, stations with high betweenness scores often serve as “bridges”

or critical waypoints that connect different parts of the network.

• Local Clustering Coefficient. The local clustering coefficient measures the

likelihood that a node’s neighbors are also connected to one another [226]. In

the context of SBiGN/TBiGN, a high local clustering coefficient suggests that

travelers departing from a station are likely to move between only a few closely

interconnected stations.

• Communities. Communities refer to groups of nodes that are more densely

connected with each other than with nodes outside the group [158, 227]. In the

SBiGN/TBiGN, a community represents a cluster of stations where a higher

proportion of trips occur within the community than between stations outside

of it.

Graph Metrics for STBiGN. The same graph metrics are employed as in the

previous graphs. But due to the difference in nature of STBiGN, the interpretation

of these metrics in such correlation-based networks [228–230] differs based on the

network’s construction and definitions:

• Strength. Node strength, defined as the sum of scaled correlations connected

to the node, reflects the degree of similarity between the station and other

stations in terms of their activity patterns.

• Degree. In a STGN, the degree is the number of stations that exhibit similar

behavior to the station under observation.

92

Physics Informed Neural Networks in Sparse Data Applications

• Closeness. In the context of a STGN, closeness is defined as the minimum

number of significant similarities that form a path between two stations. The

greater the distance between two stations, the less similar their temporal

activity patterns.

• Betweenness. In this case, betweenness centrality measures a station’s role

in connecting groups of similar stations. Stations with high betweenness scores

typically show similarity to multiple distinct groups.

• Local clustering coefficient. A high local clustering coefficient in a STGN

indicates that a station’s neighboring stations are also likely to be similar to

one another. Stations with high coefficients form groups with more or less the

same activity patterns.

• Communities. Hence connections are built based on the similarity of stations’

activity time series Members of the same community share common temporal

patterns in their activity.

5.2.3 Experiments

The dataset used for the experiments is described in Section 2.2.1.

Materials and Tools

The programming environment uses Python, with several key libraries for experiments,

including Scipy [231], Matplotlib [232], and NetworkX [233]. Pandas [234] is utilized

for data processing, analysis, and graph construction while Matplotlib is used for

data visualization. Graph visualizations are produced using Google Maps API [235]

in combination with NetworkX. The Neo4j graph database [236] is used to manage

and store all graphs. Additionally Neo4j’s Graph Data Science Library [237], with

built-in centrality metrics and community detection algorithms, is used for all network

metrics.

93

Physics Informed Neural Networks in Sparse Data Applications

Network Constructions

SBiGN. As described in Def. 5.4, stations are modeled as nodes in the SBiGN,

and are linked by undirected, weighted edges if at least one trip occurred between

them in the 15-month period. The weight of each edge is the total number of trips,

counting both directions. To enhance the analysis, loop edges and weak links are

removed from the SBiGN.

To identify and remove weak connections, we progressively lower the edge weight

threshold until the network achieves strong connectivity. In the experiment, the

final threshold is set at 11 trips by Algorithm 5.1. The resulting network density,

calculated as the ratio of actual edges to potential edges, is approximately 19%.

Following the removal of 9,544 loop trips and 7,920 trips associated with weak links,

the final SBiGN consists of 18,717 trips connected by 686 edges, with the number of

nodes unchanged at 86.

TBiGNs. TBiGNs are used to analyze movement patterns with specific time

intervals. In this experiment, daily and monthly graph projections are constructed

to enable detailed and broader analyses, respectively.

For daily analysis, 7 TBiGNs are generated, representing each day of the week,

using data spanning 66 weeks within the 15-month period from June 2020 to August

2021. These 7 TBiGNs are clustered into two groups: “weekday,” comprising 5

TBiGNs for weekdays, and “weekend,” comprising 2 TBiGNs for the weekend days.

Similar to the SBiGN, loop trips and weak links were removed from the TBiGNs.

In this case, weak links are defined as edges with fewer than 5 trips. On average,

approximately 1,364 loop trips are removed per day, accounting for 26.4% of the

data, along with 551 trips of weak edges, representing 10.6%.

For broader monthly analysis, monthly TBiGNs are used to examine variations

in network activity across a monthly timeframe. A rolling window of 4 weeks size,

starting at week 1, slides one week at a time. This results in 63 networks covering the

66-week period June 2020 to August 2021. Nodes represent stations, and edges are

weighted by the number of trips occurring within each 4-week window. In addition

94

Physics Informed Neural Networks in Sparse Data Applications

to removing loop trips, the network is further optimized by eliminating edges with

fewer than 3 trips, using a weekly threshold of 0.75 trips per week. On average,

around 384 trips are removed from each TBiGN, totaling of 1,628 trips (23.6%).

STBiGN. Spatio-Temporal Graphs enable the analysis of temporal patterns

occurring between spatial locations. We build three levels of granularity for analyzing

the similarity between stations across temporal dimensions: hourly, where the 24

hourly intervals are averaged across the entire dataset; daily, where each day of the

week is averaged, and monthly, where a single monthly value is calculated for each

station over the 15 months of the study.

A typical investigation for this type of network examines the similarity of the

growth of stations over time. Nodes are stations and an edge connects two stations

based on the degree of similarity in their trips volumes over the analyzed time period.

The edge weight is the Pearson correlation coefficient between two stations’ timeseries.

Similarity is considered significant only when the correlation coefficient exceeds the

threshold value of T = 0.533. This threshold ensures strong network connectivity

while minimizing the number of edges. The network’s density, which indicates how

well connected the graph is, is 0.098. This is calculated as #edges/#possibleEdges.

In STBiGNs, the higher the value the greater the similarity between any pair of

stations. In contrast, lower density values can indicate stations with more distinctive

travel patterns.

5.2.4 Analysis and Discussion

In this section, we validate our research using the networks constructed in Section 5.2.3

against the set of requirements outlined in Section 5.2.1. There are 6 parts that

reflect the different types of analyses and different levels of granularity. However,

we only present in details two parts, the monthly temporal networks and daily

spatio-temporal networks. Other discussions, including spatial bike graph, daily

temporal graph, monthly spatio-temporal graph and hourly spatio-temporal graph,

are similar in terms of techniques and are presented in the Appendix B.

95

Physics Informed Neural Networks in Sparse Data Applications

4.2.2.1 Spatial Bike Graph Networks (SBiGN)

Basic graph analytics are applied to analyze bike movement across the entire network.

Table 5.1 lists stations in descending order according to their strength values.

Notably, the station at Fairview Avenue Lower has the highest strength at 1,478,

closely followed by centrally located stations such as Mountjoy Square South (1,385),

Criminal Courts of Justice (1,350), Grand Canal Docks (1,322) and O’Connell Street

(1,272). The decline in station strength follows a slightly negative-exponential trend,

near linearity. Small stations tend to have very few trips over the observation period,

often fewer than several dozen. Interestingly, many of these small stations are

situated near larger, higher-traffic stations.

Table 5.1: Node Strength in SBiGN

Station Strength
Fairview Avenue Lower 1,478
Mountjoy Square South northside opposite No. 40-45 1,385
Outside Criminal Courts of Justice 1,350
Grand Canal Docks, outside Fresh 1,322
Beside Penneys O’Connell Street 1,272
... ...
Benson Street 43
Start of St. Stephen’s Green terrace. 43
Pearse Street, outside Subway 26
Phibsborough Rd, outside Broadstone Hall Studen... 23
Merrion Square North opposite Oscar Wilde House 11

Table 5.2 presents the edge weights. The most frequently traveled routes are

predominantly associated with commuting trips or follow the coastal line between

Blackrock and Monkstown. The edge weights exhibit an exponential decrease, with

the most popular routes having nearly twice the weight of the third most popular

route. Unsurprisingly, the least traveled routes have negligible weights. While some

stations rank highly in both node strength and edge weight metrics, there are notable

differences in the patterns of route and station popularity. Station strength displays

a more gradual decline, whereas route popularity decreases more sharply.

Figures 5.2 to 5.4 highlight key geographical areas, with the size of a station’s

node representing its relative importance. In Figure 5.2, degree of a station is closely

96

Physics Informed Neural Networks in Sparse Data Applications

Table 5.2: Edge Weight in SBiGN

Source Target Weight
Dun Laoghaire Dart Honeypark Neptune Way 247
Criminal Courts of Justice Phoenix Park Gate 243
Blackrock Main St. Dun Laoghaire Dart 190
Drumcondra Road Upper Fairview Avenue Lower 179
Dun Laoghaire Dart Sandycove Beach 165
...
End of Adelaide Road Talbot Hotel Stillorgan 11
Richmond Row Dun Laoghaire Dart 11
Sandymout Village Dun Laoghaire Dart 11
Grand Canal Docks Seapoint 11
Ballsbridge Monkstown 11

correlated with its strength, except for the Monkstown station, which High-degree

nodes, depicted in red, are typically located in residential areas, acting as hubs for

people traveling to and from these regions.

Figure 5.2: Graph Analytics for Spatial Bike Graph Networks: Degree. Each
circle represents a bike station and is sized by its degree, with the 10 highest-degree
stations shown in red and all others in blue.

The closeness metric offers further insights into the significance of stations

97

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.3: Graph Analytics for Spatial Bike Graph Networks: Closeness.
Each circle represents a bike station and is sized by its closeness centrality, with the
10 highest-closeness stations shown in red and all others in blue.

within the network. Stations with high closeness scores (depicted in red in Figure 5.3)

are well-connected to numerous other stations, whereas stations with lower scores

tend to be more isolated. The top 10 stations in terms of closeness are located in

the city center, underscoring their extensive connectivity with stations across Dublin.

The network’s average closeness score is 0.59, indicating that, on average, a station

is approximately 1.7 trips away from other stations. As closeness values exhibit

minimal variation across the stations, this suggests that there is no clear standout

station that serves as a central hub for reaching many other stations via existing

trips. As a result, the removal or closure of any single station would not significantly

disrupt movement across the entire network.

In Figure 5.4, stations with high betweenness scores are highlighted in red.

These stations are primarily located along the river in the city center or in the

Blackrock area. If an isolated, high-betweenness station like Blackrock is to close, it

98

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.4: Graph Analytics for Spatial Bike Graph Networks: Betweenness.
Each circle represents a bike station and is sized by its betweenness centrality, with
the 10 highest-betweenness stations shown in red and all others in blue.

could potentially divide the network into separate segments and limiting bike rentals

and movement within their respective networks.

The final analysis of the SBiGN focuses on identifying communities based solely on

spatial data, as depicted in Figure 5.5, where nodes of the same color represent stations

belonging to the same community. Four communities are identified: the north-east

(purple), the north-west (bright aqua), the south-city group (pale chartreuse) and the

south-suburban (Blackrock and Monkstown) area (red). It is interesting that three

of these communities are located close to the city center, with two on the north side

and one on the south side. This indicates a more widespread use of the bike-sharing

system in the northern part of the city, potentially indicating that more customers

utilize the bikes for work or reflecting underlying socioeconomic factors. The fourth

community, located in the Blackrock-Monkstown area, is relatively isolated from the

other three, being far from Dublin’s city center. Trips within this community are

99

Physics Informed Neural Networks in Sparse Data Applications

typically along the coastline or from nearby residential areas to the coast, with limited

interaction between this community and the others. This finding is particularly

interesting as it reveals the presence of isolated communities with minimal overlap,

suggesting that bikes remain “trapped” within the network.

Figure 5.5: SBiGN Community Detection. Each circle represents a bike station
and is sized according to its trip volume. The node colors indicate different commu-
nities, with four communities labeled: purple, bright aqua, pale chartreuse, and red.
Lines represent routes between stations and are also sized by trip volume.

SBiGNs: Summary In SBiGNs, we addressed Requirement 1 by providing

a high-level visualization. The information contained in Tables 5.1 and 5.2, along

with Figures 5.2 to 5.5, provides additional insights and context to the network

visualization. These include key metrics such as strength, degree, closeness, and

betweenness, as well as the identification of station communities and the weights

of routes over the 15-month period.

100

Physics Informed Neural Networks in Sparse Data Applications

4.2.2.2 Temporal Bike Graph Networks (Monthly TBiGN)

We employed agglomerative hierarchical clustering using Euclidean distance, as

described in [238], to generate a dendrogram illustrating network changes over time.

Figure 5.6 displays the results of hierarchical clustering on a series of monthly basic

networks, with the x-axis representing the start date of each 4-week period. The

analysis reveals three distinct clusters: the first spans the period from June 2, 2020,

to November 15, 2020; the second extends from November 2, 2020, to July 4, 2021;

and the third covers the timeframe from June 28, 2021, to the end of August 2021.

These clusters closely correlate with two major phases of COVID-19: lockdowns

(restrictions, lockdowns) and reopenings (easing). This alignment illustrates how

significant events, such as the pandemic, influenced network dynamics over time in

the monthly temporal graphs.

Figures 5.7 to 5.9 depict the temporal evolution of the three distinct TBiGN

clusters, providing insights into the differences among these clusters over time.

• Restrictions Cluster. The first cluster, representing the period from June

to mid-November 2020 (Figure 5.7), shows that network activity was largely

concentrated at a limited number of key stations and routes, primarily involving

Phoenix Park and Fairview Park to the city center. Notably, although activity

is focused near the city, the biggest stations and routes are distributed across

several central areas rather than being concentrated in a single location.

• Lockdown Cluster. During the second cluster, which corresponds to the

stricter lockdown period from November 2020 to early July 2021 (Figure 5.8),

overall activity levels decline significantly. The size of the top stations and

routes also diminishes, with the top 10 most active stations shifting away from

the western part of Dublin.

• Easing Cluster. In the third cluster, covering July and August 2021 (Fig-

ure 5.9), activity levels almost return to pre-lockdown levels. During this

period, the most active stations are located within the city center, with major

101

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.6: Rolling Window Monthly Clustering. This dendrogram shows how
monthly bike-sharing networks (each represented on the x-axis by its start date)
cluster based on their similarity. The y-axis indicates the distance between these
monthly networks, with lower values signifying higher similarity. Horizontal lines
connect two clusters at their respective distance. Three primary clusters are detected:
Restrictions, Lockdown and Easing.

routes connecting residential areas to the central urban zone.

Furthermore, this type of graph addressed Requirement 3 by clustering the

monthly TBiGNs over time. Figures 5.7 to 5.9 provide information regarding the

strength of stations and the weight of edges within the clusters, which correspond

to the periods of COVID-19 restrictions, lockdown, and subsequent easing phases.

TBiGNs: Summary In TBiGNs, we addressed Requirement 2 by presenting

daily TBiGNs categorized and normalized into a weekday TBiGN and a weekend

TBiGN. The data found in Tables B.1 and B.2, as well as Figures B.1, B.2, B.3 and B.4

provides insights into various aspects, including strength and communities of

stations, weight of edges, and activity networks (illustrating strength and weight).

102

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.7: Geographical Plot of By Month Clusters. (Representation
Networks of the Restriction Cluster). Each circle represents a bike station and
is sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

4.2.2.3 Spatio-Temporal Bike Graph Networks (Daily STBiGN)

Dimensional modeling and analysis [239] often follows a hierarchical approach,

particularly when analyzing data over time. Higher-level abstractions can reveal

periods that need more detailed investigation. A daily correlation network offers a

day-by-day analysis over a specified period, where activities are aggregated by day.

In this network, two stations are connected when their activities exhibit similarity

based on daily comparisons. The timeseries for each station is represented as a vector

of length 7, with each entry proportional to the total number of trips occurring on a

specific day of the week. An edge between two stations is kept only if the Pearson

correlation coefficient between their respective timeseries exceeds a threshold T . The

aim is to select a low threshold while maintaining a strongly connected network.

103

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.8: Geographical Plot of By Month Clusters. (Representation
Networks of the Lockdown Cluster). Each circle represents a bike station and
is sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

For the experiments, we set T = 0.609, resulting in a network density D = 0.238.

Figure 5.10 depicts the daily correlation network for the entire dataset. Only the top

5 percent of edges are visualized, with node colors representing the detected clusters.

The top 10 most correlated edges are highlighted in red, while all other edges are

shown in blue.

In the day-of-week correlation network (Figure 5.10), three major communities

and one smaller, three-member community are identified. The cardinalities of the

communities are as follows: the purple community comprises 3 stations, the bright

aqua community includes 31 stations, the pale chartreuse community contains 34

stations, and the red community consists of 18 stations. The spatial distribution

of these communities shows some influence from their geographic locations. The

104

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.9: Geographical Plot of By Month Clusters. (Representation
Networks of the Easing Cluster). Each circle represents a bike station and is
sized according to its trip volume, with the 10 busiest stations (by trip volume)
shown in red and all others in blue. Lines represent routes between stations and are
also sized by trip volume; the 10 most frequently used routes are highlighted in red,
and the remaining routes are shown in blue.

largest community (pale chartreuse) is mainly in the south of Dublin, including the

entire Blackrock-Monkstown area but also includes some stations in the Phoenix

Park. The bright aqua community is primarily around the River Liffey, while the

red nodes are distributed across the central and northern areas of Dublin. The

pale chartreuse community demonstrates strong connectivity, with many stations

showing high strength, including Castleknock, which ranks as the highest strength

station. This identifies that the stations in this community exhibit highly similar

activity patterns. In contrast, the bright aqua community consists of stations with

noticeably lower strength and lacks strong connections. Meanwhile, although the red

community has fewer members, its stations are still strongly connected.

Figure 5.11 displays the daily time series for each community, with the values

105

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.10: Daily Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different communities, with
four communities labeled: purple (small), bright aqua, pale chartreuse, and red.
Lines represent routes between stations and are sized by their correlation score.

averaged. Generally, the Moby Move service tends to experience higher activity levels

on weekends, particularly on Saturdays. Through analysis using simpler network

models, it is identified that the pale chartreuse stations can be classified as weekend

stations. These stations show very low activity during weekdays, but trip numbers

increase sharply starting on Fridays, reaching their peak on Sundays. Similarly,

the red stations exhibit reduced activity on Mondays and Tuesdays, with a steady

level of activity throughout the remainder of the week, peaking on Saturdays. In

contrast, the bright aqua stations operate as weekday stations, where the service is

predominantly used on weekdays.

Table 5.3 follows the same format as Table B.3, but focuses on identifying

the strongest stations based on daily correlations. The variance in strengths and

average correlation coefficients is notably higher, ranging from 0.31 to 0.74. This

greater variability indicates that more distinct patterns should emerge, leading to

106

Physics Informed Neural Networks in Sparse Data Applications

Figure 5.11: Timeseries Communities in Daily STBiGNs

the formation of larger communities within the network. This also suggests the

characteristics of these communities are more distinguishable.

Table 5.3: Node (station) Strength in Daily STBiGNs

Station Strength Avg. Cor. #Pos #Neu #Neg
Castleknock 63.1 0.742 62 18 5
Luke Street 62.8 0.739 63 17 5
Irishtown Rd 62.5 0.735 62 16 7
...
Westmoreland street 34.4 0.405 6 43 36
Blessington Street 30.4 0.358 7 29 49
Warehouse 26.5 0.312 12 23 50

STBiGNs: Summary In the STBiGNs analysis, we addressed Requirement

4 by providing correlation networks that highlight the strength, weight, and

communities, as well as timeseries communities and station strength. These

were analyzed at three temporal levels: Monthly (Figures B.5 and B.6, and Table B.3),

Daily (Figures 5.10 and 5.11, and Table 5.3), Hourly (Figures B.7 and B.8, and

107

Physics Informed Neural Networks in Sparse Data Applications

Table B.4). These outputs provide insights into the relationships between each station

and all other stations, as well as the relationships between different communities,

based on timeseries comparisons.

5.2.5 Conclusion

In this section, we introduce a graph-based modeling framework designed to analyze

the dynamics of a bike sharing system. The goal is to have high-level visualizations

of network activity levels; facilitate the examination of spatial regions over speci-

fied time intervals and identify stations that exhibit similar connectivity based on

spatio-temporal metrics. Three types of networks are constructed: Spatial Bike

Graph Networks, Temporal Bike Graph Networks, and Spatio-Temporal Bike Graph

Networks. Each type provides unique insights, ranging from high-level activity

patterns to granular temporal trends and correlations between station activities. The

analysis revealed critical aspects such as centrality metrics, community structures,

and temporal activity trends.

The Spatial Graph Networks, the simplest to construct, are effective at identifying

high-traffic stations. Metrics like closeness and betweenness provide insights into

popular station-to-station trips and critical “bridge” stations whose removal could

segment the network, indicating where new stations may be needed. Temporal Graph

Networks incorporate temporal granularity to capture both long-term trends (e.g.,

seasonal patterns, effects of COVID-19) and specific events. Finally, Spatio-Temporal

Graph Networks allow comparison of activity patterns across stations, identifying

similar behavior despite geographic differences, unique patterns, and anomalies within

network communities.

The findings show that graph-based representations can capture spatio-temporal

relationships and complex patterns in the data. Consequently, integrating graph

structures into neural network models is promising, as these structures can guide

neural networks to autonomously capture spatio-temporal information. In the next

section, we take this approach by applying a novel GNN architecture to the problem

108

Physics Informed Neural Networks in Sparse Data Applications

of air quality forecasting. This model leverages attention mechanisms to adaptively

learn the connections between stations, thereby extracting relevant spatio-temporal

features.

5.3 Air Quality Forecasting

In Section 5.2, we modeled spatio-temporal data, such as that from a bike-sharing

system, using a graph-based representation. In this section, however, we aim

to leverage the advantages of graph representations within a machine learning

context, specifically through graph neural networks (GNNs). These models enable

the automatic learning of structural features and relationships among entities within

the graph.

In particular, we introduce a novel graph neural network designed to enhance

spatio-temporal feature extraction for forecasting air quality. Our approach incorpo-

rates an attention mechanism that dynamically assigns different weights to various

factors. By applying attention layers to both the temporal and spatial dimensions,

the model is capable of simultaneously learning spatio-temporal features that affect

the prediction outcome. Again, maintaining our goal of real world problems and

associated data, we validate our proposed model using air quality data collected

from 10 monitoring stations in Hanoi, Vietnam, spanning a period of over one year.

5.3.1 Attention Mechanisms

The core concept of our proposed neural network architecture is the incorporation of

attention mechanism layers into both the temporal and spatial dimensions, stacking

them in a manner that enables the model to capture spatio-temporal patterns from

the input data. The attention mechanisms employed in this architecture are inspired

by the self-attention approach in natural language processing [18], as well as graph

attention networks [167]. Specifically, at each timestep or location, features are

transformed into three distinct vector representations: query, key, and value vectors.

109

Physics Informed Neural Networks in Sparse Data Applications

Queries and keys, along with separately trained temporal and spatial representations

for each timestep or location, are used to compute the weights between any pair

of timesteps or locations. The output of the layer is a weighted average of the

value vectors, where the weights are determined by the calculated pairwise weights.

This adaptive weighting allows the model to dynamically respond to the current

state of the input, while the separate temporal and spatial representations capture

the average correlations within the underlying process. The temporal and spatial

layers are stacked in a structure similar to the approach used in [240], where each

spatio-temporal block consists of two temporal modules with a spatial module

positioned between them. In this way, the model integrates both temporal and

spatial information by alternating between temporal and spatial layers.

Formally, the problem and our proposed solution are defined as follows. Let

x0 ∈ RS×T ×F0 represent the input data, where S is the number of locations, T is the

number of historical timesteps, and F0 denotes the size of the feature space. Let

y ∈ RS×24 represent the air pollutant concentrations in the next 24 hours at each

monitoring station, and let f represent the relationship between historical data and

future air quality. Our objective is to build a model, denoted f̂ , that estimates air

quality, ŷ = f̂(x), based on the historical data x. The architecture of the model

comprises a series of temporal attention layers (TemAtt) and spatial attention layers

(SpaAtt). Figure 5.12 shows the architecture of the layer. A detailed description of

the entire architecture will be provided in the rest of the section.

Temporal Attention Layer

Assume x ∈ RT ×F represents the input at a given location. The temporal attention

layer processes this input and generates temporally enriched features a. This layer

consists of two components: a self-attention sub-layer, which captures temporal

patterns, and a feed-forward sub-layer, which further refines these temporal features.

In the self-attention sub-layer, the layer computes weights wt,u (Formulas 5.2)

that determine the significance of timestep u to timestep t. These weights are

110

Physics Informed Neural Networks in Sparse Data Applications

(a) Temporal Attention Layer (b) Spatial Attention

Figure 5.12: Temporal and Spatial Attention Layers

derived by applying a softmax function to the dot product between two nonlinear

transformations of the input: the query vector Q and the key vector K. Temporal

embeddings are incorporated into the query and key transformations to differentiate

between timesteps.

Qt = WQ(xt + bQ) + Et

Ku = WK(xu + bK) + Eu (5.2)

wt,u = softmax(Qt ·Ku)

In the Equations 5.2, WQ and WK are matrices of size A× F , bQ and bK are bias

vectors of size A, and Et and Eu are temporal embeddings.

The output is then calculated as a weighted sum of another input transformation,

111

Physics Informed Neural Networks in Sparse Data Applications

V , in Equations 5.3, Where WV ∈ RF ×F and bV ∈ RF .

Vu = ReLU(WV xu + bV),∀u (5.3)

V ′
t =

∑
u

wt,uVu

The processed temporal features are then passed through a feed-forward layer

applied independently to each timestep t, described in Equation 5.4, where WF F ∈

RF ×F and bF F ∈ RF are the feed-forward layer parameters.

at = ReLU(WF F V ′
t + bF F) (5.4)

This architecture enables the layer to extract temporal features adaptively, based

on the inputs at each location. It calculates the importance of different timesteps,

taking into account both the input at the location and the relative time lags, as

captured by the temporal embeddings. It is important to note that the above

equations apply to a single location; hence, the computed weights vary across

locations, allowing the model to consider spatial information embedded within the

input data.

Spatial Attention Layer

Similar to the temporal attention layer, the attention mechanism is applied along the

spatial dimension in the same manner, treating monitoring stations analogously to

timesteps. Thus, when extracting features at a specific location, the spatial attention

layer assesses the importance of other locations, including the current location itself.

0 Let x ∈ RS×F represent the input to the layer at a single timestep, where S denotes

the number of locations and F represents the feature space. The output as for

location s is computed as in Equations 5.5. Here, WQ, WK , WV , WF F and bQ, bK , bV ,

bF F are the model parameters of appropriate sizes, and Es is the spatial embedding

for location s.

112

Physics Informed Neural Networks in Sparse Data Applications

x′s = xs + Es

Qs = WQ(x′
s + bQ)

Ku = WK(x′
u + bK)

Vs = ReLU(WV x′
s + bV),∀u (5.5)

ws,u = softmax(Qs ·Ku)

V ′
s =

∑
u

ws,uVu

as = ReLU(WF F V ′
s + bF F)

It is important to note that these equations pertain to a single timestep. The at-

tention weights can vary across different timesteps, allowing the model to incorporate

temporal information embedded in the input.

Network Architecture

To facilitate spatio-temporal feature extraction, we structure the temporal and spatial

layers into a spatio-temporal block. Following a similar approach to [240], we design

the block with two temporal layers at the beginning and end, and one spatial layer

in between, as depicted in Figure 5.13a. The rationale behind this design is that

historical data at a given location provides a more reliable basis for predicting future

behavior at that location. Thus, processing along the temporal dimension takes

precedence over the spatial dimension. The block begins with a temporal attention

layer to extract time-aware features before integrating information from related

locations via the spatial attention layer. Subsequently, the block reconfirms these

features by processing them again through a temporal layer. The outputs of this

block incorporate features from both spatial and temporal dimensions. The block

can be formalized as follows in equation The outputs produced by the block contain

features from both spatial and temporal dimensions. The block can be formulated

as Equation 5.6, where xl is the feature vector generated by the previous layer, and

113

Physics Informed Neural Networks in Sparse Data Applications

xl+1 is the output of the block.

(a) Spatial-temporal Attention Block (b) Entire Architecture

Figure 5.13: Proposed attention-based spatial-temporal neural network architecture

xl+1 = SPBlock(xl) = TemAtt(SpaAtt(TemAtt(xl))) (5.6)

As in many traditional deep learning architectures, we stack multiple spatio-

temporal blocks to enable the model to learn increasingly deep features. The complete

architecture of our proposed attention-based spatio-temporal neural network is

illustrated in Figure 5.13b. First, the raw inputs are transformed into a new vector

space using a dense layer to facilitate feature processing in subsequent layers. The

transformed inputs are then passed through a series of spatio-temporal blocks to

generate spatio-temporal features. The final predictions are made using a fully

connected layer that processes the outputs of the spatio-temporal blocks. Formally,

let x0 denote the raw input, and let L represent the number of spatio-temporal blocks.

The air quality prediction is given by Formulas 5.7, where WInput, WOutput, bInput,

114

Physics Informed Neural Networks in Sparse Data Applications

and bOutput are the model parameters, and the activation function is set to ReLU.

x1 = ReLU(WInputx0 + bInput)

xl+1 = SPBlock(xl), l = 1 . . . L (5.7)

ŷ = WOutputxL+1 + bOutput

After conducting extensive experiments, we determined that the optimal number

of spatio-temporal blocks L is 2. Using more layers increases the risk of overfitting

due to the growing number of trainable parameters, while fewer layers result in

shallow spatio-temporal patterns and underfitting. The optimal attention size A for

the temporal and spatial layers lies between 32 and 64, while the hidden size should

be in the range of 128 to 256. It is important that the attention size remains smaller

than the feature size to prevent the model from overreacting to minor changes in the

input, while the feature size should be sufficiently large to capture more information.

Of course choosing these hyperparameters that are too small or too large can lead to

underfitting or overfitting during model training. We set the number of timesteps T

to 7 days, enabling the model to learn weekly patterns, as longer historical data did

not improve performance and increased computation time.

Given that air pollutant concentration forecasting is a regression task requiring a

real-valued output, we train our model using the least mean squared error (MSE)

loss function. The model parameters are optimized via backpropagation using the

Adam optimizer [203], with a learning rate of 10−4. Early stopping is employed when

the validation loss ceases to decrease.

5.3.2 Experiments

In this section, we begin by providing a detailed description of the dataset used to

evaluate our proposed method. This is followed by a discussion on the preprocessing

steps, including the generation and splitting of the training samples. Then we outline

the experimental setup and present the results using appropriate evaluation metrics.

115

Physics Informed Neural Networks in Sparse Data Applications

Data Preprocessing

The dataset used for the experiments is described in Section 2.2.2.

To prepare the data for neural network training, we utilize a sliding window

approach with a window size of T + 24, where T represents the number of historical

timesteps, and 24 corresponds to the number of hours to be predicted into the

future. The window slides over time, generating one training sample for each window.

With T = 7 days, this process yields 12,940 data samples. For missing values, we

apply short-term interpolation by considering data up to 3 days before and after the

missing values when performing linear interpolation, adjusted for weekly periodicity.

For larger gaps, we either fill the missing data with seasonal mean values or apply

masking during training and prediction, provided the models support masking.

To train and evaluate the models, we divide the dataset into three subsets: the

training set, used for model training; the validation set, employed to select optimal

hyperparameters; and the test set, used to evaluate model performance. Specifically,

we use the first 12 months of data, accounting for approximately 66% of the dataset,

for training. The subsequent 3 months (roughly 16%) are used for validation, and

the final 3 months are reserved for testing. This train-validation-test split reflects

real-world applications, where air quality prediction models are trained and validated

on recent data and then deployed for predictions over a few months before being

retrained.

Experiments

For comparison, we implement several baseline models ranging from traditional

machine learning approaches to more complex architectures commonly used in

timeseries-related tasks. These models include XGBoost [241], linear regression

(LR), multi-layer perceptrons (MLP), support vector machines (SVM), and long

short-term memory networks (LSTM) [163]. In addition, we re-implement established

models specifically designed for air quality prediction, such as GNN-LSTM [90] and

GLSTM [173]. All models are re-implemented using Pytorch in Python, with the

116

Physics Informed Neural Networks in Sparse Data Applications

exception of XGBoost, for which we utilize its own Python package. Regarding

our proposed approach, we train three different architectures: temporal attention

models (TemAtt), spatial attention models (SpaAtt), and the proposed spatio-

temporal attention models (SpaTemAtt). All models are trained on the same training

dataset, with hyperparameter tuning and model selection based on performance

on the validation set. For each model type, we conduct extensive training and

hyperparameter optimization to ensure optimal performance.

We evaluate the performance of our methods using standard metrics commonly

applied in regression tasks: root mean squared error (RMSE), mean absolute error

(MAE), and mean absolute percentage error (MAPE). Detailed descriptions of these

metrics are provided in Appendix A.1.

Results

Table 5.4 show the results of the experiment. From the table, it can be seen

that the performances are quite similar across different models, with only slight

variations. The Temporal Attention (TemAtten) model achieves the lowest RMSE

on the validation set (28.06), suggesting its effectiveness in capturing temporal

patterns during training. However, on the test set, the Spatial-Temporal Attention

(Spa-TemAtten) model yields the best RMSE (29.01), marginally outperforming

the GLSTM model (29.06). Interestingly, the simple Linear Regression (LR) model

achieved the lowest MAE on the validation set (14.75) and the second-best MAE on

the test set (18.46), closely behind the LSTM-GNN model, which recorded the lowest

test set MAE (18.42). Comparing the LSTM and Temporal Attention (TemAtten)

models, we observe that TemAtten outperformed LSTM on the validation set in

terms of RMSE (28.06 vs. 30.16), indicating that the attention mechanism enhances

the model’s ability to learn temporal features during validation. Notably, the Spa-

TemAtten, LSTM-GNN, and GLSTM models exhibited strong performance on the

test set, demonstrating their effectiveness in simultaneously capturing both spatial and

temporal dimensions. Despite the expectation that advanced models incorporating

117

Physics Informed Neural Networks in Sparse Data Applications

attention mechanisms and graph structures would significantly outperform simpler

models, the improvements observed are marginal. This finding suggests that, in

scenarios with limited available training data, such as this forecasting task, the

advantages of more complex architectures may be diminished.

Table 5.4: Air quality 24-hour forecasting performance. Average metrics
computed over a 24-hour period with hourly predictions. Lower metric values
indicate better performance. The best result in each column is highlighted in bold,
while the second best is underlined.

Model RMSE-Valid MAE-Valid RMSE-Test MAE-Test
LR 30.14 14.75 29.24 18.46
MLP 29.14 15.68 30.15 20.23
LSTM 30.16 15.31 29.57 18.93
LSTM-GNN 30.19 15.31 29.52 18.42
GLSTM 30.11 15.21 29.06 18.48
TemAtten 28.06 15.60 31.05 21.65
SpaAtten 30.01 15.70 29.47 18.98
SpaTemAtten 28.55 14.80 29.01 18.57

Furthermore, examining the optimal configurations of the TemAtten, SpaAtten,

and SpaTemAtten models reveals patterns regarding the temporal and spatial de-

pendencies captured by the models. For the TemAtten model, the best-performing

time windows are [24, 48, 168] hours, while for the SpaTemAtten model, they are [24,

48, 24, 48]. This indicates that, although long-term dependencies (e.g., 168 hours,

or one week) along the time dimension are important for accurate predictions, the

model still prioritizes short-term information (24 and 48 hours) before incorporating

longer-term patterns. This sequential approach suggests that the model first captures

local short-term dynamics before extending its focus to more distant time intervals,

thereby improving its temporal feature extraction. Similarly, in the case of spatial

attention models, the optimal distance thresholds for neighboring stations are [2, 4]

kilometers for SpaAtten, and [2, 4, 2, 4] kilometers for SpaTemAtten. This implies

that the model focuses initially on nearby stations (within 2 kilometers) before

expanding its attention to those at greater distances (up to 4 kilometers).

118

Physics Informed Neural Networks in Sparse Data Applications

5.3.3 Conclusion

In this project, we have proposed an attention-based deep learning architecture

specifically tailored to handle spatio-temporal data, and we have validated its

effectiveness in the context of air quality forecasting. The methodology incorporates

attention mechanisms in both the temporal and spatial dimensions, enabling the

model to effectively learn spatio-temporal features. The model processes the input

through a series of spatio-temporal blocks, each consisting of alternating temporal

and spatial attention layers, starting with the temporal layer.

In these attention layers, nodes represent either timesteps or locations, while the

directed edge weights reflect the relative importance of one node to another. The

output at each node is calculated as a weighted average of the features from its

neighboring nodes, including itself. We also introduce a spatio-temporal mask, which

limits the attention to nodes within a certain radius. This radius expands as the

model progresses through deeper layers, allowing the model to focus on nearby, more

relevant factors first—those that are likely the primary drivers of forecasting—before

considering influences on a larger scale.

The proposed architecture not only demonstrates improved predictive performance

but also enhances model interpretability. It addresses several shortcomings of existing

approaches, such as the slow computational speed and weak long-term dependency

modeling of LSTM networks, as well as the static nature of traditional graph neural

networks. However, the results also indicate that the performance improvement is

marginal compared to simpler models like linear regression. This suggests that the

proposed architecture may offer limited benefits when the available training data is

small.

5.4 Conclusions

In this chapter, we explored the use of graph-based representations in two distinct

projects. In the first project, we demonstrated the effectiveness of graph structures

119

Physics Informed Neural Networks in Sparse Data Applications

for analyzing bike-sharing data. This representation provides a more intuitive and

insightful way to analyze data compared to traditional tabular formats, offering

unique perspectives on the underlying relationships.

In the second project, we extended the concept of spatio-temporal graphs by

integrating it into a newly proposed neural network architecture. In this architecture,

attention layers treat locations or time steps as nodes in a graph, and adaptively

calculate the weights between them based on the input data and inherent character-

istics of the stations or time lags. This approach allows for the automatic extraction

of spatio-temporal features, adapting to the specific properties of the input.

While the results are promising, the use of graph-based neural networks for

problems with sparse data does not lead to significant improvements. The model

is prone to overfitting, particularly when working with small or noisy time series

datasets. This is due to the relatively large architecture compared to conventional

models. Stronger regularization techniques are essential to mitigate overfitting and

ensure proper generalization. In physics, it is often assumed that data follows

certain governing equations, which can serve as a powerful form of regularization.

In subsequent chapters, we will explore this approach, aiming to enhance model

generalization by incorporating such domain-specific assumptions.

120

Chapter 6

Physics Informed Neural Networks

In the previous two chapters, we explored the capabilities of neural networks across

different domains. In Chapter 4, challenges from two domain areas, medical and

human performance, were examined using fairly traditional neural networks with

varying degrees of performance. However, pure neural network-based approaches, with

the complexity of the models, exhibit limitations such as poor interpretability [91],

poor generalization [28], and the necessity for substantial training data [26]. In

Chapter 5, we then examined graph based machine learning and a graph-neural

network combination, which again provided interesting results and outcomes but it

is still possible that the full power of neural networks is not being reached. For this

reason, we adopt a different approach in this chapter which is physics-informed neural

networks (PINN), a more integrated methodology of neural networks and dynamical

models which can be used in domains such as epidemiology [242], entomology [243],

fluid dynamics, material science [26], to name but a few.

The chapter is structured as follows: in Section 6.1, we present our hypotheses for

addressing the current limitations of PINNs; Section 6.2 describes our PINN frame-

work as applied to a system of ordinary differential equations (ODEs), incorporating

our proposed enhancements; in Section 6.3, we conduct an ablation study using

the Lorenz system to assess the contributions of each component in our framework;

Section 6.4 explores the broader impact and potential applications of our approach

through a model of mosquito population dynamics; and finally, we provide concluding

121

Physics Informed Neural Networks in Sparse Data Applications

remarks in Section 6.5.

6.1 Introduction

The goal of this chapter is to investigate the integration of domain knowledge,

specifically in the form of physics equations, into data-driven methodologies, with

the chosen application area of mosquito population modeling. This ODE system

serves as an useful test case for the PINN approach. It was chosen as validation for

not only for its practical application in real-world but also for its characteristics,

including multi-scale behavior and an exceptionally large input domain, which pose

significant challenges for the PINN framework.

By incorporating the equations of dynamical systems, this approach potentially

reduces data requirements while preserving the robustness of deep learning. How-

ever, current Physics-Informed Neural Network (PINN) frameworks have not yet

reached sufficient maturity for real-world ODE systems, particularly those exhibiting

extreme multi-scale behavior such as mosquito population dynamics [26, 41, 42]. For

instance, [42] demonstrated that PINN convergence can be hindered by gradient

imbalances arising from multiple loss terms. Similarly, [111] showed that training

PINNs over large domains with complex solutions is challenging, requiring the domain

to be broken down. Given such difficulties, we pose the following research question:

Can neural networks be extended to accurately represent and predict the behavior of

dynamical systems governed by a system of ordinary differential equations?

This chapter addresses one of our fundamental research questions through several

research tasks aimed at enhancing convergence and accuracy when simultaneously

training with data and physics losses. These tasks involve improvements specifically

tailored for ODE systems. Firstly, we propose that normalizing individual ODE

equations, in addition to the traditional normalization of neural network inputs and

outputs, can significantly improve PINN training efficiency. Secondly, we propose

that balancing the gradients back-propagated from the losses to the training weights

is crucial for achieving a convergence of the optimization. Furthermore, for scenarios

122

Physics Informed Neural Networks in Sparse Data Applications

with limited training data (e.g., only initial conditions), gradually expanding the

training time domain may facilitate the system’s adherence to the inherent time

causality of ODE systems. Lastly, training separate models for distinct input

domains could reduce optimization complexity, thereby enhancing convergence and

accuracy. Based on these assumptions, a PINN framework was developed with

several improvements for forward and inverse problems for ODE systems with a case

study application in modeling the dynamics of mosquito populations. Here, forward

problems involve predicting system behavior given known parameters, whereas inverse

problems focus on estimating unknown parameters from observed data. To evaluate

our approach, we conduct experiments using simulated data from the Lorenz

system and our mosquito population case study.

The implementation of our PINN framework, including experiments, is available

on GitHub: https://github.com/dinhvietcuong1996/pinn-mosquito.

6.2 PINN Framework Development

This section begins with a formulation of the problem over a number of steps, followed

by a description of additional techniques which further enhance the performance of

the framework.

6.2.1 PINN Structure

Let u(t) denote a V -dimensional vector representing the state of a dynamical system

at any given time t ∈ [0, T]. This dynamical system u is governed by a set of F

ODEs as expressed in Equation 6.1.

du

dt
= f (i) (t, u, θ) , i = 1, 2, . . . , F. (6.1)

In Equation 6.1, the system’s behavior is influenced by a set of parameters

θ, which might or might not be known in advance. The functions f (i) are pre-

123

https://github.com/dinhvietcuong1996/pinn-mosquito

Physics Informed Neural Networks in Sparse Data Applications

defined and characterize the system’s dynamics. Given a set of observations

Du = {(t1, u1), (t2, u2), . . . , (tj, uj), . . . } at various time points, our objective is to de-

termine a solution u and potentially θ that simultaneously satisfies these observations

while maintaining consistency with the governing ODEs.

In the conventional PINN [43], a neural network U (parameterized by WU), is used

to approximate the solution u. For inverse problems where some or all parameters

θ are unknown, neural networks Θ(l) are used to predict these unknown values θl.

For simplicity, the set of all parameters, including the known or ones to be learnt by

neural networks, are denoted by Θ and treated as neural networks. Let W = WU , WΘ

represent the complete set of trainable parameters. The task can then be formulated

as an optimization problem, where training the parameters W aims to minimize a

multi-task objective function defined in Equation 6.3.

W = argminWL (6.2)

L = Ldata + 1
F

F∑
i=1

λiLf (i) (6.3)

The loss terms in 6.3 are defined in equations 6.4 and 6.5.

Ldata = 1
Nu

∑
(ti,ui)∈Du

(U(ti)− ui)2 (6.4)

Lf (i) = 1
Nf

∑
j

∣∣∣∣∣dU

dt
− f (i) (tj, U(tj), Θ(tj))

∣∣∣∣∣
2

(6.5)

In the Equations 6.4 and 6.5, U(tj) and Θ(tj) represent the neural network

outputs evaluated at time tj. Minimizing Ldata reduces the discrepancy between

network predictions and observed data, while minimizing Lf (i) ensures the neural

network U adheres to the differential equations with minimal error. The weights λi

serve as balancing factors between data fitting and physics dynamics. Nf denotes the

number of residual points randomly sampled from a distribution µ, typically uniform.

124

Physics Informed Neural Networks in Sparse Data Applications

We resample the residual points at every training step to ensure that the losses are

minimized everywhere in the entire period. Overall, by minimizing this total loss

function L, the networks can simultaneously fit observed data and approximate the

underlying dynamic rules.

The optimization of the loss function is achieved through gradient-based algo-

rithms. These algorithms iteratively update the parameters W in directions that

reduce the loss function, based on the gradients ∇WL. The update rule is formulated

as in Equation 6.6.

Wnew = Wold − η∇WL = Wold − η

(
∇WLdata +

F∑
i=0

λi∇WLf (i)

)
(6.6)

where η denotes the learning rate, which determines the magnitude of each step

taken in the direction opposite to the gradient. For this optimization process, the

Adam variant of gradient descent in PINN training [203] is used. The computation

of gradients, whether it involves differentiating the network U with respect to time t

or the loss function L with respect to W , is computed by automatic differentiation

provided by deep learning frameworks such as PyTorch [8].

The universal approximation theorem [30] posits that Multi-Layer Perceptrons

(MLPs) [244] can approximate any continuous function on a given domain, provided

sufficient complexity characterized by the number of units. For an MLP comprising L

layers, the mathematical formulation describing its layer-wise operation is presented

in Equation 6.7.

h(0) = x

h(l) = σ(W (l)h(l−1) + b(l)), l = 1, . . . , L− 1 (6.7)

h(L) = W (L)h(L−1) + b(L)

Here, x denotes the network input, h(l) represents the hidden state at layer l, W (l)

and b(l) are the parameters of layer l, and σ is the activation function. We employ the

GELU activation function [245] due to its smooth properties, which are crucial for

125

Physics Informed Neural Networks in Sparse Data Applications

differential problems and offer advantages over the ReLU function. The initialization

of the MLP’s weights and biases is performed using the Glorot scheme [246].

While the “vanilla” PINN framework described above demonstrates adequate

approximation capabilities for relatively simple ODE systems, it often encounters

difficulties in converging to satisfactory solution when dealing with more complex

systems, particularly those exhibiting extreme stiffness, chaotic behavior, or multi-

scale characteristics. For these reasons, approaches for enhancing PINN training in

both forward and inverse problems involving ODE systems, are now presented.

6.2.2 ODE Normalization

Neural networks typically operate optimally with inputs and outputs in the range

[-1, 1]. For values outside this range, data normalization plays a critical role in the

machine learning workflow, ensuring that both input and output variables remain

within a suitable range. In the context of PINNs, this normalization process requires

careful consideration, as any transformation necessitates corresponding modifications

to the ODE systems. For this reason, a systematic approach to normalization using

PINNs with ODEs was designed during this research. Specifically, we employ the

MIN-MAX normalization scheme for input and output variables, namely t, u, and θ.

For the input variable (time t), we apply the transformation presented in Equa-

tion 6.8, where [Tmin, Tmax] denotes the time domain over which the models are

trained. This transformation effectively normalizes the time variable t to the range

[-1, 1].

t′ = 2 · t− Tmin

Tmax − Tmin
− 1 (6.8)

For the normalization of neural network outputs, we define Lu,Uu,Lθ, and Uθ as

the lower and upper bounds for u and θ, respectively. These bounds are dimension-

specific within the dynamical system. In cases where the ranges are small, we adjust

126

Physics Informed Neural Networks in Sparse Data Applications

the bounds around the mean as L = min(L,M− 1) and U = min(U,M + 1) where

M = L+U
2 is the middle point. These bounds can be estimated through various

methods, including analysis of collected data, inference from domain knowledge, or

via approximate simulations. The normalization of variables u and θ at a normalized

time t′ is subsequently computed using Equations 6.9 and 6.10, respectively.

u′(t′) = u(t′)− Lu

Uu − Lu

· 2− 1⇐⇒ u(t′) = (u′(t′) + 1)Uu − Lu

2 + Lu (6.9)

θ′(t′) = θ(t′)− Lθ

Uθ − Lθ

· 2− 1⇐⇒ θ(t′) = (θ′(t′) + 1)Uθ − Lθ

2 + Lθ (6.10)

Following the normalization above, the transformed variables t′, u′, and θ′ now vary

within the range [-1, 1]. Thus, it becomes advantageous to employ neural networks

U and Θ as surrogate models for u′ and θ′, rather than directly approximating u

and θ. After the transformations in Equations 6.9 and 6.10, it is necessary to adapt

the loss functions accordingly. When computing du′

dt
and applying Equation 6.1, we

arrive at Equation 6.11.

du′

dt
= 2

Uu − Lu

du

dt
= 2

Uu − Lu

f (i) (t, u, θ) (6.11)

Instead of using objective functions 6.4 and 6.5, we now consider the alternative

formulations 6.12 and 6.13.

Ldata = 1
Nu

∑
j

(
U(t′

j)−
uj − Lu

Uu − Lu

· 2− 1
)2

(6.12)

Lf (i) = 1
Nf

∑
j

∣∣∣∣∣dU

dt
− 2

Uu − Lu

f (i)
(

tj, (U(t′
j) + 1)Uu − Lu

2 + Lu, (Θ(t′
j) + 1)Uθ − Lθ

2 + Lθ

)∣∣∣∣∣
2

(6.13)

These modifications to the objective functions not only attempt to balance the

127

Physics Informed Neural Networks in Sparse Data Applications

data loss and ODE terms, but also across ODE components. This re-scaling strategy

proves particularly advantageous in scenarios where variables exhibit substantial scale

differences, whether due to their intrinsic characteristics or the units of measurement.

By normalizing these variables, the risk of any single variable dominating others is

mitigated and thus, equilibrating the impact of each term on the training process.

This is similar to the concepts and assumptions in the Glorot initialization for neural

networks [246].

6.2.3 Gradient Balancing

As this is a multi-task problem, it has different objective functions (e.g. Equation

6.3). A previous study [42] identified gradient imbalance between ∇WLdata and

∇WLf (i) in the update rule 6.6 as a critical failure point in PINN training. The

differential equation residual loss often dominates due to system stiffness, causing the

model to prioritize ODE constraint optimization over matching initial, boundary, or

data observations. This can lead to convergence to a trivial null solution that violates

data conditions. We address this issue by adopting and extending the approach

in [42], adjusting the weights λ based on statistics from the gradients ∇WLdata

and ∇WLf (i) . Our extension to ODE systems involves individually assigning and

adjusting weights for each differential equation. We set the weights for data to

1 and each of the component weights λi is adjusted individually, to ensure that

every equation in the system is given equal importance while still aligning with the

importance given to data. This extension is crucial, as the scale and complexity of

each equation differs, necessitating distinct treatment during training.

This gradient-balancing algorithm is described in Algorithm 6.1. All weights

λi are initialized to 1 and updated every N steps. The weight λ̂i is computed

as the ratio between the mean of absolute values of gradient ∇WLdata and the

maximum of the absolute values for the gradients of ∇WLf (i) . To mitigate the

inherent volatility of gradient descent, we update weights λi using a moving average

formula (Equation 6.15). The recommended values for hyper-parameters α and N in

128

Physics Informed Neural Networks in Sparse Data Applications

the original study [42] are α = [0.5, 0.9]. However, we set N = 100, and tune α in

extreme cases α = 0.99, 0.9, 0.5, or set N = 1 with α = 0.

Algorithm 6.1 gradient_balancing()
Require: step← current training step; α smoothing factor; updates are made every

N steps
Ensure: re-calculating λi such that gradients from different loss terms are balanced

if step = 0 then
Initialize λi ← 1,∀i = 1, . . . , F

end if
if step modN = 0 then

Compute λ̂i by

λ̂i ←
|∇WLdata|

max
{∣∣∣∇WLf (i)

∣∣∣} , i = 1, . . . , F (6.14)

where |∇WLdata| is the average of the absolute gradients over all model parameters
W .

Adjust the weights λ̂i by

λi ← α · λi + (1− α)λ̂i, i = 1, . . . , F (6.15)

end if

6.2.4 Causal Training

When training PINNs, particularly in scenarios with sparse data, it is crucial to

consider the causal effect [110]. Conventional PINN models are typically trained to

adhere to differential equations across the entire input domain (i.e. time domain

[0, T]) simultaneously. However, this can lead to a problematic scenario where the

model satisfies these rules at later time points t without proper management at earlier

points. This discrepancy creates a situation where efforts to conform to ODEs at one

point may result in violations at others during the learning process. Furthermore, if

the penalty for not following ODEs at earlier points outweighs the fitting at later

points, the model may get stuck in a local minimum, no longer capable of satisfying

ODEs over the entire period. To address this issue, we adopt a causal approach

to training where the task of meeting the data conditions is given priority while

ensuring that the model complies with ODEs on a small time window near t = 0

129

Physics Informed Neural Networks in Sparse Data Applications

first before gradually extending the window toward t = T .

This study implements a three-phase training process: data fitting, progressive

causal training, and final tuning described as follows:

1. Firstly, the data fitting phase focuses exclusively on matching data conditions

by training with the data loss term Ldata. This establishes a starting point for

the model, facilitating subsequent adherence to differential equations.

2. The progressive causal training phase adopts the growing-interval approach

from [185]. We gradually teach the models to follow the differential equations

starting from a small interval and slowly covering more domain as the training

progresses. Both data and ODE loss terms are included, with ODE residual

points tj for Lf (i) in Equation 6.5 sampled from an expanding interval. Given

N2 update steps in this phase, at the n2-th step, residual points are uniformly

sampled from the interval
[
0, n2

N2
· T
]
.

3. The final tuning phase employs both loss terms, with residual points sampled

from the entire time period. This phase refines and enhances the learned

solutions.

The training process mainly happens during the second and third stages, with

the first stage being the shortest. This is because neural networks can sometimes

learn, too quickly, how to fit the given data. The first phase is set to 5,000-10,000

steps. The progressive causal phase requires a longer duration as the model needs

to successfully reduce the errors to a certain level before it can extend its learning

to new areas. For systems that do not reliably converge, the number of steps for

this phase should be sufficiently high. We set this phase to last between 50,000 and

100,000 steps to ensure thorough learning. In the fine-tuning phase, an early stopping

approach is implemented. Model performance is evaluated every 1,000 steps using

an evaluation loss function where all weights λ are set to 1.0. Training terminates

when no performance improvement is observed after several consecutive evaluations.

All step counts are selected via a trial-and-error process based on our experimental

130

Physics Informed Neural Networks in Sparse Data Applications

outcomes.

6.2.5 Domain Decomposition

Domain decomposition is an effective strategy for training PINNs when the solution

exhibits high complexity within specific time intervals or when the target input

domain is excessively large, which is frequently encountered in real-world applications.

This approach is particularly valuable in extrapolation problems where data in the

period of interest is scarce or nonexistent. In such scenarios, the solution’s behavior

is heavily determined by the model’s ability to satisfy the ODE constrains, which

is a challenging task due to issues such as causal effect violation [110] or gradient

imbalance [42]. By partitioning the domain, the method reduces the domain that the

models are trained on and subsequently, reduces the complexity of the optimization

task.

In particular, we partition the input domain into S non-overlapping subdomains,

denoted as Ds = [Ts−1, Ts], s = 1, . . . , S, with T1 = 0, TS = T . For each subdomain

Ds, a neural network Us is defined. The goal is to train each Us to approximate the

solution u within its respective subdomain Ds. Let D∗
s = [Ts−1 −O, Ts + O] be the

extended subdomain of Ds. Each extended subdomain D∗
s is treated in a separate

PINN problem, trained using the framework described in Section 6.2, including

the normalization and gradient balancing. Starting from the first subdomain D0,

the model is trained with the initial condition data Du provided by users. For

subsequent subdomains D∗
s , training data Du is generated by the previously trained

model Us−1 in the overlapped domain [Ts−1, Ts−1 + O]. The volume of generated

data is potentially unlimited, we set the number from 10 to 100. This iterative

process continues until the entire domain is covered. The final solution is obtained

by combining the predictions as specified in Equation 6.16, in which each model Us

makes predictions on its corresponding non-overlapped domains.

131

Physics Informed Neural Networks in Sparse Data Applications

U(t) =
∑

s

1Ds(t) · Us(t),∀t ∈ [0, T] (6.16)

This divide-and-conquer scheme offers several advantages in training PINNs.

Firstly, it reduces the complexity of the overall problem into many smaller less-

complex problems. Secondly, it reduces the gradient explosion issue which has been a

persistent challenge in PINN training. Additionally, the method allows customization

of models in each subdomain, enhancing the individual and overall convergence and

accuracy.

6.3 Evaluation Step 1: Ablation Study using the

Lorenz System

For the first phase in our validation, we evaluate the effectiveness of the PINN-based

solution using the Lorenz system [247], a set of three coupled, nonlinear differential

equations widely employed for assessing ODEs.



dx
dt

= σ(y − x)
dy
dt

= x(ρ− z)− y

dz
dt

= xy − βz

(6.17)

This system is known for its chaotic behavior and is described in Equation 6.17,

where where x, y, and z denote the state variables at time t, while σ, ρ, and β

represent the system’s physical parameters. The evaluation uses two temporal

domains: a shorter duration with T = 2.0 and a longer duration with T = 40.0. The

shorter duration is used to evaluate the impact of ODE Normalization, Gradient

Balancing, and Causal Training on model performance while the longer duration

is employed to investigate the effectiveness of Domain Decomposition in managing

132

Physics Informed Neural Networks in Sparse Data Applications

extended temporal intervals.

The following set of models were created to provide as detailed a validation as

possible.

1. OdePINNoriginal: Original framework without additional techniques.

2. OdePINNbaseline: ODE Normalization only. This model represents a baseline

model for the more complex models below.

3. OdePINNgradient: ODE Normalization, Gradient Balancing.

4. OdePINNcausal: ODE Normalization, Causal Training.

5. OdePINNgradient+causal: ODE Normalization, Gradient Balancing, and Causal

Training.

6. OdePINNgradient+causal+domain: ODE Normalization, Gradient Balancing, Causal

Training, and Domain Decomposition.

We conduct experiments on both forward and inverse problems using the Lorenz

system. The first five models are evaluated with T = 2.0, while the sixth model

OdePINNgradient+causal+domain is assessed on the forward problem over a duration of

T = 20.0. The generation of training and ground-truth reference data uses a well-

established numerical method for solving ODE systems [248], implemented within

the Scipy library in Python [231].

6.3.1 Forward Problem with T=2

In this section, we explore how the techniques described in Section 6.2 work together,

including ODE Normaliztion, Gradient Balancing, Causal Training and Domain

Decomposition. They are particularly tested on their extrapolation capabilities in

forward problem scenarios using the Lorenz system. The data loss condition Ldata is

constrained to a single data point at the initial condition (x, y, z) = (1, 1, 1) at t = 0.

The physical parameters are maintained constant throughout: σ = 10, ρ = 28, and

β = 8
3 , all of which are known to the framework.

133

Physics Informed Neural Networks in Sparse Data Applications

The framework employs an MLP, U , to approximate the solution u. The archi-

tecture of U consists of four hidden layers, each comprising 100 units, with GELU

activation functions applied throughout all hidden layers. For Gradient Balancing, the

hyperparameters α and N are (0.99, 100) after a hyper-parameter selection process.

In the absence of Gradient Balancing, λis is set at a constant value of 1.0 throughout

training. Three phases of Causal Training are configured as follows: an initial phase

of 1,000 steps; a second phase of 199,000 steps; and a final phase incorporating

early stopping up to 100,000 steps. When Causal Training is deactivated, the model

bypasses the first two phases, proceeding directly to the final phase with training of

300,000 steps without early stopping.

Figure 6.1 illustrates the solution approximations produced by the five models.

In order of increasing performance, they are:

• OdePINNoriginal exhibits a tendency to converge towards the null solution,

primarily due to the dominant influence of ODE loss.

• OdePINNcausal, while effectively capturing the system’s dynamics, deviates

from the correct initial condition and ultimately converges to the trivial null

solution, similar to the original model.

• The baseline model successfully captures the general shape of the solution but

struggles to simultaneously satisfy both the initial condition and the governing

differential equations.

• OdePINNgradient achieves improved alignment with the initial condition but

fails to adequately satisfy the physics constraints, resulting in an inaccurate

approximation of the correct solution.

• OdePINNgradient+causal demonstrates superior performance, exhibiting close

convergence to the true solution compared to the other models.

In summary, OdePINNgradient+causal effectively combines both methodologies, en-

suring adherence to the initial condition while minimizing ODE loss. This dual

134

Physics Informed Neural Networks in Sparse Data Applications

(a) x dimension (b) y dimension

(c) z dimension

Figure 6.1: Lorenz ODE system for the forward problem, with U approxi-
mation of the system state. System state u = (x, y, z). Subfigures (a), (b), and
(c) respectively show the x, y, and z components. There is only data point (blue dot)
at t = 0 serves as the initial condition. The blue line represents the true solution
u_true while the orange dashed line OdePINNgradient+causal closely apprximates the
target. Both OdePINNoriginal (brown dashed line with cross) and OdePINNcausal
(purple dashed line) are closely aligned with the null solution.

approach enables more accurate approximation of the true solution, as evidenced

in Figure 6.2. Evaluation losses, computed across the entire period with weighting

coefficients λi maintained at 1.0, are presented in Figure 6.2a; OdePINNoriginal is

not shown as the losses are at different scales but its approximation is similar to

OdePINNcausal. The figure shows that the OdePINNgradient+causal model achieves a

remarkably low final total loss of 1.6 · 10−4, significantly lower than OdePINNcausal

at 2.2 · 10−3. The remaining models exhibit higher losses of 0.046 and 0.056, with the

baseline model showing marginally better performance. Comparative error analysis

reveals that Gradient Balancing substantially enhances convergence towards the

135

Physics Informed Neural Networks in Sparse Data Applications

data loss term Ldata. Data losses for OdePINNgradient and OdePINNgradient+causal are

recorded at 1.4 · 10−8 and 8.9 · 10−9 respectively, again significantly lower than the

approximately 10−2 or 10−3 observed in other models. Although OdePINNgradient

achieves a notably lower data loss, its total loss is 6.3 · 10−2, marginally higher than

the baseline model’s 4.5 · 10−2 due to an increased ODE loss. This technique enables

the neural network to more effectively satisfy the initial condition but simultane-

ously makes it more challenging to minimize the ODE loss, thereby contributing to

higher ODE and overall losses. Further details of this method are provided in [42].

Ultimately, the root mean squared error between the gradient model and the true

solution is 11.9, slightly better than the baseline model’s RMSE of 12.18, though

both values remain considerably far from the true solution.

While Gradient Balancing improves performance considerably, it does not address

causal effects, necessitating the implementation of Causal Training. The Gradient

Balancing technique averages gradients across different time points, resulting in

scenarios illustrated in Figure 6.2b. At later times (t=1.5 or t=2.0), the model

rapidly minimizes physics constraints to a negligible level of 10−5 early in the training

process. Within the domain t ∈ [1.0, 2.0], the model converges to the null solution

(as shown in Figure 6.1), satisfying the ODE system. However, at earlier times (t=0

or t=0.5), the model consistently struggles throughout the training duration. We

hypothesize that this premature convergence of the ODE constraints at later times

traps the model in a local minimum, preventing it from satisfying the constraints

at earlier times and thus resulting in an inaccurate solution approximation. To

address this, we employ a Causal Training strategy that trains the physics-laws

term using residual points drawn from a progressively expanding interval. This

approach ensures adherence to system dynamics at earlier times before progressing

to later times, thereby respecting causal effects. Figure 6.2c illustrates the expanding

domain in which the model complies with the differential equations as training

advances, with behavior outside this domain remaining arbitrary. Ultimately, the

OdePINNgradient+causal model effectively combines these techniques, minimizing both

136

Physics Informed Neural Networks in Sparse Data Applications

(a) Loss Terms across final models se-
lecting through Early Stopping. The
bar is upside down, the lower the better.

(b) ODE errors of the OdePINNgradient
model at different time t during the
training. The model struggles at t = [0, 0.5],
motivating the need for Causal Training.

(c) The x-value Approximation Solution
U of the model OdePINNgradient+causal
at different steps during the training.
The plot shows the progression of the neural
network U during training.

Figure 6.2: Loss analysis of OdePINN framework with Lorenz system,
t ∈ [0, 2.0]

data and physics losses to achieve a highly accurate solution approximation.

6.3.2 Forward Problem with T = 20

The effectiveness of domain decomposition is demonstrated in this section by solving

the Lorenz system over an extended temporal domain from t = 0 to T = 20.0. The

initial condition is set at (1, 1, 1), with constant, known parameters σ = 10, ρ = 28,

137

Physics Informed Neural Networks in Sparse Data Applications

and β = 8
3 .

Figure 6.3 presents the results the larger domain. None of the models closely

approximate the reference solution. The models OdePINNbaseline and OdePINNgradient

exhibit some capability to learn the initial condition and partially adhere to the

ODE equations. However, their errors grow substantially by t = 0.75, causing their

divergence from the true solution and leading to convergence toward a trivial constant

solution beyond t = 3. The remaining models,OdePINNoriginal, OdePINNcausal and

OdePINNgradient + causal display a similar behavior to that observed in the T = 2

experiment, converging toward a null solution. These inaccuracies can be attributed

to the expanded domain, which increases the complexity of the solution. Therefore,

Domain Decomposition is applied to manage the challenges introduced by the larger

domain size.

The domain is partitioned into 40 subdomains, each spanning 0.6 units with an

overlap of 0.05 at both ends. Each subdomain is independently modeled and trained

using a distinct neural network. The predictions from the preceding subdomain,

uniformly distributed over 100 points within the overlapped region, serve as data

conditions for the subsequent subdomain. Hyper-parameters remain consistent across

all subdomains. The neural network U is structured as an MLP with four hidden

layers, each comprising 100 units and utilizing the GELU activation function. The

training process is limited to a maximum of 150,000 steps, initiating with a 5,000-step

phase dedicated to data fitting, followed by 100,000 steps of causal training, with

the remaining steps allocated for final tuning. The gradient balancing weights, λi,

are updated every 100 steps using a smoothing factor of α = 0.99.

Figure 6.4 presents the solution approximated by the proposed framework, along-

side a plot of training losses and Root Mean Squared Error (RMSE) relative to

ground truth data. The model demonstrates reasonably accurate prediction of the

system’s evolution. Initially, the RMSE is approximately 5 · 10−4, but it increases

exponentially as t progresses, escalating to 10−3 at t = 8, 10−1 at t = 13, and reaching

an error magnitude of 101 by the period’s end. The final four subdomains (12.5

138

Physics Informed Neural Networks in Sparse Data Applications

(a) x dimension (b) y dimension

(c) z dimension

Figure 6.3: Lorenz ODE system, forward problem, U approximation of the
system state, using the first five models (excluding the Domain Decomposition
model). System state u = (x, y, z). Subfigures (a), (b), and (c) respectively show
the x, y, and z components. There is only data point (blue dot) at t = 0 serves as
the initial condition. None of the models successfully capture the dynamics of the
reference solution.

to 20.0) exhibit notable approximation errors. This substantial error accumulation

towards the period’s end is understandable given that the Lorenz system is highly

sensitive to initial conditions where minor predictive inaccuracies can significantly

alter future states. As a result, initial training errors rapidly accumulate over time,

resulting in an RMSE of up to 10 by the end of the time period. The training data

loss consistently remains below 10−4, frequently dropping to the 10−5 level. Errors

related to physical constraints are maintained at the 10−3 level, indicating satisfaction

of physical laws with ODE loss approaching zero. Notably, losses peak in solution

regions characterized by sharp changes, correspondingly resulting in steep RMSE

increases. On a positive front, the framework exhibits consistent performance across

139

Physics Informed Neural Networks in Sparse Data Applications

all subdomains However, the evident accumulation of errors highlights a potential

limitation of the technique, suggesting areas for further refinement and improvement.

Figure 6.4: Lorenz ODE system, forward problem, with U approximating
the system state. System state u = (x, y, z). The first three plots depict the x,
y, and z components, respectively, while the last plot shows the loss and RMSE
over the input time domain. The PINN approximation (orange dashed line) closely
follows the reference solution (blue line) up to t = 17.

Figure 6.5 illustrates the relationship between the number of training steps and

the RMSE across various subdomain configurations. The number of training steps

scales linearly with the increase in subdomains, with each subdomain requiring

approximately 200,000 to 300,000 steps—equivalent to around 30 minutes on the

NVIDIA GeForce RTX 4090 GPU used for all experiments. The figure reveals a

trade-off between the number of subdomains and model accuracy: as the number of

subdomains increases, the RMSE decreases exponentially, though this comes at the

expense of longer training durations. When the number of subdomains are low, such

as 1 or 5, the training domain remains overly large, leading the model to converge

towards the null solution and yielding a high RMSE of 13.4. As the number of

subdomains increases, starting from 10, each subdomain’s training area is reduced,

simplifying the solution complexity within each subdomain. This reduction leads to

a decrease in RMSE, dropping to 4.1 with 10 subdomains and reaching 1.13 with

40 subdomains. These findings suggest that cumulative errors can be effectively

140

Physics Informed Neural Networks in Sparse Data Applications

minimized by subdividing the domain further, enabling the model to achieve finer

accuracy levels within each subdomain.

Figure 6.5: Trade-off between the number of subdomains and accuracy.

6.3.3 Inverse Problem

In this section, the inverse problem is addressed by using a substantially larger

dataset. The framework solution simultaneously predicts physics parameters and

interpolates the system state from several observations of the state.

Once again, experiments use the Lorenz system, on this occasion over the time

domain t ∈ [0, 2.0], with time-varying physical parameters defined as σ = 10
2 sin (2πt)+

10, ρ = 28
5 sin

(
2πt + π

2

)
+ 28, and β = 8

3 . These formulas are unknown to the

framework and must be learned. Initial conditions are set to (1, 1, 1), consistent

with previous experiments. The training dataset comprises 21 simulated data points

evenly distributed across the input domain, resulting in a dataset dimension of (21, 3).

Figure 6.6 illustrates the reference solution achieved from the simulation described

141

Physics Informed Neural Networks in Sparse Data Applications

and the 21 data points provided to the PINN system. This solution, with varying

parameters in this experiment, displays a notably more chaotic behavior compared

to the solution in the forward problem setting in Section 6.3.1. However, the data

points available provide general information about the solution for the framework to

solve the problem.

Figure 6.6: Ground truth u and data provided to solve the Lorenz system inverse
problem.

The framework configuration is consistent with previously described experiments.

The main neural network U maintains its structure, comprising an MLP with four

hidden layers, each containing 100 units and using GELU activation. Three additional,

distinct neural networks Θ are implemented to model the three physical parameters

of the dynamical system. These networks each consist of four hidden layers with 10

units, employing GELU activation for all hidden layers. All networks incorporate

the time variable t as input to capture the temporal dynamics of the parameters.

In terms of training enhancements, Gradient Balancing is used with the weights of

the objective function, λi, adjusted every N = 100 steps using a smoothing factor

of α = 0.99. The Causal Training approach involves an initial data fitting phase

142

Physics Informed Neural Networks in Sparse Data Applications

of 10,000 steps, reflecting the increased data availability, followed by progressive

causal training and a final tuning phase, conducted over 200,000 and 100,000 steps,

respectively.

Figure 6.7 illustrates the approximation of the dynamical system’s parameters

by the neural network Θ. While all models demonstrate the ability to capture

general parameter trends, they exhibit inherent inaccuracies. The original and

baseline models show substantial errors, particularly in regions of high derivatives

of u with respect to time t, as observed within the interval [0, 0.5] and at t = 2.0

in Figure 6.6. Among the models, OdePINNgradient achieves the most accurate

parameter approximations across most of the domain, but encounters difficulties

near t = 2.0 In this inverse setting, with variable unknown system parameters,

non-unique solutions for u and θ arise in the absence of sufficient data. Consequently,

OdePINNgradient tends to favor solutions with smaller magnitude derivatives, resulting

in significant discrepancies from the reference solution. Conversely, OdePINNcausal

typically exhibits error accumulation towards higher values of t, with noticeable

inaccuracies in estimating parameters such as σ and ρ beyond t = 1.15, as shown in

Figure 6.7. This pattern of error propagation is consistently observed throughout

our study. The combined model, OdePINNgradient+causal, mirrors the performance of

OdePINNgradient, maintaining reasonable accuracy until the domain’s far end.

Table 6.1 presents further detail of the errors associated with the interpolation

of u and the estimation of parameters θ, benchmarked against the ground truth

data. Table rows are organized by error metrics which are calculated as described

in Appendix A.1. Each group shows the corresponding errors for the approximated

solutions (columns x, y, z and the average u) and for the learned parameters (columns

α, β, γ and the average θ) across the 5 models. The original model exhibits the

highest errors, with RMSE values of 3.9564 for u and 52.4141 for θ, alongside

MDAPE of 2.6219 and 24.5114, respectively. The baseline model shows marginal

improvements over the original model but still incurs relatively high errors. In

contrast, OdePINNgradient demonstrates significant accuracy improvements, recording

143

Physics Informed Neural Networks in Sparse Data Applications

(a) σ parameter (b) ρ parameter

(c) β parameter

Figure 6.7: Θ approximation of the physics parameters θ = (σ, ρ, β) in the
Lorenz system inverse problem. Subfigures (a), (b), and (c) respectively show
the parameters σ, ρ, and β. The models OdePINNgradient (red dashed line) and
OdePINNgradient+causal (orange dashed line) provide reasonably accurate estimates,
closely following the true solution (blue line).

the lowest errors across all evaluated metrics for both u and θ. It achieves an RMSE

of 0.2525 for u and 0.7195 for θ, with MAE values of 0.0472 and 0.1602, and MDAPE

scores below 0.01% for both variables. The causal model records the best RMSE

for u at 0.1039, although its performance on other metrics does not surpass that

of the gradient model. OdePINNgradient+causal, which integrates the approaches of

the preceding two models, does not achieve top scores in any specific category but

secures the second-best results, including impressive MDAPE values below 0.01%

and 0.06%.

The final training stage of OdePINNgradient+causal replicates the entire training

process of the model. The initial two phases of causal training contribute minimally to

overall performance improvement. This is a characteristic that is mainly attributed

144

Physics Informed Neural Networks in Sparse Data Applications

Table 6.1: Approximation errors in the inverse problem with Lorenz system where
smallest error values are best. Bold text highlight the best performing models
with respect to a specific metric and Underlined numbers represent the second best
performing model.

Model Metric x y z u σ ρ β θ

original

RMSE

4.4453 4.9325 1.6939 3.9564 5.4294 90.5381 3.8850 52.4141
baseline 3.4995 2.8182 0.6591 2.6219 8.4507 41.5828 1.3683 24.5114
gradient 0.1011 0.3556 0.2336 0.2525 0.8727 0.8498 0.2629 0.7195
causal 0.1363 0.0949 0.0692 0.1039 1.3853 2.4592 0.0740 1.6302
gradient+causal 0.0862 0.3760 0.2659 0.2705 1.2593 0.8922 0.3316 0.9114
original

MAE

1.7002 1.0028 0.3667 1.0232 3.6059 47.0012 1.4000 17.3357
baseline 0.9579 0.6687 0.2430 0.6232 3.1751 10.9855 0.5066 4.8891
gradient 0.0207 0.0759 0.0449 0.0472 0.2116 0.2078 0.0611 0.1602
causal 0.0844 0.0654 0.0452 0.0650 0.7099 1.3002 0.0472 0.6858
gradient+causal 0.0192 0.0904 0.0543 0.0546 0.2845 0.2590 0.0827 0.2087
original

MDAPE

0.0063 0.0064 0.0015 0.0025 0.1271 0.0127 0.0058 0.0200
baseline 0.0019 0.0029 0.0016 0.0019 0.0382 0.0114 0.0086 0.0162
gradient 0.0001 0.0002 0.0001 0.0001 0.0005 0.0005 0.0003 0.0004
causal 0.0004 0.0012 0.0016 0.0013 0.0175 0.0044 0.0074 0.0090
gradient+causal 0.0000 0.0001 0.0001 0.0001 0.0006 0.0003 0.0007 0.0006
original

nRMSE

0.2562 0.2450 0.0703 0.2086 2.7147 16.1675 3.8850 9.7271
baseline 0.2017 0.1400 0.0274 0.1426 4.2253 7.4255 1.3683 4.9955
gradient 0.0058 0.0177 0.0097 0.0121 0.4364 0.1517 0.2629 0.3069
causal 0.0021 0.0025 0.0008 0.0019 0.2210 0.0608 0.0156 0.1326
gradient+causal 0.0079 0.0162 0.0140 0.0132 0.5519 0.1572 0.3124 0.3772

145

Physics Informed Neural Networks in Sparse Data Applications

to the ability of a sufficiently large dataset to establish a robust initialization,

thereby reducing the relative advantage of the first two phases. On the other hand,

OdePINNgradient+causal, with its shorter training duration compared to others, does

not achieve performance levels comparable to those of the Gradient-Balancing model.

Summary. These ablation experiments indicate that the proposed method

individually enhance the performance of PINNs. ODE Normalization outperforms

the original framework in both forward and inverse settings. Integrating Gradient

Balancing and Causal Training in the forward problem with limited data addresses

issues of gradient imbalance and temporal causality, resulting in more accurate

approximations. However, in the inverse problem with more data, Gradient Balancing

alone is enough to achieve good parameter estimation and state interpolation, as

the abundance of data diminishes the advantage provided by Causal Training. This

suggests that the role of Causal Training is more pronounced in scenarios with sparse

data. In the larger domain setting (T = 20), domain decomposition proved essential

for managing errors in solving the Lorenz system. There is a trade-off between

accuracy and training time with a greater number of subdomains yielding better

results but requiring more computational resources.

6.4 Validation Step 2: Mosquito Case Study

In addition to using the Lorenz system, our PINN framework is also validated in the

practical environment of dynamical modeling of the mosquito population. We apply

our approach to the ODE-based model of mosquito population dynamics proposed

by [128]. The model divides the mosquito life cycle into 10 stages: Egg (E), Larva

(L), Pupa (P), Emerging Adults (Aem), Nulliparous Bloodseeking Adults (Ab1),

Nulliparous Gestating Adults (Ag1), Nulliparous Ovipositing Adults (Ao1), Parous

Bloodseeking Adults (Ab2), Parous Gestating Adults (Ag2) and Parous Oviposit-

ing Adults (Ao2). These stages are interconnected through a system of ordinary

differential equations, as presented in Equation 6.18.

Parameters for the experiment are explained in Table 6.2. These system param-

146

Physics Informed Neural Networks in Sparse Data Applications

eters vary with temperature and are based on data specific to the Culex pipiens

spieces [44]. This ODE system serves as a useful validation, as it is both practically

relevant and exemplifies multi-scale behavior across the mosquito life stages, with a

relatively large input domain. These characteristics present significant challenges for

the original PINN framework, which struggles to achieve convergence for this system.



dE
dt

= γAo(β1Ao1 + β2Ao2)− (µE + fE)E
dL
dt

= fEE −
(
mL

(
1 + L

κL

)
+ fL

)
L

dP
dt

= fLL− (mP + fP)P

dAem

dt
= fP σe

−µem

(
1+ 1

κP

)
P − (mA + γAem)Aem

dAb1
dt

= γemAem − (mA + µr + γAb)Ab1

dAg1
dt

= γAbAb1 − (mA + fAg)Ag1

dAo1
dt

= fAgAg1 − (mA + µr + γAo)Ao1

dAb2
dt

= γAo(Ao1 + Ao2)− (mA + µr + γAb)Ab2

dAg2
dt

= γAbAb2 − (mA + fAg)Ag2

dAo2
dt

= fAgAg2 − (mA + µr + γAo)Ao2

(6.18)

This part of the evaluation comprises two problems: first is a forward problem

solving the mosquito population dynamics given an initial condition; and second

is an inverse problem determining mortality and growth rates from available data.

Experiments are conducted under varying temperature conditions, where the tem-

perature changes according to a sine function τ = 10 sin
(
2π t

365

)
+ 10 with time t

measured in days.

6.4.1 Forward Problem

For the forward problem, the objective is to solve the mosquito population dynamics

using only a single data point: the initial condition. We employ a numerical

method [248] for simulating the ODEs, available in Python Scipy library [231] The

data point at t = 730 (two years into the simulation) is selected as the initial condition

147

Physics Informed Neural Networks in Sparse Data Applications

Table 6.2: ODE Model Parameters. The unit of τ is Celsius degree. All other parameters have
the unit of day−1, except the σ and β.

Parameter Description Value
τ Temperature

γAem Development rate of emerging adults 1.143
γAb Development rate of bloodseeking adults 0.885
γAo Ovipositing adult development rate 2

fE(> 0) Egg development rate 0.16 ·
(

e[0.105(τ−10)] − e[0.105(38−10)− 1
5.007 (38−τ)]

)
fP Pupa development rate 0.021 ·

(
e[0.162(τ−10)] − e[0.162(38−10)− 1

5.007 (38−τ)])
)

fL Larva development rate fP ∗ 1.65
fAg(> 0) Development rate of gestating adults τ−9.8

64.4
mE Egg mortality rate mE = µE

mL Larval mortality rate exp [−τ/2] + µL

mP Pupa mortality rate exp [−τ/2] + µP

mA(> µA) Mortality rate of Ab, −0.005941 + 0.002965 · τ
µE Minimum egg mortality rate 0
µL Minimum larval mortality rate 0.0304
µP Minimum pupa mortality rate 0.0146
µem Mortality rate during emergence 0.1
µr Mortality rate during bloodseeking 0.08
µA Minimum adult mortality rate 1

43
κL Carrying capacity for larvae 8 · 108

κP Carrying capacity for pupae 107

σ Sex ratio at emergence 0.5
β Number of eggs per Ao β1 = 141(np), β2 = 80(p)

for training a PINN over the interval [730, 1096] days. We use the data point at

t = 730 (two years into the simulation) as the starting point and train a PINN for

the period from 730 to 1, 096 days. The simulated data within this period serve

as the ground truth for model performance evaluation. The advanced techniques

presented in the Section 6.2, including ODE normalization, domain decomposition,

gradient balancing and causal training, are implemented as part of this evaluation.

The time domain is divided into 12 subdomains where for each, they undergo a

three-phase training process: 10,000 steps of data fitting followed by 100,000 steps

of causal training; the final phase uses early stopping, stops after 100 evaluations

without improvement. Lower and upper bounds for each domain are derived from

ground truth data. The solution neural network U is configured as an MLP with 4

148

Physics Informed Neural Networks in Sparse Data Applications

Table 6.3: Errors for Mosquito ODE Approximation Solution. The bold text high-
lights the two lowest errors across the stages, representing the best approximations,
while the underline text identifies the two highest errors, indicating the least accurate
stages.

Stage RMSE MAE MDAPE nRMSE
E 56107.947877 28619.218663 0.001900 0.000407
L 144952.348476 82367.593703 0.000759 0.000308
P 243295.690709 123936.043785 0.002170 0.001325
Aem 398.308537 175.715612 0.001821 0.001106
Ab1 342.155798 161.987210 0.001782 0.000850
Ag1 42095.722155 20403.707941 0.002158 0.019350
Ao1 34.564301 16.196719 0.003921 0.000293
Ab2 102.456176 50.194130 0.002831 0.000217
Ag2 7853.480625 4466.414135 0.001567 0.004155
Ao2 19.229490 9.978838 0.002394 0.000138
Overall 92296.312508 26020.705074 0.001918 0.006291

hidden layers, each comprising 100 units and utilizing GELU activation functions.

The subdomains are trained sequentially, with predictions from the overlapping

region of preceding subdomain models serving as initial conditions for subsequent

domains.

Figure 6.8 presents the results of solving the mosquito population dynamics as a

forward problem, with corresponding error metrics detailed in Table 6.3. The trained

neural network demonstrates remarkable performance in extrapolation, providing

a reasonably accurate approximation of the solution, as illustrated in Figure 6.8.

However, towards the end of the time period, notable accumulated error can be

observed in Ag1 and Ag2 stages.

Table 6.3 reveals a substantial overall RMSE of 92,296. Error magnitudes exhibit

significant variation across mosquito life stages, ranging from 19 in the Ao2 stage

to 243,295 in the P stage, likely attributable to scale differences among these

stages. MAE follows a similar pattern, spanning from 10 (Ao2 stage) to 123,936

(P stage), with a mean of 26,021. Despite these high RMSE and MAE values,

the Median Absolute Percentage Error (MDAPE) remains relatively low, averaging

0.19%, indicating generally robust performance from a machine learning perspective.

MDAPE tends to be lower for stages with larger scales, suggesting that stages with

149

Physics Informed Neural Networks in Sparse Data Applications

Figure 6.8: Mosquito ODE system, forward problem, U approximation of
the solution. Each plot depicts the evolution of a specific state in the mosquito
life cycle, with time on the x-axis and organism count on the y-axis. Only one data
point (blue dot) is provided to PINN at t = 730. The PINN predictions (orange
dashed line) accurately track the reference solution (blue line) over time.

150

Physics Informed Neural Networks in Sparse Data Applications

larger scales are more tolerant of minor errors. For instance, the L stage exhibits

the lowest MDAPE (0.0759%) despite having the second-highest RMSE and MAE.

Conversely, the Ao1 stage presents the highest MDAPE (0.3921%) while maintaining

relatively lower RMSE and MAE values.

6.4.2 Inverse Problem

In solving inverse problems, the goal is to use available data to estimate 10 of

parameters identified in Table 6.2. Three parameters (γAem, γAb and γAo) are treated

as constants and are represented by learnable parameters that remain constant over

time. The seven parameters (fE, fP , fL, fAg, mL, mP and mA) vary over time with

neural networks using time as input to estimate these parameters.

This experiment is conducted under identical conditions and temperatures as

previous evaluation studies. Simulation data is generated over a three-year period,

spanning from day 0 to day 1096, employing the numerical method described in [248].

For data conditioning, daily observations from t = 730 to t = 1096 are utilized,

encompassing 367 days with 10 data points each. The solution u and the ODE

parameters θ are obtained from the simulation data as ground truth.

With this setup, the high data volumes allow for the use of simpler techniques.

Due to significant differences in the number of instances across various stages, ODE

normalization and gradient balancing are implemented. Domain decomposition and

causal training are not employed (the number of subdomains is set to 1, and the count

for the first two phases is set to 0), as the data condition with sufficient observations

provides a robust foundation for framework convergence. Boundaries for the system

states and ODE parameters are determined based on simulation data. For the neural

network solution U , a MLP architecture is deployed, comprising 4 hidden layers with

100 units each and employing the GELU activation function. Constant parameters

are represented by individual trainable weights, while time-dependent parameters

are each modeled using a smaller MLP structure. These smaller networks consist of

four hidden layers with 10 units per layer, also using the GELU activation function.

151

Physics Informed Neural Networks in Sparse Data Applications

Table 6.4: Mosquito ODE System’s Parameter Approximation Errors. The bold text
highlights the two lowest errors across the learned parameters while the underline text
identifies the two highest errors.

Parameter RMSE MAE MDAPE
γAem 0.042639 0.042639 0.037304
γAb 0.034216 0.034216 0.038662
γAo 0.072417 0.072417 0.036208
fE 0.015570 0.012633 0.039964
fP 0.004646 0.003270 0.078140
fL 0.002816 0.001982 0.078126
fAg 0.002769 0.001784 0.094168
mL 0.286959 0.137099 0.125888
mP 0.291548 0.139703 0.259069
mA 0.002848 0.001828 0.033566
Mean 0.132615 0.044757 0.059045

Figure 6.9 illustrates the system parameters learned through the PINN frame-

work. The plots generally demonstrate accurate parameter approximations, although

notable inaccuracies are observed, particularly for parameters mL and mP within

the domain [943, 1064]. Error metrics, as detailed in Table 6.4, where the mean

RMSE is 0.132615. Parameters mL and mP contribute the highest errors at 0.286959

and 0.291548, respectively, while fAg and fL present the lowest RMSE values at

0.002769 and 0.002816, respectively. The MAE closely aligns with RMSE trends,

averaging 0.044757. The highest MAE values correspond to mL (0.137099) and mP

(0.139703), while the lowest are associated with fAg (0.001982) and fL (0.001784).

he MDAPE averages 5.9%, with mA demonstrating the lowest error at 3.3566%. The

three constants (γAem, γAb, and γAo) range between 3.62% and 3.87%. The errors for

mL and mP are notably higher at 12.59% and 25.91%, respectively.

The results can be interpreted as follows: during colder periods, specifically

within the day range of 943 to 1,064 where air temperature falls below 5.0◦C, the

mosquito population rapidly declines to zero (with the exception of Ag1 and Ag2),

as illustrated in Figure 6.8. This situation makes it challenging to gather useful

information, negatively affecting the ability to determine several system parameters,

especially mL and mP which are primarily derived from equations related to dL
dt

152

Physics Informed Neural Networks in Sparse Data Applications

Figure 6.9: Mosquito ODE system, inverse problem, Θ approximation of the
system’s parameters. Each plot compares the approximated values (orange) with
the true values (blue) for different parameters governing the mosquito population
dynamics.

and dP
dt

. Conversely, parameters γAem, γAb and γAo remain constant over time,

which makes them simpler to accurately estimate, as evidenced by their relatively

153

Physics Informed Neural Networks in Sparse Data Applications

low MDAPE. Meanwhile, parameters such as mA and fAg, which are involved in

multiple differential equations, tend to receive more consistent and stable information

and gradients. From a mathematical perspective, the target parameters are not

structurally identifiable across the entire input domain due to the system configuration

(see Appendix C.1). This lack of structural identifiability can lead to inaccuracies in

the approximations generated by PINNs.

Summary. The PINN framework developed for this research demonstrated

a quite accurate approximation of the mosquito dynamical system, despite the

challenges posed by extreme multi-scale behaviors and a large input domain. Our

approach successfully normalizes the system states and parameters onto the same

scale with an even optimization. The results show strong accuracy, particularly

in high-temperature domains where information is redundant. However, due to

inherent structural identifiability limitations, the model fails in terms of accurately

approximating parameters within the low-temperature domain.

6.5 Conclusion

In this chapter, we introduced a hybrid framework based on Physics informed Neural

Networks that integrates physical laws into data-driven machine learning models.

This framework is specifically designed to solve systems of ordinary differential

equations and was validated using both the Lorenz system and a case study modeling

mosquito population dynamics. The approach comprises a multi-task learning

strategy, incorporating multiple components in the objective function: one for

data fitting and several for weakly enforcing physical constraints. The framework

also includes several advanced techniques, including domain decomposition, ODE

normalization, gradient balancing, and causal training. To evaluate the effectiveness

of this approach, we conducted an ablation study using the Lorenz system before

addressing the complex problem of modeling mosquito population dynamics.

Our findings demonstrate that ODE Normalization and Gradient Balancing

techniques played a crucial role in stabilizing the training process. These meth-

154

Physics Informed Neural Networks in Sparse Data Applications

ods effectively prevent individual components of the loss function from exerting

disproportionate influence on the optimization and thus, mitigate against prema-

ture convergence to suboptimal solutions. Causal Training preserves the temporal

causality inherent in the dynamical system. This aspect is crucial for achieving

accurate model predictions, especially in scenarios requiring extrapolation beyond

the scope of the training data. Furthermore, Domain Decomposition demonstrates

its effectiveness in managing significantly large input domains, particularly in forward

problem scenarios. The results also confirm the framework’s efficacy in modeling

mosquito population dynamics, highlighting its potential for application within the

field of ecology.

However, the PINN framework presented in this chapter still reveals certain limi-

tations. In the inverse problem setup, the PINN tends to favor solutions with smaller

gradients that still met the data and ODE constraints. The current implementation

considers only time as an input, neglecting external factors. This restriction signifi-

cantly limits the model’s predictive performance in real-world applications, as the

coordination inputs and encoded physical laws may not fully capture the underlying

mechanisms of the processes. Allowing external variables would not only enhance

performance but also increase the framework’s flexibility. While the framework has

demonstrated promising results on test systems, its compatibility with real-world

data remains to be tested. In Chapter 7, we will address two of these limitations

by allowing external variables as inputs and testing the method against real-world

mosquito count data, thereby advancing the practical applicability of our approach.

155

Chapter 7

PINN Optimization: Incorporating

External Factors

In Chapter 6, we developed a methodology to incorporate ordinary differential

equations (ODEs) into a machine learning framework, one which incorporated

solutions for both forward and inverse problems in dynamical systems. However,

the framework’s inability to consider external variables may limit its applicability in

certain scenarios. Furthermore, the framework’s evaluation was limited to simulated

data in the chapter, potentially under-representing its true capabilities when applied

to real-world observations. This chapter aims to address these limitations through an

inverse problem case study using the same mosquito population case study presented

in Chapter 6.

7.1 Introduction

We begin with an overview of our approach to the final research question which had

two parts.

1. By incorporating external variables into the parameter surrogate models, PINNs

can learn the mapping from external factors to the dynamical system’s param-

eters. This part directly addresses the problem by establishing a connection

between external factors and system parameters.

156

Physics Informed Neural Networks in Sparse Data Applications

2. Additional modifications to the neural network architecture, including fixed

Fourier transformations, customized non-negative output activation functions,

and adoption of a multi-branch structure, can enhance PINN’s training process

and accuracy. This second part attempts to improve the stability and efficiency

of training, as well as the generalizability of the resulting models, particularly

in scenarios with limited observational data.

To meet these goals, a novel approach using physics-informed neural networks

was developed to learn the mapping from external conditions to internal parameters

of dynamical systems. This approach replaces time-dependent parameters with

neural networks that map external variables to system parameters. The external-

to-internal neural networks are designed with a dual-branch architecture to capture

both year-to-year patterns and residual fluctuations. Furthermore, we implement a

modified absolute activation function to ensure parameter positivity. These neural

networks, along with the system state’s neural network, are jointly trained to

optimize a multi-task objective function, which not only learns from observational

data but also enforces adherence to underlying dynamical laws. We evaluate this

method through a case study on mosquito population modeling, comparing its

performance against traditional empirical parameter estimation. Results indicate that

the learned parameters improve the accuracy of the dynamical system, demonstrating

the potential of this data-driven, hybrid approach in dynamical modeling.

The implementation of this framework is publicly available at https://github.

com/dinhvietcuong1996/pinn-external.

7.2 Incorporating External Factors

Consider a dynamical system defined by a state vector u(t) over the time interval

[0, T]. The system’s behavior is influenced by external factors represented by the

vector a(t), which affect the internal parameters θ(a(t)). The evolution of the state

u is described by a system of ODEs as shown in Equation 7.1.

157

https://github.com/dinhvietcuong1996/pinn-external
https://github.com/dinhvietcuong1996/pinn-external

Physics Informed Neural Networks in Sparse Data Applications

du

dt
= f (i) (t, u, θ) , i = 1, 2, . . . , F. (7.1)

A set of observations Du = {(t1, u1), (t2, u2), . . . , (tj, uj), . . . } is provided, along

with a predefined function A : t 7→ A(t) that approximates the external variables

a(t) with sufficient accuracy. It is important to note that some variables of the

system state u may be costly or impossible to collect, so these observations may

only cover part of the states. The primary objective is to determine a mapping from

the external factors a to the system parameters θ, such that the resulting state u

not only corresponds to the observed data Du but also satisfies the ODE system

described in Equation 7.1. Thus, this approach to inverse problem modeling seeks to

integrate data-driven learning with the underlying physical principles represented by

the ODEs.

In this framework, the state u is approximated by a neural network U that maps

time t to the estimated state u(t). Simultaneously, each unknown parameter is

represented by a neural network Θ that takes A(t) values as inputs and generates

the corresponding parameter values. These neural networks are jointly optimized to

minimize the objective function 7.2, which compromises loss terms 7.3 and 7.4.

L = Ldata + LODE = Ldata + 1
F

F∑
i=1

λiLf (i) (7.2)

Ldata = 1
Nu

∑
(ti,ui)∈Du

(U(ti)− ui)2 (7.3)

Lf (i) = 1
Nf

∑
j

∣∣∣∣∣dU

dt
− f (i) (tj, U(tj), Θ(A(tj))

∣∣∣∣∣
2

(7.4)

In loss functions 7.2, 7.3 and 7.4, λi represents weights that balance the objectives

within the loss function. Nu denotes the number of state observations, while Nf

158

Physics Informed Neural Networks in Sparse Data Applications

represents the number of collocation points tj randomly sampled from the interval

[0, T]. In cases where the observed state is incomplete, unavailable entries are masked

out in the calculation of the data loss term Ldata.

The objective function consists of two components: Ldata which ensures that the

predictions generated by the model U closely align with the observed data, and Lf (i)

which minimizes the ODE residuals. Through the simultaneous optimization of these

terms, we aim to derive a system state and parameter set that not only fits the

empirical observations but also adheres to the ODE system.

The above framework is extended from the PINN framework presented in Chap-

ter 6, and is depicted in Figure 7.1 where the function A (the white blue-bordered

box) is newly added. The method introduces a novel aspect by employing parameter

networks Θ that accept inputs from the function A values, illustrated by the arrow

from Function A (the upper white blue-bordered box) to the neural network Θ (the

lower blue box). These trained networks are reusable for predicting parameters under

any external conditions, as depicted the arrows leading from inference A values (the

lower blue-bordered box) through the model Θ. Additionally, the method includes

the implementation of a Multi-branch Fourier-feature Multi-Layer Perceptron (Multi-

branch FourierMLP) for these parameter networks to enhance their generalization

capabilities. Finally, a new output activation function is introduced to enforce

positivity constraints on both the system state and parameters.

FourierMLP [249] was implemented for the neural network architecture. It has

demonstrated significant enhancements in both convergence speed and accuracy for

PINN training [41] The FourierMLP, given an input x, produces an output y as in

Equations 7.5.

h(0) = [cos (Bx) ; sin (Bx)]

h(l) = ϕh(W (l)h(l−1) + b(l)), l = 1, . . . , L− 1 (7.5)

y = ϕo

(
W (L)h(L−1) + b(L)

)

159

Physics Informed Neural Networks in Sparse Data Applications

Figure 7.1: External PINN Framework. There are two groups of neural networks,
one named U for the system state (the upper blue box), and the other named Θ
for estimating the system parameters (the lower blue box). There are two data
for the loss computations, the observations (ti, ui) (the upper green box) and the
collocations points tj (the lower green box). The data loss Ldata is computed based on
the observations (ti, ui) and the outputs of the state neural network U evaluated at
ti. The ODE loss LODE is calculated at random collocation points tj , it involves the
predictions of the state model U at tj and the parameter model at A(tj) (the white
blue-bordered box), which are external factors at tj. Only the two neural networks
(the two blue boxes) are trained, while the function A is fixed. After training, one
can use the network Θ to predict parameters θ at any external factor values, as
depicted by the bottom row of the figure.

In Equations 7.5, B denotes a random matrix with entries drawn from a normal

distribution N (0, σ). W (l) and b(l) represent the weights and biases of appropriate

dimensions, respectively. During training, B remains fixed while the weights and

biases are optimized. L denotes the number of hidden layers, and ϕh represents

the element-wise activation function applied to hidden layers. The Gaussian Error

Linear Unit (GeLU) activation function [245] is used for ϕh, providing a smooth

non-linearity to the model. To ensure non-negativity of state and parameters, we

introduce a soft absolute function as the output activation ϕo in Formula 7.6, where

ϵ is empirically set to 10−4 based on experimental results.

ϕ(x) =
√

x2 + ϵ−
√

ϵ, x ∈ R (7.6)

The high-dimensional nature of external variables A(t), coupled with limited

training data, often leads to poor generalization in trained models. To address this

160

Physics Informed Neural Networks in Sparse Data Applications

issue, we propose a multi-branch architecture for the external-to-parameter networks

Θ, as illustrated in Figure 7.2. This architecture comprises multiple branches, each

consisting of a separate FourierMLP that processes a distinct group of inputs. The

outputs from these specialized branches are then aggregated in subsequent layers to

generate the final prediction.

Figure 7.2: FourierMLP and Multi-branch FourierMLP architecture

The proposed architecture can be formally described as follows: Let x(1), . . . , x(n)

represent n distinct groups of external factors. Each input vector x(i) is independently

processed by a corresponding FourierMLP(i) branch. The resultant outputs from

these branches undergo summation, followed by an activation function ϕo. This is

mathematically expressed by the Equation 7.7.

y = ϕo

(∑
i

FourierMLP(i)
(
x(i)

))
. (7.7)

The optimization of the objective function is performed using the gradient-based

Adam optimizer [203]. All differentiation operations, including ODE derivatives

161

Physics Informed Neural Networks in Sparse Data Applications

and optimization gradients, are computed via automatic differentiation provided by

the PyTorch framework [8]. To enhance convergence and accuracy, we implement

ODE normalization and gradient balancing techniques as proposed in [243]. ODE

normalization rescales neural network inputs and outputs, reformulating the ODE loss

function to maintain these quantities within reasonable ranges. Gradient balancing

adaptively adjusts the weights λi throughout training to maintain balance across

tasks in multi-objective optimization. Furthermore, we resample the collocation

points for ODE residual calculations at each training step, drawing from a uniform

distribution over the time domain. To facilitate convergence, we initially train the

networks using solely the data loss, enabling the network U to capture the general

solution shape before training both objectives. Lastly, in scenarios where the function

A is not directly available but its measurements are abundant, we train a separate

FourierMLP to approximate this function. This neural network is frozen during the

PINN training process, serving as a fixed input to the main model.

7.3 Evaluation

In this section, a series of experiments are presented which are used to evaluate

the extended PINN framework. The data used for the experiments is described in

Section 2.3.3.

7.3.1 ODE system

In this experiment, we apply our proposed methodology to an inverse problem

using the same mosquito ODE system in Chapter 6 but repeated here to assist

with interpreting Equations 7.8. The mosquito life cycle is divided into 10 stages:

Egg (E), Larva (L), Pupa (P), Emerging Adults (Aem), Nulliparous Bloodseeking

Adults (Ab1), Nulliparous Gestating Adults (Ag1), Nulliparous Ovipositing Adults

(Ao1), Parous Bloodseeking Adults (Ab2), Parous Gestating Adults (Ag2) and Parous

Ovipositing Adults (Ao2).

162

Physics Informed Neural Networks in Sparse Data Applications

The system dynamics are described by the set of ODEs described in Equations 7.8.



dE
dt

= γAo(β1Ao1 + β2Ao2)− (µE + fE)E
dL
dt

= fEE −
(
mL

(
1 + L

κL

)
+ fL

)
L

dP
dt

= fLL− (mP + fP)P

dAem

dt
= fP σe

−µem

(
1+ 1

κP

)
P − (mA + γAem)Aem

dAb1
dt

= γemAem − (mA + µr + γAb)Ab1

dAg1
dt

= γAbAb1 − (mA + fAg)Ag1

dAo1
dt

= fAgAg1 − (mA + µr + γAo)Ao1

dAb2
dt

= γAo(Ao1 + Ao2)− (mA + µr + γAb)Ab2

dAg2
dt

= γAbAb2 − (mA + fAg)Ag2

dAo2
dt

= fAgAg2 − (mA + µr + γAo)Ao2

(7.8)

The parameters in Equations 7.8, already detailed in Table 6.2, are referred to as

empirical formulas and serve as a baseline for our analysis.

The main goal is to learn a mapping from meteorological measurements to system

parameters of the system and then validate this mapping by applying the trained

models to infer parameters from unseen data. These predicted parameters are then

used to simulate the mosquito population. Sensitivity analysis (Appendix C.2) reveals

that the Pupa development rate fP (and correspondingly, the larva development

rate fL = 1.65fP) exerts the most significant influence on the overall system state,

particularly on the quantity Ab1 + Ab2. Therefore, we choose to learn the parameter

fP .

7.3.2 Experimental Configuration

The experiment begins with the preprocessing of mosquito data and the establishment

of lower and upper bounds for all data columns, a crucial step for ODE Normalization.

A simulation is executed using parameters derived from climate condition data via

empirical formulas. The resulting state values from this simulation serve to define

the bounds for the system state. Collected mosquito counts are rescaled to align with

163

Physics Informed Neural Networks in Sparse Data Applications

the bounds, and a 5-day-window Spline smoothing is applied to reduce data noise.

Parameter bounds are determined by the values obtained from empirical formulas,

while climate data bounds are set based on available measurements.

For the training process which used the 2-year dataset, the function A defined

over the time domain plays a critical role. A FourierMLP is trained to interpolate

meteorological measurements for any real-valued time t within the domain. This

model’s architecture consists of 256 Fourier features, followed by three hidden layers,

each containing 128 units. The model generates two sets of external features: one

comprising three meteorological variables (temperature, humidity, and precipitation),

and another representing the day of the year, ranging from 0 to 365.

The architecture of the neural networks is structured as follows: The system

state network U consists of 256 Fourier features followed by three hidden layers,

each containing 128 units. For the parameter network, a dual-branch FourierMLP

is implemented, where each branch has a layer of 128 Fourier features and three

hidden layers of 64 units. The first branch processes 7-day historical meteorological

data, while the second branch uses day-of-year as input. This configuration enables

the latter branch to capture intrinsic annual patterns, while the former learns the

impact of meteorological conditions on mosquito development rates. Both networks

utilize GELU activation functions in their hidden layers and employ the soft absolute

function (Equation 7.6) to enforce non-negativity.

The neural network A is trained for 300,000 epochs, with the checkpoint yielding

the lowest root mean squared error (RMSE) being saved. PINN training initially

focuses solely on data loss for 10,000 steps, followed by 290,000 steps incorporating

the full objective function. PINN checkpoints are saved every 500 steps, and we select

the one yielding the best RMSE when simulating with PINN-learned parameters.

PINN checkpoints are saved every 500 steps, and the model producing the lowest

RMSE when simulating with PINN-learned parameters is selected as the final model.

This model is subsequently validated using the designated validation dataset.

Results are presented by comparing simulations using PINN-learned parame-

164

Physics Informed Neural Networks in Sparse Data Applications

ters against those using baseline parameters, using graphical representations and

quantitative metrics. For PINN-learned simulations, we utilize the initial conditions

extracted from the trained network U in the training period for the 7-year validation

dataset. Baseline simulations, in contrast, adopt an initial condition of 300 for each

state vector component, aligning with the work in [44]. To ensure comparability,

all simulation outputs and observational data are normalized to the [0, 1] range for

metric calculations. Our validation metrics include the root mean squared error

(RMSE) between Ab1 + Ab2, the RMSE of the weekly difference in Ab1 + Ab2, and

the 7-day 0.2-prominence peak detection recall, precision, and F1-score.

The experiment is implemented in Python, leveraging PyTorch for neural network

architecture and optimization tasks. We accelerate the training process using a

GeForce GTX 4090 GPU. All simulations are executed via SciPy [231], employing

its finite-difference ODE solver [248]. The peak detection algorithm is also from this

package.

7.3.3 Results

Figure 7.3 shows the simulation results using empirical formula parameters and PINN-

derived parameters, alongside smoothed observation data. Figure 7.4 illustrates

the parameter fP . The PINN simulation demonstrates a close fit to the training

data, yielding an RMSE of 42,060 (0.029 normalized), which is significantly lower

than the empirical formula’s RMSE of 453,863 (0.248 normalized). This indicates

the PINN’s successful learning of the parameter fP to match observed data. The

learned development rate fP predominantly remains near zero throughout the year,

exhibiting small peaks around day-of-year 60-90, corresponding to a minor surge

in mosquito populations. The most significant peaks are observed around day 160,

aligning with annual peaks in mosquito counts. Notably, the prediction of fP shows

unexpected peaks at the end and beginning of the calendar year, likely a false peak

due to the near-zero number of mosquitoes during this period providing limited

information for learning. In contrast, the parameters derived from the empirical

165

Physics Informed Neural Networks in Sparse Data Applications

formula exhibit a nearly linear relationship with temperature. This leads to an

earlier-than-observed explosion in mosquito numbers in the second year and higher-

than-expected populations during summer and later periods.

Figure 7.3: Mosquito Population Simulations, Ab1 + Ab2, the training period.

Figure 7.4: Parameter fP prediction, the training period

Figure 7.5 illustrates the Ab1 + Ab2 values from simulations during the validation

period, along with weekly observed mosquito counts. Both simulations demonstrate

the ability to capture general patterns of annual mosquito population dynamics. The

Formula-based simulation predicts elevated populations over an extended period,

spanning from approximately day 100 to day 300 of the year. In contrast, the

166

Physics Informed Neural Networks in Sparse Data Applications

PINN simulation appears to more accurately predict population explosions, typically

occurring around day 180 and rapidly decaying after day 250. However, both

simulations exhibit a slower population decay compared to observed data. Regarding

peak detection, the Formula-based simulation tends to identify a higher number of

peaks, potentially reducing its precision, although it still fails to capture observed

peaks accurately. The PINN method, on the other hand, is more conservative but

still aligning more closely with significant observed peaks.

The respective fP predictions are plotted in Figure 7.6. The parameter predictions

for the validation period exhibit similar characteristics to those of the training period.

Notable features include a prominent peak around days 160-180, minor peaks between

days 60-90, and a substantial spike at the beginning of the year. The differences across

the years are visually hard to identify, primarily attributable to minor fluctuations

in climatic conditions. However, these seemingly small differences lead to significant

variations in mosquito population dynamics. A more comprehensive analysis of these

predictions, beyond the scope of this study, would be necessary to draw further

conclusions.

Table 7.1 presents error metrics between the Formula and PINN parameters for

validation simulations. The PINN method demonstrates superior performance across

all metrics. Notably, PINN achieves lower RMSE values for overall error (0.1791),

weekly differences (0.1728), and second-order weekly differences (0.2927) compared

to the Formula approach, with the figures 0.2622, 0.2054 and 0.3328, respectively.

In peak detection, PINN substantially outperforms the Formula method, with

higher recall (0.5625 vs 0.1250), precision (0.6250 vs 0.0938), and F1 score (0.5667 vs

0.1071). These results suggest that PINN offers added information into the parameter

prediction, expressed by more accurate simulations and peak prediction capabilities.

7.4 Ablation Study

For an ablation study, we investigate how the additions of neural network archi-

tectures and the activation function affect the performance of the framework. The

167

Physics Informed Neural Networks in Sparse Data Applications

Figure 7.5: Mosquito Population Simulations, Ab1 + Ab2, the validation period.

168

Physics Informed Neural Networks in Sparse Data Applications

Figure 7.6: Parameter fP prediction, the validation period.

169

Physics Informed Neural Networks in Sparse Data Applications

Table 7.1: Error Metrics. Six metrics are presented: the first three are RMSE
metrics where lower values indicate better performance, and the last three are
peak metrics where higher values are better. The best results for each metric are
highlighted in bold.

Formula PINN
RMSE 0.262200 0.179100
Weekly Diff RMSE 0.205400 0.172800
Weekly 2nd Diff RMSE 0.332800 0.292700
Recall Peak 0.125000 0.562500
Precision Peak 0.093800 0.625000
F1 Peak 0.107100 0.566700

experimental procedure is the same as in Section 7.3. Specifically we first train

PINNs using data from the training period, during which the model learns how

meteorological variables affect the mosquito parameters. Then, the trained parameter

network is used to predict parameters for the test period, and these parameters are

substituted into the ODE system to simulate the mosquito population which is the

population predictions. The difference is that we vary one component at a time

while keeping all other factors constant to observe the effect of each change. We

first examine the architecture of the neural networks and then the non-negativity

activation function.

7.4.1 Model architectures

In this experiment, we aim to assess the effect of Fourier feature layers and the

branching architecture of neural networks on the performance of the framework. We

consider four configurations of neural network architectures:

1. MLP: All of the neural networks for the system state U and system parameters

Θ use standard MLPs, similar to those in Chapter 6 and in conventional

PINNs [43].

2. FourierMLP: All of the neural networks U and Θ use FourierMLPs, similar

to those in [41].

3. Branched MLP: For comparison, we use a branched version of the MLP,

170

Physics Informed Neural Networks in Sparse Data Applications

which is similar to the multi-branch Fourier MLP described in Section 7.3, but

the Fourier layer is replaced with a normal fully connected layer, making each

branch a standard MLP. This multi-branch MLP is used for the parameter

networks Θ, while the state network remains an MLP.

4. Branched FourierMLP: Finally, our proposed architecture, which is the same

as in Section 7.3, uses a FourierMLP for the network U and a multi-branch

FourierMLP for the parameters Θ.

As the accuracy of PINNs does not heavily depend on the capacities of the neural

networks [108], it was only necessary to experiment with one hyperparameter setting

for each configuration. The hyperparameters for the neural networks of the four

configurations are set as follows: for all the state networks, we utilize a network with

four hidden layers; the first hidden layer has 256 units, and the three subsequent

hidden layers each have 128 units. For the parameter networks, the non-branched

versions use a similar setting: one layer of 256 units and three layers of 128 units. For

the branched versions, each branch uses half the number of units, that is, 128 units

for the first hidden layer and 64 units for the other three. All other hyperparameters

are set the same as in Section 7.3, including the use of the GELU activation function

for hidden layers and the soft absolute function with ϵ = 10−4 for the output.

Table 7.2 presents the simulation error metrics obtained when simulating the

mosquito dynamical models using the parameter fP learned from the four different

neural network configurations. It can be seen that PINNs across all architectures

outperform the empirical formula. Our proposed architecture, the Branched Fouri-

erMLP, achieves the best overall performance, exhibiting the lowest RMSE and the

highest scores in peak detection metrics. When comparing the standard MLP to its

branched counterpart, we observe that the RMSE values are similar (0.1937 for MLP

vs 0.1979 for Branched MLP), but the Branched MLP exhibits marginal improve-

ments in peak detection metrics. Specifically, the peak recall increases from 0.1458

to 0.2708, the precision peak from 0.3750 to 0.4375, and the peak F1-score from

0.2083 to 0.2917. This suggests that the branching architecture enhances the model’s

171

Physics Informed Neural Networks in Sparse Data Applications

capacity to capture features relevant to peak occurrences, such as annual patterns.

Interestingly, the standard MLP outperforms the FourierMLP in terms of RMSE

(0.1937 vs 0.2479), suggesting that the FourierMLP may be overfitting the data due to

its higher complexity. However, when the FourierMLP is integrated into a branched

architecture, as in Branched FourierMLP, the model not only mitigates overfitting

but also leverages the Fourier features to capture periodic patterns more effectively.

The Branched FourierMLP achieves a lower RMSE of 0.1791 compared to both the

standard MLP and the FourierMLP, and it significantly improves peak detection

metrics over both models. These results suggest that the branching architecture

allows the neural network to generalize better while the Fourier features enable it to

capture periodic components in the data. The combination between the branching

structure and Fourier features in the Branched FourierMLP contributes to its superior

performance, making it a robust framework for learning system parameters in PINNs.

Table 7.2: Error Metrics from Parameters learned from PINNs with differ-
ent network architectures. The best results for each metric are highlighted in
bold, while the second best results are underlined.

MLP FourierMLP Branched MLP Branched FourierMLP
RMSE 0.193658 0.247858 0.197923 0.179100
Diff RMSE 0.187189 0.207561 0.191858 0.172800
2nd Diff RMSE 0.314825 0.348473 0.312093 0.292700
Recall Peak 0.145833 0.166667 0.270833 0.562500
Precision Peak 0.375000 0.085714 0.437500 0.625000
F1 Peak 0.208333 0.101010 0.291667 0.566700

7.4.2 Activation Functions for Non-negativity

In this experiment, the aim is to explore different activation functions to enforce

the non-negativity of system parameters and states. All of the considered functions

are plotted in Figure 7.7. The baseline activation function is the identity function,

which returns the exact input provided to it. Other popular activation functions that

express the non-negativity property are ReLU and its smoothed version, Softplus [250].

While ReLU and Softplus are popular activation functions, they suffer from the

critical drawback of causing dying neurons [251]. This phenomenon occurs when the

172

Physics Informed Neural Networks in Sparse Data Applications

input to the ReLU is negative, resulting in zero gradient propagation and causing

the neuron to stop learning. This problem is exacerbated when applied to PINNs.

As discussed in Chapter 6, PINNs often converge to the trivial zero solution, which

is precisely how dying neurons are triggered. This convergence causes PINNs to

become stuck at a local minimum and prevents further learning.

Figure 7.7: Non-negativity Activation Functions. The Soft Abs functions with
ϵ = 10−6 and ϵ = 10−4 appear very close in the plot, closely resembling the positive
part of ReLU and the identity function.

To address this issue, we propose using the absolute value function to impose

non-negativity on the states and parameters. The absolute value function effectively

fixes the zero-gradient problem by ensuring a non-zero gradient in the negative

domain. However, the original absolute value function makes it difficult for the model

to optimize values to zero, as the gradient is discontinuous at 0.0. Therefore, we

propose using a soft version of the absolute value function, called SoftAbs, defined

in Equation 7.6. When ϵ is small, the differences from the standard absolute value

173

Physics Informed Neural Networks in Sparse Data Applications

function are minimal, as seen in Figure 7.7, but SoftAbs is significantly more effective,

as we will demonstrate in our experiments.

Table 7.3 shows the error metrics obtained from simulations using parameters

learned by PINNs with different output activation functions. Overall, the SoftAbs

activation function with ϵ = 10−4 demonstrates superior performance across multiple

metrics. It achieves the highest scores in all three peak detection metrics, and ranks

second in RMSE and third in first-order difference error. Other configurations of the

SoftAbs function also exhibit significant improvements, particularly in peak detection

and second-order difference errors. For example, SoftAbs with ϵ = 10−6 attains the

lowest second-order difference RMSE of 0.2853 and achieves the second-highest peak

F1-score of 0.5083. Abs improves peak detection compared to ReLU and the identity

function; however, its performance in RMSE metrics is limited. These results suggest

that softening the derivatives of the absolute value function aids the model in better

detecting peaks while maintaining comparable RMSE values. ReLU achieves the

lowest first-order difference RMSE at 0.1706, while the identity activation function

comes second in overall RMSE with a value of 0.1637. This performance can be

attributed to our re-selection procedure, which involves simulating training period

after training.

Table 7.3: Error Metrics from Parameters learned from PINNs with differ-
ent final activation functions. The best results for each metric are highlighted in
bold, while the second best results are underlined.

Identity ReLU Softplus Abs ϵ = 10−6 ϵ = 10−4 ϵ = 10−2

RMSE 0.1637 0.1868 0.1981 0.2008 0.1903 0.1791 0.1558
Diff RMSE 0.1768 0.1706 0.1916 0.1787 0.1748 0.1728 0.1809
2nd Diff RMSE 0.3031 0.2927 0.3138 0.3080 0.2853 0.2927 0.3194
Recall Peak 0.2708 0.0416 0.2083 0.2500 0.4583 0.5625 0.3333
Precision Peak 0.2708 0.1250 0.3125 0.4375 0.6250 0.6250 0.5000
F1 Peak 0.2500 0.0625 0.2083 0.3005 0.5083 0.5667 0.3625

For comparative analysis, Figure 7.8 plots the predictions of the learned pupa

development rate fP over the training period using three different activation functions:

Identity, ReLU, and SoftAbs with ϵ = 10−4. In the intervals from day 160 to 210

in the first year and from day 140 to 200 in the second year, all three models

174

Physics Informed Neural Networks in Sparse Data Applications

approximately agree on the values learned. This convergence is attributed to the

high mosquito activity during these periods, which results in increased observational

mosquito counts and thus, provides information for the models to learn. The critical

differences among the models lie in the range of about days 50 to 90 in both years.

During these periods, the SoftAbs activation function effectively captures the small

peaks in mosquito counts by predicting surges in the corresponding fP . In contrast,

the ReLU activation function encounters difficulties in learning values near zero, with

predictions remaining mostly zero during these intervals. This issue arises due to the

dying neuron phenomenon, where neurons become inactive and are unable to learn

once their outputs reach zero. The Identity activation function fails to satisfy the

non-negative constraints in the physical modeling of mosquito populations, making

its predictions unrealistic. Nevertheless, the Identity function achieves the lowest

RMSE on the training data, a performance attributable to its relaxed constraints,

which allow for a better fit to the data despite violating physical plausibility.

Figure 7.8: Parameter fP predictions with different output activation functions,
training period

It is important to note that the models are selected based on the simulation errors

evaluated on the training data, which may not be the fully converged checkpoints

of the training process. In our experiments, the selected models utilizing ReLU

and Softplus activation functions correspond to early training stages In experiment,

175

Physics Informed Neural Networks in Sparse Data Applications

the models with ReLU and Softplus are selected in the first few training steps,

at 11,000 and 12,000 out of a total of 300,000 training steps, when the training

loss had not yet been fully minimized. This observation suggests that the target

checkpoints for these two activation functions may not reside at local minima in the

loss landscape, introducing uncertainty into the PINN training process. In contrast,

models employing the Identity, Abs, and SoftAbs activation functions were selected

at later stages of training, around 250,000 out of 300,000 training steps, where the

training loss was more thoroughly minimized.

7.5 Conclusions

In this chapter, novel enhancements to the PINN approach were introduced for inverse

problems. The proposed modifications not only facilitate learning the influence of

external factors on the internal parameters of dynamical systems but also enhance

the generalization capability of the learned model to unseen data. Where parameter

networks incorporate external values as inputs rather than time as in conventional

PINN approaches, this enables direct learning of parameters with respect to external

factors while trying to adhere to observed data and physical laws simultaneously.

Secondly, the multi-branch architecture for parameter networks allows for separate

processing of different input feature types, thereby improving the capture of each

feature group’s impact on the parameters. The proposed methods were applied

to a case study in mosquito population modeling, aiming to learn the impact of

meteorological conditions on mosquito development rates. Comparative analysis

revealed that PINN-derived parameters outperformed traditional parameter formulas

in several metrics, including the errors of the population curve, its first- and second-

order derivatives, and peak detection metrics (recall, precision, and F1-score). These

results demonstrate the successful integration of a data-driven, highly complex neural

network model with a dynamical system governed by ODEs, specifically in the

context of mosquito population modeling.

An ablation study further reinforces the effectiveness of our proposed modifications.

176

Physics Informed Neural Networks in Sparse Data Applications

By comparing different neural network architectures, we observe that the multi-branch

FourierMLP architecture significantly outperforms traditional MLP, FourierMLP

and multi-branch MLP, achieving lower RMSE and higher peak detection metrics.

The results show that the branching structure greatly improves the ability to predict

population peaks; and when combined with Fourier features, the model’s capability

to capture these peaks is enhanced even further. These findings from the ablation

study validate our proposals in PINN frameworks for dynamical systems.

Overall, these experiments demonstrate the significant benefit of incorporat-

ing prior knowledge into neural networks as demonstrated by improved predictive

accuracy across a substantial set of experimental evaluations.

177

Chapter 8

Conclusions

In this final chapter, we conclude the dissertation by briefly summarizing the different

steps taken in this research. We then highlight the contributions and novel aspects

of our work. Finally, we suggest some opportunities for further research in this area.

8.1 Dissertation Overview

In this section, we summarize the outputs from this body of research by re-examining

the initial hypothesis and the degree to which the research question have been

effectively addressed. In broad terms, it is our belief that we have successfully

demonstrated our hypothesis that integrating prior knowledge into neural networks

does enhance overall predictive performance. We will now briefly revisit those initial

research questions and how they were addressed.

8.1.1 Chapter 4: Neural Networks in Real-Life Applications

Neural networks, inspired by biological neurons, have become a cornerstone of

modern artificial intelligence and machine learning. It has advanced numerous

fields, achieving state-of-the-art results in many applications. In the first part of this

research, we applied neural networks to two new machine learning challenges: exosome

classification and oxygen uptake modeling to address the first research question: How

effectively can generic neural networks be deployed as machine learning solutions in

178

Physics Informed Neural Networks in Sparse Data Applications

areas such as health and sports?

Exosome Classification. In the first task, we addressed the challenge of

classifying exosome-derived SERS spectra into healthy, hyperglycemic, and hypo-

glycemic classes. The aim was to evaluate if neural networks could successfully

distinguish between exosome signals derived from endothelial cells cultured under

different conditions. We adopted a multi-step preprocessing approach that included

smoothing, background signal removal, and normalization to prepare the spectral

data for machine learning models. The classification model used in this study was a

Multi-Layer Perceptron (MLP).

Results indicated that the MLP model achieved a moderate overall accuracy of

approximately 66.7%. While it demonstrated promising performance, particularly

for identifying hypoglycemic samples, challenges emerged in distinguishing between

normal and hyperglycemic conditions. This difficulty could be attributed to inherent

similarities in the spectral profiles of normal and hyperglycemic samples, possibly

due to the presence of normal-like tissue in hyperglycemic samples. The approach

showed positive results in capturing distinguishing features from heterogeneous and

complex Raman signals. These findings underscored the potential for using machine

learning in general and importantly, the specific application of neural networks for

health diagnostics.

Oxygen Uptake Estimation. The second task attempted to predict individual

oxygen uptake using wearable sensor data collected during jogging and team based

activities. Several neural network models are evaluated, including linear regression,

MLP, long short-term memory networks (LSTM), and one-dimensional convolutional

neural networks (1D-CNN). The results highlighted that MLP model performed well,

achieving a validation RMSE of 3.18. However, the BiLSTM model demonstrated

the best generalizability, achieving a test RMSE of 4.98.

Research Question 1: How effectively can generic neural networks

be deployed as machine learning solutions in areas such as health and

sports? In conclusion, our empirical studies in Exosome Classification and Oxygen

179

Physics Informed Neural Networks in Sparse Data Applications

Uptake Estimation indicate that neural networks can indeed provide decent predictive

performance in health diagnostics and sports science. Fro exosome classification, a

MLP achieved an over accuracy of approximately 66.7% in distinguishing healthy,

hyperglycemic and hypoglycemic classes, while for oxygen uptake estimation, an

MLP and a BiLSTM demonstrated strong performance (RMSE of 3.18 on validation

and 4.98 on test, respectively). However, in both cases, dataset size and data

complexity limited the models’ ability to generalize fully. Hence, while generic neural

networks are feasible and beneficial, they often demand careful data processing,

feature engineering, and sufficient training samples to achieve practical performance

levels. This led us to experiment with a different form of neural network for the next

step in our research.

8.1.2 Chapter 5: Graph Neural Networks

To approach the next question, if graph neural networks could be deployed to exploit

the structural information in graphs, we began by modeling data as graph with a

case study of bike sharing sytems. We developed three types of network structures:

Spatial Bike Graph Networks (SBiGN), Temporal Bike Graph Networks (TBiGN),

and Spatio-Temporal Bike Graph Networks (STBiGN). For analysis, we applied

traditional graph metrics such as degree, strength, closeness, and betweenness, along

with community detection algorithms to identify groups of stations with similar

characteristics. The analysis revealed valuable insights beyond what traditional flat

data could offer as we could understand not only the activity levels of individual

stations but also the relationships and community structures within the network.

Thus, graph-based representations were demonstrated to enhance spatio-temporal

data analysis.

In the second part of our study, we developed a novel neural network architecture

to predict air quality using an attention-based graph neural network. The weighting

in attention layer helped learning the graph structure and the weighted sum of

transformed features aggregated information from neighboring stations. The results

180

Physics Informed Neural Networks in Sparse Data Applications

showed that the Spatio-Temporal Attention model achieved marginal improvements

in predictive accuracy compared to simpler models like conventional neural networks.

The attention mechanism allowed the model to learn adaptive weights between

locations and historical steps, which contributed to slightly better performance.

However, the gains were modest due to the limited size of the training dataset,

suggesting that these advanced features might be more effective in scenarios with

richer data.

Research Question 2: Can graph neural networks be deployed to exploit

the structural information inherent in graph-based data? In Chapter 5,

modeling bike-sharing data and air-quality data as graphs showed that leveraging

structural information yields additional insights and marginally improved predictions

over simpler models. By constructing Spatial Bike Graph Networks, Temporal

Bike Graph Networks, and Spatio-Temporal Bike Graph Networks, we uncovered

relationships and community structures that would have been difficult to observe with

traditional, “flat” datasets. Furthermore, an attention-based GNN for air-quality

forecasting provided slightly better predictive accuracy—although the improvement

was modest, partly due to a limited training set. Overall, these results confirm that

GNNs can indeed exploit graph structure, but they also highlight the need for more

robust regularization and richer data to realize their full potential.

8.1.3 Chapter 6: Physics-Informed Neural Networks

The third research question asked if it was possible to train neural networks to

accurately represent and predict the behavior of dynamical systems, when governed

by a system of ordinary dynamical equations. For this task, we investigated the

usage of Physics Informed Neural Networks (PINNs). Specifically, we developed

a PINN framework with enhanced techniques to not only train neural networks

to approximate the solution of systems of ODEs, but also solve related inverse

problems. Methodological contributions included ODE normalization for balancing

scales, gradient balancing to minimize the imbalance in gradients across multiple

181

Physics Informed Neural Networks in Sparse Data Applications

scales of ODEs, multi-phase training to preserve temporal causality in the system’s

dynamics, and simplifed domain decomposition for problems with large domains.

These techniques were ablationally validated using both the Lorenz system and a

complex mosquito population dynamics model.

Research Question 3: Can neural networks be extended to accurately

represent and predict the behavior of dynamical systems governed by

a system of ordinary differential equations? We demonstrated in Chapter 6

that Physics-Informed Neural Networks can be successfully adapted to solve forward

and inverse problems for systems of ODEs. Through techniques such as ODE

normalization, gradient balancing, multi-phase training, and simplified domain

decomposition, our approach provided accurate approximations of both the Lorenz

system and a mosquito population model. These enhancements mitigated common

challenges such as multi-scale imbalances and convergibility. We showed that neural

networks integrated with domain knowledge (i.e., the governing ODEs) can indeed

learn and predict complex dynamical behaviors. This bridged the gap between data-

driven and physics-informed approaches, demonstrating great potential for real-world

applications in ecological systems and beyond. However, a final step would require

that we attempt to apply the framework with real-life observations and validations.

8.1.4 Chapter 7: PINN Optimization

In the final part of this study, we attempted applying PINNs into real world ap-

plications using actual observations. Specifically, our objective was to estimate

the parameters in the case study of mosquito population modeling. This research

addressed the final research question regarding the ability of neural networks to learn

the effects of external factors on dynamic system parameters. Firstly, parameter

neural networks take the external factors as input directly, in contrast to traditional

PINNs that use coordinates. Secondly, these networks are designed as a multi-branch

MLP, augmented with Fourier features. Lastly, a non-negative activation function

is proposed for all the neural networks requiring non-negativity constraints. These

182

Physics Informed Neural Networks in Sparse Data Applications

methodological proposals are to improve the generalization of the learned parameters

on unseen external factors.

Research Question 4: Can we determine how neural networks incor-

porate external factors on dynamic system parameters and validate any

solution using real-world observational data? In Chapter 7, we extended

PINNs by introducing parameter neural networks to map external factors (e.g.,

temperature) directly to system parameters. Using multi-branch architectures and

Fourier features, this method learned to generalize parameter values for unseen

external conditions in a real-world mosquito dynamics case. Despite some limita-

tions—such as interpretability issues, inaccuracies under zero-value observations, and

the challenge of identifying initial conditions—our results show that neural networks

can capture the impact of external factors on ODE-based system parameters more

effectively than traditional empirical formulas. The final piece of research further

enhanced the ability of physics-informed neural networks to solve inverse problems,

highlighting the potentials of data-driven parameter identification in guided-physics

dynamics modeling.

8.2 Contributions

• Exosome Classification. This research presents a novel combination of

surface-enhanced Raman spectroscopy (SERS) with a neural network to clas-

sify exosomes derived from normal and dysfunctional human aortic endothelial

cells. The key contributions in the machine learning aspect include: (1) the ap-

plication of a feed-forward neural network for spectral classification, a three-step

data preprocessing pipeline (smoothing, background removal, and normaliza-

tion) to enhance SERS signal quality, and an extensive hyperparameter search

(1,260 configurations) to fine-tune the MLP model. The results demonstrate

that the model effectively distinguishes hypoglycemic samples but faces chal-

lenges in differentiating hyperglycemic and normal samples, highlighting the

complexity of exosome-derived spectral signatures. Other novelty includes

183

Physics Informed Neural Networks in Sparse Data Applications

the leverage of AI with peptide modified plasmonic pore arrays for exosome

classification in the context of endothelial dysfunction.

• Oxygen Uptake Estimation. This pilot study represents the first application

of ML models to predict VO2 during simulated team sports activities using

wearable sensor data. We examine the influence of different sensor configu-

rations, revealing that multi-sensor setups (e.g., combining torso with leg or

arm sensors) can improve prediction accuracy. We compare multiple regression

techniques, from traditional linear regression to advanced deep learning models

such as LSTM, CNN, and MLP, and evaluates their performance using both raw

and engineered (MAD-based) features. By employing a leave-one-subject-out

cross-validation approach, the study closely mimics real-world scenarios, demon-

strating that these non-invasive, real-time monitoring techniques can provide

personalized physiological feedback critical for optimizing athletic performance

and reducing injury risk.

• Bike Sharing System. This study introduces a unified, graph-based frame-

work for analyzing bike-sharing usage by integrating both spatial and temporal

dimensions into a multi-level network model. Its contributions include the

development of three types of networks—Spatial Bike Graph Networks, Tem-

poral Bike Graph Networks, and Spatio-Temporal Bike Graph Networks, that

progressively incorporate greater granularity and complexity to capture overall

traffic flow, temporal dynamics, and hidden patterns of station similarity, re-

spectively. Algorithms are proposed to optimize network construction, such as

thresholding methods for trimming weak edges while preserving strong connec-

tivity, and clustering techniques for automatically grouping time intervals with

similar network structures. The framework not only enhances visualization

and quantitative analysis through centrality metrics and community detection

but also provides insights for network optimization.

• Graph Neural Networks for Air Quality Forecasting. The work intro-

184

Physics Informed Neural Networks in Sparse Data Applications

duces a novel neural network architecture that integrates attention mechanisms

in both spatial and temporal dimensions to enhance air quality forecasting. By

stacking temporal attention layers before and after a spatial attention layer,

the model simultaneously learns and fuses complex spatio-temporal dependen-

cies while offering interpretability through adaptive weight assignments. This

approach overcomes key limitations of traditional recurrent and graph neural

networks—such as slow training, limited long-term dependency capture, and

fixed spatial relations, and demonstrates improved predictive performance on

real-world air quality data from Hanoi, Vietnam.

• Adapting Physics-Informed Neural Networks to Improve ODE Opti-

mization in Mosquito Population Dynamics. This research introduces a

novel PINN framework specifically designed for complex ODE systems, incor-

porating several key innovations to enhance stability and accuracy. The ap-

proach normalizes the differential equations and assigns individualized gradient-

balancing weights to each equation, ensuring a well-balanced optimization

process. It employs a three-phase training strategy along with a progressive

causal training method, which gradually expands the time interval to pre-

serve temporal causality throughout training. Additionally, the framework

simplifies domain decomposition while still effectively managing large temporal

domains. These enhancements stabilize training, prevent convergence to trivial

solutions, and enable robust solutions for both forward and inverse problems,

as demonstrated on the Lorenz system and a mosquito population dynamics

model.

• Incorporating External Factors to PINNs. The last piece of work intro-

duces a novel enhancement to PINNs for inverse problems by incorporating

external factors into parameter neural networks, enabling PINNs to learn

the mapping from external conditions to system parameters. Additionally,

it proposes a multi-branch FourierMLP architecture for parameter networks,

effectively capturing different feature types separately, and introduces a SoftAbs

185

Physics Informed Neural Networks in Sparse Data Applications

activation function to enforce non-negativity while avoiding dying neuron issues

common in ReLU and Softplus. The approach is validated through a mosquito

population modeling case study, demonstrating superior accuracy over tradi-

tional empirical parameter estimation, particularly in capturing seasonal peaks

and generalizing to unseen data. An ablation study further confirms the effec-

tiveness of these contributions, establishing a more robust and generalizable

PINN framework for dynamical systems.

8.3 Suggestions for Further Research

Despite the promising findings, the studies and results presented in this dissertation

have several areas for improvement. When exploring neural networks in health in

Chapter 4, the exosome classification model showed a positive but impractical

accuracy. The degraded performance was also likely due to the small dataset size

that restricted the model capabilities. Additionally, the use of only raw spectra with

minimal feature engineering makes neural networks harder to effectively learn the

underlying information. Furthermore, apart from the MLP architecture, other neural

network architectures were not fully explored. Future research could focus on applying

feature engineering approaches, such as detecting peaks, which represent important

characteristics in Raman spectra. Classical statistical features or Fourier-based

features may also be valuable for improving the model. Moreover, exploring more

advanced architectures, such as convolutional neural networks or long short-term

memory networks, could uncover deeper features, thereby enhancing classification

accuracy for spectra data.

In the investigation of neural networks in sports in Chapter 4, the oxygen uptake

project also had similar weaknesses. The small dataset size limited the ability of deep

neural network models, such as LSTMs and CNNs, to generalize and increased the risk

of overfitting. The manual feature engineering for some models introduced potential

biases and limited scalability. Also the predefined input window sizes may not have

fully captured the variability in movement patterns and physiological responses.

186

Physics Informed Neural Networks in Sparse Data Applications

Additionally, the computational efficiency of the models for real-time VO2 prediction

was not assessed, leaving potential latency concerns unaddressed for wearable device

applications. Directions for further research could be expanding the dataset to include

more diverse participants and fitness levels. Leveraging data augmentation and

transfer learning could also potentially improve models’ performance and efficiency.

Exploring more windows of data could optimize computational efficiency, making the

models more suitable for deployment in wearable systems. Moreover, other advanced

architectures, like Transformers, temporal convolution networks, could better capture

complex temporal dependencies.

When modeling and analyzing bike sharing data as graphs, certain limitations

of the proposed framework prevent it from practical usage. Firstly, there is no

fully functional software tool to automate the construction and analysis of these

networks. The time scales used, such as hourly or daily analysis, are selected based

on heuristics, potentially missing more complex temporal patterns that data-driven

methods could capture. Moreover, only correlation was used for the spatio-temporal

networks, other possible ways to uncover relationships could provide deeper insights.

The available graph metrics and algorithms are not rich, which may result in an

incomplete understanding of the network’s structure. In future work, one can develop

a software tool to automate these analyses, adopting adaptive data-driven approaches

for time scale selection, exploring advanced spatio-temporal methods such as causality

detection, and developing graph metrics and algorithms to gain a knowledge out

of the networks. These enhancements will make the framework more robust and

applicable to a wider range of real-world problems.

In Chapter 5, the proposed attention-based spatio-temporal graph neural net-

work for air quality forecasting has critical limitations of overfitting, making its

improvement over other models negligible. Moreover, the model’s reliance on prede-

fined spatial and temporal thresholds reduces its adaptability to varying geographical

contexts or unseen data, as these thresholds may not universally capture the under-

lying relationships. Additionally, while attention mechanisms provide some degree of

187

Physics Informed Neural Networks in Sparse Data Applications

interpretability, the explainability of the model’s decisions is underexplored, making

it difficult to fully understand the impact of specific features or temporal patterns.

Furthermore, the attention mechanism itself is limited to a restricted number of

time steps due to the computations needed, which restricts its capacity to capture

longer temporal dependencies. To address these limitations, stronger regularization

techniques should be incorporated to mitigate overfitting, potentially leveraging

domain-specific knowledge such as physical laws governing air quality dynamics.

Also, developing adaptive methods to learn spatial and temporal thresholds from

data is needed to increase the model’s flexibitility. Finally, an exploration of the

model’s explainability is essential to provide deeper insights into the air quality

forecasting process and to enhance trust in the model’s predictions.

In the development of PINNs in Chapter 6, some areas require further

improvement. Firstly, the domain decomposition approach was only evaluated on

forward problems, its applicability to inverse problems was untested. Secondly,

the framework was validated on a limited set of systems, the Lorenz system and a

mosquito population model, its effectiveness across a broader range of ODE systems

is still in question. Moreover, the focus of the development has primarily been

on accuracy, without sufficient attention to computational efficiency or training

time. Furthermore, significant error accumulation over extended prediction domain

hindered long-term predictive accuracy. In the future, we would like to evaluate the

framework on a more diverse set of systems, including systems related to climate.

Future development of the method should take into account the convergence speed

and resource requirements. Lastly, the error accumulation suggests for further

refinement and improvement of the framework.

When attempting to apply PINNs to actual mosquito data in Chapter 7,

the current method has certain drawbacks. Firstly, the learned mapping remains

a black box, lacking the explainability factor is crucial for mosquito control and

entomology in general. Although the parameter network decomposes its predictions

by separating feature groups, its potential for explainability is highly unexplored.

188

Physics Informed Neural Networks in Sparse Data Applications

Secondly, the learned models exhibit certain inaccuracies, particularly during periods

of zero-value observations. Potential solutions may involve regularization techniques

that leverage information from more informative training periods. Lastly, dynamical

system simulations are inherently sensitive to initial conditions. The present study

employs a fixed initial condition, which may not accurately represent the actual state

of the system. Further investigation is required to develop more robust methods

for identifying initial conditions based on available information. These limitations

underscore the need for continued refinement of the proposed approach to enhance

its applicability and reliability in real-world scenarios.

189

Appendix A

Error Metrics

A.1 Regression Error

Let yi, i = 1 . . . , M be M reference values and ŷi, i = 1 . . . , M are the corresponding

predictions. Let L and U be the pre-defined lower and upper bounds for the values.

The error metrics used in this paper, including Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE), Median Absolute Percenrage Error (MDAPE) and

Root Mean Squared normalized Error (nRMSE) are defined as followed

RMSE =

√√√√ 1
M

M∑
i

(yi − ŷi)2 (A.1)

MAE = 1
M

M∑
i

|yi − ŷi| (A.2)

MDAPE = mediani

(
|yi − ŷi|
|yi|

)
(A.3)

nRMSE = RMSE

U− L
. (A.4)

The values of these metrics range from 0 to ∞, with lower values indicating better

model performance.

190

Physics Informed Neural Networks in Sparse Data Applications

A.2 Classification Error

In the context of classification problems, let yi and ŷi, where i = 1, . . . , M , denote

the true class labels and corresponding predictions for M samples, respectively. The

classification accuracy is defined as

accuracy = |{i|yi = ŷi, i = 1, . . . , M}|
M

(A.5)

where |A| is the cardinality of set A.

For a specific class c, three metrics, precision, recall, and F1-score are formulated

as follows:

precisionc = |{i|yi = c, ŷi = c, i = 1, . . . , M}|
|{i|ŷi = c, i = 1, . . . , M}|

(A.6)

recallc = |{i|yi = c, ŷi = c, i = 1, . . . , M}|
|{i|yi = c, i = 1, . . . , M}|

(A.7)

f1-scorec = 2 · precisionc · recallc
precisionc + recallc

(A.8)

In case there are multiple classes, the overall score can be averaged from class-

specific metrics in two scenarios: macro or weighted. Macro-averaging simply

calculate the unweighted average, does not take into account the number of samples

in each class. In weighted averaging, the weights are the number of samples of the

class, emphasizes the class with larger sample size.

All of the above metrics are bounded between 0 and 1, with higher values

indicating better classification performance.

191

Appendix B

Graph-based Bike Sharing System

Analysis

B.1 Temporal Bike Graph Networks (Daily TBiGN)

Table B.1 the top 5 stations with the highest strength, categorized by weekdays

and weekends, and sorted by their weekday strength. Station strength, used as a

measure of popularity, has been normalized to a daily value to facilitate comparison

between the 5-day weekday period and the 2-day weekend period. The table reveals

that the five busiest weekend stations also rank among the top 20 on weekdays,

while the five busiest weekday stations remain within the top 50 during weekends.

This indicates a notable difference in station usage patterns between weekdays and

weekends. However, it is worth noting that three of the top 5 weekday stations also

are also in top 5 of weekends. Exceptions to these trends include Warehouse and

Mountjoy Square, where most trips are concentrated during weekdays, likely due to

commuting patterns. Conversely, Dun Laoghaire Dart (station) and Blackrock Main

St. serve as popular weekend destinations.

When analyzing the most frequently traveled routes, as illustrated by their

weights in Table B.2, a similar variance is observed. Notably, the top five weekend

routes are also found within the top seven weekday routes. Additionally, the node

192

Physics Informed Neural Networks in Sparse Data Applications

Table B.1: Node Strength: Weekday vs Weekend

Station Weekday Weekend
Strength Rank Strength Rank

Fairview Avenue Lower 155.0 1 145.5 3
Mountjoy Square South 116.8 2 110.5 8
Warehouse 113.2 3 15.5 50
Criminal Courts of Justice 102.2 4 191.0 1
Ranelagh Village 102.0 5 123.0 5
Dun Laoghaire Dart 97.8 7 169.5 2
Blackrock Main St. 48.8 20 134.5 4

strength values in both weekday and weekend networks exhibit an exponential decline,

similar to the trend observed in the SBiGN network, though with a steeper rate

of decline. Likewise, edge weights in the weekday and weekend TBiGN networks

show an exponential decrease comparable to that of the SBiGN network. As with

Table B.1, edge weight values have been normalized to allow for a comparison between

the 5-day weekday and 2-day weekend periods.

Table B.2: Edge Weights: Weekday vs Weekend

Source Target Weekday Weekend
Wgt. Rank Wgt. Rank

Dun Laoghaire
Dart

Honeypark
Neptune Way 36.0 1 31.5 3

Criminal Courts
of Justice

Phoenix
Park Gate 29.6 2 47.5 1

Drumcondra
Road Upper

Fairview
Avenue Lower 26.2 3 24.0 5

DCU Glasnevin Drumcondra Rd 23.4 4 9.0 38

Warehouse Old Finglas
Road 23.0 5 5.5 73

Dun Laoghaire
Dart

At The Forty
Foot 20.8 6 30.5 4

Blackrock
Main St.

Dun Laoghaire
Dart 19.8 7 44.5 2

Figures B.1 and B.2 illustrate the strength of stations and the weight of

edges for the weekday and weekend networks, respectively. The main difference

between these networks is that weekday connections displayed by large red edges are

193

Physics Informed Neural Networks in Sparse Data Applications

predominantly between residential areas and office areas, particularly in northern

Dublin. In contrast, weekend networks show more trips between the city center and

the Blackrock-Monkstown area, likely representing leisure activities.

Figure B.1: Daily Activity Networks. (Representation Networks of Weekday
Clusters). Each circle represents a bike station and is sized according to its trip
volume, with the 10 busiest stations (by trip volume) shown in red and all others in
blue. Lines represent routes between stations and are also sized by trip volume; the
10 most frequently used routes are highlighted in red, and the remaining routes are
shown in blue.

Figures B.3 and B.4 depict the community structures within the weekday and

weekend networks, respectively. The weekend network exhibits four distinct com-

munities, whereas the weekday network shows more spatially mixed communities,

particularly around the central areas of Dublin. In both networks, the Blackrock-

Monkstown area forms an independent community. Moreover, stations with strong

suburban connections belong to the same community throughout the week. This

suggests that on weekdays, users tend to follow established routes, supported by a

few highly connected edges, which in turn generate many distinct communities. In

contrast, on weekends, users travel over a broader spatial area in a less predictable

194

Physics Informed Neural Networks in Sparse Data Applications

Figure B.2: Daily Activity Networks. (Representation Networks of Weekend
Clusters). Each circle represents a bike station and is sized according to its trip
volume, with the 10 busiest stations (by trip volume) shown in red and all others in
blue. Lines represent routes between stations and are also sized by trip volume; the
10 most frequently used routes are highlighted in red, and the remaining routes are
shown in blue.

manner, leading to larger and more interconnected communities.

B.2 Spatio-Temporal Bike Graph Networks (Monthly

STBiGN)

It is crucial to clarify that large nodes in STBiGNs do not necessarily indicate that

the corresponding stations are popular with a high volume of trips. Rather, they

reflect a greater number of stations share similar characteristics, even two low-activity

stations can exhibit large node values. Furthermore, the edges in these correlation

networks are less influenced by geographical locations and more by the properties

of the surrounding station areas. In essence, this graph highlights stations with

195

Physics Informed Neural Networks in Sparse Data Applications

Figure B.3: Daily Activity Communities. Weekday. Each circle represents
a bike station and is sized according to its trip volume. The node colors indicate
different communities. Lines represent routes between stations and are also sized by
trip volume.

analogous temporal patterns, where similar trip patterns occur at corresponding time

intervals. Figure B.5 illustrates this network overlaid on a map of Dublin, revealing

the detection of five distinct communities.

Overall, the transportation system experiences growth up until August 2020,

followed by a decline in early 2021. For the remainder of the year, the total

number of trips nearly returns to its previous peak, a trend reflected in the TBiGN

graphs, but captured here with greater granularity. Figure B.6 plots the averaged

monthly timeseries (for every month in the dataset) for the communities identified in

Figure B.5, offering insights into the reasons why certain stations (nodes) clustered

into communities in distinct areas of the city. It is important to note that community

IDs serve merely as labels, and no inference is made from the label numbers. In

terms of community size: community 15 (purple) consists of 13 stations; community

57 (bright sky blue) contains 26 stations; community 64 (mint green) includes 15

196

Physics Informed Neural Networks in Sparse Data Applications

Figure B.4: Daily Activity Communities. Weekend. Each circle represents
a bike station and is sized according to its trip volume. The node colors indicate
different communities. Lines represent routes between stations and are also sized by
trip volume.

stations; community 65 (pastel orange) has 20 stations; and community 69 (red)

comprises 12 stations. The bright sky blue stations, primarily located in the southern

part of the city center, and the red stations, which encompass the areas surrounding

the city center, exhibit rapid growth during the first few months, followed by a sharp

decline in activity in January 2021. While the red stations nearly fully recover their

activity levels, the bright sky blue stations show only a marginal increase in trip

numbers thereafter. The mint green stations, mainly situated north of the city center,

and the pastel orange stations, mostly located in the suburbs, demonstrate steady

growth, with a slight decline observed for the mint green stations. Lastly, the purple

stations, concentrated in the southern region where Dublin connects with Blackrock,

initially show growth in activity but remained relatively stable throughout most of

the period, with a slight decrease noted in the final months.

To gain deeper insights, it is necessary to analyze some of the raw data in more

197

Physics Informed Neural Networks in Sparse Data Applications

Figure B.5: STBiGN Network: Monthly Timescale. Each circle represents
a bike station and is sized by its strength. The node colors indicate different
communities, with four communities labeled: purple, bright sky blue, mint green,
pastel orange, and red. Lines represent routes between stations and are sized by
their correlation score.

detail. Table B.3 shows the node strength, the average weights, and the number of

stations that exhibit positive, neutral, or negative correlations with each node in the

monthly STBiGN. The columns are defined as follows: Strength refers to the sum

of the weights connecting a station to all other stations; Avg. Cor. represents the

average correlation weight for the station; #Pos, #Neu, #Neg indicate the number of

stations that are positively, neutrally, or negatively correlated with the station. The

thresholds for correlation are determined as 0.65 and 0.35. A station is considered to

have a positive correlation with another if the weight between them is w > 0.65, a

negative relationship if w ≤ 0.35, and otherwise, the relationship is deemed neutral.

A full version of Table B.3 would contain 86 rows, for the purpose of this discussion

we focus on stations with high, low, and neutral strength. Stations with the highest

strength, such as DCU Alpha and Rathmines, are regarded as central nodes, showing

198

Physics Informed Neural Networks in Sparse Data Applications

Figure B.6: Timeseries Communities in Monthly STBiGNs

Table B.3: Node (station) Strength in Monthly STBiGNs

Station Strength Avg. Cor. #Pos #Neu #Neg
DCU Alpha 52.9 0.622 40 43 2
Rathmines 52.5 0.618 36 48 1
Dun Laoghaire Dart 52.5 0.618 33 51 1
...
Pearse Street 43.8 0.515 15 59 11
Rathgar 43.7 0.514 23 38 24
Cathal Brugha Street 42.1 0.496 18 46 21
Sandymout Village 42.1 0.495 13 62 10
...
Irishtown Rd 38.4 0.451 14 43 28
Parnell Street 38.3 0.451 6 56 23
Phoenix Park Gate 34.6 0.407 10 37 38

significant similarity to 47% and 42% of the other stations, respectively. This

indicates that these stations are valuable for more detailed study (possibly using

more granular networks) to better understand the activity patterns of a large portion

of the network. Interestingly, both stations are part of the purple community, which

199

Physics Informed Neural Networks in Sparse Data Applications

exhibits mixed correlation patterns with other communities. Neutral stations, with

average correlation coefficients around 0.5, such as Pearse Street and Sandymount

Village, show minimal correlation with other stations. This could imply that these

stations are less useful for further analysis, as their activity patterns are almost

equally positively and negatively correlated with other stations. Stations with low

strength, such as Phoenix Park Gate, Parnell Street, and Irishtown Road, display

temporal similarities with only a small number of other stations (up to 14) and

show either no correlation or are negatively correlated with the majority of stations

However, these stations may still be of interest for analysis, as they demonstrate

unique and potentially distinctive activity patterns.

B.3 Spatio-Temporal Bike Graph Networks (Hourly

STBiGN)

Hourly correlation networks provide an analysis of activity patterns on an hourly

basis. the timeseries for each station consists of 24 points, each corresponding to

one hour of the day. Each timeseries entry is proportional to the total number of

trips occurring at a specific hour at the station. As before, edges between nodes

are formed based on Pearson correlation coefficients, using a threshold of T = 0.737

and resulting in a network density of D = 0.370. Figure B.7 illustrates the hourly

correlation network, which consists of three distinct communities. Community 13

(purple) contains 38 stations, Community 26 (mint green) includes 40 stations, and

Community 77 (red) has 8 stations. The sizes of nodes and edges are proportional

to the sum of the correlation coefficients of nodes and edges, respectively. Only

the top 5% of edges are displayed in the figure, with node colors indicating their

respective clusters. The top 10 most correlated edges are highlighted in red, while

the remaining edges are shown in charcoal.

The hourly correlation network detects two large communities, alongside one

smaller community. The mint green community concentrates in central Dublin,

200

Physics Informed Neural Networks in Sparse Data Applications

Figure B.7: Hourly Correlation Network. Each circle represents a bike station
and is sized by its strength. The node colors indicate different communities, with
three communities labeled: purple, mint green, and red. Lines represent routes
between stations and are sized by their correlation score.

while the purple community surrounds it, primarily located in suburban areas. The

small red community is scattered across a wide geographic area. Stations within

the central mint green community exhibit the highest strength scores, indicating

a well-connected group with strong similarities. However, many of the strongest

edges representing the highest correlations are found within the purple community,

despite the lower station strengths in this group. This indicates that the activity

patterns among purple community stations are well-defined. As observed in the

daily networks, stations can be strongly connected even when geographically distant,

indicating that remote stations may share underlying characteristics, such as similar

commuting behaviors or other social activities.

Figure B.8 plots the average timeseries for the three communities, using the same

colors as in Figure B.7. The mint green community shows peak activity during the

afternoons and evenings, particularly between 3 p.m. and 7 p.m., with fewer trips

201

Physics Informed Neural Networks in Sparse Data Applications

occurring in the mornings. In contrast, the purple community experiences higher

activity levels in the mornings and around noon, with a decrease in the afternoon.

The small red community provides limited data, except for a noticeable peak around

7 p.m.

Figure B.8: Timeseries Communities in hourly STBiGNs

Similar to the monthly and daily analysis, Table B.4 displays node strength for

the hourly network, with a threshold of T = 0.65. Given that all stations follow

a similar pattern, characterized by limited activity at night and increased activity

during the day, it is unsurprising that even stations with the lowest strength still

reach values as high as 55.1, corresponding to an average edge weight of 0.648. This

indicates that these stations are significantly correlated with half of the other stations.

On the other hand, the stations with the highest strength, such as Grand Canal

Docks and Criminal Courts of Justice, exhibit strong correlations with nearly all

other stations. These stations are typically major hubs with high traffic volumes,

making it understandable that they share diverse behaviors and patterns with other

202

Physics Informed Neural Networks in Sparse Data Applications

stations, as revealed in the fine-grained hourly STBiGNs.

Table B.4: Node (station) Strength in Hourly STBiGNs

Station Strength Avg. Cor. Pos Neu Neg
Grand Canal Docks 75.1 0.883 84 1 0
Irishtown Rd 75.0 0.882 85 0 0
Criminal Courts
of Justice 75.0 0.882 83 2 0

...
Dean Street 62.6 0.737 81 4 0
Clanbrassil St Lower 56.8 0.669 43 42 0
Warehouse 55.1 0.648 45 40 0

Having now generated all three types of STBiGNs using the entire dataset, the

degree of heterogeneity observed between the three graphs is both surprising and

unexpected. No single station consistently appears in the top 5 across all three

networks. Only Irishtown Road ranks in the top 5 of two STBiGNs, placing 3rd in

the daily network and 2nd in the hourly network. Extending the analysis to the

top 10 stations yields similar results—no station appears in all three graphs. Only

Rathmines, which ranks 2nd in the monthly network and 6th in the daily network and

Dun Laoghaire Dart, which ranks 3rd in the monthly and 7th in the daily network,

appear in two top 10 rankings. Stations exhibit distinct similarity patterns when

analyzed at different levels of temporal granularity.

203

Appendix C

Mosquito ODE system

C.1 Structural identifiability of mosquito system’s

parameters

Shown in figure C.1. Structural identifiability is achieved by expressing the system as

a system of linear equations, the parameters as unknown variables, and then analyzing

the reduced row-echelon form of the coefficient matrix, performed separately for each

time t. In the figure, identifiable parameters are defined as free parameters which

can get arbitrary values. The values are rounded to 6-digit precision, aligning with

the PINN’s level of precision after training.

C.2 Parameter Sensitivity

In order to identify the most influential parameters within the mosquito dynamical

system, we conduct a sensitivity analysis. This involves systematically modifying

parameters and observing their effects on the system state. Ten parameters are

examined: γAem, γAb, γAo, fE, fP , fL, fAg, mL, mP , and mA, all of which are listed

in Table 6.2. Each parameter was independently adjusted at all time points t

by −10%,−5%, +5%, and +10% of its original value, while maintaining all other

parameters constant. The system is then simulated under these modified parameters

204

Physics Informed Neural Networks in Sparse Data Applications

Figure C.1: Structural identifiability of parameters over time in the
Mosquito inverse problem. The configuration is the same as the experiment in
Section 6.4.2 where the temperature is sine-shaped.

using the Python ODE Solver. The root mean squared error (RMSE) is computed

between the new Ab1 + Ab2 values and those obtained from the unmodified parameter

set.

Figure C.2: Sensitivity of parameters in mosquito dynamical system.

The average RMSE across the four modification levels for each parameter is

depicted in Figure C.2. The analysis reveals that the pupa development rate fP has

the most pronounced effect on the adult blood-seeking mosquito population Ab1 +Ab2.

The development rate of blood-seeking adults fAb, which directly influences Ab1 and

205

Physics Informed Neural Networks in Sparse Data Applications

Ab2 in the system equations, shows a slightly less impact. Parameters fAg and mA

demonstrate minor effects, while other parameters such as γAem and γAo exhibit

negligible influence on the Ab1 + Ab2 quantity.

206

Bibliography

[1] Frank Rosenblatt. “The perceptron: a probabilistic model for information

storage and organization in the brain.” In: Psychological review 65.6 (1958),

p. 386.

[2] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas

immanent in nervous activity”. In: The bulletin of mathematical biophysics 5

(1943), pp. 115–133.

[3] Claude Lemaréchal. “Cauchy and the gradient method”. In: Doc Math Extra

251.254 (2012), p. 10.

[4] Stephen M Stigler. “Gauss and the invention of least squares”. In: the Annals

of Statistics (1981), pp. 465–474.

[5] Shunichi Amari. “A theory of adaptive pattern classifiers”. In: IEEE Transac-

tions on Electronic Computers 3 (1967), pp. 299–307.

[6] Herbert Robbins and Sutton Monro. “A stochastic approximation method”.

In: The annals of mathematical statistics (1951), pp. 400–407.

[7] Seppo Linnainmaa. “Taylor expansion of the accumulated rounding error”.

In: BIT Numerical Mathematics 16.2 (1976), pp. 146–160.

[8] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: ArXiv abs/1912.01703 (2019).

[9] Martín Abadi et al. TensorFlow: A system for large-scale machine learning.

2016.

207

Physics Informed Neural Networks in Sparse Data Applications

[10] Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks for

YouTube Recommendations”. In: Proceedings of the 10th ACM Conference on

Recommender Systems. RecSys ’16. Boston, Massachusetts, USA: Association

for Computing Machinery, 2016, pp. 191–198. isbn: 9781450340359.

[11] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A unified

embedding for face recognition and clustering”. In: 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2015,

pp. 815–823.

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “ You Only

Look Once: Unified, Real-Time Object Detection ”. In: 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA,

USA: IEEE Computer Society, June 2016, pp. 779–788.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adver-

sarial Nets”. In: Advances in Neural Information Processing Systems. Ed. by

Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger.

Vol. 27. Curran Associates, Inc., 2014.

[14] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho,

and Yoshua Bengio. “Attention-Based Models for Speech Recognition”. In:

Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.

Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates,

Inc., 2015.

[15] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray

Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio”. In: Speech

Synthesis Workshop. 2016.

[16] OpenAI et al. GPT-4 Technical Report. 2024.

208

Physics Informed Neural Networks in Sparse Data Applications

[17] Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across

millions of tokens of context. 2024.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you

Need”. In: Advances in Neural Information Processing Systems. Ed. by I.

Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

[19] Shahab Shamshirband, Mahdis Fathi, Abdollah Dehzangi, Anthony Theodore

Chronopoulos, and Hamid Alinejad-Rokny. “A review on deep learning ap-

proaches in healthcare systems: Taxonomies, challenges, and open issues”. In:

Journal of Biomedical Informatics 113 (2021), p. 103627.

[20] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,

Anna Potapenko, et al. “Highly accurate protein structure prediction with

AlphaFold”. In: nature 596.7873 (2021), pp. 583–589.

[21] Shuochen Bi and Yufan Lian. “Advanced Portfolio Management in Finance

using Deep Learning and Artificial Intelligence Techniques: Enhancing Invest-

ment Strategies through Machine Learning Models”. In: Journal of Artificial

Intelligence Research 4.1 (2024), pp. 233–298.

[22] Ishana Attri, Lalit Kumar Awasthi, Teek Parval Sharma, and Priyanka Rathee.

“A review of deep learning techniques used in agriculture”. In: Ecological

Informatics 77 (2023), p. 102217. issn: 1574-9541.

[23] Veronika Eyring, William D Collins, Pierre Gentine, Elizabeth A Barnes,

Marcelo Barreiro, Tom Beucler, Marc Bocquet, Christopher S Bretherton,

Hannah M Christensen, Katherine Dagon, et al. “Pushing the frontiers in

climate modelling and analysis with machine learning”. In: Nature Climate

Change 14.9 (2024), pp. 916–928.

209

Physics Informed Neural Networks in Sparse Data Applications

[24] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-

qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. “Code

llama: Open foundation models for code”. In: arXiv preprint arXiv:2308.12950

(2023).

[25] Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine learning and

deep learning”. In: Electronic Markets 31.3 (2021), pp. 685–695.

[26] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris,

Sifan Wang, and Liu Yang. “Physics-informed machine learning”. In: Nature

Reviews Physics 3.6 (June 2021), pp. 422–440. issn: 2522-5820.

[27] Gary Marcus. “Deep Learning: A Critical Appraisal”. In: arXiv preprint

arXiv:1801.00631 (2018).

[28] Han Yu, Jiashuo Liu, Xingxuan Zhang, Jiayun Wu, and Peng Cui. “A

Survey on Evaluation of Out-of-Distribution Generalization”. In: ArXiv

abs/2403.01874 (2024).

[29] Lei Wu, Zhanxing Zhu, et al. “Towards understanding generalization of deep

learning: Perspective of loss landscapes”. In: arXiv preprint arXiv:1706.10239

(2017).

[30] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. “Mul-

tilayer feedforward networks with a nonpolynomial activation function can

approximate any function”. In: Neural Networks 6.6 (1993), pp. 861–867. issn:

0893-6080.

[31] Zijun Cui, Tian Gao, Kartik Talamadupula, and Qiang Ji. “Knowledge-

augmented deep learning and its applications: A survey”. In: IEEE Transac-

tions on Neural Networks and Learning Systems (2023).

[32] Benjamin D. Haeffele and René Vidal. “Global Optimality in Neural Net-

work Training”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 4390–4398.

210

Physics Informed Neural Networks in Sparse Data Applications

[33] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and

Dawei Yin. “Graph Neural Networks for Social Recommendation”. In: CoRR

abs/1902.07243 (2019).

[34] Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-temporal Graph Convolu-

tional Neural Network: A Deep Learning Framework for Traffic Forecasting”.

In: CoRR abs/1709.04875 (2017).

[35] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. “Protein Interface

Prediction using Graph Convolutional Networks”. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran

Associates, Inc., 2017.

[36] Hernan Lira, Luis Martí, and Nayat Sanchez-Pi. “A Graph Neural Network

with Spatio-Temporal Attention for Multi-Sources Time Series Data: An

Application to Frost Forecast”. In: Sensors 22.4 (2022). issn: 1424-8220.

[37] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convolu-

tional Networks for Skeleton-Based Action Recognition”. In: CoRR abs/1801.07455

(2018).

[38] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with

Graph Convolutional Networks”. In: CoRR abs/1609.02907 (2016).

[39] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R. Witschey, John

A. Detre, and Paris Perdikaris. “Machine learning in cardiovascular flows

modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI

data using physics-informed neural networks”. In: Computer Methods in

Applied Mechanics and Engineering 358 (2020), p. 112623. issn: 0045-7825.

[40] Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. Achieving

Conservation of Energy in Neural Network Emulators for Climate Modeling.

2019.

211

Physics Informed Neural Networks in Sparse Data Applications

[41] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “On the eigenvector bias

of Fourier feature networks: From regression to solving multi-scale PDEs

with physics-informed neural networks”. In: Computer Methods in Applied

Mechanics and Engineering 384 (2021), p. 113938. issn: 0045-7825.

[42] Sifan Wang, Yujun Teng, and Paris Perdikaris. “Understanding and miti-

gating gradient pathologies in physics-informed neural networks”. In: ArXiv

abs/2001.04536 (2020).

[43] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations”. In: Journal of Computa-

tional Physics 378 (2019), pp. 686–707. issn: 0021-9991.

[44] Mina Petrić. “Modelling the Influence of Meteorological Conditions on Mosquito

Vector Population Dynamics (Diptera, Culicidae)”. English. PhD thesis. Bel-

gium: Ghent University, 2020, p. 214. isbn: 9798505568446.

[45] Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N

Balasubramanian. “Neural network attributions: A causal perspective”. In:

International Conference on Machine Learning. PMLR. 2019, pp. 981–990.

[46] R. S. Sokhi et al. “Advances in air quality research – current and emerging

challenges”. In: Atmospheric Chemistry and Physics 22.7 (2022), pp. 4615–

4703.

[47] Qiao Kang, Baiyu Zhang, Yiqi Cao, Xing Song, Xudong Ye, Xixi Li, Hongjing

Wu, Yuanzhu Chen, and Bing Chen. “Causal Prior-Embedded Physics-Informed

Neural Networks and a Case Study on Metformin Transport in Porous Media”.

In: Water Research (2024), p. 121985.

[48] Aneta Zebrowska, Karol Jelonek, Sujan Mondal, Marta Gawin, Katarzyna

Mrowiec, Piotr Widłak, Theresa Whiteside, and Monika Pietrowska. “Pro-

teomic and metabolomic profiles of T cell-derived exosomes isolated from

human plasma”. en. In: Cells 11.12 (June 2022), p. 1965.

212

Physics Informed Neural Networks in Sparse Data Applications

[49] Joseph Carmicheal, Chihiro Hayashi, Xi Huang, Lei Liu, Yao Lu, Alexey

Krasnoslobodtsev, Alexander Lushnikov, Prakash G. Kshirsagar, Asish Patel,

Maneesh Jain, Yuri L. Lyubchenko, Yongfeng Lu, Surinder K. Batra, and

Sukhwinder Kaur. “Label-free characterization of exosome via surface en-

hanced Raman spectroscopy for the early detection of pancreatic cancer”. In:

Nanomedicine: Nanotechnology, Biology and Medicine 16 (2019), pp. 88–96.

issn: 1549-9634.

[50] Hyunku Shin, Hyesun Jeong, Jaena Park, Sunghoi Hong, and Yeonho Choi.

“Correlation between Cancerous Exosomes and Protein Markers Based on

Surface-Enhanced Raman Spectroscopy (SERS) and Principal Component

Analysis (PCA)”. In: ACS Sensors 3.12 (2018). PMID: 30381940, pp. 2637–

2643.

[51] Yangcenzi Xie, Xiaoming Su, Yu Wen, Chao Zheng, and Ming Li. “Artificial

Intelligent Label-Free SERS Profiling of Serum Exosomes for Breast Cancer

Diagnosis and Postoperative Assessment”. In: Nano Letters 22.19 (2022).

PMID: 36149810, pp. 7910–7918.

[52] Hyunku Shin, Seunghyun Oh, Soonwoo Hong, Minsung Kang, Daehyeon Kang,

Yong-gu Ji, Byeong Hyeon Choi, Ka-Won Kang, Hyesun Jeong, Yong Park,

Sunghoi Hong, Hyun Koo Kim, and Yeonho Choi. “Early-Stage Lung Cancer

Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating

Exosomes”. In: ACS Nano 14.5 (2020). PMID: 32286793, pp. 5435–5444.

[53] Lauren E Jamieson, Steven M Asiala, Kirsten Gracie, Karen Faulds, and

Duncan Graham. “Bioanalytical measurements enabled by surface-enhanced

Raman scattering (SERS) probes”. In: Annual Review of Analytical Chemistry

10.1 (2017), pp. 415–437.

[54] Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng,

Ren Hu, and Bin Ren. “Surface-enhanced Raman spectroscopy for bioanalysis:

reliability and challenges”. In: Chemical reviews 118.10 (2018), pp. 4946–4980.

213

Physics Informed Neural Networks in Sparse Data Applications

[55] Yacob Pinchevsky, Neil Butkow, Frederick J Raal, Tobias Chirwa, and Alan

Rothberg. “Demographic and clinical factors associated with development of

type 2 diabetes: A review of the literature”. en. In: Int. J. Gen. Med. 13 (Mar.

2020), pp. 121–129.

[56] Kirsty M. Danielson and Saumya Das. “Extracellular Vesicles in Heart Disease:

Excitement for the Future?” In: Journal of Circulating Biomarkers 2.1 (Jan.

2014).

[57] Cristian Osgnach and Pietro Enrico di Prampero. “Metabolic power in team

sports-Part 2: aerobic and anaerobic energy yields”. In: International journal

of sports medicine 39.08 (2018), pp. 588–595.

[58] Robin T Thorpe, Anthony J Strudwick, Martin Buchheit, Greg Atkinson,

Barry Drust, and Warren Gregson. “Monitoring fatigue during the in-season

competitive phase in elite soccer players”. In: International journal of sports

physiology and performance 10.8 (2015), pp. 958–964.

[59] Shona L Halson. “Monitoring training load to understand fatigue in athletes”.

en. In: Sports Med. 44 Suppl 2.S2 (Nov. 2014), S139–47.

[60] Janina Helwig, Janik Diels, Mareike Röll, Hubert Mahler, Albert Gollhofer, Kai

Roecker, and Steffen Willwacher. “Relationships between External, Wearable

Sensor-Based, and Internal Parameters: A Systematic Review”. en. In: Sensors

23.2 (Jan. 2023). Number: 2 Publisher: Multidisciplinary Digital Publishing

Institute, p. 827. issn: 1424-8220.

[61] Martin Buchheit and Ben Michael Simpson. “Player-tracking technology:

half-full or half-empty glass?” In: International journal of sports physiology

and performance 12.s2 (2017), S2–35.

[62] Niels Jensby Nedergaard, Uwe Kersting, and Mark Lake. “Using accelerometry

to quantify deceleration during a high-intensity soccer turning manoeuvre”.

In: Journal of sports sciences 32.20 (2014), pp. 1897–1905.

214

Physics Informed Neural Networks in Sparse Data Applications

[63] Henri Vähä-Ypyä, Jakob Bretterhofer, Pauliina Husu, Jana Windhaber,

Tommi Vasankari, Sylvia Titze, and Harri Sievänen. “Performance of Different

Accelerometry-Based Metrics to Estimate Oxygen Consumption during Track

and Treadmill Locomotion over a Wide Intensity Range”. en. In: Sensors

23.11 (Jan. 2023). Number: 11 Publisher: Multidisciplinary Digital Publishing

Institute, p. 5073. issn: 1424-8220.

[64] Carlos D Gómez-Carmona, José Pino-Ortega, Braulio Sánchez-Ureña, Sergio J

Ibáñez, and Daniel Rojas-Valverde. “Accelerometry-based external load indi-

cators in sport: too many options, same practical outcome?” In: International

Journal of Environmental Research and Public Health 16.24 (2019), p. 5101.

[65] Thomas Beltrame, Robert Amelard, Alexander Wong, and Richard Hughson.

“Prediction of oxygen uptake dynamics by machine learning analysis of wear-

able sensors during activities of daily living”. In: Scientific Reports 7 (Apr.

2017), p. 45738.

[66] Pavel Davidson, Huy Trinh, Sakari Vekki, and Philipp Müller. “Surrogate

Modelling for Oxygen Uptake Prediction Using LSTM Neural Network”. en.

In: Sensors 23.4 (Jan. 2023). Number: 4 Publisher: Multidisciplinary Digital

Publishing Institute, p. 2249. issn: 1424-8220.

[67] Zhao Wang, Qiang Zhang, Ke Lan, Zhicheng Yang, Xiaolin Gao, Anshuo

Wu, Yi Xin, and Zhengbo Zhang. “Enhancing instantaneous oxygen uptake

estimation by non-linear model using cardio-pulmonary physiological and

motion signalsEnhancing instantaneous oxygen uptake estimation by non-

linear model using cardio-pulmonary physiological and motion signals”. In:

Frontiers in Physiology 13 (2022). issn: 1664-042X.

[68] Thomas Beltrame, Robert Amelard, Rodrigo Villar, Mohammad J. Shafiee,

Alexander Wong, and Richard L. Hughson. “Estimating oxygen uptake and

energy expenditure during treadmill walking by neural network analysis of

215

Physics Informed Neural Networks in Sparse Data Applications

easy-to-obtain inputs”. en. In: Journal of Applied Physiology 121.5 (Nov.

2016). Number: 5, pp. 1226–1233. issn: 8750-7587, 1522-1601.

[69] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.

“Temporal convolutional networks for action segmentation and detection”.

In: proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 156–165.

[70] Robert Amelard, Eric T. Hedge, and Richard L. Hughson. “Temporal con-

volutional networks predict dynamic oxygen uptake response from wearable

sensors across exercise intensities”. en. In: npj Digital Medicine 4.1 (Nov. 2021).

Number: 1 Publisher: Nature Publishing Group, pp. 1–8. issn: 2398-6352.

[71] Eric T. Hedge, Robert Amelard, and Richard L. Hughson. “Prediction of

oxygen uptake kinetics during heavy-intensity cycling exercise by machine-

learning analysis”. In: Journal of Applied Physiology (May 2023). Publisher:

American Physiological Society. issn: 8750-7587.

[72] Andrea Zignoli, Alessandro Fornasiero, Matteo Ragni, Barbara Pellegrini,

Federico Schena, Francesco Biral, and Paul B. Laursen. “Estimating an

individual’s oxygen uptake during cycling exercise with a recurrent neural

network trained from easy-to-obtain inputs: A pilot study”. en. In: PLOS

ONE 15.3 (Mar. 2020). Publisher: Public Library of Science, e0229466. issn:

1932-6203.

[73] Akrati Saxena, Pratishtha Saxena, Harita Reddy, and Ralucca Gera. “A Sur-

vey on Studying the Social Networks of Students”. In: CoRR abs/1909.05079

(2019).

[74] Louise Ryan and Alessio D’Angelo. “Changing times: Migrants’ social network

analysis and the challenges of longitudinal research”. In: Social Networks 53

(2018). The missing link: Social network analysis in migration and transna-

tionalism, pp. 148–158. issn: 0378-8733.

216

Physics Informed Neural Networks in Sparse Data Applications

[75] Luis E.C. Rocha. “Dynamics of air transport networks: A review from a

complex systems perspective”. In: Chinese Journal of Aeronautics 30.2 (2017),

pp. 469–478. issn: 1000-9361.

[76] Nam Huynh and Johan Barthelemy. “A comparative study of topological

analysis and temporal network analysis of a public transport system”. In:

International Journal of Transportation Science and Technology (2021). issn:

2046-0430.

[77] Jingfang Fan, Jun Meng, Yosef Ashkenazy, Shlomo Havlin, and Hans Joachim

Schellnhuber. “Network analysis reveals strongly localized impacts of El Niño”.

In: Proceedings of the National Academy of Sciences 114.29 (2017), pp. 7543–

7548.

[78] Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt, Bodo Bookhagen,

Brian Hoskins, and Jürgen Kurths. “Complex networks reveal global pattern

of extreme-rainfall teleconnections”. In: Nature 566.7744 (Feb. 2019), pp. 373–

377. issn: 1476-4687.

[79] Xingyi Li, Wenkai Li, Min Zeng, Ruiqing Zheng, and Min Li. “Network-based

methods for predicting essential genes or proteins: a survey”. In: Briefings in

Bioinformatics 21.2 (Feb. 2019), pp. 566–583. issn: 1477-4054.

[80] Yuhui Du, Zening Fu, and Vince D. Calhoun. “Classification and Prediction

of Brain Disorders Using Functional Connectivity: Promising but Challeng-

ing”. eng. In: Frontiers in neuroscience 12 (Aug. 2018). PMC6088208[pmcid],

pp. 525–525. issn: 1662-4548.

[81] Paola Valsasina, Milagros Hidalgo de la Cruz, Massimo Filippi, and Maria A.

Rocca. “Characterizing Rapid Fluctuations of Resting State Functional Con-

nectivity in Demyelinating, Neurodegenerative, and Psychiatric Conditions:

From Static to Time-Varying Analysis”. eng. In: Frontiers in neuroscience 13

(July 2019). PMC6636554[pmcid], pp. 618–618. issn: 1662-4548.

217

Physics Informed Neural Networks in Sparse Data Applications

[82] Lu Bai, Jianzhou Wang, Xuejiao Ma, and Haiyan Lu. “Air pollution forecasts:

An overview”. In: International journal of environmental research and public

health 15.4 (2018), p. 780.

[83] Marilena Kampa and Elias Castanas. “Human health effects of air pollution”.

In: Environmental pollution 151.2 (2008), pp. 362–367.

[84] Sumita Gulati, Anshul Bansal, Ashok Pal, Nitin Mittal, Abhishek Sharma,

and Fikreselam Gared. “Estimating PM2. 5 utilizing multiple linear regression

and ANN techniques”. In: Scientific Reports 13.1 (2023), p. 22578.

[85] Mahanijah Md Kamal, Rozita Jailani, and Ruhizan Liza Ahmad Shauri.

“Prediction of Ambient Air Quality Based on Neural Network Technique”. In:

2006 4th Student Conference on Research and Development. 2006, pp. 115–

119.

[86] Davor Z. Antanasijević, Viktor V. Pocajt, Dragan S. Povrenović, Mirjana Ð.

Ristić, and Aleksandra A. Perić-Grujić. “PM10 emission forecasting using

artificial neural networks and genetic algorithm input variable optimization”.

In: Science of The Total Environment 443 (2013), pp. 511–519. issn: 0048-

9697.

[87] Jorge Loy-Benitez, Paulina Vilela, Qian Li, and ChangKyoo Yoo. “Sequential

prediction of quantitative health risk assessment for the fine particulate

matter in an underground facility using deep recurrent neural networks”.

In: Ecotoxicology and Environmental Safety 169 (2019), pp. 316–324. issn:

0147-6513.

[88] Xingcheng Lu, Yu Hin Sha, Zhenning Li, Yeqi Huang, Wanying Chen, Duohong

Chen, Jin Shen, Yiang Chen, and Jimmy C.H. Fung. “Development and

application of a hybrid long-short term memory – three dimensional variational

technique for the improvement of PM2.5 forecasting”. In: Science of The Total

Environment 770 (2021), p. 144221. issn: 0048-9697.

218

Physics Informed Neural Networks in Sparse Data Applications

[89] Yijun Lin, Nikhit Mago, Yu Gao, Yaguang Li, Yao-Yi Chiang, Cyrus Shahabi,

and José Luis Ambite. “Exploiting Spatiotemporal Patterns for Accurate

Air Quality Forecasting Using Deep Learning”. In: Proceedings of the 26th

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems. SIGSPATIAL ’18. Seattle, Washington: Association for

Computing Machinery, 2018, pp. 359–368. isbn: 9781450358897.

[90] Yanlin Qi, Qi Li, Hamed Karimian, and Di Liu. “A hybrid model for spa-

tiotemporal forecasting of PM2.5 based on graph convolutional neural network

and long short-term memory”. In: Science of The Total Environment 664

(2019), pp. 1–10. issn: 0048-9697.

[91] Waddah Saeed and Christian Omlin. “Explainable AI (XAI): A systematic

meta-survey of current challenges and future opportunities”. In: Knowledge-

Based Systems 263 (2023), p. 110273. issn: 0950-7051.

[92] Chayan Kumar Banerjee, Kien Nguyen, Clinton Fookes, and George E. Kar-

niadakis. “Physics-Informed Computer Vision: A Review and Perspectives”.

In: ArXiv abs/2305.18035 (2023).

[93] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em

Karniadakis. “Physics-informed neural networks (PINNs) for fluid mechanics:

a review”. In: Acta Mechanica Sinica 37 (2021), pp. 1727–1738.

[94] Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang

Su, and Jun Zhu. Physics-Informed Machine Learning: A Survey on Problems,

Methods and Applications. 2023.

[95] Chayan Kumar Banerjee, Kien Nguyen, Clinton Fookes, and Maziar Raissi.

“A Survey on Physics Informed Reinforcement Learning: Review and Open

Problems”. In: ArXiv abs/2309.01909 (2023).

[96] Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. “Systems

biology informed deep learning for inferring parameters and hidden dynamics”.

In: PLOS Computational Biology 16.11 (Nov. 2020), pp. 1–19.

219

Physics Informed Neural Networks in Sparse Data Applications

[97] Han Gao, Luning Sun, and Jian-Xun Wang. “PhyGeoNet: Physics-informed

geometry-adaptive convolutional neural networks for solving parameterized

steady-state PDEs on irregular domain”. In: Journal of Computational Physics

428 (Mar. 2021), p. 110079. issn: 0021-9991.

[98] Pu Ren, Chengping Rao, Yang Liu, Jian-Xun Wang, and Hao Sun. “PhyCRNet:

Physics-informed convolutional-recurrent network for solving spatiotemporal

PDEs”. In: Computer Methods in Applied Mechanics and Engineering 389

(2022), p. 114399. issn: 0045-7825.

[99] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Adaptive

activation functions accelerate convergence in deep and physics-informed

neural networks”. In: Journal of Computational Physics 404 (2020), p. 109136.

issn: 0021-9991.

[100] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. “Locally

adaptive activation functions with slope recovery for deep and physics-informed

neural networks”. In: Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 476.2239 (July 2020), p. 20200334. issn:

1471-2946.

[101] Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and Ivo F

Sbalzarini. “Inverse Dirichlet weighting enables reliable training of physics

informed neural networks”. In: Machine Learning: Science and Technology

3.1 (Feb. 2022), p. 015026.

[102] Sifan Wang, Xinling Yu, and Paris Perdikaris. “When and why PINNs fail

to train: A neural tangent kernel perspective”. In: Journal of Computational

Physics 449 (2022), p. 110768. issn: 0021-9991.

[103] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. “DeepXDE:

A Deep Learning Library for Solving Differential Equations”. In: SIAM Review

63.1 (2021), pp. 208–228.

220

Physics Informed Neural Networks in Sparse Data Applications

[104] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. “A com-

prehensive study of non-adaptive and residual-based adaptive sampling for

physics-informed neural networks”. In: Computer Methods in Applied Mechan-

ics and Engineering 403 (2023), p. 115671. issn: 0045-7825.

[105] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. “Effi-

cient training of physics-informed neural networks via importance sampling”.

In: Computer-Aided Civil and Infrastructure Engineering 36.8 (2021), pp. 962–

977.

[106] Kejun Tang, Xiaoliang Wan, and Chao Yang. “DAS-PINNs: A deep adaptive

sampling method for solving high-dimensional partial differential equations”.

In: Journal of Computational Physics 476 (2023), p. 111868. issn: 0021-9991.

[107] Colby L. Wight and Jia Zhao. “Solving Allen-Cahn and Cahn-Hilliard Equa-

tions Using the Adaptive Physics Informed Neural Networks”. In: Communi-

cations in Computational Physics 29.3 (2021), pp. 930–954. issn: 1991-7120.

[108] Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby,

and Michael W. Mahoney. Characterizing possible failure modes in physics-

informed neural networks. 2021.

[109] Revanth Mattey and Susanta Ghosh. “A novel sequential method to train

physics informed neural networks for Allen Cahn and Cahn Hilliard equations”.

In: Computer Methods in Applied Mechanics and Engineering 390 (2022),

p. 114474. issn: 0045-7825.

[110] Sifan Wang, Shyam Sankaran, and Paris Perdikaris. “Respecting causality

is all you need for training physics-informed neural networks”. In: ArXiv

abs/2203.07404 (2022).

[111] Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. “Conserva-

tive physics-informed neural networks on discrete domains for conservation

laws: Applications to forward and inverse problems”. In: Computer Methods

in Applied Mechanics and Engineering 365 (2020), p. 113028. issn: 0045-7825.

221

Physics Informed Neural Networks in Sparse Data Applications

[112] Ameya D Jagtap and George Em Karniadakis. “Extended physics-informed

neural networks (xpinns): A generalized space-time domain decomposition

based deep learning framework for nonlinear partial differential equations”.

In: Communications in Computational Physics 28.5 (2020), pp. 2002–2041.

[113] Benjamin Moseley, A. Markham, and Tarje Nissen-Meyer. “Finite basis physics-

informed neural networks (FBPINNs): a scalable domain decomposition ap-

proach for solving differential equations”. In: Advances in Computational

Mathematics 49 (2021), pp. 1–39.

[114] E Scott Krayenhoff and James A Voogt. “A microscale three-dimensional

urban energy balance model for studying surface temperatures”. In: Boundary-

Layer Meteorology 123 (2007), pp. 433–461.

[115] Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John

Edmunds, Sebastian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D

Munday, et al. “Early dynamics of transmission and control of COVID-19: a

mathematical modelling study”. In: The lancet infectious diseases 20.5 (2020),

pp. 553–558.

[116] Abicumaran Uthamacumaran and Hector Zenil. “A review of mathematical

and computational methods in cancer dynamics”. In: Frontiers in oncology

12 (2022), p. 850731.

[117] Omar Ghattas and Karen Willcox. “Learning physics-based models from data:

perspectives from inverse problems and model reduction”. In: Acta Numerica

30 (2021), pp. 445–554.

[118] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. “Physics-

informed neural networks for inverse problems in nano-optics and metamate-

rials”. In: Opt. Express 28.8 (Apr. 2020), pp. 11618–11633.

[119] A. M. Tartakovsky, C. Ortiz Marrero, Paris Perdikaris, G. D. Tartakovsky,

and D. Barajas-Solano. “Physics-Informed Deep Neural Networks for Learning

Parameters and Constitutive Relationships in Subsurface Flow Problems”. In:

222

Physics Informed Neural Networks in Sparse Data Applications

Water Resources Research 56.5 (2020). e2019WR026731 10.1029/2019WR026731,

e2019WR026731.

[120] Xin-Yu Guo and Sheng-En Fang. “Structural parameter identification using

physics-informed neural networks”. In: Measurement 220 (2023), p. 113334.

issn: 0263-2241.

[121] Chen Xu, Ba Trung Cao, Yong Yuan, and Günther Meschke. “Transfer

learning based physics-informed neural networks for solving inverse problems

in engineering structures under different loading scenarios”. In: Computer

Methods in Applied Mechanics and Engineering 405 (2023), p. 115852. issn:

0045-7825.

[122] Nazanin Ahmadi Daryakenari, Mario De Florio, Khemraj Shukla, and George

Em Karniadakis. “AI-Aristotle: A physics-informed framework for systems

biology gray-box identification”. In: PLOS Computational Biology 20.3 (Mar.

2024), pp. 1–33.

[123] World Health Organisation. Chikungunya. en. https://www.who.int/health-

topics/chikungunya. Accessed: 2024-05-08.

[124] World Health Organisation. Dengue and severe dengue. en. https://www.who.int/news-

room/fact-sheets/detail/dengue-and-severe-dengue. Accessed: 2024-05-08.

[125] World Health Organisation. Fact sheet about malaria. en. https://www.who.int/news-

room/fact-sheets/detail/malaria. Accessed: 2024-05-08.

[126] World Health Organisation. Zika virus disease. en. https://www.who.int/health-

topics/zika-virus-disease. Accessed: 2024-05-08.

[127] World Health Organisation. West Nile virus. en. https://www.who.int/news-

room/fact-sheets/detail/west-nile-virus. Accessed: 2024-05-08.

[128] Priscilla Cailly, Annelise Tran, Thomas Balenghien, Grégory L’Ambert, Céline

Toty, and Pauline Ezanno. “A climate-driven abundance model to assess

mosquito control strategies”. en. In: Ecological Modelling 227 (Feb. 2012),

pp. 7–17. issn: 0304-3800.

223

Physics Informed Neural Networks in Sparse Data Applications

[129] Richard A. Erickson, Steven M. Presley, Linda JS Allen, Kevin R. Long, and

Stephen B. Cox. “A stage-structured, Aedes albopictus population model”.

In: Ecological Modelling 221.9 (2010), pp. 1273–1282.

[130] Giovanni Marini, Daniele Arnoldi, Frederic Baldacchino, Gioia Capelli, Giorgio

Guzzetta, Stefano Merler, Fabrizio Montarsi, Annapaola Rizzoli, and Roberto

Rosà. “First report of the influence of temperature on the bionomics and

population dynamics of Aedes koreicus, a new invasive alien species in Europe.”

eng. In: Parasites & vectors 12.1 (Nov. 2019), p. 524. issn: 1756-3305.

[131] Lizhong Qiang, Bin-Guo Wang, and Xiao-Qiang Zhao. “A Stage-Structured

Population Model with Time-Dependent Delay in an Almost Periodic Envi-

ronment”. en. In: Journal of Dynamics and Differential Equations 34.1 (Mar.

2022), pp. 341–364. issn: 1572-9222.

[132] Marcelo Otero, Hernán G. Solari, and Nicolás Schweigmann. “A stochastic

population dynamics model for Aedes aegypti: formulation and application

to a city with temperate climate”. In: Bulletin of mathematical biology 68.8

(2006). Publisher: Springer, pp. 1945–1974.

[133] Ting-Wu Chuang, Edward L. Ionides, Randall G. Knepper, William W.

Stanuszek, Edward D. Walker, and Mark L. Wilson. “Cross-correlation map

analyses show weather variation influences on mosquito abundance patterns

in Saginaw County, Michigan, 1989–2005”. In: Journal of medical entomology

49.4 (2012). Publisher: Oxford University Press Oxford, UK, pp. 851–858.

[134] Collin B. Edwards and Elizabeth E. Crone. “Estimating abundance and

phenology from transect count data with GLMs”. en. In: Oikos 130.8 (Aug.

2021), pp. 1335–1345. issn: 0030-1299, 1600-0706.

[135] Olugbenga O. Oluwagbemi, Christen M. Fornadel, Ezekiel F. Adebiyi, Douglas

E. Norris, and Jason L. Rasgon. “ANOSPEX: a stochastic, spatially explicit

model for studying Anopheles metapopulation dynamics”. In: PloS one 8.7

(2013). Publisher: Public Library of Science, e68040.

224

Physics Informed Neural Networks in Sparse Data Applications

[136] Antoine Guisan and Wilfried Thuiller. “Predicting species distribution: offering

more than simple habitat models”. In: Ecology letters 8.9 (2005). Publisher:

Wiley Online Library, pp. 993–1009.

[137] Daniele Da Re, Wim Van Bortel, Friederike Reuss, Ruth Müller, Sebastien

Boyer, Fabrizio Montarsi, Silvia Ciocchetta, Daniele Arnoldi, Giovanni Marini,

Annapaola Rizzoli, Gregory L’Ambert, Guillaume Lacour, Constantianus J. M.

Koenraadt, Sophie O. Vanwambeke, and Matteo Marcantonio. “dynamAedes:

a unified modelling framework for invasive Aedes mosquitoes”. In: Parasites

& Vectors 15.1 (Nov. 2022), p. 414. issn: 1756-3305.

[138] Daniele Da Re, Giovanni Marini, Carmelo Bonannella, Fabrizio Laurini, Mattia

Manica, Nikoleta Anicic, Alessandro Albieri, Paola Angelini, Daniele Arnoldi,

and Federica Bertola. Inferring the seasonal dynamics and abundance of

an invasive species using a spatio-temporal stacked machine learning model.

Publisher: EcoEvoRxiv. 2023.

[139] Ugur Parlatan, Mehmet Ozgun Ozen, Ibrahim Kecoglu, Batuhan Koyuncu,

Hulya Torun, Davod Khalafkhany, Irem Loc, Mehmet Giray Ogut, Fatih Inci,

Demir Akin, Ihsan Solaroglu, Nesrin Ozoren, Mehmet Burcin Unlu, and Utkan

Demirci. “Label-Free Identification of Exosomes using Raman Spectroscopy

and Machine Learning”. In: Small 19.9 (2023), p. 2205519.

[140] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning

for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (2015), pp. 770–778.

[141] Samuel L. Wilcox, Ryan M. Broxterman, and Thomas J. Barstow. “Construct-

ing quasi-linear Vo2 responses from nonlinear parameters”. In: Journal of

Applied Physiology 120.2 (2016). PMID: 26565018, pp. 121–129.

[142] Andrew M. Jones and Mark Burnley. “Oxygen uptake kinetics: an underap-

preciated determinant of exercise performance.” In: International journal of

sports physiology and performance 4 4 (2009), pp. 524–32.

225

Physics Informed Neural Networks in Sparse Data Applications

[143] J. R. Stirling, M. S. Zakynthinaki, and V. Billat. “Modeling and Analysis of

the Effect of Training on VO2 Kinetics and Anaerobic Capacity”. In: Bulletin

of Mathematical Biology 70.5 (July 2008), pp. 1348–1370. issn: 1522-9602.

[144] Andrea Zignoli, Alessandro Fornasiero, Enrico Bertolazzi, Barbara Pellegrini,

Federico Schena, Francesco Biral, and Paul B. Laursen. “State-of-the art

concepts and future directions in modelling oxygen consumption and lactate

concentration in cycling exercise”. en. In: Sport Sciences for Health 15.2 (Aug.

2019). Number: 2, pp. 295–310. issn: 1824-7490, 1825-1234.

[145] Maria Cecília Moraes Frade, Thomas Beltrame, Mariana de Oliveira Gois,

Allan Pinto, Silvia Cristina Garcia de Moura Tonello, Ricardo da Silva Torres,

and Aparecida Maria Catai. “Toward characterizing cardiovascular fitness

using machine learning based on unobtrusive data”. In: PLOS ONE 18.3

(Mar. 2023), pp. 1–18.

[146] Pengfei Chang, Cenyi Wang, Yiyan Chen, Guodong Wang, and Aming Lu.

“Identification of runner fatigue stages based on inertial sensors and deep

learning”. In: Frontiers in Bioengineering and Biotechnology 11 (2023). issn:

2296-4185.

[147] Hui Zhang, Chengxiang Zhuge, Jianmin Jia, Baiying Shi, and Wei Wang.

“Green travel mobility of dockless bike-sharing based on trip data in big cities:

A spatial network analysis”. In: Journal of Cleaner Production 313 (2021),

p. 127930. issn: 0959-6526.

[148] Yuanxuan Yang, Alison Heppenstall, Andy Turner, and Alexis Comber. “A

spatiotemporal and graph-based analysis of dockless bike sharing patterns to

understand urban flows over the last mile”. In: Computers, Environment and

Urban Systems 77 (2019), p. 101361. issn: 0198-9715.

[149] Il-Jung Seo and Jaehee Cho. “Structural Features of Public Bicycle Trans-

portation Networks over Times of the Day: The Case of Seoul Public Bicycle”.

226

Physics Informed Neural Networks in Sparse Data Applications

In: 2022 IEEE International Conference on Big Data and Smart Computing

(BigComp). 2022, pp. 5–8.

[150] XiaoYing Shi, Yang Wang, Fanshun Lv, Wenhui Liu, Dewen Seng, and Fei Lin.

“Finding communities in bicycle sharing system”. In: Journal of Visualization

22.6 (Dec. 2019), pp. 1177–1192. issn: 1875-8975.

[151] Sérgio F. A. Batista, Mostafa Ameli, and Mónica Menéndez. “On the Char-

acterization of Eco-Friendly Paths for Regional Networks”. In: IEEE Open

Journal of Intelligent Transportation Systems 4 (2023), pp. 204–215.

[152] Lei Lin, Zhengbing He, and Srinivas Peeta. “Predicting station-level hourly

demand in a large-scale bike-sharing network: A graph convolutional neural

network approach”. In: Transportation Research Part C: Emerging Technolo-

gies 97 (2018), pp. 258–276. issn: 0968-090X.

[153] Zahra Ghandeharioun and Anastasios Kouvelas. “Link Travel Time Estimation

for Arterial Networks Based on Sparse GPS Data and Considering Progressive

Correlations”. In: IEEE Open Journal of Intelligent Transportation Systems

3 (2022), pp. 679–694.

[154] Jianmin Jia, Chunsheng Liu, Xiaohan Wang, Hui Zhang, and Yan Xiao.

“Understanding bike-sharing mobility patterns in response to the COVID-19

pandemic”. In: Cities 142 (2023), p. 104554. issn: 0264-2751.

[155] Pierre Borgnat, Celine Robardet, Jean-Baptiste Rouquier, Patrice Abry,

Patrick Flandrin, and Eric Fleury. “Shared Bicycles in a City: A Signal

Processing and Data Analysis Perspective”. In: Advances in Complex Systems

14 (June 2011).

[156] Martin Zaltz Austwick, Oliver O’Brien, Emanuele Strano, and Matheus Viana.

“The Structure of Spatial Networks and Communities in Bicycle Sharing

Systems”. In: PLOS ONE 8.9 (Sept. 2013), pp. 1–17.

227

Physics Informed Neural Networks in Sparse Data Applications

[157] Yi Yao, Yifang Zhang, Lixin Tian, Nianxing Zhou, Zhilin Li, and Minggang

Wang. “Analysis of Network Structure of Urban Bike-Sharing System: A Case

Study Based on Real-Time Data of a Public Bicycle System”. In: Sustainability

11.19 (2019). issn: 2071-1050.

[158] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. “Parallel

heuristics for scalable community detection”. In: Parallel Computing 47 (2015),

pp. 19–37. issn: 0167-8191.

[159] Bo Zhang, Yi Rong, Ruihan Yong, Dongming Qin, Maozhen Li, Guojian Zou,

and Jianguo Pan. “Deep learning for air pollutant concentration prediction: A

review”. In: Atmospheric Environment 290 (2022), p. 119347. issn: 1352-2310.

[160] Bernardo S. Beckerman, Michael Jerrett, Randall V. Martin, Aaron van

Donkelaar, Zev Ross, and Richard T. Burnett. “Application of the dele-

tion/substitution/addition algorithm to selecting land use regression models

for interpolating air pollution measurements in California”. In: Atmospheric

Environment 77 (2013), pp. 172–177. issn: 1352-2310.

[161] Zhong-hua Li and Jun Yang. “PM-25 forecasting use reconstruct phase space

LS-SVM”. In: 2010 The 2nd Conference on Environmental Science and Infor-

mation Application Technology. Vol. 1. 2010, pp. 143–146.

[162] P.J. García Nieto, F. Sánchez Lasheras, E. García-Gonzalo, and F.J. de Cos

Juez. “PM10 concentration forecasting in the metropolitan area of Oviedo

(Northern Spain) using models based on SVM, MLP, VARMA and ARIMA:

A case study”. In: Science of The Total Environment 621 (2018), pp. 753–761.

issn: 0048-9697.

[163] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667.

[164] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

“Empirical evaluation of gated recurrent neural networks on sequence model-

ing”. In: arXiv preprint arXiv:1412.3555 (2014).

228

Physics Informed Neural Networks in Sparse Data Applications

[165] Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech,

and time series”. In: The Handbook of Brain Theory and Neural Networks.

Cambridge, MA, USA: MIT Press, 1998, pp. 255–258. isbn: 0262511029.

[166] Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. “Neural Machine Trans-

lation by Jointly Learning to Align and Translate”. In: ArXiv 1409 (Sept.

2014).

[167] Petar Veličkovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph Attention Networks. 2017.

[168] Jiachen Zhao, Fang Deng, Yeyun Cai, and Jie Chen. “Long short-term mem-

ory - Fully connected (LSTM-FC) neural network for PM2.5 concentration

prediction”. In: Chemosphere 220 (2019), pp. 486–492. issn: 0045-6535.

[169] Hong-Wei Wang, Xiao-Bing Li, Dongsheng Wang, Juanhao Zhao, Hong-di

He, and Zhong-Ren Peng. “Regional prediction of ground-level ozone using a

hybrid sequence-to-sequence deep learning approach”. In: Journal of Cleaner

Production 253 (2020), p. 119841. issn: 0959-6526.

[170] Bo Zhang, Guojian Zou, Dongming Qin, Yunjie Lu, Yupeng Jin, and Hui Wang.

“A novel Encoder-Decoder model based on read-first LSTM for air pollutant

prediction”. In: Science of The Total Environment 765 (2021), p. 144507. issn:

0048-9697.

[171] Ricardo Navares and José L. Aznarte. “Predicting air quality with deep

learning LSTM: Towards comprehensive models”. In: Ecological Informatics

55 (2020), p. 101019. issn: 1574-9541.

[172] Xiang Li, Ling Peng, Xiaojing Yao, Shaolong Cui, Yuan Hu, Chengzeng

You, and Tianhe Chi. “Long short-term memory neural network for air

pollutant concentration predictions: Method development and evaluation”. In:

Environmental Pollution 231 (2017), pp. 997–1004. issn: 0269-7491.

[173] Xi Gao and Weide Li. “A graph-based LSTM model for PM2.5 forecasting”.

In: Atmospheric Pollution Research 12.9 (2021), p. 101150. issn: 1309-1042.

229

Physics Informed Neural Networks in Sparse Data Applications

[174] Hongye Zhou, Feng Zhang, Zhenhong Du, and Renyi Liu. “A theory-guided

graph networks based PM2.5 forecasting method”. In: Environmental Pollution

293 (2022), p. 118569. issn: 0269-7491.

[175] Jiahui Xu, Ling Chen, Mingqi Lv, Chaoqun Zhan, Sanjian Chen, and Jian

Chang. “HighAir: A Hierarchical Graph Neural Network-Based Air Quality

Forecasting Method”. In: CoRR abs/2101.04264 (2021).

[176] Pengcheng Jia, Nianwen Cao, and Shaobo Yang. “Real-time hourly ozone

prediction system for Yangtze River Delta area using attention based on

a sequence to sequence model”. In: Atmospheric Environment 244 (2021),

p. 117917. issn: 1352-2310.

[177] Xin-Yu Tu, Bo Zhang, Yu-Peng Jin, Guo-Jian Zou, Jian-Guo Pan, and

Mao-Zhen Li. “Longer Time Span Air Pollution Prediction: The Attention

and Autoencoder Hybrid Learning Model”. In: Mathematical Problems in

Engineering 2021 (June 2021), p. 5515103. issn: 1024-123X.

[178] Bo Zhang, Ziyao Geng, Hanwen Zhang, and Jianguo Pan. “Densely connected

convolutional networks with attention long short-term memory for estimating

PM2.5 values from images”. In: Journal of Cleaner Production 333 (2022),

p. 130101. issn: 0959-6526.

[179] Yu Huang, Josh Jia-Ching Ying, and Vincent S. Tseng. “Spatio-attention

embedded recurrent neural network for air quality prediction”. In: Knowledge-

Based Systems 233 (2021), p. 107416. issn: 0950-7051.

[180] Jiaqi Zhu, Fang Deng, Jiachen Zhao, and Hao Zheng. “Attention-based parallel

networks (APNet) for PM2.5 spatiotemporal prediction”. In: Science of The

Total Environment 769 (2021), p. 145082. issn: 0048-9697.

[181] Hubert Baty and L T Baty. “Solving differential equations using physics

informed deep learning: a hand-on tutorial with benchmark tests”. In: ArXiv

abs/2302.12260 (2023).

230

Physics Informed Neural Networks in Sparse Data Applications

[182] Ebenezer O. Oluwasakin and Abdul Q. M. Khaliq. “Optimizing Physics-

Informed Neural Network in Dynamic System Simulation and Learning of

Parameters”. In: Algorithms 16.12 (2023). issn: 1999-4893.

[183] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An

Expert’s Guide to Training Physics-informed Neural Networks. 2023.

[184] John H. Lagergren, John T. Nardini, Ruth E. Baker, Matthew J. Simpson, and

Kevin B. Flores. “Biologically-informed neural networks guide mechanistic

modeling from sparse experimental data”. In: PLOS Computational Biology

16.12 (Dec. 2020), pp. 1–29.

[185] Hubert Baty. Solving stiff ordinary differential equations using physics in-

formed neural networks (PINNs): simple recipes to improve training of vanilla-

PINNs. 2023.

[186] Patrick Stiller, Friedrich Bethke, Maximilian Böhme, Richard Pausch, Sunna

Torge, Alexander Debus, Jan Vorberger, Michael Bussmann, and Nico Hoff-

mann. “Large-Scale Neural Solvers for Partial Differential Equations”. In:

Driving Scientific and Engineering Discoveries Through the Convergence of

HPC, Big Data and AI. Ed. by Jeffrey Nichols, Becky Verastegui, Arthur

‘Barney’ Maccabe, Oscar Hernandez, Suzanne Parete-Koon, and Theresa

Ahearn. Cham: Springer International Publishing, 2020, pp. 20–34. isbn:

978-3-030-63393-6.

[187] Kamaljyoti Nath, Xuhui Meng, Daniel J. Smith, and George Em Karniadakis.

“Physics-informed neural networks for predicting gas flow dynamics and

unknown parameters in diesel engines”. In: Scientific Reports 13.1 (Aug.

2023). issn: 2045-2322.

[188] Sigurdur Mar Valsson Ivan Depina Saket Jain and Hrvoje Gotovac. “Applica-

tion of physics-informed neural networks to inverse problems in unsaturated

groundwater flow”. In: Georisk: Assessment and Management of Risk for

Engineered Systems and Geohazards 16.1 (2022), pp. 21–36.

231

Physics Informed Neural Networks in Sparse Data Applications

[189] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer.

“Chapter 3 - The Cross-Entropy Method for Optimization”. In: Handbook

of Statistics. Ed. by C.R. Rao and Venu Govindaraju. Vol. 31. Handbook of

Statistics. Elsevier, 2013, pp. 35–59.

[190] Jeremías Garay, Jocelyn Dunstan, Sergio Uribe, and Francisco Sahli Costabal.

“Physics-informed neural networks for parameter estimation in blood flow

models”. In: Computers in Biology and Medicine 178 (2024), p. 108706. issn:

0010-4825.

[191] Marco Berardi, Fabio Vito Difonzo, and Matteo Icardi. “Inverse Physics-

Informed Neural Networks for transport models in porous materials”. In:

ArXiv abs/2407.10654 (2024).

[192] Ameya D. Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis.

“Physics-informed neural networks for inverse problems in supersonic flows”.

In: Journal of Computational Physics 466 (2022), p. 111402. issn: 0021-9991.

[193] Fabio Difonzo, Luciano Lopez, and Sabrina Pellegrino. “Physics informed neu-

ral networks for an inverse problem in peridynamic models”. In: Engineering

with Computers (Mar. 2024), pp. 1–10.

[194] Enrico Schiassi, Mario De Florio, Barry D. Ganapol, Paolo Picca, and Roberto

Furfaro. “Physics-informed neural networks for the point kinetics equations for

nuclear reactor dynamics”. In: Annals of Nuclear Energy 167 (2022), p. 108833.

issn: 0306-4549.

[195] Mario De Florio, Ioannis G. Kevrekidis, and George Em Karniadakis. “AI-

Lorenz: A physics-data-driven framework for Black-Box and Gray-Box identi-

fication of chaotic systems with symbolic regression”. In: Chaos, Solitons &

Fractals 188 (2024), p. 115538. issn: 0960-0779.

[196] Elham Kiyani, Khemraj Shukla, George Em Karniadakis, and Mikko Kart-

tunen. “A framework based on symbolic regression coupled with eXtended

Physics-Informed Neural Networks for gray-box learning of equations of mo-

232

Physics Informed Neural Networks in Sparse Data Applications

tion from data”. In: Computer Methods in Applied Mechanics and Engineering

415 (2023), p. 116258. issn: 0045-7825.

[197] Zhen Zhang, Zongren Zou, Ellen Kuhl, and George Em Karniadakis. “Discov-

ering a reaction–diffusion model for Alzheimer’s disease by combining PINNs

with symbolic regression”. In: Computer Methods in Applied Mechanics and

Engineering 419 (2024), p. 116647. issn: 0045-7825.

[198] Pu Chen, Aiguo Shen, Xiaodong Zhou, and Jiming Hu. “Bio-Raman spec-

troscopy: a potential clinical analytical method assisting in disease diagnosis”.

en. In: Anal. Methods 3.6 (2011), p. 1257.

[199] Michael A Gimbrone Jr and Guillermo García-Cardeña. “Endothelial cell

dysfunction and the pathobiology of atherosclerosis”. en. In: Circ. Res. 118.4

(Feb. 2016), pp. 620–636.

[200] Chad A Lieber and Anita Mahadevan-Jansen. “Automated method for sub-

traction of fluorescence from biological Raman spectra”. en. In: Appl. Spectrosc.

57.11 (Nov. 2003), pp. 1363–1367.

[201] Eva Ostertagová. “Modelling using polynomial regression”. en. In: Procedia

Eng. 48 (2012), pp. 500–506.

[202] Fionn Murtagh. “Multilayer perceptrons for classification and regression”. en.

In: Neurocomputing 2.5-6 (July 1991), pp. 183–197.

[203] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. 2017.

[204] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and

Techniques. 3rd ed. The Morgan Kaufmann Series in Data Management

Systems. Oxford, England: Morgan Kaufmann, June 2011.

[205] Franco M Impellizzeri, Ian Shrier, Shaun J McLaren, Aaron J Coutts, Alan

McCall, Katie Slattery, Annie C Jeffries, and Judd T Kalkhoven. “Under-

standing training load as exposure and dose”. en. In: Sports Med. 53.9 (Sept.

2023), pp. 1667–1679.

233

Physics Informed Neural Networks in Sparse Data Applications

[206] Steven H Doeven, Michel S Brink, Wouter G P Frencken, and Koen A P

M Lemmink. “Impaired player–coach perceptions of exertion and recovery

during match congestion”. In: Int. J. Sports Physiol. Perform. 12.9 (Oct.

2017), pp. 1151–1156.

[207] Mathieu Lacome, Ben Simpson, Nick Broad, and Martin Buchheit. “Monitor-

ing players’ readiness using predicted heart-rate responses to soccer drills”.

en. In: Int. J. Sports Physiol. Perform. 13.10 (Nov. 2018), pp. 1273–1280.

[208] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:

0387310738.

[209] Evangelos Rozos, Panayiotis Dimitriadis, Katerina Mazi, and Antonis D.

Koussis. “A Multilayer Perceptron Model for Stochastic Synthesis”. en. In:

Hydrology 8.2 (June 2021). Number: 2 Publisher: Multidisciplinary Digital

Publishing Institute, p. 67. issn: 2306-5338.

[210] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature

521.7553 (May 2015), pp. 436–444. issn: 1476-4687.

[211] Rafael Schild Reusch, Leonardo Rezende Juracy, and Fernando Gehm Moraes.

“Assessment and Optimization of 1D CNN Model for Human Activity Recogni-

tion”. In: 2022 XII Brazilian Symposium on Computing Systems Engineering

(SBESC). Nov. 2022, pp. 1–7.

[212] Dinh Viet Cuong, Vuong M. Ngo, Paolo Cappellari, and Mark Roantree.

“Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Mod-

eling”. In: IEEE Open Journal of Intelligent Transportation Systems 5 (2024),

pp. 115–131.

[213] Mark Roantree, Niamh Murphy, Dinh Viet Cuong, and Vuong M. Ngo.

“Graph-Based Optimisation of Network Expansion in a Dockless Bike Sharing

System”. In: 2024 IEEE 40th International Conference on Data Engineering

Workshops (ICDEW). 2024, pp. 48–55.

234

Physics Informed Neural Networks in Sparse Data Applications

[214] Mark Roantree and Jun Liu. “A heuristic approach to selecting views for

materialization”. In: Software: Practice and Experience 44.10 (2014), pp. 1157–

1179.

[215] James Hamilton. Time Series Analysis. Princeton University Press, 1994.

[216] Fouad Bahrpeyma, Mark Roantree, Paolo Cappellari, Michael Scriney, and

Andrew McCarren. “A Methodology for Validating Diversity in Synthetic

Time Series Generation”. In: MethodsX 8 (2021), p. 101459. issn: 2215-0161.

[217] Dong Xin, Jiawei Han, Xiaolei Li, Zheng Shao, and Benjamin W. Wah.

“Computing Iceberg Cubes by Top-Down and Bottom-Up Integration: The

StarCubing Approach”. In: IEEE Transactions on Knowledge and Data Engi-

neering 19.1 (2007), pp. 111–126.

[218] Kurt Mehlhorn, Stefan Näher, and Peter Sanders. “Engineering DFS-Based

Graph Algorithms”. In: ArXiv abs/1703.10023 (2017).

[219] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J. Zaki.

“Is There a Best Quality Metric for Graph Clusters?” In: Machine Learning

and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2011,

pp. 44–59. isbn: 978-3-642-23780-5.

[220] J. M. Hernández and P. V. Mieghem. Classification of graph metrics. Tech. rep.

Technical report. 2628 CD Delft: Faculty of Electrical Engineering, Mathe-

matics, and Computer Science, Delft University of Technology, Nov. 2011.

[221] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. “The

architecture of complex weighted networks”. In: Proceedings of the National

Academy of Sciences 101.11 (2004), pp. 3747–3752.

[222] Linton C. Freeman. “Centrality in social networks conceptual clarification”.

In: Social Networks 1.3 (1978), pp. 215–239. issn: 0378-8733.

[223] Gert Sabidussi. “The centrality index of a graph”. In: Psychometrika 31.4

(Dec. 1966), pp. 581–603. issn: 1860-0980.

235

Physics Informed Neural Networks in Sparse Data Applications

[224] Ulrik Brandes and Christian Pich. “CENTRALITY ESTIMATION IN LARGE

NETWORKS”. In: International Journal of Bifurcation and Chaos 17.07

(2007), pp. 2303–2318.

[225] Linton C. Freeman. “A Set of Measures of Centrality Based on Betweenness”.

In: Sociometry 40.1 (1977), pp. 35–41. issn: 00380431.

[226] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of ‘small-world’

networks”. In: Nature 393.6684 (June 1998), pp. 440–442. issn: 1476-4687.

[227] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3

(2010), pp. 75–174. issn: 0370-1573.

[228] Mikail Rubinov and Olaf Sporns. “Complex network measures of brain con-

nectivity: uses and interpretations”. en. In: Neuroimage 52.3 (Oct. 2009),

pp. 1059–1069.

[229] Karsten Steinhaeuser, Nitesh V. Chawla, and Auroop R. Ganguly. “Complex

networks as a unified framework for descriptive analysis and predictive mod-

eling in climate science”. In: Statistical Analysis and Data Mining: The ASA

Data Science Journal 4.5 (2011), pp. 497–511.

[230] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths. “Complex networks in

climate dynamics”. In: The European Physical Journal Special Topics 174.1

(July 2009), pp. 157–179. issn: 1951-6401.

[231] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272.

[232] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in

Science & Engineering 9.3 (2007), pp. 90–95.

[233] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network

structure, dynamics, and function using NetworkX”. In: Proceedings of the 7th

Python in Science Conference (SciPy2008). Ed. by Gäel Varoquaux, Travis

Vaught, and Jarrod Millman. Pasadena, CA USA, Aug. 2008, pp. 11–15.

236

Physics Informed Neural Networks in Sparse Data Applications

[234] The pandas development team. pandas-dev/pandas: Pandas. Version latest.

Feb. 2020.

[235] Google. Google Maps API. https://developers.google.com/maps. Ac-

cessed: 2023-12-01.

[236] Neo4j, Inc. Neo4j Graph Database. https://neo4j.com/. Accessed: 2023-12-

01.

[237] Neo4j, Inc. Neo4j’s Graph Data Science Library. https://neo4j.com/docs/

graph-data-science/current/. Accessed: 2023-12-01.

[238] P. Baby K. Sasirekha. “Agglomerative Hierarchical Clustering Algorithm- A

Review”. In: International Journal of Scientific and Research Publications 3

(Mar. 2013).

[239] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete

Guide to Dimensional Modeling. Wiley, 2011.

[240] Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-Temporal Graph Convo-

lutional Networks: A Deep Learning Framework for Traffic Forecasting”. In:

Proceedings of the Twenty-Seventh International Joint Conference on Arti-

ficial Intelligence. International Joint Conferences on Artificial Intelligence

Organization, July 2018.

[241] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting

System”. In: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,

USA: ACM, 2016, pp. 785–794. isbn: 978-1-4503-4232-2.

[242] Shuai Han, Lukas Stelz, Horst Stoecker, Lingxiao Wang, and Kai Zhou.

“Approaching epidemiological dynamics of COVID-19 with physics-informed

neural networks”. In: Journal of the Franklin Institute 361.6 (2024), p. 106671.

issn: 0016-0032.

237

https://developers.google.com/maps
https://neo4j.com/
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/

Physics Informed Neural Networks in Sparse Data Applications

[243] Dinh Viet Cuong, Branislava Lalić, Mina Petrić, Nguyen Thanh Binh, and

Mark Roantree. “Adapting physics-informed neural networks to improve ODE

optimization in mosquito population dynamics”. In: PLOS ONE 19.12 (Dec.

2024), pp. 1–30.

[244] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall

PTR, 1994.

[245] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs).

2023.

[246] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training

deep feedforward neural networks”. In: Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye

Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning Research.

Chia Laguna Resort, Sardinia, Italy: PMLR, May 2010, pp. 249–256.

[247] Edward Norton Lorenz. “Deterministic nonperiodic flow”. In: Journal of the

Atmospheric Sciences 20 (1963), pp. 130–141.

[248] Linda Petzold. “Automatic Selection of Methods for Solving Stiff and Nonstiff

Systems of Ordinary Differential Equations”. In: SIAM Journal on Scientific

and Statistical Computing 4.1 (1983), pp. 136–148.

[249] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,

Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron,

and Ren Ng. “Fourier Features Let Networks Learn High Frequency Functions

in Low Dimensional Domains”. In: Advances in Neural Information Processing

Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and

H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 7537–7547.

[250] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier

neural networks”. In: Proceedings of the fourteenth international conference

on artificial intelligence and statistics. JMLR Workshop and Conference

Proceedings. 2011, pp. 315–323.

238

Physics Informed Neural Networks in Sparse Data Applications

[251] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. “Dying

relu and initialization: Theory and numerical examples”. In: arXiv preprint

arXiv:1903.06733 (2019).

239

	Introduction
	Introduction to Neural Networks and their Application Areas
	Issues with Neural Networks
	Neural Network Architectures
	Physics-Informed Neural Networks

	Problem Statement
	Thesis Structure

	Problems & Datasets
	Neural Networks
	Exosome Classification
	Oxygen Uptake

	Graph Modeling
	Graph Data Representation: Bike Sharing System
	Graph Neural Networks: Air Quality

	Physics-Informed Neural Networks
	Physics Informed Neural Networks
	Inverse Problems: External Forcing
	Mosquito Population Modeling

	Literature Review
	Neural Networks
	Disease Prediction Using Exosomes
	Oxygen Uptake Estimation

	Network Models
	Transport Networks: Bike Sharing
	Graph Neural Networks: Air Quality

	Physics-Informed Neural Networks
	Training Techniques
	Learning Parameters

	Conclusions

	Deployment of Neural Networks in Real-Life Applications
	Exosomes Classification Using Multi-Layer Perceptrons
	Methodology
	Experiments

	Predicting Oxygen Uptake in Athletes
	Data Preprocessing
	Neural Networks
	Results

	Conclusions

	Graph Neural Networks
	Graph Modeling
	Graph Analytics using a Travel Network
	Problem
	Methodology
	Experiments
	Analysis and Discussion
	Conclusion

	Air Quality Forecasting
	Attention Mechanisms
	Experiments
	Conclusion

	Conclusions

	Physics Informed Neural Networks
	Introduction
	PINN Framework Development
	PINN Structure
	ODE Normalization
	Gradient Balancing
	Causal Training
	Domain Decomposition

	Evaluation Step 1: Ablation Study using the Lorenz System
	Forward Problem with T=2
	Forward Problem with T=20
	Inverse Problem

	Validation Step 2: Mosquito Case Study
	Forward Problem
	Inverse Problem

	Conclusion

	PINN Optimization: Incorporating External Factors
	Introduction
	Incorporating External Factors
	Evaluation
	ODE system
	Experimental Configuration
	Results

	Ablation Study
	Model architectures
	Activation Functions for Non-negativity

	Conclusions

	Conclusions
	Dissertation Overview
	Chapter 4: Neural Networks in Real-Life Applications
	Chapter 5: Graph Neural Networks
	Chapter 6: Physics-Informed Neural Networks
	Chapter 7: PINN Optimization

	Contributions
	Suggestions for Further Research

	Error Metrics
	Regression Error
	Classification Error

	Graph-based Bike Sharing System Analysis
	Temporal Bike Graph Networks (Daily TBiGN)
	Spatio-Temporal Bike Graph Networks (Monthly STBiGN)
	Spatio-Temporal Bike Graph Networks (Hourly STBiGN)

	Mosquito ODE system
	Structural identifiability of mosquito system's parameters
	Parameter Sensitivity

