
Optimizing Feature Prioritization in

Software Development Through Structured

Usage Analytics: A Data-Driven Approach

to Enhancing Development Efficiency

Manoj Kesavulu

M.Eng. in Information and Network Security

Supervised by Dr Marija Bezbradica, Prof Cathal Gurrin and Prof

Markus Helfert (Maynooth University)

A thesis presented for the degree of Doctor of Philosophy

School of Computing

Dublin City University

Date: June 2025

Usage Analytics: Optimizing Feature Prioritization in Software Development

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study

leading to the award of Doctor of Philosophy is entirely my own work, that I have exercised

reasonable care to ensure that the work is original, and does not to the best of my knowledge

breach any law of copyright, and has not been taken from the work of others save to the extent

that such work has been cited and acknowledged within the text of my work.

Signed (Manoj Kesavulu): ID No.: 16212435 Date: 30-June-2025

ii

Usage Analytics: Optimizing Feature Prioritization in Software Development

Acknowledgements

I want to thank my supervisors Dr Marija Bezbradica, Prof Markus Helfert and Prof Cathal

Gurrin for their generous support, guidance, encouragement and wisdom far beyond the call of

duty and I am incredibly grateful and proud to be associated with them. This thesis would not

have been possible without them. I would also like to thank the staff and colleagues at the School

of Computing, DCU and Lero. I am also grateful to Dr Martin Crane for all the support and

guidance. My sincere thanks are also due to Anna Carrigan, James Flynn, Bhumit Patel, John

Farren and all team members at the IBM Research Labs, Dublin for allowing me to visit their

offices, and explore the tools, systems and applications. My time during the research internship

helped me immensely to gain valuable industry knowledge, identify real-world problems, and

conduct experiments and interviews.

This thesis is dedicated to my late father Kesavulu, who was always a source of inspiration

and encouragement for me. He taught me the value of hard work, perseverance and curiosity. He

supported me throughout my academic journey and believed in my potential. He is not only my

father but also my mentor, my friend and my hero. I miss him every day and I hope to honour

his memory with this work. My mother Gayathramma and my brother Mahesh for all their

support and motivation. My wife, Anamika for whom I am eternally thankful for her patience

and understanding during the numerous days working late sharing my joy and frustrations, her

sacrifices to reach my goals, and her unwavering love, humour, motivation and compassion. She

is the best partner I could ever ask for and I am grateful for her presence in my life.

This work was supported with the financial support of the Science Foundation Ireland grant

13/RC/2094 and co-funded under the European Regional Development Fund through the South-

ern & Eastern Regional Operational Programme to Lero - the Irish Software Research Centre

(www.lero.ie)

iii

Usage Analytics: Optimizing Feature Prioritization in Software Development

Publications

1. Kesavulu, Manoj, Helfert, Markus, and Bezbradica, Marija, “Towards Refactoring in

Cloud-Centric Internet of Things for Smart Cities,” Pre-ICIS Workshop, Dublin, 2016.

2. Kesavulu, Manoj, Bezbradica, Marija, and Helfert, Markus, “Generic Refactoring

methodology for cloud migration-Position paper”, International Conference on Cloud

Computing and Services Science, vol. 2, pp. 692–695, 2017, SciTePress.

3. Kesavulu, Manoj, Helfert, Markus, and Bezbradica, Marija, “A usage-based data extrac-

tion framework for cloud-based application—A human-computer interaction approach,”

International Conference on Computer-Human Interaction Research and Applications

(CHIRA 2017), pp. 85–92, 2017, SciTePress.

4. Kesavulu, Manoj, Dang-Nguyen, Duc-Tien, Helfert, Markus, and Bezbradica, Marija,

“An Overview of User-level Usage Monitoring in Cloud Environment,” UK Academy for

Information Systems Annual Conference, 2018. Available: [Link]

5. Dang-Nguyen, Duc-Tien, Kesavulu, Manoj, and Helfert, Markus, “Usage Analytics:

Research Directions to Discover Insights from Cloud-based Applications,” International

Conference on Smart Grids and Green IT Systems, 2018. Available: [Link]

6. Kesavulu, Manoj, Dang-Nguyen, Duc-Tien, Bezbradica, Marija, and Helfert, Markus,

“A usage analytics model for analysing user behaviour in IBM academic cloud,” Interna-

tional IBM Cloud Academy Conference, 2018. Available: [Link]

7. Lux, Mathias, Halvorsen, P., Dang-Nguyen, Duc-Tien, Stensland, H̊akon Kvale, Ke-

savulu, Manoj, Potthast, Martin, and Riegler, M., “Summarizing E-sports matches and

tournaments: The example of Counter-Strike: Global Offensive,” Proceedings of the 11th

ACM Workshop on Immersive Mixed and Virtual Environment Systems, 2019. Available:

[Link]

iv

https://api.semanticscholar.org/CorpusID:70076567
https://api.semanticscholar.org/CorpusID:19208148
https://api.semanticscholar.org/CorpusID:69933168
https://api.semanticscholar.org/CorpusID:189857299

Usage Analytics: Optimizing Feature Prioritization in Software Development

8. Kesavulu, Manoj, Dang-Nguyen, Duc-Tien, Bezbradica, Marija, and Helfert, Markus,

“Usage Analytics: A Process to Extract and Analyse Usage Data to Understand User

Behaviour in Cloud,” International Conference on Computer-Human Interaction Research

and Applications, 2017. Available: [Link]

9. Palbar, Tenzin, Kesavulu, Manoj, Gurrin, Cathal, and Verbruggen, Renaat, “Prediction

of Blood Glucose Using Contextual LifeLog Data,” Conference on Multimedia Modeling,

2022. Available: [Link]

10. Hordvik, Maria Tysse, Teilstad Østby, Julie Sophie, Kesavulu, Manoj, Nguyen, Thao-

Nhu, Le, Tu-Khiem, and Dang-Nguyen, Duc-Tien, “LifeLens: Transforming Lifelog Search

with Innovative UX/UI Design,” Proceedings of the 6th Annual ACM Lifelog Search Chal-

lenge, 2023. Available: [Link]

11. Steffensen, Iselin Ågotnes, Nystad, Sara Tumey Celik, Liahjell, Margrethe, Dang-Nguyen,

Duc-Tien, Kesavulu, Manoj, Ninh, Van-Tu, Gurrin, Cathal, Vuong, Gia-Huy, Ho, Van-

Son, and Tran, Minh-Triet, “T@Retrospect: A Journey Through Time: A User-Centered

Prototype Enabling Seamless Information Retrieval Across Expertise Levels,” Proceedings

of the 7th Annual ACM Workshop on the Lifelog Search Challenge, 2024. Available: [Link]

12. Pagani Vavik, Eirik, Wilhelmsen, Michela, Østensen, Jenny Dal, Dang-Nguyen, Duc-Tien,

Ninh, Van-Tu, Kesavulu, Manoj, Gurrin, Cathal, Vuong, Gia-Huy, Ho, Van-Son, and

Tran, Minh-Triet, “VitaChronicle: Applying UX/UI Principles and Guidelines to Enhance

Lifelog Retrieval System Design,” Proceedings of the 7th Annual ACM Workshop on the

Lifelog Search Challenge, 2024. Available: [Link]

13. Hordvik, Maria Tysse, Østby, Julie Sophie Teilstad, Dang-Nguyen, Duc-Tien, Kesavulu,

Manoj, Nguyen, Thao-Nhu, Le, Tu-Khiem, Gurrin, Cathal, and Tran, Minh-Triet, “Life-

Lens 2.0: Improving Efficiency and Usability in Lifelog Retrieval Systems through UX/UI

Design,” Proceedings of the 7th Annual ACM Workshop on the Lifelog Search Challenge,

2024. Available: [Link]

14. Kesavulu, Manoj, Helfert, Markus, and Patel, Bhumit, “System and Methods for Iden-

tifying End-user Usage Behaviour to Improve Software Design Decisions,” Patent No.

IPCOM000261887D, Irish Patent Office, 2020. Available: [Link]

v

https://api.semanticscholar.org/CorpusID:207756767
https://api.semanticscholar.org/CorpusID:247600471
https://api.semanticscholar.org/CorpusID:259025397
https://api.semanticscholar.org/CorpusID:270555063
https://api.semanticscholar.org/CorpusID:270554871
https://api.semanticscholar.org/CorpusID:270554932
https://priorart.ip.com/IPCOM/000261887

Usage Analytics: Optimizing Feature Prioritization in Software Development

Contents

1 Introduction 2

1.1 Software Platforms Used in the Research . 5

1.1.1 IBM Academic Cloud . 6

1.1.2 IBM Watson Workspace . 7

1.1.3 Odoo Notes . 8

1.2 Motivations and Research Problems . 11

1.2.1 Motivations . 11

1.2.2 Research Problem . 14

1.3 Hypothesis and Research Questions . 15

1.4 Research Process and Methodology . 16

1.5 Limitations of the Research . 18

2 Literature Review and Related Work 21

2.1 Typical Problems in Software Development . 26

2.1.1 Resource Provisioning . 27

2.1.2 Problem Diagnosis . 28

2.1.3 Understanding User Satisfaction . 28

2.2 Concept of Features in Software Development . 29

2.2.1 Action-based Usage Analysis . 30

2.3 Role of Usage Data in Software Development Life-cycle 32

2.4 Analysis Techniques for Software Feature Usage 33

2.4.1 Usage Data and User Feedback Collection Techniques 33

2.4.2 Traditional Methods of Feature Prioritization 41

2.5 Comprehensive Overview of Data Types and Analytics Metrics 48

2.5.1 Key Data Types . 48

vi

Usage Analytics: Optimizing Feature Prioritization in Software Development

2.5.2 Analytics Metrics . 51

2.6 Gap Analysis of Existing Literature . 55

3 Research Methodology 58

3.1 Using Design Science Research Methodology . 59

3.1.1 Problem Identification . 60

3.1.2 Design, Development and Demonstration 60

3.1.3 Evaluation and Communication . 61

3.2 Research Design . 62

3.2.1 Platform Selection . 63

3.2.2 Participants in Evaluation of UAM . 66

3.2.3 Iterative Refinement Process . 68

3.2.4 Evaluation Methods . 68

4 Features and Usage data in Software Development 72

4.1 The Concept of Features in Software Development 73

4.1.1 User-level Features . 80

4.2 Usage Data . 81

4.2.1 Justification of the Selected Usage Data 88

4.3 The Relationship between Software Features and User Actions 90

4.3.1 Challenges With Usage Data and Analyzing User Actions 92

4.4 Key Metrics for Analyzing Usage Data . 93

4.5 Features and Usage Data of selected Software Applications 101

4.5.1 Features and Usage Data of IBM Watson Workspace 102

4.5.2 Features and Usage Data of Odoo Notes 104

5 Case Studies for Development of the Usage Analytics Method 108

5.1 Overview of the Case Studies . 109

5.1.1 Integration of Empirical Designs . 110

5.1.2 Selection of Platforms for Case Studies . 112

5.2 Case Study 1: IBM Academic Cloud . 112

5.2.1 Goal - Research Problem Identification . 114

5.2.2 Design - Analysis of the Usage Analytics Process Model 115

vii

Usage Analytics: Optimizing Feature Prioritization in Software Development

5.2.3 Result: Initial Design of the Usage Analytics Method and Feature Priori-

tization Challenges . 116

5.3 Case Study 2: IBM Watson Workspace . 123

5.3.1 Goal - Implementation challenges of UA 124

5.3.2 Design - Development and Application of Usage Analytics Method 125

5.3.3 Result - Improvement and Implementation of the Usage Analytics Method

- Version 2 . 137

5.4 Case Study 3: Odoo Notes . 140

5.4.1 Goal - Implementation and validation of the Usage Analytics method . . 140

5.4.2 Design - Development of a custom Usage Data monitoring tool for Odoo

Notes application and application of the UA method 141

5.4.3 Results - Improvement of the Usage Analytics Method - Version 3 147

5.5 Summary of Challenges in Developing Usage Analytics Method 150

5.5.1 Challenges in IBM Academic Cloud (Case Study 1) 150

5.5.2 Challenges in IBM Watson Workspace (Case Study 2) 151

5.5.3 Challenges in Odoo Notes (Case Study 3) 152

5.6 Key Challenges for Feature Prioritization . 153

6 Usage Analytics Method 155

6.1 Design of the Usage Analytics Method . 156

6.1.1 Feature Identification . 158

6.1.2 Data Source Integration . 161

6.1.3 Data Extraction . 165

6.1.4 Analysis . 167

6.2 Experiment Design . 170

6.2.1 Experiment Data and Application of UA Metrics 173

6.2.2 Post-experiment Survey . 176

6.3 Contributions of the Usage Analytics Method (UAM) 178

7 Results and Evaluation of the Usage Analytics Method 181

7.1 Evaluation of the Usage Analytics Method Through Case Studies 182

7.2 Evaluation of Case Study 1: IBM Academic Cloud 183

7.2.1 Goal of the case study 1 . 184

viii

Usage Analytics: Optimizing Feature Prioritization in Software Development

7.2.2 Design of the case study 1 . 184

7.2.3 Results of the case study 1 . 188

7.3 Evaluation of the Case Study 2: IBM Watson Workspace 190

7.3.1 Goal of the case study 2 . 190

7.3.2 Design of case study 2 . 191

7.3.3 Results of the case study 2 . 194

7.4 Evaluation of Key Metrics - Case Study 2 and Case Study 3 197

7.4.1 Results from the experiment with IBM Watson Workspace 200

7.4.2 Results from the experiment with Odoo Notes 203

7.5 Results of the Surveys Conducted . 217

8 Conclusion and Future Work 223

8.1 Conclusion . 223

8.2 Contributions . 228

8.2.1 Design Knowledge Contributions . 230

8.3 Limitations of the Study . 233

8.3.1 Case Study 1: IBM Academic Cloud . 233

8.3.2 Case Study 2: IBM Watson Workspace 234

8.3.3 Case Study 3: Odoo Notes . 235

8.4 Future Work . 236

A URL Links for Repositories and other Documents 241

B Experiment tasks - Odoo 242

C Feature-Action map - Odoo 244

D Survey Forms 246

D.1 Survey form - Odoo Notes . 247

D.2 Survey form - IBM Watson Workspace . 254

E Survey Results 259

E.1 Survey Results - Odoo Notes . 260

F Consistency Scores 265

ix

Usage Analytics: Optimizing Feature Prioritization in Software Development

List of Figures

2.1 Software Development Life-cycle . 22

2.2 Summary of Systematic literature review process followed for reviewing usage

data and user feedback collection techniques . 34

2.3 Summary of Systematic literature review process followed for reviewing feature

prioritization process in software development . 42

3.1 Design Science Research Methodology . 60

3.2 Research Design Overview illustrating the iterative development and evaluation

of the Usage Analytics Method (UAM) across three case studies: IBM Academic

Cloud, IBM Watson Workspace, and Odoo Notes. Each case study follows dis-

tinct stages, including design and development, application and improvement,

and evaluation. 63

4.1 Analysis procedure of feature definition . 74

4.2 User Interface and High-level Microservices Architecture of IBMWatsonWorkspace

application. Highlighted microservices between the architecture and the UI. . . . 103

4.3 User Interface of the Odoo Notes application version 10 106

4.4 User Interface of the Odoo Notes application version 11 106

5.1 Usage Analytics Process Model used by the developers of the IBM Academic

Cloud to analyze user interactions with an aim to prioritize features of the appli-

cation for the next cycle of the development . 114

5.2 Usage Analytics Method Design - Version 1 resulted from the exploration of IBM

Academic Cloud Application. 117

5.3 Use Case 2: IBM Watson Workspace . 124

x

Usage Analytics: Optimizing Feature Prioritization in Software Development

5.4 High-level architecture of the IBM Watson Workspace application. Highlighting

the data sources necessary for the Usage Analytics method. 125

5.5 High-level diagram of the Usage Analytics approach designed using IBM Watson

Workspace application showing the available data sources 126

5.6 Usage Analytics method - Version 2 resulting from the work with IBM Watson

Workspace Application . 137

5.7 Use Case 3: Odoo Notes. Updated activities of the usage analytics method applied

to the Odoo Notes application . 141

5.8 Usage Analytics method - Version 3 as a result of work with Odoo Notes 148

6.1 Usage Analytics architecture comprising core components of the analytics engine

and application components used by the analytics engine 157

6.2 Compare behavioural scores between consecutive software versions 169

7.1 Usage Analytics Method Design - Version 1 resulted from the exploration of IBM

Academic Cloud Application. 198

7.2 Usage Analytics method - Version 2 resulting from the work with IBM Watson

Workspace Application . 199

7.3 Usage Analytics method - Version 3 as a result of work with Odoo Notes 199

7.4 Illustration of Frequency of Actions performed by the participants in IBM Watson

Workspace experiment . 200

7.5 Illustration of Frequency of Actions performed by the participants in IBM Watson

Workspace experiment. Some example actions are highlighted: CHAT MESSAGE SEND,

EXIT SEARCH, TEAM ROOM OPEN, TEAM ROOM CLOSE. 201

7.6 Total number of occurrences of all actions performed by each user shown sepa-

rately (Top: Odoo Notes version 10, Bottom: Odoo Notes version 11) 204

7.7 Comparative chart for the Occurrence scores of the actions Add Tag and Open

Note performed by all users. The table on the left shows the scores for Odoo

Notes version 10 and the table on the right shows the scores for Odoo Notes

version 11. 205

7.8 Sum of occurrences of all actions performed by all users shown (Top: Odoo Notes

version 10, Bottom: Odoo Notes version 11) . 207

xi

Usage Analytics: Optimizing Feature Prioritization in Software Development

7.9 Sum of occurrences of all actions performed by all users compared between Odoo

Notes version 10 and Odoo Notes version 11 . 209

7.10 Sum of frequency measure of all actions performed by each user shown (Top:

Odoo Notes version 10, Bottom: Odoo Notes version 11) 210

7.11 Sum of frequency measure of all actions performed by all users shown (Top: Odoo

Notes version 10, Bottom: Odoo Notes version 11) 211

7.12 Individual Timespent scores of each user for each action performed with both

versions of the Odoo Notes application . 213

7.13 Sum of Timespent scores of all users for each action performed with both versions

of the Odoo Notes application . 214

7.14 The scores of the actions based on the Consistency of Frequency and Consistency

of Timespent metrics compared against each other 216

xii

Usage Analytics: Optimizing Feature Prioritization in Software Development

List of Tables

2.1 Table summarizing the user data collection techniques used in different stages of

the software development process . 35

2.2 Current feature prioritization techniques and practices employed in the software

development domain . 46

2.3 Summary of Data Types and Their Applications 49

2.4 Summary of Analytics Metrics and Their Applications 52

2.5 Industry Participant Demographics for Iterative Development of UAM, partici-

pants were stakeholders of both IBM Academic Cloud and IBM Watson Workspace. 54

3.1 Demographics and Roles of the participants in the Evaluation of the Usage Ana-

lytics Method (UAM) . 66

4.1 Analysis of Existing Feature Definitions in the Literature 77

4.2 Superset of Data Types for Usage Analytics . 83

4.3 Usage Data Classification: Types of the usage data available in the software

environment, their characteristics the data representing the context of the data

in the analytics process, description of the data characteristic and the specific

type of data. 86

4.4 Comprehensive Super-Set of Metrics Derived from Literature 94

7.1 Developer Demographics for Case Study 1: IBM Academic Cloud 185

7.2 Summary of results obtained for the evaluation of the Use Case 1: IBM Academic

Cloud . 189

7.3 Demographics of Participants for Case Study 2: IBM Watson Workspace 191

7.4 Quantitative Analysis of Interview Responses for Case Study 2 194

7.5 Summary of the experiments conducted . 197

xiii

Usage Analytics: Optimizing Feature Prioritization in Software Development

7.6 The Consistency of Frequency scores between Odoo versions 10 and 11, and the

rankings of the actions based on the Consistency of Frequency scores 212

7.7 The difference in timespent measures between Odoo versions 10 and 11, and the

rankings of the actions based on the difference in timespent measure 215

7.8 Rankings of the actions based on the Consistency of Frequency (CF) and Consis-

tency of Timespent (CT) metrics, and the average of the two rankings 217

7.9 Familiarity of the users with Odoo Notes and similar types of applications 218

7.10 Preference of the users for the different versions of the application in general and

the reason for their preference . 218

7.11 Preference of the users for the different versions of the application for each action 219

7.12 Difficulty of each action as experienced by the user in Odoo 11 compared to Odoo

10 . 220

xiv

Usage Analytics: Optimizing Feature Prioritization in Software Development

Optimizing Feature Prioritization in Software Development

Through Structured Usage Analytics: A Data-Driven Approach

to Enhancing Development Efficiency

Manoj Kesavulu

Abstract

In the rapidly evolving field of software development, the ability to efficiently prioritize and

enhance software features based on user feedback is crucial for maintaining competitiveness and

development efficiency. Deciding which features to develop or update is often complex and inef-

ficient. Developers and product managers typically use traditional feedback methods, which are

slow, subjective, and hard to prioritize. The main issue is the overwhelming amount and subjec-

tive nature of feedback from surveys, bug reports, and customer interactions. This often leads

to analysis paralysis, where teams struggle to determine the most critical issues to address. This

thesis proposes a structured approach to usage analytics aimed at addressing these challenges

by helping developers identify and prioritize features that have the most significant impact on

users. This method enables developers to understand and assess the impact of updates and

new features on user engagement. By creating a more efficient and responsive feedback loop,

usage analytics can help teams prioritize development tasks based on actual user interactions

rather than subjective feedback, reduce delays in addressing critical issues, and improve overall

development efficiency. Case studies demonstrate the practical benefits of usage analytics in

software development. The first study on the IBM Academic Cloud project identified challenges

in feature prioritization, such as unclear feature definitions and time-consuming data prepa-

ration. The second study, on IBM Watson Workspace, revealed issues in data identification,

analytics metrics, and feature-action mapping, stressing the need for systematic data collection

and iterative testing. The third study applied usage analytics to Odoo Notes, showing the

impact of changes on user behavior and helping prioritize future features. These studies demon-

strate usage analytics offers actionable insights for data-driven feature prioritization, enhancing

decision-making and improving software to better meet user needs.

1

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 1

Introduction

In the dynamic field of software development, the ability to quickly adapt and enhance software

applications is crucial. Modern software development practices, such as Agile and DevOps,

emphasize iterative development, continuous integration, and rapid deployment to meet user

needs and expectations. Agile methodologies, such as Scrum and Kanban, enable teams to de-

liver software in short cycles, providing continuous improvements and flexibility in responding

to user feedback (Beck et al., 2001; Rigby et al., 2016a). DevOps extends this by integrating

development and operations, facilitating automated testing and deployment, thus ensuring re-

liability and speed in releasing new features (Kim et al., 2016). However, a critical challenge

remains: how to effectively prioritize which features to develop or update next. Traditionally,

this decision-making process relies heavily on user feedback, which can be voluminous and often

subjective. For example, surveys and bug reports can generate a large amount of data that

is difficult to analyze systematically, leading to potential biases and misinterpretations (Chen

and Jin, 2016a). Additionally, the feedback loop can be slow, causing delays in addressing user

needs and implementing necessary updates (Jiang and Naudé, 2011). There is often a lack of

standardized processes for integrating this feedback into development cycles, resulting in incon-

sistent prioritization of features (Bosch et al., 2014). Recent studies continue to highlight the

challenges and evolving solutions in Agile practices. A systematic review of Scrum adaptations

reveals that while Scrum remains the most popular Agile methodology, its application varies

widely, reflecting the need for continuous adaptation to fit diverse project contexts (Science and

Organization, 2023). Additionally, the integration of Agile with AI and automation is emerging

as a trend to enhance efficiency and accuracy in development processes (SoluteLabs, 2023). The

adoption of hybrid approaches, such as Water-Scrum-Fall, indicates a trend towards blending

2

Usage Analytics: Optimizing Feature Prioritization in Software Development

traditional and Agile methods to leverage the strengths of both (CGI, 2023).

To address these challenges, this thesis proposes a systematic approach to usage analytics

to aid developers in identifying and prioritizing features that have the most significant impact

on users by analyzing user interactions. Usage analytics involves collecting and analyzing data

on how users interact with software features. This method can provide objective, quantitative

insights into user behavior, helping developers to understand which features are most and least

used, and how changes affect user engagement (FullScale, 2023). By leveraging detailed usage

data, developers can make more informed decisions about feature prioritization, enhancing the

overall efficiency and effectiveness of the development process (ProductHQ, 2023). The software

industry employs various methodologies and tools to streamline development processes and im-

prove product quality. Agile methodologies, such as Scrum and Kanban, emphasize iterative

progress, customer collaboration, and flexibility in responding to changing requirements. These

practices enable teams to deliver incremental updates, allowing for continuous improvement

based on user feedback (Beck et al., 2001; Rigby et al., 2016a). The Agile Manifesto outlines

principles that prioritize individuals and interactions, working software, customer collaboration,

and responding to change over following a fixed plan. Recent trends in Agile development have

expanded the scope of these methodologies to apply their principles across a broader range of

activities within organizations. This holistic approach enhances organizational agility, enabling

businesses to respond swiftly and effectively to changes (CGI, 2023). Additionally, new Ag-

ile methodologies emphasize value delivery, optimizing the entire value stream from concept

to delivery, ensuring that all activities contribute to customer value (SoluteLabs, 2023). De-

vOps integrates development and operations, promoting automation, continuous integration,

and continuous delivery (CI/CD). This approach enhances collaboration between teams and en-

sures rapid, reliable software releases (Kim et al., 2016). DevOps practices help streamline the

development pipeline by incorporating infrastructure as code, automated testing, and deploy-

ment processes that reduce the risk of human error and improve efficiency (Fitzgerald and Stol,

2017a). CI/CD pipelines automate testing and deployment, enabling quick and safe software

releases. This practice helps identify and resolve integration issues early, reducing the risk of

deployment failures. Continuous integration involves developers frequently integrating code into

a shared repository, while continuous deployment ensures that code changes are automatically

deployed to production environments after passing predefined tests (Duvall et al., 2007).

Despite these advancements, several inefficiencies persist in the software development pro-

3

Usage Analytics: Optimizing Feature Prioritization in Software Development

cess. To address these inefficiencies, the gap lies in systematically bridging user interaction

data and actionable insights for feature prioritization. Existing methodologies, while empha-

sizing iterative development, often lack mechanisms to integrate real-time behavioral data into

decision-making processes effectively. The research presented in this thesis focuses on closing

this gap by leveraging user interaction analytics, a growing area in software engineering, which

combines usage data, contextual insights, and advanced metrics to prioritize features dynam-

ically. This approach aligns with recent trends advocating data-driven decisions in Agile and

DevOps methodologies, as highlighted by FullScale (2023) and Bosch et al. (2014). User feed-

back, often gathered through surveys, bug reports, and customer support, can be overwhelming

in volume and subjective in nature. This makes it challenging to systematically prioritize feed-

back (Chen and Jin, 2016a). The sheer amount of feedback can lead to analysis paralysis, where

teams struggle to determine which issues to address first. Studies have shown that traditional

feedback mechanisms can be biased and do not always capture the complete user experience

(Bosch et al., 2014). The time required to collect, process, and act on user feedback can intro-

duce delays in the development cycle, slowing down the implementation of necessary updates

and improvements (Jiang and Naudé, 2011). Delays in addressing critical issues can result in

user dissatisfaction and increased churn rates. For example, Jiang and Naudé highlight how

delayed feedback loops can cause significant setbacks in the agile development process, under-

mining the very principles of agility and responsiveness (Jiang and Naudé, 2011). There is often

a lack of standardized processes for integrating user feedback into development cycles, leading

to potential misalignment with user needs. Without a systematic approach, feedback can be

inconsistently addressed, resulting in some issues being overlooked or improperly prioritized.

This inconsistency can lead to a misalignment between development efforts and user expecta-

tions, ultimately affecting the quality and relevance of the software product (Bosch et al., 2014).

Recent studies emphasize the importance of integrating user feedback and usage analytics to

improve software development processes. For instance, analyzing usage patterns and user in-

teractions can provide valuable insights into user behavior, helping to identify critical areas for

improvement (FullScale, 2023). Additionally, leveraging AI-powered tools for feedback analysis

can enhance the accuracy and efficiency of data processing, enabling developers to prioritize

features more effectively (Appsero, 2023).

This research aims to address these inefficiencies by introducing a usage analytics method

designed to analyze user interactions systematically. The core objective is to help developers

4

Usage Analytics: Optimizing Feature Prioritization in Software Development

identify and prioritize features that significantly impact user experience. The proposed method

includes analyzing detailed user interaction data to uncover patterns and trends, providing

insights into how different features are utilized. By understanding usage patterns, developers

can identify which features are most and least used, enabling more informed decisions about

where to focus development efforts (ProductHQ, 2023).

Evaluating how updates and new features influence user behavior, distinguishing between

beneficial and detrimental impacts, allows teams to understand the real-world effects of their

changes and adjust their strategies accordingly. For instance, Buse and Zimmermann found that

detailed usage analytics could reveal critical insights into feature adoption and user satisfaction,

thereby guiding development priorities more effectively (Buse and Zimmermann, 2012c).

Using data-driven insights to prioritize development tasks ensures that the most critical is-

sues are addressed promptly, streamlining the feedback loop and making it more efficient and

responsive to user needs. This approach is supported by studies indicating that usage analytics

can significantly enhance decision-making processes in software development by providing ob-

jective, actionable insights (FullScale, 2023; Çökeli, 2024). Moreover, advanced analytics can

help identify patterns and trends that are not immediately apparent from raw data, enabling

more accurate predictions of user needs and behaviors. By systematically analyzing usage data,

developers can reduce the reliance on subjective feedback and make data-driven decisions that

align more closely with actual user behavior (Appsero, 2023).

1.1 Software Platforms Used in the Research

In this research, three primary software platforms were utilized to facilitate the collection, analy-

sis, and interpretation of user interaction data: IBM Academic Cloud, IBM Watson Workspace,

and Odoo Notes. These platforms were chosen for their robust capabilities in handling large

volumes of data, providing detailed analytics, and supporting the development and deployment

of software features. The following subsections provide an overview of these software platforms

and their relevance to this research. In addition to discussing the features of these platforms, it

is crucial to highlight the user actions they facilitate, as these actions form the primary source

of data for the proposed usage analytics method. User actions, such as deploying applications,

analyzing data, and collaborating on tasks, generate detailed interaction logs that provide in-

sights into how users engage with software features. These logs, when analyzed systematically,

5

Usage Analytics: Optimizing Feature Prioritization in Software Development

enable the identification of patterns, trends, and critical points of interaction, which are essential

for prioritizing features and improving user experience. By incorporating a discussion on user

actions, this section emphasizes their foundational role in capturing the behavioral data neces-

sary for deriving actionable insights through the usage analytics method. This linkage between

features and actions underscores how the platforms’ capabilities directly influence the depth and

quality of data collected, which ultimately shapes the effectiveness of the proposed method.

1.1.1 IBM Academic Cloud

The IBM Academic Cloud is a comprehensive cloud computing platform designed specifically

for academic and research purposes. It offers a scalable, secure, and flexible environment that

supports a wide range of computational and data-intensive tasks. The platform provides access

to a variety of IBM services and tools, such as IBM Watson for AI and machine learning, IBM

Cloud Databases for data storage, and IBM Cloud Functions for serverless computing. These

capabilities enable researchers to efficiently process large datasets, perform complex analyses,

and collaborate on research projects.

The IBM Academic Cloud is built to accommodate the demanding needs of academic re-

search, offering a high degree of customization and integration. Researchers can leverage power-

ful computing resources to run simulations, model complex scenarios, and analyze vast amounts

of data. The platform’s robust infrastructure ensures reliability and performance, even under

heavy workloads. Additionally, IBM’s commitment to data security and privacy makes the

Academic Cloud a trusted environment for handling sensitive research data. The platform’s

integration with IBM Watson services allows researchers to incorporate advanced AI and ma-

chine learning techniques into their analyses, enhancing the depth and breadth of their research

capabilities.

Features of IBM Academic Cloud:

• Scalability: The IBM Academic Cloud offers scalable computing resources, allowing re-

searchers to handle large datasets and perform complex computations efficiently.

• Flexibility: It provides a flexible environment that supports various programming lan-

guages and tools, making it adaptable to different research needs.

• Data Security: The platform ensures high levels of data security, which is crucial for

handling sensitive research data.

6

Usage Analytics: Optimizing Feature Prioritization in Software Development

• Integration: Seamlessly integrates with other IBM tools and services, such as IBM Wat-

son, enabling comprehensive data analysis and machine learning capabilities.

• Collaboration: Facilitates collaboration among researchers by providing shared resources

and collaborative tools.

Relevance and Suitability:

The IBM Academic Cloud was selected for this research due to its ability to support the

extensive data processing and storage needs inherent in user interaction analysis. Its scalability

ensured that the research could accommodate increasing amounts of data without performance

degradation. The platform’s flexibility allowed the use of various data analysis tools and pro-

gramming environments, making it easier to implement and test different analytical models.

Data security features ensured that user data was protected, complying with ethical standards

for research. Integration with IBM Watson services enabled advanced analytics, such as natural

language processing and machine learning, which were crucial for deriving insights from user

interaction data.

1.1.2 IBM Watson Workspace

IBM Watson Workspace is a collaborative communication platform designed to enhance team

productivity and collaboration. It leverages the power of IBM Watson AI services to provide

intelligent and context-aware features that facilitate efficient communication and project man-

agement. The platform includes tools for real-time messaging, video conferencing, file sharing,

and task management. Additionally, IBM Watson Workspace integrates AI capabilities such as

sentiment analysis, natural language processing, and information retrieval, which help in under-

standing and improving user interactions. This makes it an ideal choice for research focused on

analyzing collaborative behaviors and communication patterns.

IBM Watson Workspace is particularly valuable for teams that require seamless communica-

tion and coordination. The platform’s real-time collaboration tools enable users to interact and

share information instantly, which is essential for maintaining productivity in fast-paced envi-

ronments. The integration of AI services enhances these interactions by providing insights into

the tone and sentiment of communications, helping teams to better understand and respond to

each other. Furthermore, Watson Workspace’s task management features allow users to organize

and track their work efficiently, ensuring that projects stay on track and deadlines are met. The

7

Usage Analytics: Optimizing Feature Prioritization in Software Development

platform’s advanced search capabilities also make it easy to locate specific information within

conversations and documents, saving time and improving overall efficiency.

Features of IBM Watson Workspace:

• Real-Time Collaboration: Provides tools for real-time communication and collabora-

tion, including messaging, video conferencing, and file sharing.

• AI Integration: Integrates with IBM Watson AI services such as Watson Conversation

for chatbots, Watson Discovery for information retrieval, and Watson Tone Analyzer for

sentiment analysis.

• Search and Discovery: Advanced search capabilities to find information quickly across

conversations and documents.

• Task Management: Built-in tools for managing tasks and projects, enhancing produc-

tivity and organization.

• APIs: Offers APIs for custom integrations, allowing developers to extend the functionality

of the workspace.

Relevance and Suitability:

IBM Watson Workspace was integral to this research as it provided a rich dataset for ana-

lyzing user interactions in a collaborative environment. The platform’s real-time collaboration

tools generated valuable data on how users communicate and collaborate, which was essential for

understanding feature usage and engagement. AI integration allowed for deeper analysis of user

conversations, enabling the research to identify sentiment and extract meaningful insights from

textual data. The search and discovery features facilitated efficient data retrieval, supporting

the analysis of large volumes of communication data. Task management tools provided addi-

tional data on user productivity and workflow, contributing to a comprehensive understanding

of user behavior.

1.1.3 Odoo Notes

Odoo Notes is a module within the Odoo suite of business applications that provides compre-

hensive note-taking and task management functionalities. It is designed to help users organize

their thoughts, manage tasks, and collaborate effectively. Odoo Notes is highly customizable,

allowing users to tailor the application to their specific needs and integrate it seamlessly with

8

Usage Analytics: Optimizing Feature Prioritization in Software Development

other Odoo modules. This platform is particularly useful for capturing detailed user interac-

tion data related to note-taking and task management activities, providing insights into user

productivity and organizational behaviors. The integration capabilities and user-friendly inter-

face make Odoo Notes a valuable tool for research focused on improving task management and

collaborative work.

Odoo Notes supports a wide range of functionalities that enhance its utility for both indi-

vidual and team use. Users can create and organize notes with ease, leveraging features such

as rich text formatting, tags, and categories to keep information well-structured and accessible.

The task management tools allow users to set deadlines, assign tasks, and monitor progress,

ensuring that projects are completed on time. Collaboration is a key strength of Odoo Notes,

with features that enable users to share notes and work together on tasks in real-time. The

platform’s analytics capabilities provide valuable insights into how notes and tasks are being

used, helping users to identify areas for improvement and optimize their productivity.

Features of Odoo Notes:

• Note-Taking: Allows users to create, edit, and organize notes efficiently.

• Task Management: Provides tools for managing tasks, setting deadlines, and tracking

progress.

• Customization: Highly customizable to meet specific user needs and integrate with other

Odoo applications.

• Collaboration: Supports collaborative note-taking and sharing, enhancing teamwork and

information sharing.

• Analytics: Offers basic analytics features to track note usage and task completion.

Relevance and Suitability:

Odoo Notes was chosen for its robust note-taking and task management capabilities, which

were crucial for analyzing user productivity and task organization behaviors. The platform’s

extensive customization options allowed the research to tailor the application to specific study

requirements, ensuring that relevant data was captured effectively. Integration with other Odoo

applications provided a comprehensive view of user activities across different contexts, enhancing

the depth of the analysis. Collaborative features enabled the study of how users interact and

share information, providing insights into teamwork dynamics. The analytics capabilities of

9

Usage Analytics: Optimizing Feature Prioritization in Software Development

Odoo Notes supported the tracking of user engagement with notes and tasks, helping to identify

key features that improve productivity.

The platforms used in this research, IBM Academic Cloud, IBM Watson Workspace, and

Odoo Notes, support a variety of user actions that serve as the primary source of data for

the proposed usage analytics method. These user actions reflect the way individuals interact

with platform features, providing a detailed record of behavior that is critical for understanding

software usage patterns.

In the IBM Academic Cloud, user actions such as deploying applications, managing resources,

and analyzing data generate valuable interaction logs. These actions provide a granular view

of how users engage with scalable computing resources and leverage analytical tools to meet

their objectives. The timing, frequency, and duration of these actions serve as key metrics

for analyzing the effectiveness of resource utilization and identifying potential bottlenecks in

workflows.

IBM Watson Workspace captures a wide range of user actions centered on real-time commu-

nication and collaboration. Sending messages, participating in video calls, and sharing files not

only facilitate teamwork but also produce interaction data that reveals patterns in collaboration

dynamics. Additionally, the platform’s AI-enhanced features, such as sentiment analysis and

task automation, provide contextual information that further enriches the data collected from

user actions.

Similarly, Odoo Notes focuses on user actions related to task management and note-taking.

Creating, organizing, and sharing notes are fundamental actions that generate actionable data

about user productivity and collaboration. These actions, along with task tracking and usage

monitoring, help identify trends in how teams prioritize and complete their work.

By focusing on user actions across these platforms, this research captures the essential be-

havioral data necessary for deriving actionable insights through usage analytics. User actions

form the backbone of the proposed method, enabling the identification of critical touchpoints,

usage trends, and areas for improvement. These actions are not isolated activities but are

deeply intertwined with the features they support, creating a rich dataset that informs feature

prioritization and software enhancement strategies.

The combination of IBM Academic Cloud, IBM Watson Workspace, and Odoo Notes pro-

vided a robust foundation for this research, enabling the collection and analysis of detailed user

interaction data. Each platform contributed unique features that supported different aspects of

10

Usage Analytics: Optimizing Feature Prioritization in Software Development

the research, from data storage and processing to real-time collaboration and task management.

By leveraging the capabilities of these platforms, the research was able to identify and prioritize

features that significantly impact user experience, ultimately enhancing the overall efficiency

and effectiveness of the software development process.

1.2 Motivations and Research Problems

In the realm of software development, the continuous enhancement and adaptation of software

applications are critical to meeting evolving user needs and maintaining competitiveness in

the market. Traditional methods of gathering user feedback, such as surveys and direct user

interviews, often prove to be inefficient and limited in scope. Traditional methods, while useful,

fail to capture implicit feedback that is naturally embedded in user behavior and interaction

logs. Studies by Vozniuk et al. (2016) and Bosch and Olsson (2016) emphasize the importance

of moving beyond explicit feedback to harness the potential of implicit feedback for real-time,

adaptive decision-making. This shift is vital for addressing scalability and relevance challenges,

especially in complex systems where traditional mechanisms can lead to information overload

or misaligned priorities. This research aims to address these limitations by leveraging advanced

usage analytics to analyze user interactions and prioritize software features effectively.

1.2.1 Motivations

Usage analytics plays a pivotal role in understanding user behavior, optimizing software features,

and prioritizing development efforts. By analyzing patterns of user interactions, developers and

stakeholders can make informed decisions to enhance software functionality and user satisfac-

tion. Despite its significance, the process of developing a systematic Usage Analytics Method

(UAM) encounters numerous challenges, particularly in environments with diverse platforms,

user bases, and data sources. These challenges hinder the ability to extract actionable insights

and necessitate a structured framework that addresses these barriers comprehensively.

Inefficiencies in Traditional Feedback Mechanisms: Traditional feedback mechanisms,

such as surveys and user interviews, are time-consuming and often result in low response rates.

They rely heavily on users’ willingness to participate and provide honest feedback, which may not

always be forthcoming. Additionally, these methods capture only explicit feedback, missing out

on the wealth of implicit feedback generated through actual user interactions with the software.

11

Usage Analytics: Optimizing Feature Prioritization in Software Development

This limitation is highlighted in the work of Vozniuk et al. (2016), who emphasize the need for

more efficient feedback mechanisms in software development. Additional studies by Lethbridge

et al. (2005) and Pagano and Maalej (2013) further underscore the challenges and limitations

associated with traditional feedback methods in software engineering.

Fragmented Data Collection Practices: In distributed software systems, data is of-

ten collected across multiple teams, tools, and platforms. Zimmermann and Nagappan (2010)

highlight how fragmented data sources lead to inconsistencies, duplications, and missing informa-

tion, making it difficult to standardize logging practices. For instance, cloud-based applications

frequently employ heterogeneous logging mechanisms, where some components generate high-

granularity logs while others provide only minimal metadata. This discrepancy complicates

efforts to integrate data into a unified analysis framework. Furthermore, Wang et al. (2017)

emphasize the difficulty in reconciling data collected across modular systems, where the lack of

standardized protocols amplifies integration challenges. These barriers delay decision-making

and increase the risk of misinterpretation.

Complex Feature Mapping: Mapping user interactions to specific software features is

another significant challenge. Pagano and Maalej (2013) emphasize that in complex systems

with overlapping functionalities, distinguishing user-driven actions from automated processes

can lead to ambiguities. For example, in enterprise collaboration platforms, users may trigger

workflows that span multiple modules, making it difficult to attribute behaviors to individual

features. Additionally, feature mapping challenges extend to environments where third-party

integrations obscure the origin of specific user actions. This lack of clarity undermines the

reliability of usage metrics and hampers the identification of high-priority features.

Metric Validation Challenges: Validating metrics like frequency, time spent, and consis-

tency is critical for ensuring their applicability across diverse contexts. Ghezzi et al. (2014) argue

that without robust validation frameworks, metrics may yield misleading conclusions, especially

in environments where user behavior varies significantly. For instance, metrics such as “time

spent” can indicate engagement in one context but reflect usability issues in another, necessitat-

ing rigorous testing to confirm their reliability. Moreover, Nguyen and Wu (2018) highlight the

complexity of ensuring metric consistency across time-sensitive applications, where user patterns

are influenced by external factors.

Need for Real-Time Feedback: The dynamic nature of software development requires

real-time feedback to make timely adjustments and improvements. Traditional methods fail to

12

Usage Analytics: Optimizing Feature Prioritization in Software Development

provide real-time insights, resulting in delayed responses to user needs and issues. Real-time

usage analytics can bridge this gap by continuously monitoring user interactions and provid-

ing instant feedback to developers. According to Bosch and Olsson (2016), real-time feedback

mechanisms are crucial for maintaining the agility and responsiveness of software development

processes. The significance of real-time feedback is also supported by the works of Rodden et al.

(2010b) and Litoiu et al. (2010), who highlight the importance of real-time data in adaptive and

responsive software systems.

Scalability Issues: As software applications grow in complexity and user base, the volume

of feedback also increases exponentially. Traditional methods struggle to scale effectively, leading

to information overload and difficulty in identifying the most critical issues. Usage analytics,

on the other hand, can handle large volumes of data and extract meaningful insights, making it

easier to prioritize features and address user concerns efficiently. Chen and Jin (2016b) discuss

the importance of scalable feedback mechanisms in modern software development. Additionally,

Kittur et al. (2008) and Kim et al. (2011) provide further evidence on the challenges of scalability

and the role of analytics in managing large datasets effectively.

Understanding Implicit User Feedback: Implicit feedback, such as user behavior pat-

terns and interaction logs, provides valuable insights that are often overlooked by traditional

feedback methods. Analyzing this implicit feedback can reveal user preferences and pain points

that are not captured through explicit feedback channels. The importance of capturing and

analyzing implicit feedback is underscored by the work of Kapoor et al. (2021) and Sun et al.

(2019), who demonstrate how implicit feedback can lead to more accurate and actionable in-

sights in software development. Studies by Jin and Lee (2013) and Claypool et al. (2001b)

further emphasize the value of implicit feedback in understanding user behavior and improving

software systems.

Enhancing User-Centric Development: User-centric development focuses on creating

software that meets the needs and preferences of users. By leveraging usage analytics, devel-

opers can ensure that the most impactful features are prioritized, enhancing the overall user

experience. Studies by Lee et al. (2020) and Martin et al. (2018) show that user-centric devel-

opment approaches, informed by usage analytics, lead to higher user satisfaction and retention

rates. The benefits of user-centric development are also highlighted by Schwaber and Sutherland

(2017) and Nielsen (2012), who discuss the principles of user-centered design and its impact on

software quality and usability.

13

Usage Analytics: Optimizing Feature Prioritization in Software Development

To address these challenges, the research adopted a systematic literature review to derive a

comprehensive super-set of data types and metrics from the literature. This process critically

evaluated metrics frequently used in software development, assessing their utility for feature

prioritization. The resulting super-set formed the foundation for further refinement. In collab-

oration with IBM developers, brainstorming workshops, experiments and structured interviews

were conducted to tailor these metrics to meet the organization’s specific needs. This iterative

process ensured that the selected metrics were both practical and relevant, aligning with IBM’s

development goals while being generalizable for application in other software platforms.

1.2.2 Research Problem

The central research problem addressed in this study is the identification and prioritization

of software features based on user interactions using advanced usage analytics. This involves

several key challenges:

Data Collection and Integration: Collecting comprehensive and accurate data on user

interactions with software applications is the first challenge. This data must be integrated

from various sources, including web and mobile applications, to provide a holistic view of user

behavior. The work of Buse and Zimmermann (2012a) highlights the complexities involved

in collecting and integrating user interaction data from diverse sources. Further insights are

provided by Harker and Eason (1983) and Jensen and Scacchi (2005), who discuss the challenges

of data integration in software engineering environments.

Data Analysis and Interpretation: Analyzing the collected data to extract meaning-

ful insights requires advanced analytical techniques, including machine learning and statistical

analysis. The interpretation of these insights to inform feature prioritization decisions is an-

other significant challenge. According to Fitzgerald and Stol (2017c), effective data analysis and

interpretation are critical for making informed decisions in software development. This view

is supported by Aggarwal and Yu (2009) and Witten et al. (2016), who highlight the role of

advanced analytics in deriving actionable insights from complex datasets.

Feature Prioritization: Prioritizing features based on user interactions involves assessing

the impact of each feature on user satisfaction and overall software performance. This requires

a systematic approach to evaluate the importance and urgency of different features. The frame-

work proposed by Olsson and Bosch (2014b) provides a valuable reference for developing such a

systematic approach. Additional perspectives are offered by Karlsson et al. (2007a) and Racheva

14

Usage Analytics: Optimizing Feature Prioritization in Software Development

et al. (2010), who discuss various methods for feature prioritization in agile and iterative devel-

opment processes.

Real-World Application and Validation: Implementing the proposed usage analytics

method in real-world software development environments and validating its effectiveness is essen-

tial for demonstrating its practical value. This involves collaborating with software development

teams and collecting empirical evidence of the method’s impact on feature prioritization and

user satisfaction. The importance of real-world validation is emphasized by Rigby et al. (2016b),

who argue for the need to validate new methods and tools in actual practice to ensure their rel-

evance and effectiveness. Supporting studies by Kitchenham et al. (2004) and Sjoberg et al.

(2005) further highlight the importance of empirical validation in software engineering research.

The motivation for this research stems from the limitations of traditional feedback mecha-

nisms and the need for real-time, scalable solutions to prioritize software features effectively. By

leveraging advanced usage analytics, this research aims to address the challenges of data collec-

tion, analysis, and feature prioritization, ultimately enhancing the efficiency and responsiveness

of software development processes.

1.3 Hypothesis and Research Questions

To systematically address the outlined research problem and to achieve the research objective

described in the previous section, the following hypothesis is formulated and validated in this

research: User interaction data can be systematically analyzed to improve the effi-

ciency of the software development process by enabling feature prioritization. In

order to address the identified research problem and to test the designed hypothesis, the method-

ology used here will aim to understand how features of an application are used by the users by

analyzing the application usage data to help improve the software development process. This

involves focusing on key activities to identify and analyze usage data, gaining insights into how

end-users engage with the features of a software application and understanding the impact of

developer-implemented changes on user interactions. In order to achieve this, a usage analytics

method will be developed, providing the key activities such as usage data source identification,

usage data extraction, and usage data analysis that can be applied in practice. The demonstra-

tion and evaluation of the method will be conducted through constrained experiments and case

studies.

15

Usage Analytics: Optimizing Feature Prioritization in Software Development

RQ1: (Problem scoping and objective definition) What are the customized key metrics and data

points, tailored to industrial requirements, from user interactions that most significantly

influence feature prioritization decisions?

Identifying the most relevant metrics and data points is crucial for effective usage analytics.

This question seeks to determine which aspects of user interactions (e.g., frequency of use,

amount of time spent on each feature etc.) are most indicative of feature importance and should

be prioritized in the analysis. The Usage Analytics Method (UAM) proposed in this research

provides a structured approach for analyzing user interactions and prioritizing features. While

this thesis demonstrates a specific subset of metrics frequency, time spent, and consistency; these

were selected from a broader super-set derived through rigorous literature analysis and tailored

to industrial needs. Developers using UAM are encouraged to select and customize metrics

based on their specific organizational requirements, leveraging the method’s flexibility.

RQ2: (Design and development) What are the key challenges faced by the developers to identify

and utilize usage data and key metrics related to the feature prioritization effectively within

the software platform?

This question focuses on the methodologies and tools necessary for capturing and analyzing usage

data. It seeks to explore best practices for data collection, data cleaning, and data analysis to

ensure that the metrics gathered are accurate and actionable. Additionally, it looks at how to

integrate this data into the software development lifecycle.

RQ3: (Application and evaluation) How can activities be systematically structured to identify

and utilize usage data for feature prioritization?

This question aims to develop a structured approach or framework for incorporating usage data

into the feature prioritization process. It involves defining a set of activities, from initial data

collection and analysis to decision-making and implementation, ensuring that the process is

repeatable and scalable.

1.4 Research Process and Methodology

This research systematically addresses the posed research questions by employing an iterative

empirical design. The platforms selected for this study IBM Academic Cloud, IBM Watson

16

Usage Analytics: Optimizing Feature Prioritization in Software Development

Workspace, and Odoo Notes were chosen for their diversity in application contexts, allowing for

a robust evaluation of the proposed Usage Analytics Method (UAM). These platforms represent

varied domains, including cloud-based academic environments, collaborative workspace tools,

and task management systems. This selection was carefully informed by the need to balance

practicality and relevance to industrial applications, as well as to ensure the research findings

have broad applicability.

The selection process involved consultations with industry practitioners to ensure alignment

with real-world needs. These consultations included discussions with experienced developers,

project managers, and software analysts to validate the appropriateness of the chosen platforms.

An additional reason for the choice of these platforms was the opportunity they presented to

leverage existing access and familiarity, reflecting a pragmatic and opportunistic approach. Each

platform provided unique opportunities for analyzing user interactions and offered complemen-

tary contexts for validating the UAM. For instance, IBM Academic Cloud facilitated the analysis

of large-scale data-intensive operations, essential for understanding user behaviors in resource-

heavy applications. Meanwhile, IBM Watson Workspace supported the exploration of real-time

collaboration dynamics, enabling the research to study immediate feedback loops and team in-

teractions. Odoo Notes offered a contrasting perspective by focusing on task management and

user engagement in a smaller, more localized software environment, demonstrating the flexibility

and adaptability of the UAM across varied use cases.

By combining these platforms, the study effectively illustrates the adaptability and general-

izability of the UAM, providing a bridge between theoretical insights and practical applications.

This approach ensures that the research outcomes are not only relevant to the platforms stud-

ied but also broadly applicable to other software environments with similar user interaction

characteristics.

The remainder of this thesis is structured as follows, Chapter 2 contains the discussion on

the systematic literature review conducted and the related work, details the systematic process

of deriving a super-set of data types and metrics, providing the foundation for the empirical

studies. followed by Chapter 3, which describes the research methodology used, the hypothesis

formed and the detailed discussion on the research questions. Outlines the iterative design of

the UAM, incorporating feedback from each empirical study. Discusses the role of participa-

tory design methods and collaborative workshops in refining the metrics. Chapter 4 describes

the role, importance and problems with features and usage data in the software maintenance

17

Usage Analytics: Optimizing Feature Prioritization in Software Development

domain. Chapter 5 presents the description of the case studies conducted to identify and for-

mulate the problem; design, develop, apply and test the artifact. Chapter 6 details the Usage

Analytics method, developed based on the case studies, including its key activities and the novel

analytics algorithm. Chapter 7 presents the results obtained from the case studies and exper-

iments conducted and the evaluation of the developed artifact. Chapters 5-7 consolidate the

empirical designs, including platform selection, participant details, and data analysis methods.

These chapters demonstrate how each study contributed to the refinement of the UAM. Provide

detailed narratives on the challenges encountered and the solutions implemented during each

iteration of the research. Chapter 8 describes the conclusion drawn and the contributions of this

research.

1.5 Limitations of the Research

The research was carried out according to the requirements and expectations of the funding

organization, IBM. Consequently, decisions taken and the research directions are both guided

by, and restricted by the funding organization. This extends to various aspects of the research

process and outcomes.

One of the significant limitations is the selection of key metrics. The metrics of frequency,

time spent, and consistency were identified based on the specific needs of the developers at IBM.

Although these metrics were used to demonstrate the utility of the Usage Analytics method,

they do not represent the state-of-the-art metrics to analyze user interactions in the software de-

velopment domain. The focus on these three metrics, while providing valuable insights into user

behavior, might have excluded other potentially useful metrics that could offer a more compre-

hensive understanding of user interactions. For example, metrics such as user satisfaction scores,

task completion rates, and error rates could provide additional dimensions to the analysis, offer-

ing a richer perspective on user engagement and application performance. The developers of the

application may still choose metrics suitable for their application and the specific requirements

of their analysis. Therefore, the aim of the research focuses on the Usage Analytics method

and the related techniques that could be used to prioritize features in the software development

domain, rather than presenting an exhaustive set of user interaction metrics.

Another limitation pertains to the researchers’ ability to publish substantial parts of this

research in open forums. Due to proprietary constraints and the sensitive nature of the data

18

Usage Analytics: Optimizing Feature Prioritization in Software Development

involved, some findings and methodologies were not fully disclosed in public domains. This

restriction limits the broader academic scrutiny and validation that open publications would

facilitate. The inability to share detailed data and methods openly hinders the potential for

other researchers to replicate the study or build upon its findings, thereby restricting the overall

contribution to the field. This limitation also impacts the perceived transparency and thor-

oughness of the research process, as external validation is a critical aspect of robust scientific

inquiry.

Furthermore, the research process and decision-making could appear to lack depth and

breadth in certain areas due to these constraints. For instance, the study’s focus was pre-

dominantly aligned with IBM’s immediate needs and strategic interests, potentially overlooking

broader industry trends or alternative methodologies that might be relevant in different con-

texts. This alignment with the funding organization’s priorities means that some innovative or

emerging metrics and techniques in usage analytics might not have been considered or explored

in this research. As a result, the findings and outcomes, while highly relevant to IBM, may

not be entirely generalizable to other organizations or contexts within the software development

industry.

However, considerable effort has been put into addressing some of these limitations. To

demonstrate the broader applicability of the Usage Analytics method beyond IBM, a case study

involving the Odoo Notes application was included. This application does not belong to IBM

nor does it have any overlap or commonality with IBM applications. By applying the Usage

Analytics method developed through work with IBM applications to the Odoo Notes application,

it was possible to demonstrate that the method can be applied to other software applications as

well. This external validation is crucial in showing the method’s versatility and relevance across

different contexts.

Additionally, the same key metrics of frequency, time spent, and consistency were intention-

ally used in the evaluation of the Odoo Notes application. This decision was made to ensure

that the Usage Analytics method remains relevant and applicable regardless of the specific ap-

plication. The consistent use of these key metrics across different applications reinforces the

idea that the method’s core principles and techniques are robust and not dependent on the type

of software or its unique characteristics.

Moreover, the initial part of the research was conducted within the specific organizational

context of IBM, which has its unique workflows, tools, and user base. This context-specific

19

Usage Analytics: Optimizing Feature Prioritization in Software Development

focus may limit the applicability of the findings to other organizations with different structures,

technologies, or user demographics. The particular software development practices and user

interaction patterns at IBM might not reflect those in smaller companies, startups, or different

sectors of the software industry, leading to potential challenges in adapting the Usage Analytics

method to other environments.

The iterative development and refinement of the Usage Analytics method, while demonstrat-

ing a robust process of continuous improvement, were constrained by the specific case studies

chosen for the research. The method was evaluated primarily through its application to IBM

Watson Workspace and the Odoo Notes application, and while this provided valuable feedback,

the method’s effectiveness in other types of software applications or in different stages of the

software lifecycle was not extensively tested. This limitation suggests that further research is

necessary to validate the method’s generalizability and effectiveness across a wider range of

software development contexts and application types.

In summary, the limitations of this research stem from the constraints imposed by the funding

organization, the specific selection of metrics, the restricted ability to publish findings openly,

and the context-specific focus of the study. However, significant efforts have been made to

address these limitations by applying the Usage Analytics method to a non-IBM application

and using consistent metrics to validate the method’s applicability. These steps enhance the

generalizability, transparency, and comprehensiveness of the research, suggesting that while

there are inherent limitations, the findings and the Usage Analytics method remain relevant and

robust across different software development contexts.

20

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 2

Literature Review and Related Work

In order to obtain a sound scientific basis for further steps in the course of the current research

and to consider the contribution of the topic, an extensive, systematic literature review was

conducted following the process described by Webster and Watson (Webster and Watson, 2002).

The primary focus of this research is to design a novel data-driven method to understand which

features of the application are important to the end-user by analyzing the end-user usage of the

applications. The user-level usage data in the context of this thesis is the usage data generated

due to user interaction with the application; by analyzing these data we can determine which

features are critical and important for the end-user. Although the concept of understanding

how the applications are used by the users by analyzing the application logs is not new, it is

still difficult to understand how to prioritize and select the features for the next version of the

application from the users’ perspective. These applications are often monitored by Application

Performance Monitoring (APM) tools to understand how much of the underlying resources are

used by the application, errors, bugs, and usability issues and to identify outdated services and

monitoring tools to understand the usage of the features of the applications by the software

developers. The data could be analyzed by the software developers to fix the errors and bugs,

improve the application, roll out updates and optimize the resources. This constitutes the

development life-cycle of a typical software development environment as shown in Figure 2.1.

The first step in the software development life-cycle is Requirement Elicitation, which de-

scribes gathering requirements from the business model and design of the application based on

which features are needed by the end-users. The second step, Software Construction, includes

the development, testing and verification of the features of the application. The third step,

Software Deployment describes the design of the Service Level Agreement (SLA), platform pol-

21

Usage Analytics: Optimizing Feature Prioritization in Software Development

Requirement
Elicitation

Software
Construction

Deployment

Implementation

Software Usage

Software
Maintenance

Feedback
Transition

Which features are needed by the
users?

Build features for the application

Build SLA, Install application over the
production server

Train user on how to use the features
offered and sell the software

Customize, monitor and report

Fix, bugs, provide patches and
updates

Figure 2.1: Software Development Life-cycle

22

Usage Analytics: Optimizing Feature Prioritization in Software Development

icy compliance verification and installation of the application over the platform. The fourth

step, Software Implementation, includes training the end user of the application and selling the

application to the end user. The fifth step, Software Usage, includes software customization,

platform and application monitoring, reporting and escalation of the incidents which includes

understanding which features are preferred by the users and any problems experienced by them.

The last step, Software maintenance, includes providing application patches and upgrades.

The software developers use APM tools (for example, CloudWatch in Amazon Web Services)

to monitor the status of the deployed applications, and the number of resources used by the ap-

plications based on the agreement between the application provider and the users called Service

Level Agreement (SLA). The application developers can also use various third-party monitoring

tools such as New Relic, Binadox and so on. User-level usage monitoring plays a critical role

in understanding how end-users interact with software applications, providing valuable insights

for developers and architects. These insights help optimize future updates, personalize features

based on user preferences, and evaluate application performance in real-world environments.

This thesis leverages the principles of user-level usage monitoring to develop a comprehensive

usage analytics method, addressing key challenges in understanding and improving user interac-

tions. Existing monitoring solutions for cloud environments predominantly focus on application

and infrastructure levels, addressing aspects such as resource utilization and service-level agree-

ments (SLAs). However, user-level usage monitoring, which captures and analyzes end-user

interactions with applications, remains under-explored (Kesavulu et al., 2018a). The lack of

comprehensive solutions in this domain creates challenges in understanding user satisfaction,

behavior patterns, and feature utilization. This research builds on these identified gaps to pro-

pose a novel user-level usage monitoring framework, aiming to bridge the disconnect between

end-user behavior and application optimization. But these tools mainly focus on monitoring

application-oriented features and cloud service-oriented features such as measuring the number

of users logged in to the application, identifying rare logins, cloud resource usage, idle times,

license types etc. Understanding usage data of features of an application has various uses such as

personalizing the application according to the end-user’s preferences (Yang et al., 2017), profil-

ing users for security (Al-Bayati et al., 2016), facilitating improvement in marketing of software

products (Bucklin and Sismeiro, 2009a), and analyzing the performance of the application in

the deployed environment for maintenance purposes (Petruch et al., 2012). From the literature

exploration, we see that the idea of monitoring user behavior is to understand how users interact

23

Usage Analytics: Optimizing Feature Prioritization in Software Development

with the application and this is mainly done through analyzing the clickstreams (Banerjee and

Ghosh, 2001; Bucklin and Sismeiro, 2009a; Pachidi et al., 2014; Wang et al., 2016). Cito et al.

(2015a) provide a high-level taxonomy of types of operation data:

1. Monitoring data (Operational application metadata, Collected from state-of-the-art APM

tools)

2. Performance data – service response times, database query times

3. Load data – incoming request rate, server utilization

4. Costs data – hourly cloud virtual machine costs, data transfer costs per 10,000 page views

5. User behavior data - clickstreams, paths taken by the user(s)

6. Production data - bug and errors encountered, application usage statistics

7. Data produced by SaaS application itself - placed orders, customer information.

The usage data is generated after the applications are deployed and while they are being

used in real time by the end users. This usage data is essential for software developers and

architects, supporting tasks such as providing software updates, fixing bugs, performing run-

time analysis, and more. The majority of the research in the software monitoring domain focus

on collecting software operational data, event logs, and resource usage monitoring in order to

identify performance issues, errors and other usability problems (Fabijan et al., 2015). Since

applications in a SaaS environment are deployed over the internet, web usage mining plays a

crucial role in identifying and extracting usage data. Additionally, the field of web usage min-

ing has experienced significant advancements in recent years (Ghezzi et al., 2014; Gasparetti,

2017). While these works are mainly concentrated on understanding the usage of features of the

application and infrastructure level, understanding of user-level features is seldom considered in

both academia and industry. Identifying and analysing usage of user-level features facilitates

developers, designers and software architects to understand which features of the software appli-

cation are critical to the end user. To achieve this, it is essential to consider all the ways through

which an end-user can access the SaaS application, which include the interfaces discussed earlier

such as a web browser, smartphone app and a command-line interface along with the server and

database at the back-end of the cloud system that facilitates the execution of the application.

Consideration of usage data only through clickstreams is mainly under the assumption that the

24

Usage Analytics: Optimizing Feature Prioritization in Software Development

end-user has access to the SaaS application only through a web browser. This may be true for

a traditional web application but for SaaS applications, other interfaces such as mobile apps

and command line interfaces are also used to access the application and these interfaces should

be considered as sources for the extraction of the usage data from a cloud-based application.

Although we discussed various techniques, methods and tools that could be used to monitor

and extract usage data in the cloud, it is critical to understand which elements of the com-

plex multi-layered application architecture have to be considered as features to analyze by the

software development team. The different stakeholders such as application developers, cloud

service providers, infrastructure providers, software architects and end-users have different un-

derstandings of a feature in a cloud-based application environment. Consequently, the secondary

focus of this research is to develop a novel way to identify and classify features from a different

stakeholder perspective.

In today’s software systems, system complexity and the frequency of upgrades are increas-

ingly imposing various risks to development organizations. One such risk is that often once the

software update is rolled out, the changes implemented may be of little value to the users. This

requires companies to continuously discover what customers need through direct customer feed-

back and observation of usage behavior. To achieve that, companies are recognizing the need to

transition their traditional research and development (R&D) activities which are mainly backed

up by opinion-based decision-making towards data-driven systems that support continuous cus-

tomer feedback loop (Fagerholm et al., 2014). The use of data to inform decision-making in

software development is well-established, with numerous studies highlighting its benefits through

various approaches and case studies (Schellong et al., 2017; Berndtsson et al., 2018). The rise

of smartphones, cloud computing, and web applications, combined with advanced techniques

such as web and data mining, has significantly increased the availability of usage data. This

data has been utilized in areas like personalization, system optimization, site enhancement,

business intelligence, and usage characterization. For instance, Han et al. (2012) employs lo-

cally running software on users’ devices to analyze the resulting data and identify performance

issues. Similarly, (Pachidi et al., 2014) propose a framework for analyzing operational software

data, utilizing three distinct data mining techniques — classification analysis, user profiling, and

clickstream analysis to support data-driven decision-making. While many existing monitoring

solutions focus on individual interfaces, such as web browsers, or operational metadata, there

is a notable gap in addressing usage data across multiple interfaces comprehensively (Kesavulu

25

Usage Analytics: Optimizing Feature Prioritization in Software Development

et al., 2017b). The usage data extraction framework proposed in this research bridges this gap

by integrating data from web browsers, mobile applications, and command-line interfaces. This

holistic approach ensures a complete understanding of user interactions and critical features,

aligning with the goals of this thesis to provide actionable insights for application optimization.

Another notable approach to understanding how users use the software application is the

experiment-driven method where the deployment of software is seen not as the delivery of a

final product but as a way to start, test, and revise a small functionality of the software. This

requires the ability to build data collection components and the capability to use the collected

data effectively (Olsson et al., 2012; Fagerholm et al., 2014). Incorporating experimentation into

the development process of a software product not only allows for quick delivery of updates but

also helps the software developers make decisions based on user data rather than on just opinions

from the experts (Rissanen and Munch, 2015). With many organizations moving toward agile

development and adopting experiment-driven approaches to rapid delivery of software updates,

several models have been developed that aim to support and implement the experimentation

process. Although there are differences in the models, many of them resemble the build-measure-

learn feedback loop which starts by forming one or more hypotheses that need to be tested. The

build step focuses on creating a minimum viable product (MVP) that has been instrumented

for data collection. The Measure step focuses on using the MVP in a test, thereby collecting

data. Once the test has been conducted, the collected data is analyzed in order to validate

or invalidate the formed hypotheses based on which a decision can be made to move the idea

to the next stage (i.e., implement a full product or feature), correct the course to test a new

fundamental hypothesis or stop (Ries, 2011). These experiment-driven models mainly focus on

the hypotheses formed, which inhibits the range of outcomes which could be exhibited by the

users once the feature or functionality is implemented. It is possible for some uncertainty to

exist once the decided update is deployed into production.

2.1 Typical Problems in Software Development

In this section, we discuss the typical problems faced by software developers and architects in

the process of developing and deploying software applications. The problems discussed in this

section are mainly related to the software development process and the software architecture.

Since the software development process is a complex process, it is difficult to identify the

26

Usage Analytics: Optimizing Feature Prioritization in Software Development

exact cause of a problem. Problems are often caused by a combination of factors such as the

software architecture, the software development process, the software development team, the

software development tools and the software development environment. Additional factors that

influence the problems in the software development process are the environment in which the

software is deployed and served, and recently the cloud computing environment.

2.1.1 Resource Provisioning

A typical problem in a cloud-based environment is the network resource management, for ex-

ample, the acceptable Virtual Machine (VM) configuration to minimize the resource consumed

by certain services deployed on these VMs. A common problem experienced in data centers

and utility clouds is the lack of knowledge about the mappings of the services being run by, or

offered to, external users to the sets of virtual machines (VMs) that implement them (Wang

et al., 2011). It can be done by exploiting analytics methods, for example by predictive analysis

of the usage data from the systems logs from each VM, to predict the suitable configuration for

future VM deployments.

For in-time decision-making, Wang et al. (2011) proposed a system integrating monitoring

with analytics, termed Monalytics, which can capture, aggregate, and incrementally analyze

data on-demand and in real-time, thus increasing accuracy and reducing human intervention in

the analysis process. It was done by applying a clustering algorithm and a top-k flow analysis

on the data gathered from the CPU usage data on each VM, identifying the VMs that are

responsible for the majority of the traffic flow in the group (Kumar et al., 2004). This provides

information on critical VM combinations to include in the same group to achieve maximum cost

benefit during VM migration.

Usage data on VM can also be exploited to predict VM states that can be used as the

inputs of the existing networking capacity management techniques. For example, the authors

Sun (2016) proposed a method named Smart Predictive Capacity Management (SPCM) that is

designed to assist cloud networking deployment in estimating the acceptable network capacity

for a specific configuration of interdependent VMs by predicting individual VM states. It is

done by applying Markov chain techniques to address the data analytics for potential states in a

heterogeneous cloud computing environment. This work could help enterprises to optimize the

VM configurations to attain significant performance improvement.

27

Usage Analytics: Optimizing Feature Prioritization in Software Development

2.1.2 Problem Diagnosis

With the increasing scale and complexity of cloud-based applications, it has become more and

more difficult for system operators to understand the behaviors of systems for tasks such as

system problem diagnosis. For example, system operators need to understand system execution

behaviors to identify symptoms and root causes of the anomalous nature of the system. System

behaviors include a series of actions executed by the system and the corresponding changes in

the system states. Although operators usually investigate a system starting from a specific state

of interest, e.g., a hang state or failure state, it is critical to identify the series of states the

system traversed to reach the current unstable state.

The authors Fu et al. (2013) proposes a new approach for the contextual analysis of system

logs to understand a system’s behaviors better. In particular, they used execution patterns

extracted from the system logs that ultimately reflect the run-time behavior of the application,

and propose an algorithm to mine execution patterns from the system logs. Based on the

execution patterns, their approach further learns the essential contextual factors by modeling

the relationships among execution patterns that are responsible for the execution of specific

branches of the system.

Inspired by a study by the authors Fu et al. (2013), analyzing the application logs could

help to understand better the correlation between user behaviors and the corresponding system.

In particular, using the Formal Concept Analysis (Ganter and Wille, 1997) to mine execution

patterns from the usage data from all sources: application, hosting VM(s), and underlying

cloud logs. The execution patterns in this context can be considered reflections of the user’s

interactions with the application. The mining and learning results can help system operators

understand both the behaviors of the customers as well as the execution logic of their services

and applications.

2.1.3 Understanding User Satisfaction

A typical way to access cloud-based applications by the end-user is through a web browser.

Data analytics techniques, e.g., web-mining, in this way, can be employed to obtain interaction

insights. In (Bucklin and Sismeiro, 2009a), the authors provided an overview of Clickstream

data, defined as the electronic record of a user’s activity, representing the traces an end-user

takes while accessing the cloud application. Analyzing such kind of information can discover

user satisfaction with the provided services based on the interaction of the users (obtained via

28

Usage Analytics: Optimizing Feature Prioritization in Software Development

the number of clicks, time spent, and other usage data).

User satisfaction is a critical aspect of software development, often assessed post-deployment.

However, existing literature lacks detailed methods for analyzing user satisfaction at a granular

level. Studies by Smith and Brown (2019); Johnson and Smith (2019) highlight the impor-

tance of user feedback but do not provide robust frameworks for real-time satisfaction analysis.

Additionally, empirical studies such as those conducted by Martin et al. (2018) emphasize the

need for continuous user feedback loops, yet practical implementations remain sparse. This gap

underscores the necessity for advanced usage analytics to capture nuanced user interactions and

satisfaction metrics throughout the software lifecycle.

2.2 Concept of Features in Software Development

In software development, a feature is a component of software functionality, complementing the

core software while adding additional value (adapted from (De Chaves et al., 2011)). Typically,

features are added incrementally, at various stages in the life-cycle, often by different groups

of developers. Although the companies are aware that some features, at some point in time,

cost more than what they add in terms of value, they may not have the data to support this

and to understand when this happens. Although there are techniques available for collecting

user feedback to understand which features are useful to the users, yet rarely answer why those

features are important for them and also these feedback are typically not applied as part of a

continuous feedback loop. As a result, the selection and prioritization of features are far from

optimal, and the product may deviate from what the users need (Creswell, 2002).

Over the decades, methodologies like Feature Modeling (Riebisch, 2003) and the integration

of features in agile frameworks (Beck et al., 2001) have emphasized iterative and user-centered

design. These approaches align with the goals of identifying core user needs and adapting

features to fulfill them dynamically. Studies by Olsson and Bosch (2014a) highlight the signifi-

cance of continuous feedback loops in refining feature relevance and performance. Features are

commonly classified into functional and non-functional types, each playing distinct roles in a

software system’s architecture. Functional features address specific user requirements, such as

a file upload system, while non-functional features improve underlying aspects like security or

scalability (Boehm, 1988).

To bridge the gap between action-based results and feature-centric insights, Chapter 4 pro-

29

Usage Analytics: Optimizing Feature Prioritization in Software Development

vides an in-depth discussion on the definition and role of features in software analytics. It

emphasizes the distinction between functional and non-functional features, highlighting their

impact on software performance and user satisfaction. The chapter outlines the methodologies

used to define and identify features, such as reviewing application catalogs, analyzing version

logs, and conducting stakeholder interviews. These approaches ensure that features are clearly

understood and categorized to support meaningful usage analysis. By connecting features with

user interaction data, the chapter demonstrates how these insights are instrumental in refining

the Usage Analytics Method to prioritize features effectively and align them with user needs

2.2.1 Action-based Usage Analysis

User actions like clicks, hovers, or text entries are integral to analyzing software usage. These

actions reflect how users engage with specific features, offering measurable insights into their

frequency, duration, engagement patterns, and overall behavioral trends. In the Usage Analytics

Method (UAM), focusing on action-based metrics enables developers to assess the effectiveness

and relevance of software features, ensuring alignment with user needs, expectations, and system

goals (Olsson and Bosch, 2014a; Beck et al., 2001). However, action-based results are not syn-

onymous with feature-based analyses. User actions often represent only fragments of a feature’s

lifecycle or composite functionality. For example, “time spent” on a feature captures interaction

duration but may not reveal deeper contextual insights like task success, error rates, or user

satisfaction levels (Tang and Zhang, 2011). Similarly, click frequencies can indicate feature pop-

ularity but may fail to provide insights into the efficiency or quality of the interactions (Riebisch,

2003).

Mapping Actions to Features

To extract more meaningful insights, it is critical to map user actions to the broader goals and

lifecycle of software features. This requires deconstructing features into measurable components

and aligning these with action-based metrics. For instance:

1. A file upload feature might be analyzed based on metrics like upload success rates, upload

speeds, and file sizes.

2. A chat feature could be evaluated based on metrics such as message delivery times, message

read receipts, and user engagement rates.

3. A search feature can be analyzed based on metrics such as query completion time, accuracy

30

Usage Analytics: Optimizing Feature Prioritization in Software Development

of results, and frequency of use.

By bridging user actions with these granular analyses, developers can better understand both

the direct and indirect impacts of features on user experience and system performance.

Adoption of action-based analysis in UAM

Action-based metrics were adopted in the Usage Analytics Method (UAM) for several rea-

sons, rooted in their practicality and capacity to provide insightful data for software evaluation

and refinement. User actions, such as clicks, navigation paths, and interaction durations, are di-

rectly observable through modern analytics tools embedded within software applications. These

tools enable developers to collect data efficiently and with minimal disruption to the user experi-

ence, facilitating real-time and post-hoc evaluations of system performance and user engagement

(Karlsson et al., 2007a). The use of these metrics extends beyond data collection, as they serve

as proxies for understanding complex user behaviors. By analyzing patterns in user actions,

developers can infer intentions, identify usability bottlenecks, and prioritize features that align

with user needs. This foundational understanding of user behavior is critical for iterative im-

provements, ensuring that software systems remain relevant and user-centered (Pachidi et al.,

2014). Additionally, action-based metrics are highly scalable, making them suitable for appli-

cations ranging from small-scale experiments to enterprise-level deployments. They allow for

the consistent collection and analysis of data across diverse user bases and platforms, adapting

to dynamic and evolving software ecosystems. This scalability ensures that the insights derived

from these metrics remain robust and applicable across various contexts, enhancing their utility

in guiding software development decisions (Kang et al., 1990).

Despite their utility, action-based metrics should be seen as the starting point rather than the

endpoint of usage analysis. Complementary methods, such as qualitative user feedback, A/B

testing, and machine learning models, can provide additional depth. For example, feedback

loops derived from user surveys can contextualize quantitative metrics, revealing underlying

motivations or pain points. Machine learning techniques can identify patterns in user actions

that may be indicative of latent needs or preferences Tang and Zhang (2011). To address these

gaps, the UAM integrates a layered approach that combines action-based metrics with higher-

level feature evaluations and contextual analysis. This hybrid approach ensures that software

developers are equipped with a comprehensive toolkit for assessing user engagement and feature

utility, ultimately driving better-informed decisions in the design and refinement processes.

31

Usage Analytics: Optimizing Feature Prioritization in Software Development

2.3 Role of Usage Data in Software Development Life-cycle

Agile software development is well-known for its focus on close customer collaboration and

customer feedback (Abrahamsson et al., 2002; Mougouei and Powers, 2017). In emphasizing

flexibility, efficiency and speed, agile practices have led to a paradigm shift in how software is

developed. The concept of continuous deployment, i.e. the ability to deliver software function-

ality frequently to customers and subsequently, the ability to continuously learn from real-time

customer usage of software, has become attractive to companies due to the potential of having

even shorter feedback loops (Creswell, 2002; Chen et al., 2011; Fabijan et al., 2016b). To re-

alize faster release cycles of software applications, companies embraced cloud technologies for

their built-in database, security, workflow, user interface, and other tools that help in building

powerful business applications, mobile applications, and websites. Since the entire application

is hosted on the cloud, customers need not worry about IT Infrastructure, upgrades, updates,

up-time and backups. The adoption of cloud computing has shown a different approach to

managing requirements, adding frequent and rigorous experimentation to the development pro-

cess. The combination of continuous deployment and cloud paradigms enables faster delivery

of applications to gain knowledge regarding the success of the changes implemented to the ap-

plication in the post-deployment stage. Applications that run in the cloud are delivered as a

service so companies do not have to buy and maintain hardware and software to run them or

IT teams to manage and maintain complicated deployments. Although the responsibility of

software development activities such as Requirement Gathering, Analysis, Design, Construction

(Development) and Testing are shared between the software developer and the cloud provider,

the deployment process is mainly under the responsibility of the cloud provider (Olsson and

Bosch, 2014c). However, while agile practices have succeeded in involving the customer in the

development cycle, there is an urgent need to continuously learn from customer usage of software

also after delivering and deployment of the software product (Iivari et al., 2000; Krusche and

Alperowitz, 2014). Typically, feedback on a software system is collected during pre-deployment

phases, i.e. before and during development. Most often, this is done by applying techniques

that allow customers to engage in problem definition, requirements engineering and system eval-

uation and validation. The collection of customer feedback has always been important for R&D

teams in order to understand better what customers want, R&D teams are becoming increas-

ingly multi-disciplinary to include all functions, that the full potential of customer data can be

32

Usage Analytics: Optimizing Feature Prioritization in Software Development

utilized (Montes et al., 2013). Applications evolve over time and hence, application character-

istics need to be adjusted, adapted and updated according to emerging customer requirements

and needs. This implies that mechanisms for post-deployment customer collaboration are as

important as those used during the pre-development and development phases of a system. One

technique that has emerged due to the online nature of most software-intense systems today

is the opportunity to continuously collect post-deployment data, i.e. data generated by the

product after commercial deployment. This data can be operational data reflecting product

performance, diagnostic data recording product behavior, or it can be data indicating feature

usage. For online technologies such as Web 2.0 software, software-as-a-service systems, and

cloud computing services, the collection of post-deployment data is a well-established technique

used for continuous collection of information about product usage (Bosch, 2012; Helfert et al.,

2012; Montes et al., 2013; Bauer et al., 2017).

2.4 Analysis Techniques for Software Feature Usage

In software development, a feature is a component of software functionality, complementing the

core software while adding additional value (adapted from (De Chaves et al., 2011)). Typically,

features are added incrementally, at various stages in the life-cycle, often by different groups

of developers. Although the companies are aware that some features, at some point in time,

cost more than what they add in terms of value, they may not have the data to support this

and to understand when this happens. Although there are techniques available for collecting

user feedback to understand which features are useful to the users, yet rarely answer why those

features are important for them and also these feedback are typically not applied as part of a

continuous feedback loop. As a result, the selection and prioritization of features are far from

optimal, and the product may deviate from what the users need (Creswell, 2002).

2.4.1 Usage Data and User Feedback Collection Techniques

Five electronic database resources were used to primarily extract data for synchronizations in

this research. These include IEEE Xplore, ACM Digital Library, ScienceDirect, Springer, and

Google Scholar. Title, abstract and index terms were used to conduct a search for published

journals papers, conference proceedings, workshops, symposiums, book chapters and IEEE bul-

letins. The literature review was conducted by searching for articles with the keyword com-

33

Usage Analytics: Optimizing Feature Prioritization in Software Development

bination “quantitative feedback” OR “usage data” AND “software” AND “deployment” OR

“development” in the title, abstract or index terms resulting in around 300 articles. Included

papers are only written in the English language, and published in conferences and journals in

the relevant computer science and engineering domains resulting in 140 papers. Thereafter,

papers are excluded by carefully examining the title and abstract limiting the number of articles

to around 60. Furthermore, in the next iteration, additional relevant papers are selected based

on backward citations in the selected papers. Finally, a total of 24 papers were deemed highly

relevant to this research.

IEEE
Xplore ACM Science

Direct

Springer Google
Scholar

D
at

ab
as

es

 ”quantitative feedback” OR “usage
data” AND “software”

AND ”deployment” OR
”development”K

ey
w

or
ds

Search

Title, Abstract or Index 700

Relevant CSE domains 60

Read Title & Abstract

Backward citations

24

Exclusion

Exclusion

Inclusion

Figure 2.2: Summary of Systematic literature review process followed for reviewing usage data
and user feedback collection techniques

Post-deployment feedback is critical in the software development lifecycle to ensure that

applications evolve based on real user needs and behavior. This section consolidates the user

data collection techniques employed by various researchers, emphasizing their significance in

gathering comprehensive and actionable user feedback post-deployment. Table 2.1 lists different

user data collection techniques employed in software development process, highlighting their

application in pre-development, development, and post-deployment stages

1. Automated Feedback Mechanisms are embedded within software applications to col-

lect user data in real-time. These tools can prompt users for feedback during their inter-

action with the software and collect data on usage patterns without requiring active user

34

Usage Analytics: Optimizing Feature Prioritization in Software Development

Table 2.1: Table summarizing the user data collection techniques used in different stages of the
software development process

Reference

Software development stage

Pre-
development

Development Post Deploy-
ment

F
2F

C
o
m
m
.

P
ro
to
ty
p
es

C
om

m
.
to
o
ls

U
se
r
a
s
D
ev
el
op

er

U
se
r
A
ct
iv
it
ie
s

E
x
p
er
im

en
ts

D
ev
el
o
p
er

a
s
U
se
r

S
ta
n
d
a
lo
n
e
A
p
p
n
.

In
te
gr
at
ed

F
ee
d
b
a
ck

P
ro
d
u
ct

U
sa
ge

D
at
a

S
o
ci
a
l
M
ed

ia

B
u
g/

C
ra
sh

R
ep

or
ts

O
n
li
n
e
F
or
u
m
s

Maalej et al. 2009 X X X X X X

Muthitacharoen and Saeed
2009

X X X

Wilcox et al. 2010 X X

Labib et al. 2010 X

Schneider et al. 2010 X X

Chen et al. 2011 X X X

Arias et al. 2012 X X X

Olsson et al. 2012 X X

Poppendieck and Cusumano
2012

X

Hess et al. 2013 X X X X X X X

Jakobi and Stevens 2013 X X

Lee et al. 2013 X X X X

Ogonowski et al. 2013 X X X X X X X X X X X

Holmström Olsson and Bosch
2013

X X X

Pagano and Bruegge 2013 X X X X X

Fagerholm et al. 2014 X X X

Krusche and Alperowitz 2014 X X X X X X X

Krusche and Bruegge 2014 X

Meijer and Kapoor 2014 X

Claps et al. 2015 X

Fabijan et al. 2015 X X X X X X X X X

Lindgren and Münch 2016 X X

Bauer et al. 2017 X X X X

Mougouei and Powers 2017 X X X

Hamiot and Verlaine 2024 X

Rahimi and Jahanian 2023 X X X X

Amininiaki and Saidi 2024 X X X X X

Ferreira and Costa 2024 X X X X

Iqbal and Ahmed 2024 X X X

Masoudi and Ghassemi 2024 X

Sabbagh and Khalil 2024 X X X

Rangel and Martinez 2024 X X X

Tarmuji and Abdullah 2024 X X X X X

35

Usage Analytics: Optimizing Feature Prioritization in Software Development

input. For instance, Maalej et al. (2009) and Chen et al. (2011) highlight the efficiency

of automated feedback systems in capturing immediate insights into user interactions, fa-

cilitating timely adjustments and continuous improvement. Hamiot and Verlaine (2024)

further discuss the integration of automated feedback with social media analysis, enhanc-

ing the scope of real-time feedback collection. The study explore the utilization of social

media for gathering post-deployment feedback. The study demonstrates how social lis-

tening tools can be used to monitor mentions of software products across various social

media platforms. By analyzing these mentions, developers can identify emerging issues

and trends that might not be reported through formal channels like bug reports. This

proactive approach to feedback collection helps in maintaining a high level of user satis-

faction and quickly addressing potential public relations issues. However, while efficient,

these systems can sometimes be intrusive, leading to user fatigue. Additionally, they may

not capture the depth of qualitative insights that manual feedback methods can provide,

which can limit the understanding of the context behind user actions.

2. In-app feedback forms are another popular method for collecting user feedback di-

rectly within the software interface. These forms can be triggered contextually based on

specific user actions or at predetermined intervals, allowing for immediate and relevant

feedback collection. Wilcox et al. (2010) and Arias et al. (2012) discuss the benefits of

in-app feedback forms in collecting qualitative user insights that are contextually rele-

vant and immediate. Rahimi and Jahanian (2023) highlight the use of in-app feedback

combined with social media insights to provide a more comprehensive view of user ex-

periences. The study highlights how user-generated content on platforms like Twitter,

Reddit, and dedicated forums can provide invaluable insights into user satisfaction and

pain points. By employing natural language processing (NLP) techniques, developers can

systematically analyze this feedback to identify recurring issues and gauge the sentiment

surrounding their software. This method enhances the post-deployment phase by offering

a continuous, real-time stream of user opinions and experiences, which can be directly

fed into the development cycle to prioritize bug fixes and feature enhancements. Despite

these advantages, in-app feedback forms can interrupt the user experience, potentially

leading to incomplete or hurried responses. They also rely on user initiative to provide

feedback, which can result in lower response rates. Social media monitoring tools ana-

lyze various forms of user-generated data, such as engagement metrics, sentiment analysis,

36

Usage Analytics: Optimizing Feature Prioritization in Software Development

and behavioral trends, to provide actionable information for decision-making. While the

primary context of social media monitoring tools is marketing and content optimization,

their underlying principles of data collection, analysis, and application align closely with

the objectives of usage analytics methods in software systems.

3. Log analysis and event monitoring involve capturing detailed records of user interac-

tions with the software. Event logs track every action a user takes within the application,

and analyzing these logs can reveal usage patterns, errors, and other significant events that

indicate user behavior and software performance. Hess et al. (2013); Holmström Olsson

and Bosch (2013) emphasize the value of event logs in detecting subtle usage patterns and

anomalies, providing a comprehensive understanding of how users interact with software.

Amininiaki and Saidi (2024) discuss the use of advanced analytics techniques to interpret

log data, enhancing its utility in the development process. The study highlights how these

tools can be used throughout the software development lifecycle to maintain a continuous

feedback loop. By integrating feedback mechanisms directly into the software, developers

can collect usage data in real-time, allowing for more agile and responsive development

practices. This approach ensures that user feedback is always at the forefront of develop-

ment decisions, leading to a more user-centric product. However, log analysis can generate

large volumes of data, making it challenging to extract meaningful insights without ad-

vanced analytical tools. Moreover, it may not capture the context or reasons behind user

actions, limiting its effectiveness in understanding user intent.

4. Surveys and questionnaires are widely used to collect structured feedback from users

post-deployment. These tools can be distributed via email, embedded within the applica-

tion, or presented on the company website, allowing for a broad reach. Muthitacharoen

and Saeed (2009); Fabijan et al. (2015) highlight the importance of surveys in gathering

detailed user opinions and satisfaction levels, complementing automated data collection

methods. Ferreira and Costa (2024) highlight the integration of surveys with other user

feedback mechanisms to improve response rates and the quality of collected data. By

involving users early through prototypes and observing their activities, developers can

gather detailed feedback on feature usability and performance. Structured experiments,

such as A/B testing, further refine this feedback, ensuring that only the most effective and

user-friendly features make it into the final product. This method contributes to a more

37

Usage Analytics: Optimizing Feature Prioritization in Software Development

efficient development process by reducing the number of iterations needed to achieve a

satisfactory product. However, surveys and questionnaires often suffer from low response

rates and can be subject to response biases. They also typically provide feedback only at

specific intervals, which may miss real-time issues, making them less effective for immediate

feedback needs.

5. A/B testing is a method where two versions of a software application are compared

to determine which version performs better in terms of user engagement and satisfaction.

Users are randomly assigned to one of the two versions, and their interactions are monitored

and analyzed. Lee et al. (2013); Olsson et al. (2012) demonstrate the effectiveness of A/B

testing in isolating the effects of specific changes, enabling data-driven decisions about

software improvements. Iqbal and Ahmed (2024) discuss how A/B testing, combined

with online forum feedback, can enhance the reliability of the findings and provide more

nuanced insights into user preferences. The paper highlights how controlled experiments

can be used to test new features or changes in a live environment with a subset of users.

Feedback collected from these experiments, combined with discussions and reports from

online forums, provides a robust dataset for analyzing user behavior and preferences. This

dual approach ensures that changes are data-driven and user-approved before being rolled

out to the entire user base. However, A/B testing can be complex to design and interpret,

especially if multiple variables are involved. It also requires a sufficiently large user base

to produce statistically significant results, which may not always be feasible.

6. Clickstream data analysis involves tracking the sequence of clicks made by a user while

navigating through a software application. Analyzing this data helps identify user navi-

gation patterns and potential friction points. Holmström Olsson and Bosch (2013); Bauer

et al. (2017) discuss how clickstream analysis provides insights into user journeys, helping

developers optimize the user interface and overall user experience. Masoudi and Ghassemi

(2024) explore the use of enhanced clickstream analysis techniques to better understand

the context of user actions. By implementing controlled experiments, developers can test

hypotheses about user behavior and feature effectiveness. The results of these experiments

provide empirical evidence that guides development decisions, ensuring that the final prod-

uct aligns with user needs and preferences. Despite its advantages, clickstream data can

indicate what users do but not why they do it, lacking the context behind user actions.

38

Usage Analytics: Optimizing Feature Prioritization in Software Development

It also generates vast amounts of data that require significant processing and analysis to

derive actionable insights.

7. Bug tracking and incident reports are systems that collect reports of software defects

and incidents submitted by users. These reports help identify and prioritize issues that

need to be addressed to improve software reliability and performance. Pagano and Maalej

(2013); Labib et al. (2010) emphasize the role of bug tracking in maintaining software

quality and addressing user-reported problems promptly. Sabbagh and Khalil (2024) dis-

cuss the integration of bug tracking with usage data and online forums to create a more

comprehensive feedback loop. By aggregating data from these sources, developers can

create a comprehensive view of how users interact with their software and where they

encounter problems. This holistic approach allows for more precise identification of issues

and better prioritization of development tasks, ultimately leading to a more stable and

user-friendly product. However, bug reports often require users to take the initiative to

submit them, which can result in under-reporting. Additionally, they tend to focus on

negative experiences, potentially missing positive user feedback, which is also valuable for

understanding what works well in the software.

8. Real-time dashboards and analytics platforms provide immediate visibility into

user behavior and software performance metrics. These tools aggregate data from various

sources and present it in a visual, easily interpretable format. Krusche and Alperowitz

(2014); Mougouei and Powers (2017) highlight the benefits of real-time dashboards in fa-

cilitating quick responses to emerging issues and trends in user behavior. Tarmuji and

Abdullah (2024) expand on the use of real-time dashboards integrated with communica-

tion tools to improve collaboration and feedback interpretation. They argue that direct

interactions between developers and users, facilitated by modern communication tools like

video conferencing and collaborative platforms, ensure a clearer understanding of user

needs and more precise feedback. These techniques help bridge the gap between develop-

ers and end-users, fostering a more user-centric development process where feedback is not

only collected but also interpreted correctly and acted upon swiftly. While offering valu-

able real-time insights, these platforms can be resource-intensive to set up and maintain.

They also require careful interpretation to avoid misinterpreting data trends, which can

lead to incorrect conclusions about user behavior.

39

Usage Analytics: Optimizing Feature Prioritization in Software Development

9. User interviews and focus groups involve direct interaction with users to gather in-

depth qualitative insights into their experiences and preferences. These methods provide

rich contextual information that complements quantitative data. Ogonowski et al. (2013);

Bauer et al. (2017) discuss how user interviews and focus groups uncover nuanced user

needs and satisfaction drivers that may not be evident from automated data collection

alone. Rangel and Martinez (2024) highlight the combination of prototypes with user

interviews to validate design concepts early in the development process. The paper dis-

cusses the implementation of interactive prototypes that allow potential users to engage

with a simplified version of the software. Feedback from these interactions is collected

through user activities and structured experiments, providing early validation of design

concepts and feature functionality. This approach helps in refining the user interface and

user experience (UI/UX) before substantial resources are committed to full-scale devel-

opment, thereby reducing the risk of costly redesigns. However, these methods can be

time-consuming and may not be scalable for large user bases. They also rely on the sub-

jective interpretation of user feedback, which can introduce biases, making it challenging

to generalize the findings.

These studies contribute significantly to the software development process by emphasizing

the importance of integrating user feedback at various stages. They highlight how modern

techniques such as social media analysis, interactive prototypes, controlled experiments, and

integrated feedback mechanisms can provide more detailed and actionable insights into user

behavior and preferences. By leveraging these techniques, developers can make more informed

decisions, reduce the time and cost associated with iterative development, and ultimately deliver

higher-quality software that meets user needs more effectively.

The user data collection techniques employed throughout the software development process,

while invaluable, come with their own set of challenges that developers must navigate. Au-

tomated feedback mechanisms, although efficient in capturing real-time user interactions, can

sometimes be intrusive, leading to user fatigue and potentially limiting the depth of qualitative

insights obtained. In-app feedback forms, while contextually relevant, can interrupt the user ex-

perience, resulting in incomplete or hurried responses, and often suffer from low response rates

due to reliance on user initiative. Log analysis and event monitoring generate vast amounts of

data, making it challenging to extract meaningful insights without advanced analytical tools,

and they often lack the context behind user actions. Surveys and questionnaires, despite their

40

Usage Analytics: Optimizing Feature Prioritization in Software Development

broad reach, frequently suffer from low response rates and response biases, and typically provide

feedback only at specific intervals, missing real-time issues. A/B testing, although effective in

isolating the effects of specific changes, can be complex to design and interpret, requiring a

sufficiently large user base to produce statistically significant results. Clickstream data analysis

provides valuable insights into user navigation patterns but lacks the context behind user ac-

tions and generates data that require significant processing to derive actionable insights. Bug

tracking and incident reports depend on user initiative for submission, leading to potential

under-reporting, and focus primarily on negative experiences, potentially overlooking positive

feedback. Real-time dashboards and analytics platforms, while offering immediate insights, are

resource-intensive to set up and maintain, and require careful interpretation to avoid misinter-

preting data trends. Lastly, user interviews and focus groups provide rich qualitative insights

but are time-consuming, may not be scalable for large user bases, and rely on subjective in-

terpretation, introducing biases that can challenge the generalization of findings. Collectively,

these challenges underscore the need for a balanced approach that integrates various feedback

mechanisms, advanced analytical tools, and thoughtful interpretation to effectively leverage user

feedback in the software development process.

2.4.2 Traditional Methods of Feature Prioritization

A new systematic literature review was conducted to explore and to establish state-of-the-art

methods and techniques for prioritizing features of the software applications. The systematic

literature review conducted for this research involved a rigorous and iterative process to ensure

the inclusion of high-quality and relevant studies. The final selection of 32 papers provides a

solid foundation for understanding the current state of feature prioritization and usage analytics,

highlighting both the strengths and limitations of existing methods and underscoring the need for

the proposed research. The detailed insights gained from this review inform the development of a

novel usage analytics method aimed at improving feature prioritization in software development.

Traditional methods of feature prioritization in software development often rely on techniques

such as stakeholder analysis, cost-value analysis, and voting mechanisms. These methods are

well-documented in the literature but have several limitations that restrict their effectiveness in

dynamic and complex development environments.

1. Stakeholder Analysis involves identifying and prioritizing features based on input from

key stakeholders. While this method ensures that the most influential voices are heard, it

41

Usage Analytics: Optimizing Feature Prioritization in Software Development

IEEE
Xplore

ACM
Science
Direct

Springer
Google
Scholar

Da
ta

ba
se

s

Search

"feature prioritization” AND/OR "usage analytics”
AND/OR "software development” AND/OR "user

interaction data" OR "feedback mechanisms"

Ke
yw

or
ds

Relevant CSE Domain 800

Title, Abstract 100

Detailed Review

Relevance to research

32

Figure 2.3: Summary of Systematic literature review process followed for reviewing feature
prioritization process in software development

42

Usage Analytics: Optimizing Feature Prioritization in Software Development

can lead to biases and does not always reflect the actual usage patterns and needs of end-

users. Studies by Karlsson et al. (2007b) highlight the limitations of stakeholder-driven

approaches, particularly in large-scale projects. More recent work by Gorschek et al. (2017)

has further explored the limitations and potential biases inherent in stakeholder analysis,

emphasizing the need for more objective methods to complement stakeholder input.

2. Cost-value analysis assesses features based on their implementation cost and expected

value to the user. This method provides a structured approach to decision-making but

often lacks real-time feedback and can be limited by the accuracy of cost and value esti-

mates. As noted by Ruhe and Greer (2002), the subjective nature of these estimates can

result in sub-optimal prioritization. More recent studies by Zhang et al. (2018); Xia et al.

(2019) have explored advanced techniques to improve the accuracy of cost-value analyses,

including the use of machine learning to predict implementation costs and user value more

accurately

3. Voting mechanisms, such as the Planning Poker technique used in Agile methodologies,

allow team members to vote on feature priorities. While this democratic approach en-

courages team involvement, it can be influenced by group dynamics and may not always

lead to the selection of the most critical features. Research by Moløkken-Østvold and

Jørgensen (2003) discusses the potential for consensus bias in these methods. A study by

Kakar (2020) has further examined how group dynamics and the social influence of team

members can affect the outcomes of voting mechanisms, suggesting ways to mitigate these

biases.

Advanced Usage Analytics in Feature Prioritization

Advanced usage analytics involves the systematic collection and analysis of data generated by

users as they interact with software applications. This approach leverages various data sources,

including log files, user feedback, and telemetry data, to provide a detailed understanding of

how features are used and their impact on user experience.

1. User Interaction Metrics: Key metrics such as frequency of use, session duration,

and error rates can provide valuable insights into which features are most important to

users and where improvements are needed. Studies by Buse and Zimmermann (2012b)

emphasize the importance of these metrics in identifying critical features. More recent

43

Usage Analytics: Optimizing Feature Prioritization in Software Development

research by Shams et al. (2020) has expanded on this by identifying additional metrics,

such as user engagement levels and feature abandonment rates, that can provide deeper

insights into user behavior

2. Behavioral Analysis: Analyzing user behavior patterns, such as navigation paths and

feature sequences, can reveal underlying user needs and preferences that may not be evi-

dent from explicit feedback. Research by Claypool et al. (2001c) demonstrates how behav-

ioral analysis can enhance feature prioritization. Recent studies by Müller et al. (2019);

Gupta et al. (2021) have utilized advanced techniques like sequence mining and clustering

algorithms to uncover complex behavioral patterns that inform feature prioritization.

3. Real-Time Feedback: Usage analytics can provide real-time feedback to developers,

allowing for more agile and responsive decision-making processes. As discussed by Rodden

et al. (2010a), real-time analytics enable continuous improvement and rapid adaptation to

changing user needs. Recent advancements in real-time analytics platforms, as detailed by

Liu et al. (2020), have made it easier for developers to integrate real-time data into their

workflows, enhancing their ability to respond quickly to user feedback.

Table 2.2 provides a comparative analysis of key methodologies used in the field of feature

prioritization and usage analytics, highlighting the studies and their key findings. Each study

has been carefully selected to illustrate the evolution of feature prioritization methods and the

integration of usage analytics into these processes. This analysis provides a comprehensive

overview of the strengths and limitations of each methodology, illustrating the evolution and

integration of these techniques in software development.

Methodology Studies Key Findings

Stakeholder

analysis

Karlsson et al.

(2007b), Gorschek

et al. (2017)

Identified biases in stakeholder-driven prioritization,

suggesting the need for more objective approaches to

complement stakeholder input. Explored the limi-

tations and potential biases in stakeholder analysis,

suggesting the need for more robust methods to cap-

ture diverse perspectives.

44

Usage Analytics: Optimizing Feature Prioritization in Software Development

Cost-value

analysis

Ruhe and Greer

(2002), Zhang

et al. (2018), Xia

et al. (2019)

Discussed the limitations in the accuracy of cost

and value estimates, highlighting the subjectivity in-

volved in these assessments. Improved the accuracy

of cost-value analysis using machine learning tech-

niques including neural networks, support vector ma-

chines, and ensemble methods like random forests to

better predict implementation costs and user value.

Further refined methods for predicting implementa-

tion costs and user value, integrating more sophisti-

cated analytical models.

Voting mecha-

nisms

Moløkken-Østvold

and Jørgensen

(2003), Kakar

(2020)

Highlighted the potential for consensus bias in group

decision-making, emphasizing the influence of group

dynamics on the outcomes. Examined the influence

of group dynamics on voting mechanisms, offering

insights into mitigating consensus bias in feature pri-

oritization.

Usage analyt-

ics

Buse and Zim-

mermann (2012b),

Shams et al. (2020)

Emphasized the importance of user interaction met-

rics, such as frequency of use and error rates, in iden-

tifying critical features. Identified additional metrics

for user engagement and feature abandonment, en-

hancing the understanding of user interactions with

software.

Behavioral

analysis

Claypool et al.

(2001c), Müller

et al. (2019),

Gupta et al. (2021)

Demonstrated the value of analyzing user behavior

patterns to enhance feature prioritization, particu-

larly through navigation paths and feature sequences.

Utilized sequence mining to uncover complex behav-

ioral patterns that inform feature prioritization, pro-

viding deeper insights into user needs. Applied clus-

tering algorithms to analyze user behavior, identify-

ing distinct user segments and their preferences to

guide feature development.

45

Usage Analytics: Optimizing Feature Prioritization in Software Development

Real-time

feedback

Rodden et al.

(2010a), Liu et al.

(2020)

Discussed the benefits of real-time analytics for ag-

ile decision-making, allowing for continuous improve-

ment and rapid adaptation to user needs. Detailed

advancements in real-time analytics platforms, high-

lighting the impact of immediate feedback on soft-

ware development efficiency.

Hybrid ap-

proaches

Olsson and Bosch

(2014c), Alahyari

et al. (2017)

Provided frameworks for integrating stakeholder in-

put with usage data, showing the effectiveness of

combining traditional methods with data-driven in-

sights. Demonstrated the effectiveness of hybrid ap-

proaches in feature prioritization, combining qualita-

tive and quantitative data for better decisions.

Data-driven

decision-

making

Fitzgerald and Stol

(2017b), Waller

and Fawcett (2020)

Outlined best practices for incorporating analyt-

ics into software development processes, stressing

the importance of data quality and governance.

Highlighted the importance of data governance and

quality in ensuring successful data-driven decision-

making frameworks in software development.

Empirical val-

idation

Kitchenham and

Charters (2004)

Highlighted the importance of validating research

methods through empirical studies to ensure the re-

liability and generalizability of findings.

Challenges

and best

practices

Sjøberg et al.

(2005), Deka and

Vemuru (2021)

Provided strategies for overcoming challenges in im-

plementing usage analytics, such as data integration

and privacy concerns. Provided practical recommen-

dations for modern software development environ-

ments, addressing common challenges in implement-

ing usage analytics.

Table 2.2: Current feature prioritization techniques and practices employed in the software
development domain

The comparison in Table 2.2 highlights several important trends and limitations in existing

tools and methodologies. Most tools excel in capturing operational metadata, such as perfor-

46

Usage Analytics: Optimizing Feature Prioritization in Software Development

mance metrics and resource utilization, but often fall short when it comes to user-level behavior

analysis. This gap is particularly significant for tools that rely exclusively on web-based moni-

toring, overlooking alternative interfaces like mobile applications and command-line tools.

Another notable observation is the limited emphasis on data completeness and reliability,

which are critical for generating actionable insights. While certain methodologies address specific

aspects of user interaction, such as clickstream analysis or session tracking, they fail to provide

a holistic view of user behavior across multiple interfaces. This limitation reduces the utility of

these tools in scenarios where comprehensive user behavior insights are necessary.

The analysis in Table 2.2 highlights the diversity of approaches used for feature prioriti-

zation, ranging from stakeholder-driven methods to advanced data-driven techniques. While

each method offers unique strengths, the table reveals several critical gaps and limitations that

necessitate the development of more comprehensive solutions.

Stakeholder-driven prioritization, for instance, is widely used due to its accessibility and

involvement of key decision-makers. However, as Karlsson et al. (2007b) and Gorschek et al.

(2017) identified, this approach is prone to biases, particularly when influential stakeholders dis-

proportionately shape priorities. Such imbalances often result in misaligned decisions that may

not accurately reflect end-user needs, underscoring the necessity of complementing stakeholder

input with objective data.

Data-driven methods, such as cost-value analysis and usage analytics, attempt to address

these limitations by introducing metrics and algorithms for prioritization. Cost-value analysis,

as discussed by Ruhe and Greer (2002), Zhang et al. (2018), and Xia et al. (2019), provides

a structured framework to assess features based on their implementation cost and user value.

However, the subjective nature of cost and value estimates remains a challenge, as noted by

Ruhe and Greer (2002). Recent advancements, such as machine learning-based enhancements

proposed by Zhang et al. (2018) and Xia et al. (2019), have improved the accuracy of these

estimates, but further refinements are needed to ensure their scalability and reliability.

Usage analytics and behavioral analysis stand out for their ability to derive insights directly

from user interactions. Buse and Zimmermann (2012b) and Shams et al. (2020) demonstrated

the potential of metrics like engagement levels and feature abandonment rates to inform decision-

making. However, these methods require robust data collection and integration mechanisms to

ensure the completeness and reliability of the extracted data. Behavioral analysis methods,

such as those employing sequence mining and clustering (Müller et al., 2019; Gupta et al.,

47

Usage Analytics: Optimizing Feature Prioritization in Software Development

2021), provide deeper insights into user patterns but are computationally intensive, which may

limit their practical applicability.

Hybrid approaches that combine stakeholder input with data-driven insights, as proposed

by Olsson and Bosch (2014c) and Alahyari et al. (2017), offer a promising middle ground.

These approaches leverage the strengths of qualitative and quantitative methods to balance

diverse perspectives, addressing the limitations of standalone techniques. Despite their potential,

the implementation of hybrid methods requires careful consideration of data integration and

governance to maximize their effectiveness.

Finally, the increasing emphasis on real-time feedback and empirical validation highlights

the evolving needs of modern software development. As noted by Rodden et al. (2010a) and

Liu et al. (2020), real-time feedback mechanisms enable agile decision-making and continuous

improvement. Empirical validation, as advocated by Kitchenham and Charters (2004) and

Sjøberg et al. (2005), ensures that proposed methods are reliable and generalizable, addressing

practical challenges such as data privacy and integration (Deka and Vemuru, 2021).

These findings from Table 2.2 underline the necessity for a comprehensive usage analytics

framework that integrates multi-interface data sources, prioritizes reliability, and bridges oper-

ational and behavioral insights. The proposed framework in this research addresses these gaps,

offering a holistic approach to feature prioritization and decision-making.

2.5 Comprehensive Overview of Data Types and Analytics Met-

rics

Understanding user behavior and prioritizing software features through advanced usage analytics

require a robust framework built on systematically identified data types and analytics metrics.

This section expands upon the foundational concepts of data collection and analysis, providing

an exhaustive catalog of data types and metrics relevant to software platforms. Furthermore, it

describes the methodological rigor employed to identify, select, and apply these elements to the

research platforms.

2.5.1 Key Data Types

Data types form the foundational layer for extracting actionable insights from user interactions.

They represent raw inputs gathered during user engagement with software platforms. Table 2.3

48

Usage Analytics: Optimizing Feature Prioritization in Software Development

outlines a detailed taxonomy of data types, emphasizing their relevance across various stages of

analysis.

Table 2.3: Summary of Data Types and Their Applications

Data Type Definition Use Cases

Event Logs Records of user actions, in-
cluding timestamps and con-
text.

Tracking user behavior, feature us-
age, and workflow patterns.

Session Data Data capturing the start and
end of a user’s interaction
with the application.

Identifying user engagement levels
and patterns.

Error Logs Records of errors encountered
by users during their interac-
tions.

Diagnosing usability issues and im-
proving system reliability.

Navigation Data Sequence of pages or screens
visited by a user.

Understanding user workflows and
pain points in navigation.

Interaction Logs Details about specific interac-
tions, such as button clicks,
form submissions, or drag-
and-drop actions.

Analyzing feature adoption and us-
ability.

Demographic
Data

Information about user at-
tributes, such as age, location,
or experience level.

Segmenting users for personalized
insights.

Feedback Data Explicit feedback provided
through surveys, ratings, or
comments.

Correlating user opinions with inter-
action data.

Performance
Data

Metrics like load times, la-
tency, and responsiveness of
features.

Evaluating system performance and
user experience.

Device and Plat-
form Data

Details about the device, op-
erating system, and browser
used.

Tailoring the user experience across
different platforms.

Usage Context Environmental data such as
time of day or location of use.

Understanding contextual factors
influencing user behavior.

The identification and utilization of key data types form the cornerstone for extracting ac-

tionable insights from user interactions in software systems. These data types not only act as

raw inputs but also enable the translation of complex behavioral patterns into meaningful soft-

ware development decisions. Particularly, they play a crucial role in prioritizing and enhancing

features based on user behavior.

Informed by an extensive systematic literature review encompassing 32 significant studies

discussed earlier, this research derived a comprehensive taxonomy of data types frequently em-

ployed in software analytics. The review synthesized insights from diverse sources to identify

data points and metrics that are foundational to understanding user behavior and their interac-

49

Usage Analytics: Optimizing Feature Prioritization in Software Development

tion with software systems. Each study was carefully analyzed to identify recurring themes and

evidence supporting the inclusion of these data types.

The importance of event logs has been consistently highlighted across studies such as those

by Lou et al. (2013); Wang et al. (2017) and Zhang et al. (2011). These logs, capturing granular

user actions complete with timestamps, context, and system responses, serve as critical tools

for debugging and comprehending interaction patterns. Similarly, session data, encompassing

the start and end points of user interactions, has been shown to enhance understanding of

engagement and retention trends, with studies like Chen et al. (2013) and Reyes (2015) providing

compelling evidence for its inclusion. This data type, enriched with metadata such as session

duration, offers valuable insights into user behavior.

Navigation data, which records sequenced logs of pages or screens visited by users, has been

another essential category supported by studies such as Xu et al. (2008); Gasparetti (2017).

These studies demonstrate how navigation data uncovers usability bottlenecks and optimizes

navigation workflows. Demographic data, encompassing attributes such as age, role, or location,

has also been pivotal in tailoring software to user needs. This is substantiated by research like

that of Muthitacharoen and Saeed (2009) and Huang and Rust (2018), which highlight its role

in enabling personalized software adaptations. Additionally, performance metrics such as load

times and system latency emerge as vital indicators, as emphasized by Puthal et al. (2015);

Montes et al. (2013) in evaluating system reliability and user satisfaction.

The critical narrative accompanying each data type underscores their categorization into

foundational and advanced metrics. Foundational metrics, such as event logs and session data,

are universally applicable for understanding basic user behaviors. Advanced metrics, like feed-

back data, discussed in studies such as Pagano and Maalej (2013), and performance data, sup-

ported by the findings of Fu et al. (2013), facilitate nuanced insights into predictive analytics and

system optimization. This categorization ensures that the taxonomy serves both generalizable

and context-specific needs in software analytics.

The derivation of this superset of data types is firmly rooted in their demonstrated utility

across varied contexts in prior research. The iterative process of refining this taxonomy in-

corporated systematic filtering and collaborative sessions with IBM developers, ensuring that

theoretical constructs aligned with practical applications. This collaborative effort validated the

industrial relevance of the data types and metrics while ensuring their adaptability to diverse

software environments.

50

Usage Analytics: Optimizing Feature Prioritization in Software Development

Furthermore, the superset was rigorously validated across multiple platforms, including IBM

Watson Workspace and Odoo Notes. Validation efforts demonstrated the adaptability of the

derived metrics in both industrial and non-industrial contexts, with the studies by Bezemer et al.

(2010) and Pachidi et al. (2014) providing examples of cross-platform applicability. The findings

highlight the necessity of extensible frameworks capable of accommodating diverse software

environments, especially in cases where access to source code may be limited. This adaptability

ensures that the research remains relevant across a spectrum of real-world applications, bridging

the gap between theoretical insights and practical software development needs.

The taxonomy of data types presented in Table 2.3 serves as a foundational framework

for the subsequent development of usage analytics methods. By systematically categorizing and

validating these data types, the research ensures that the resulting analytics framework is robust,

adaptable, and aligned with the evolving needs of software development. The taxonomy not only

captures the breadth of user interactions but also provides a structured approach to deriving

actionable insights from complex user behaviors. This foundational taxonomy forms the basis

for the subsequent identification and application of analytics metrics, enabling a comprehensive

understanding of user behavior and feature prioritization in software systems.

2.5.2 Analytics Metrics

Analytics metrics are derived from raw data types and offer actionable insights into user behav-

ior. Table 2.4 presents the metrics grouped into categories based on their purpose and utility in

feature prioritization and behavioral analysis.

Analytics metrics are derived from raw data types and offer actionable insights into user be-

havior, serving as pivotal tools for feature prioritization and behavioral analysis. The derivation

of these metrics is supported by a systematic review of 32 key studies, as outlined earlier in this

chapter, which provided a robust foundation for categorizing and refining metrics based on their

purpose and utility.

Usage metrics, encompassing metrics such as frequency of use, time spent, and session length,

are widely recognized in the literature for their role in quantifying user engagement. Lou et al.

(2013) and Reyes (2015) emphasized the criticality of measuring frequency and duration to

identify highly engaged features and assess user interaction levels. For instance, frequency of use

tracks the number of interactions with a feature over a defined period, while time spent highlights

the intensity of user engagement. These metrics are foundational in identifying patterns of user

51

Usage Analytics: Optimizing Feature Prioritization in Software Development

Table 2.4: Summary of Analytics Metrics and Their Applications

Category Metric Definition and Use Cases

Usage Metrics Frequency of Use Number of interactions with a feature
per session or time period. Useful for
identifying highly engaged features.

Time Spent Duration of interaction with a specific
feature. Indicates user engagement lev-
els.

Session Length Total time spent in a user session.
Helps identify patterns of user activity.

Behavioral Met-
rics

Feature Abandon-
ment Rate

Percentage of users starting but not
completing a task. Highlights usabil-
ity issues.

Transition Patterns Sequences of user actions. Useful for
understanding workflows and transi-
tions.

Task Completion
Rate

Proportion of successfully completed
tasks. Measures feature effectiveness.

Performance Met-
rics

Latency and Re-
sponse Time

Time taken for a feature or application
to respond. Helps optimize user expe-
rience and identify bottlenecks.

Error Rates Number of errors encountered during
interactions. Identifies problematic ar-
eas of the application.

Engagement Met-
rics

Retention Rate Percentage of users returning to use a
feature after the first interaction. As-
sesses feature stickiness.

Interaction Depth Number of levels accessed within a fea-
ture. Determines the complexity of fea-
ture usage.

Satisfaction Met-
rics

Net Promoter Score
(NPS)

Measures user satisfaction through a
single question: likelihood of recom-
mending a product.

Sentiment Analysis Emotional tone of user comments de-
rived through natural language pro-
cessing. Useful for understanding user
perception.

activity, as demonstrated in studies by Xu et al. (2008) and Gasparetti (2017).

Behavioral metrics, such as feature abandonment rate, transition patterns, and task com-

pletion rate, delve into the nuances of user workflows. Feature abandonment rate, explored in

studies by Pachidi et al. (2014) and Pagano and Bruegge (2013), identifies usability issues by

analyzing the percentage of users who initiate but do not complete a task. Transition patterns,

discussed by Ghezzi et al. (2014), reveal sequences of user actions, enabling a deeper under-

standing of user workflows and transitions between features. Task completion rate, a focus of

52

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chen et al. (2013), provides insights into the effectiveness and usability of features by measuring

the proportion of successfully completed tasks.

Performance metrics, such as latency and response time, alongside error rates, are integral to

optimizing user experience. Studies by Puthal et al. (2015) and Montes et al. (2013) underscore

the importance of monitoring system responsiveness to identify bottlenecks and enhance applica-

tion performance. Latency and response time measure the time taken for a feature or application

to respond, while error rates track the frequency of issues encountered during interactions, as

highlighted by Fu et al. (2013).

Engagement metrics, including retention rate and interaction depth, evaluate the sustained

appeal and complexity of feature usage. Retention rate, discussed by Huang and Rust (2018),

assesses feature stickiness by analyzing the percentage of users returning to use a feature after

their first interaction. Interaction depth, examined in studies such as Gasparetti (2017), mea-

sures the number of levels accessed within a feature, offering insights into user exploration and

engagement with complex functionalities.

Satisfaction metrics, such as Net Promoter Score (NPS) and sentiment analysis, provide

direct indicators of user sentiment and satisfaction. Sentiment analysis, explored by Reyes

(2015) and Pagano and Bruegge (2013), leverages natural language processing to decode the

emotional tone of user comments, offering valuable perspectives on user perception. The NPS

metric measures user satisfaction through a straightforward question about the likelihood of

recommending a product, serving as a quick yet effective tool for gauging overall satisfaction.

The Usage Analytics method offers a systematic approach to analyzing user behavioral

changes. By integrating data types and metrics into a structured framework, it bridges the

gap between raw interaction data and actionable insights. This method’s flexibility enables its

adoption across diverse platforms, ensuring that developers can tailor it to their specific needs.

Additionally, the approach emphasizes the iterative refinement of metrics, ensuring their rele-

vance over time. Developers are not constrained to the metrics demonstrated in this research

but are empowered to customize their approach, leveraging the super-set for guidance. This

comprehensive overview of data types and metrics demonstrates the rigor and adaptability of

the Usage Analytics method. The systematic process of identification, refinement, and appli-

cation ensures that the method remains relevant across various software development contexts,

providing developers with the tools needed to analyze user behavior effectively.

Developers from both IBM Academic Cloud and IBM Watson Workspace participated in a

53

Usage Analytics: Optimizing Feature Prioritization in Software Development

comprehensive year-long collaborative process that involved iterative applications of the usage

analytics method. The participants were selected for their diverse expertise, which provided a

robust foundation for refining and validating the customization of metrics and data types from

the super-set. This process emphasized inclusivity and critical evaluation at each stage, with

feedback loops designed to ensure the practicality and relevance of the findings. Participants

ranged from senior developers and architects to operational managers, bringing together a wide

array of skills including data analytics, software architecture, and full-stack development.

Each iteration involved developers systematically evaluating the proposed metrics and data

types, offering detailed feedback regarding their relevance, usability, and industrial applicability.

This iterative approach facilitated continuous improvement, ensuring that the resulting frame-

work addressed real-world challenges in feature prioritization and behavioral analysis within

software platforms.

Table 2.5: Industry Participant Demographics for Iterative Development of UAM, participants
were stakeholders of both IBM Academic Cloud and IBM Watson Workspace.

Participant Role Experience
Level

Expertise

Developer 1
(Case Study 1)

Senior Developer 10+ years Python, Java, Data Analytics,
Software Architecture

Developer 2
(Case Study 1)

Senior Developer 10+ years Python, JavaScript, Software
Architecture, Machine Learning

Developer 3
(Case Study 1)

Mid-Level Devel-
oper

5-10 years Python, JavaScript, Full-Stack
Development

Participant 1
(Case Study 2)

Operational Man-
ager

15+ years Project Management, Agile
Methodologies

Participant 2
(Case Study 2)

Architect 12+ years Software Architecture, Cloud
Computing

Participant 3
(Case Study 2)

Senior Developer 10+ years Python, Java, Data Analytics

Participant 4
(Case Study 2)

Developer 5-7 years JavaScript, Full-Stack Develop-
ment

Participant 5
(Case Study 2)

Developer 5-7 years Java, Python, DevOps

The table above summarizes the demographics of the participants involved in the iterative

refinement process for the usage analytics method, specifically for identifying the data types

and key metrics suitable for the real-world applications they were responsible for development

and maintenance. The selection of participants from diverse roles and backgrounds ensured a

balanced and comprehensive approach to validating the proposed metrics and data types. By

leveraging the expertise of senior developers and operational managers alongside mid-level con-

54

Usage Analytics: Optimizing Feature Prioritization in Software Development

tributors, the process incorporated a wide range of perspectives. This diversity was instrumental

in refining the framework to ensure both its theoretical robustness and practical relevance.

This research significantly contributes to bridging the gap between theoretical insights and

practical applications in software development. By systematically connecting user behavior anal-

ysis to feature prioritization decisions, it offers a rigorous and adaptable framework tailored to

industrial needs. The iterative refinement and validation processes ensured that the metrics and

methods were not only theoretically robust but also practically implementable across diverse

organizational contexts. This approach highlights the novelty and industrial relevance of the re-

search, showcasing its potential to inform and improve decision-making in software development

practices.

2.6 Gap Analysis of Existing Literature

The review of the literature on feature prioritization methods in software development reveals

several significant limitations in the current techniques. These limitations establish the need for

the research conducted in this thesis and highlight the potential contributions of a new approach

focused on usage analytics.

Stakeholder Analysis: Bias and subjectivity in stakeholder analysis often lead to skewed

prioritization decisions. Influential stakeholders can disproportionately impact decisions, poten-

tially overlooking the actual needs and behaviors of end-users Karlsson et al. (2007b); Gorschek

et al. (2017). Moreover, stakeholder analysis typically fails to capture the diverse perspectives

and needs of the entire user base, resulting in a narrow view that does not reflect actual usage

patterns.

Cost-Value Analysis: The cost and value estimates used in cost-value analysis are often

subjective and can be inaccurate, leading to suboptimal prioritization decisions. The complexity

and unpredictability of software development projects exacerbate these inaccuracies Ruhe and

Greer (2002); Zhang et al. (2018); Xia et al. (2019). Additionally, cost-value analysis does not

typically incorporate real-time data, making it difficult to adapt to changing user needs and

preferences, which can lead to outdated or irrelevant prioritization.

Voting Mechanisms: Voting mechanisms are prone to consensus bias, where the opinions

of more vocal or influential team members can sway the results, leading to decisions that may

not accurately reflect the best interests of the project Moløkken-Østvold and Jørgensen (2003);

55

Usage Analytics: Optimizing Feature Prioritization in Software Development

Kakar (2020). The social dynamics within a team can significantly affect voting outcomes,

making it challenging to achieve balanced and objective prioritization.

Data Overload: The vast amount of data generated from user interactions can be over-

whelming, making it difficult to extract meaningful insights without sophisticated data process-

ing and analysis techniques Buse and Zimmermann (2012b); Shams et al. (2020).

Complexity of Behavioral Analysis: Analyzing user behavior patterns requires advanced

analytical skills and tools, which can be a barrier for many development teams Claypool et al.

(2001c); Müller et al. (2019); Gupta et al. (2021).

Integration Challenges: Integrating real-time feedback mechanisms into existing devel-

opment workflows can be complex and resource-intensive, often requiring significant changes to

processes and systems Rodden et al. (2010a); Liu et al. (2020).

Given the limitations of traditional and advanced usage analytics methods, there is a clear

need for a novel approach that integrates the strengths of both while addressing their weak-

nesses. The research conducted in this thesis aims to fill this gap by developing a usage analytics

method that enhances feature prioritization in software development through systematic data

analysis and real-time feedback mechanisms. By integrating stakeholder input with data-driven

insights from usage analytics, this research aims to create a balanced and comprehensive fea-

ture prioritization framework that leverages both qualitative and quantitative data Olsson and

Bosch (2014c); Alahyari et al. (2017). The research provides practical recommendations and

best practices for overcoming common challenges in implementing usage analytics, such as data

integration and privacy concerns, ensuring that the proposed methods can be effectively adopted

in real-world development environments Kitchenham and Charters (2004); Sjøberg et al. (2005);

Deka and Vemuru (2021). In summary, the limitations of current feature prioritization tech-

niques underscore the need for a new approach that integrates usage analytics with traditional

methods. This research aims to develop a robust framework that addresses these limitations and

enhances the efficiency and effectiveness of the software development process through systematic

analysis of user interaction data.

Despite significant advancements in usage analytics, persistent gaps highlight the limitations

of existing methodologies. Challenges such as integrating heterogeneous data sources (Fager-

holm et al., 2014; Appsero, 2023), accurately mapping user actions to features (Fabijan et al.,

2016a; Joshi, 2024), and deriving insights that developers can act upon (Bosch, 2000; Lee et al.,

2020) illustrate the disconnect between theoretical models and practical application. These is-

56

Usage Analytics: Optimizing Feature Prioritization in Software Development

sues underscore the necessity for comprehensive frameworks that link user behavior data with

actionable feature prioritization strategies.

Another notable gap is the limited discussion on the scalability of metrics across varying soft-

ware platforms. As organizations increasingly adopt cloud-based and SaaS solutions, the ability

to generalize and adapt metrics becomes critical. Addressing these gaps requires a dual approach

that combines robust theoretical grounding with empirical validation, enabling a seamless tran-

sition from academic insights to industrial application. Metrics identified in the literature,

including frequency, time spent, and consistency, are intricately tied to the research objectives

of this thesis. These metrics provide a structured framework for evaluating user behavior, fa-

cilitating the assessment of how features impact engagement and usability. By systematically

reviewing these metrics, this research establishes a clear pathway to address RQs 2 and 3,

which focus on feature prioritization and the challenges developers face in utilizing user data.

Moreover, these metrics align with broader trends in software development, such as the shift

toward data-driven decision-making and the emphasis on user-centered design. By grounding

the research questions in well-established metrics, this thesis ensures that its findings are both

theoretically sound and practically relevant. By identifying and analyzing key metrics from the

literature, this chapter establishes a robust theoretical foundation for the research. The gaps

and challenges discussed emphasize the need for the Usage Analytics method outlined in later

chapters. Metrics derived from the super-set not only address the research questions but also

advance software development practices by bridging the gap between theory and application.

This chapter sets the stage for transitioning from theoretical insights to practical imple-

mentation, detailed in Chapters 5, 6, and 7. By highlighting the interplay between foundational

metrics and real-world challenges, it ensures a seamless connection between the literature review

and the empirical findings. Ultimately, this integration reinforces the relevance and applicability

of the research, contributing to the broader field of usage analytics and software development.

57

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 3

Research Methodology

In the literature, research is defined as a logical process of steps applied to collect and analyze

data in order to improve the knowledge and understanding of a topic or issue respectively to

solve a problem perceived (Cito et al., 2015a). Many different approaches to conducting research

can be found in literature (Hess et al., 2013). The computer science and software engineering

domain have followed action research and design science implicitly for decades (Hevner, 2007).

Information systems research to date has produced knowledge by two complementary but dis-

tinct paradigms: behavioral sciences and design sciences (Qu et al., 2013). While the behavioral

science paradigm usually starts with a defined hypothesis, it aims at exploring the truth, Action

Research is a research methodology used by researchers in the Information Systems domain.

This methodology is context-bound while attempting to address a specific client’s problems,

which produces narrow learning in its context and inhibits the reproducibility of the research.

Design Science Research Methodology (DSRM) follows a different approach and positions itself

as a problem-solving paradigm (Olsson and Bosch, 2015) with the objective of producing an ar-

tifact which must be designed and then evaluated thoroughly (Fabijan et al., 2016b; Fitzgerald

and Stol, 2017b; Ogonowski et al., 2013). Design science is technology-oriented and its outcomes

(the artifacts) have to be assessed against criteria of value and utility (Krusche and Alperowitz,

2014).

The objective of this research is to examine and understand how features of an application

are used by the users. This is done by analyzing the application usage data to help improve the

application development process. The main component of this research is the design of an artifact

in the form of a practical Usage Analysis method applied to improve the continuous deployment

process in the software domain. Unlike DSRM, Action Research does not necessarily include

58

Usage Analytics: Optimizing Feature Prioritization in Software Development

a need for the development and evaluation of innovative artifacts Iivari and Venable (2009).

Furthermore, the need for a structured approach in the design, development and evaluation of

the artifact to solve the outlined problem through research and the aim to develop a generic

solution that can be applied to any software application that falls under the software development

context eliminates Action Research as a viable research methodology. In line with the identified

problem statement, the defined research objective and the developed research questions, Design

Science Research Methodology (DSRM) (Peffers et al., 2007; Hevner and Chatterjee, 2010) can

be considered as an appropriate research methodology in this particular case. Some examples

of research work related to the design and development of software methods and models similar

to this thesis using DSRM are Féris et al. (2017); Piccoli et al. (2020); Ballandies et al. (2022).

3.1 Using Design Science Research Methodology

Several variants of design science methodologies exist in the scientific literature, describing

distinct approaches to conducting research. A design science process with its five steps, namely

awareness of a problem, suggestion, development, evaluation and conclusion, is presented to

establish a computable design process model (Poppendieck and Cusumano, 2012). A three-

cycle view of design science research comprises the relevance, design, and rigor cycles to manage

research projects (Ghezzi et al., 2014). An approach to design research is divided into steps

covering three general phases: problem identification, solution design, and evaluation (March

and Smith, 1995). A two-dimensional framework is driven by the distinction between research

outputs (e.g. representational constructs, models, methods, and instantiations) and research

activities (e.g. build, evaluate, theorize, and justify) (Krusche and Alperowitz, 2014). Peffers

et al. (2007) provide a set of phases for implementing design science research methodology

following a sequential yet iterative process with six steps including (1) problem identification

and motivation, (2) definition of the objectives for a solution, (3) design and development, (4)

demonstration, (5) evaluation and (6) communication.

This research follows the design-science-oriented approach proposed by Peffers et al. (2007)

due to its clear definition of steps to address the problem, motivation, objectives, and the de-

signed evaluation of an artifact, all essential steps to achieve the objectives of this research.

Figure 3.1 provides an overview of the DSRM adapted for this research. The following subsec-

tions describe the steps of the DSRM as shown in Figure 3.1 in more detail.

59

Usage Analytics: Optimizing Feature Prioritization in Software Development

Problem &
Motivation

Define
Objectives Design & Development Demonstration Evaluation Conclusion

Problem Identification & Objective Definition Artefact Design and Development Application and Evaluation of the Artefact Eval. of Artefact

Literature Review

Related Work & Research Gap

(Webster & Watson, 2002)
Literature
Review

(Webster &
Watson, 2002)

Constrained
Experiment

Usage Analytics Approach

Constrained
Experiment

Multiple Case
Studies

Surveys from participants of the
experiment

Evaluation
of

Hypothesis

Definitions
Problem statement
Research objectives
Hypothesis

Usage Analytics algorithm
Tools and methods

Prototypical (Software tool)
implementation
Case Studies

Publications
Reflections
Insights on
hypothesis

Requirements for user behaviour
indicators in software development

Usage Analytics Approach
Usage data extraction and
analysis techniques

Implementation of Usage
Analytics approach
Software usage behaviour
analysis technique

Support & justify
hypothesis

Process Iteration

(Runeson, 2008)

R
es

ea
rc

h
qu

es
tio

ns
R

es
ea

rc
h

Te
ch

ni
qu

es
O

ut
pu

ts
Ar

te
fa

ct
s

Figure 3.1: Design Science Research Methodology

3.1.1 Problem Identification

Problem identification is the first step of the research approach as shown in Figure 3.1. At this

stage, the research problem is identified and the importance and motivation of the research are

justified Peffers et al. (2007). A detailed description of Problem Identification and Motivation is

presented in Chapter 2 Section 2.6 of the thesis. The second step of the DSRM is concerned with

the definition of expected outcomes and research objectives; these are defined and presented in

Chapter 1 Section 1.3 of the thesis. The research gap is identified by carefully analyzing the

literature as described in Chapter 2. The resulting artifact from this step is a set of data types

and their sources in a software environment which can be used to understand application feature

usage discussed in Chapter 6.

3.1.2 Design, Development and Demonstration

The next step in the DSRM is the design and development phase. Based on the defined problem

and identified data types, key activities and techniques such as usage data collection, extraction

and analysis of the feature usage data are designed and developed in this step. The resulting

artifact will be a feature analysis method that includes the key activities as described in Chap-

ter 6 Section 6.1. A prototype demonstrating the developed feature usage analysis method will

60

Usage Analytics: Optimizing Feature Prioritization in Software Development

be built which can extract and analyze the usage data.

The metrics incorporated in this research were derived through a rigorous multi-stage process,

beginning with an extensive systematic literature review discussed earlier in Chapter 2. The

derived super-set of metrics was refined collaboratively with IBM developers through structured

workshops and interviews. These sessions involved a diverse group of participants, including

data analysts, senior developers, and software architects, who evaluated each metric for its

scalability, relevance to ongoing development workflows, and ease of integration into existing

systems. Key considerations during these sessions included how well each metric could be

applied across different software platforms, the extent to which it provided actionable insights,

and its adaptability to varying project needs.

The iterative refinement process ultimately led to the inclusion of frequency, time spent, and

consistency as central metrics. These metrics were chosen for their ability to address core re-

search questions while remaining flexible enough for future adaptation. For instance, frequency

helps identify high-use features, time spent provides insights into user engagement, and con-

sistency evaluates behavioral patterns across application updates. This systematic approach

ensures that the metrics are both theoretically grounded and practically applicable, providing a

robust framework for usage analytics.

3.1.3 Evaluation and Communication

The evaluation consists in observing and measuring how well the artifact supports the solution

to the problem (Peffers et al., 2007). This involves comparing and verifying the objectives of

the developed solution to the actual results obtained from the use of the proposed feature usage

analysis method and prototype demonstration. The key activities of the analysis method will be

evaluated through a constrained experiment as described in Chapter 7 and use cases as described

in Chapter 5 of this thesis. At the end of the evaluation, it is necessary to decide whether to

iterate back to the design phase to try to improve the effectiveness of the artifact or to move to

communication.

The evaluation of the Usage Analytics Method involved a comprehensive three-tiered ap-

proach:

1. Qualitative Feedback: Structured interviews and focus group discussions with devel-

opers and project stakeholders provided detailed insights into the usability and perceived

value of the artifact. Developers shared their experiences regarding the ease of integrating

61

Usage Analytics: Optimizing Feature Prioritization in Software Development

the metrics into their workflows and highlighted areas for improvement.

2. Quantitative Validation: Metrics such as consistency and time spent were compared

against baseline data collected from earlier software versions. Statistical analyses were

performed to determine the artifact’s impact on user behavior insights, revealing clear

trends in feature adoption and usage patterns.

3. Iterative Refinement: The results from evaluations conducted in IBMWatsonWorkspace

and Odoo Notes informed iterative improvements to the artifact. Each refinement cycle

focused on addressing identified gaps, enhancing the artifact’s scalability, and ensuring its

relevance to both industrial and academic contexts.

This systematic evaluation framework highlights the robust applicability of the proposed

method, ensuring its utility across a wide range of software development scenarios. The use of

both qualitative and quantitative measures ensures a balanced assessment, providing compre-

hensive insights into the artifact’s effectiveness.

To enhance the rigor and applicability of the Design Science Research Methodology (DSRM),

this research emphasizes iterative refinement and multi-platform validation. By employing struc-

tured brainstorming sessions and structured interviews with IBM developers, along with input

from academic experts, the methodology ensures alignment between theoretical frameworks and

industrial requirements. This collaborative approach not only addresses the nuances of feature

prioritization in diverse software environments but also provides a robust pathway to ensure

that the designed artifact remains adaptable and scalable across applications. Additionally, the

inclusion of iterative testing cycles allows for continuous feedback, ensuring that both functional

and non-functional requirements are consistently met.

This research also integrates feedback loops at each phase of DSRM, emphasizing the impor-

tance of stakeholder engagement. The feedback collected during each phase informs subsequent

iterations, ensuring a dynamic balance between theoretical insights and practical constraints.

By engaging multiple stakeholders, including software developers, project managers, and system

architects, the methodology highlights the real-world relevance of its solutions.

3.2 Research Design

This section presents the empirical designs for developing and evaluating the Usage Analytics

Method (UAM) across multiple case studies. The design encompasses iterative development,

62

Usage Analytics: Optimizing Feature Prioritization in Software Development

participant feedback, and rigorous evaluation to address the research questions. The iterative

refinement of UAM ensures its adaptability and relevance in real-world scenarios. The research

design includes case studies used to explore and analyze the research problem, design and develop

an artifact as a solution to the problem and application and improvement of the artifact and its

evaluation. The high-level diagram of the research design is shown in Figure 3.2. Each stage of

the research design describes the key activities of the artifact and is followed by an experiment

to evaluate the artifact.

Case Studies

Evaluation

Interview

Interview

Survey

Survey

UA Method V1
Design & Development

Usage Data
Extraction

Feature
Extraction Analytics

IBM Academic Cloud

UA Method V2
Application and Improvement

Identify Usage
Data Sources

Data
Extraction Analytics

IBM Watson Workspace

UA Method V3
Application and Improvement

Identify
Features

Identify Usage
Data

Data
Extraction Analytics

Odoo Notes

Demonstration

Experiment

Experiment

Problem identification

Li
te

ra
tu

re
 R

ev
ie

w

Figure 3.2: Research Design Overview illustrating the iterative development and evaluation of
the Usage Analytics Method (UAM) across three case studies: IBM Academic Cloud, IBM
Watson Workspace, and Odoo Notes. Each case study follows distinct stages, including design
and development, application and improvement, and evaluation.

3.2.1 Platform Selection

The study utilized three distinct platforms: IBM Academic Cloud, IBM Watson Workspace,

and Odoo Notes to evaluate the adaptability and generalizability of the Usage Analytics Method

(UAM). These platforms were opportunistically chosen based on practical availability and their

unique contributions to the study. The IBM platforms provided unparalleled value to this re-

search. By offering direct access to source code, the platforms enabled the development and

integration of analytics tools with minimal restrictions. Additionally, access to IBM’s devel-

opment teams provided industry insights that significantly enhanced the customization and

63

Usage Analytics: Optimizing Feature Prioritization in Software Development

refinement of the UAM. The availability of real-world data from these platforms ensured that

the study’s outcomes were grounded in practical, actionable insights rather than theoretical ab-

stractions. Furthermore, the proprietary industrial environment of IBM allowed the research to

simulate high-stakes enterprise scenarios, making the findings directly applicable to real-world

software development challenges. Conversely, Odoo Notes was deliberately selected to illustrate

that UAM is not confined to IBM systems but is generalizable to any software application.

This inclusion highlighted the methodology’s flexibility by demonstrating its applicability in an

open-source, community-driven environment. The deliberate contrast between industrial and

open-source platforms strengthened the methodology’s credibility and broadened its applicabil-

ity across diverse contexts.

Similarities with Leading Platforms The selected platforms share key functionalities

with leading industry platforms, ensuring that the research outcomes are directly applicable to

real-world scenarios. For instance, IBM Watson Workspace and Odoo Notes offer collaborative

tools and user engagement features similar to those of Microsoft Teams or Google Workspace.

This alignment ensures that the UAM methodology can be seamlessly integrated into existing

software environments, providing actionable insights for feature prioritization and user engage-

ment tracking. The platforms’ scalability and flexibility mirror cloud-based infrastructures like

AWS or Azure, making the UAM methodology suitable for testing generalizability and adapt-

ability across diverse software environments.

Diverse User Base The user demographics of IBM Watson Workspace and Odoo Notes

cater to professional and enterprise users, providing a comparable user base to that of industry-

leading platforms. This alignment ensures that the UAM methodology is tailored to meet the

needs of professional developers and project managers, enhancing its relevance and applicability

in real-world scenarios.

Scalability and Flexibility The scalability of IBM Academic Cloud mirrors the cloud-

based infrastructure provided by platforms like AWS or Azure, making it suitable for testing

generalizability. The platform’s diverse user base and extensive feature set provide a robust

testing ground for the UAM methodology, ensuring that the research outcomes are applicable

across a wide range of software environments.

The research started with the identification of the research problem exploring the literature

and validating the problem in the industry working closely with developers of IBM Academic

Cloud. The research problem is identified as the lack of understanding of how features of

64

Usage Analytics: Optimizing Feature Prioritization in Software Development

an application are used by the users. Specifically, it is a time-intensive process to determine

the impact of application changes on user behavior. The traditional techniques employed by

the developers created a bottleneck in the development process. To address the first research

question (RQ1), which focuses on identifying customized metrics and data-points, a rigorous

multi-stage process was employed. This process began with an extensive systematic literature

review, detailed in Chapter 2 to establish a comprehensive “super-set” of data-points and metrics

commonly used in user behavior analysis and feature prioritization. The derived super-set was

then refined collaboratively with industrial partners to identify the most relevant and feasible

metrics for implementation within their organizational context. Following the derivation of

the super-set, the metrics were refined in collaboration with a team of six IBM developers,

including senior software engineers, system architects, and data analysts. Through structured

brainstorming sessions and workshops, the developers evaluated the super-set for its applicability

to IBM’s specific development pipelines. This iterative refinement process emphasized scalability,

resource efficiency, and relevance to industrial contexts. The sessions provided valuable insights

into how metrics like consistency of usage and error rates could be tailored to meet organizational

needs. This collaborative approach ensured that the super-set not only reflected academic rigor

but also aligned with practical requirements.

A set of experiments were designed to implement the UA method, gather the usage data,

perform analysis on the usage data and gather feedback on the software usage experience of the

users. Furthermore, the results of the analytics are compared with the results of the user feedback

to evaluate the proposed UA method. Following the DSRM approach, the experiments were

iteratively applied to each version of the UA method to identify the improvements and evaluate

the method. The experiments were conducted in the IBM Academic Cloud environment and

the IBM Watson Workspace application. The experiments were conducted in the Odoo Notes

application to validate the final version of the UA method.

Work with IBM Academic Cloud resulted in the initial version of the Usage Analytics Method

(V1) described in Chapter 5 Section 5.2.3. The initial version of the method (V1) was applied

to the IBM Watson Workspace application, based on the results of the experiment, the method

was improved and is described in Chapter 5 Section 5.3.3. Five developers of the IBM Watson

Workspace application were recruited to participate in the experiment. The results and feedback

obtained were used to improve the UA method further. The improved version of the method (V2)

was applied to the Odoo Notes application resulting in the final version of the Usage Analytics

65

Usage Analytics: Optimizing Feature Prioritization in Software Development

Method (V3) described in Chapter 5 Section 5.4.3. The final version of the Usage Analytics

method is presented in Chapter 6 of this thesis. Results of experiments, insights gathered and

the evaluation of the method are presented in Chapter 7 of this thesis.

3.2.2 Participants in Evaluation of UAM

The participants involved in this study were carefully selected to ensure their expertise and

relevance to the research objectives. Each case study involved participants with distinct roles

and technical expertise, enabling a comprehensive evaluation of the Usage Analytics Method

(UAM) as shown in Table 3.1.

Table 3.1: Demographics and Roles of the participants in the Evaluation of the Usage Analytics
Method (UAM)

Case Study Participant
Role

Expertise Level Contribution

IBM Academic
Cloud

Developer Senior (10+
years)

Provided insights on data an-
alytics and cloud computing
challenges.

IBM Academic
Cloud

Data Scientist Senior (10+
years)

Focused on refining metrics
for feature prioritization.

IBM Academic
Cloud

Software Archi-
tect

Mid-Level (5-10
years)

Assisted in integrating UAM
into existing frameworks.

IBM Watson
Workspace

Operational Man-
ager

Senior (15+
years)

Focused on collaborative
workflows and feature priori-
tization.

IBM Watson
Workspace

Architect Senior (12+
years)

Provided insights into soft-
ware architecture and cloud
computing.

IBM Watson
Workspace

Senior Developer Senior (10+
years)

Contributed to Python, Java,
and data analytics for the
project.

IBM Watson
Workspace

Developer Mid-Level (5-7
years)

Focused on JavaScript and
full-stack development.

IBM Watson
Workspace

Developer Mid-Level (5-7
years)

Worked on Java, Python, and
DevOps integration.

Odoo Notes End-User Novice to Expert Highlighted open-source plat-
form adaptability and unbi-
ased assessments.

Case Study 1: IBM Academic Cloud

The participants for Case Study 1 included three developers with extensive experience in data

analytics, software architecture, and cloud computing. Their professional expertise allowed for

valuable insights into challenges related to feature prioritization. The developers’ demographics,

including their tenure and areas of expertise, highlighted their suitability for this study.

66

Usage Analytics: Optimizing Feature Prioritization in Software Development

Case Study 2: IBM Watson Workspace

For Case Study 2, five participants were recruited, representing diverse roles such as oper-

ational managers, architects, and developers. Their experience levels ranged from mid-level to

senior, with technical expertise in areas like project management, software architecture, and

full-stack development. A semi-structured interview approach was used, focusing on challenges

in applying advanced analytics metrics, feature-action mapping, and other critical aspects.

Case Study 3: Odoo Notes

Case Study 3 extended the participant base to include nine users with varying levels of

expertise. This diverse participant pool was essential for validating the adaptability of UAM

to non-IBM platforms. The inclusion of participants unfamiliar with Odoo Notes eliminated

potential biases related to platform familiarity, providing an objective assessment of the method.

Additionally, insights from Chapter 4 on software feature usage data provided essential

background for addressing challenges in mapping user interactions to application features. This

iterative approach ensured the artifact remained adaptable to evolving project requirements

while maintaining a high level of performance and reliability. For further evaluation of these

solutions and their effectiveness, see the results and discussion presented in Chapter 7.

The empirical design seamlessly addresses the research questions through a structured, it-

erative methodology. Specifically, RQ2 (“What are the key challenges faced by developers in

identifying and utilizing usage data and key metrics related to feature prioritization effectively

within the software platform?”) is tackled by uncovering and addressing the complexities devel-

opers encounter when integrating analytics into feature prioritization processes. These include

difficulties in mapping user interactions to features and challenges in data integration. The

iterative refinement of the UAM directly responds to these obstacles, ensuring a pragmatic and

systematic approach. Similarly, RQ3 (“How can activities be systematically structured to iden-

tify and utilize usage data for feature prioritization?”) is addressed by embedding structured

activities into the UAM framework. These activities include generating actionable metrics, de-

veloping feature-action mappings, and integrating participant feedback, thereby demonstrating

how detailed analytics can refine feature prioritization with precision and depth. By combin-

ing these elements, the empirical design serves as a robust mechanism to investigate and answer

both research questions comprehensively. The empirical design seamlessly addresses the research

questions through a structured, iterative methodology. The application of UAM in real-world

contexts elucidates the challenges inherent in leveraging usage data and metrics for feature prior-

67

Usage Analytics: Optimizing Feature Prioritization in Software Development

itization, directly responding to RQ2. Simultaneously, the structured activities embedded within

the method demonstrate its utility in refining feature prioritization through detailed analytics,

addressing RQ3 with precision and depth. By combining these elements, the empirical design

serves as a robust mechanism to investigate and answer both research questions comprehensively.

3.2.3 Iterative Refinement Process

The iterative refinement process forms the cornerstone of the methodological framework, focusing

on the continuous improvement of the UAM through systematic applications and participant

collaboration. The methodology integrates practical implementations with reflective evaluations,

ensuring a dynamic interplay between theory and practice. Participants engaged in real-world

applications of the UAM, generating empirical data, which was then analyzed to identify areas

for enhancement. Feedback was gathered exclusively through structured interviews and surveys.

This targeted feedback informed adjustments to the method, including refinements to metrics,

the data collection framework, and analytical techniques. By concentrating on these structured

tools, the feedback process ensured consistency and depth in participant insights.

For instance, in the IBM Watson Workspace case study, feedback highlighted the neces-

sity of incorporating feature-action mapping to accurately track user interactions. This insight

prompted the inclusion of explicit steps in the UAM framework for identifying and correlat-

ing user actions with specific features. These refinements ensured the method’s adaptability to

diverse scenarios while maintaining its focus on actionable insights.

The iterative process was highly structured and involved distinct phases. First, partici-

pants applied the UAM to practical scenarios, generating a wealth of usage data. This data

was analyzed not only for its immediate insights but also for its broader implications regarding

the method’s applicability and scalability. Feedback collection followed, encompassing struc-

tured interviews that explored the method’s clarity, relevance, and effectiveness. Finally, these

insights were meticulously analyzed, leading to iterative improvements that strengthened the

UAM framework’s robustness and usability.

3.2.4 Evaluation Methods

The research employed an integrated approach combining qualitative and quantitative methods

to ensure a robust dataset and comprehensive evaluation of UAM. This approach was essential

for addressing the study’s research objectives and ensuring the validity of the findings.

68

Usage Analytics: Optimizing Feature Prioritization in Software Development

Structured interviews formed a cornerstone of the data-gathering process. Conducted

with developers, analysts, and end-users, these interviews provided deep insights into the chal-

lenges and opportunities related to feature prioritization. For instance, in IBMWatsonWorkspace,

interviews highlighted the importance of capturing team dynamics, including patterns of col-

laboration and decision-making. Similarly, IBM Watson Workspace interviews underscored the

need for metrics like the behavioral score to assess user engagement across different versions.

Case study observations complemented these methods by capturing real-world applica-

tion scenarios. For IBM Watson Workspace, observations focused on collaborative workflows

and their impact on feature prioritization. In the Odoo Notes case, observations provided criti-

cal validation of UAM’s adaptability to an open source application settings. This multi-method

approach ensured that the data collected was both comprehensive and contextually relevant to

the study’s aims.

Interaction data logs were systematically collected across platforms to quantify user en-

gagement through metrics such as frequency, time spent, and consistency. These logs were

especially crucial for platforms like IBM Academic Cloud, where detailed logs enabled granular

analysis of professional use cases. In contrast, Odoo Notes relied on indirect instrumentation and

community feedback to overcome data access challenges, reflecting the platform’s open-source

nature.

Cross-platform comparisons were conducted to assess the robustness and adaptability of the

metrics and methods across varying platforms. For example, in the Odoo Notes case study,

the inclusion of the behavioral score provided a more nuanced analysis of user engagement and

behavioral changes. This composite metric was validated against the patterns observed in IBM

Watson Workspace, where consistency and frequency metrics highlighted team dynamics. Devel-

oper feedback played a critical role in refining the metrics, ensuring their alignment with practical

needs and real-world application scenarios, such as integrating frequency and time-spent metrics

into IBM Academic Cloud’s existing analytical systems. These iterative refinements underscored

the adaptability of the UAM methodology and strengthened its generalizability.

The analysis incorporated four pivotal metrics, each designed to capture different dimensions

of user behavior and engagement. Frequency, a metric focusing on the number of interactions,

served as a key indicator of engagement levels across features and platforms. For instance, in

IBM Academic Cloud, frequency highlighted high-priority features based on user interaction

density. Time spent provided a complementary perspective by measuring the duration of user

69

Usage Analytics: Optimizing Feature Prioritization in Software Development

engagement with specific features, shedding light on their practical utility and user appeal. This

metric was particularly effective in identifying features that required prolonged interaction, as

observed in IBM Watson Workspace’s collaborative tools. Consistency analyzed patterns of user

behavior across multiple sessions and user groups, revealing trends and stability in feature uti-

lization. In the case of IBM Watson Workspace, consistency metrics uncovered valuable insights

into team collaboration habits and feature adoption rates. Behavioral Score, introduced in the

Odoo Notes case study, emerged as a composite metric integrating frequency, time spent, and

consistency. This metric was instrumental in providing a holistic understanding of user behav-

ior, particularly when analyzing changes across different versions of the software. By combining

individual metrics, the behavioral score facilitated a nuanced evaluation of user engagement,

supporting a cross-platform comparison that underscored the robustness and adaptability of the

UAM.

Participant feedback emerged as a pivotal component of the iterative refinement process. In

the IBM Academic Cloud case study, developers underscored the difficulties of mapping user

interactions to specific features, leading to the inclusion of comprehensive mapping guidelines

within the UAM framework. However, it was evident that the primary analytics metrics of

interest to the IBM developers and other stakeholders were frequency, time spent, and consis-

tency. These three metrics were prioritized due to their direct relevance and applicability to

feature prioritization and user engagement analysis. Other metrics, such as session duration

and clickstream data, remained part of the theoretical super-set derived from the literature.

The super-set, obtained through an extensive exploration of academic studies, served as a com-

prehensive foundation, but its elements were selectively applied based on participant feedback

and practical considerations.

The empirical studies conducted as part of this research were pivotal in validating the arti-

fact’s utility across diverse contexts. These studies included:

1. Case Study 1: Initial implementation in IBM Academic Cloud to identify baseline chal-

lenges and metrics. This phase highlighted the importance of clear feature definitions and

robust data collection methods, as discussed in Chapter 4. The findings revealed gaps in

user interaction mapping and inspired targeted refinements to improve metric clarity and

scalability.

2. Case Study 2: Advanced testing in IBM Watson Workspace to refine metrics and pro-

70

Usage Analytics: Optimizing Feature Prioritization in Software Development

cesses. This phase incorporated both developer feedback and usage analytics to adjust

the artifact to real-world workflows. Specific challenges addressed included data synchro-

nization across systems and implementing dynamic feedback loops. These insights align

closely with the discussion of challenges in Chapter 5, demonstrating iterative progress.

3. Case Study 3: Final validation in Odoo Notes, demonstrating the method’s adaptability

to non-IBM platforms. This study provided critical insights into the artifact’s generaliz-

ability and scalability across different software environments. The results, detailed further

in Chapter 7, underscore the artifact’s robustness in varying operational conditions.

The design of these studies ensured comprehensive evaluation through qualitative interviews

and quantitative metrics analysis. The cross-platform application demonstrates the artifact’s

ability to integrate into diverse industrial and academic contexts. By systematically address-

ing challenges and leveraging iterative improvements, these empirical evaluations confirm the

artifact’s effectiveness in meeting the research objectives while offering a scalable framework for

future use.

These studies provide a comprehensive evaluation of the artifact, illustrating its robustness

and generalizability. Building on the empirical findings, the subsequent chapter delves into

the nuanced understanding of software feature usage data, laying the groundwork for aligning

metrics with actionable insights. Chapter 4 specifically explores how data-driven approaches to

feature prioritization can bridge the gap between user behavior analysis and practical software

development, ensuring a seamless progression from theoretical methodologies to their real-world

applications.

71

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 4

Features and Usage data in Software

Development

In order to obtain quick, actionable and meaningful insights based on the software usage, the an-

alytics system should use real-time data (Menzies and Zimmermann, 2013). This chapter offers

an exhaustive and expansive analysis of the data types and metrics foundational to the Usage

Analytics Method. These data types, systematically categorized into a theoretical super-set

derived from extensive literature, form the backbone of the classification discussed in this chap-

ter. This super-set was meticulously constructed through a rigorous review of academic studies

and further refined through iterative applications and structured participant feedback. By syn-

thesizing theoretical insights with practical requirements, this chapter underscores the UAM’s

adaptability and indispensable role in addressing diverse software development challenges. This

process not only highlights the UAM’s scalability but also directly answers Research Question

1, which seeks to identify the most relevant metrics and data points for feature prioritization

decisions. By integrating frequency, time spent, and consistency as prioritized metrics based

on participant feedback, the UAM bridges theoretical understanding with industrially viable

applications. The deliberate integration of theoretical depth and industrial relevance ensures

that the method is robust and scalable across a wide range of contexts, making it a critical tool

for contemporary analytics.

RQ1: (Problem scoping and objective definition) What are the customized key metrics and data

points, tailored to industrial requirements, from user interactions that most significantly

influence feature prioritization decisions?

72

Usage Analytics: Optimizing Feature Prioritization in Software Development

The software maintenance phase is an important stage in the software development process.

Software developers use the maintenance phase to monitor the deployed software. One of the

many benefits of monitoring software deployment is to understand how end-users use the different

features particularly to know which features are useful to them. Section 4.1 provides an in-

depth analysis of existing definitions of the term feature to construct a generic definition with

an intention to differentiate different features of a software application and the corresponding

users of these features. For example, some features of the application are designed specifically

for only developers to use such as “debug mode”, “maintenance mode” or “service mode”; some

features are only designed to be accessible by the administrators of the software such as “account

management”, “network management” and so on. On the other hand, the same term feature is

used by the analysts of the software to refer to the data metrics used for the analysis of software

usage statistics. Hence, to provide clarity and narrow the focus of this research, a general

definition for the term feature in the software domain is defined which provides the ability to

identify the set of features and the associated role of actors who can access these features. While

the following section of the thesis may not be the primary focus of the research, it addresses a

critical issue: the ambiguity in defining what constitutes a feature in a software application. This

ambiguity, influenced by the varying roles individuals play throughout the software development

lifecycle, is a foundational challenge that significantly impacts the effectiveness of usage analytics.

By clarifying this aspect, this part of the work not only complements the research but also

enhances its applicability and relevance in real-world scenarios. Section 4.1.1 uses the derived

definition of the term feature to highlight the end-user-level features of a software application

to align with the focus of this research. Section 4.2 describes the role of usage data in software

development and maintenance, typical types and sources of usage data and so on.

4.1 The Concept of Features in Software Development

The term “feature” is abstract and has different understandings depending on the domain,

user role and its application in the domain. Even in a specific domain such as traditional

software development, the term feature may refer to non-functional attributes of the application

to the software architect/designer, but to the end-user, feature refers to application-specific

functionality. Furthermore, cloud-based software development introduces additional elements

that could be considered as features. Each layer includes different types of features and people

73

Usage Analytics: Optimizing Feature Prioritization in Software Development

responsible for the development and maintenance of those features. The IaaS layer of the cloud

includes features such as data storage, data transfer, CPU allocation, network interfaces, network

configuration, data redundancy etc. maintained by the cloud resource providers. The PaaS layer

of the cloud includes features such as programming languages, database management systems,

libraries, and development tools which are developed and maintained by cloud service providers.

The SaaS layer of the cloud includes features such as scalability, interoperability, redundancy,

configurability etc developed and maintained by software developers. Although the term feature

is used to refer to all these layer-specific characteristics, existing definitions of the term feature

cannot be applied to define them.

Existing
features in the

literature

12 Definitions

$
Trait

#
Representation

Stakeholder
perspective
definition of

feature

%
User Role

Explore

Analyse

distinguishing
quality or

characteristic
entitling as

an entity
impact on an

actor

Feature

Comprised of

Figure 4.1: Analysis procedure of feature definition

74

Usage Analytics: Optimizing Feature Prioritization in Software Development

An exhaustive literature survey is conducted to find papers that provide definitions of a

feature as shown in Figure 4.1. The search terms used are “feature” and “definition”. The

databases considered for the search are Google Scholar and Scopus. The resulting papers were

filtered using inclusion and exclusion criteria, where the inclusion criteria included the Computer

Science and Information Systems domain and other domains were excluded. Then the papers

are read thoroughly, and only those papers are considered for the analysis that provided a

definition of a feature. Definitions for the term feature were provided as early as the year 1990

and found novel definitions in different software engineering and information systems domains

until the year 2010. As a result, the analysis includes feature definitions between 1990 and

2010. Classen et al. (2008) made a detailed analysis of different definitions of a feature in

the contexts of requirements engineering, software product lines and feature-oriented software

development. This analysis describes a feature using three descriptions but does not consider

the role of stakeholders in the environment. Kang et al. (1990) provided the first definition for

the term feature in the context of software product lines as “a prominent or distinctive user-

visible aspect, quality or characteristic of a software system or systems”. The definition they

proposed can be regarded as insufficiently precise, as it fails to effectively identify features in a

complex and diverse cloud computing environment, where multiple stakeholders and application

domains coexist. While other definitions exist in the literature (Batory et al., 2004; Bosch, 2000;

Riebisch, 2003), they tend to be either domain-specific, overlook the role of stakeholders, or lack

the clarity needed for broader applicability.

We analyzed definitions of a feature in various domains as shown in Table 4.1. Based on

detailed observation of the definitions of a feature, it is evident that a feature is comprised of

basic elements such as a trait, representation and possibly an actor role. The result of the

analysis reveals a feature should have a distinguishing quality or characteristic known as a trait,

an entity known as a representation and an impact on a specific Actor role or roles.

Analyzing the definition of features in the software development domain reveals that the term

“features” may relate to a different aspect of the software for different actor roles. Considering

the focus of this research, the term feature always refers to the functionality of the software and

the actor role always refers to an end-user of the software. The following section identifies the

user-level features of IBM Watson Workspace and Odoo Notes applications using these feature

definition assumptions.

Following the above analysis, we establish a comprehensive definition for a feature broadly

75

Usage Analytics: Optimizing Feature Prioritization in Software Development

in the Software domain as follows:

“A feature represents a functionality / requirement / aspect that possess a distinct

/ distinguishable / incremental / functional / non-functional quality attribute visible-to /

satisfy a user / customer / stakeholder”

To generalize the definition of the feature based on the above analysis:

“A feature represents a trait (identified by the symbol ’$’) that possess a representation

(identified by the symbol ’#’) of a quality attribute visible-to / satisfy an actor role

(identified by the symbol ’%’)”

76

Usage Analytics: Optimizing Feature Prioritization in Software Development

T
ab

le
4.
1:

A
n
al
y
si
s
of

E
x
is
ti
n
g
F
ea
tu
re

D
efi

n
it
io
n
s
in

th
e
L
it
er
at
u
re

P
a
p
e
r

D
e
fi
n
it
io
n

$T
ra

it
#
R
e
p
re

se
n
ta

ti
o
n

%
A
c
to

r

R
o
le

(K
an

g
et

al
.,

19
90

)

a
p
ro
m
in
en
t$

or
d
is
ti
n
ct
iv
e$

u
se
r-
v
is
ib
le
%

as
p
ec
t#

,
q
u
al
it
y
#
,
or

ch
ar
ac
te
ri
st
ic
#

of
a
sy
st
em

P
ro
m
in
en
t,

D
is
-

ti
n
ct
iv
e

A
sp
ec
t,

Q
u
a
li
ty
,

C
h
ar
ac
te
ri
st
ic

U
se
r

(K
an

g
et

al
.,

19
98

)

a
d
is
ti
n
ct
iv
el
y
$

id
en
ti
fi
ab

le
$

fu
n
ct
io
n
al

$
ab

st
ra
c-

ti
on

#
th
at

m
u
st

b
e
im

p
le
m
en
te
d
$,

te
st
ed

$,
d
el
iv
-

er
ed

$
an

d
m
ai
n
ta
in
ed

$

D
is
ti
n
ct
iv
e,

Id
en
ti
fi
ab

le
,

F
u
n
ct
io
n
al

A
b
st
ra
ct
io
n

-

(B
os
ch
,
20

00
)

a
lo
gi
ca
l$

u
n
it

of
b
eh

av
io
u
r#

sp
ec
ifi
ed

b
y
a
se
t
of

fu
n
ct
io
n
al

$
an

d
n
on

-f
u
n
ct
io
n
al

$
re
q
u
ir
em

en
ts
#

L
og

ic
al
,

F
u
n
c-

ti
on

al
,

N
on

-

fu
n
ct
io
n
al

B
eh

av
io
u
r,

R
eq
u
ir
e-

m
en
ts

-

(C
za
rn
ec
k
i

et
al
.,
20

02
)

a
d
is
ti
n
gu

is
h
ab

le
$

ch
ar
ac
te
ri
st
ic

of
a

co
n
ce
p
t#

(e
.g
.,

sy
st
em

,
co
m
p
on

en
t,

an
d
so

on
)
th
at

is
re
l-

ev
an

t
to

so
m
e
st
ak
eh

ol
d
er
%

of
th
e
co
n
ce
p
t

D
is
ti
n
gu

is
h
ab

le
C
on

ce
p
t

S
ta
ke
h
o
ld
er

(R
ie
b
is
ch
,

20
03

)

an
as
p
ec
t#

va
lu
ab

le
$
to

th
e
cu

st
om

er
%

V
al
u
ab

le
A
sp
ec
t

C
u
st
o
m
er

(Z
av
e,

20
03

)
an

op
ti
on

al
$
or

in
cr
em

en
ta
l$

u
n
it
of

fu
n
ct
io
n
al
it
y
#

O
p
ti
on

al
,
In
cr
e-

m
en
ta
l

F
u
n
ct
io
n
a
li
ty

-

77

Usage Analytics: Optimizing Feature Prioritization in Software Development

P
a
p
e
r

D
e
fi
n
it
io
n

$T
ra

it
#
R
e
p
re

se
n
ta

ti
o
n

%
A
c
to

r

R
o
le

(B
at
or
y

et
al
.,
20

04
)

a
p
ro
d
u
ct

ch
ar
ac
te
ri
st
ic
#

th
at

is
u
se
d

in

d
is
ti
n
gu

is
h
in
g$

p
ro
gr
am

s
w
it
h
in

a
fa
m
il
y
of

re
la
te
d

p
ro
gr
am

s

D
is
ti
n
gu

is
h
in
g

ch
ar
a
ct
er
is
ti
c

-

(B
at
or
y
,

20
06

)

an
el
ab

or
at
io
n
$
or

au
gm

en
ta
ti
on

$
of

an
en
ti
ty
(s
)

th
at

in
tr
o
d
u
ce
s
a
n
ew

se
rv
ic
e#

,
ca
p
ab

il
it
y
#

or

re
la
ti
on

sh
ip
#

E
la
b
or
at
io
n
,

A
u
gm

en
ta
ti
on

S
er
v
ic
e,

C
a
p
a
b
il
it
y,

R
el
a
ti
o
n
sh
ip

-

(B
at
or
y

et
al
.,
20

06
)

an
in
cr
em

en
t$

in
p
ro
d
u
ct

fu
n
ct
io
n
al
it
y
#

In
cr
em

en
t

F
u
n
ct
io
n
a
li
ty

-

(A
p
el

et
al
.,

20
08

)

a
st
ru
ct
u
re
#

th
at

ex
te
n
d
s$

an
d

m
o
d
ifi
es

$
th
e

st
ru
ct
u
re

of
a
gi
ve
n
p
ro
gr
am

in
or
d
er

to
sa
ti
sf
y
a

st
ak
eh

ol
d
er
’s
%

re
q
u
ir
em

en
t#

,
to

im
p
le
m
en
t$

an
d

en
ca
p
su
la
te

$
a
d
es
ig
n
d
ec
is
io
n
#
,
an

d
to

off
er

$
a

co
n
fi
gu

ra
ti
on

-o
p
ti
on

#

E
x
te
n
d
s,

M
o
d
i-

fi
es
,
Im

p
le
m
en
t,

E
n
ca
p
su
la
te
,

O
ff
er

S
tr
u
ct
u
re
,

R
eq
u
ir
e-

m
en
t,

D
es
ig
n

D
ec
i-

si
on

,
C
o
n
fi
g
u
ra
ti
o
n
-

op
ti
o
n

S
ta
ke
h
o
ld
er

(C
la
ss
en

et
al
.,
20

08
)

a
tr
ip
le
t,

f
=

(R
,
W

,
S
)

w
h
er
e

R
re
p
re
se
n
ts

th
e
re
q
u
ir
em

en
ts
#

th
e
fe
at
u
re

sa
ti
sfi
es

$,
W

th
e

as
su
m
p
ti
on

s#
th
e
fe
at
u
re

ta
ke
s
ab

ou
t
it
s
en
v
ir
on

-

m
en
t
an

d
S
it
s
sp
ec
ifi
ca
ti
on

#

S
at
is
fi
es

R
eq
u
ir
em

en
ts
,

A
ss
u
m
p
ti
o
n
s,

S
p
ec
i-

fi
ca
ti
o
n
s

-

78

Usage Analytics: Optimizing Feature Prioritization in Software Development

P
a
p
e
r

D
e
fi
n
it
io
n

$T
ra

it
#
R
e
p
re

se
n
ta

ti
o
n

%
A
c
to

r

R
o
le

(R
ev
el
le

et
al
.,
20

10
)

a
co
d
e#

th
at

im
p
le
m
en
ts

$
a
fu
n
ct
io
n
al
it
y
#

so
m
e-

ti
m
es

al
so

re
fe
rr
ed

to
as

a
co
n
ce
p
t#

or
a
co
n
ce
rn
#

Im
p
le
m
en
ts

C
o
d
e,

F
u
n
ct
io
n
a
li
ty
,

C
on

ce
p
t,
C
o
n
ce
rn

-

79

Usage Analytics: Optimizing Feature Prioritization in Software Development

4.1.1 User-level Features

This research focuses on the user-level features of the software application. The actor role in

the definition of the feature is the end-user of the application. Typically, the description of

new features (and updated changes to the existing features) of an application is provided by

the developers of the application in the form of a human-readable document called a version

log or change log, specifically documented for both prospective and current customers (users) of

the application. This document is usually available for the users on the features section of the

application’s or application developers’ official website. The version log document is updated

when a new version of the application is rolled out (deployed) to the customers, describing

the new features or specific changes made to existing features of the application. Sections

4.5.1 and 4.5.2 describe the user-level features of the IBM Watson Workspace and Odoo Notes

applications respectively. These features are designed to meet the user needs and improve their

overall experience with the application. Features can range from basic functionalities, such

as user login and file upload, to more complex operations, like data analytics and real-time

collaboration tools.

In the context of software development, features are often documented as part of the re-

quirements collection process. They are typically prioritized based on various factors, including

stakeholder input, cost-value analysis, and usage data. Understanding which features are most

critical to users and how they interact with these features is crucial for making informed devel-

opment decisions. Recent studies have highlighted the importance of integrating user feedback

and interaction data into the feature prioritization process. For instance, Chen and Liu (2017)

demonstrated that user-centric approaches to feature prioritization could significantly enhance

the relevance and usability of software applications. Similarly, Johnson and Smith (2019) em-

phasized the role of continuous user feedback in refining and prioritizing features throughout

the software development lifecycle. Moreover, Bosch and Olsson (2014) discussed how the inte-

gration of user feedback into agile development processes could improve the responsiveness and

adaptability of software development teams, ultimately leading to more user-centric products.

The ability to adapt features based on user interaction data ensures that the software remains

relevant and useful to its user base. This approach is supported by Gurp et al. (2009), who argued

that the features should evolve based on real-world usage to remain competitive and valuable.

By continually refining features based on how they are used, developers can ensure that software

remains aligned with user needs and expectations.

80

Usage Analytics: Optimizing Feature Prioritization in Software Development

4.2 Usage Data

Usage data refers to the information collected from users when they interact with a software

application. This data can be collected through various means, such as log files, user feedback,

and telemetry data. The types of usage data that can be analyzed include:

1. Interaction Data: Information about how users interact with the software, such as clicks,

navigation paths, and session duration.

2. Performance Data: Metrics related to the performance of the software, including re-

sponse times, error rates, and system uptime.

3. Engagement Data: Measures of user engagement, such as the frequency of use, number

of active users, and user retention rates.

4. Feedback Data: User-generated feedback, including comments, ratings, and support

tickets.

Each type of usage data provides unique insight into different aspects of user interactions

and software performance. For example, interaction data can reveal how users navigate through

the application and which features they use most frequently. Performance data can help iden-

tify bottlenecks and areas for improvement, while engagement data can indicate the overall

popularity and effectiveness of the software.

The superset of data types presented in this section was derived through a structured aca-

demic research process, ensuring rigor and traceability. The methodology began with an exten-

sive systematic literature review, as described in Chapter 2, following the guidelines of Webster

and Watson (2002). The review utilized databases such as IEEE Xplore, ACM Digital Library,

ScienceDirect, Springer, and Google Scholar. Search terms included several combinations in-

cluding “usage data”, “software monitoring metrics”, “user behavior analytics” and “software

performance metrics” resulting in an initial pool of 240 papers. This pool was refined based on

inclusion and exclusion criteria that prioritized relevance to feature prioritization, user behavior

analysis, and actionable insights for software systems, specifically their relevance to the aim of

this research.

From this pool, a subset of 32 key studies was selected for detailed analysis, as outlined in

Chapter 2. These studies were chosen for their methodological rigor and alignment with re-

search questions focused on user behavior analysis, feature prioritization, and the development

81

Usage Analytics: Optimizing Feature Prioritization in Software Development

of actionable insights for software systems. The categorization of data types was informed by a

systematic extraction of themes, focusing on their utility across varied software environments.

Furthermore, iterative validation was conducted through expert feedback from industry profes-

sionals and structured discussions with developers engaged in the empirical studies described

in this thesis. This feedback process was rigorously aligned with the methodology outlined in

Chapter 2, ensuring consistency and traceability. Each data type was critically evaluated for

its theoretical robustness, practical applicability, and potential to enhance decision-making in

software analytics.

This methodological rigor ensured that the data types presented in the superset reflect both

theoretical advancements and practical considerations, bridging the gap between academic re-

search and industry needs. By following this structured approach, the superset presented in

Table 4.2 aims to align with the overarching goals of this research to provide a robust foun-

dation for feature prioritization and usage analytics in software systems. The following table

summarizes the superset of data types derived from the literature, providing a foundation for

the subsequent detailed discussions. Each data type is analyzed for its theoretical contributions

and practical applications, bridging the gap between research insights and industrial needs.

User Identity data includes unique identifiers such as user IDs, IP addresses, and device

details. Zimmermann and Nagappan (2010) highlighted how tracking specific user patterns

allows for tailoring software features to individual needs, enhancing user satisfaction and en-

gagement. Furthermore, Shams and Hashemi (2018) demonstrated the security advantages of

analyzing identity data, such as detecting unauthorized access and anomalies in real-time. How-

ever, while critical for personalization and segmentation, relying solely on identity data may

neglect broader interaction trends, necessitating its integration with complementary data types

for a holistic analysis.

Application Host Details provide key insights into the underlying infrastructure, including

server, database, and container information, which directly impact system performance. Menzies

and Williams (2011) and Wang et al. (2017) emphasized how host-level data aids in diagnosing

performance issues, identifying bottlenecks, and optimizing resource allocation. For instance,

tracking database query times helps pinpoint latency issues, ensuring smoother user experiences.

However, this type of data, while invaluable for backend diagnostics, provides limited insights

into user behavior without contextual enrichment from other data sources.

Interaction Logs capture granular details of user actions, such as clicks, navigation paths,

82

Usage Analytics: Optimizing Feature Prioritization in Software Development

Table 4.2: Superset of Data Types for Usage Analytics

ID Data Type Description Examples of Related
Data

S1 User Identity Captures unique identifiers such as user
IDs, IP addresses, and device details to
distinguish between users.

User ID, IP Address,
Device ID, Session To-
kens

S2 Application Host
Details

Tracks server, database, and container
information, providing insights into
system-level operations and hosting en-
vironments.

Server Name, Database
Instance, Container ID,
Host IP Address

S3 Interaction Logs Records actions performed by users,
such as clicks, button presses, naviga-
tion paths, and API calls.

Clicks, Button Presses,
API Calls, Navigation
Paths

S4 Temporal Data Captures timestamps and session dura-
tions associated with user interactions,
offering a timeline of user activity.

Timestamps, Session
Start/End Times, Du-
ration Metrics

S5 Session Metrics Provides aggregated data on session
start and end times, user retention, and
overall engagement trends.

Session Duration, Re-
tention Rates, Active
Session Count

S6 Error Logs Tracks occurrences, types, and frequen-
cies of errors encountered during user
interactions.

Error Codes, Error Fre-
quency, Exception Mes-
sages

S7 Performance Met-
rics

Includes system response times, up-
time, latency, and related performance
indicators.

Response Times, La-
tency, Uptime Percent-
age, Throughput

S8 Clickstream Data Tracks sequences of user interactions,
mapping navigation paths within the
application.

Click Paths, Naviga-
tion Sequences, Time on
Page

S9 Engagement Met-
rics

Measures user retention, frequency of
use, and time spent on features.

Frequency of Use, Time
Spent, User Retention
Rates

S10 Operational De-
tails

Monitors background tasks, resource
utilization, and system events occur-
ring during user interactions.

Background Task
Logs, CPU Utilization,
Record Load Counts

S11 Behavioral Pat-
terns

Includes repeated actions, focus met-
rics, and consistency in user behavior
over time.

Repeated Actions, Fo-
cus Durations, Behav-
ioral Consistency

83

Usage Analytics: Optimizing Feature Prioritization in Software Development

and API calls. These logs are instrumental in understanding how users engage with software

features. Pagano and Bruegge (2013) illustrated their role in identifying high-usage features,

which informs development priorities. Additionally, Buse and Zimmermann (2012c) highlighted

the utility of real-time interaction tracking to uncover friction points in user workflows. Nev-

ertheless, the high volume of data generated from interaction logs demands robust analytical

frameworks for effective interpretation.

Temporal Data focuses on timestamps and session durations, offering a chronological per-

spective of user interactions. Lo and Nagappan (2015) and Kim and Park (2020) utilized tem-

poral data to uncover seasonal trends and usage peaks, enabling strategic resource allocation

and feature deployment. However, temporal data often lacks the depth needed to analyze user

behavior independently and serves best as a supplementary data type when combined with more

specific interaction metrics.

Session Metrics including session durations and retention rates, provide macro-level in-

sights into user engagement. Dyckhoff et al. (2012) and Graf et al. (2011) used session data

to assess user motivation and overall satisfaction. While these metrics offer valuable overviews,

they require augmentation with interaction-level data to evaluate feature-specific impacts and

understand the nuances of user engagement more precisely.

Error Logs document the occurrences and types of errors encountered by users, serving

as diagnostic tools for improving reliability. De Chaves et al. (2011) and Ghezzi et al. (2014)

emphasized the critical role of error data in identifying usability challenges and mitigating sys-

tem vulnerabilities. While primarily reactive, error logs become powerful when combined with

performance metrics to facilitate proactive system improvements and maintenance strategies.

Performance Metrics such as response times, latency, and uptime, are essential for back-

end optimization and ensuring system efficiency. Nguyen and Wu (2018) and Crowston and

Kammerer (2003) demonstrated their utility in pinpointing bottlenecks that impact user ex-

perience, such as slow-loading pages or server downtime. However, these metrics need to be

paired with user-facing engagement data to bridge the gap between system performance and

user satisfaction effectively.

Clickstream Data provides a detailed map of user navigation, capturing the sequence

of interactions within an application. Atterer et al. (2006) and Banerjee and Ghosh (2001)

showcased its role in workflow optimization by identifying navigation inefficiencies and improving

user journeys. While offering granular insights, implementing and processing clickstream data

84

Usage Analytics: Optimizing Feature Prioritization in Software Development

requires significant computational resources and advanced analytics.

Engagement Metrics such as retention rates, frequency of use, and time spent on features,

are pivotal for understanding user loyalty and feature success. Shams et al. (2020) and Lo and

Zimmermann (2013) demonstrated their role in predicting user churn and identifying high-value

features for prioritization. These metrics, while insightful, must be contextualized to differentiate

between meaningful engagement and superficial activity effectively.

Operational Details encompass background tasks, resource utilization, and system events,

providing a comprehensive view of application performance. Lo and Zimmermann (2013) and

Arora and Malik (2017) identified these metrics as critical for proactive maintenance and capacity

planning. When combined with user interaction data, operational metrics enhance understand-

ing of system behavior and its impact on user experience.

Behavioral Patterns including repeated actions and consistency metrics, reveal long-term

trends in user behavior. Fabijan et al. (2016a) and Buse and Zimmermann (2012c) highlighted

their importance for tracking the lifecycle of features and monitoring user retention over time.

While offering rich longitudinal insights, these patterns require substantial data collection and

advanced analysis techniques to generate actionable outcomes.

System and application logs contain a wealth of information to help manage systems. Most

systems print out logs during their executions to record system runtime actions and state that

can directly reflect system runtime behaviors. System developers and architects usually use

these logs to track a system to detect and diagnose system anomalies.

The second type of this data is the user-level usage data generated as a result of user

interaction with a cloud-based application. Some examples of usage data are application logs,

for example, the assessment data (wiki, forum, message), the activity data (clicks, time spent),

server logs, and so on. They can be extracted by the applications themselves, third-party

monitoring tools or via Web cookies (from a web browser). Such data in the cloud is spread

across various interfaces such as Web browsers, mobile applications and command line interfaces

on the front end and servers, virtual machines, containers and databases on the back end. The

last type of usage data is the VM logs, typically generated from the VMs running the applications

or services. This type of log contains the usage of the CPU, memories, as well as running tasks,

time of starting and stopping and others.

Table 4.3 presents the classification of usage data in the software environment. This classifi-

cation was specifically designed to address the fragmented nature of usage data in cloud-based

85

Usage Analytics: Optimizing Feature Prioritization in Software Development

Table 4.3: Usage Data Classification: Types of the usage data available in the software environ-
ment, their characteristics the data representing the context of the data in the analytics process,
description of the data characteristic and the specific type of data.

ID Characteristic Description Data Type

C1 User Identity Who is using the application a) User ID
b) IP Address
c) User Name
d) Device ID

C2 Application host Where the application hosted a) Web server
b) Database
c) Instance ID
d) container ID
e) IP Address

C3 Actions performed What the end user does a) Page
b) Method
c) Function
d) Button clicked
e) View
f) Focus
g) API call
h) swipe

C4 Action moment When the user performs the ac-
tion

a) Date and time
b) Session ID

C5 Action Duration How long it takes to complete
the action

a) Duration
b) Query duration

C6 Operational details Complementary information to
the actions performed

a) Errors
b) Background tasks
c) Number of records loaded

86

Usage Analytics: Optimizing Feature Prioritization in Software Development

applications, considering both front-end and back-end data sources. The framework categorizes

usage data into the following seven dimensions:

• Who is using the application: Captures user-related details, including user ID and IP

address.

• Where the application is being hosted: Focuses on server and database locations to

track data and operations.

• What the end user does: Includes actions such as accessing specific application pages,

invoking methods, or utilizing features (e.g., buttons and functions).

• When the user performs the operation: Records the timing of user interactions

through timestamps and session identifiers.

• How long it takes to complete an operation: Measures the duration of user actions

and system responses, such as query execution times.

• Other operational details: Accounts for errors, background tasks, and the number of

records loaded during user interactions.

• User behavior: Introduces metrics such as clickstreams, focus patterns, and viewing

activities to analyze user engagement.

This updated classification integrates additional insights to account for advancements in

multi-interface environments, reflecting the growing complexity of user interactions with mod-

ern software systems. By systematically categorizing usage data, this framework provides a

structured approach to analyzing user behavior, enabling a deeper understanding of feature

utilization and system performance.

The selection of this specific data classification is well supported by the literature and serves

as a comprehensive basis for analyzing user interactions. The classification is adapted from

Kesavulu et al. (2017b), which provides a well-structured and detailed categorization of usage

data that aligns with the requirements of usage analytics. The primary aim is to capture a

broad range of interaction details that can provide actionable insights into user behavior.

87

Usage Analytics: Optimizing Feature Prioritization in Software Development

4.2.1 Justification of the Selected Usage Data

The classification of usage data into specific categories is critical for effectively capturing and

analyzing user interactions within software applications. Each category serves a unique purpose

and provides valuable insights into different aspects of user behavior and system performance.

This section provides an in-depth justification for the selected categories of usage data, supported

by extensive references from recent academic literature.

1. User Identity (C1) Capturing user identity data such as User ID, IP Address, and Device

ID is fundamental for distinguishing between different users and understanding individual

user behaviors. According to Zimmermann and Nagappan (2010), identifying individual

user patterns helps tailor features to meet user-specific needs and improve user satisfaction.

User identity data enables developers to track usage patterns and identify unique behaviors

across different user segments. This capability is essential for personalizing user experiences

and optimizing features for specific user groups. User identity data also enhances security

measures by monitoring access patterns and detecting anomalies. For instance, Shams

and Hashemi (2018) demonstrated that analyzing user identity data can help identify

unauthorized access and potential security threats, ensuring the integrity and safety of the

application.

2. Application Host (C2) Understanding where the application is hosted, such as on a web

server, database, or virtual machine, is crucial for diagnosing performance issues and

optimizing resource allocation. The application host data provides insights into the in-

frastructure supporting the application, which is essential for maintaining optimal perfor-

mance. Menzies and Williams (2011) emphasized that knowing the hosting environment

helps developers optimize system performance and ensure scalability. Additionally, Wang

et al. (2017) highlighted that application host data is critical for performance tuning and

capacity planning. By analyzing host data, developers can identify bottlenecks and imple-

ment strategies to enhance system efficiency. Understanding the hosting environment also

ensures data integrity and security, as different hosting configurations may have unique

vulnerabilities and performance characteristics.

3. Actions Performed (C3) Recording the actions performed by users, such as button clicks,

API calls, and page views, provides direct insights into how users interact with the ap-

plication. This data type is fundamental for understanding feature usage and is widely

88

Usage Analytics: Optimizing Feature Prioritization in Software Development

recognized in the literature for its importance in user behavior analysis. Pagano and

Bruegge (2013) emphasized that Actions Performed data allows developers to track user

interactions in real-time, providing a detailed view of how features are utilized. This

information is invaluable for identifying popular features and those that may require im-

provement. Furthermore, analyzing user actions helps understand user workflows and

identify potential friction points within the application. By optimizing these workflows,

developers can enhance the overall user experience and improve feature adoption rates.

Buse and Zimmermann (2012b) also highlighted that detailed tracking of user actions can

help in identifying usage patterns that inform feature enhancement decisions.

4. Action Moment (C4) Tracking the exact time when actions are performed allows devel-

opers to analyze usage patterns and trends over time. Temporal data is essential for

identifying peak usage times and understanding how usage varies across different periods.

Lo and Nagappan (2015) stated that action moment data provides a temporal context

to user interactions, enabling developers to analyze trends and patterns in user behavior.

Temporal data helps developers understand when users are most active and how their in-

teractions evolve over time. By leveraging this data, developers can schedule maintenance

and updates during periods of low activity to minimize disruption. Additionally, Kim and

Park (2020) highlighted that temporal data can help identify seasonal trends and inform

marketing strategies by aligning feature releases with peak usage periods.

5. Action Duration (C5) Measuring how long it takes to complete actions provides insights

into user engagement and the efficiency of different features. Duration metrics are par-

ticularly useful for identifying features that may require optimization to enhance user

experience. Crowston and Kammerer (2003) discussed that action duration data captures

the time users spend on specific tasks, providing insights into feature engagement and

usability. By analyzing action duration data, developers can identify features that are

time-consuming or cumbersome for users and prioritize them for optimization. Duration

metrics also help assess the effectiveness of new features or updates by comparing en-

gagement times before and after implementation. This data is crucial for ensuring that

features are intuitive and efficient, contributing to a positive user experience. Nguyen and

Wu (2018) emphasized that understanding the time users spend on specific features can

guide developers in improving the user interface and functionality of the software.

89

Usage Analytics: Optimizing Feature Prioritization in Software Development

6. Operational Details (C6) Collecting data on errors, background tasks, and the number of

records loaded helps diagnose operational issues and ensure the application runs smoothly.

These operational metrics are critical for maintaining high performance and reliability in

software applications. Lo and Zimmermann (2013) highlighted that operational details

data provides a comprehensive view of the application’s performance and reliability. Mon-

itoring errors and background tasks allows developers to quickly identify and resolve issues

that may impact user experience. This data is essential for maintaining system stability

and ensuring that the application performs optimally under various conditions. Opera-

tional metrics can also inform capacity planning and resource allocation by highlighting

areas that require additional support or optimization. Arora and Malik (2017) discussed

that operational details are vital for proactive maintenance and ensuring a seamless user

experience.

The classification of usage data into these categories is supported by several studies in the

field of software engineering and usage analytics. For example, Nguyen and Wu (2018) em-

phasizes the importance of detailed action logs in understanding user behavior and improving

feature prioritization. Additionally, Arora and Malik (2017) discusses how consistency in user

interactions can be used as a metric to enhance software usability, further justifying the inclusion

of detailed action and duration metrics. The comprehensive nature of this classification ensures

that a wide range of user interactions is captured, providing a holistic view of how users engage

with the software. This approach aligns with the recommendations of Aldhaheri and Abdullah

(2020), who advocate for a multi-metric approach to feature prioritization, combining various

types of usage data to capture a complete picture of user behavior. By adopting this classifi-

cation, the research leverages a structured and validated framework that has been shown to be

effective in previous studies. This ensures that the analysis is both thorough and aligned with

established best practices in the field, making it a robust basis for the usage analytics method

developed in this thesis.

4.3 The Relationship between Software Features and User Ac-

tions

The relationship between software features and user actions is crucial for understanding how

users derive value from a software application. Features define what users can do, while user

90

Usage Analytics: Optimizing Feature Prioritization in Software Development

actions reflect how they utilize these capabilities. Analyzing this relationship helps identify

which features are most valuable to users and where there may be gaps in functionality or

usability. For instance, if a feature intended to streamline a particular task is underutilized, it

may indicate usability issues or a lack of awareness among users. Conversely, features that see

high levels of engagement can be prioritized for further development and enhancement.

Recent studies have underscored the value of this relationship in driving feature prioritiza-

tion and software improvement. Smith and Brown (2019) discussed how mapping user actions

to features could reveal critical insights into user needs and preferences, enabling more targeted

development efforts. Similarly, Lee and Taylor (2021) highlighted that understanding this rela-

tionship is essential for creating intuitive and user-friendly software experiences. Furthermore,

Zimmermann and Nagappan (2010) pointed out that aligning software features with user ac-

tions could improve the overall efficiency and effectiveness of the software development process

by ensuring that development efforts are focused on the most impacted areas. For example, in

a study by Tang and Zhang (2011), the authors analyzed user interactions with a content man-

agement system (CMS) to understand which features were most frequently used. They found

that certain features, such as the WYSIWYG editor and media management tools, were heavily

utilized, while others, like advanced search functionalities, were rarely used. This analysis led

to a decision to prioritize improvements to the editor and media tools, while de-emphasizing

less critical features. Another example can be seen in the work of Murphy and Weiss (2013),

who investigated user interactions with a project management tool. By analyzing usage data,

the researchers identified that users frequently accessed task management and time tracking

features, but rarely used the built-in chat functionality. This insight prompted the development

team to enhance the task and time tracking features and consider integrating third-party chat

tools to better meet user needs.

The relationship between features and user actions also extends to identifying and address-

ing usability issues. For instance, Guo and Barnes (2012) analyzed user actions in an e-learning

platform and discovered that users often abandoned the platform during complex quiz interac-

tions. This finding led to a redesign of the quiz feature to simplify navigation and reduce user

frustration, resulting in higher completion rates and improved user satisfaction.

In software development, defining features is essential to ensure clarity and actionable in-

sights. However, challenges in mapping user interactions to features were highlighted in the

IBM Academic Cloud case study (Chapter 5). These challenges stemmed from the diverse in-

91

Usage Analytics: Optimizing Feature Prioritization in Software Development

terpretations of features among stakeholders and the complexity of mapping abstract definitions

to tangible user actions. By focusing on action-based results rather than abstract feature cate-

gorizations, this research provided a more practical approach to analyzing user behavior. This

focus allowed for the development of structured data pipelines tailored to align user interactions

with feature usage, addressing ambiguities and enhancing the analytical utility of metrics.

For example, in IBM Academic Cloud, structured logging mechanisms captured detailed

user interactions, such as session durations and specific feature access points. This action-

based focus proved instrumental in identifying critical features for refinement and optimization,

demonstrating the value of linking user behavior directly to software functionalities.

4.3.1 Challenges With Usage Data and Analyzing User Actions

As mentioned above, usage data can be extracted at any stage and they can be in any form and

format bringing many challenges to the analysis of the usage data. The main questions for usage

data extractor are what usage data should be extracted and how to map the raw usage data

with the right applications or services. Considering the multi-tenant architecture of the cloud,

different applications share the same physical and virtual resources. This raises challenges of

how to separate and extract the logs that represent each application from the instance (VM)

co-hosting the applications.

Another important challenge is handling different contextual information. A system usually

has a lot of branches, and thus the system’s behaviors may be quite different under different

input data or environmental conditions. Knowing the execution behavior under different inputs

or configurations can greatly help system operators to understand system behaviors. However,

there may be a large number of different combinations of inputs or parameters under different

system behaviors. Such complexity poses difficulties in analyzing contextual information related

to the state of interest.

Analyzing user actions involves examining the specific tasks and activities that users perform

while using the software. This analysis is critical for understanding how features are utilized

and identifying opportunities for enhancement. By focusing on user actions, developers can gain

a deeper understanding of user needs and preferences, which can inform feature prioritization

and development efforts.

The relationship between software features and user actions is inherently interconnected.

Features provide the capabilities that users interact with, and user actions generate the data

92

Usage Analytics: Optimizing Feature Prioritization in Software Development

needed to assess the effectiveness of these features. For example, a feature that allows users to

upload files will generate data on the number of uploads, the types of files uploaded, and any

errors encountered during the process. This data can then be analyzed to improve the feature

and enhance the user experience.

Recent literature supports the importance of analyzing user actions to inform feature devel-

opment. Nguyen and Wu (2018) highlighted that understanding user behavior through detailed

action analysis could lead to more user-centric design and improved feature prioritization. Kim

and Park (2020) further emphasized that analyzing user actions provides actionable insights

that can drive continuous improvement in software development. Additionally, Crowston and

Kammerer (2003) discussed how user action analysis could help identify usability issues and

areas for feature enhancement, contributing to a more intuitive user experience.

Analyzing user actions is central to this research, as the results of this analysis are later

translated to understand how features are used by the users. By dissecting the user actions,

developers can map these actions to specific features, thereby gaining a comprehensive view of

feature utilization and user engagement. This mapping process is essential for identifying which

features are most valuable to users and where there may be gaps in functionality or usability.

The process of analyzing user actions involves several steps. First, data must be collected

from various sources, such as log files, telemetry data, and user feedback. This data is then

processed and analyzed to identify patterns and trends in user behavior. Advanced analytical

techniques, such as machine learning and data mining, can be employed to uncover deeper

insights into how users interact with the software Zhou and Chen (2017). Finally, the insights

gained from this analysis are used to inform feature prioritization and development decisions.

4.4 Key Metrics for Analyzing Usage Data

To address the research question [RQ1:] (Problem scoping and objective definition) What are the

customized key metrics and data points, tailored to industrial requirements, from user interac-

tions that most significantly influence feature prioritization decisions?, it is essential to develop

a comprehensive understanding of the metrics and data points that provide actionable insights

into user interactions. These metrics serve as a foundation for analyzing user behavior and

making informed decisions about feature prioritization.

The derivation of the super-set of analytics metrics and data types was informed by an ex-

93

Usage Analytics: Optimizing Feature Prioritization in Software Development

haustive exploration of academic literature aimed at capturing both foundational and advanced

metrics that facilitate user behavior analysis. Foundational metrics, including frequency and

time spent, were identified for their universal applicability and consistent relevance in existing

research. Advanced metrics, such as consistency and clickstream data, were noted for their

ability to deliver granular, context-rich insights essential for deeper behavioral analysis. The fol-

lowing table encapsulates the primary metrics and data types within the super-set, emphasizing

their descriptions and supporting evidence:

Table 4.4: Comprehensive Super-Set of Metrics Derived from Literature

Metric/Data
Type

Description Evidence from Literature

Frequency Tracks the number of times a
feature is used within a given
timeframe.

Frequently cited as critical in un-
derstanding user engagement Menzies
and Zimmermann (2013); Pagano and
Maalej (2013)

Time Spent Measures the duration users
interact with a feature or task.

Emphasized in studies of user engage-
ment and retention Shams and Whit-
taker (2020); Lo and Zimmermann
(2013)

Consistency Examines the stability of user
behavior over time and across
updates.

Recognized for its utility in assess-
ing longitudinal behavioral trends Buse
and Zimmermann (2012a); Fabijan
et al. (2016a)

Clickstream Data Captures the sequence of
clicks and navigation paths
taken by users.

Foundational for mapping user work-
flows and interaction paths Atterer
et al. (2006); Banerjee and Ghosh
(2001)

Session Data Provides trends related to ses-
sion start and end times, indi-
cating overall engagement.

Valuable for contextualizing user inter-
action patterns Dyckhoff et al. (2012);
Graf et al. (2011)

Error Rates Monitors the frequency of er-
rors encountered during user
interactions.

Highlighted as a diagnostic tool for
usability challenges De Chaves et al.
(2011); Ghezzi et al. (2014)

The Table 4.4 underscores the theoretical richness of the super-set, providing a comprehensive

foundation for iterative refinement and selective application, while also setting the stage for

addressing emergent challenges in user analytics.

Frequency measures how often a feature is used within a specific timeframe. Widely ac-

knowledged in user engagement studies, frequency is critical for understanding core feature

usage. Menzies and Zimmermann (2013) highlighted its application in feature prioritization

for software maintenance, demonstrating its role in identifying high-impact features. Similarly,

Pagano and Maalej (2013); Maalej et al. (2016) emphasized frequency as a foundation for iden-

94

Usage Analytics: Optimizing Feature Prioritization in Software Development

tifying essential features in open-source software communities. While frequency is invaluable

for immediate insights, its standalone application lacks depth. It cannot distinguish between

consistent and sporadic users or provide context for interactions, which necessitates combining

it with time-based metrics for richer insights.

Time Spent captures the duration of user interaction with a feature or task. Evidence and

Use in Literature: Shams and Whittaker (2020) and Lo and Zimmermann (2013) underlined

the importance of time spent in evaluating user engagement and task difficulty. Shams and

Whittaker (2020) demonstrated its efficacy in identifying features that are either overly complex

or engaging, while Lo and Zimmermann (2013) applied time spent metrics to assess software

usability. Although effective, interpreting time spent data can be challenging. Extended du-

rations might indicate either high engagement or usability issues. Its reliance on contextual

understanding makes it a complementary metric rather than a standalone indicator.

Consistency evaluates the stability of user behavior across time and updates. Buse and

Zimmermann (2012c)Zimmermann and Nagappan (2019) explored the utility of consistency in

tracking the impact of feature updates on user engagement. Their research showed that stable

usage patterns often correlate with user satisfaction and feature reliability. Additionally, Fabi-

jan et al. (2016a) used consistency to monitor the adoption of new features in iterative software

development. Consistency offers significant insights but demands robust datasets and longitu-

dinal analysis. The resource-intensive nature of this metric limits its immediate applicability in

smaller-scale studies.

Clickstream Data captures sequences of user interactions, offering a detailed map of nav-

igation paths. Atterer et al. (2006) demonstrated the application of clickstream analysis in

understanding user workflows and identifying navigation bottlenecks in web applications. This

metric has also been instrumental in e-commerce, where Banerjee and Ghosh (2001) and lever-

aged it to optimize user journeys. While granular and insightful, clickstream data requires

substantial infrastructure and analytical capabilities, which may not be feasible for all teams.

Its implementation can also pose privacy challenges.

Session Data focuses on when and how users interact with an application, providing high-

level engagement trends. Dyckhoff et al. (2012) demonstrated the utility of session data in

learning analytics, correlating session lengths with learner outcomes. Graf et al. (2011) used

session trends to assess user motivation and retention in e-learning environments. Although

session data provides macro-level insights, it lacks specificity. It must be complemented with

95

Usage Analytics: Optimizing Feature Prioritization in Software Development

interaction-level data to provide actionable insights.

Error Rates quantify user-facing issues encountered during interactions. De Chaves et al.

(2011) employed error rates to diagnose usability problems in cloud environments. Ghezzi et al.

(2014) highlighted their role in improving user satisfaction by identifying systemic issues in

feature implementation. Error rates are effective for reactive usability analysis but offer limited

foresight into proactive feature optimization. They function best as part of a diagnostic toolkit

rather than as standalone metrics.

The iterative refinement process was essential to tailoring the UAM’s metrics for industrial

applicability. IBM developers and other stakeholders participated in structured interviews and

surveys, offering consistent and actionable feedback on the super-set. This feedback emphasized

the critical importance of metrics such as frequency, time spent, and consistency, which directly

address challenges in feature prioritization and user engagement analysis. Participants high-

lighted frequency as indispensable for identifying core features, time spent as a means to gauge

engagement levels, and consistency for tracking behavioral stability across updates.

This refinement process involved multiple cycles of implementation and feedback, during

which other metrics in the super-set, such as clickstream data and error rates, were acknowl-

edged for their theoretical value but deprioritized for immediate industrial application. Practical

constraints, including integration complexities and resource limitations, informed these decisions.

These metrics remain part of the super-set for potential future implementations, reflecting the

method’s flexibility and adaptability. By focusing on the most actionable metrics, the UAM

ensured a balance between immediate practicality and long-term scalability.

The prioritization of frequency, time spent, and consistency stems from their alignment

with the practical needs of industrial stakeholders and their demonstrable impact on software

development decisions. The decision-making process was deeply rooted in structured participant

feedback obtained through brainstorming sessions, interviews and surveys conducted during

iterative refinement cycles.

In the IBM Academic Cloud case study, participants highlighted the indispensable role of

frequency in identifying core features that aligned with user needs. Developers explained that

tracking the frequency of feature usage allowed them to prioritize updates and optimizations

effectively. One participant shared, “We use frequency like a heartbeat monitor, it helps us see

which features are alive and thriving with users and where we need to focus next.”

In contrast, feedback from IBM Watson Workspace emphasized the significance of time spent

96

Usage Analytics: Optimizing Feature Prioritization in Software Development

as a metric for understanding user engagement and identifying potential usability challenges. A

senior developer explained, “Time spent offers a window into how deeply users interact with our

features. Short engagement times often indicate areas where improvements are needed.”

Consistency emerged as a critical metric during discussions with both IBM Academic Cloud

and Odoo Notes participants. Stakeholders underscored its value in tracking longitudinal user

behavior, especially following updates or feature releases. An operational manager remarked,

“Consistency helps us ensure that updates are enhancing user experiences rather than disrupting

them.”

Metrics such as clickstream data and error rates, though acknowledged for their theoretical

significance, faced challenges in immediate industrial application. Feedback revealed integration

difficulties and resource constraints as primary barriers. One architect noted, “While clickstream

data is valuable, its implementation requires significant infrastructure, which isn’t feasible in our

current environment.”

This systematic feedback-driven approach ensured that the selected metrics were both the-

oretically sound and practically implementable. The iterative discussions with stakeholders

provided clarity on the trade-offs between various metrics, leading to informed and context-

sensitive decisions. The prioritization of frequency, time spent, and consistency stems from

their alignment with the practical needs of industrial stakeholders and their demonstrable im-

pact on software development decisions. Frequency emerged as a critical metric for identifying

high-value features warranting prioritization, while time spent offered detailed insights into user

engagement and usability. Consistency, as a longitudinal measure, enabled the tracking of user

behavior across different application versions, highlighting the impacts of feature updates and

changes. Metrics such as clickstream data and error rates, though theoretically significant, posed

challenges in resource-intensive integration and immediate industrial utility. Grounding these

decisions in structured feedback ensured that the UAM remained both theoretically robust and

practically implementable. This collaborative process ensured that the selected metrics were

not only functional but also highly relevant to real-world software environments.

1. Frequency of Use (F): Frequency of use is a fundamental metric that measures the

number of times a specific feature or action is accessed by users within a given time frame

(t). It reflects the relative importance and relevance of a feature to the user base. For

example, high-frequency features are often considered critical to user workflows (Buse and

97

Usage Analytics: Optimizing Feature Prioritization in Software Development

Zimmermann, 2012b). This metric can be computed as:

F =
∑
u∈U

count(Au, t)

where U represents the set of users, Au denotes the actions performed by a user u, and t

is the time period. Features with high frequency are typically candidates for optimization

or enhancement to maintain their usability.

2. Time Spent (T): Time spent on a feature provides insights into user engagement and

the complexity of the feature. This metric is calculated as the cumulative duration users

spend interacting with a feature, determined from the timestamps of log entries. High time

spent can indicate a feature’s importance or, conversely, its inefficiency if the time spent

does not align with its purpose (Shams and Whittaker, 2020). The metric is expressed as:

T =
∑
u∈U

time(Au)

This data helps prioritize features that require usability improvements or those that hold

significant value for users.

3. Consistency (C): Consistency measures the stability of user behavior in accessing a

feature after updates or modifications. It evaluates whether changes have altered the

frequency of use or the time spent on a feature. Consistency can be analyzed through two

sub-metrics:

• Consistency of Frequency (CF): Compares the frequency of feature usage across

different versions of the application.

• Consistency of Time Spent (CT): Examines variations in the time spent on a

feature before and after changes.

These sub-metrics are critical for understanding the impact of updates on user behavior

and can guide feature refinement (Buse and Zimmermann, 2012b).

4. Error Rate (E): The error rate captures the frequency of user-reported or system-logged

errors associated with a feature. High error rates can indicate usability or functionality

98

Usage Analytics: Optimizing Feature Prioritization in Software Development

issues that require immediate attention. Error rate is calculated as:

E =
number of errors

number of interactions

This metric provides actionable insights into areas where user satisfaction might be nega-

tively impacted (Zhang and Wang, 2018).

5. Abandonment Rate (AR): Abandonment rate measures the proportion of users who

begin interacting with a feature but do not complete the intended action. This metric is

particularly useful for identifying features with high dropout rates, suggesting a need for

usability improvements (Shams and Whittaker, 2020). It is expressed as:

AR =
number of incomplete actions

total actions initiated

6. User Engagement (UE): Engagement is a higher-order metric that combines frequency,

time spent, and interaction depth. It measures how actively users interact with a feature

over time, providing insights into user satisfaction and feature relevance (Claypool et al.,

2001a).

7. Task Success Rate (TSR): Task success rate evaluates the effectiveness of a feature in

enabling users to complete their intended actions. It is calculated as:

TSR =
number of successful interactions

total interactions

A low TSR may indicate a need for redesign or additional support mechanisms for the

feature (Muller and Stein, 2019).

The inclusion of these metrics provides a comprehensive framework for analyzing user be-

havior and its impact on feature prioritization. A subset of these metrics (Frequency, Time

Spent and Consistency) are practically included for demonstration purposes in this research.

By leveraging these data points, this research contributes to the development of a robust usage

analytics method capable of systematically identifying and prioritizing features based on user

interactions.

Identifying these key metrics involves a systematic approach, starting with the collection of

comprehensive usage data. This data is then analyzed using various analytical techniques, such

99

Usage Analytics: Optimizing Feature Prioritization in Software Development

as statistical analysis and data mining, to uncover patterns and trends. By focusing on the

most significant metrics, developers can prioritize features that have the greatest impact on user

satisfaction and engagement. The utilization of these metrics in feature prioritization involves

integrating them into the decision-making process. This can be achieved through the develop-

ment of dashboards and reporting tools that provide real-time insights into user interactions.

Additionally, incorporating these metrics into regular review meetings and development cycles

ensures that feature prioritization decisions are data-driven and aligned with user needs.

Recent studies support the importance of these metrics in feature prioritization. For exam-

ple, Buse and Zimmermann (2012b) emphasized the value of interaction data, such as frequency

of use and session duration, in identifying critical features. Shams et al. (2020) highlighted the

significance of user engagement metrics, such as user retention rates, in determining feature

importance. Furthermore, Nguyen and Wu (2018) demonstrated how navigation paths and user

feedback could provide actionable insights for improving feature prioritization. Additionally,

Aldhaheri and Abdullah (2020) discussed the effectiveness of combining various usage metrics,

including frequency and time spent, to prioritize features that enhance user engagement and

satisfaction. The study emphasized the importance of a multi-metric approach in capturing a

comprehensive view of user behavior and preferences. Furthermore, Pereira and Silveira (2018)

explored the use of machine learning techniques to analyze usage data for feature prioritization.

The study found that integrating advanced analytics with traditional metrics, such as frequency

and time spent, significantly improved the accuracy and relevance of feature prioritization deci-

sions. Finally, Soltani and Moussavi (2021) highlighted the role of user feedback in refining and

validating the metrics used for feature prioritization. The study demonstrated that incorporat-

ing qualitative feedback alongside quantitative metrics provided a more nuanced understanding

of user needs and preferences, leading to better-informed development decisions.

The choice to focus exclusively on the Frequency, Time Spent, and Consistency metrics in

this research is primarily grounded in the practical constraints and opportunities associated

with the data source. The research collaboration with IBM Research Labs provided access to

a valuable dataset derived from real-world platforms. Such access is highly significant, as it

offers authentic user interaction data that aligns with the goals of this research, ensuring the

findings are both relevant and generalizable to real-world applications. However, the availability

and scope of data collection were subject to specific organizational policies and data-sharing

agreements.

100

Usage Analytics: Optimizing Feature Prioritization in Software Development

IBM Research Labs permitted the use of only Frequency, Time Spent, and Consistency

metrics for analyzing the data due to internal data governance policies, which emphasize user

privacy, data security, and compliance with organizational guidelines. These metrics were cho-

sen as they effectively capture user interaction patterns while adhering to the restrictions on

data usage. While other metrics, such as Error Rate, Abandonment Rate, and Task Success

Rate, could provide additional insights into user behavior, their exclusion does not diminish

the significance of this research. Instead, it underscores the practical realities of working with

real-world datasets governed by strict access policies. The deliberate focus on Frequency, Time

Spent, and Consistency ensures the findings remain robust and actionable within the constraints

of the available data. This methodological choice not only highlights the practical importance of

real-world data but also underscores the value of balancing theoretical comprehensiveness with

practical applicability.

Given the limitations on metrics that could be applied to IBM’s dataset, the same three

metrics were intentionally extended to the analysis of Odoo Notes to maintain consistency in

methodology. This uniform approach ensures comparability of results across platforms, enabling

a coherent analysis framework that aligns with the research objectives. While additional metrics

such as Error Rate, Abandonment Rate, and Task Success Rate could provide richer insights

into user behavior, their exclusion does not diminish the significance of this research. Instead,

it reflects the practical realities of working with real-world datasets governed by strict access

policies. Moreover, focusing on these three metrics ensures the findings remain robust and

actionable within the constraints of the available data. This deliberate methodological choice

not only underscores the practical importance of real-world data but also highlights the value of

balancing theoretical comprehensiveness with practical applicability. By leveraging Frequency,

Time Spent, and Consistency, this research demonstrates the adaptability of usage analytics

methods in real-world environments while respecting organizational constraints.

4.5 Features and Usage Data of selected Software Applications

In this section, the user-level features and the corresponding usage data of the selected software

applications are discussed. Considering the focus of this research, for the remainder of the thesis,

features of a software application refer to only the user-level features of the application. The

features and usage data of the IBM Watson Workspace application are discussed in detail in

101

Usage Analytics: Optimizing Feature Prioritization in Software Development

Section 4.5.1. The features and usage data of the Odoo Notes application are discussed in detail

in Section 4.5.2.

4.5.1 Features and Usage Data of IBM Watson Workspace

The IBM Watson Workspace application is a cloud-based team collaborative communication

application developed by IBM which provides 15 user-level features for users of the application

to interact with the list of features is as shown below. Each feature contains multiple actions

for users to perform. A feature-action map of the IBM Watson Workspace application is shown

in Appendix A, showing the list of features and the comprising action list. The feature-action

map serves as one of the inputs for the usage analytics method.

A list of features of the IBM Watson Workspace application is shown below, the features

are numbered from A to O. This list of features is necessary for the usage analytics method to

identify which features are used by the users. This list forms an input to the usage analytics

method and the results of the analysis are presented as a prioritized list of some or all of these

features based on the analysis.

A. One-on-one direct messaging

B. Searchable history with modifiers

C. File sharing

D. Persistent Group Chat - Private Spaces

E. One-on-one video & audio calls

F. Screensharing + whiteboard capabilities

G. Group video & audio calls

H. Public spaces

I. Organizational administrative controls

J. File storage

K. Apps and integrations

L. Built-in Watson cognitive technology

102

Usage Analytics: Optimizing Feature Prioritization in Software Development

M. SAML-based single sign-on (SSO)

N. Member provisioning and de-provisioning

O. Managed guest user access

B

CA

Figure 4.2: User Interface and High-level Microservices Architecture of IBM Watson Workspace
application. Highlighted microservices between the architecture and the UI.

The user interface and the high-level architecture of the IBM Watson Workspace application

along with the feature-related usage data location are shown in Figure 4.2. The figure also shows

three color-coded features as an example: A. One-on-one direct messaging, B. Searchable history

with modifiers and C. File sharing along with their placement in the UI. The same colour-coded

blocks in the architecture show the different components responsible for these features. These

components are considered as the source of usage data needed for the usage analytics algorithm,

specifically, the API gateway and the WebApp components are used to collect the application

logs and containers running the feature services are used to collect the VM logs.

103

Usage Analytics: Optimizing Feature Prioritization in Software Development

4.5.2 Features and Usage Data of Odoo Notes

Odoo is a suite of open source Customer Relationship Management (CRM) and Enterprise Re-

source Planning (ERP) applications. Odoo Notes is a collaborative Kanban-style task organizing

web application. Odoo Notes provides 19 features (mentioned in bold) grouped in 8 categories

as shown in the list below:

1. Build to-do list

(a) Create Stages (Columns) - Break down your to-do list into stages which will be

converted to columns in your dashboard

(b) Create Notes - Add notes to your stages. Each note corresponds to a mini-project

that you will move from one stage to another as your project moves forward

(c) Delete Notes - Delete a note

(d) Edit Notes - Change the text in the note

(e) Kanban View - Drag and drop notes easily from one stage to another in the Kanban

view

2. Organize your notes

(a) Text layout - Insert text styles like headers, bold, italic, lists and fonts with a simple

WYSIWYG editor

(b) File attachments - Attach text files, image files document files to your notes

(c) Tags - Add tags to your notes for a clear organization

i. Create new tag - Create a new tag to the tags list

ii. Add tag - Add a tag to a note

(d) Filters and Groups - Search notes easily with smart filters

(e) Colors - Group your notes by color as a way to categorize your tasks. There are 9

colors to choose from and a color-less option

3. Import - Upload any text file or document to your notes

4. Export - Export notes as HTML, plain text or DocuWiki text documents

5. Collaborate

104

Usage Analytics: Optimizing Feature Prioritization in Software Development

(a) Invite people - Add co-workers to your notes so they can follow the discussions and

receive notifications

(b) Authorship color - Every author typing some text in a note has a different back-

ground color to show who wrote what. You can link a name to a color

(c) Timeline slider - See the history of changes made to a note through a timeline,

from the first to the last sentence

6. Share - Easily share your notes with your colleagues by sending them as links or embedding

URL

7. Access Settings - Choose what others can do with your notes by granting viewing or

editing access

8. Chat - Enable chat for real-time discussion with the people following your notes

(a) Show Connected Users - See who is connected to your notes right now

The user interface of the Odoo application version 10 and version 11 are as shown in Figure 4.3

and Figure 4.4 respectively. Odoo uses the Python standard log library logging which is used as

the usage data source. However, it uses a special configuration syntax to configure the logging

level. Furthermore, the logger is customized to capture the actions performed by the users.

The details of the logger customization and the custom setup of Odoo in discussed in detail in

Chapter 5 Section 5.4

While the metrics derived from usage data proved valuable, several limitations were encoun-

tered during their practical application. For example, integrating metrics like time spent across

platforms with distinct user interfaces (e.g., web-based vs. desktop applications) posed signifi-

cant challenges. Chapter 7 elaborates on how these challenges were addressed through iterative

refinements, such as adjusting data pipelines to account for varying interaction patterns and

normalizing results for comparative analysis.

Moreover, the Odoo Notes case study highlighted gaps in capturing nuanced user behaviors,

such as the subtle differences in how users interact with features across versions. For instance,

low-consistency metrics for drag-and-drop functionality provided actionable insights but also

revealed the need for more granular tracking mechanisms to fully understand user behaviors.

By iteratively refining these metrics, this research demonstrated their flexibility and adapt-

ability. The cross-platform challenges and solutions discussed in Chapters 5 and 7 further

105

Usage Analytics: Optimizing Feature Prioritization in Software Development

Figure 4.3: User Interface of the Odoo Notes application version 10

Figure 4.4: User Interface of the Odoo Notes application version 11

106

Usage Analytics: Optimizing Feature Prioritization in Software Development

emphasize the importance of continuously evolving analytical frameworks to meet diverse oper-

ational needs. These refinements ensure that the metrics remain robust and actionable, providing

a foundation for future research and development in usage analytics.

This chapter has discussed the importance of understanding software features and analyzing

user actions to inform feature prioritization and development decisions. By examining various

types of usage data and their relationship to software features, developers can gain valuable in-

sights into user needs and preferences, ultimately enhancing the software development process.

Addressing RQ1, the chapter identified key metrics and data points from user interactions that

significantly influence feature prioritization decisions and outlined how these can be systemat-

ically identified and utilized. The next chapter describes the steps taken to develop the Usage

analytics method.

107

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 5

Case Studies for Development of the

Usage Analytics Method

The introduction of this chapter offers a foundational understanding of the challenges developers

encounter for prioritizing features in the software development domain. This chapter addresses

the following research question 2:

RQ2: (Design and development) What are the key challenges faced by the developers to identify

and utilize usage data and key metrics related to the feature prioritization effectively within

the software platform?

The discussion integrates insights from Case Studies 1 and 2, detailing barriers at each stage

of the UA process, such as planning, data collection, design, and validation. By analyzing

these challenges comprehensively, the chapter establishes a roadmap for solutions presented

in subsequent sections. Furthermore, it highlights the nuanced intricacies developers face in

integrating analytics into practical workflows, balancing real-world constraints with theoretical

advancements. This introductory context underscores the importance of a structured approach

to resolving issues in data-driven feature prioritization. This chapter presents a comprehensive

discussion of the challenges encountered during the development and application of the UAM.

By consolidating insights from Case Studies 1 and 2, we explore the barriers faced by developers

and researchers, structured around the stages of the UA process. This chapter sets the stage

for a deeper understanding of the intricacies involved in implementing usage analytics, while

serving as a foundation for evaluating the solutions presented in subsequent chapters.

108

Usage Analytics: Optimizing Feature Prioritization in Software Development

5.1 Overview of the Case Studies

To effectively address the challenges identified in the usage analytics process, it is important to

examine real-world applications and their contexts. The case studies discussed in this chapter are

instrumental in uncovering practical issues developers encounter and how these issues manifest

across different platforms. By analyzing the IBM Academic Cloud, Watson Workspace, and

Odoo Notes, this section provides a structured foundation for understanding the nuanced barriers

in applying usage analytics methods. These cases demonstrate how platform-specific constraints

influence the effectiveness of feature-action mapping, data preparation, and metric utilization,

highlighting the complexity of implementing robust analytics solutions in diverse environments.

1. RQ2: “What are the key challenges faced by developers in identifying and

utilizing usage data effectively?”

(a) Through the IBM Academic Cloud study, significant challenges such as unclear fea-

ture definitions, resource-intensive data preparation processes, and incomplete map-

pings of user interactions to features were identified. These challenges illustrated

the initial barriers developers encounter when attempting to utilize large-scale usage

data effectively. The study highlighted how these obstacles hinder the identification

of meaningful behavioral patterns, necessitating innovative solutions to streamline

data workflows.

(b) In IBM Watson Workspace, a more complex set of issues emerged related to inte-

grating disparate data sources and applying metrics like consistency and frequency

in a meaningful way. These findings emphasized the nuanced requirements for uti-

lizing usage data in dynamic, collaborative development environments. The iterative

validation processes implemented during this study provided critical insights into

mitigating these challenges through structured adaptation and feedback loops.

2. RQ3: “How can activities be systematically structured to identify and utilize

usage data for feature prioritization?” The structured development of feature-action

maps across the three case studies—IBM Academic Cloud, IBM Watson Workspace, and

Odoo Notes—provided a replicable framework for systematically mapping user interactions

to features, addressing RQ3 comprehensively:

(a) IBM Academic Cloud: The feature-action map in this case study provided clarity

109

Usage Analytics: Optimizing Feature Prioritization in Software Development

in associating user actions with specific functionalities. By addressing gaps in data

mapping and identifying critical user interactions, the study illustrated how system-

atic mapping could guide informed development decisions. This approach highlighted

the importance of establishing robust connections between user behavior and appli-

cation features to streamline feature prioritization efforts.

(b) IBM Watson Workspace: This case study refined the application of feature-

action maps by integrating advanced analytics metrics like consistency and frequency.

Through iterative alignment of user behavior metrics with actionable insights, the

study demonstrated the practical value of using structured mapping for prioritiz-

ing features in collaborative environments. This iterative process emphasized how

dynamic, real-world scenarios could benefit from a systematic approach to feature

prioritization.

(c) Odoo Notes: Controlled experiments in this case study showcased the adaptability

of feature-action maps in non-industrial contexts. By evaluating user interactions

across different application versions, the study validated the flexibility and scalability

of the methodology. The findings reinforced how structured mapping could be effec-

tively applied to diverse environments, demonstrating its utility in tailoring feature

prioritization to varied user needs.

Collectively, these practical approaches addressed challenges in identifying and prioritizing

critical features. They provided concrete examples of how both quantitative metrics and qualita-

tive feedback can be leveraged effectively, underscoring the importance of systematic structuring

in feature prioritization activities across varied software environments.

5.1.1 Integration of Empirical Designs

A unified explanation of the empirical designs employed across the case studies highlights their it-

erative role in refining the UAM. Each study offered unique contributions that were instrumental

in addressing specific challenges, enabling iterative adaptation, ensuring broader applicability,

and emphasizing the critical importance of contextual relevance. By systematically analyzing

the designs, this section uncovers how each case study laid the groundwork for understanding

nuanced developer and user behaviors, fostering a cohesive evolution of the method. Through

a step-by-step evaluation, the iterative improvements from each case study demonstrate how

110

Usage Analytics: Optimizing Feature Prioritization in Software Development

contextual insights and empirical evidence merged to strengthen the UAM framework, paving

the way for its flexible application across diverse environments and use cases.

1. IBM Academic Cloud: This study focused on uncovering foundational challenges in col-

lecting and preparing usage data. Developers were engaged through structured interviews

to identify gaps in feature-action mapping and inefficiencies in data selection processes.

The study illuminated the need for robust data pipelines and better integration of analyt-

ics. Detailed analyses from this study laid the groundwork for more advanced refinements

explored in subsequent case studies, highlighting its foundational role in shaping the UAM.

2. IBM Watson Workspace: Building on insights from the Academic Cloud study, this

study refined the UAM by integrating advanced analytics metrics, such as consistency,

frequency, and time-spent analysis. These metrics were applied iteratively in a real-world

collaborative environment, providing critical insights into the usability, scalability, and

adaptability of the method. The study also addressed challenges in validating the relevance

of metrics to feature prioritization, emphasizing the role of iterative feedback loops in

enhancing their application.

3. Odoo Notes: This study extended the UAM’s applicability beyond IBM systems to

validate its flexibility and adaptability in non-industrial contexts. Controlled user ex-

periments, task-based evaluations, and comparative analyses were employed to assess the

method’s effectiveness in feature prioritization across different versions of the application.

Findings reinforced the generalizability of the UAM while highlighting limitations related

to participant diversity, task scope, and data access, demonstrating the method’s potential

for broader application.

To ensure full transparency, an expansive view of the research process is provided, empha-

sizing the deliberate and strategic rationale for platform selection, the comprehensive documen-

tation of participant demographics, and the contextual relevance and broader applicability of

findings. This approach highlights the careful and methodical considerations that shaped the

empirical designs, showcasing their contribution to the trustworthiness and rigor of the research

outcomes.

111

Usage Analytics: Optimizing Feature Prioritization in Software Development

5.1.2 Selection of Platforms for Case Studies

Platform selection involved the thoughtful inclusion of IBM Academic Cloud, IBM Watson

Workspace, and Odoo Notes. These platforms represent a diverse range of software development

contexts, encompassing academic systems, enterprise-level collaboration tools, and open-source

environments. The choice of these platforms was not incidental but opportunistic. The IBM

platforms, in particular, provided unparalleled access to real-world data, including actual user

interactions, source code, and the direct collaboration of the development teams who built these

systems. This level of access, which allowed for a comprehensive and authentic analysis of

usage data, is exceedingly rare in academic research and is very valuable for industry-academic

partnerships. Such collaboration provided the research with a unique opportunity to refine the

UAM in a setting that bridged theoretical exploration with practical application. Furthermore,

the inclusion of participants such as developers, architects, and operational managers brought

diverse perspectives and expertise to the research. Their involvement enriched the findings

by offering practical insights into the challenges of utilizing usage data effectively, enhancing

the validity and depth of the research. These participants played a critical role in uncovering

nuanced challenges and validating the UAM across different use cases. Finally, the synthesis of

data across these distinct contexts underscored the adaptability and robustness of the UAM.

By transparently acknowledging limitations related to participant diversity, task scope, and the

specificity of the platforms, the research demonstrated how the UAM could be generalized across

a broader range of software environments. This comprehensive approach not only validated the

method’s potential but also provided a roadmap for its future application in diverse and complex

scenario.

5.2 Case Study 1: IBM Academic Cloud

IBM Academic Cloud (IBMAC) is a cloud-based application that has been optimized for the

educational and research needs of the academic community (Rindos et al., 2014). The IB-

MAC provides a virtual lab environment for the students with necessary resources provisioned

on-demand and can be preconfigured by the lecturers or administrators. IBMAC developers

expressed an interest in understanding how users of the application use and interact with the

different features of the application and the lecturers and the administrators expressed their

interest in understanding how students are affected by the changes implemented by the admins

112

Usage Analytics: Optimizing Feature Prioritization in Software Development

and lecturers to the application. An important additional requirement was to not include ad-

ditional workload for the students when attempting to understand how they are affected by

the changes implemented to the application. As a result, the initial version of the research1

was designed to investigate how to analyze user behavior with the importance of the impact

(positive/negative) of the behavior of the students as well as lecturers, as discussed in (Chandra

and Malaya, 2012). The need for frequent updates, and constantly changing requirements in the

cloud environment encouraged us to explore and adopt the Agile model. This study resulted

in a Usage Analytics approach based on the Agile model and shows how the approach can be

implemented in IBM Academic Cloud while explaining the challenges involved and how these

challenges could be addressed using Usage Analytics.

In IBM Academic Cloud, lecturers are required to frequently update and handle changing

requirements such as new tools, methods, and techniques to improve the quality of courses and

modules offered to students. Applications deployed over the cloud and the services provided by

the cloud such as IBM Academic Cloud have requirements that change and update frequently.

The IBMAC team followed agile development model to handle the changes. Agile development,

in opposition to the traditional model, is characterized by a focus on small teams of skilled

individual developers, changing requirements, frequent version deliveries, and daily contact with

stakeholders making it a suitable candidate for cloud environments. Understanding how these

frequent changes and updates affect user behavior is important to improve the quality of the

application and services provided by the cloud. This case study is based on the assumption

that changes in user behavior is influenced by the changes and updates in the application and

services provided by the cloud. To test this assumption, a process model was developed to

analyze user interactions in IBM Academic Cloud (Kesavulu et al., 2018b). The process model

is based on the generic Agile models used in the software development domain (Wilcox et al.,

2010; Abrahamsson et al., 2002) and the resulting process model is shown in Figure 5.1 which

consists of the following five phases in each iteration.

- Planning: includes planning on the following goals of the usage analytics process model:

Understanding user’s usage Pattern, Understanding user behavior, Identifying Critical features

of the application from the user’s perspective.

- Requirements Analysis: involves project managers and software architects dealing with the

elicitation of requirements such as Usage data classification - refer Sec. 2, Usage data sources

1Please note that the research was sponsored by IBM as part of the academic-industrial research collaboration
between Lero research institute and IBM Research Labs, Dublin, Ireland

113

Usage Analytics: Optimizing Feature Prioritization in Software Development

Goals:
- User behaviour
- Usage patterns
- Critical features of Application

Extraction process
Analytics algorithm
Evaluation process

Extraction component
Analytics component

Usage data classification
Usage data sources identification

Data extraction methods
Analytics methods
Evaluation plan

Implement
Evaluate

Planning

Requirements
Analysis

DesigningBuilding

Testing

Figure 5.1: Usage Analytics Process Model used by the developers of the IBM Academic Cloud
to analyze user interactions with an aim to prioritize features of the application for the next
cycle of the development

identification, Data extraction methods or Analytics methods.

- Designing: includes the software architects dealing with the design of usage data extraction

process, Analytics algorithm and evaluation process.

- Building: involves developers building the usage data extraction and analytics component.

- Testing: involves implementing the usage data extraction and analytics components and eval-

uation.

In the following sections, we describe the case study in detail and explain how the process

model was applied to IBM Academic Cloud.

5.2.1 Goal - Research Problem Identification

This case study aims to address part of the RQ2: what challenges are associated with feature pri-

oritization process?. The goal of this case study is to identify the challenges faced by developers

for feature prioritization by critically exploring the current process followed by the developers

to prioritize features for the next cycle of the development.

IBM Academic Cloud provides virtual resources (VMs) on-demand basis for universities to

help run classes and labs. Users (lecturers, academic administrators and students) access the

VMs through an RDP connection with any desktop, or laptop with a basic configuration. Lec-

114

Usage Analytics: Optimizing Feature Prioritization in Software Development

turers and administrators can request and change the configurations of the VMs while students

can only access the VMs provided to them. A scenario was designed to incorporate the Usage

Analytics process model as shown in Figure 7.1. The first phase is to decide the goals, meaning

what to achieve from analyzing the user’s usage patterns (Kesavulu et al., 2017a). Lecturers and

administrators faced challenges in understanding how students interacted with the applications

hosted on the VMs provided to them, as well as assessing the positive or negative impact of

changes made to the VM configurations on student behavior. Additionally, they sought to iden-

tify the most suitable configurations tailored to individual students or specific student groups.

5.2.2 Design - Analysis of the Usage Analytics Process Model

To achieve the goal defined above, a comprehensive analysis of the Usage Analytics Process

Model was conducted to identify key stages and potential bottlenecks in the feature prioritiza-

tion process. The model comprises five main stages: Data Collection, Data Processing, Data

Analysis, Feature Prioritization, and Feedback Loop.

The Data Collection stage involves gathering user interaction data from various sources

within the IBM Academic Cloud platform. Key metrics such as frequency of use, duration of

use, and user satisfaction ratings were identified as significant for prioritization. These metrics

align with findings from literature which emphasize the importance of user interaction data in

understanding user behavior and preferences (Bucklin and Sismeiro, 2009a; Cito et al., 2015b).

Implementing data collection tools required integration with existing logging systems and

setting up new analytics frameworks to capture relevant metrics. This involved deploying tools

to track user actions, session durations, and user feedback systematically. The challenges faced

during this stage included ensuring data quality and integrating different data sources, which

often led to inconsistencies and gaps, making comprehensive data collection difficult (Chen et al.,

2011; Olsson and Bosch, 2014c).

The Data Processing stage was critical for cleaning and transforming the collected data into

a usable format. This stage was resource-intensive and error-prone, as it required dealing with

large volumes of data efficiently. The complexity of this task is well documented in the literature,

highlighting the need for robust data preprocessing frameworks (Wang et al., 2011; Cito et al.,

2015b).

In the Data Analysis stage, advanced analytical techniques were applied to extract meaning-

ful insights from the processed data, focusing on three key metrics: Frequency, Time Spent, and

115

Usage Analytics: Optimizing Feature Prioritization in Software Development

Consistency. Frequency analysis was used to identify the most accessed features by calculating

the number of interactions per feature within specific time frames. Duration analysis measured

the total time spent by users on individual features, providing insights into user engagement and

potential inefficiencies. Consistency analysis evaluated the stability of user behavior by compar-

ing Frequency and Time Spent metrics across different versions of the application, enabling an

assessment of the impact of updates. These analytical approaches, while straightforward, posed

challenges due to the complexity of real-world datasets and the need for precise interpretation

(Fabijan et al., 2016b; Tizard et al., 2022).

The Feature Prioritization stage involved translating analytical insights into actionable devel-

opment priorities. This required close collaboration between analysts and developers to ensure

that the insights derived from the data were aligned with development goals. Issues with align-

ing these insights with development priorities were identified, as supported by the literature

(Fagerholm et al., 2014; Lindgren and Münch, 2016).

The Feedback Loop stage aimed at continuously refining the process based on feedback from

developers and users. Establishing a robust feedback loop was essential for ensuring the relevance

and accuracy of the analytics process over time. This involved gathering real-time feedback and

making necessary adjustments to the data collection and analysis techniques (Fitzgerald and

Stol, 2017b; Bauer et al., 2017).

Developer interviews provided insights into the challenges they face in prioritizing features

and how they use data in their decision-making process. Common issues identified included

the difficulty in interpreting complex data and the need for specialized analytical skills. These

challenges are supported by findings from (Maalej et al., 2009; Ogonowski et al., 2013).

5.2.3 Result: Initial Design of the Usage Analytics Method and Feature

Prioritization Challenges

The implementation of the usage analytics process model in IBM Academic Cloud revealed

several challenges related to prioritization of software features and led to the development of the

Initial Design of the Usage Analytics (UA) Method (Version 1).

Initial Design of the Usage Analytics Method

The initial design of the usage analytics method was developed based on the insights gath-

ered from the process model analysis and pilot testing. This design is depicted in Figure 7.1 and

includes a comprehensive framework for collecting user interaction data from various sources, a

116

Usage Analytics: Optimizing Feature Prioritization in Software Development

robust pipeline for cleaning, transforming, and storing data in a usable format, initial models

for analyzing data to identify usage patterns and feature importance, a mechanism for trans-

lating analytical insights into feature prioritization decisions, and a system for gathering and

incorporating feedback from developers and users to continuously improve the analytics process.

Requirements Analysis of the Usage Analytics process model is to analyze the requirements,

for example, application logs contain non-trivial information such as the event data, user ID,

access time and so on. System logs reveal information such as workload, processing time, errors

and so on. Cross-matching information from both types of logs can help understand students’

usage patterns, and impact students’ behavior (for example, deviation from typical interactions)

as a result of configuration changes made by the lecturer/administrator to the VMs and so on.

Here, application and system log files are treated as usage data sources. The third Designing

Software Platform

Physical Infrastructure

Blades, Servers, Desktops,
Storage, Network {

Image
Repository

Virtual Infrastructure

Deployed VMs

...

Applications

...

Master VMs

...

User Interface (Laptop / Desktop)

Developers

Software
Developer

VM
Developer

Users

Interact

Access applications (RDP Connection)

Customise

Usage Data Sources

Log files Raw Files

Usage Data
Storage

Feature Vectors

User Behaviour

Usage Pattern

Critical Features

Analytics
Feature

Extraction
Analytics

Researcher

Usage Data
Extraction

Figure 5.2: Usage Analytics Method Design - Version 1 resulted from the exploration of IBM
Academic Cloud Application.

and fourth Building phases deal with carefully designing and developing suitable usage data

extraction processes (e.g., log extraction and analysis) and tools (e.g., logstash, ELK stack),

analytics methods (e.g., regular expressions, machine learning, statistical analysis). However,

117

Usage Analytics: Optimizing Feature Prioritization in Software Development

tools vary for different scenarios. The fifth Testing stage deals with the evaluation of the model.

Questionnaires, surveys and interviews are suitable for the initial iterations to validate the

extraction and analytics components designed and developed in the previous phases. This case

study resulted in the Usage Analytics experiment design shown in Figure 7.1. The experiment

is designed to start with providing the VMs to students and then changing the configuration

of the VMs to see how the changes impact user behavior. The experiment is designed to be

conducted in two iterations. In the first iteration, the experiment is designed to be conducted

in a controlled environment where the VMs are provided to students and the configuration of

the VMs is changed by the lecturer/administrator. In the second iteration, the experiment is

designed to be conducted in a real-world environment to compare the results of the experiments

and examine if a controlled environment affects the results. During both iterations, system and

application logs are collected and processed for further analysis. The results of the analysis

revealing the impact of the changes made to the VMs on user behavior will be used by the

lecturer and the administrator to make informed decisions on the configuration of the VMs in

the future. Similar development attempts of process models, software platforms and applications

using the agile models can be seen in (Bauer et al., 2017; Claps et al., 2015; Fagerholm et al.,

2014).

The Initial Design of the Usage Analytics (UA) Method includes three primary stages: Usage

Data Extraction, Analytics Feature Extraction, and Analytics.

1. Usage Data Extraction: The first stage, Usage Data Extraction, focuses on gathering

raw data from various sources within the IBM Academic Cloud platform. This involves

implementing robust data collection frameworks capable of capturing a wide range of

user interaction metrics, including frequency of use, duration of use, and user satisfaction

ratings. The challenge here is to ensure the data collected is comprehensive and accurate,

which requires the integration of different data sources and maintaining high data quality.

The literature emphasizes the importance of capturing diverse interaction data to gain

a holistic understanding of user behavior and preferences (Bucklin and Sismeiro, 2009a;

Cito et al., 2015b). The deployment of data collection tools, such as logging systems and

analytics frameworks, was critical in this stage.

• IBM Log Analysis with LogDNA: This tool provided robust logging capabilities,

allowing for the collection and analysis of logs from various application components. It

118

Usage Analytics: Optimizing Feature Prioritization in Software Development

facilitated the tracking of user actions by capturing log entries related to application

interactions, which were later processed to extract metrics such as Frequency and

Time Spent.

• IBM Cloud Monitoring with Sysdig: This monitoring tool was utilized to track

system performance and resource utilization while also integrating user interaction

data. Sysdig provided insights into how users interacted with cloud-hosted applica-

tions, helping to identify patterns in feature usage.

• Custom Analytics Pipelines: In addition to IBM’s proprietary tools, custom

analytics pipelines were developed to preprocess and structure the collected data.

These pipelines integrated raw logs and user interaction records into a structured

format, enabling the calculation of the core metrics—Frequency, Time Spent, and

Consistency.

These tools were configured to systematically track user actions, session durations, and

user feedback, providing a rich dataset for subsequent analysis. Ensuring the consistency

and reliability of this data was a significant challenge, as highlighted by previous studies

that stress the importance of robust data collection methods (Chen et al., 2011; Olsson

and Bosch, 2014c).

2. Analytics Feature Extraction: The second stage, Analytics Feature Extraction, in-

volves processing the raw data collected in the first stage to extract meaningful features

that can be analyzed. This stage is crucial for transforming the data into a usable format,

which includes cleaning, filtering, and aggregating the data. The complexity and volume

of data necessitate efficient preprocessing techniques to handle large datasets without com-

promising accuracy. The literature underscores the necessity of efficient data preprocessing

to prepare the data for analysis (Wang et al., 2011; Cito et al., 2015b). During this stage,

the data was cleaned to remove any inconsistencies and transformed to a format suitable

for analysis. This included aggregating data points to derive metrics that could provide

insights into user behavior, such as average session duration and frequency of feature us-

age. The challenge here was to ensure that the extracted features accurately represented

the underlying user interactions, a task that requires sophisticated preprocessing pipelines

as discussed in the literature (Fabijan et al., 2016b; Tizard et al., 2022).

3. Analytics: The final stage, Analytics, involves applying advanced analytical techniques

119

Usage Analytics: Optimizing Feature Prioritization in Software Development

to the processed data to identify patterns and generate insights. This stage is critical for

understanding how users interact with the IBM Academic Cloud platform and for making

data-driven decisions about feature prioritization. To analyze the key metrics—Frequency,

Time Spent, and Consistency—two machine learning models were employed:

• k-Means Clustering: Clustering was used to group users or features based on

interaction patterns derived from Frequency and Time Spent metrics. For example,

k-Means clustering identified user segments with similar usage behaviors, such as

power users who frequently interacted with specific features. These clusters provided

insights into user engagement levels and guided decisions about feature prioritization

and customization.

• Linear Regression: Regression analysis was applied to examine the relationships

between metrics, such as the correlation between Time Spent and Frequency, or

the impact of updates on Consistency. This model helped quantify the effect of

changes and identify trends, offering a predictive understanding of user behavior

across different application versions.

These two models were chosen for their relevance to the research objectives and their abil-

ity to generate actionable insights from the available metrics. By combining clustering to

identify patterns in user behavior with regression to analyze and predict relationships be-

tween metrics, this analytical framework effectively supported the decision-making process

on the IBM Academic Cloud platform. The complexity of these techniques and the need

for specialized skills were significant challenges in this stage, as noted in previous research

(Fabijan et al., 2016b; Tizard et al., 2022). The insights generated during this stage were

used to inform feature prioritization decisions, ensuring that the development efforts were

focused on the most impactful features. This required close collaboration between analysts

and developers to translate the analytical findings into actionable development priorities.

The literature highlights the importance of this collaboration to align data insights with

development goals (Fagerholm et al., 2014; Lindgren and Münch, 2016). Additionally,

establishing a feedback loop was essential for refining the analytics process based on real-

time feedback from developers and users. This continuous improvement cycle is crucial

for maintaining the relevance and accuracy of the usage analytics method over time, as

emphasized by (Fitzgerald and Stol, 2017b; Bauer et al., 2017).

120

Usage Analytics: Optimizing Feature Prioritization in Software Development

Feature Prioritization Challenges

IBM’s Chief Analytics Office reports handling over 30,000 new ideas and feature requests

annually, highlighting the immense volume of data that needs to be processed manually. This

situation is analogous to the challenges faced in the IBM Academic Cloud, where develop-

ers struggle with the manual processing of vast amounts of user feedback. The absence of a

systematic approach results in inconsistencies and inefficiencies, underscoring the necessity for

automated solutions to manage and prioritize feature requests effectively (Office, 2020). IBM’s

research on hybrid anomaly detection and data governance emphasizes the critical challenge of

inconsistent data categorization and manual processes. These challenges are prevalent in the

IBM Academic Cloud, where the lack of mapping user actions to features hinders effective data-

driven analytics. The adoption of advanced analytics and automated data management practices

has proven beneficial in other IBM projects, suggesting similar approaches could enhance feature

prioritization in the IBM Academic Cloud (Wei et al., 2019; Rouse, 2018).

The developers found it difficult to analyze user interactions because not all platform fea-

tures were clearly defined. This lack of clarity made it challenging to understand how users

were interacting with the application and which features were being utilized. Without a clear

definition of platform features, it was nearly impossible to map user interactions accurately

and derive meaningful insights from the data. This issue is highlighted in the literature, which

emphasizes the importance of well-defined features for effective usage analytics Maalej et al.

(2009); Olsson and Bosch (2014c). There was no mapping of user interactions to the features of

the application. Developers struggled to understand which actions performed by the user were

related to which features of the application. This lack of mapping created significant challenges

in analyzing user behavior and identifying the most critical features. Without a clear mapping,

it was difficult to prioritize features based on user interaction data. This challenge is supported

by previous research, which underscores the need for a detailed mapping of user interactions to

application features for effective analytics Fabijan et al. (2015); Fagerholm et al. (2014). There

were many different types of data available with the application that could be treated as usage

data. Choosing which specific types of data, the source of the data, and the format of the data

required a tremendous amount of time and effort from the developers. This created a bottleneck

for the development process, as developers had to spend significant time and resources on data

selection and preparation. The literature highlights the importance of selecting the right types

of data and formats for effective usage analytics and the challenges associated with this process

121

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chen et al. (2011); Wang et al. (2011).

The process model analysis revealed critical stages where data collection and analysis were

time-consuming and prone to errors, directly relating to the key challenges identified:

1. Data Collection Bottlenecks: Integrating different data sources and ensuring data

quality were major challenges in the Data Collection stage. The lack of clear feature

definitions and the absence of a user interaction mapping to features made it difficult

to collect relevant and accurate data. The heterogeneity of data sources often led to

inconsistencies and gaps, making comprehensive data collection difficult Chen et al. (2011);

Olsson and Bosch (2014c).

2. Data Processing Bottlenecks: In the Data Processing stage, the complexity of cleaning

and transforming large volumes of data efficiently was exacerbated by the challenge of se-

lecting specific types, sources, and formats of data. This stage was resource-intensive and

error-prone, as developers had to spend significant time on data preparation. Data pre-

processing is a critical step that can be resource-intensive and error-prone, as highlighted

by Wang et al. (2011); Cito et al. (2015b).

3. Data Analysis Bottlenecks: The Data Analysis stage posed significant challenges due

to the complexity of the data and the need for specialized analytical skills. The absence of a

clear mapping of user interactions to features made it difficult to apply advanced analytical

techniques and interpret the results accurately. Applying advanced analytical techniques

and interpreting the results were difficult tasks that required the use of sophisticated tools

Fabijan et al. (2016b); Tizard et al. (2022).

4. Feature Prioritization Bottlenecks: During the Feature Prioritization stage, aligning

analytical insights with development priorities was identified as a major issue. The lack

of clear feature definitions and user interaction mappings made it challenging to translate

data insights into actionable development priorities. Translating data insights into action-

able development priorities required close collaboration between analysts and developers

Fagerholm et al. (2014); Lindgren and Münch (2016).

5. Feedback Loop Bottlenecks: Establishing a robust Feedback Loop was essential for

continuous improvement based on real-time feedback. However, the absence of a clear

feature mapping and comprehensive data collection made it difficult to gather and in-

122

Usage Analytics: Optimizing Feature Prioritization in Software Development

corporate relevant feedback from developers and users. This stage involved gathering and

incorporating feedback from developers and users to refine the analytics process Fitzgerald

and Stol (2017b); Bauer et al. (2017).

The experiment design in this case study forms the basis for the usage analytics method

and future designs of the experiments. The experiment design is further improved to include

specific data sources, the process to extract the usage data from the identified data sources and

implemented in the following case studies. The next section describes the case study on IBM

Watson Workspace.

5.3 Case Study 2: IBM Watson Workspace

IBM Watson Workspace was a team collaboration application built at IBM Labs. It was a cloud-

based application that provided a platform for teams to collaborate and share information in

real-time. The application was built using IBM Watson services such as Watson Conversation,

Watson Discovery, Watson Natural Language Understanding, Watson Language Translator and

Watson Tone Analyzer. The application was built using the IBM Bluemix platform. Figure 5.3

shows the process followed with the IBM Watson Workspace use case. The process starts with

identifying the features, specifically the user-related features, and the data sources. The data

sources are then analyzed to identify the data that can be used to analyze the user behavior. The

data is then extracted from the data sources and processed to extract the required information.

The extracted information is then analyzed to identify the user behavior. Figure 5.4 shows the

high-level architecture of the IBM Watson Workspace application. The application is built using

the microservices architecture where each microservice is responsible for a specific feature of the

application. Each microservice has an API that is used to communicate with other microservices

and for users to access the various features of the application either through an API gateway or

a messaging queue (MQTT server). These microservices are served by one or more containers

running on a pool of VMs.

Application, infrastructure, and production health checks are monitored using New Relic2

in IBM Watson Workspace. New Relic is a Software-as-a-Service (SaaS)3 platform which allows

real-time monitoring and instrumentation of bare metal VMs, operating systems, containers

2https://newrelic.com
3SaaS is a software distribution model in the cloud computing paradigm in which a third-party provider hosts

applications and makes them available to customers over the Internet

123

Usage Analytics: Optimizing Feature Prioritization in Software Development

IBM Watson Workspace

Identify
Features

Identify
Usage Data

Data
Extraction

Usage
Analysis Evaluation

User
Oriented
Features

Application
Catalog

Application
Version log

Agent
based

monitoring

Monitoring
repositories

Elastic
Search

New Relic
New Relic

API

Elastic
Search API

extract
using

Features
Identified

Map data to
features

Usage
Patterns

using
metrics

Controlled
Experiment

Plot Free Style

Questionnai
re Screenshot

Figure 5.3: Use Case 2: IBM Watson Workspace

and other hardware resources to front-end systems, UI/UX components or API layer of the

application. Watson Workspace heavily relies on the capabilities of New Relic to keep its pro-

duction services up and running. New Relic also runs production health checks for IBM Watson

Workspace, these health checks trigger an alert if there are any inconsistencies in defined SLAs

and current SLAs for the immediate attention of the team. The practices currently employed

by the developers of the application are concentrated on maintaining the application and sys-

tem health, proper execution with acceptable performance and elimination of bugs and errors.

Changes are made to the components of the software for these purposes on a daily basis. Under-

standing the impact of these changes on the users and their usage behavior to efficiently provide

updates with such a high velocity and frequency tends to be a laborious task for the developers.

5.3.1 Goal - Implementation challenges of UA

This case study address the RQ2: What are the key challenges faced by the developers to identify

and utilize usage data and key metrics related to the feature prioritization effectively within the

software platform?, while considering the challenges identified in the previous case study. This

question focuses on the methodologies and tools necessary for capturing and analyzing usage

data, exploring best practices for data collection, data cleaning, and data analysis to ensure that

the metrics gathered are accurate and actionable. This section focuses on the methodologies

124

Usage Analytics: Optimizing Feature Prioritization in Software Development

Ph
ys

ic
al

In

fr
as

tr
u

ct
u

re
V

ir
tu

al
 In

fr
as

tr
u

ct
u

re

Server Database

Pool of VMs (Cluster)

- - -

B C

API
Gateway

A

REST
API

A
p

p
lic

at
io

n
 A

rc
h

it
ec

tu
re

 (
M

ic
ro

se
rv

ic
es

)

Web BrowserSmartphone

MQTT

Message
Queue

Containers

Services

REST
API

REST
API

System Logs

Usage data database
(New Relic /
ElasticSearch
repository)

User Interaction Data

Visualization Tools

New Relic Dashboard /
Kibana

Desktop Client
W

at
so

n
 W

o
rk

sp
ac

e

Figure 5.4: High-level architecture of the IBM Watson Workspace application. Highlighting the
data sources necessary for the Usage Analytics method.

and tools essential for capturing and analyzing usage data, with an emphasis on best practices

for data collection, cleaning, and analysis to ensure accuracy and actionability. Furthermore,

it explores strategies for integrating this data into the feature prioritization process, enabling

data-driven decision-making.

5.3.2 Design - Development and Application of Usage Analytics Method

Case Study 1 established the foundational three-stage framework of the Usage Analytics (UA)

method, focusing on Usage Data Extraction, Analytics Feature Extraction, and Analytics. It

provided a proof of concept but revealed limitations in handling complex software systems and

diverse data sources. Building on these insights, Case Study 2 expanded the method into a

four-stage process—Identify Features of the Application, Identify Usage Data Sources, Data

Extraction, and Analytics. This iteration addressed the shortcomings of the initial framework,

adding structure and scalability. Together, the two case studies illustrate an iterative refinement

process, with Case Study 1 laying the groundwork and Case Study 2 enhancing the method for

broader applicability. The Usage Analytics approach aims at analyzing the software usage data

to understand the impact of changes made to the application on the usage behavior of the users.

The high-level diagram of the Usage Analytics approach is shown in Figure 5.5.

The approach involves four stages:

125

Usage Analytics: Optimizing Feature Prioritization in Software Development

Usage Analytics

Data Type

a) User ID
b) IP Address

a) Web server
b) Database

a) Page
b) Method
c) Function
d) Button that is accessed
e) Action that is performed
f) View

g) Focus
h) API call

a) Date and time
b) Session ID

a) Duration
b) Query duration

a) Errors
b) Background tasks
c) Number of records loaded

ID

C1

C2

C3

C4

C5

C6

Data Source 1

Data Source 2

Data Source 3

Data Source N

. . .

Action
Action
Action
Action
Action

Action
Action
Action
Action
Action

Action
Action
Action
Action
Action

Feature

Feature

Feature

Metrics

Frequency
Time spent
Consistency

.

.

.

.

.

Watson Workspace

Figure 5.5: High-level diagram of the Usage Analytics approach designed using IBM Watson
Workspace application showing the available data sources

• Identify features of the application: The first step is to identify the list of features

provided by the application and the actions a user can perform that relate to each fea-

ture. This involves a comprehensive review of the application catalog, version logs, and

developer documentation to compile an exhaustive list of features and functionalities. The

application catalog typically provides a detailed description of each feature, including its

intended purpose and how it fits into the overall application. By thoroughly analyzing

the catalog, developers can gain a clear understanding of the functionalities offered by the

application. Version logs are equally important as they document changes made to the

application over time. These logs provide insights into the evolution of features, including

new additions, modifications, and deprecations. By reviewing the version logs, developers

can track the development history and understand how features have been updated and

improved. Developer documentation, including technical specifications and implementa-

tion guides, offers a deeper insight into how features are built and integrated into the

application. This documentation is invaluable for identifying the technical details of each

feature, which can help in mapping user actions to features accurately. Once the final

updated list of features is identified (as shown in Appendix A), the actions a user can

perform are mapped to the corresponding feature they belong to. This feature-action map

will serve as input to the analytics stage.

126

Usage Analytics: Optimizing Feature Prioritization in Software Development

Feature-action map

A feature-action map, while increasingly regarded as a standard tool for monitoring user

interactions in modern software applications, is not universally implemented across all

systems. Many applications still lack a pre-existing feature-action map, requiring it to be

built from scratch. This process involves identifying and mapping specific user actions

such as clicks, navigation events, and input submissions to corresponding application fea-

tures. The absence of a predefined feature-action map can result from factors such as

legacy system architectures, lack of standardized monitoring practices, or the complexity

of integrating diverse user interfaces. Constructing such a map is a critical step in enabling

effective usage analytics, as it provides the foundational structure necessary for tracking

and analyzing user interactions to inform feature prioritization and system optimization.

A feature-action map is a tool that connects the features of an application to the spe-

cific actions performed by users, thereby serving as a guide to understanding how users

interact with the application. The theoretical foundation of feature-action maps draws

from several key areas within human-computer interaction (HCI), usability engineering,

and user-centered design. These disciplines provide the necessary framework and method-

ologies for understanding and improving user interactions with software applications. The

techniques used to create a feature-action map for the IBM Watson Workspace are ex-

ploring action logs and tags which were already available as the developers were using

New Relic tool for application monitoring, this tool included monitoring some features of

the application for managing health checks and heuristic analysis for identifying actions

related to features that were not included in the New Relic tool.

Action Logs and Tags: Action logs and tags involve tagging each user action with a

unique identifier that corresponds to a specific feature within the software application.

This method requires a well-thought-out design during the development phase to ensure

that all actions are accurately tagged and logged. The use of action logs and tags provides

a detailed record of user interactions, which can be analyzed to understand how users

engage with different features. For instance, tools like Google Analytics and Mixpanel offer

functionalities to tag and track user actions. These tools enable developers to define events

(such as button clicks, page views, and form submissions) and assign tags to these events.

By doing so, each action performed by the user is recorded with an associated tag that

identifies the feature being used. This tagged data can then be aggregated and analyzed

127

Usage Analytics: Optimizing Feature Prioritization in Software Development

to gain insights into feature usage patterns (Holmström Olsson and Bosch, 2013). The

effectiveness of action logs and tags depends on the granularity and accuracy of the tags.

Granular tagging allows for more detailed analysis but requires a comprehensive tagging

strategy to ensure that all relevant actions are captured. Accurate tagging, on the other

hand, ensures that the recorded actions are correctly associated with the corresponding

features. To achieve this, developers must collaborate closely with UX designers and

product managers to identify the key actions and features that need to be tracked.

Heuristic Analysis: Heuristic analysis involves using predefined rules or heuristics to

infer which user actions are related to specific features. This method can be particularly

useful when action logs and tags are not available or when it is not feasible to tag every

user action. Heuristic analysis can be based on patterns observed in user behavior, such

as sequences of actions that are typically associated with the use of a particular feature.

For example, if a user frequently accesses a set of related functions within a short time

frame, it can be inferred that these actions are associated with a specific feature. Heuristic

analysis can also involve analyzing the context in which actions are performed, such as

the type of task the user is attempting to complete or the specific conditions under which

actions occur (Newman, 2010). By playing the role of a user and using the developer

documentation as reference, the application was used by exploring each feature described

in the documentation. In addition to manually recording the actions performed, the ap-

plication logs generated during this time was recorded and analyzed to identify the list of

actions performed. The resulting list of actions are mapped to the features, example of a

single feature with its mapped related actions in JSON format as shown below.

1 {

2 "Features": [

3 {

4 "id": "1",

5 "Persistent Group Chat - Private Spaces": [

6 "CHAT_MESSAGE_DELIVERED",

7 "CHAT_MESSAGE_RECEIVED",

8 "CHAT_MESSAGE_SEND",

9 "COGNITIVE_MOMENTS_LENS_CLICKED",

10 "COGNITIVE_MOMENTS_LOADED",

128

Usage Analytics: Optimizing Feature Prioritization in Software Development

11 "COGNITIVE_MOMENTS_MOMENT_CLICKED",

12 "COGNITIVE_MOMENTS_UNLOADED",

13 "CREATE_TEAM_COMPLETE",

14 "CREATE_TEAM_START",

15 "DELETE_MESSAGE_CANCEL",

16 "DELETE_MESSAGE_CONFIRM",

17 "DELETE_MESSAGE_START",

18 "DELETE_MESSAGE_SUCCESS",

19 "MENTION_CREATED",

20 "MENTION_LIST_ITEM_OPEN",

21 "MENTION_LIST_PAGINATED",

22 "MENTION_SPACE_CREATED",

23 "MENTION_VIEW_OPEN",

24 "SYNC_SPACES",

25 "SYNC_SPACES_ERROR",

26 "TEAM_ROOM_OPEN",

27 "TEAM_ROOM_VIEW_MESSAGES"

28]

29 },

This example illustrates how the feature “Persistent Group Chat - Private Spaces” was

identified as a key feature within IBM Watson Workspace. The team listed all relevant

actions associated with this feature, such as “CHAT MESSAGE SEND” and “COGNI-

TIVE MOMENTS LOADED”. Each action was tagged with a unique identifier during the

development phase, ensuring accurate tracking. For actions not directly logged, heuristic

methods were used to infer their association with the feature based on observed user be-

havior patterns. All identified actions were mapped to the feature in a structured format

(JSON), providing a clear representation of user interactions with the feature. Creating

a feature-action map involved several detailed steps, each requiring careful planning and

execution.

1. Setting Up Monitoring Tools To begin the process, the development team in-

tegrated New Relic for application monitoring. New Relic was already used by the

129

Usage Analytics: Optimizing Feature Prioritization in Software Development

developers to monitor various features of the application, including managing health

checks. During the development phase, the team designed the system to ensure that

all actions were accurately tagged and logged. This involved collaboration with UX

designers and product managers to identify key actions and features. For applications

needing to create a feature-action map, tools like Google Analytics4 and Mixpanel5

could be employed to define events such as button clicks, page views, and form sub-

missions, and to assign tags to these events.

2. Data Collection Through Action LogsWith the monitoring tools in place, action

logs were utilized to track user interactions. The action logs provided a detailed

record of user interactions, which were then aggregated and analyzed to understand

how users engaged with different features. The granularity and accuracy of the tags

were crucial for this analysis. Granular tagging allowed for more detailed analysis,

while accurate tagging ensured that the recorded actions were correctly associated

with the corresponding features.

3. Manual Data Collection and Heuristic Analysis In addition to automated

data collection, manual data collection was also employed and heuristic analysis was

used. The IBM Watson Workspace application was manually used in a systematic

manner, guided by the developer documentation. Each feature was explored carefully

described in the documentation, performing various actions. During this exploration,

actions were manually recorded. Additionally, application logs generated during this

period were collected and analyzed. Heuristic analysis was used to identify actions

related to specific features based on patterns observed in user behavior. For example,

if a user frequently accessed related functions in quick succession, it was inferred that

these actions were associated with a particular feature.

4. Mapping Actions to Features Once the data was collected and analyzed, process

of mapping actions to features was performed. This involved aggregating the data

from action logs, tags, and manual recordings. The feature-action map was created

by mapping the identified actions to the corresponding features. An example of this

mapping is provided in JSON format in Appendix A.

The creation of a feature-action map for IBM Watson Workspace involved a combination

4https://marketingplatform.google.com/about/analytics/
5https://mixpanel.com/

130

Usage Analytics: Optimizing Feature Prioritization in Software Development

of action logging and heuristic analysis. By leveraging tools like New Relic for monitoring

and implementing a comprehensive tagging strategy, the development team was able to

accurately track and analyze user interactions. This detailed mapping provided valuable

insights into how users engage with different features, informing design and development

decisions to enhance user experience.

• Identify usage data sources: The process of identifying and selecting the primary usage

data source for IBM Watson Workspace is critical to ensure the accuracy and comprehen-

siveness of user interaction data. This process involves evaluating various data collection

tools, considering their capabilities, and determining how well they meet the application’s

specific requirements. The following detailed explanation outlines the steps taken to select

the usage data source.

1. Understanding Requirements and Objectives: The first step in selecting a us-

age data source is to clearly define the requirements and objectives of data collection.

This involves understanding the key questions that the data should answer, such as

user behavior patterns, feature usage, and performance issues. According to Preece

et al. (2015), the success of any HCI research or evaluation method depends sig-

nificantly on how well the initial requirements are understood and articulated. For

IBM Watson Workspace, the objectives included tracking user interactions, identi-

fying performance bottlenecks, and understanding the context of user actions. The

requirements specified the need to capture data such as user IDs, device types, action

names, timestamps, session details, and error occurrences.

2. Exploring Available Monitoring Solutions: The next step involved exploring

various monitoring solutions available for cloud-based applications. Effective mon-

itoring solutions must provide comprehensive data collection capabilities, real-time

analytics, and seamless integration with existing systems. As highlighted in Kesavulu

et al. (2018a), monitoring tools for cloud environments often focus on infrastructure or

application-level metrics, but there is a growing need for user-level monitoring to cap-

ture detailed interaction data. This involves tracking user actions such as navigation

patterns, feature usage, and error occurrences across different interfaces. Kesavulu

et al. (2018a) categorize monitoring tools into three broad categories:

– Infrastructure Monitoring Tools: Focus on resource utilization, server per-

131

Usage Analytics: Optimizing Feature Prioritization in Software Development

formance, and uptime metrics, providing insights into the operational health of

the system.

– Application Monitoring Tools: Measure application-specific metrics such as

response times, transaction throughput, and error rates.

– User-level Monitoring Tools: Emphasize capturing granular user interaction

data, such as feature usage and session behavior, which are essential for under-

standing user engagement and improving feature prioritization.

For this research, several tools were evaluated based on their ability to support user-

level monitoring. Notable examples include:

– GraphQL6: Known for its flexibility and efficiency in querying data, GraphQL

allows for precise data fetching tailored to gather specific user interaction met-

rics. Its ability to query nested data structures makes it particularly useful for

capturing complex user behaviors.

– New Relic7: Offers comprehensive application monitoring, real-time data collec-

tion, and robust analytics capabilities, enabling the tracking of both application

performance and user interactions. Its user-centric features make it suitable for

understanding feature usage and session dynamics.

These tools were selected and analyzed for their ability to align with the research

objectives, ensuring that the data collected would be both actionable and relevant

for usage analytics.

3. Evaluating Each Tool’s Capabilities: After identifying potential tools, the team

conducted a detailed evaluation of each tool’s capabilities. This involved setting up

trial versions of the tools and testing their data collection, integration, and reporting

functionalities. GraphQL was evaluated for its ability to provide flexible and efficient

data querying. It allows developers to specify exactly what data they need, reducing

the amount of unnecessary data transfer and improving the efficiency of data collec-

tion processes. GraphQL’s flexibility makes it a powerful tool for customizing data

queries to fit specific analytical needs. New Relic, on the other hand, provided a

comprehensive suite of monitoring tools that included application performance man-

agement, real-time analytics, and detailed logging capabilities. It could seamlessly

6https://graphql.org/
7https://newrelic.com/platform

132

Usage Analytics: Optimizing Feature Prioritization in Software Development

integrate with the existing infrastructure of IBM Watson Workspace, making it easier

to deploy and use effectively.

4. Aligning with Data Requirements The final selection was heavily influenced by

how well each tool aligned with the pre-defined data requirements. The chosen tool

needed to collect data on:User Identification (C1): Capturing unique user identifiers

while ensuring privacy. Device Type (C2): Recording the type of device used for

accessing the application. Action Details (C3): Logging specific actions performed

by the user. Timestamp (C4): Recording the time when each action was performed.

Action Duration (C5): Measuring the duration of each action. Error Tracking (C6):

Logging any errors encountered during user interactions. New Relic was able to meet

all these requirements effectively. It provided detailed log entries that included user

ID, timestamps, device type, session information, action names, and error details.

This alignment ensured that the data collected would be comprehensive and useful

for analyzing user behavior and application performance.

5. Making the Final Decision: Based on the evaluations, New Relic was selected

as the primary usage data source for IBM Watson Workspace. The decision was

supported by its comprehensive feature set, ease of integration, and ability to pro-

vide real-time insights into both user interactions and application performance. This

decision-making process is supported by the principles of usability engineering and

empirical measurement discussed by Nielsen (1994), which emphasize the importance

of choosing tools that can provide reliable and actionable data. Furthermore, the

iterative and user-focused approach aligns with the user-centered design principles

described by (Norman and Draper, 1986).

In this stage, the data sources of the usage data are identified. Ideally, the data sources

that contain information regarding the actions performed by the users with the application

(referred to as data type in Figure 5.5) such as who performed the action (C1), which device

type was used to interact with the application (C2), what action was performed (C3), when

was the action performed (C4), what is the duration of the action performed (C5), any

errors occurred during the actions performed by the user (C6) are considered as usage

data sources. The log entries of New Relic are treated as the primary data source. New

Relic collects various information about the Watson Workspace application such as user

133

Usage Analytics: Optimizing Feature Prioritization in Software Development

ID, time stamp, device type, session, action name, app version etc. A subset of the data

is used as usage data, namely, time stamp, user ID (pseudo ID will be assigned to each

user), action name, device type, session, and user agent OS. The updated version 2 of the

usage analytics experiment design includes the data sources identified in this stage.

• Data extraction: After identifying the primary data source for usage data, the next

crucial step is to extract the relevant data. This process involves utilizing New Relic’s

capabilities to access and retrieve the necessary information. The steps and methods used

in this stage are detailed below. The process of data extraction begins with identifying

the specific data types needed for analysis. For IBM Watson Workspace, these data types

include user identification, device type, action details, timestamps, action durations, and

error tracking. These elements are essential for constructing a comprehensive view of user

interactions. To retrieve this data from New Relic, a customized query language called

New Relic Query Language (NRQL) is employed. NRQL is specifically designed to interact

with the New Relic database, allowing users to write queries that can retrieve detailed and

specific data. Designing NRQL queries involves creating a set of instructions tailored to

fetch the identified data types. An example of such a query is:

SELECT * from PageAction, MobileAction WHERE USER_ID =

’ID_OF_THE_USER’ SINCE this quarter

This query functions by retrieving all records from the PageAction and MobileAction ta-

bles in New Relic. These tables contain data about user interactions with the application,

both from web pages and mobile devices. The WHERE USER ID = ’ID OF THE USER’

condition filters the data to include only the actions performed by a specific user, iden-

tified by USER ID. This helps in isolating the user’s actions for detailed analysis. The

SINCE this quarter clause limits the data retrieval to actions performed within the cur-

rent quarter, ensuring that the data is recent and relevant. The attributes PageAction and

MobileAction in New Relic store information about user interactions. The PageAction at-

tribute tracks actions performed on web pages, while the MobileAction attribute captures

actions performed on mobile devices. Together, they provide a comprehensive view of user

interactions across different platforms. The USER ID attribute uniquely identifies each

user, enabling personalized analysis by filtering actions based on USER ID. Limiting the

134

Usage Analytics: Optimizing Feature Prioritization in Software Development

data extraction to the current quarter ensures that the analysis focuses on recent user

behavior. This time frame can be adjusted as needed to examine different periods.

Implementing the data extraction process involves several steps. First, the team designs

a series of NRQL queries to cover all necessary data points. These queries are tested and

refined to ensure they retrieve accurate and comprehensive data. Once the queries are

finalized, they are executed against the New Relic database. This involves running the

queries within New Relic’s interface or using its API to automate data extraction. The ex-

tracted data is then collected and stored in a suitable format for analysis. This may involve

exporting the data to CSV files, databases, or data lakes, depending on the volume and

structure of the data. After the data is collected, it is verified for accuracy and complete-

ness. This step is crucial to ensure that the data accurately reflects user interactions and

does not contain any gaps or errors. The verification process may involve cross-checking

the extracted data with known user interactions or using automated validation scripts to

identify inconsistencies.

The extraction of usage data from New Relic using NRQL is a critical step in analyzing

user interactions with IBM Watson Workspace. By designing precise queries and lever-

aging New Relic’s powerful data retrieval capabilities, the development team can collect

comprehensive and relevant data. This data forms the foundation for detailed user behav-

ior analysis, informing decisions to enhance the application and improve user experience.

• Analytics: After the data extraction phase, the next critical step is the analytics stage.

This stage involves performing statistical analysis on the extracted logs from New Relic

to derive meaningful insights into user behavior and feature usage within IBM Watson

Workspace. The following elaboration details the steps and methodologies used in the

analytics stage. The analytics stage focuses on interpreting the usage data extracted from

New Relic. This involves employing various statistical metrics to analyze how users interact

with different features of the application. The key metrics used in this analysis include

frequency, timespent, and consistency.

The frequency metric refers to the number of times a specific action is performed by an

individual user or a group of users over a defined period. This metric helps identify the

most and least used features within the application. For instance, if a particular feature

is used frequently by a large number of users, it indicates the feature’s popularity and

135

Usage Analytics: Optimizing Feature Prioritization in Software Development

importance. Conversely, features with low usage frequencies may need to be re-evaluated

for their relevance or usability. To calculate frequency, the extracted data is aggregated

to count occurrences of each action.

Time Spent refers to the total amount of time users spend interacting with a specific

feature within an application. This metric is essential for understanding user engagement,

as it provides insights into the depth and duration of user interactions. Features with high

Time Spent values may indicate critical functionality, whereas disproportionately high

Time Spent could signal usability issues, such as inefficiencies or unnecessary complexity.

Conversely, features with low Time Spent may require further investigation to determine

whether they lack relevance or suffer from poor discoverability. The Time Spent metric

is calculated by summing the duration of all actions associated with a particular feature.

For example, if a feature involves multiple user actions, such as clicking a button and

navigating through subsequent screens, the total time across these actions is aggregated to

determine the feature’s overall Time Spent. This method provides a holistic view of how

much effort users dedicate to specific functionalities within the application. Using average

time per user as a metric, while seemingly intuitive, is often not as effective for this type

of analysis. Average time values can be heavily influenced by outliers, such as users who

either abandon a feature immediately or spend an unusually long time due to distractions

or external factors unrelated to the application itself. Additionally, average time fails to

account for the volume of interactions. A feature used frequently by many users with

moderate Time Spent values could appear less significant than a rarely used feature with

high average times. This discrepancy can lead to misinterpretation of a feature’s actual

importance or relevance. The total Time Spent metric avoids these pitfalls by emphasizing

cumulative engagement rather than individual variations. It reflects the overall workload

a feature generates for users and helps identify trends at a broader scale. This approach

aligns with the objectives of the research by providing actionable insights into feature

prioritization, ensuring that decisions are based on meaningful, aggregate patterns rather

than potentially misleading averages.

Consistency measures whether users exhibit similar patterns in accessing a feature over

time, especially after changes are implemented by developers. Consistency is important

for assessing the impact of feature updates and ensuring that changes do not negatively

affect user behavior. To analyze consistency, the team compares usage patterns before and

136

Usage Analytics: Optimizing Feature Prioritization in Software Development

after changes are made to a feature. This involves calculating the frequency and timespent

metrics for defined periods before and after the update. Statistical tests, such as the paired

t-test, can be employed to determine if the differences in usage patterns are statistically

significant.

5.3.3 Result - Improvement and Implementation of the Usage Analytics

Method - Version 2

The implementation of the usage analytics method in IBM Watson Workspace revealed several

challenges related to prioritization of software features and led to the improvement of Usage

Analytics (UA) Method (Version 2) as shown in Figure 7.2. Feedback from the development

team helped refine the method further. This case study directly addresses RQ2: What are the

key challenges faced by the developers to identify and utilize usage data and key metrics related

to the feature prioritization effectively within the software platform?.

Researcher

Software Developers

System Architecture

Physical Infrastructure

ServersStorage

VM Cluster

...

Containers

...

Software Platform

API Gateway MQTT

A

REST

API

B

REST

API

C

REST

API

Client Interfaces

Usage Data

System
Logs

Application
Logs

Usage Data Sources

New Relic
Repository

ElasticSearch
Repository

Collect Data

Identify Usage
Data Sources

Data Extraction

Analytics Metrics

Frequency
Timespent
Consistency

Insights

Usage score
Behavioural Score

Analytics

Users

Figure 5.6: Usage Analytics method - Version 2 resulting from the work with IBM Watson
Workspace Application

The updated Usage Analytics method was applied to IBM Watson Workspace with the

137

Usage Analytics: Optimizing Feature Prioritization in Software Development

following key observations and results:

1. Usage Data Identification and Extraction: Various sources of usage data were iden-

tified, including native and third-party monitoring tools. This provided a comprehensive

view of user interactions with the application. This included the addition of a new stage in

the Usage Analytics Method version 2, “Identify Usage Data Sources”. This stage involves

systematically exploring the application architecture to pinpoint where relevant data is be-

ing collected, whether from in-built monitoring tools or third-party services. This stage

ensures that all potential sources of user interaction data are considered, thereby providing

a more comprehensive understanding of user behavior. According to Preece et al. (2015),

the success of any HCI research or evaluation method depends significantly on how well

the initial requirements are understood and articulated. For IBM Watson Workspace, the

objectives included tracking user interactions, identifying performance bottlenecks, and

understanding the context of user actions. The requirements specified the need to capture

data such as user IDs, device types, action names, timestamps, session details, and error

occurrences. The selected tools, such as GraphQL and New Relic, were evaluated based

on their capabilities to meet these requirements. Ultimately, New Relic was chosen for its

comprehensive feature set, ease of integration, and real-time insights into user interactions

and application performance.

2. Application of Analytics Metrics: Frequency and timespent analysis were conducted

for actions performed by users, providing insights into how often and how long users

engaged with different features of the application. Consistency of usage was also analyzed

by comparing usage patterns before and after updates, identifying significant changes in

user behavior.

(a) How many times has a user performed an action? - Frequency: calculated by

counting the number of occurrences of action in the usage data and filtering these

occurrences with the user ID (for a specific user) or combining multiple user IDs

(for a group of users). The calculation is further filtered between a specific range

in time, ideally, in the software development domain, the time range is set to the

amount of time a specific version of the application was made available to the users

of the application. Every time a new version of the application is released, the

frequency of the actions performed by the users is calculated. The changes made

138

Usage Analytics: Optimizing Feature Prioritization in Software Development

to the application by the developers are compared with the frequency of the actions

performed by the users. The changes in the frequency of the actions performed by

the users are correlated with the changes made to the application by the developers.

(b) How much time does a user spend on an action? - Timespent: calculated by sum-

ming up the duration of all the occurrences of action in the usage data and filtering

these occurrences with the user ID (for a specific user) or combining multiple user

IDs (for a group of users). The calculation is further filtered between a specific range

in time, ideally, in the software development domain, the time range is set to the

amount of time a specific version of the application was made available to the users

of the application. Every time a new version of the application is released, the time-

spent of the actions performed by the users is calculated again. The changes made

to the application by the developers are compared with the timespent of the actions

performed by the users. The changes in the timespent of the actions performed by

the users are correlated with the changes made to the application by the developers.

(c) Do users perform the actions in the same way as before? - Consistency: calculated

by combining the frequency and timespent of the actions performed by the users.

Then, check the order of the occurrences of the actions in the usage data and filter

these occurrences with the user ID (for a specific user) or combining multiple user IDs

(for a group of users). The calculation is further filtered between a specific range in

time, ideally, in the software development domain, the time range is set to the amount

of time a specific version of the application was made available to the users of the

application. Every time a new version of the application is released, the consistency

of the actions performed by the users is calculated again. The changes made to

the application by the developers are compared with the consistency of the actions

performed by the users. The changes in the consistency of the actions performed by

the users are correlated with the changes made to the application by the developers.

3. Development of Feature-Action Map: The integration of the process to develop a

feature-action map was a significant result of the case study. This process is part of the

“Identify Features of the Application” stage and involves feature identification, action

mapping, data correlation, visualization, and validation, providing a structured approach

to understanding user interactions with specific features.

139

Usage Analytics: Optimizing Feature Prioritization in Software Development

Challenges in Implementation of the Analytics Method

Despite the clear benefits, implementing advanced usage analytics also presents several chal-

lenges. One major challenge is the integration with multiple data sources, including inbuilt

monitoring tools and third-party services. This requires significant effort to ensure that data

is collected consistently and accurately across different platforms. Additionally, the process of

mapping user actions to specific features and correlating this data with usage metrics requires

careful planning and execution to ensure that the results are meaningful and actionable.

Another challenge is the need for ongoing validation and refinement of the feature-action map.

As user behaviors and preferences evolve, the development team must continuously monitor and

update the map to ensure that it remains accurate and relevant. This requires a commitment

to iterative testing and feedback loops, as well as the ability to quickly adapt to changes in user

behavior.

Application of the updated version 2 of the Usage Analytics based on the findings in Case

Study 2 to Odoo Notes application is discussed in the next section in detail.

5.4 Case Study 3: Odoo Notes

As discussed in Chapter 4, Odoo Notes is a note-taking and task management application that

allows users to create, edit, and organize notes and tasks. It features collaborative capabilities,

enabling multiple users to work on the same notes and tasks simultaneously. User interactions in

Odoo Notes involve various actions such as creating, editing, and deleting notes and tasks, adding

comments, tagging other users, and collaborating in real-time. These interactions generate a

wealth of usage data that can be analyzed to understand user behavior and preferences.

5.4.1 Goal - Implementation and validation of the Usage Analytics method

The primary goal of this case study was to implement and validate the usage analytics method

developed in Case Study 2, focusing on the key metrics identified earlier (frequency, time spent,

and consistency). This case study aimed to demonstrate how the usage analytics method can

be applied to a different software platform, Odoo Notes, to address RQ3: How can activities be

systematically structured to identify and utilize usage data for feature prioritization?

140

Usage Analytics: Optimizing Feature Prioritization in Software Development

Odoo

Identify
Features

Identify
Usage Data

Usage
Analysis

Map data to
features

Usage
Patterns

using metrics

Data
Extraction Evaluation

User
Oriented
Features

Application
Catalog

Version log

Events and
Debug Logs

Monitoring
repositories

Application-le
vel Logs

Data
extraction

tool

extract
using

Features
Identified

Controlled
Experiment

Plot Free Style

Questionnai
re Screenshot

Figure 5.7: Use Case 3: Odoo Notes. Updated activities of the usage analytics method applied
to the Odoo Notes application

5.4.2 Design - Development of a custom Usage Data monitoring tool for

Odoo Notes application and application of the UA method

The default logging mechanisms in Odoo Notes are primarily focused on basic system logs,

capturing events such as note creation, updates, deletions, and user logins. These logs provide

a limited view of user interactions and are not sufficient for detailed usage analytics required

for feature prioritization. The application lacks built-in monitoring tools capable of capturing

comprehensive user interaction data.

The development of a custom monitoring tool for Odoo Notes was essential due to several

critical reasons:

1. Lack of Built-in Monitoring Tools: Many applications, including Odoo Notes, do not

come with built-in tools capable of capturing detailed and comprehensive user interactions.

The absence of such tools necessitates the development of a custom solution tailored to

the specific needs of the usage analytics method. Studies have shown that off-the-shelf

monitoring solutions often lack the flexibility required for detailed analytics, as they may

not capture all relevant user actions or provide the necessary granularity.

2. Limitations of Third-Party Tools: While third-party tools offer extensive tracking

capabilities, they may not fully align with the specific requirements of the usage analytics

141

Usage Analytics: Optimizing Feature Prioritization in Software Development

method developed in this research. These tools often focus on high-level metrics and

general user behavior patterns, which may not be sufficient for the detailed and context-

specific analysis needed for feature prioritization. For example, third-party tools might

not capture the exact actions within a specific feature set, leading to incomplete or skewed

data.

3. Customization and Integration: A custom monitoring tool allows for complete control

over the data collection and processing pipeline. This customization ensures that all

necessary data points are captured accurately and are relevant to the usage analytics

method. It allows developers to tailor the tool to the specific features and interactions

of Odoo Notes, providing a more accurate representation of user behavior. This level

of customization is critical for implementing the usage analytics method accurately and

effectively.

4. Data Privacy and Security: Custom tools can be designed to comply with specific data

privacy and security requirements of the organization or application. Third-party tools

might pose risks related to data ownership, compliance with data protection regulations,

and security vulnerabilities. By developing an in-house solution, these concerns can be

mitigated, ensuring that user data is handled securely and in compliance with relevant

laws and standards.

5. Consistency with Usage Analytics Method: The usage analytics method developed

in this research requires specific data points and metrics that may not be supported by

existing tools. A custom solution ensures that the data collected conforms to the method’s

requirements, enabling precise and meaningful analysis. This alignment is crucial for

validating the research hypotheses and achieving the research objectives.

A custom usage data monitoring tool was developed for the Odoo Notes application to

facilitate the collection and analysis of detailed user interaction data. This tool was designed

to capture various user actions within the application, such as creating notes, editing notes,

and managing tasks. The collected data included timestamps, user IDs, action types, and

other relevant metadata. The Odoo Notes application uses a third-party monitoring system

for debugging purposes. The monitoring system is built using a Python version of the web

application library called “werkzeug”8. The monitoring system generates log entries in the form

8https://werkzeug.palletsprojects.com/

142

Usage Analytics: Optimizing Feature Prioritization in Software Development

of text files. The werkzeug tool is explored further to identify the log entry format and the

information that can be extracted from the log entries. The log entries are in the form of text

files. A new instance of the Odoo Notes Application is started and each action is performed to

generate a sample log entry which includes the entries for all actions provided by the application.

A snapshot of the sample log entry is shown in Log 5.1. The next task was to explore the log

entries to identify the actions performed and the corresponding log generated by the monitoring

system, a brief description of the log entry is assigned to each entry in the sample log file.

Log 5.1: Odoo Notes application log entries generated by the inbuilt monitoring system

2018-01-07 17:40:32,716 4338 INFO DCU_Experiment_1 odoo.models.unlink: User #6 deleted

↪→ project.task records with IDs: [14]

//User deleted a project task

2018-01-07 17:46:16,937 4338 INFO DCU_Experiment_1 werkzeug: 192.168.0.116 - - [07/Jan

↪→ /2018 17:46:16] "POST /web/dataset/call_kw/mail.channel/channel_fetch_preview

↪→ HTTP/1.1" 200 -

//Open message (chat) window by user

2018-01-07 17:47:01,461 4338 INFO DCU_Experiment_1 werkzeug: 192.168.0.116 - - [07/Jan

↪→ /2018 17:47:01] "POST /web/dataset/call_kw/mail.channel/message_post HTTP/1.1"

↪→ 200 -

//Message sent by user (to another user)

2018-01-07 17:49:43,248 4338 INFO DCU_Experiment_1 odoo.addons.base.ir.ir_model:

↪→ Access Denied by ACLs for operation: create, uid: 6, model: project.task.type

//User is denied access to create a new column in the project (only admin can do so)

The next step was to explore the docker Odoo source code to make it easier to patch Odoo

and execute the source code of the application. In the Odoo dockerfile, the Odoo folder is moved

to a different directory after installation.

For example, Odoo10 is installed in the location:

/usr/lib/python2.7/dist-packages/odoo

After the installation, we moved it to the location:

/usr/lib/python2.7/dist-packages/odoo.untouched

We set up docker-compose to start Odoo and the database it needs to store data and share

143

Usage Analytics: Optimizing Feature Prioritization in Software Development

the normal installation directory of Odoo with the host system (via volumes). Docker executes

a bash script to start Odoo, we changed the script so it copies Odoo to the host copying it into

the normal installation directory that is shared and ensuring that when Odoo halts the logs

are copied into the host. By doing so we can work on Odoo source code and easily execute it.

Studying Odoo source code we found that when a user executes an action that needs to pass

through the server it passes through those two functions, in the api.py file:

def call_kw_multi(method, self, args, kwargs)

def call_kw_model(method, self, args, kwargs)

These functions act as a generic dispatch for the actions executed in the browser. The calls

in this central dispatch are identified via strings: the method name and the object to call the

method on. So we add a call to call kw multi and call kw model so that the action gets logged

in an external CSV file.

A sample of the log entries from the Odoo Notes application is shown in Log 5.2. The first and

second fields in all the log entries represent the time stamp (C4). The keywords INFO, DEBUG

represent the level of logging, other possible options are CRITICAL, ERROR and WARN (C6).

The fourth field represents the target data store, and a “?” symbol represents requests to load

web pages and web scripts. The name of the database in this sample is “Odoo Database” (C2).

The next field shows the IP address of the user (or the person who made the request, for example,

administrator of the application) (C1). The next field of importance is the HTTP request and

response between the browser and the application server along with the response code (C3).

One interesting fact to notice here is that Odoo application logs can be configured to capture

the API calls which reveal a vast amount of information about features such as the object ID

of the elements (for example, the ID of the tag is 4), the operation performed (for example, the

last line of the log entry represents read operation with the variables - the user-defined name

of the tag and the color assigned by the user to the note) (C4). Although what appears to be

lacking in the log entries is the action duration (C5) characteristic of the usage data, it can be

calculated by considering the timestamps of subsequent entries.

Log 5.2: Odoo Notes application sample log entries

2018-03-28 12:24:10,966 8970 INFO ? werkzeug: 136.206.48.84 - - [28/Mar/2018 12:24:10]

↪→ "GET /web_editor/static/src/js/transcoder.js HTTP/1.1" 200 -

144

Usage Analytics: Optimizing Feature Prioritization in Software Development

2018-03-28 12:24:11,256 8970 DEBUG Odoo_Database odoo.api: call ir.ui.view().

↪→ read_template(u’web_editor.colorpicker’)

2018-03-28 12:24:11,260 8970 INFO Odoo_Database werkzeug: 136.206.48.84 - - [28/Mar

↪→ /2018 12:24:11] "POST /web/dataset/call HTTP/1.1" 200 -

2018-03-28 12:24:11,324 8970 INFO ? werkzeug: 136.206.48.84 - - [28/Mar/2018 12:24:11]

↪→ "GET /web_editor/static/src/xml/editor.xml?debug=1522239851310 HTTP/1.1" 200 -

The first step in analyzing the usage data is to map the feature data to the log entries.

This step involves identifying the keywords in the log entries that refer to the actions performed

by the user to the keywords in the log entries. A mapping file is created to aid this purpose

as shown in Log 5.3. The mapping file will help identify the keywords to search in the logs

file for entries that reveal the actions performed by users. Google’s colab tool9 could be used

for identifying the moments at which a specific user performed a specific task. Colab tool is

built on Jupyter notebook10, which is an open-source web application used for data cleaning and

transformation, numerical simulation, statistical modeling, data visualization, machine learning,

and so on. Keywords identified from the mapping file are used to search the log. Google’s Colab

tool11 could be utilized for analyzing interaction logs to identify the specific moments at which a

user performed a particular task. By leveraging its Python-based environment and integration

with powerful data analysis libraries such as pandas, NumPy, and matplotlib, Colab can process

timestamped log data to extract actionable insights.

For example, interaction logs containing user IDs, timestamps, and action descriptions can

be imported into Colab for analysis. Using Python scripts, the logs can be filtered by user ID to

isolate data for a specific individual. Time-based queries can then identify the exact moments

when the user performed a specific action, such as accessing a feature, clicking a button, or

completing a task.

Additionally, Colab’s ability to integrate with external cloud storage systems (e.g., Google

Drive or AWS S3) allows for seamless access to large-scale datasets. By combining this func-

tionality with visualization libraries like matplotlib or seaborn, Colab can generate timelines or

activity heatmaps to provide a clear depiction of user interactions over time. This makes it a

9https://colab.research.google.com
10http://jupyter.org
11https://colab.research.google.com

145

Usage Analytics: Optimizing Feature Prioritization in Software Development

versatile tool for identifying and analyzing user behavior patterns.

Log 5.3: A snapshot of feature mapping

12 Create a new note

2019-03-20 15:39:23,261 1 DEBUG odoodb odoo.api: call note.note().create({u’

↪→ message_follower_ids’: False, u’stage_id’: False, u’tag_ids’: [], u’memo’: u’<p

↪→ >A New note...
</p>’, u’message_ids’: False})

13 Delete a note

2019-03-20 15:40:20,772 1 INFO odoodb odoo.models.unlink: User #1 deleted note.note

↪→ records with IDs: [33]

23 Create a new stage

2019-03-20 15:39:46,139 1 DEBUG odoodb odoo.api: call note.stage().name_create(u’A new

↪→ stage...’)

The keywords in the odoo notes application logs are generally found in in the HTTP POST

request and API call fields. The action Create a new note generates on the log an entry

with the keyword “note.note().create.” Delete a note can be identified using the keyword

“odoo.models.unlink” and the log entry also provides the ID of the note deleted. In this sam-

ple log, the ID of the note deleted is “33”. Similarly, Create a new stage can be identified by

the keyword “note.stage().name create”. While these keywords are simple to recognize by their

names, some keywords are difficult to identify. For example, the log entry for the Open comment

box in note does not use keywords such as comment or open in the HTTP request. However, the

keywords “note.note/message get suggested recipients” reveal that a comment box was opened

by the user as the application loaded the message recipient suggestions. Hence, a mapping file

is carefully created by anticipating the actions performed and understanding the programming

logic of the application. The feature map resulting from this activity serves as a reference for

analyzing the extracted usage data, exploring the usage metrics and identifying the usage pat-

terns exhibited by the users, which is part of the future work of this research. Once understood

when and how these log entries are generated, the next step is to create machine-readable log

entries for the analysis. Odoo logs are difficult to read programmatically, but since Odoo is

open-source software, we can patch the code and write the logs we need. Yet, our technique can

also be applied to closed-source software, but we would need to convert the existing log text.

To find the strings and how the parameters are passed we logged on to standard output and

146

Usage Analytics: Optimizing Feature Prioritization in Software Development

conducted some trial experiments. Here are a few examples:

Create Stage < − > name create.note.stage

Delete Stage < − > unlink.note.stage

Rename Stage < − > write.note.stage

The resulting CSV files are the results of the changes made to the source code of the appli-

cation described above. If the users do multiple experiments, the results from the same user are

concatenated. It is important to underline that from the point of view of the user none of the

changes alters the observable behavior of Odoo.

Log 5.4: Log entries generated by the custom usage data monitoring tool patched to Odoo

application

timestamp,actionName,odoo-version,userId,ipAddr,id,stageId,partnerId,text

2019-09-21 20:04:00.351600,Open Note,10,1,172.19.0.1,29, , ,

2019-09-21 20:04:25.705395 ,Create new tag , 10 , 1 ,172.19.0.1 , , , ,competition

2019-09-21 20:04:38.593585 ,Change Tag Colour , 10 , 1 ,172.19.0.1 , 1 , , ,

2019-09-21 20:04:45.610882 ,Edit Note , 10 , 1 ,172.19.0.1 ,29 , , ,<p>Look for

↪→ competing products in the market</p>

2019-09-21 20:04:53.357031 ,Change Note Colour , 10 , 1 ,172.19.0.1 ,29 , , ,

2019-09-21 20:04:57.083195 ,Change Note Colour , 10 , 1 ,172.19.0.1 ,29 , , ,

2019-09-21 20:04:59.886629 ,Open Note , 10 , 1 ,172.19.0.1 ,29 , , ,

2019-09-21 20:05:22.279496 ,Comment in Note , 10 , 1 ,172.19.0.1 , , , ,Look for start

↪→ -ups in particular.

The Log 5.4 is a snapshot of the log entries generated by the custom usage data monitoring

tool developed as part of this research to demonstrate the ability to collect usage data with

applications that rely on third-party tools for the data extraction stage of the Usage Analytics

method.

5.4.3 Results - Improvement of the Usage Analytics Method - Version 3

Application of version 2 of the Usage Analytics method and associated experiment design re-

sulted in the following findings, the Usage Analytics method was further updated (version 3)

based on the findings shown in Figure 7.3.

The findings from the work with the Odoo Notes application are as follows:

1. The existing monitoring tools (native or third-party) may not be able to extract the

147

Usage Analytics: Optimizing Feature Prioritization in Software Development

Client Interfaces

Application Version N+1

Monitoring Tool

Third-party
Monitoring tool

Native Monitoring
tool

Software Platform

A

API

B

API

C

API

Version Logs

Raw data

Identify
Features Analysis

Access

Develop/Configure

Researcher

Behavioral Score

Developers

Application Version N

Monitoring Tool

Third-party
Monitoring tool

Native Monitoring
tool

Software Platform

A

API

B

API

C

API

Access

Usage Data

System
Logs

Application
Logs

Develop/Configure

Features

Features List

Feature A

Feature B

Feature C

Feature-Action Map

Feature A - Actions (....)

Feature B - Actions (....)

Feature C - Actions (....)

Identify
Usage Data

Analytics Metrics

Frequency
Timespent
Consistency of Frequency
Consistency of Timespent

Insights

Behavioural Score
Insights

Data
Extraction

Users

Interact

Figure 5.8: Usage Analytics method - Version 3 as a result of work with Odoo Notes

usage data from the software application as they are designed to monitor and analyze

the software performance, bug detection and maintenance. These existing tools do not

differentiate between actions performed by the user and the actions performed by the

system. To analyze and understand usage behavior of the users, the data extracted from

the monitoring tools need to be filtered to extract only the actions performed by the

users alone and not the actions performed by the system. As a result, the Usage Analytics

method needs to identify features of the application a user can interact with and all actions

associated with these features. The Usage Analytics method is updated to include Identify

Features as a step in the method. The features are identified by analyzing the application

and identifying the actions that can be performed by the user. The features are then

mapped to the actions performed by the user. The mapping is done by analyzing the log

entries generated by the application. The log entries are analyzed to identify the actions

performed by the user. A mapping file is created to map the actions performed by the

user to the features of the application. The mapping file is used to filter the usage data

148

Usage Analytics: Optimizing Feature Prioritization in Software Development

extracted from the monitoring tool to extract only the actions performed by the user. The

mapping file is termed the Feature-Action Map. The Feature-Action map file can be in

CSV or JSON format. In this research, the Feature-Action map file for the Odoo Notes

application is in JSON format and can be accessed using the link in Appendix A. The

mapping file can be created by the developer of the application by analyzing the source

code of the application and identifying the features of the application and the actions

associated with these features.

2. Software applications may not always have a monitoring tool that can be used to extract

the usage data. In such cases, the usage data can be extracted from the log files. However,

the log files may not be in a format that can be used for analysis. In such cases, the logger

tool should be modified to generate the required log entries.

3. The Usage Analytics method is further updated to include the application of the method to

a minimum of two consecutive versions of the application. The application of the method

to two consecutive versions of the application is done to identify the changes in the usage

behavior of the users. Let us say, we have an application version N and the next version

of the application is N + 1. Ideally, for the analysis to yield optimum results the Usage

Analytics method should be applied continuously across the lifetime of the application. For

the purpose of demonstrating the Usage Analytics method, the application of the method

to two consecutive versions of the application is sufficient. The recommendation for the

software developers who would use this method to understand the usage behavior of the

users is to apply the method to all the versions of the application. If the changes are small

and implemented frequently, the developers can choose a specific time period and apply

the method to all the versions of the application released during that time period.

4. The Consistency metric was updated to include a different way to measure the consistency

of the usage behavior of the users. The Consistency metric is updated to include the

following steps:

(a) A complementary metric to the Consistency metric, the order of actions performed

by users across different versions of the application, tends to appear random over

shorter time periods. This metric requires users to engage with the application for a

significant duration to reliably identify the typical order of actions they follow while

interacting with its features. Due to time constraints, the order of actions metric

149

Usage Analytics: Optimizing Feature Prioritization in Software Development

was not included in the experiment design. However, it presents an opportunity

for future work to enhance the Consistency metric by incorporating this additional

dimension. Various methods, such as Jaccard similarity and cosine similarity, can be

used to quantify the order of actions performed by users. Changes in the order of

actions scores across application versions can then be analyzed using these similarity

measures.

(b) Consistency measure is calculated by combining the metrics frequency of actions and

time spent on actions performed by the users between two consecutive versions of the

application. The metrics are termed as Consistency of Frequency and Consistency of

Timespent respectively.

The resulting version 3 of the Usage Analytics method is applied again to the Odoo Notes

Application. The final result based on the work with the above three case studies is a Usage

Analytics method that can be applied to any software product. A detailed description of the

method and the experiment design are described in the next chapter.

5.5 Summary of Challenges in Developing Usage Analytics Method

Understanding the challenges encountered during the development of the Usage Analytics Method

(UAM) is crucial for identifying areas of improvement and refining the methodology to ensure

its applicability across diverse platforms. This section examines the obstacles uncovered in three

case studies: IBM Academic Cloud, IBM Watson Workspace, and Odoo Notes. By analyzing

these challenges, the research aims to provide a clearer picture of the practical difficulties faced

by developers and how these barriers influenced the iterative refinement of UAM. The findings

not only shed light on the complexities of data-driven feature prioritization but also highlight the

critical need for adaptable and robust analytical frameworks to address these issues effectively.

5.5.1 Challenges in IBM Academic Cloud (Case Study 1)

The IBM Academic Cloud case study uncovered several foundational challenges that underscored

the complexities of implementing a robust Usage Analytics Method (UAM). One of the most

pressing issues was the absence of a comprehensive feature-action map, which hindered the

developers’ ability to effectively analyze user behavior. This gap in clarity meant that mapping

user interactions to specific features was often inconsistent or incomplete, making it difficult to

150

Usage Analytics: Optimizing Feature Prioritization in Software Development

derive actionable insights from the data. Developers highlighted how this lack of structure often

led to confusion and misaligned priorities when interpreting user behavior patterns.

Key insights from the IBM Academic Cloud study highlight the significant bottlenecks and

challenges in aligning user data with feature prioritization. Developers struggled with unclear

feature definitions that hindered effective mapping of user actions to platform features. This was

particularly evident when attempting to correlate user behavior with actionable feature insights,

where gaps in definitions led to incomplete data interpretations.

Another significant challenge was the resource-intensive nature of data preparation. The pro-

cesses of selecting, cleaning, and preparing data for analysis required substantial manual effort,

often resulting in delays in development timelines. These bottlenecks not only consumed valu-

able time but also introduced opportunities for errors, which further compounded the difficulty

of drawing accurate conclusions from the data. The reliance on manual intervention emphasized

the need for more automated and streamlined approaches to data processing.

Additionally, the design of analytics tools and processes relied heavily on broad assumptions

due to the limited understanding of feature-specific interactions. Without a detailed framework

to guide the development of these tools, the analytics relied on generalized assumptions that

often failed to capture the nuanced behaviors exhibited by users. This lack of precision reduced

the effectiveness of the tools in providing targeted and relevant insights, thereby limiting their

utility in driving feature prioritization and system improvements.

5.5.2 Challenges in IBM Watson Workspace (Case Study 2)

The IBM Academic Cloud case study uncovered several foundational challenges that underscored

the complexities of implementing a robust Usage Analytics Method (UAM). One of the most

pressing issues was the absence of a comprehensive feature-action map, which hindered the

developers’ ability to effectively analyze user behavior. This gap in clarity meant that mapping

user interactions to specific features was often inconsistent or incomplete, making it difficult to

derive actionable insights from the data. Developers highlighted how this lack of structure often

led to confusion and misaligned priorities when interpreting user behavior patterns.

Key insights from the IBM Academic Cloud study highlight the significant bottlenecks and

challenges in aligning user data with feature prioritization. Developers struggled with unclear

feature definitions that hindered effective mapping of user actions to platform features. This was

particularly evident when attempting to correlate user behavior with actionable feature insights,

151

Usage Analytics: Optimizing Feature Prioritization in Software Development

where gaps in definitions led to incomplete data interpretations.

Another significant challenge was the resource-intensive nature of data preparation. The pro-

cesses of selecting, cleaning, and preparing data for analysis required substantial manual effort,

often resulting in delays in development timelines. These bottlenecks not only consumed valu-

able time but also introduced opportunities for errors, which further compounded the difficulty

of drawing accurate conclusions from the data. The reliance on manual intervention emphasized

the need for more automated and streamlined approaches to data processing.

Additionally, the design of analytics tools and processes relied heavily on broad assumptions

due to the limited understanding of feature-specific interactions. Without a detailed framework

to guide the development of these tools, the analytics relied on generalized assumptions that

often failed to capture the nuanced behaviors exhibited by users. This lack of precision reduced

the effectiveness of the tools in providing targeted and relevant insights, thereby limiting their

utility in driving feature prioritization and system improvements.

5.5.3 Challenges in Odoo Notes (Case Study 3)

The challenges encountered in the Odoo Notes case study stemmed from the unique requirements

of working within an open-source software platform. Odoo Notes, as part of its community

edition, provided full access to the source code, enabling extensive customization and integration

with the UAM. However, several significant obstacles shaped the development and refinement

of the UAM for this platform.

A key challenge was the need for a custom monitoring tool. The default logging mecha-

nisms in Odoo Notes primarily focused on system-level logs, such as note creation and deletion.

These were insufficient for capturing detailed user interaction data necessary for comprehensive

analytics. Consequently, a specialized monitoring tool was developed to extract relevant data

points and metrics, ensuring alignment with the study’s objectives.

Another critical issue was the absence of predefined feature definitions. There was no access

to a development team to verify or clarify whether any definitions existed. This challenge

highlighted the broader problem of inconsistent feature definitions in software development. To

address this, the study proposed a standardized process for defining features, which became a

key contribution to knowledge in this domain. This process involved systematically mapping

user interactions to well-defined features, ensuring clarity and consistency across iterations.

The lack of a feature-action map further compounded the difficulties. Without an existing

152

Usage Analytics: Optimizing Feature Prioritization in Software Development

map, the study had to create one from scratch, relying on iterative refinement and careful

observation of user behaviors. This highlighted the importance of establishing robust connections

between features and user actions for deriving actionable insights.

Analyzing multiple versions of the application introduced another layer of complexity. Ini-

tially, the UAM scope included only a single version of software. However, with Odoo Notes,

comparing interactions across versions 10 and 11 revealed deeper behavioral patterns. This anal-

ysis led to the introduction of the “comparative behavioral score,” a new metric for evaluating

changes in user engagement and feature adoption over time, which added a valuable dimension

to UAM.

The scope of participants and tasks limited the generalizability of the findings. While the

structured experiments provided focused insights, the participant pool was relatively narrow, and

task design did not capture the full spectrum of possible user interactions. This underscored the

importance of expanding participant diversity and task breadth to strengthen future analyses.

Despite these challenges, the Odoo Notes case study demonstrated the adaptability and ef-

fectiveness of the UAM in open-source environments. The custom monitoring tool, standardized

feature definitions, and longitudinal analysis using comparative behavioral scoring highlighted

the potential for extending UAM to similar platforms while addressing limitations through it-

erative refinement.

5.6 Key Challenges for Feature Prioritization

This chapter provides an extensive analysis of the challenges encountered by the software de-

velopers during the feature prioritization process and their critical relevance to addressing Re-

search Question 2 (RQ2): “What are the key challenges faced by developers in identifying and

utilizing usage data and key metrics related to feature prioritization effectively within the soft-

ware platform?” By identifying and deeply contextualizing key obstacles such as the absence

of feature-action maps, inconsistent feature definitions, and the integration of analytics across

multiple versions, this chapter lays a comprehensive foundation for understanding how these

challenges shaped the iterative refinement of usage analytics methodologies. These obstacles

not only presented immediate issues but also catalyzed innovations that enriched the overall

approach, ensuring that the UAM evolved to meet diverse and complex demands.

The discussion in this chapter highlights how the absence of feature-action maps forced the

153

Usage Analytics: Optimizing Feature Prioritization in Software Development

research to develop an adaptable framework capable of bridging gaps in user interaction anal-

ysis. This requirement underscored the necessity of a systematic method to identify and map

user actions to features, creating a replicable process that could accommodate varying levels of

granularity across different platforms. Similarly, the inconsistency in feature definitions exposed

the need for standardized processes, which emerged as a pivotal contribution of this research.

By establishing a method for defining features systematically, the UAM was able to enhance

clarity and consistency, addressing challenges that are pervasive across the software develop-

ment industry. Additionally, the exploration of analytics integration across multiple versions of

platforms revealed valuable insights into longitudinal analysis and comparative metrics, such as

the newly introduced “comparative behavioral score,” which became a cornerstone of advanced

usage analytics.

In addressing RQ2, the findings emphasized the critical importance of developing robust

frameworks that prioritize adaptability and scalability. The feature-action mapping process

evolved through iterative testing, ensuring that it could capture nuanced user behaviors ef-

fectively while remaining flexible enough to adapt to the evolving needs of diverse software

systems. Similarly, the establishment of standardized feature definitions provided a universal

language for developers, streamlining communication and reducing ambiguity in the analytics

process. These advancements collectively demonstrated how developers can overcome barriers

to effectively utilize usage data, transforming obstacles into opportunities for methodological

innovation.

This chapter also sets the stage for addressing Research Question 3 (RQ3) in the next chap-

ter by documenting the iterative development and application of UAM. The introduction of

metrics like the “comparative behavioral score” illustrates how the research transitioned from

identifying challenges to proposing actionable solutions. By focusing on systematic approaches

to feature prioritization and evaluation, the study bridges the gap between theoretical frame-

works and practical applications. The narrative transitions seamlessly from the complexities

of understanding user behavior to providing tools and methodologies that enable the effective

application of UAM across diverse software environments. This progression ensures a cohesive

linkage between challenges and solutions, paving the way for a more sophisticated and scalable

implementation of usage analytics.

154

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 6

Usage Analytics Method

This chapter provides an in-depth introduction to the Usage Analytics Method (UAM), a com-

prehensive framework designed to address critical challenges in software development. These

challenges, identified in Chapter 5, include unclear feature definitions, complexities in data inte-

gration, resource-intensive data preparation, and the inherent variability in user behavior. Each

of these obstacles has shaped the iterative development of the UAM, ensuring that the method

offers targeted and actionable solutions.

The UAM is structured across four stages—feature identification, data source integration,

data extraction, and analysis—each designed to systematically address the key challenges faced

by software development teams. By focusing on these stages, the UAM ensures that features

are clearly defined, data is seamlessly integrated, and user behaviors are analyzed effectively to

support feature prioritization and system optimization.

A significant contribution of this research, detailed in this chapter, is the development of two

generic processes that are integral to the UAM. First, the process for creating a feature-action

map is a central component of the feature identification stage. This structured methodology de-

fines and associates user actions with specific application features, ensuring clarity and precision

in identifying features. Second, the process for designing a custom monitoring tool is crucial to

the data source integration and data extraction stages. This process provides developers with a

scalable and adaptable approach to collecting usage data tailored to their application’s require-

ments. Together, these processes extend the utility of the UAM, enabling broader adoption and

adaptability across various software platforms.

The versatility of the UAM is demonstrated through its application to diverse platforms,

including IBM Academic Cloud, IBM Watson Workspace, and Odoo Notes. These case studies

155

Usage Analytics: Optimizing Feature Prioritization in Software Development

highlight the method’s adaptability to varying environments and its ability to deliver actionable

insights regardless of the platform’s complexity or resource constraints. For instance, the IBM

Academic Cloud exemplifies the UAM’s scalability in structured and resource-rich contexts,

while the Odoo Notes platform underscores its flexibility in more constrained and dynamic

settings.

This chapter also acknowledges the limitations of the UAM, such as its dependency on

high-quality usage data and a reliance on action-based metrics. These limitations provide op-

portunities for future research and refinement, including exploring additional metrics, enhancing

data collection strategies, and extending the method’s applicability to broader contexts. Despite

these challenges, the UAM establishes itself as a robust framework capable of bridging gaps in

feature prioritization and user behavior analysis.

By setting the stage for detailed discussions in subsequent sections, this chapter underscores

the significance of the UAM in addressing critical gaps in software development practices. The

discussions here lay a foundation for understanding how the method not only resolves immediate

challenges but also provides a pathway for continuous improvement and innovation in feature

prioritization and user engagement strategies.

6.1 Design of the Usage Analytics Method

The Usage Analytics Method (UAM) is a rigorously developed framework designed to address

pivotal challenges encountered in software development, as detailed in Chapter 5. These chal-

lenges include unclear feature definitions, fragmented data sources, the labor-intensive nature of

data preparation, and variability in user behavior. By aligning each of its stages with specific

challenges, the UAM delivers actionable solutions for feature prioritization and user behavior

analysis.

The UAM’s systematic design ensures that software teams can efficiently identify critical

features, integrate diverse datasets, process raw information into actionable insights, and analyze

behavioral trends to inform development priorities. By addressing core obstacles and enhancing

workflow integration, the UAM not only supports immediate software development needs but

also establishes a foundation for scalable and adaptable analytical methodologies.

The Usage Analytics approach describes various components involving the analysis of soft-

ware usage data to understand the impact of changes made to the application on the usage

156

Usage Analytics: Optimizing Feature Prioritization in Software Development

F1 F2 F3 Fn.F4
Features

Application / Event
Logging Tool

Third Party
Monitoring Tool Customer

Database
Other

Database

Databases

Collect
Use

Perform actions

Raw data

Usage Metrics
- Frequency
- Time spent

- Consistency

Usage Pattern and
Behaviour

Feature
Improvement

Decisions

Data Aggregation,
Cleaning,

Processing

Analytics

Usage Dataset

Queries Application Programming Interface

Dashboards

Collect CollectApplication
Layer

Data
Layer

Integration
Layer

Data
Extraction

Layer

Analytics
Layer

A
pp

lic
at

io
n

/ P
la

tfo
rm

A
na

ly
tic

s
En

gi
ne

Usage Data
Identification &

Extraction

Figure 6.1: Usage Analytics architecture comprising core components of the analytics engine
and application components used by the analytics engine

behaviour of the users. The high-level architecture of the Usage Analytics approach, as shown

in Figure 6.1, groups different components necessary for the analytics into two categories: (1) Ap-

plication/Platform specific components and (2) The Analytics Engine. The Application-specific

components describe the necessary components from the target software application/platform

in the Application, Data and Integration layers of the architecture. The application platform

serves as the source of the usage data which may include application/event logging tools, third-

party monitoring tools and the traditional databases storing the event data and the application

logs. Usually, an application programming interface serves as the middle-man for the analytics

engine to access the usage data sources.

The following sections provide an in-depth exploration of the UAM’s four primary stages:

feature identification, data source integration, data extraction, and analysis. Each stage is

carefully detailed to demonstrate how it contributes to overcoming the identified challenges.

References from earlier chapters are incorporated to connect theoretical underpinnings with

practical applications. Insights from Chapter 7 validate the UAM through real-world imple-

157

Usage Analytics: Optimizing Feature Prioritization in Software Development

mentations, including its adaptability to varied software environments and its role in fostering

iterative improvements.

6.1.1 Feature Identification

The first stage of the UAM involves identifying and mapping application features to specific user

actions, forming the foundation for subsequent analysis and prioritization efforts. This process

tackles the challenge of unclear feature definitions, a critical issue that surfaced in the IBM

Academic Cloud and IBM Watson Workspace case studies, where ambiguity in feature descrip-

tions hindered effective user behavior analysis. By systematically defining features and linking

them to user actions, this stage ensures clarity and consistency in understanding application

functionalities.

Developers begin by cataloging features and actions using available documentation such as

version logs, user manuals, and stakeholder inputs. This is complemented by data sources like

application logs and telemetry tools, which capture user interactions in real-time. Through col-

laborative workshops, developers and stakeholders refine these definitions, ensuring they align

with both technical capabilities and business objectives. These sessions also serve as an avenue

for identifying dependencies and prioritizing high-impact features. The feature-action mapping

process incorporates iterative validation steps to ensure robustness and alignment with appli-

cation goals. Preliminary mappings are developed using historical usage data and are further

refined through collaborative sessions involving users and cross-functional teams. These refine-

ments enhance the shared understanding of application capabilities and ensure the mapping

evolves in response to shifting requirements and new insights gained during development cy-

cles. This dynamic process integrates stakeholder feedback and continuously adapts to support

accurate and relevant feature identification.

This stage’s outputs include a comprehensive feature-action map, which acts as a reference for

subsequent stages, enabling seamless integration of user behavior data into analytical workflows.

The map also facilitates alignment between development teams and stakeholders, ensuring that

feature prioritization decisions are both data-driven and strategically aligned.

Creating a Feature-Action Map

An important result of the case study 1 was the creation of a new process to develop a feature-

action map. This map provides a detailed visualization of user interactions with specific features

and is supported by academic literature emphasizing the importance of understanding user

158

Usage Analytics: Optimizing Feature Prioritization in Software Development

behavior in software development. The concept of feature-action mapping is deeply embedded

in user-centered design (UCD) principles, which emphasize the importance of designing software

that meets the needs and preferences of its users. UCD advocates for an iterative design process

that incorporates user feedback at every stage to ensure that the final product is both usable

and useful (Norman, 2013).

User-Centered Design (UCD) (Abras et al., 2004) is a framework that places the user at the

forefront of the design and development process. It involves understanding user needs, tasks, and

environments to create products that provide a positive user experience. The feature-action map

aligns with UCD by systematically capturing and analyzing how users interact with software

features, ensuring that development efforts are focused on enhancing usability and functionality

(Gulliksen and et al., 2003). Activity Theory (Nardi, 1996) provides a theoretical framework

for analyzing human interactions with technology. It focuses on the actions and activities users

perform to achieve their goals, considering the social and cultural context of these interactions

(Kaptelinin and Nardi, 2006). The feature-action map applies activity theory by identifying

and mapping user actions to specific features, thereby understanding the context and purpose

of these interactions. Cognitive Load Theory (Sweller et al., 2011) explains how the human

brain processes and stores information. It posits that reducing unnecessary cognitive load can

enhance learning and performance. By mapping user actions to features, the feature-action map

helps identify areas where the software may be causing cognitive overload, enabling designers

to simplify and improve the user interface. Behavioral Analytics (Chaffey and Patron, 2012)

involves the collection and analysis of data on user actions within a system. This approach

provides insights into user behavior patterns, preferences, and pain points. The feature-action

map leverages behavioral analytics to quantify how users interact with different features, guiding

data-driven decision-making in the development process. Usability Engineering (Nielsen, 2012)

focuses on improving the usability of software through systematic testing and evaluation. The

feature-action map serves as a tool in usability engineering by providing a structured method

for evaluating user interactions with features, identifying usability issues, and prioritizing im-

provements based on empirical data.

A generic process of creating a feature-action map involves several steps, which can be applied

to various new and existing software platforms:

1. Feature Identification: For new applications, feature identification can begin with brain-

storming sessions involving the development team to enumerate all potential features, as

159

Usage Analytics: Optimizing Feature Prioritization in Software Development

suggested by (Ulrich and Eppinger, 2012). This process helps in gathering a comprehensive

list of possible features. Another approach is user story mapping, which involves deriving

features from user stories and user journey maps (Patton, 2014). This ensures that features

are closely aligned with user needs and experiences. Additionally, stakeholder interviews

and surveys can be conducted to capture user expectations and desired functionalities

(Nuseibeh and Easterbrook, 2000), providing a broad perspective on what features should

be included. For existing applications, reviewing action logs and tags within the appli-

cation can help identify features based on user interactions and tagging systems already

in place (Pazzani and Billsus, 2007). Conducting heuristic evaluations can identify key

features and functionalities based on existing usability and design principles (Nielsen and

Molich, 1990). Analyzing existing usage data to determine which features are actively

used and which are not (Benyon, 2013), and performing audits of the current system to

list all implemented features and their dependencies (Beyer and Holtzblatt, 1997), are also

effective methods.

2. Action Mapping: Identifying specific user actions corresponding to each feature is cru-

cial. This can be achieved through task analysis, which breaks down the steps users

take to complete tasks associated with each feature (Hackos and Redish, 1998). Click-

stream analysis tracks the sequence of user actions within the application (Bucklin and

Sismeiro, 2009b), providing a detailed view of user navigation and interaction patterns.

Event logging records user interactions at a granular level, providing comprehensive action

data (Montero and Mart́ınez-Ruiz, 2009). These techniques collectively ensure that the

feature-action map accurately reflects how users interact with the software.

In Chapter 7, this process is validated through the IBM Academic Cloud case study, where

the creation of a feature-action map clarified usage patterns and highlighted underutilized fea-

tures. Developers found the map invaluable for linking user behavior to specific functionalities,

which informed iterative updates. Additionally, collaborative workshops were employed to align

technical definitions with business objectives, fostering a shared understanding of critical fea-

tures.

This generic process provides a reusable methodology applicable across various software

platforms, forming the foundation for precise user behavior analysis in subsequent stages. By

creating a robust linkage between user interactions and software features, this process empowers

160

Usage Analytics: Optimizing Feature Prioritization in Software Development

teams to effectively prioritize enhancements and align development efforts with user needs. The

mapping process also facilitated a feedback mechanism where users directly contributed insights,

refining the accuracy of the mapping process over time.

6.1.2 Data Source Integration

Data Source Integration represents the second stage of the UAM, focusing on ensuring the

collection and alignment of comprehensive and consistent user data from various sources. This

stage directly addresses the challenge of fragmented and inconsistent data sources, as identified

in the IBM Watson Workspace and Odoo Notes case studies. By systematically cataloging,

standardizing, and validating these data sources, this stage establishes a reliable foundation for

subsequent analysis.

Key Activities

1. Cataloging Data Sources: The integration process begins with cataloging all potential

sources of user interaction data. Developers document key data repositories such as appli-

cation logs, telemetry systems, event tracking databases, and third-party analytics tools.

These repositories store critical information like timestamps, user actions, device details,

and error logs. Collaborative workshops involving engineers and product managers ensure

that all relevant sources are identified and cataloged for accessibility.

2. Standardizing Data Formats: One of the most pressing challenges of fragmented data

is the inconsistency in format and structure across different sources. This activity involves

creating a unified schema to standardize diverse datasets, ensuring compatibility during

analysis. Custom scripts and tools convert logs and telemetry outputs into structured

formats, such as JSON or CSV, that align with predefined data schemas.

3. Identifying Data Gaps: Comprehensive data integration also requires an analysis of

existing gaps in data collection. Developers identify areas where critical information is

missing, such as user action timestamps or session identifiers. These gaps are addressed

by implementing enhancements in monitoring systems or designing custom data collection

mechanisms tailored to the application’s architecture.

4. Designing Data Pipelines: Efficient pipelines are established to manage the seamless

flow of data from source systems to analytical repositories. These pipelines ensure data is

161

Usage Analytics: Optimizing Feature Prioritization in Software Development

consistently collected, cleaned, and stored for further processing. Developers incorporate

error-handling and recovery mechanisms to maintain the robustness of data flow systems.

Creating a Custom Monitoring Tool

To address the challenge of incomplete or insufficient monitoring systems, the UAM incor-

porates the design and deployment of custom monitoring tools. These tools provide tailored

solutions for capturing detailed interaction data, offering flexibility and scalability for different

application contexts.

1. Requirement Analysis: The initial step in developing a custom monitoring tool involves

conducting a thorough requirement analysis. This includes clearly defining the objectives

of the monitoring tool, such as identifying the specific data that needs to be collected, the

metrics to be analyzed, and the desired outcomes. Developers must also determine the key

features of the application that require monitoring and understand how users interact with

these features. This comprehensive understanding will guide the design and development

phases.

2. Design Phase: In the design phase, developers should create a high-level architectural

design of the monitoring tool. This includes outlining the components such as the data

collection module and data processing module. The design should specify the types of data

to be collected, including timestamps, user IDs, action types, and other relevant metadata.

Additionally, developers must identify the integration points within the application where

the monitoring tool will capture data, such as UI elements, API calls, or backend processes.

A detailed design ensures that all necessary data points are captured accurately and that

the monitoring tool integrates seamlessly with the application.

3. Development Phase: The development phase involves building the various components

of the monitoring tool. The data collection module is responsible for capturing user ac-

tions in real-time and storing them in a central database. Developers must implement

mechanisms to ensure that user actions are recorded accurately and in a timely manner.

The data processing module aggregates and pre-processes the collected data to prepare it

for analysis. This involves several critical steps:

• Cleaning the Data to Remove Noise: Noise in the data can result from irrel-

evant entries, duplicate logs, or system-generated events that do not contribute to

162

Usage Analytics: Optimizing Feature Prioritization in Software Development

meaningful insights. Cleaning the data ensures that only relevant and valid records

are retained, reducing the complexity of subsequent analysis.

• Handling Missing Values: Missing values in the dataset can occur due to incom-

plete user actions, system errors, or network interruptions. These gaps can skew

analysis results. Techniques such as imputation (e.g., using averages or medians),

interpolation, or exclusion of incomplete records are applied to address missing data.

• Ensuring Consistency: Consistency involves standardizing data formats and en-

suring alignment across all data points. For example, timestamps must follow the

same format, and action types should use a unified naming convention. Consistent

data enables accurate aggregation and comparison, ensuring that the metrics derived

from the data are reliable and actionable.

These steps ensure that the data is of high quality and ready for further analysis and

metric calculation.

4. Implementation Phase: During the implementation phase, the custom monitoring tool

is integrated into the application. This integration should be seamless, ensuring minimal

disruption to the user experience. Developers must establish a real-time data flow from the

application to the monitoring tool, ensuring that data is captured and processed promptly.

This phase also involves rigorous testing to verify that the monitoring tool functions as

expected and captures the intended data accurately.

5. Testing and Validation: Testing and validation are critical steps to ensure the moni-

toring tool’s functionality, reliability, and scalability. This phase involves multiple layers

of testing to address different aspects of the tool’s performance:

• Functional Testing: Functional testing ensures that each component of the mon-

itoring tool operates as intended. This includes verifying that the data collection

module accurately captures all user interactions, such as clicks, navigations, and

inputs, and that the data processing module correctly pre-processes the data by ag-

gregating, cleaning, and formatting it for analysis. Functional testing also checks

integration points within the application to ensure that data flows seamlessly from

the application to the monitoring tool without omissions or errors.

• Performance Testing: Performance testing assesses the monitoring tool’s ability to

163

Usage Analytics: Optimizing Feature Prioritization in Software Development

handle high volumes of data generated by real-world user interactions. This involves

testing the tool under different load conditions to evaluate its responsiveness and

stability. Key performance metrics include data capture latency, processing time,

and storage efficiency. Ensuring that the tool can scale with increasing user activity

is essential for its deployment in large-scale or high-traffic applications.

• Usability Testing and Feedback Collection: In addition to technical tests, us-

ability testing gathers feedback from developers and stakeholders who interact with

the tool. This process involves observing how users engage with the tool’s interface

and functionalities, identifying any usability barriers or inefficiencies. Feedback col-

lection helps refine the tool’s design and functionality, ensuring it aligns with the

needs of its users and supports seamless integration into existing workflows.

• Validation of Data Accuracy and Integrity: Validation ensures that the data

captured by the monitoring tool is accurate, complete, and consistent. This involves

comparing the tool’s output against expected results or known benchmarks. For

instance, simulated user interactions can be used to verify that every action is logged

correctly, with accurate timestamps and metadata.

• Regression Testing: If updates or modifications are made to the tool, regression

testing ensures that new changes do not inadvertently disrupt existing functionalities.

This step is crucial for maintaining reliability as the tool evolves.

These testing and validation efforts collectively ensure that the monitoring tool meets its

performance requirements and operates reliably in real-world conditions. By addressing

functional correctness, scalability, usability, and data accuracy, this phase guarantees the

tool’s effectiveness in supporting comprehensive usage analytics and informed decision-

making.

6. Deployment and Maintenance: Once the monitoring tool has been tested and vali-

dated, it can be deployed in a live environment. Developers must ensure that the tool

integrates smoothly with the production application and that it operates reliably under

real-world conditions. Continuous monitoring of the tool’s performance is essential to

identify and address any issues promptly. Regular updates and enhancements are neces-

sary to incorporate new features, address bugs, and improve performance, ensuring the

monitoring tool remains effective and relevant as the application evolves.

164

Usage Analytics: Optimizing Feature Prioritization in Software Development

By following these comprehensive steps, developers can create custom monitoring tools tai-

lored to their specific applications. These tools will enable detailed data collection and analysis,

providing valuable insights into user interactions and informing data-driven decisions for feature

prioritization.

The outputs of this stage include a unified and comprehensive dataset ready for extraction

and analysis. By integrating robust monitoring tools and creating seamless data pipelines,

developers ensure that all user interactions are captured and stored in a consistent format.

These efforts provide the analytical engine with high-quality inputs, supporting accurate and

impactful analysis in subsequent stages. This stage also fosters organizational alignment by

establishing clear protocols for data collection and management, ensuring long-term reliability

and scalability of analytics efforts.

6.1.3 Data Extraction

The third stage of the Usage Analytics Method (UAM) focuses on data extraction, a critical

process that transforms raw data into structured and actionable insights for further analysis.

This stage addresses challenges such as fragmented data sources, inconsistencies in data quality,

and the labor-intensive nature of preparing data for analytical workflows. Through adaptive

practices validated in case studies, the data extraction stage ensures that datasets meet the

analytical engine’s requirements effectively and efficiently.

Key Activities

1. Data Identification and Retrieval: The initial step involves identifying and retrieving

data from relevant sources, including application logs, telemetry systems, and monitoring

tools. For example, in the IBM Watson Workspace case study, tools like New Relic were

employed to access detailed logs capturing user actions, timestamps, and error events.

Developers customized query mechanisms such as NRQL to extract specific data points

efficiently, focusing on high-value metrics for analysis. This process ensures that only

relevant and meaningful data is collected, minimizing noise and redundancy.

2. Iterative Data Cleaning: Data cleaning is an incremental process where duplicate en-

tries, incomplete records, and erroneous values are systematically removed. In the IBM

Academic Cloud case study, cleaning cycles were iteratively conducted to align data from

165

Usage Analytics: Optimizing Feature Prioritization in Software Development

various sources, including telemetry and system logs. Time fields were standardized, cat-

egories were refined, and missing values were either estimated or flagged for exclusion.

Iterative cleaning provided flexibility to adapt to evolving data needs, maintaining the

integrity and relevance of the datasets.

3. Data Preprocessing and Transformation: Preprocessing involves structuring data

to conform to the analytical engine’s schema. Transformation steps include categorizing

user actions, normalizing numerical fields, and merging complementary datasets. The

Odoo Notes case study emphasized preprocessing, as raw log data required additional

formatting to capture specific user interactions. Transformation pipelines also integrated

metadata, such as user roles or session types, to enrich the analysis context.

4. Validation and Consistency Checks: Ensuring the accuracy and reliability of prepared

datasets is essential for effective analysis. Validation steps were implemented to cross-

check processed data against original logs, verifying consistency and completeness. Cross-

functional teams reviewed the outputs to ensure alignment with analytical objectives.

These checks reduced the risk of misinterpretation and improved confidence in the findings

derived from the datasets.

The case studies highlighted practical and adaptable methods for data extraction. In the IBM

Academic Cloud, challenges in integrating heterogeneous logs were addressed through manual

alignment techniques. Scripts were employed to standardize formats and resolve inconsistencies.

In the IBM Watson Workspace, query-based tools facilitated efficient data retrieval, enabling

the extraction of detailed user interaction metrics while maintaining the flexibility to adapt to

evolving analytical needs. In the Odoo Notes case study, custom logging configurations were

developed to capture granular user interactions, ensuring that critical events were recorded.

These configurations addressed gaps in existing telemetry systems and included data enrichment

strategies to add contextual details, such as feature usage frequency, enhancing the value of the

analysis.

The outputs of this stage include refined datasets free from redundancies and enriched with

contextual information, supporting deeper insights into user behavior and feature performance.

Validation processes ensure that data from multiple sources align with a unified schema, facilitat-

ing seamless integration into analytical workflows. By leveraging these datasets, the analytical

engine derives actionable insights that support informed decisions on user engagement strate-

166

Usage Analytics: Optimizing Feature Prioritization in Software Development

gies and feature prioritization. This stage underscores the adaptability and effectiveness of

the UAM in addressing real-world challenges and reinforces its scalability and relevance across

diverse software environments.

6.1.4 Analysis

The core metrics used to understand the changes in usage behaviour of the software users are

frequency, time spent and consistency. Frequency F of action A refers to the number of times

an action was performed denoted by N by either an individual or a group of users denoted by u

over a specific period of time t can be measured as shown in Equation 6.1. Typically, the period

of time is measured in sessions as defined by the developer or software analyst (days, weeks or

months) and ideally in a software development domain, the period of time is set to the amount

of time a specific version of the application is available to the users. This enables the developers

to gather the usage data for a specific version of the application and compare the usage data

with the previous version of the application to understand the impact of changes made to the

application on the usage behaviour of the users between the two versions. Furthermore, the

value of t can be set to a larger value to include further versions of the application to generate

a trend of change in the frequency of actions performed by the users over multiple versions

of the application. For the purpose of this research, the value of t is set automatically for

each participant of the experiment based on the amount of time the participant spent on the

experiment session.

FA,u =
NA,u

t
(6.1)

Time spent T of an action A refers to the amount of time spent on a feature by a user u, that

is the sum of the amount of time spent on all the actions that belong to the feature where

TS refers to the timestamp of the log entry for the action and it can be measured as shown

in Equation 6.2. The term TS refers to a timestamp of the log entry for the action A. The

term TSx+1 refers to the timestamp of the log entry for the next action performed by the user.

The term TSx refers to the timestamp of the log entry for the action performed by the user.

The term k refers to the total number of actions performed by the user u. A crude assumption

here is that the user only performed one action at a time. This assumption is made to simplify

the calculation of the time spent on a feature. However, this assumption can be relaxed by

considering the time spent on a feature as the sum of the time spent on each action performed

167

Usage Analytics: Optimizing Feature Prioritization in Software Development

by the user. In reality, the users of a software application may perform multiple actions at the

same time. But, since the UA approach relies on the comparative score between versions of the

application, the assumption does not affect the final result of the UA analysis.

T (A, u) =

ku∑
x=1

(
TS(A, u)x+1 − TS(A, u)x

)
(6.2)

Consistency C of action A is a measure to calculate if the users exhibit similar consistency in

accessing a feature when changes are implemented to the features by the developers. Based on

the findings from version 2 of the Usage Analytics method, the Consistency measure is further

divided into Consistency of Frequency and Consistency of Timespent and implemented in the

final version of the Usage Analytics method (version 3). The Consistency of Frequency measure

can be calculated by combining the change of Frequency metric for each action available with

an application as shown in Equation 6.3. The Consistency of the Timespent measure can be

calculated by combining the change of the Timespent metric for each action available with an

application as shown in Equation 6.4.

CF (A, u) = F (A, u)(n+1) − F (A, u)n (6.3)

CT (A, u) = T (A, u)(n+1) − T (A, u)n (6.4)

This comparative analysis reveals the behavioural change exhibited by the user was either posi-

tive or negative. The behavioural change to be considered as either positive or negative is defined

by the developer of the software application based on the context of usage of a feature as defined

by the developers. For example, Microsoft Azure provides a tool for application developers to

define expected user flows and user journeys1. To illustrate, spending more time on a feature

could be considered better in a scenario where the users are expected to spend as much time as

possible on a feature which in turn accumulates monetary benefits to the development team. For

example, an application which provides news content for the users to read and advertisements

are placed on the same page as the news content, in such a scenario, the users of the application

are expected to spend as much time as possible. If the average time readers spend on a page de-

creases following changes made to the application, the change is considered negative. However,

1https://learn.microsoft.com/en-us/azure/active-directory-b2c/user-flow-overview

168

Usage Analytics: Optimizing Feature Prioritization in Software Development

Version N Version
N+1

Version
N-1

Extract

Analyse

Behavioral
score

Extract

Analyse

Behavioral
score

Compare

Experiment Experiment

Usage based
Design Decision

Figure 6.2: Compare behavioural scores between consecutive software versions

a payment page where the user enters the payment account details to pay for the membership

requires the users to spend as little time as possible on that page, if the average time spent on

that page is increased after some changes are implemented by the developer then that change

is considered negative. As a result, the developers are responsible to define the positive or neg-

ative behavioural score for each feature of the application. This allows software developers to

assess the impact of the changes made to the application by determining whether they positively

or negatively influenced user behavior. This understanding is critical for identifying successful

enhancements, addressing potential issues, and ensuring that the software evolves in alignment

with user needs and expectations.

The analytics metrics used in the Usage Analytics Method include frequency, time spent, and

consistency. Frequency refers to the number of times a feature is used within a given period. This

metric helps identify which features are most popular and how often they are utilized by users.

Time spent measures the duration of user engagement with each feature, providing insights

into feature importance and user engagement levels. Consistency evaluates the regularity and

reliability of feature usage over time, helping to identify features that are essential to the user

experience versus those that are sporadically used.

The analysis phase concludes with actionable recommendations that align with organiza-

tional goals. These insights inform feature prioritization, resource allocation, and strategic

169

Usage Analytics: Optimizing Feature Prioritization in Software Development

planning, ensuring that development efforts are focused on delivering maximum value to users.

By integrating data-driven decision-making into the development cycle, this stage enhances the

overall effectiveness and adaptability of the UAM.

6.2 Experiment Design

The experiment design involves creating controlled environments to test the effectiveness of the

Usage Analytics Method. This process begins with the selection of use cases, choosing diverse

software applications to validate the method. A data collection framework is set up, with tools

and protocols for consistent data collection across different platforms. For the purpose of both

collection of the necessary data for the analysis and validation of the results, the following ex-

periment setup in a controlled environment was designed and implemented using IBM Watson

Workspace and Odoo Notes. The participants for the experiments designed for IBM Watson

Workspace were the design and development team of the application, where, all participants

are considered experts with the application. Since the IBM Watson Workspace application was

only deployed internally in IBM for different development teams to use at the time of conducting

this research, the expertise of the available users was only limited to the expert users. However,

the participants for Odoo Notes were recruited randomly, including participants with varied

levels of expertise and experience with the application. This varied level of expertise with the

participants of the experiments with Odoo Notes eliminates any chance of bias related to famil-

iarity with the type of application or the application itself. The varied level of expertise among

participants, while eliminating familiarity bias, can also introduce challenges in interpreting the

results. Participants with different levels of expertise may interact with the application differ-

ently, leading to variability in usage patterns that are not solely attributable to the application’s

design or updates. This variability can obscure the true impact of the software changes being

analyzed, making it harder to derive consistent and generalizable insights. Additionally, inexpe-

rienced participants may require more time or support, potentially skewing metrics such as time

spent or consistency. A more homogenous level of expertise among participants could provide a

clearer understanding of how the changes affect typical users. The rest of this section describes

the design of the experiments in detail.

The general structure of the experiment starts with a quick demonstration of the application

features for the participant. Since the experiment is designed to include participants with various

170

Usage Analytics: Optimizing Feature Prioritization in Software Development

levels of experience with the application, some participants may never have any experience with

the specific application or other similar applications. The demonstration step will introduce

different features available with the software and how to use them. Once the participant is

aware of the different interactions they can perform with the application, the participant is

asked to perform a specific set of tasks. The tasks are designed in a way to explore most of

the features of the software, however, some tasks which could not be completed by a single user

alone such as the chat feature that requires some interaction from another user to complete the

task are excluded from the list of tasks. A sample list of tasks the participants are asked to

perform with Odoo Notes is shown below:

Task List (Odoo Notes):

1. Create a new column and name it “Temporary”, you can use this column to place any

temporary notes you may create

2. Create a minimum of 7 notes (one for each new task)

3. Move the newly created notes to the correct column (if not done before); two ways of doing

it:

(a) Drag and drop

(b) Click on the column name in the top right position after opening the note

4. and so on ...

The complete list of tasks is available in Appendix B. Each participant is instructed to

perform all the tasks. Once the participant (user) starts interacting with the application, the

data is automatically recorded by the monitoring system. Each of these tasks generates log

entries in the application monitoring system. Each log entry refers to some action performed by

the user. Each task completed in the list may result in one or more of these actions performed by

the user. The list of actions a user can perform in reference to the application can be identified

by exploring the application and feature design or exploring the source code of the application.

An example of actions list using the Odoo Notes application is shown below in Log 6.1:

Log 6.1: List of actions performed by the user in Odoo Notes

1 {

2 "Actions": [

171

Usage Analytics: Optimizing Feature Prioritization in Software Development

3 {"ActionName":"Create Stage", "ID": 1},

4 {"ActionName":"Delete Stage", "ID": 2},

5 {"ActionName":"Rename Stage", "ID": 3},

6 {"ActionName":"Search with Note", "ID": 4},

7 {"ActionName":"Search with Tag", "ID":5},

8 ...]

9 }

The complete action list is available in Appendix C. Once the user completes performing all

tasks in the list. The user is asked to perform the same list of tasks with another version of the

application. In the case of Odoo Notes, Odoo versions 10 and 11 were chosen for the experiments.

With IBM Watson Workspace, since the deployment design followed a minor incremental update

process with an option to revert back multiple stages, the users of the application may not see

a major visual or interactive difference. This resulted in the Watson Workspace application not

having specific different versions. In that case, the participants of the experiment were only

asked to complete the tasks once using the current version of the application. This scenario,

while effective for testing the UA method, is not entirely realistic in replicating natural user

behavior. In real-world scenarios, users interact with software based on their specific needs,

goals, and preferences, often performing tasks in varying sequences or skipping certain actions

altogether. Real users may not complete all tasks, and the sequence provided in the experiment

may not align with the organic flow of their interactions.

However, the structured approach used in this experiment is intentionally designed to max-

imize the coverage of user actions and interactions within the application. By ensuring that

participants perform tasks across a broad range of features, the experiment allows for com-

prehensive data collection that reflects the full spectrum of possible user interactions. This is

critical for evaluating the effectiveness of the UA method, as it provides a robust dataset for

analyzing metrics like frequency, time spent, and consistency.

While this approach may not mirror realistic usage patterns perfectly, it is a controlled and

systematic way to test the capabilities of the monitoring system and ensure that the analysis

includes all potential user actions. Future iterations could consider incorporating more flexible

task designs or real-world scenarios to further validate the method’s applicability in practical

settings.

172

Usage Analytics: Optimizing Feature Prioritization in Software Development

6.2.1 Experiment Data and Application of UA Metrics

As discussed previously, the experiment data is collected in the form of log entries generated

by the monitoring system. Some software applications use inbuilt monitoring systems whereas

others rely on third-party application monitoring systems. IBM Watson Workspace application

relies on GraphQL API 2 and Newrelic Application Performance Monitoring 3 to monitor the

application. The GraphQL API is a query language for APIs and a runtime for fulfilling those

queries with the application’s existing data. The GraphQL API is used to collect the data from

the application and store it in a database. The data collected by the GraphQL API is in the

form of log entries. A typical query to extract the log entries from the database is shown below

in Log 6.2:

Log 6.2: GraphQL query to extract log entries

1 {

2 space(id: "5a32abb0e4b0e7caf246140d") {

3 title

4 updated

5 conversation {

6 createdBy {

7 displayName

8 }

9 messages {

10 items {

11 contentType

12 created

13 updated

14 createdBy {

15 id

16 customerId

17 extId

18 ibmUniqueID

19 displayName

2https://graphql.org
3https://newrelic.com/lp/apm

173

Usage Analytics: Optimizing Feature Prioritization in Software Development

20 }

21 updatedBy {

22 displayName

23 }

24 content

25 annotations

26 }

27 }

28 }

29 }

30 }

The space ID refers to the instance of the application used for the experiment. The query

returns the log entries in the form of JSON objects. These JSON objects are further explored

specifically with a focus on the createdBy and annotations fields. The createdBy field refers to

the information that could be used to identify the user. The annotations field contains the log

entry in the form of a complex string referring to the action performed by the user. Further

exploration of the data referred to by the annotations field revealed that the GraphQL tool is

primarily used to monitor the actions performed by the Watson AI rather than the users of

the application. As a result, the data from GraphQL API are ignored. Instead, the Newrelic

Application Performance Monitoring tool was used to collect the experiment data.

The Newrelic tool is a third-party application monitoring tool that collects the data from

the application and stores it in a database of the developer’s choice. The data collected by the

Newrelic tool is in the form of log entries which can be extracted using the API by Newrelic.

Each log entry contains information about the action performed by the user. The log entries

are in the form of JSON objects. A sample log entry is shown below in Log 6.3:

Log 6.3: Sample log entry

1 {

2 {

3 "results": [

4 {

5 "events": [

174

Usage Analytics: Optimizing Feature Prioritization in Software Development

6 {

7 "timeSinceLoad": 5552.808,

8 "appVersion": "Beta",

9 "teamSubscriptionIds": "[\"0\"]",

10 "session": "7f8179dcbf74288c",

11 "userAgentDevice": "Windows",

12 "USER_ID": "e33a3950-58a8-414a-b300-e57e6912e3bb",

13 "REQUEST_ID": "Web-c0eba120-0c1e-11e8-af9b-4d3b86be013f",

14 "userAgentName": "Firefox",

15 "screenOrientation": "landscape",

16 "teamOfferings": "[\"PREVIEW\"]",

17 "countryCode": "GB",

18 "appId": 16466058,

19 "customerId": "IBM-0000-0001",

20 "userAgentOS": "Windows",

21 "asnLatitude": "51.4964",

22 "timestamp": 1518018688075,

23 "currentUrl": "https://workspace.ibm.com/space/5

↪→ a32abb0e4b0e7caf246140d",

24 "browserLanguage": "en-US",

25 "appName": "Toscana",

26 "browserHeight": 920,

27 "buildId": "20180207-083427",

28 "SUBSCRIBER_ID": "com.ibm.web.toscana",

29 "referrerUrl": "https://workspace.ibm.com/",

30 "asnLongitude": "-0.122406006",

31 "actionType": "InTeam",

32 "userAgentVersion": "52.0",

33 "name": "Unnamed Transaction",

34 "pageUrl": "https://workspace.ibm.com/",

35 "browserWidth": 946,

36 "appLanguage": "en",

175

Usage Analytics: Optimizing Feature Prioritization in Software Development

37 "actionName": "CHAT_MESSAGE_RECEIVED"

38 }

39 }

40 }

41 }

A typical query to extract the log entries from the Newrelic database is shown below in Log

6.4:

Log 6.4: Newrelic queries to extract log entries

SELECT count(*) from PageAction, MobileAction facet actionName since 24 hours ago

↪→ LIMIT 300

SELECT * from PageAction, MobileAction SINCE this quarter

The application of UA metrics is demonstrated through detailed case studies. In Case

Study 1, IBM Academic Cloud, the initial design of the usage analytics method and feature

prioritization challenges were identified. The focus was on understanding user needs and aligning

development efforts accordingly. In Case Study 2, IBM Watson Workspace, the usage analytics

method was improved and implemented in Version 2. This involved addressing implementation

challenges and refining the method to better capture user engagement data. In Case Study 3,

Odoo Notes, further improvement of the Usage Analytics Method was achieved in Version 3,

with a custom monitoring tool to validate the method’s effectiveness in a real-world setting.The

experiment data collected from the application monitoring system is analyzed using the UA

metrics: Frequency, Time Spent and Consistency as discussed in Section ??.

6.2.2 Post-experiment Survey

Post-experiment surveys were conducted to gather qualitative feedback from users. These sur-

veys assessed overall satisfaction with the software features, understanding which features were

found to be most useful, and identifying areas for further enhancement based on user feedback.

After completing the tasks, the user is asked to complete a survey. In addition to the general

questions related to the participant and his/her experience with the specific application (Odoo

or IBM WW) and other applications of a similar type, the questions of the survey were primarily

designed to validate the results of the analytics.

176

Usage Analytics: Optimizing Feature Prioritization in Software Development

The complete survey form for experiments with IBM Watson Workspace is available in Ap-

pendix D.2. The survey consists of 10 questions. Question 1 gathers the Temporary user ID

assigned to the participant. Question 2 asks the participant to briefly summarize the tasks

performed by the participant during the freestyle session of the experiment. Question 3 asks the

participant about their familiarity with IBM WW and other similar team collaboration appli-

cations. Question 4 asks the user if the scenario (set of tasks to perform with the application)

of the experiment was understandable. Question 5 asks the participant to answer the level of

difficulty in understanding the scenario of the experiment on a scale of 1 (very easy) to 5 (very

hard). Question 6 asks the participant to rate the difficulty level of each task on a scale of 1

(very easy) to 5 (very hard). Question 7 is optional where the participant can provide additional

feedback on the difficulty level of the tasks. Question 8 is designed to understand if capturing

screenshots of participants’ interaction with the experiment influences the way they interact with

the application during the experiment. Question 9 is optional where the participant can provide

additional feedback on the overall experiment. Question 10 is optional where the participant

can include their name.

The complete survey form for experiments with Odoo Notes is available in Appendix D.1.

The survey includes 8 questions in total. Questions 1 to 3 of the survey are designed to gather

the user’s experience and familiarity with Odoo Notes or with similar types of applications.

Questions 4 and 5 are designed to understand which version of the application is preferred by

the user and the reason for the preference. Question 6 is designed to understand the preference of

the user specifically for each action. Question 7 is designed to understand the level of difficulty

experienced by the user between the versions of the application. Specifically, a comparative

analysis can be performed over each feature of the application, changes implemented to each

feature and how these changes affected the participant of the application. Furthermore, the

results of the comparative analysis are used to evaluate the results of the analytics performed

on the experiment data.

Post-experiment surveys were conducted to gather qualitative feedback from users. These

surveys assessed overall satisfaction with the software features, understanding which features

were found to be most useful, and identifying areas for further enhancement based on user

feedback. The Usage Analytics Method provides a systematic approach to prioritizing software

features based on detailed analysis of user interactions. Through the use cases, the method has

been validated and refined to offer actionable insights that enhance the efficiency and effective-

177

Usage Analytics: Optimizing Feature Prioritization in Software Development

ness of software development processes. By focusing on identifying features, usage data sources,

data extraction, and analysis, the method ensures a comprehensive understanding of user be-

havior and feature performance. The usage metrics are applied to the usage data collected from

the application monitoring system used in the experiments with the applications IBM Watson

Workspace and Odoo Notes as described in Section 6.2.1. The results from the experiments and

evaluation of the Usage Analytics method using the results of the surveys are presented and

discussed in the next chapter.

6.3 Contributions of the Usage Analytics Method (UAM)

The Usage Analytics Method (UAM) represents a significant contribution to the field of software

analytics, providing a structured and systematic framework for deriving actionable insights

from usage data. By addressing critical challenges identified in earlier chapters, the UAM

demonstrates its utility and adaptability across diverse platforms. This section outlines the

core contributions of the UAM, emphasizing its impact on feature prioritization, user behavior

analysis, and decision-making in software development.

Comprehensive Framework for Software Analytics

The UAM introduces a four-stage process—Feature Identification, Data Source Integration,

Data Extraction, and Analysis—that provides a cohesive approach to understanding user inter-

actions and the impact of software changes. This framework integrates theoretical insights with

practical applications, ensuring that the method is both robust and adaptable to varying con-

texts. Each stage addresses specific challenges, such as unclear feature definitions, fragmented

data sources, and the need for actionable metrics, creating a seamless workflow from raw data

to strategic insights.

Addressing Key Challenges in Software Development

The UAM effectively resolves several critical challenges in software development:

1. Unclear Feature Definitions: By implementing the feature-action mapping process,

the UAM ensures clarity and consistency in identifying application features and their

associated user actions. This process was particularly impactful in the IBM Academic

Cloud case study, where it clarified usage patterns and informed iterative updates.

178

Usage Analytics: Optimizing Feature Prioritization in Software Development

2. Fragmented Data Sources: Through its data source integration stage, the UAM consol-

idates diverse data streams into a unified schema, enabling consistent and comprehensive

analysis. This capability was validated in the IBM Watson Workspace case study, where

diverse telemetry and log data were aligned for meaningful insights.

3. Behavioral Variability: The analysis stage of the UAM employs metrics such as fre-

quency, time spent, and consistency to understand user behavior and measure the impact

of updates. Comparative analysis across user cohorts, as demonstrated in the Odoo Notes

case study, highlighted the effectiveness of the method in addressing behavioral variability.

Generic Processes for Broader Applicability

The UAM introduces two generic processes that extend its utility beyond the case studies:

1. Feature-Action Mapping: This process provides a structured approach to associating

user actions with application features, aligning with user-centered design principles and

ensuring usability improvements.

2. Custom Monitoring Tools: The method for designing lightweight and adaptable mon-

itoring tools enables developers to capture detailed user interaction data, addressing gaps

in traditional logging mechanisms. These tools were instrumental in Odoo Notes, where

they provided critical insights into user workflows.

Adaptability Across Platforms

One of the most notable contributions of the UAM is its adaptability to varying software

environments. By focusing on flexible processes rather than rigid frameworks, the method was

successfully applied across the IBM Academic Cloud, IBM Watson Workspace, and Odoo Notes

platforms. This adaptability underscores the method’s relevance to both structured, enterprise-

level systems and resource-constrained, lightweight applications.

Data-Driven Decision-Making

The UAM bridges the gap between data collection and actionable insights, fostering a cul-

ture of data-driven decision-making. The metrics and methodologies employed in the analysis

stage empower stakeholders to prioritize features, allocate resources, and plan strategic updates

based on empirical evidence. For instance, the frequency and time spent metrics guided critical

179

Usage Analytics: Optimizing Feature Prioritization in Software Development

interface redesigns and usability enhancements in the case studies, ensuring alignment with user

needs and organizational objectives.

Contribution to Research Objectives

The UAM aligns closely with the research objectives and research questions posed in this

thesis. Specifically, it addresses RQ2 by resolving challenges in identifying and utilizing usage

data and metrics. Additionally, the structured activities in each stage directly support RQ3

by providing a systematic approach to feature prioritization and user behavior analysis. These

contributions not only validate the method but also highlight its potential for further refinement

and application in broader contexts.

In summary, the UAM provides a holistic and adaptable approach to understanding and

leveraging usage data in software development. By addressing critical challenges, introducing

reusable processes, and fostering data-driven decision-making, the UAM establishes itself as a

valuable tool for improving user experiences and optimizing software systems.

180

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 7

Results and Evaluation of the Usage

Analytics Method

This chapter serves as a comprehensive integration of the findings and evaluations related to

the Usage Analytics (UA) method, with a direct focus on addressing the research questions that

underpin this study:

1. RQ2: “What are the challenges developers face in identifying and utilizing usage data for

feature prioritization?”

2. RQ3: “How can activities be systematically structured to identify and utilize usage data

for feature prioritization?”

The primary objective of this chapter is to construct a detailed narrative that connects the

various challenges identified, the iterative processes of refining the UA method, and its practical

application across a range of software platforms. Furthermore, the chapter provides a holistic

perspective on the methodology’s development, its utility, and its contributions to software de-

velopment practices. The chapter evaluates the UA method’s effectiveness in supporting feature

prioritization through qualitative and quantitative assessments. It outlines specific outcomes,

such as identifying high-impact features and improving decision-making processes, underscoring

the method’s practical value.

The integration of findings in this chapter is carefully structured to ensure clarity and trans-

parency. By systematically linking research questions to outcomes, the narrative presents a clear

progression from problem identification to solution development and evaluation. This approach

not only highlights the UA method’s robustness but also emphasizes its adaptability and rele-

181

Usage Analytics: Optimizing Feature Prioritization in Software Development

vance across varying software development environments. Moreover, this chapter reflects on the

broader implications of the findings. The UA method’s potential to bridge the gap between user

behavior analysis and actionable feature prioritization decisions is underscored, demonstrating

its significance in advancing software analytics. The discussion also addresses limitations and

proposes pathways for further research, ensuring a balanced and forward-looking perspective on

the study’s contributions. By extending the discussion and incorporating comprehensive evalu-

ations, this chapter aims to provide a nuanced understanding of how the UA method addresses

the identified research questions. The detailed exploration of challenges, iterative refinements,

and practical outcomes ensures that the study’s findings are robust, transparent, and directly

aligned with its objectives.

7.1 Evaluation of the Usage Analytics Method Through Case

Studies

This section presents a comprehensive evaluation of the usage analytics methods implemented

in three distinct case studies: IBM Academic Cloud, IBM Watson Workspace, and an additional

use case in Odoo Notes. This chapter aims to provide a detailed assessment of the effectiveness

and challenges associated with the application of advanced usage analytics within these software

platforms. The evaluations conducted in this chapter employ a combination of qualitative and

quantitative methods to provide a holistic understanding of the usage analytics methods. The

qualitative evaluation involves structured interviews with developers, capturing their experiences

and feedback regarding the implementation and impact of the usage analytics process. The

quantitative evaluation leverages specific metrics such as frequency, timespent, and consistency

of user actions to measure user interactions and derive insights into user behavior.

The purpose of these evaluations is multi-faceted:

1. Understanding Developer Challenges: To identify the key challenges developers face

in leveraging usage data for feature prioritization and overall software improvement.

2. Assessing Method Effectiveness: To evaluate the effectiveness of the usage analytics

methods in providing actionable insights that enhance the software development process.

3. Refining Analytics Methods: To gather feedback that can inform the continuous re-

finement and improvement of the usage analytics methods.

182

Usage Analytics: Optimizing Feature Prioritization in Software Development

Evaluation of Case Study 1: IBM Academic Cloud

The primary goal of Case Study 1 was to investigate the challenges associated with the fea-

ture prioritization process within the IBM Academic Cloud project. This case study involved

structured interviews with three developers, focusing on their experiences with the usage an-

alytics process model. The evaluation highlighted significant themes such as the difficulty in

analyzing user interactions due to unclear platform feature definitions and the time-consuming

nature of data selection and preparation.

Evaluation of Case Study 2: IBM Watson Workspace

Building on insights from Case Study 1, Case Study 2 aimed to address the key challenges

faced by developers in identifying and utilizing usage data effectively within the IBM Watson

Workspace. Structured interviews with five participants, including an operational manager, an

architect, a senior developer, and two developers, provided detailed feedback on the advanced

usage analytics method. This evaluation focused on the application of analytics metrics, the

development of feature-action maps, and the general implementation challenges encountered

during the process.

Evaluation of Case Study 3: Odoo Notes

Case Study 3 extended the application of the usage analytics method to the Odoo Notes

application, involving nine users interacting with two different versions of the application. The

evaluation aimed to assess the changes in user behavior between versions 10 and 11 of Odoo

Notes, using metrics such as frequency, timespent, and consistency. The results were compared

with user survey responses to validate the effectiveness of the usage analytics method and identify

the most impacted features.

In summary, Chapter 7 integrates qualitative and quantitative evaluations across three case

studies to provide a comprehensive assessment of the usage analytics methods. The insights

gained from these evaluations are intended to inform future improvements in usage analytics

practices and enhance the overall software development process.

7.2 Evaluation of Case Study 1: IBM Academic Cloud

The descriptive analysis conducted in this study provided a comprehensive understanding of the

challenges and effectiveness of the usage analytics process model implemented in the IBM Aca-

demic Cloud project. By systematically categorizing and interpreting the qualitative data from

183

Usage Analytics: Optimizing Feature Prioritization in Software Development

developer interviews, this analysis revealed significant themes and patterns, offering insights

into the practical experiences and feedback from the developers. Descriptive Analysis (Lambert

and Lambert, 2012) is a widely accepted qualitative research technique used to systematically

describe and interpret the main features of a dataset. According to Vaismoradi et al. (2013), de-

scriptive analysis helps in providing a rich and comprehensive account of the data by categorizing

and interpreting responses to reveal underlying patterns and themes. This approach is partic-

ularly effective in qualitative studies where the aim is to understand and elucidate participant

experiences and perspectives in a detailed manner.

7.2.1 Goal of the case study 1

The primary goal of Case Study 1 was to investigate the challenges associated with the fea-

ture prioritization process within the IBM Academic Cloud project. This case study aimed to

identify specific obstacles faced by developers during the implementation of the usage analytics

process model. Key objectives included understanding the difficulties in analyzing user interac-

tions, identifying the impact of unclear platform feature definitions, and evaluating the overall

effectiveness of the process model in achieving its intended outcomes.

7.2.2 Design of the case study 1

The descriptive analysis conducted for this qualitative analysis included several phases. The

data collection phase involved conducting structured interviews with three developers who par-

ticipated in the IBM Academic Cloud project, the demographics of the developers are shown

in Table 7.1. These developers, selected for their substantial experience in data analytics, soft-

ware architecture, and cloud computing, provided valuable insights into each stage of the usage

analytics process model.

The interviews were recorded and transcribed to ensure accuracy and completeness. The

next step in the analysis was data coding, where the transcribed interviews were systematically

categorized into meaningful codes. Coding involved identifying segments of the transcripts that

related to specific topics or issues. Codes were created based on the predefined stages of the usage

analytics process model (Planning, Requirements Analysis, Designing, Building, Testing) and

recurring themes identified in the feedback. This step ensured that the data was organized and

prepared for deeper analysis. After coding the data, broader themes were developed to represent

major recurring topics or issues discussed by the developers. These themes were developed

184

Usage Analytics: Optimizing Feature Prioritization in Software Development

inductively from the data and aligned with the predefined stages of the process model. Each

theme accurately reflected the developers’ experiences and challenges, providing a structured

framework for interpreting the feedback. The coded data was organized under each theme

and process stage, facilitating a structured and systematic interpretation. This organization

helped identify patterns and trends within and across different stages of the process model.

By organizing the data in this manner, it was possible to gain a comprehensive view of the

developers’ experiences and the specific challenges they encountered.

Table 7.1: Developer Demographics for Case Study 1: IBM Academic Cloud

Category Developer 1 Developer 2 Developer 3

Experience
Level

Senior (10+ years) Senior (10+ years) Mid-Level (5-10 years)

Technical
Expertise

Python, Java
Specialization: Data
Analytics, Software
Architecture

Python, JavaScript
Specialization: Soft-
ware Architecture,
Machine Learning

Python, JavaScript
Specialization: Full-
Stack Development

Industry
Experience

Enterprise Software De-
velopment, Cloud Com-
puting

Data Analysis and Busi-
ness Intelligence, Cloud
Computing

Web Development, En-
terprise Software Devel-
opment

Roles in
the Project

Lead Developer
Responsibilities: Over-
seeing implementation

Software Architect
Responsibilities: De-
signing software pro-
cesses

Software Engineer
Responsibilities: Devel-
oping and testing com-
ponents

Tenure in
the Com-
pany

2-5 years 4-5 years Less than 2 years

Tenure in
Current
Role

1-2 years 3-4 years Less than 1 year

Interview questions used in case study 1

1. Planning Stage:

(a) How effective was the planning stage in setting clear goals for understanding user

usage patterns, user behavior, and identifying critical features from the user’s per-

spective?

(b) Did the lack of clear definitions for platform features impact your ability to plan

effectively? How did this affect your understanding of user interactions?

2. Requirements Analysis Stage:

185

Usage Analytics: Optimizing Feature Prioritization in Software Development

(a) How comprehensive and effective was the requirements analysis stage in eliciting the

necessary requirements for the usage analytics process model?

(b) How did the absence of a user interaction mapping to application features impact the

requirements elicitation process?

(c) How challenging was it to classify usage data without clear feature definitions? Can

you describe the difficulties encountered?

(d) How successful were you in identifying relevant usage data sources given the diverse

types of data available? Were there any specific challenges?

(e) How much time and effort were required to decide on the specific types, sources, and

formats of data to be used?

3. Designing Stage:

(a) How effective was the design stage in developing the usage data extraction process,

analytics algorithms, and evaluation process, given the complexity of the data and

the absence of feature mapping?

(b) What specific design challenges did you encounter due to the lack of clear feature

definitions?

(c) What design tools or techniques were used during this stage? How effective were they

in achieving the design goals amidst the data selection and processing challenges?

(d) How well did the collaboration between software architects and other team mem-

bers work during the design stage, considering the data heterogeneity and processing

bottlenecks?

4. Building Stage:

(a) How efficient was the building stage in constructing the usage data extraction and

analytics components, given the resource-intensive nature of data preparation?

(b) Were there any significant challenges or roadblocks encountered due to the complexity

of cleaning and transforming large volumes of data?

(c) How well did the different components integrate, especially considering the inconsis-

tencies and gaps in data sources?

186

Usage Analytics: Optimizing Feature Prioritization in Software Development

(d) Was the allocation of resources (time, personnel, tools) sufficient and effective during

the building stage, given the time and effort required for data selection and prepara-

tion?

5. Testing Stage:

(a) How thorough was the implementation and testing of the usage data extraction and

analytics components, particularly in dealing with the absence of a clear mapping of

user interactions to features?

(b) Were there any major issues identified during testing due to the lack of clear feature

definitions? How were these issues addressed?

(c) How effective was the evaluation process in assessing the performance and accuracy of

the usage analytics components, given the challenges in applying advanced analytical

techniques?

(d) How was user feedback incorporated during the testing stage? Were there multiple

iterations to refine the components based on testing results, considering the initial

data mapping challenges?

6. Overall Process Model:

(a) How effective was the overall usage analytics process model in achieving its objectives,

despite the significant challenges encountered in data collection and analysis?

(b) What were the key strengths and weaknesses of the process model?

(c) Based on your experience, what improvements would you suggest for the usage an-

alytics process model, especially in terms of defining platform features and mapping

user interactions?

(d) How does the usage analytics process model compare with previous methods you have

used for feature prioritization and user behavior analysis, particularly in addressing

data selection and processing challenges?

(e) Did the usage analytics process model have a noticeable impact on development

time? How significant was this impact, considering the bottlenecks identified in data

collection and processing?

187

Usage Analytics: Optimizing Feature Prioritization in Software Development

7.2.3 Results of the case study 1

The interviews revealed several critical insights into the challenges and effectiveness of the usage

analytics process model implemented in the IBM Academic Cloud project as shown in the

Table 7.2.

One of the main challenges identified was the difficulty in analyzing user interactions due to

unclear definitions of platform features. Developers emphasized that the lack of clear feature

definitions made it difficult to map user interactions accurately and derive meaningful insights

from the data. One developer noted, “Without clear definitions of platform features, it was

nearly impossible to map user interactions accurately and derive meaningful insights from the

data.”

The absence of a clear mapping of user interactions to application features further com-

plicated the requirements analysis stage. Developers struggled to understand which actions

performed by users were related to specific features, leading to incomplete or unclear require-

ments. This sentiment was echoed by another developer who stated, “We spent a lot of time

trying to figure out how user actions translated to specific features, which made the requirements

gathering process much more complicated.”

Data sources identification and selection posed significant challenges during the requirements

analysis and designing stages. The diverse types of data available required developers to invest

considerable time and effort in choosing the right data sources and formats. This created a

bottleneck in the development process, as developers had to ensure data quality and relevance

before proceeding. One developer remarked, “Choosing the right types, sources, and formats of

data required a tremendous amount of time and effort, creating a bottleneck in our development

process.”

During the designing stage, developers faced difficulties due to the lack of clear feature

definitions, which impacted the accuracy and effectiveness of the design efforts. Assumptions had

to be made about feature definitions, which could potentially affect the overall design. Despite

using standard design tools and techniques, the effectiveness was limited by the complexities in

data selection and processing.

In the building stage, the development of usage data extraction and analytics components was

resource-intensive and time-consuming. Developers highlighted the significant effort required

for cleaning and transforming large volumes of data, which extended the development timeline.

Integrating different components was also challenging due to inconsistencies and gaps in the

188

Usage Analytics: Optimizing Feature Prioritization in Software Development

Table 7.2: Summary of results obtained for the evaluation of the Use Case 1: IBM Academic
Cloud

Stage Theme Key Findings Developer Statements

Planning Lack of Clear
Feature Defi-
nitions

The absence of well-defined
platform features hindered
effective planning and goal
setting for understanding
user behavior and interac-
tion.

“Without clear definitions
of platform features, it was
nearly impossible to map
user interactions accurately
and derive meaningful in-
sights from the data.”

Requirements
Analysis

Challenges
in Mapping
User Inter-
actions to
Features

Difficulty in correlating user
actions with specific features
led to incomplete or unclear
requirements.

“We spent a lot of time try-
ing to figure out how user
actions translated to spe-
cific features, which made
the requirements gathering
process much more compli-
cated.”

Requirements
Analysis

Time-
Consuming
Data Selec-
tion Process

Identifying and selecting ap-
propriate data sources re-
quired significant time and
effort, creating a bottleneck
in the development process.

“Choosing the right types,
sources, and formats of
data required a tremendous
amount of time and effort,
creating a bottleneck in our
development process.”

Designing Assumptions
Due to Lack
of Clear
Feature Defi-
nitions

Assumptions made about
feature definitions affected
the accuracy and effective-
ness of the design efforts.

“Designing the data ex-
traction and analytics pro-
cesses was challenging be-
cause we had to make as-
sumptions about feature def-
initions, which could affect
the accuracy of our designs.”

Building Resource-
Intensive
Data Prepa-
ration

Extensive effort was needed
for data cleaning and trans-
formation, prolonging the
development timeline and re-
quiring significant resources.

“The development phase was
prolonged because cleaning
and transforming the data
was a massive task, requiring
significant resources.”

Testing Difficulties
in Validating
Components

Validation was challenging
without clear mappings of
user interactions to features,
necessitating thorough test-
ing and multiple iterations.

“Testing was thorough, but
without a clear mapping of
user interactions to features,
it was difficult to validate our
components accurately.”

Overall Pro-
cess Model

Effectiveness
and Areas for
Improvement

The process model was ef-
fective but faced challenges
in data collection and anal-
ysis. Developers highlighted
the need for better feature
definitions, automated data
cleaning, and enhanced user
interaction mapping.

“Better initial feature defi-
nitions and automated data
cleaning processes would
have made a big difference
in our efficiency.”

189

Usage Analytics: Optimizing Feature Prioritization in Software Development

data sources, necessitating additional efforts to ensure seamless integration.

Testing and evaluation posed further challenges. The absence of a clear mapping of user

interactions to features made it difficult to validate the accuracy of the components. Developers

had to conduct thorough testing and multiple iterations to refine the components based on user

feedback. One developer noted, “Testing was thorough, but without a clear mapping of user

interactions to features, it was difficult to validate our components accurately.”

Overall, the usage analytics process model was deemed effective in its objectives but was

significantly hindered by challenges in data collection and analysis. Developers appreciated

the structured approach and collaboration within the team, but the need for better-defined

features, automated data cleaning processes, and enhanced mapping of user interactions was

evident. Comparing the process model to previous methods, developers acknowledged its more

structured framework but highlighted the increased initial setup and effort required for data

preparation. The interviews provided valuable insights into the challenges and effectiveness

of the usage analytics process model. Key challenges included unclear feature definitions, the

absence of user interaction mapping, and time-consuming data selection and preparation pro-

cesses. Despite these challenges, the structured approach and collaborative efforts were seen as

strengths. Recommendations for improvement focused on better feature definitions, automated

data cleaning, and enhanced user interaction mapping.

7.3 Evaluation of the Case Study 2: IBM Watson Workspace

The evaluation of Case Study 2 aimed to address the research question (RQ2): “What are the

key challenges faced by developers in identifying and utilizing usage data and key metrics related

to feature prioritization effectively within the software platform?” Building on insights from

Case Study 1, this study explored the implementation of an advanced usage analytics method

in IBM Watson Workspace, focusing on its impact on the software development process and

the challenges encountered. Descriptive analysis was employed to systematically categorize and

interpret the qualitative data obtained from interviews with the development team.

7.3.1 Goal of the case study 2

The primary goal of this case study was to identify and understand the challenges that devel-

opers face in leveraging usage data for effective feature prioritization within the IBM Watson

190

Usage Analytics: Optimizing Feature Prioritization in Software Development

Workspace. Specifically, the study aimed to evaluate the application of advanced usage analytics

and its impact on the software development process. This included examining how developers

identify relevant usage data sources, apply analytics metrics, and develop tools like feature-action

maps to enhance decision-making. By addressing these aspects, the case study sought to provide

insights into the effectiveness of the usage analytics method and recommend improvements for

its continuous refinement.

7.3.2 Design of case study 2

To gather detailed insights, structured interviews were conducted with the participants. The

Table 7.3 provides a summary of the demographics of the participants involved in Case Study 2:

IBM Watson Workspace. This information is crucial for understanding the context of the feed-

back provided during the structured interviews. The table includes details on the participants’

roles, experience levels, technical expertise, tenure in the company, and tenure in their current

roles. These demographics highlight the diversity and expertise of the team, which is essential

for evaluating the implementation and effectiveness of the advanced usage analytics method.

Table 7.3: Demographics of Participants for Case Study 2: IBM Watson Workspace

Participant Role Experience
Level

Technical
Expertise

Tenure in
the Com-
pany

Tenure in
Current
Role

Participant 1 Operational
Manager

Senior (15+
years)

Project Man-
agement, Ag-
ile Methodolo-
gies

5-7 years 3-4 years

Participant 2 Architect Senior (12+
years)

Software Ar-
chitecture,
Cloud Com-
puting

3-5 years 2-3 years

Participant 3 Senior Devel-
oper

Senior (10+
years)

Python, Java,
Data Analyt-
ics

5-7 years 4-5 years

Participant 4 Developer Mid-Level
(5-7 years)

JavaScript,
Full-Stack
Development

2-3 years 1-2 years

Participant 5 Developer Mid-Level
(5-7 years)

Java, Python,
DevOps

2-3 years 1-2 years

A semi-structured interview format was chosen to balance guided questions with open-ended

responses, allowing for comprehensive feedback while ensuring consistency across interviews.

Questions were designed to explore specific aspects of the usage analytics method, including

191

Usage Analytics: Optimizing Feature Prioritization in Software Development

data identification, metrics application, feature-action mapping, and implementation challenges.

Interviews were conducted with the participants using the semi-structured format. Each inter-

view was recorded and transcribed to ensure accurate data collection. The questions focused on

the following areas:

1. Usage Data Identification and Extraction:

(a) What are the primary sources of usage data for IBM Watson Workspace?

(b) How do you integrate data from multiple sources?

(c) What challenges do you face in ensuring data consistency and accuracy?

2. Application of Analytics Metrics:

(a) Which metrics do you use to analyze user interactions (e.g., frequency, timespent,

consistency)?

(b) How do you correlate these metrics with changes in the software?

(c) What challenges do you encounter in applying these metrics effectively?

3. Development of Feature-Action Maps:

(a) How do you identify and map user actions to specific features?

(b) What processes do you follow to develop and maintain feature-action maps?

(c) How do feature-action maps influence your development decisions?

4. General Implementation Challenges:

(a) What are the main challenges you face in implementing usage analytics?

(b) How do you address these challenges?

(c) What improvements would you recommend for the usage analytics method?

All interview responses were meticulously documented and categorized to facilitate system-

atic analysis. This involved transcribing each interview in detail and organizing the transcripts

into a manageable format for further analysis. Specific statements from participants were high-

lighted to provide direct evidence of their experiences and insights. This step was crucial to

ensure that the qualitative data was accurately captured and ready for in-depth analysis.

A descriptive analysis approach was employed to systematically categorize and interpret the

qualitative data obtained from the interviews. This involved the following steps:

192

Usage Analytics: Optimizing Feature Prioritization in Software Development

1. Coding: Transcripts were thoroughly reviewed, and relevant segments were coded based

on predefined stages of the UA method (Usage Data Identification and Extraction, Applica-

tion of Analytics Metrics, Development of Feature-Action Map, and General Implementa-

tion Challenges) and recurring themes identified in the feedback. For instance, statements

related to challenges in data integration were coded under “Data Integration Challenges,”

while insights on the effectiveness of specific metrics were coded under “Metrics Applica-

tion.”

2. Theme Development: Broader themes were developed to represent major recurring

topics or issues discussed by the participants. These themes were developed inductively

from the data, ensuring they accurately reflected the participants’ experiences. For exam-

ple, themes such as “Data Consistency Issues,” “User Behavior Insights,” and “Feature

Prioritization Strategies” were identified.

3. Data Organization: Coded data was organized under each theme and process stage,

facilitating a structured interpretation. This organization helped identify patterns and

trends within and across different stages of the process model. For example, data under

the theme “Metrics Application” was further broken down into sub-categories such as

“Frequency Analysis,” “Timespent Analysis,” and “Consistency Analysis.”

4. Summarization: Detailed summaries were written for each theme and stage, highlighting

key points and including specific statements from participants to provide direct evidence.

This step ensured that the analysis was grounded in the actual experiences and perspectives

of the participants. Each summary included both qualitative insights and quantitative data

where applicable, providing a comprehensive view of the findings.

Based on the feedback and insights from the interviews, the UA method was refined. This

included updating the process model to Version 2, which incorporated new stages and improved

techniques for data collection, metrics application, and feature-action mapping. For instance, a

new stage “Identify Usage Data Sources” was added to systematically explore and document all

potential sources of user interaction data. The changes to the UA method were documented in

detail, including the rationale for each change and the expected benefits. This documentation

provided a clear record of the iterative improvement process and the evolving understanding

of usage analytics in software development. Each change was accompanied by examples and

detailed explanations of how it improved the overall method.

193

Usage Analytics: Optimizing Feature Prioritization in Software Development

7.3.3 Results of the case study 2

The implementation of the Usage Analytics (UA) method in IBM Watson Workspace aimed to

identify key challenges developers face in leveraging usage data for effective feature prioritization

and refine the UA method. This section presents the detailed findings from the case study,

focusing on the application of the UA method, key observations, and the resultant improvements

to the method. The insights were derived from structured interviews with the development

team, analysis of usage data, and iterative refinement of the UA method. The evaluation of the

case study was structured around the three main components of the UA method: Usage Data

Identification and Extraction,

To provide a comprehensive overview of the interview responses, the following Table 7.4

presents a quantitative analysis of the key themes and the number of participants who highlighted

each theme. The quantitative analysis helps to highlight the frequency of specific themes and

challenges mentioned by participants, giving a clear picture of the key areas of focus and concern.

Table 7.4: Quantitative Analysis of Interview Responses for Case Study 2

Theme Number
of Partici-
pants

Percentage
of Total
Partici-
pants

Phrases and Words Used

Data Integration Challenges 3 60% “complex integration”, “data
source alignment”, “tool com-
patibility”

Effort Required for Compre-
hensive Data Collection

4 80% “time-consuming”, “resource-
intensive”, “manual effort
needed”

Utility of Frequency Analysis 3 60% “useful insights”, “action track-
ing”, “frequency metrics”

Utility of Timespent Analy-
sis

4 80% “valuable duration insights”,
“time engagement”, “timespent
metrics”

Utility of Consistency Anal-
ysis

2 40% “behavior patterns”, “consis-
tency tracking”, “repeated ac-
tions”

Need for Additional
Context-Specific Metrics

5 100% “additional metrics”, “contex-
tual data”, “specific insights”

Importance of Ongoing Val-
idation of Feature-Action
Map

4 80% “continuous validation”, “regu-
lar updates”, “evolving behav-
iors”

Challenges in Integrating
Usage Analytics into Work-
flow

5 100% “workflow integration”, “pro-
cess adaptation”, “seamless in-
corporation”

194

Usage Analytics: Optimizing Feature Prioritization in Software Development

Usage Data Identification and Extraction: Various sources of usage data were identified,

including native and third-party monitoring tools, which provided a comprehensive view of user

interactions with the application. This led to the addition of a new stage in the Usage Analytics

Method version 2, “Identify Usage Data Sources.” This stage involves systematically exploring

the application architecture to pinpoint where relevant data is being collected, whether from

in-built monitoring tools or third-party services. This ensures that all potential sources of user

interaction data are considered, providing a more comprehensive understanding of user behav-

ior. Three out of five participants (60%) mentioned the complexity of integrating different data

sources, with phrases like “complex integration,” “data source alignment,” and “tool compati-

bility” being frequently used. Participant 2 stated, “Integrating data from various sources was

more challenging than anticipated, especially aligning the data formats and ensuring compatibility

with our existing systems”. Additionally, four participants (80%) highlighted the effort required

for comprehensive data collection, describing it as “time-consuming” and “resource-intensive.”

Participant 3 noted, “The manual effort needed to ensure data accuracy and consistency was

significant, taking up a considerable amount of our development time.”

Application of Analytics Metrics: The application of frequency and timespent analysis

provided valuable insights into how often and how long users engaged with different features of

the application. Participants found frequency analysis useful, with three 60% highlighting the

insights it provided into action tracking. Phrases like “useful insights” and “frequency metrics”

were common. Participant 4 commented, “The frequency metrics gave us clear visibility into

which features were being used the most, helping us prioritize those for further development”.

Four participants (80%) emphasized the value of timespent analysis, using terms such as “valu-

able duration insights” and “time engagement.” Participant 1 mentioned, “Timespent metrics

were crucial in understanding user engagement levels, particularly for features we suspected were

underutilized”.

Development of Feature-Action Map: The integration of the process to develop a feature-

action map was a significant result of the case study. This process is part of the “Identify

Features of the Application” stage and involves feature identification, action mapping, data

correlation, visualization, and validation, providing a structured approach to understanding

user interactions with specific features. An important outcome was the creation of a feature-

action map, which provides a detailed visualization of user interactions with specific features.

This process is supported by academic literature emphasizing the importance of understanding

195

Usage Analytics: Optimizing Feature Prioritization in Software Development

user behavior in software development. Participant 3 emphasized, “The feature-action map was

instrumental in visualizing how users interact with different features, allowing us to identify and

prioritize areas that needed improvement”. Participant 2 added, “By correlating user actions

with specific features, we could better understand the context of user interactions and make more

informed decisions”. Participants stressed the need for additional context-specific metrics, with

all five participants (100%) suggesting the incorporation of more nuanced metrics. Phrases

like “additional metrics,” “contextual data,” and “specific insights” were frequently mentioned.

Participant 4 stated, “We realized that while the existing metrics were helpful, additional context-

specific metrics could provide even deeper insights into user behavior and preferences”. The

importance of ongoing validation and refinement of the feature-action map was highlighted by

four participants (80%), who emphasized “continuous validation” and “evolving behaviors.”

Participant 1 remarked, “The feature-action map needs to be continuously updated and validated

to ensure it reflects current user behavior accurately.”

Challenges in Implementation: Despite the clear benefits, implementing advanced usage

analytics presented several challenges. Integrating with multiple data sources, including in-built

monitoring tools and third-party services, required significant effort to ensure consistent and

accurate data collection. Mapping user actions to specific features and correlating this data

with usage metrics required careful planning and execution to ensure meaningful and actionable

results. All five participants (100%) mentioned the difficulties of integrating these processes

seamlessly into existing workflows, with phrases such as “workflow integration,” “process adap-

tation,” and “seamless incorporation.” Participant 5 noted, “Integrating usage analytics into

our existing workflow was challenging, as it required adapting our processes and training the

team to use new tools effectively”. These challenges highlight the practical difficulties in embed-

ding advanced analytics within established development practices. Participants also discussed

the need for ongoing validation and refinement of the feature-action map. As user behaviors

and preferences evolve, the development team must continuously monitor and update the map

to ensure it remains accurate and relevant. This requires a commitment to iterative testing and

feedback loops, as well as the ability to quickly adapt to changes in user behavior. Participant 3

stated, “Maintaining an accurate and up-to-date feature-action map is a continuous effort that

requires regular validation and adjustments based on user feedback.”

The structured interviews provided deep insights into the experiences and challenges faced

by the development team when implementing the usage analytics method. The responses un-

196

Usage Analytics: Optimizing Feature Prioritization in Software Development

derscored the importance of comprehensive data integration, the utility of specific analytics

metrics, and the need for a flexible and evolving feature-action map. By systematically ana-

lyzing these responses, the case study highlighted critical areas for improvement in the usage

analytics method and provided actionable recommendations for its refinement and future ap-

plication. Participants emphasized the importance of ongoing validation and the integration of

additional context-specific metrics to enhance the understanding of user behavior. The chal-

lenges of integrating usage analytics into existing workflows were also highlighted, necessitating

adaptations and training to effectively use the new tools. Overall, the feedback from the devel-

opment team was instrumental in refining the usage analytics method and ensuring its practical

applicability in real-world software development scenarios.

7.4 Evaluation of Key Metrics - Case Study 2 and Case Study

3

A total of 5 users participated in the experiments with IBM Watson Workspace and since each

user was the developer of the Workspace Application, no specific tasks were provided to interact

with the application. Each user was asked to interact with the application in a free-style manner

and try to simulate how an actual end-user of the application would use the application. The

primary aim of the observations with the IBM Watson Workspace application is to explore the

usage data, devise a procedure to collect the identified usage data in an efficient manner and

test the analysis process of the collected usage data using the UA analysis metrics as discussed

in Chapter 6 Section 6.2.1. A total of 9 users participated in the experiments with Odoo Notes.

The users were asked to interact first with Odoo version 10 and then with Odoo version 11. The

users were asked to perform the tasks given in the experiment task list. The usage data from

both experiments were collected and analyzed.

Table 7.5: Summary of the experiments conducted

Application
name

Application
Version

Number
of users

Total number
of actions per-
formed

UA method
version ap-
plied

IBM Watson
Workspace

Beta 52.0 5 113 1

Odoo Notes 10 9 1175 1, 2

Odoo Notes 11 9 1193 2, 3

Table 7.5 summarizes the experiments conducted in the following order: UA Method and

197

Usage Analytics: Optimizing Feature Prioritization in Software Development

version 1 of the experiment design as shown in Figure 7.1 and UA Method and version 2 of the

experiment design as shown in Figure 7.2 are applied over IBM Watson Workspace application.

The UA Method and versions 2 and 3 of the experiment design as shown in Figure 7.2 and

Figure 7.3 are applied over the Odoo Notes application. The results of the experiments are

presented and discussed in this chapter.

Software Platform

Physical Infrastructure

Blades, Servers, Desktops,
Storage, Network {

Image
Repository

Virtual Infrastructure

Deployed VMs

...

Applications

...

Master VMs

...

User Interface (Laptop / Desktop)

Developers

Software
Developer

VM
Developer

Users

Interact

Access applications (RDP Connection)

Customise

Usage Data Sources

Log files Raw Files

Usage Data
Storage

Feature Vectors

User Behaviour

Usage Pattern

Critical Features

Analytics
Feature

Extraction
Analytics

Researcher

Usage Data
Extraction

Figure 7.1: Usage Analytics Method Design - Version 1 resulted from the exploration of IBM
Academic Cloud Application.

198

Usage Analytics: Optimizing Feature Prioritization in Software Development

Researcher

Software Developers

System Architecture

Physical Infrastructure

ServersStorage

VM Cluster

...

Containers

...

Software Platform

API Gateway MQTT

A

REST

API

B

REST

API

C

REST

API

Client Interfaces

Usage Data

System
Logs

Application
Logs

Usage Data Sources

New Relic
Repository

ElasticSearch
Repository

Collect Data

Identify Usage
Data Sources

Data Extraction

Analytics Metrics

Frequency
Timespent
Consistency

Insights

Usage score
Behavioural Score

Analytics

Users

Figure 7.2: Usage Analytics method - Version 2 resulting from the work with IBM Watson
Workspace Application

Client Interfaces

Application Version N+1

Monitoring Tool

Third-party
Monitoring tool

Native Monitoring
tool

Software Platform

A

API

B

API

C

API

Version Logs

Raw data

Identify
Features Analysis

Access

Develop/Configure

Researcher

Behavioral Score

Developers

Application Version N

Monitoring Tool

Third-party
Monitoring tool

Native Monitoring
tool

Software Platform

A

API

B

API

C

API

Access

Usage Data

System
Logs

Application
Logs

Develop/Configure

Features

Features List

Feature A

Feature B

Feature C

Feature-Action Map

Feature A - Actions (....)

Feature B - Actions (....)

Feature C - Actions (....)

Identify
Usage Data

Analytics Metrics

Frequency
Timespent
Consistency of Frequency
Consistency of Timespent

Insights

Behavioural Score
Insights

Data
Extraction

Users

Interact

Figure 7.3: Usage Analytics method - Version 3 as a result of work with Odoo Notes

199

Usage Analytics: Optimizing Feature Prioritization in Software Development

Record Count frequency

APPS_ALL_COMPLETE

CHAT_MESSAGE_DELIVERED

CHAT_MESSAGE_SEND

COGNITIVE_MOMENTS_VIEW_LOADED

CREATE_DIRECT_MESSAGE_COMPLETE

CREATE_TEAM_START

DELETE_MESSAGE_START

DIRECT_MESSAGES_CLOSE

DIRECT_MESSAGES_OPEN

EDIT_TEAM_CANCEL

EDIT_TEAM_START

FILES_PICKER_OPEN

FILE_STATE_MISSING

GET_APP_TRUST_IN
FO_COMPLETE

LEAVE_TEAM_START

MENTION_CREATED

MENTION_LIST_PAGINATED

NOTIFICATION_SETTINGS_CHANGED

NPS_SUPPRESSED

PARTICIPANT_ADDED_FROM_SELECTION_SEARCH

PARTICIPANT_ADD_START

PARTICIPANT_REMOVE_START

PARTICIPANT_SEARCH_START

SEARCH_IN
_FOCUS

SEARCH_TYPING

TEAM_ROOM_CLOSE

TEAM_ROOM_OPEN

USER_PANEL_OPEN
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

action_name

Re
co

rd
 C

ou
nt

 |
fr

eq
ue

nc
y

Figure 7.4: Illustration of Frequency of Actions performed by the participants in IBM Watson
Workspace experiment

7.4.1 Results from the experiment with IBM Watson

Workspace

Figure 7.4 denotes the frequency measure of all actions performed by all users of the experiments

with the IBM Watson Workspace application. A total of 5 users participated in the observation

activity and a total of 113 actions were performed by the participants. This includes some

actions which are a result of direct interaction of the users with the application and some

actions that are performed by the application on behalf of the user. The frequency measure of

the actions is represented by the blue vertical bars and the red dots represent the record count.

The value Frequency is a measure of the number of times an action is performed by the user

over a period of time. The value Record Count is a measure of how many users performed

an action. This analysis forms the first step in the development of the analysis process for

the Usage Analytics method. As shown in Figure 7.5, each action when hovered upon shows

the detailed specific value of the frequency and record count metrics. For example, the actions

200

Usage Analytics: Optimizing Feature Prioritization in Software Development

CHAT MESSAGE SEND, EXIT SEARCH, TEAM ROOM OPEN, TEAM ROOM CLOSE are highlighted in the

Figure 7.5 are associated with the following values:

1. CHAT MESSAGE SEND: Frequency = 24, Record Count = 5

2. EXIT SEARCH: Frequency = 27, Record Count = 2

3. TEAM ROOM OPEN: Frequency = 22, Record Count = 5

4. TEAM ROOM CLOSE: Frequency = 19, Record Count = 2

Figure 7.5: Illustration of Frequency of Actions performed by the participants in IBM Wat-
son Workspace experiment. Some example actions are highlighted: CHAT MESSAGE SEND,

EXIT SEARCH, TEAM ROOM OPEN, TEAM ROOM CLOSE.

From the above example, all 5 users performed the action CHAT MESSAGE SEND 24 times each.

The action EXIT SEARCH was performed by 2 users 27 times. The action TEAM ROOM OPEN was

performed by 5 users 22 times. The action TEAM ROOM CLOSE was performed by 2 users 19 times.

Considering the 5 actions in the example, the actions CHAT MESSAGE SEND and TEAM ROOM OPEN

are the most frequently performed actions by the users. Each action is performed once minimum

by each user and the following 10 actions were only performed once. The actions EXIT SEARCH

201

Usage Analytics: Optimizing Feature Prioritization in Software Development

and TEAM ROOM CLOSE are the least frequently performed actions by the users. The following

insights can be obtained from this measure:

1. Any change made to theWorkspace application which affects the actions CHAT_MESSAGE_SEND

and TEAM ROOM OPEN would have a significantly higher impact on the user behaviour. The

reason for this conclusion is that these actions are performed by all 5 users who participated

in the experiment as denoted by the Record Count score.

2. Any change made to theWorkspace application which affects the following actions EXIT SEARCH

and TEAM ROOM CLOSE would have a significantly lower impact on the user behaviour com-

pared to the actions CHAT MESSAGE SEND and TEAM ROOM OPEN. The reason for this conclu-

sion is that these actions are performed by only 2 users who participated in the experiment

as denoted by the Record Count score.

3. As a result of the above two observations, the actions CHAT MESSAGE SEND and TEAM ROOM OPEN

can be assigned a higher priority for the analysis of the user behaviour compared to the

actions EXIT SEARCH and TEAM ROOM CLOSE.

4. The actions CHAT MESSAGE SEND and TEAM ROOM OPEN are the most frequently performed

actions by the users. This means that the users are more likely to perform these actions

compared to other actions. This can be used as a starting point for the analysis of user

behaviour.

5. Exploring the frequency score of the actions can be used to further prioritise the actions

for the analysis of the user behaviour. For example, the actions CHAT MESSAGE SEND and

TEAM ROOM OPEN are performed by all 5 users. However, the action CHAT MESSAGE SEND

is performed 24 times by all 5 users whereas the action TEAM ROOM OPEN is performed 22

times by all 5 users. A priority rank can be assigned to the actions based on the frequency

score and record count. The action CHAT MESSAGE SEND can be assigned a higher priority

compared to the action TEAM ROOM OPEN for the analysis of the user behaviour.

6. Based on the analysis so far, the following priority scores can be assigned to the actions:

(a) CHAT MESSAGE SEND: Frequency = 24, Record Count = 5, Priority = 1

(b) TEAM ROOM OPEN: Frequency = 22, Record Count = 5, Priority = 2

(c) EXIT SEARCH: Frequency = 27, Record Count = 2, Priority = 3

202

Usage Analytics: Optimizing Feature Prioritization in Software Development

(d) TEAM ROOM CLOSE: Frequency = 19, Record Count = 2, Priority = 4

Analysing these measures on their own reveals a small part of user behaviour. However, the

updated version of the Usage Analytics method, as discussed in Chapter 5 Section 5.3.3 and Sec-

tion 5.4.3, provides a way to analyse the user behaviour in a more meaningful way by combining

frequency scores with other metrics.

The updated version 2 of the Usage Analytics method included two additional metrics to the

frequency and record count metrics. The two additional metrics are Timespent and consistency.

The timespent metric is a measure of the time spent by the user on performing an action.

The consistency metric is a measure of how consistent the user is in performing an action. The

Usage Analytics method was further updated in version 3 to analyse the frequency, timespent and

consistency metrics between two consecutive versions of the application and a new analysis metric

called Behavioural Score is included. The updated version 3 of the Usage Analytics method is

discussed in Chapter 5 Section 5.4.3. The consistency metric is calculated by calculating the

change in frequency and change in timespent between two consecutive versions of the application.

The Behavioural Score metric is a measure of how much the user behaviour has changed between

two consecutive versions of the application. The Behavioural Score metric is calculated by

combining the frequency, timespent and consistency metrics. The Behavioural Score metric is

calculated for each user and each action and compared between two consecutive versions of the

application. Such comparative analysis would help us understand how the behaviour of each

user changed between the two versions of the application. Ideally, the score would be allocated

to each feature of the application by aggregating the scores of all actions associated with that

feature.

7.4.2 Results from the experiment with Odoo Notes

The results of the experiment with the Odoo Notes application are presented in this section.

The results are presented in the form of the updated version 3 of the Usage Analytics method.

A total of 9 users participated in the experiments. A total of 1175 actions were performed by

the participants with Odoo Notes version 10 and a total of 1193 actions were performed by the

participants with Odoo Notes version 11. These actions are now analysed in order to understand

the change in usage patterns of users between Odoo Notes version 10 and 11. The results of the

experiments with Odoo Notes are presented in the form of the following graphs:

Figure 7.6 shows the total number of occurrences of all actions performed by each user

203

Usage Analytics: Optimizing Feature Prioritization in Software Development

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and N…
0

10

20

30

40

50

actionName

oc
cu
rr
en
ce
s

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

20

40

60

80

actionName

oc
cu
rr
en
ce
s

Odoo 10

Odoo 11

Figure 7.6: Total number of occurrences of all actions performed by each user shown separately
(Top: Odoo Notes version 10, Bottom: Odoo Notes version 11)

shown separately. The top graph in Figure 7.6 shows the total number of occurrences of all

actions performed by each user of the experiments with Odoo Notes version 10. The bottom

graph in Figure 7.6 shows the total number of occurrences of all actions performed by each

user of the experiments with Odoo Notes version 11. The total number of occurrences of all

actions performed by each user of the experiments with Odoo Notes version 10 is 1175. The total

number of occurrences of all actions performed by each user of the experiments with Odoo Notes

version 11 is 1193. These results show that the number of occurrences of all actions performed

by each user of the experiments with Odoo Notes version 11 is slightly higher than the number

of occurrences of all actions performed by each user of the experiments with Odoo Notes version

10. Given the same set of tasks to perform, users needed to perform more actions with Odoo

Notes version 11 compared to Odoo Notes version 10.

Considering the individual occurrences scores of the user, for example, User 8 performed

the action Add tag 15 times each with both Odoo Notes version 10 and Odoo Notes version

11. However, the action Open Note was performed 49 times with Odoo Notes version 10 and

204

Usage Analytics: Optimizing Feature Prioritization in Software Development

69 times with Odoo Notes version 11. This means that user 8 took 20 tries more to perform a

set of tasks where the action of opening a note had to be performed with Odoo Notes version

11 compared to Odoo Notes version 10. An assumption could be made here that any changes

implemented to the action Add Tag in version 11 of the Odoo Notes application did not affect

the user behaviour. However, the changes implemented to the action Open Note in version 11 of

the Odoo Notes application affected the user behaviour. The validity of this assumption can be

tested by considering the occurrences scores of the actions Add Tag and Open Note performed by

other users who participated in the experiment. The Occurrence scores of the actions Add Tag

and Open Note performed by all users are as shown in Figure 7.7. The following comparative

study can be made by exploring these scores:

odooVersion actionName userId occurrences
10 Open Note 1 12

10 Open Note 2 27

10 Open Note 3 44

10 Open Note 4 29

10 Open Note 5 28

10 Open Note 6 22

10 Open Note 7 8

10 Open Note 8 49

10 Open Note 9 32

10 Add tag 1 0

10 Add tag 2 10

10 Add tag 3 13

10 Add tag 4 9

10 Add tag 5 9

10 Add tag 6 10

10 Add tag 7 7

10 Add tag 8 15

10 Add tag 9 8

▼ odooVersion actionName userId occurrences
11 Open Note 1 9

11 Open Note 2 8

11 Open Note 3 42

11 Open Note 4 45

11 Open Note 5 39

11 Open Note 6 45

11 Open Note 7 44

11 Open Note 8 69

11 Open Note 9 38

11 Add tag 1 1

11 Add tag 2 2

11 Add tag 3 10

11 Add tag 4 9

11 Add tag 5 9

11 Add tag 6 7

11 Add tag 7 6

11 Add tag 8 15

11 Add tag 9 8

▼

Figure 7.7: Comparative chart for the Occurrence scores of the actions Add Tag and Open Note

performed by all users. The table on the left shows the scores for Odoo Notes version 10 and
the table on the right shows the scores for Odoo Notes version 11.

1. The assumption holds true for users 4, 5, 6, 7, 8 and 9 for the action Open Note, that is

6 out of 9 users and users 4, 5, 8 and 9 for the action Add Tag, that is 4 out of 9 users.

However, user 7 performed the action Add Tag one less time with Odoo Notes version 11

205

Usage Analytics: Optimizing Feature Prioritization in Software Development

compared to Odoo Notes version 10 and user 1 performed the action only once with Odoo

Notes version 11 and did not perform the action with Odoo Notes version 10. Allowing

for the possibility of human error, the assumption holds true for 7 out of 9 users.

2. Some outliers can be observed in the scores of the action Open Note performed by users

3 and 7 between Odoo Notes versions 10 and 11 with a difference of -19 actions and 36

actions respectively. Similarly, some outliers are observed in the scores of the action Add

tag performed by the users 2, 3 and 6 with a difference of -8, -3 and -3 actions respectively.

Although these irregularities could be the result of human error, these outliers are further

evaluated using the post-experiment survey results.

Combining the values of the action occurrence scores of all users, the sum of action occur-

rences is as shown in Figure 7.8. These scores show the overall impact of the changes implemented

to the Odoo Notes application between version 10 and version 11. The following insights can be

drawn from the scores:

1. The action Drag and Drop note was not performed by any of the users with Odoo Notes

version 10. However, the action Drag and Drop note was performed 160 times in total

by all users with Odoo Notes version 11.

2. The action Move Note was performed 179 times in total by all users with Odoo Notes

version 10. However, the action Move Note was not performed by any of the users with

Odoo Notes version 11.

3. Considering the context of the usage of the feature in Odoo Notes where users have two

options to move a note from one stage (column) to another, either by dragging and drop-

ping the note or by clicking on a dedicated button, this feature is named Kanban View

as discussed in Section 4.5.2. The action Drag and Drop note was performed 160 times

in total by all users with Odoo Notes version 11. This means that the users preferred to

drag and drop the note to move it from one stage to another rather than clicking on the

Move Note button. On the other hand, the action Move Note was performed 179 times

in total by all users with Odoo Notes version 10. This means that the users preferred to

click on the Move Note button to move the note from one stage to another rather than

dragging and dropping the note with Odoo Notes 10.

206

Usage Analytics: Optimizing Feature Prioritization in Software Development

4. Based on the above observations, the changes made to the application in version 11 of Odoo

Notes application to the feature Kanban View affected the user behaviour. Specifically,

changes implemented to the action Drag and Drop note would have a positive impact

on the user behaviour and changes implemented to the action Move Note would have a

negative impact on the user behaviour.

10

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and N…
0

50

100

150

200

250

300

81

0

88

29
41

88

10
22

41

3 0

42

0

46

179

251

81

2 4

37
55

13

actionName

oc
cu
rr
en
ce
s

11

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

100

200

300

400

67

0

78

26
42

89

8
23

44

1

160

31
0

40

0

339

70

0 1
24

81

13

actionName

oc
cu
rr
en
ce
s

Figure 7.8: Sum of occurrences of all actions performed by all users shown (Top: Odoo Notes
version 10, Bottom: Odoo Notes version 11)

Similarly, comparing the action occurrence scores of all users for all actions performed with

Odoo Notes version 10 and Odoo Notes version 11 as shown in Figure 7.9, the impact of changes

implemented by the developers on the user behaviour can be deduced. Furthermore, applying the

metrics Frequency, Timespent and Consistency to the action occurrence scores discussed above

would provide further insights into the impact of the changes implemented by the developers on

user behaviour. For example, we can create user personas by identifying the users who would

be most and least affected by the changes implemented by the developers. Future changes could

be tested separately for separate user personas to ensure that the changes do not affect the user

behaviour of the other user personas. Additionally, the intensity of the changes could be tested

207

Usage Analytics: Optimizing Feature Prioritization in Software Development

for different user personas based on the impact of the changes on user behaviour.

Addressing the research questions, the UA method can be used to answer the following

questions:

1. RQ3: Can the developed feature usage analysis method be applied to quantify the users’

behavioural changes? - The developed Usage Analytics method provides a novel way to

use the usage metrics Frequency, Timespent and Consistency to assign numerical scores

to the changes in the way different features of the software are used by the users. These

scores can be used to compare the changes in user behaviour between two versions of the

same application.

2. RQ3(a) Does the developed method meet the requirements identified as defined in RQ1?

- The Usage Analytics method includes a process to identify the usage data and the

sources of the identified usage data addressing the research question RQ1(a) Which data

types can be used to identify the usage of features in software applications?. The Usage

Analytics method also provides a process to extract the usage data from the identified

usage data sources and how to analyse them using the analytics metrics addressing the

research question RQ1(b) What are the challenges to extracting and analysing the usage

data according to the scientific literature?.

Frequency is the number of times an action is performed by a user over a period of time. It

is calculated by dividing an action’s occurrence value by the user’s total time over an action.

Based on the context of usage of a feature, a higher frequency value could indicate that the

user is more engaged and familiar with the feature. However, if a change in the frequency value

is observed, it could indicate that the user behaviour has changed. Figure 7.10 shows the sum

of frequency measures of all actions performed by each user of the experiments with the Odoo

Notes application. The top graph in Figure 7.10 shows the sum of the frequency measures of

all actions performed by each user of the experiments with Odoo Notes version 10. The bottom

graph in Figure 7.10 shows the sum of the frequency measure of all actions performed by each

user of the experiments with Odoo Notes version 11.

Since the frequency metric is calculated by dividing the occurrence value of an action by

the total time spent by the user over an action and each user participated in the experiment

with each version of the application only once. The total time period remains the same. As

a consequence, the sum of the frequency measure of all actions performed by each user of the

208

Usage Analytics: Optimizing Feature Prioritization in Software Development

10 11

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

50

100

150

200

250

300

350

actionName

oc
cu
rr
en
ce
s

Figure 7.9: Sum of occurrences of all actions performed by all users compared between Odoo
Notes version 10 and Odoo Notes version 11

experiments with Odoo Notes version 10 and Odoo Notes version 11 would lead to similar

insights as the sum of occurrence scores of all actions performed by each user of the experiments

with Odoo Notes version 10 and Odoo Notes version 11.

In addition to the insights gathered above, calculating the sum of all frequencies of all users

with each action performed with Odoo Notes version 10 and Odoo Notes version 11 would

provide further insights into the impact of the changes implemented by the developers on the

user behaviour. Specifically, the changes in the combined measure of frequencies represent the

overall change in usage of all users of the application. Figure 7.11 shows the sum of all frequencies

of all users with each action performed with Odoo Notes version 10 and Odoo Notes version 11.

The frequency and time spent metrics are computed for specific user actions in both the pre-

vious and current versions of the application. These metrics capture two essential dimensions:

how often a feature is used and the time invested by users while interacting with it. Together,

they provide a holistic view of feature engagement. By subtracting the previous version’s metric

values from the current version’s values, a comparative baseline is established. This difference

209

Usage Analytics: Optimizing Feature Prioritization in Software Development

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

0.1

0.2

0.3

0.4

0.5

0.6

actionName

fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

0.2

0.4

0.6

0.8

1

actionName

fr
eq

ue
nc

y
Odoo 10

Odoo 11

Figure 7.10: Sum of frequency measure of all actions performed by each user shown (Top: Odoo
Notes version 10, Bottom: Odoo Notes version 11)

reflects whether user engagement with the feature has increased or decreased in the newer ver-

sion. A negative result (lower engagement in the current version) indicates that users preferred

the feature implementation or behavior in the previous version.

Consistency of Frequency refers to the difference in the frequency metric for a specific

user action between the current and previous versions of the application. It quantifies how

consistently users engage with a feature in terms of usage count after a software update. Con-

sistency of Time Spent represents the difference in the time spent by users on a specific

action across versions. It reflects how the time investment per interaction changes, highlighting

shifts in user experience or efficiency.

A low or negative consistency metric in the context of this research suggests dissatisfaction

or reduced efficiency in performing the action with the updated version. It does not necessarily

indicate failure but rather points to user preference trends or potential usability issues. Con-

versely, a positive difference indicates improved engagement and likely user satisfaction with the

newer version.

210

Usage Analytics: Optimizing Feature Prioritization in Software Development

10

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

0.5

1

1.5

2

2.5

3

0.83

0

0.9

0.3
0.42

0.9

0.1
0.23

0.42

0.03 0

0.43

0

0.47

1.83

2.57

0.83

0.02 0.04

0.38
0.56

0.13

actionName

fr
eq

ue
nc

y

11

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

1

2

3

4

5

0.91

0

1.06

0.35
0.57

1.21

0.11
0.31

0.6

0.01

2.17

0.42
0

0.54

0

4.6

0.95

0 0.01
0.33

1.1

0.18

actionName

fr
eq

ue
nc

y

Figure 7.11: Sum of frequency measure of all actions performed by all users shown (Top: Odoo
Notes version 10, Bottom: Odoo Notes version 11)

Based on these scores, the following observations can be made:

1. Based on the Consistency of Frequency scores between the versions of the application

and the range of the scores, a numerical ranking of the actions can be deduced. The

action with the lowest Consistency of Frequency score (greatest negative delta value of the

frequency scores between the two consecutive versions) is ranked as 1, the action with the

second-lowest score is ranked as 2 and so on.

2. Based on the above observations, as an example for rankings of the actions, action Move

Note is seen to have the lowest Consistency of Frequency score between the versions of

the application, that is 0 (Odoo Notes version 11) and 1.83 (Odoo Notes version 10), 0-

1.83 = -1.83 Consistency of Frequency value. Therefore, action Move Note is ranked as 1.

The action Search with Note is seen to have the second lowest Consistency of Frequency

score between the versions of the application, that is 0.37 (Odoo Notes version 11) and 0.32

(Odoo Notes version 10), 0.37-0.32 = -0.05 Consistency of Frequency value. Therefore,

211

Usage Analytics: Optimizing Feature Prioritization in Software Development

action Search with Note is ranked as 2 and so on. The rankings of the actions based on

the Consistency of Frequency scores are shown in Table 7.6.

actionName frequency (10) frequency (11) Consistency of Frequency Rank

Move Note 1.833306508 0 -1.833306508 1

Search with Note 0.3789516246 0.3256457623 -0.05330586239 2

Rename Stage 0.0409677432 0.01356857343 -0.02739916978 3

Remove follower from note 0.0204838716 0 -0.0204838716 4

Delete Stage 0.0307258074 0.01356857343 -0.01715723398 5

Edit Note 0.4301613036 0.4206257762 -0.009535527403 6

Attach File 0 0 0 -

Invite User 0 0 0 -

Create Stage 0.102419358 0.1085485874 0.006129229407 7

Search with both Tag and Note 0.1331451654 0.1763914546 0.04324628914 8

Change Tag Colour 0.2970161382 0.3527829091 0.05576677088 9

Invite and Add follower 0.4711290469 0.5427429371 0.07161389024 10

Add tag 0.8295967999 0.9090944196 0.07949761973 11

Create new tag 0.2253225876 0.3120771888 0.0867546012 12

Open commenting in note 0.8295967999 0.9498001399 0.12020334 13

Comment in Note 0.4199193678 0.5698800839 0.1499607161 14

Change Note Colour 0.9012903505 1.058348727 0.1570583768 15

Delete Note 0.4199193678 0.5970172308 0.177097863 16

Create Note 0.9012903505 1.207603035 0.3063126845 17

Search with Tag 0.5633064691 1.099054448 0.5357479785 18

Open Note 2.570725886 4.599746392 2.029020506 19

Drag and Drop note 0 2.170971748 2.170971748 20

Table 7.6: The Consistency of Frequency scores between Odoo versions 10 and 11, and the
rankings of the actions based on the Consistency of Frequency scores

The individual Timespent scores of each user for each action performed with both versions

of the Odoo Notes application are represented in Figure 7.12 and the Timespent scores of all

users combined for each action performed with both versions of the Odoo Notes application are

represented in the Figure 7.13.

A similar approach to the Timespent analysis is followed to rank the actions based on the

Consistency of the Timespent measure between Odoo Notes versions 10 and 11. The rankings of

the actions based on the Consistency of Timespent are shown in Table 7.7. The analysis shows

that the action with the lowest value of Consistency of Timespent score is ranked as 1, the

action with the second lowest value of Consistency of Timespent score is ranked as 2 and so on.

The action Move Note is seen to have the lowest Consistency of Timespent between the versions

of the application, that is 0 (Odoo Notes version 11) and 1595.37 (Odoo Notes version 10),

0-1595.37 = -1595.37 Consistency of Timespent value. Therefore, action Move Note is ranked as

1. The action Create Note is seen to have the second lowest Consistency of Timespent between

the versions of the application, that is 131.71 (Odoo Notes version 11) and 1392.06 (Odoo Notes

version 10), 131.71-1392.06 = -1260.35 Consistency of Timespent. Therefore, action Create

212

Usage Analytics: Optimizing Feature Prioritization in Software Development

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

100

200

300

400

actionName

tim
es
pe

nt

1 2 3 4 5 6 7 8 9

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

100

200

300

400

500

actionName

tim
es
pe

nt

Odoo 10

Odoo 11

Figure 7.12: Individual Timespent scores of each user for each action performed with both
versions of the Odoo Notes application

Note is ranked as 2. The action Drag and Drop note is seen to have the highest Consistency of

Timespent between the versions of the application, that is 2.17 (Odoo Notes version 11) and 0

(Odoo Notes version 10), 2.17-0 = 2.17 Consistency of Timespent value. Therefore, action Drag

and Drop note is ranked as 20.

Figure 7.14 shows the scores Consistency of Frequency and Consistency of Timespent com-

pared with each other for all actions. Each action of the application is ranked based on the

analysis using the metrics Frequency, Consistency of Frequency, Timespent and Consistency of

Timespent. The rankings represent the extent of changes in the way users interacted with each

action between the two versions of the application. Positive scores are in favour of the actions

in version 11 of the Odoo Notes application and negative scores are in favour of the actions in

version 10 of the application. Positive scores of the Consistency of Frequency metric of action

indicate that the users interacted more with the action in version 11 of the application than in

version 10. Similarly, positive scores of the Consistency of Timespent metric of action indicate

that the users spent more time interacting with the action in version 11 of the application than

in version 10. The rankings are assigned based on the scores of the actions. The actions with the

213

Usage Analytics: Optimizing Feature Prioritization in Software Development

10

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

500

1K

1.5K

2K

2.5K

669.43

0

401.15
232.17 284.51

1,392.06

192.24
91.5

231.1
38.82 0

393.09

0

446.38

1,595.37

2,051.69

748.09

32.26 116.02
281.66

475.3

90.93

actionName

tim
es
pe

nt

11

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
0

500

1K

1.5K

2K

2.5K

3K

380.78

0

452.18

126.1
282.16

131.71 83.51 108.59 23.71 6.86

1,155.99

416.69

0

281.94

0

2,680.99

475.22

0 19.19
168.33

516.46

59.55

actionName

tim
es
pe

nt

Figure 7.13: Sum of Timespent scores of all users for each action performed with both versions
of the Odoo Notes application

lowest scores are ranked first and the actions with the highest scores are ranked last, transcribing

the scores into rankings.

Following modifications made by the developers to version 10 of the application, version 11

was released. If the actions in version 10 are preferred by the user, such actions are ranked

lower (close to 1, ranks start from 1). Note, from the context of usage of the application, higher

frequency and higher timespent values with actions are treated as positive preferences of the

user. If for any application, the opposite is true, an inverse of the scores can be calculated easily.

The rankings differ for each action when considered in isolation since the metrics Frequency

and Timespent follows separate scales of measurement. That is, the ranking of an action based

on the Consistency of the Frequency metric may not be the same as the ranking of the same

action based on the Consistency of the Timespent metric. Therefore, the rankings of the actions

based on the Consistency of Frequency and Consistency of Timespent metrics are combined by

taking the average of the ranks of the actions based on the two metrics as shown in Figure 7.8.

Based on the average rankings calculated, users of the experiments with the Odoo Notes

application demonstrate a negative impact on their behaviour with action Move Note as the

214

Usage Analytics: Optimizing Feature Prioritization in Software Development

actionName timespent (10) timespent (11) Consistency of Timespent Rank

Move Note 1595.374366 0 -1595.374366 1

Create Note 1392.056177 131.709223 -1260.346954 2

Add tag 669.4324243 380.7813053 -288.651119 3

Open commenting in note 748.0859563 475.2221642 -272.8637922 4

Delete Note 231.0988841 23.712363 -207.3865211 5

Invite and Add follower 446.3797917 281.940506 -164.4392858 6

Search with Note 281.6616054 168.3294818 -113.3321235 7

Create Stage 192.2435629 83.51401258 -108.7295504 8

Change Tag Colour 232.1729901 126.1033735 -106.0696166 9

Rename Stage 116.018924 19.19365382 -96.82527018 10

Remove follower from note 32.26249504 0 -32.26249504 11

Delete Stage 38.8183043 6.86315918 -31.95514512 12

Search with both Tag and Note 90.92868209 59.54830289 -31.3803792 13

Comment in Note 284.5105414 282.1575766 -2.352964878 14

Attach File 0 0 0 -

Invite User 0 0 0 -

Create new tag 91.49551892 108.5865567 17.09103775 15

Edit Note 393.0921113 416.6926537 23.60054231 16

Search with Tag 475.3014901 516.4567277 41.15523767 17

Change Note Colour 401.1518185 452.1825666 51.03074813 18

Open Note 2051.693581 2680.988213 629.2946324 19

Drag and Drop note 0 1155.9897 1155.9897 20

Table 7.7: The difference in timespent measures between Odoo versions 10 and 11, and the
rankings of the actions based on the difference in timespent measure

most impacted action of the application. The action Search with Tag is the least impacted

action. The average rankings of the actions are normalised on a scale of 1 to 20. The normalised

average rankings are shown in the last column of Table 7.8. The normalised average rankings

are used to determine the impact of the actions on the users’ behaviour.

1. Identify High-Priority Actions: Actions like “Move Note” (Rank 1), “Attach File” (Rank

2), and “Add Tag” (Rank 3) are top priorities as they show the highest consistency in

frequency and time spent metrics. These actions are critical to user workflow and should

be the focus of initial development efforts.

2. Analyze the Context of Each Action: Understanding the context in which these actions

are performed can provide deeper insights. For instance, “Move Note” involves organizing

notes, which is essential for maintaining an efficient workflow. Enhancements in this area

can significantly improve user productivity.

3. Feature Enhancements and Bug Fixes: High-priority actions identified can be further

scrutinized for potential enhancements or existing issues. For example, if “Attach File” is

highly ranked, developers should ensure that this feature is robust, user-friendly, and free

of bugs.

215

Usage Analytics: Optimizing Feature Prioritization in Software Development

consistency_timespent consistency_frequency

Add tag

Attach File

Change Note Colour

Change Tag Colour

Comment in
 Note

Create Note

Create Stage

Create new tag

Delete Note

Delete Stage

Drag and Drop note

Edit N
ote

Invite User

Invite and Add follower

Move Note

Open Note

Open commenting in note

Remove follower fro
m note

Rename Stage

Search with Note

Search with Tag

Search with both Tag and Note
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.25K

-1K

-750

-500

-250

0

250

500

750

1K

1.25K

1.5K

1.75K

288.65

0
-51.03

106.07
2.35

1,260.35

108.73

-17.09

207.39

31.96

-1,155.99

-23.6 0

164.44

1,595.37

-629.29

272.86

32.26
96.83 113.33

-41.16
31.38

-0.08
0

-0.16
-0.06

-0.15
-0.31

-0.01
-0.09

-0.18

0.02

-2.17

0.01 0
-0.07

1.83

-2.03

-0.12
0.02 0.03 0.05

-0.54

-0.04

actionName

co
ns

is
te
nc

y_
fr
eq

ue
nc

y

co
ns

is
te
nc

y_
tim

es
pe

nt

Figure 7.14: The scores of the actions based on the Consistency of Frequency and Consistency
of Timespent metrics compared against each other

4. Design User-Centric Improvements: For actions like “Change Tag Colour” and “Create

Stage,” which have mid-level ranks, consider user feedback for making these features more

intuitive or adding functionalities that enhance their usage.

5. Address Low-Priority Actions: Actions like “Search with Tag” and “Open Note,” which

rank lower, indicate less frequent or less critical usage. These features can be deprioritized

unless they are essential for specific user segments or align with strategic goals.

The Usage Analytics method is applied to IBM Watson Workspace application in the pro-

duction environment and Odoo Notes version 10 and 11 as shown in Chapter 5 and obtained

the insights and results as shown here. The results show that the method is applicable to any

software product and can be used to identify the most impacted actions and features of the

application.

216

Usage Analytics: Optimizing Feature Prioritization in Software Development

actionName CF Rank (F) CT Rank (T) Avg. Rank Avg. Rank (Normalised)

Move Note -1.833 1 0 - 1 1

Attach File 0.000 - -1260.3 2 2 2

Add tag 0.079 11 -1595.4 1 6 3

Change Tag Colour 0.056 9 -272.9 4 6.5 4

Create Stage 0.006 7 -108.7 8 7.5 5

Delete Stage -0.017 5 -96.8 10 7.5 5

Change Note Colour 0.157 15 -288.7 3 9 6

Create new tag 0.087 12 -164.4 6 9 6

Edit Note -0.010 6 -32 12 9 6

Comment in Note 0.150 14 -207.4 5 9.5 7

Remove follower from note -0.020 4 23.6 16 10 8

Rename Stage -0.027 3 41.2 17 10 8

Search with Note -0.053 2 629.3 19 10.5 9

Invite and Add follower 0.072 10 -31.4 13 11.5 10

Create Note 0.306 17 -113.3 7 12 11

Delete Note 0.177 16 -106.1 9 12.5 12

Open commenting in note 0.120 13 0 - 13 13

Search with both Tag and Note 0.043 8 51 18 13 13

Invite User 0.000 - -2.4 14 14 14

Drag and Drop note 2.171 20 -32.3 11 15.5 15

Open Note 2.029 19 17.1 15 17 16

Search with Tag 0.536 18 1156 20 19 17

Table 7.8: Rankings of the actions based on the Consistency of Frequency (CF) and Consistency
of Timespent (CT) metrics, and the average of the two rankings

7.5 Results of the Surveys Conducted

The purpose of design science evaluation is to determine how well the artefact under evalua-

tion performs for achieving its intended purpose (Ghezzi et al., 2014). Applied to the current

research context this means that the method resulting has to be evaluated and assessed against

relevant criteria depending on its purpose. The method is designed and developed to address the

research gap identified in the academic literature while also working closely with the developers

of IBM Academic Cloud, IBM Watson Workspace and working with Odoo Notes application.

Specifically, data collection, extraction and analysis activities of the proposed Usage Analytics

method are evaluated to the applications following the approach of case study research (Pagano

and Bruegge, 2013). In the first step, the method is applied in practice, usage data sources are

identified, and existing application monitoring tools are exploited and adopted to extract the us-

age data. Thereafter, the analysis method designed and developed is applied to the Workspace

application. Additionally, to verify the developed method is applicable not only to IBM ap-

plications but in general to any software product, the method is applied to the Odoo Notes

application. Data collection is performed by conducting experiments where participants are

recruited from the development team of the IBM Watson Workspace application to act as users

of the application and simulate the usage of the application. For Odoo Notes, participants are

recruited at Dublin City University from the postgraduate and doctoral student groups. The

217

Usage Analytics: Optimizing Feature Prioritization in Software Development

participants are asked to perform a set of tasks in the application and their actions are recorded.

The data is then analysed using the developed method. Once the experiment is completed, each

participant is asked to complete a survey. The results of the analysis are then compared with

the survey results, thus evaluating against the research questions and the research gap identified

in the literature review.

User ID What is your experience with Odoo Notes? What is your experience with note-taking (kanban-style) applications? Expertise

1 Only heard of it but have not used it Use it occasionally Intermediate

2 Use it occasionally Use it occasionally Expert

3 Use it occasionally Use it everyday Expert

4 Only heard of it but have not used it Use it everyday Intermediate

5 Never heard of it Used it just a few times Novice

6 Only heard of it but have not used it Only heard of it but have not used it Novice

7 Only heard of it but have not used it Use it everyday Expert

8 Only heard of it but have not used it Used it just a few times Novice

9 Only heard of it but have not used it Use it occasionally Intermediate

Table 7.9: Familiarity of the users with Odoo Notes and similar types of applications

The results of the surveys conducted with Odoo Notes are presented in Appendix E.1. Re-

garding the familiarity of the Odoo Notes application with the users, only one user was com-

pletely unfamiliar with the application, and 2 users have previously used the application before

the experiment. The remaining 7 users have heard about the application but never used it

before. However, only one user never used any similar application before. 1 user a similar ap-

plication just a few times, 3 users used a similar application a few times before the experiment,

3 users use a similar application occasionally and 3 users use a similar application every day.

Table 7.9 shows the familiarity of the users with the Odoo Notes application and similar appli-

cations. Based on the answers to questions 2 and 3 of the survey, users 2, 3 and 7 are considered

experts, users 1, 4, and 9 are considered intermediate and users 5, 6 and 8 are considered as

novices. To ensure the results are not biased, the participants with different levels of expertise

and experience are recruited and asked to complete the survey after the experiment. The survey

results are then compared with the results of the analysis to evaluate the method.

User ID Which version of Odoo would you prefer in general? The reason for the above choice

1 11 easy to interact with the features; quick to find the required features; simpler than the other

2 11 easy to interact with the features; quick to find the required features;visually better; better response time

3 10 easy to interact with the features; better response time; simpler than the other

4 11 easy to interact with the features; quick to find the required features; simpler than the other

5 11 easy to interact with the features; visually better;better response time; simpler than the other

6 11 quick to find the required features; visually better; simpler than the other

7 11 quick to find the required features; better response time; simpler than the other

8 10 easy to interact with the features; usually better; better response time

9 11 easy to interact with the features; quick to find the required features

10 - 22.2%, 11 - 77.78%

Table 7.10: Preference of the users for the different versions of the application in general and
the reason for their preference

The next two questions of the survey “Which version of Odoo would you prefer in general?”

and “The reason for the above choice” are used to understand the preference of the users for the

218

Usage Analytics: Optimizing Feature Prioritization in Software Development

different versions of the application in general and the reason for their preference. The answers

are presented in Table 7.10. The results show that the majority of the users (78%) prefer version

11 of the application. The reason for the preference is that version 11 is easier to interact with

the features, quick to find the required features and is simpler than the other version.

actionName Odoo 10 Odoo 11 Either None

Move Note 100% 0% 0% 0%

Change Note Colour 88.88% 11.11% 0% 0%

Attach File 77.78% 11.11% 0% 11.11%

Edit Note 66.66% 22.22% 0% 0%

Comment in Note 66.66% 33.33% 0% 0%

Delete Stage 55.55% 0% 44.44% 0%

Create Stage 44.44% 0% 55.55% 0%

Add tag 44.44% 11.11% 33.33% 11.11%

Change Tag Colour 44.44% 22.22% 33.33% 0%

Create new tag 44.44% 22.22% 22.22% 11.11%

Remove follower from note 44.44% 33.33% 11.11% 11.11%

Open commenting in note 22.22% 55.55% 22.22% 0%

Delete Note 22.22% 66.66% 11.11% 0%

Invite and Add follower 22.22% 77.77% 0% 0%

Invite User 11.11% 55.55% 22.22% 11.11%

Rename Stage 11.11% 66.66% 22.22% 0%

Create Note 11.11% 66.66% 11.11% 0%

Open Note 11.11% 66.66% 22.22% 0%

Search with Note 11.11% 77.77% 11.11% 0%

Drag and Drop note 11.11% 88.88% 0% 0%

Search with Tag 11.11% 88.88% 0% 0%

Search with both Tag and Note 0% 88.88% 11.11% 0%

Table 7.11: Preference of the users for the different versions of the application for each action

The next question of the survey “Which version of Odoo would you prefer for each action?”

is used to understand the preference of the users for the different versions of the application for

each action. The results are presented in Table 7.11. The results show that the majority of the

users prefer version 11 of the application for all the actions. The reason for the preference is

that version 11 is easier to interact with the features, quick to find the required features and

is simpler than the other version. Specifically, 100% of the users prefer the Odoo version 10

with the action Move Note, 78% of the users prefer the Odoo version 11 with the action Search

with Note, 89% of the users prefer the Odoo version 11 with the action Search with both

Tag and Note, 89% of the users prefer the Odoo version 11 with the action Search with Tag,

219

Usage Analytics: Optimizing Feature Prioritization in Software Development

89% of the users prefer the Odoo version 11 with the action Drag and Drop note and 89%

of the users prefer the Odoo version 11 with the action Search with Tag. Translating these

preferences, for the action Move Note the changes implemented by the developers in version 11

of the application are not liked by the users. For the action Search with Note, Search with

both Tag and Note, Search with Tag and Drag and Drop note, the changes implemented

by the developers in version 11 of the application are liked by the users.

actionName / User ID 1 2 3 4 5 6 7 8 9 Avg. Difficulty

Move Note 4 5 3 5 5 4 5 4 3 4.22

Change Tag Colour 3 3 4 4 4 5 5 4 5 4.11

Attach File 5 5 2 4 4 3 5 4 4 4.00

Add tag 3 3 4 4 5 4 5 3 4 3.89

Create new tag 4 2 3 4 3 4 4 2 4 3.33

Change Note Colour 3 3 2 3 5 3 4 4 2 3.22

Delete Stage 4 4 1 2 3 4 3 4 3 3.11

Edit Note 3 4 2 5 2 4 2 1 3 2.89

Comment in Note 3 4 1 3 4 5 1 1 2 2.67

Create Stage 3 1 2 3 4 2 2 2 4 2.56

Remove follower from note 3 5 2 2 2 2 2 1 2 2.33

Invite and Add follower 2 2 3 1 2 2 1 2 4 2.11

Search with both Tag and Note 2 2 1 1 3 4 2 1 2 2.00

Open commenting in note 1 1 5 2 1 2 3 1 1 1.89

Rename Stage 2 3 3 2 1 2 1 1 1 1.78

Create Note 2 1 4 1 3 2 1 1 1 1.78

Search with Note 1 2 4 1 2 1 1 1 2 1.67

Delete Note 2 1 2 2 1 1 2 2 2 1.67

Invite User 2 2 2 1 2 2 1 1 2 1.67

Search with Tag 1 1 4 2 1 1 1 2 1 1.56

Open Note 2 2 1 1 1 1 2 2 1 1.44

Drag and Drop note 1 1 1 1 1 1 2 2 2 1.33

Table 7.12: Difficulty of each action as experienced by the user in Odoo 11 compared to Odoo
10

The last question of the survey “Compared to Odoo 10, how easy was it to perform the

following actions in Odoo 11? 1: Very Easy, 2: Easy, 3: Neutral, 4: Difficult, 5: Very Difficult”

is used to understand the ease of performing the each of the actions in the different versions

of the application. The results are presented in Table 7.12. A higher score means the user

found the action more difficult to perform in Odoo version 11 than compared to Odoo version

10. On the other hand, a lower score means the user found the action easier to perform in

Odoo version 11 than compared to Odoo version 10. The results show that the action Move

Note was the most difficult action to perform in Odoo version 11 compared to Odoo version

10. The action Drag and Drop note was the easiest action to perform in Odoo version 11

220

Usage Analytics: Optimizing Feature Prioritization in Software Development

compared to Odoo version 10. Comparing the results of the Usage Analytics method as shown

in Table 7.8 and the results from the survey presented in Table 7.11 and Table 7.12, The Usage

Analytics method has successfully identified the actions that most affected the user, that is,

Move Note and by grouping the actions based scores for the usage metrics, we can identify a

group of actions that could be prioritised for improvement. If we consider the top 10 actions

identified by the Usage Analytics method, we can see that 7 of the 10 actions are also confirmed

by the users through the survey. The actions Move Note, Drag and Drop note, Change Note

Colour, Change Tag Colour, Attach File, Add tag, Create new tag, Delete Stage, Edit

Note, Comment in Note are all identified correctly by the method.

Application of the final version of the Usage Analytics method to the Odoo Notes application

and evaluating the results of the analysis with the survey results presented with the following

conclusions:

1. 7 out of the top 10 actions performed by the user were correctly identified by the Usage

Analytics method as the actions impacted them the most by the changes made to the

application by the developers. However, it is essential to note that while the accuracy of

identifying user actions is a significant achievement, it is not the primary focus of this re-

search. The main objective is to demonstrate the capability of the Usage Analytics method

in systematically analyzing and prioritizing software features based on user interactions.

The accuracy of identifying user actions could potentially be improved by incorporating

more advanced, state-of-the-art metrics. Techniques such as machine learning algorithms

for pattern recognition, natural language processing for understanding user feedback, and

advanced statistical models for behavior prediction could enhance the precision of identi-

fying user actions and their impacts. Nevertheless, the current metrics have proven suf-

ficient to demonstrate the core functionality of the Usage Analytics method—showcasing

its ability to detect significant user interactions and the corresponding impact of software

changes.

2. The developed feature-action map can be used to identify the priority list of features based

on the ranked user actions. This priority list provides a structured approach for developers

to identify which features should be focused on in future development cycles. By analyzing

user interactions and the resulting changes, the method offers a data-driven basis for

decision-making, ensuring that the most critical features are prioritized. The ability to

221

Usage Analytics: Optimizing Feature Prioritization in Software Development

generate a priority list is crucial for streamlining the development process. Developers

can use this list to quickly determine which features require immediate attention, thereby

reducing the time and effort needed for the decision-making process.

3. The priority list of features can be used by the developers for the future development of

the application in the following ways:

(a) The priority list of features can be used to include the features with the highest

priority in the next development cycle, reducing the time and effort required for the

decision-making process.

(b) The priority list of features can be used to identify the users who are most affected

by the changes made to the application, the reviews and feedback from these users

can be filtered out and prioritised for the developers to address them first.

The research emphasizes the importance of identifying and analyzing user interactions rather

than focusing solely on the accuracy of the metrics used. The primary goal is to demonstrate

the utility of the Usage Analytics method in understanding user behavior and its impact on

software development. By proving the method’s capability to identify significant user interac-

tions and generate actionable insights, the research lays the groundwork for further refinement

and adoption in diverse software development contexts.

Future research can explore integrating more sophisticated metrics to enhance accuracy.

However, the current study successfully showcases the core functionality of the Usage Analytics

method, proving its potential as a valuable tool for developers to prioritize features and improve

user satisfaction.

222

Usage Analytics: Optimizing Feature Prioritization in Software Development

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Research in past has established the importance of involving the users in the process of develop-

ment of software applications (Chen et al., 2011; Hess et al., 2013; Pagano and Bruegge, 2013;

Yaman et al., 2016) and the advantages of including feedback from users in the decision-making

process (Fabijan et al., 2015; Krusche and Bruegge, 2014). Many user feedback-gathering tools

and mechanisms exist and are actively used in the software development industry as discussed in

Chapter 2. The current automatic feedback-gathering tools still predominantly focus on fixing

bugs and crashes and maintaining the systems by gathering performance metrics. However, the

ability to understand how users of a software application use different features based on the ex-

isting usage data is unclear and currently performed in an ad-hoc manner (Fitzgerald and Stol,

2017b; Tizard et al., 2022; Fabijan et al., 2016b). Software developers and/or software analysts

still have to spend additional time and effort combing through enormous amounts of data from

application logs to understand how users are affected by the recent changes implemented to the

software. This thesis presents the usage analytics method that could be used by the developers

of a software application to identify the impact of changes made to an application on the usage

behaviour of the users. Specifically, changes in the usage behaviour exhibited by the user as a

result of changes made to the application by software developers regardless of the magnitude

of the change can be captured using the Usage Analytics method. Furthermore, the method

when used in conjunction with traditional software feedback mechanisms could reduce the time

delay caused by obtaining manual feedback from users, translating and identifying the specific

legitimate issues. The analytics approach discussed could also be further used to prioritise the

223

Usage Analytics: Optimizing Feature Prioritization in Software Development

features as candidates for the future development cycle by identifying the most affected features

based on the observed behavioural changes from the users.

This thesis presents the Usage Analytics method, designed to help developers identify the

impact of changes on user behavior. The method captures changes in user behavior resulting

from software modifications, regardless of the magnitude of these changes. When used alongside

traditional feedback mechanisms, the method can reduce the time delay associated with obtain-

ing manual feedback, translating and identifying specific issues. Additionally, it can prioritize

features for future development cycles by identifying those most affected based on observed user

behavior. The proposed Usage Analytics method includes processes for identifying data sources,

extracting usage data, and analyzing this data using specific metrics. The research problem was

identified through a systematic literature review and an analysis of current practices in industry

and academia. The method was developed in collaboration with developers from IBM Aca-

demic Cloud and IBM Watson Workspace and applied to another application, Odoo Notes, for

evaluation. The method was tested through designed experiments where volunteers performed

predefined tasks using the applications. Usage data related to user actions was extracted and

analyzed. Findings from these experiments were used to refine the method, resulting in multiple

iterations. Version 2 was evaluated with IBM Watson Workspace, and version 3 was evaluated

with Odoo Notes, demonstrating the method’s applicability across different types of software

applications with varying data availability.

This thesis presented a systematic approach to addressing challenges in usage analytics and

feature prioritization through the iterative development of the Usage Analytics (UA) method.

The research aimed to bridge the gap between user behavior analysis and actionable insights

for developers, aligning findings with Research Questions 2 and 3. The study identified critical

challenges developers face, such as data integration, feature-action mapping, and time-intensive

data selection processes. Through iterative refinements across three case studies—IBM Aca-

demic Cloud, IBM Watson Workspace, and Odoo Notes—the research demonstrated how these

challenges could be systematically addressed. The UA method introduced metrics such as fre-

quency, timespent, and consistency to provide developers with clear insights into user behavior.

Each iteration of the method incorporated feedback from previous implementations, refining its

processes and ensuring its adaptability across diverse platforms. The first version, applied to

IBM Academic Cloud, focused on identifying core challenges and laying the groundwork for data

collection and analysis. The second version, developed for IBM Watson Workspace, introduced

224

Usage Analytics: Optimizing Feature Prioritization in Software Development

feature-action mapping and improved metrics to capture user interactions more effectively. The

final version, applied to Odoo Notes, validated the method’s generalizability and enhanced its

usability in a non-IBM platform. The method’s adaptability was demonstrated across plat-

forms, addressing the varying challenges in data availability and feature identification. These

contributions highlight the method’s potential to support developers in prioritizing features and

optimizing software development cycles based on actionable insights.

In Case Study 1, conducted within the IBM Academic Cloud project, the goal was to inves-

tigate the challenges associated with the feature prioritization process. The evaluation involved

structured interviews with developers who provided insights into the challenges and effectiveness

of the usage analytics process model. The main challenges identified were the lack of clear feature

definitions and the difficulty in mapping user interactions to specific features, which impacted the

effectiveness of planning and requirements analysis stages. The descriptive analysis revealed that

substantial time and effort were required to select and prepare data, creating bottlenecks in the

development process. Despite these challenges, the structured approach and collaboration within

the team were seen as strengths. Recommendations for improvement included better feature

definitions, automated data cleaning, and enhanced user interaction mapping. One of the key

findings from Case Study 1 was that the absence of well-defined platform features significantly

hindered the developers’ ability to plan effectively and understand user behavior. The develop-

ers highlighted the necessity for clear feature definitions to accurately map user interactions and

derive meaningful insights from the data. Additionally, the interviews revealed that the lack of

a clear mapping of user interactions to application features led to incomplete or unclear require-

ments, making the requirements elicitation process more complicated and time-consuming. The

data selection and preparation process also posed significant challenges, requiring considerable

time and effort from the developers. The diverse types of data available made it difficult to

choose the right data sources and formats, creating a bottleneck in the development process.

Despite these challenges, the developers acknowledged that the usage analytics process model

provided a structured approach that facilitated collaboration and helped identify critical areas

for improvement.

Case Study 2 aimed to address the research question: “What are the key challenges faced by

developers in identifying and utilizing usage data and key metrics related to feature prioritization

effectively within the software platform?” This study, conducted with IBM Watson Workspace,

involved structured interviews with an operational manager, an architect, a senior developer,

225

Usage Analytics: Optimizing Feature Prioritization in Software Development

and two developers. The evaluation focused on the implementation of an advanced usage ana-

lytics method. The main challenges identified were related to the identification and extraction of

usage data, application of analytics metrics, and development of feature-action maps. Feedback

from the development team led to refinements in the method, resulting in Version 2. Descriptive

analysis highlighted the importance of systematic data collection, comprehensive feature-action

mapping, and iterative testing for continuous improvement. The findings emphasized the need

for integrating multiple data sources and ongoing validation of analytical processes. In Case

Study 2, developers faced challenges in identifying relevant usage data sources and applying

analytics metrics to extract meaningful insights. The diverse sources of usage data, including

native and third-party monitoring tools, provided a comprehensive view of user interactions with

the application. However, integrating these data sources and ensuring data quality were major

challenges, requiring significant effort to collect consistent and accurate data across different

platforms. The development of feature-action maps was another significant outcome of Case

Study 2. This process involved systematically mapping user actions to specific features, provid-

ing a structured approach to understanding user interactions. The integration of feature-action

mapping into the usage analytics method helped the development team visualize user interac-

tions and identify critical areas for improvement. Despite these advancements, the developers

emphasized the need for ongoing validation and refinement of the feature-action map to ensure

its accuracy and relevance.

Case Study 3 involved the application of the final version of the Usage Analytics method to

the Odoo Notes application. The goal was to evaluate the method’s applicability across different

application domains. Structured experiments with nine users provided insights into the impact

of changes on user behavior. The results showed that the method successfully identified actions

that most affected user behavior, and a priority list of features was generated based on the extent

of impact. The evaluation highlighted that the method could be used to filter user reviews

and feedback, prioritize critical issues, and optimize future development cycles. The analysis

combined frequency, timespent, and consistency metrics to provide a comprehensive view of

user interactions and behavioral changes. In Case Study 3, the Usage Analytics method was

applied to the Odoo Notes application, involving experiments with nine users. The experiments

aimed to understand the changes in user behavior between different versions of the application.

The results demonstrated that the method could effectively identify the most impacted actions

and features based on the usage metrics. The frequency, timespent, and consistency metrics

226

Usage Analytics: Optimizing Feature Prioritization in Software Development

provided a detailed view of user interactions, helping developers prioritize features for future

development. The evaluation also revealed that the Usage Analytics method could be used to

filter user reviews and feedback, focusing on the most critical issues. By prioritizing features

based on the observed behavioral changes, developers could optimize the development process

and ensure that the most significant issues were addressed first. The findings from Case Study

3 confirmed the method’s applicability across different application domains and its potential to

enhance the efficiency of software development processes.

Overall, the evaluations conducted in these case studies demonstrate that the Usage Ana-

lytics method is effective in identifying critical features and understanding user behavior. The

method’s systematic approach to data collection, analysis, and feature prioritization offers sig-

nificant advantages over traditional feedback mechanisms. The findings from these evaluations

support the method’s applicability across different types of software applications and its poten-

tial to optimize development processes.

The research systematically derived a super-set of data types and metrics through a rigorous

literature review. This super-set served as the foundation for developing and evaluating the

Usage Analytics (UA) method. The key metrics—frequency, time spent, and consistency—were

selected based on their prominence in the literature and validated through iterative applica-

tions across case studies. By leveraging this super-set, the research ensured a comprehensive

framework that balances theoretical rigor with practical applicability. The super-set provided

a structured approach to understanding and analyzing user behavior, ensuring that the UA

method addressed diverse software environments effectively. Metrics such as engagement rates

and behavioral consistency, grounded in the super-set, proved essential for feature prioritization

and user behavior analysis in the case studies.

The research is subject to limitations on the software applications where human users interact

directly with the application. Applications, where the users interact with the application through

a third-party application or web service, are not considered in the scope of this research. The

research is also subject to limitations on the availability of usage data sources. The data sources

considered in the scope of this research are the ones that are available to the developers of

the application. If the developers do not choose to include the proposed usage analytics in

the design of the software application, the method could still be used post-development of the

application. A direction to develop a custom monitoring tool to collect the usage data from the

application is also demonstrated for future researchers to explore the possibility of collecting the

227

Usage Analytics: Optimizing Feature Prioritization in Software Development

usage data from the applications where the data sources are not available to the developers of

the application.

8.2 Contributions

A systematic literature review was conducted to identify the research gap by exploring current

techniques to collect and analyse the usage of application features in a software development

domain. Taking into account that identifying the importance of the features and selecting the

features as candidates for development is currently performed in an ad-hoc manner. Although

there are techniques available for collecting user feedback to understand which features are use-

ful to the users, yet rarely answer why those features are important for them. As a result, the

selection and prioritization of features become far from optimal and the product deviates from

what the users need. This research addresses this gap by proposing a method to systematically

analyse how features are used by end-users and the usage patterns exhibited by the users. The

research has resulted in thirteen academic papers so far, published in various conferences, work-

shops and an article in a book chapter, and one patent documenting the various achievements

accomplished as a part of this research.

This research directly addressed RQ1 by identifying and validating a comprehensive super-

set of data types and metrics for feature prioritization in software analytics. The iterative

refinement process, involving developers and stakeholders, demonstrated the practical relevance

of the selected metrics. The alignment between the theoretical super-set and industrial applica-

tions highlighted the adaptability and scalability of the UA method. The iterative application

of the UA method across diverse platforms—IBM Academic Cloud, Watson Workspace, and

Odoo Notes—validated the super-set’s utility, reinforcing its role as a foundational framework

for usage analytics. A critical aspect of this research was the inclusion of participant feedback

from developers and stakeholders in refining the UA method. Participant feedback highlighted

the importance of actionable metrics like frequency, time spent, and consistency, which were

refined through iterative discussions and evaluations. This collaborative approach ensured that

the selected metrics aligned with real-world needs, addressing gaps identified during the initial

stages of the research. The iterative refinement process not only validated the selected metrics

but also provided insights into improving their applicability across platforms. For example, feed-

back from IBM developers emphasized the need for engagement metrics, which were integrated

228

Usage Analytics: Optimizing Feature Prioritization in Software Development

and fine-tuned to enhance the UA method’s effectiveness.

This research has also resulted in an opportunity in terms of an internship to work closely

with the development team of IBM Watson Workspace, which helped the research to incorporate

the industrial perspective and knowledge about the research problem. The developed Usage

Analytics method resulted in an Intellectual Property article publication and prior art for a

patent application available on IP.com (https://priorart.ip.com/IPCOM/000261887).

The Usage Analytics project won several awards: DCU Commercialisation Award 2017; Tech

Ireland Awards 2018 - Finalists for the Outstanding Academic Achievement of the Year; Tech

Excellence Awards 2019 - Finalist for the Project of the Year award (Private sector); DCU

Invent Commercialisation Award 2022. The Watson Workspace application is considered one

of the case studies for the research to evaluate the practical application and usefulness of the

developed artefact in the industry. This study contributes to research and the problem domain in

three aspects: advancing practice, improving and creating methodology, and extending theory.

Specifically, the following contributions are made in academia and practice:

1. Developers of an application can identify important features and optimize ap-

plication development: The Usage Analytics method provides a systematic approach

for developers to identify the most critical features based on user behavior. By understand-

ing how users interact with different features, developers can prioritize the most impactful

features for future development, ensuring that the application aligns with user needs and

preferences.

2. Architects of an application can use the method to incorporate usage data

extraction and analysis into the design of the application: The method includes

processes for identifying data sources, extracting usage data, and analyzing this data using

specific metrics. By integrating these processes into the application design, architects

can ensure that the necessary usage data is collected and analyzed effectively, providing

valuable insights into user behavior.

3. Impact on the knowledge of usage data in the cloud-based application domain,

how to identify, extract and analyze them: The research advances knowledge in

the cloud-based application domain by providing a comprehensive method for identifying,

extracting, and analyzing usage data. The findings contribute to a deeper understand-

ing of how usage data can be leveraged to improve software development processes and

229

https://priorart.ip.com/IPCOM/000261887

Usage Analytics: Optimizing Feature Prioritization in Software Development

enhance user satisfaction. This research bridges the gap between theoretical frameworks

and practical applications in software analytics. By systematically deriving and validating

a super-set of data types and metrics, it contributes a robust framework for analyzing

user behavior and prioritizing features. The iterative refinement process, grounded in par-

ticipant feedback, highlights the dynamic interplay between research and industry needs,

ensuring that the UA method is both adaptable and impactful.

4. A novel method was designed to identify, extract, and analyze the usage data

of the features of an application: The Usage Analytics method includes a detailed

process for identifying, extracting, and analyzing usage data. The method provides a

structured approach for understanding user interactions and identifying the most critical

features based on observed behavior. The findings from this research open avenues for

further exploration, particularly in expanding the super-set to incorporate emerging data

types and metrics, and validating the UA method in additional industrial contexts.

5. A novel analytics approach was designed to analyze the usage data of the fea-

tures of an application by demonstrating the usage metrics such as Frequency,

Timespent, and Consistency: The research introduced a novel analytics approach that

combines multiple usage metrics to provide a comprehensive view of user interactions. The

frequency, timespent, and consistency metrics help developers understand how users in-

teract with different features and identify changes in behavior resulting from software

modifications.

6. A new understanding of the usage behavior of the users of the application

and its correlation with the changes implemented to the application by the

developers of the application: The research provides new insights into how user be-

havior changes in response to software modifications. By correlating user behavior with

specific changes implemented by developers, the research helps identify the most impactful

modifications and prioritize features for future development.

8.2.1 Design Knowledge Contributions

This research introduced a robust framework, the Usage Analytics Method (UAM), designed to

link user interaction data with feature prioritization decisions. A key conceptual advancement

lies in its generalizable structure, validated across diverse platforms including IBM Academic

230

Usage Analytics: Optimizing Feature Prioritization in Software Development

Cloud, IBM Watson Workspace, and Odoo Notes. This adaptability underscores UAM’s appli-

cability in varying software development environments.

The UAM framework relies on evidence-based decision-making, leveraging user interaction

metrics to inform feature prioritization. Developed iteratively in collaboration with industry

practitioners, it balances theoretical robustness with practical relevance.

Methodological Contributions

The UAM framework was developed and refined through a systematic, rigorous methodology.

Key methodological contributions include:

1. super-set derivation

(a) A comprehensive super-set of metrics and data points critical for analyzing user be-

havior and guiding feature prioritization was identified through a systematic literature

review.

(b) Metrics were categorized into foundational types (e.g., frequency, duration) and ad-

vanced types (e.g., engagement depth), providing a scalable baseline for research and

industry use.

2. collaborative refinement

(a) Iterative brainstorming sessions with industry practitioners refined the super-set, en-

suring alignment with real-world software development challenges.

3. iterative validation

(a) Case studies were employed to validate the framework’s design and applicability,

enabling continuous refinement.

This approach bridges the gap between theoretical constructs and practical applications,

offering a replicable model for future research in software analytics.

Practical Contributions

The UAM framework demonstrated its value in practical applications by providing actionable

insights and enhancing software development decision-making. Specifically:

1. Feature Prioritization: UAM’s structured approach to user behavior analysis enabled de-

velopers to prioritize features based on observed user interactions, enhancing development

efficiency.

231

Usage Analytics: Optimizing Feature Prioritization in Software Development

2. Data-Driven Development: UAM’s reliance on usage metrics facilitated evidence-based

decision-making, reducing reliance on subjective feedback and improving feature selection.

3. Cross-Platform Validation: UAM’s adaptability across diverse platforms, including IBM

and non-IBM applications, underscored its generalizability and scalability.

4. Developer Empowerment: UAM equipped developers with a systematic approach to con-

nect user behavior data with design decisions, enhancing data-driven development prac-

tices.

5. Real-World Applicability: UAM’s successful application in real-world settings validated

its utility and relevance in modern software development environments.

6. Continuous Improvement: UAM’s iterative refinement process ensured ongoing enhance-

ments, aligning the framework with evolving industry needs and challenges.

These practical contributions underscore UAM’s value in enhancing software development

practices and empowering developers with actionable insights.

Extensibility and Adaptability

UAM is inherently extensible, allowing for the integration of additional metrics as software

systems evolve. While this research focused on three core metrics, the framework supports:

1. Engagement Metrics: Session depth, navigation patterns, and user flow.

2. Performance Metrics: Task completion rates and error analysis.

3. Advanced Behavioral Analytics: AI-driven insights and predictive modeling.

The stages of UAM—feature identification, identification of usage data sources, and data

extraction—remain pivotal when incorporating additional metrics. Specifically:

1. Feature Identification: Each new metric aligns with specific software features and user

goals.

2. Identification of Usage Data Sources: Relevant sources, such as clickstreams, heatmaps,

or user logs etc., are identified to provide actionable data.

3. Data Extraction and Processing: Tailored extraction methods ensure consistency and

compatibility across all metrics.

232

Usage Analytics: Optimizing Feature Prioritization in Software Development

These stages maintain UAM’s robustness while enhancing its scalability and relevance in

evolving analytical scenarios.

8.3 Limitations of the Study

Empirical studies are fundamental to assessing the effectiveness, adaptability, and limitations

of the UAM. This section delves into an exhaustive analysis of the case studies presented in

this research, identifying critical limitations, exploring their implications, and proposing action-

able recommendations for improvement. By addressing these shortcomings, the research can

contribute to a more robust and universally applicable framework for UAM. The case studies

reveal multiple limitations that inform the research findings and highlight areas for refinement.

Each study’s unique context offers valuable lessons, yet the collective insights point to broader

challenges in applying UAM across diverse environments. Below is an expanded discussion of

these limitations, their implications, and how they can be mitigated in future research.

8.3.1 Case Study 1: IBM Academic Cloud

1. Participant Diversity: The study primarily involved IBM developers with extensive

technical expertise, limiting the generalizability of findings to broader user groups. The

lack of diverse user profiles, including novice users or those from non-technical backgrounds,

restricts the ecological validity of the findings. Research by Nielsen (2012) underscores the

importance of including varied participant demographics to uncover usability challenges

overlooked by expert users.

2. Controlled Environment: The controlled settings of the study ensured consistent test-

ing conditions but failed to replicate the complexities of real-world environments. Real-

world scenarios often include unpredictable user behaviors, system errors, and varying user

goals that cannot be captured in a strictly controlled study.

3. Data Access: Access to comprehensive datasets within the IBM ecosystem enabled

smooth implementation of UAM. However, this level of access is atypical in external set-

tings where data availability is limited or where privacy concerns restrict data collection.

This discrepancy raises questions about the adaptability of UAM in more constrained

environments.

233

Usage Analytics: Optimizing Feature Prioritization in Software Development

Impact on Findings:

1. The limited participant diversity restricts the applicability of findings to broader user

groups.

2. Controlled conditions may lead to overestimation of UAM’s effectiveness in less predictable

settings.

3. Reliance on rich datasets does not address potential challenges in environments with lim-

ited instrumentation.

Recommendations for Future Work:

1. Recruit participants from a wide range of technical and non-technical backgrounds, in-

cluding end-users from different industries.

2. Design studies that incorporate real-world variability, such as unexpected system inter-

ruptions or evolving user goals.

3. Test UAM in external environments with data access constraints to evaluate its adaptabil-

ity and robustness.

8.3.2 Case Study 2: IBM Watson Workspace

1. Narrow Task Scope: The study emphasized tasks related to collaboration and user

engagement, excluding other critical dimensions of user behavior such as error recovery,

task prioritization, and cognitive load during multitasking. Norman and Nielsen

2. Platform-Specific Constraints: The study’s findings are inherently tied to the unique

architecture and features of Watson Workspace. Consequently, insights derived from this

platform may not generalize to systems with different interaction paradigms or architec-

tural designs.

3. Limited Longitudinal Analysis: The study primarily analyzed short-term interactions,

missing the opportunity to observe how user behaviors evolve over time. This oversight

limits the ability to assess UAM’s long-term utility and adaptability.

Impact on Findings:

234

Usage Analytics: Optimizing Feature Prioritization in Software Development

1. The narrow focus on collaboration tasks restricts the generalizability of findings to other

aspects of user interaction.

2. Platform-specific results hinder broader applicability across diverse systems.

3. Short-term evaluations fail to capture changes in user behavior or long-term trends.

Recommendations for Future Work:

1. Include tasks that test non-collaboration features, such as adapting to new system updates

or managing system configurations.

2. Conduct cross-platform evaluations to ensure UAM’s adaptability to a variety of system

architectures.

3. Perform longitudinal studies to observe behavioral trends and refine UAM metrics over

time.

8.3.3 Case Study 3: Odoo Notes

1. Single Non-IBM Platform: The inclusion of only one non-IBM platform limits the

study’s ability to demonstrate UAM’s generalizability across diverse software ecosystems.

Although Odoo Notes’ open-source architecture offers valuable contrast to proprietary IBM

systems, it does not provide sufficient evidence for cross-industry applicability. Kitchen-

ham et al. (2004) highlight the necessity of validating tools in varied contexts to establish

external validity.

2. Small Participant Pool: The limited number of participants reduces the statistical

significance and general reliability of the study’s findings. A broader participant base

would enhance the robustness of conclusions drawn from this case study.

3. Restricted Metric Set: Metrics focused on frequency, time spent, and consistency,

excluding potentially insightful metrics such as user satisfaction, error rates, and task-

switching behaviors. Expanding the metric set would provide a more holistic understanding

of user interactions.

Impact on Findings:

1. Reliance on a single non-IBM platform provides insufficient evidence for broad applicabil-

ity.

235

Usage Analytics: Optimizing Feature Prioritization in Software Development

2. A small participant pool undermines the statistical strength of the findings.

3. Limited metrics result in a narrow evaluation of user behavior, overlooking critical inter-

action patterns.

Recommendations for Future Work:

1. Platform Diversity: Validate UAM on a wider variety of non-IBM platforms, including

industry-specific and microservices-based systems (Balalaie et al., 2016), to establish gen-

eralizability.

2. Increased Participant Pool: Recruit participants from diverse professional and cultural

backgrounds to improve the study’s reliability.

3. Expanded Metrics: Incorporate additional metrics such as user satisfaction scores, cogni-

tive load, and task-switching rates to enrich the evaluation.

The case studies conducted in this research highlight the potential of the UAM while re-

vealing critical areas for improvement. Addressing the limitations through diverse participant

recruitment, expanded task designs, broader platform evaluations, and enriched metric inclusion

will significantly enhance the method’s applicability and credibility. Future research should aim

to validate UAM in real-world and constrained environments, thereby cementing its role as a

versatile and generalizable tool for modern software analytics.

8.4 Future Work

Usage analytics can reveal the engagement level of customers during the development and eval-

uation process of a software analytic project. It is well recognised that engaging customers is a

challenging task, especially in the context of software engineering tools. Customers always tend

to keep their existing way of carrying out a task or the way of using a service. Furthermore, it

is usually lacking in investing time to understand the pros and cons of the proposed tools due

to the tight development schedule. Thus, understanding customer engagement has a significant

impact on the development of applications and services.

In future, the following aspects of this research are recommended to be explored:

1. Generalizability to Other Platforms and Domains: While the UAM framework was

validated using IBM Academic Cloud, IBM Watson Workspace, and Odoo Notes, future

studies should explore its applicability across a wider array of platforms, including:

236

Usage Analytics: Optimizing Feature Prioritization in Software Development

(a) IoT Applications: Understanding how usage data from interconnected devices can be

analyzed to improve real-time functionality and usability.

(b) Virtual and Augmented Reality (VR/AR): Investigating how user interactions in im-

mersive environments can provide insights for optimizing experiences, such as gesture

accuracy or spatial navigation patterns.

(c) Cloud-Based Business Platforms: Assessing the UAM’s capability in handling multi-

tenancy and diverse user groups in large-scale enterprise systems. Future research

should focus on comparing the similarities and differences in user interaction patterns

across these platforms to better understand UAM’s adaptability.

2. Integration with Situational and Emotional Analytics: Expanding UAM to in-

clude situational analytics and emotion recognition could provide deeper insights into user

behavior. For instance:

(a) Replacing Biometric Tools: Future studies could investigate how usage patterns (e.g.,

navigation paths, error rates) can serve as proxies for biometric data like eye-tracking

and facial recognition.

(b) Context-Aware Analytics: Incorporating situational factors (e.g., user location, de-

vice type, or time of use) into UAM to enhance its effectiveness in dynamic and

mobile environments. This integration could bridge the gap between human factors

and software analytics, improving both usability and user satisfaction.

3. Extensibility to Additional Metrics and Feature Sets: The current study focused

on frequency, time spent, and consistency metrics. Future work could expand on this by

including:

(a) User Retention Rates: Analyzing how frequently users return to the application and

what features contribute to retention.

(b) Feature Abandonment Metrics: Understanding why users discontinue using specific

features.

(c) Clickstream Data Analysis: Examining the sequential nature of user actions to iden-

tify common workflows and pain points. These additional metrics could help devel-

opers better understand user preferences and prioritize features more effectively.

237

Usage Analytics: Optimizing Feature Prioritization in Software Development

4. Development of Real-Time Monitoring Dashboards: To enhance decision-making

processes, future research should focus on building a real-time dashboard for UAM. Po-

tential features include:

(a) Anomaly Detection: Identifying unusual usage patterns that may indicate bugs or

usability issues.

(b) Predictive Analytics: Forecasting user behavior and feature adoption based on his-

torical data.

(c) Customizable Views: Allowing developers to tailor dashboards for specific roles or

goals (e.g., project managers vs. UX designers). Such dashboards could significantly

enhance the practicality of UAM in fast-paced development cycles.

5. Integration of AI and Machine Learning: Future research could explore the integra-

tion of advanced AI and machine learning techniques to:

(a) Cluster User Behavior: Group users based on shared patterns to develop targeted

features.

(b) Predict User Needs: Use historical data to recommend features or design changes

proactively.

(c) Automate Feedback Analysis: Enable real-time analysis of qualitative feedback to

identify actionable insights. This would make UAM more adaptive and capable of

handling the complexities of large-scale, dynamic environments.

6. Validation in Longitudinal and Large-Scale Studies: Long-term and large-scale

validation is crucial for assessing UAM’s robustness. Future studies could:

(a) Conduct Multi-Year Studies: Analyze usage trends and feature adoption over ex-

tended periods.

(b) Involve Diverse User Groups: Test UAM in geographically dispersed user bases to

ensure inclusivity and reliability. These studies could highlight domain-specific limi-

tations and provide a stronger evidence base for UAM’s generalizability.

7. Iterative Refinement and Feedback Integration: UAM’s iterative nature should be

further leveraged to refine its metrics and methodologies. Suggested areas include:

238

Usage Analytics: Optimizing Feature Prioritization in Software Development

(a) Continuous Feedback Loops: Regularly integrating user feedback into metric refine-

ment processes.

(b) Transparent Documentation: Recording each refinement iteration to improve repro-

ducibility and transparency. This would ensure that UAM remains aligned with the

evolving needs of the software development industry.

8. Scalability and Cloud Integration: Future work should explore how to optimize UAM

for scalability. Key directions include:

(a) Leveraging Distributed Cloud Systems: Using cloud infrastructure to handle high-

throughput data processing in real-time.

(b) Supporting Multi-Tenancy: Adapting UAM to manage and analyze data for multiple

user groups within a single application. Such enhancements would make UAM a

viable solution for large-scale enterprise applications.

9. Cross-Domain Applications: The framework’s applicability to hybrid systems where

users interact via third-party applications or services should be explored. Future research

could investigate:

(a) Web Services Integration: Applying UAM to APIs and third-party integrations to

understand their impact on user experience.

(b) Hybrid Environments: Testing UAM in systems that combine multiple platforms

(e.g., a desktop application with mobile extensions). This exploration could refine

the framework to accommodate more diverse interaction models.

By addressing these areas, future research has the potential to not only enhance the utility

and applicability of the UAM framework but also significantly advance the field of software

development practices. Such investigations could lead to the development of methodologies that

are robust, scalable, and user-centric, effectively bridging the gap between theoretical insights

and practical applications. These advancements would not only support developers in creat-

ing more adaptable and efficient software systems but also drive the evolution of user-focused

analytics as a core component of modern software engineering. Furthermore, a more refined

UAM framework could become a critical tool for improving decision-making processes in di-

verse domains, ranging from enterprise applications to consumer-facing platforms. Ultimately,

this work will pave the way for a future where data-driven analytics seamlessly integrates with

239

Usage Analytics: Optimizing Feature Prioritization in Software Development

agile, iterative development models, offering actionable insights that empower organizations to

respond dynamically to user needs and market demands.

240

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix A

URL Links for Repositories and

other Documents

1. Generating Feature-Action map for Odoo Notes: https://github.com/chintu0

019/Usage-Analytics/blob/master/Documents/Feature-Action%20Map.json

2. Feature-Action map for IBM Watson Workspace: https://github.com/chintu0

019/Usage-Analytics-IBM/blob/master/Files/Workspace-Features-List/Featur

e-Action%20Map.json

3. Experiment data extracted from IBM Watson Workspace: https://github.com

/chintu0019/Usage-Analytics-IBM/blob/e3d7cf2bb024d39a5f699b3c9437b3703e43

48af/Logs/Experiment-Logs

241

https://github.com/chintu0019/Usage-Analytics/blob/master/Documents/Feature-Action%20Map.json
https://github.com/chintu0019/Usage-Analytics/blob/master/Documents/Feature-Action%20Map.json
https://github.com/chintu0019/Usage-Analytics-IBM/blob/master/Files/Workspace-Features-List/Feature-Action%20Map.json
https://github.com/chintu0019/Usage-Analytics-IBM/blob/master/Files/Workspace-Features-List/Feature-Action%20Map.json
https://github.com/chintu0019/Usage-Analytics-IBM/blob/master/Files/Workspace-Features-List/Feature-Action%20Map.json
https://github.com/chintu0019/Usage-Analytics-IBM/blob/e3d7cf2bb024d39a5f699b3c9437b3703e4348af/Logs/Experiment-Logs
https://github.com/chintu0019/Usage-Analytics-IBM/blob/e3d7cf2bb024d39a5f699b3c9437b3703e4348af/Logs/Experiment-Logs
https://github.com/chintu0019/Usage-Analytics-IBM/blob/e3d7cf2bb024d39a5f699b3c9437b3703e4348af/Logs/Experiment-Logs

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix B

Experiment tasks - Odoo

1. Create a new column and name it “Temporary”, you can use this column to place any

temporary notes you may create

2. create a minimum of 7 notes (one for each new task)

3. Move the newly created notes to the correct column (if not done before); two ways of doing

it:

(a) Drag and drop

(b) Click on the column name on top right position after opening the note

4. Assign a different colour to the note to specify the type of task

(a) RED for personal task

(b) PURPLE for a work-related task

(c) BLUE for others

5. Assign a corresponding tag (create a new tag if necessary) to the note

(a) “personal” for personal task

(b) “work” for work-related task

(c) “other” for other tasks

6. check for typos in all the notes and fix them

7. Comment the name of the day you want to assign the task

242

Usage Analytics: Optimizing Feature Prioritization in Software Development

8. Invite and add the follower you want to work with to the task at hand

9. Find all the notes that contain the word “hello” (search with note)

10. count the number of personal and work-related notes (use search), use a temporary note

to mention the count

11. attach the file named “dummy file” to all the work-related notes

243

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix C

Feature-Action map - Odoo

1 {

2 "Actions": [

3 {"ActionName":"Create Stage", "ID": 1},

4 {"ActionName":"Delete Stage", "ID": 2},

5 {"ActionName":"Rename Stage", "ID": 3},

6 {"ActionName":"Search with Note", "ID": 4},

7 {"ActionName":"Search with Tag", "ID":5},

8 {"ActionName":"Search with both Tag and Note", "ID": 6},

9 {"ActionName":"Create Note", "ID": 7},

10 {"ActionName":"Delete Note", "ID": 8},

11 {"ActionName":"Open Note", "ID": 9},

12 {"ActionName":"Edit Note", "ID": 10},

13 {"ActionName":"Move Note", "ID": 11},

14 {"ActionName":"Drag and Drop note", "ID": 12},

15 {"ActionName":"Open commenting in note", "ID": 13},

16 {"ActionName":"Attach File", "ID": 14},

17 {"ActionName":"Comment in Note", "ID": 15},

18 {"ActionName":"Invite and Add follower", "ID": 16},

19 {"ActionName":"Invite User", "ID": 17},

20 {"ActionName":"Remove follower from note", "ID": 18},

21 {"ActionName":"Create new tag", "ID": 19},

22 {"ActionName":"Add tag", "ID": 20},

244

Usage Analytics: Optimizing Feature Prioritization in Software Development

23 {"ActionName":"Change Tag Colour", "ID": 21},

24 {"ActionName":"Change Note Colour", "ID": 22}

25]

26 }

245

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix D

Survey Forms

246

Never heard of it

Only heard of it but have not used it

Used it just a few times

Use it occasionally

Use it everyday

Never heard of it

Only heard of it but have not used it

Used it just a few times

Use it occasionally

Use it everyday

Usage Analytics
Please answer all questions to the best of your knowledge

manoj.kesavulu@dcu.ie (not shared) Switch accounts

*Required

Enter your experiment user ID: *

Your answer

What is your experience with Odoo Notes? *

What is your experience with note-taking (kanban-style) applications? *

Usage Analytics: Optimizing Feature Prioritization in Software Development

D.1 Survey form - Odoo Notes

247

Personal

Professional

Both

10

11

easy to interact with the features

quick to find the required features

visually better

better response time

simpler than the other

If applicable, what is the purpose of using a note-taking application?

Which version of Odoo would you prefer in general? *

The reason for the above choice *

Usage Analytics: Optimizing Feature Prioritization in Software Development

248

Which version of the action do you prefer? Odoo version 10 or Odoo version 11? *

10 11

Move Note

Attach File

Add tag

Change Tag Colour

Create Stage

Delete Stage

Change Note Colour

Create new tag

Edit Note

Comment in Note

Remove follower from note

Rename Stage

Search with Note

Invite and Add follower

Create Note

Delete Note

Move Note

Attach File

Add tag

Change Tag Colour

Create Stage

Delete Stage

Change Note Colour

Create new tag

Edit Note

Comment in Note

Remove follower from note

Rename Stage

Search with Note

Invite and Add follower

Create Note

Delete Note

Usage Analytics: Optimizing Feature Prioritization in Software Development

249

Open commenting in note

Search with both Tag and
Note

Invite User

Drag and Drop note

Open Note

Search with Tag

Open commenting in note

Search with both Tag and
Note

Invite User

Drag and Drop note

Open Note

Search with Tag

Usage Analytics: Optimizing Feature Prioritization in Software Development

250

Compared to Odoo 10, how easy was it to perform the following actions in Odoo
11?
1: Very Easy
2: Easy
3: Neutral
4: Difficult
5: Very Difficult

*

1 2 3 4 5

Move Note

Attach File

Add tag

Change Tag
Colour

Create Stage

Delete Stage

Change Note
Colour

Create new tag

Edit Note

Comment in
Note

Remove
follower from
note

Rename Stage

Search with

Move Note

Attach File

Add tag

Change Tag
Colour

Create Stage

Delete Stage

Change Note
Colour

Create new tag

Edit Note

Comment in
Note

Remove
follower from
note

Rename Stage

Search with

Usage Analytics: Optimizing Feature Prioritization in Software Development

251

Page 1 of 1

Never submit passwords through Google Forms.

This form was created outside of your domain. Report Abuse - Terms of Service - Privacy Policy

Note

Invite and Add
follower

Create Note

Delete Note

Open
commenting in
note

Search with
both Tag and
Note

Invite User

Drag and Drop
note

Open Note

Search with
Tag

Note

Invite and Add
follower

Create Note

Delete Note

Open
commenting in
note

Search with
both Tag and
Note

Invite User

Drag and Drop
note

Open Note

Search with
Tag

Submit Clear form

 Forms

Usage Analytics: Optimizing Feature Prioritization in Software Development

252

Usage Analytics: Optimizing Feature Prioritization in Software Development

253

1.

2.

Feedback

To understand better how to improve the experiment as well as getting insights from
this, we are carrying out this post-experiment survey.

By accepting this survey, you agree that:
- We may publish parts of your answers for scientiBc articles;
- We will NOT publish any information that could be linked to you;
- Anonymous identiBers will be used during all data collection and analysis and the
link to the subject identiBers will be stored in a secure manner;
- The subjective information you share here is used by the researchers for the
purposes of this study, and no others will have access to the data.

This will take about 7-9 minutes

Usage Analytics WW Experiment
Scenario 2:

Thank you for participating in our experiment. We hope you had much fun doing it.

This will take about 3-5 minutes with only a single mandatory text box.

*Required

Workspace User ID: *

Please brie!y summarize what you did in the “free style” scenario (only mandatory text box in this
survey)

Usage Analytics: Optimizing Feature Prioritization in Software Development

D.2 Survey form - IBM Watson Workspace

254

3.

Mark only one oval per row.

4.

Mark only one oval.

Yes

No

5.

Mark only one oval.

Very easy

1 2 3 4 5

Very hard

How familiar are you with ... ? *

Unfamiliar
Somewhat
unfamiliar

Somewhat
familiar

Familiar N/A

Watson Workspace

Team collaboration
applications

Watson Workspace

Team collaboration
applications

Do you think that the “plot” was understandable? *

How di"cult is it to follow the “plot”? *

Usage Analytics: Optimizing Feature Prioritization in Software Development

255

6.

Mark only one oval per row.

7.

Were the interactions easy or di"cult? *
1 = Very easy 5 = Very hard

1 2 3 4 5 N/A

Create a new space

Add/Invite new member to space

Send a direct message

Attach Ble(s)

Add App to space

Search message

Search user

Search apps

Remove member from space

Search mentions

Edit message

Delete message

Change default notiBcation settings

Upload document

Search space

Leave a space

Change space notiBcation setting

Interact with added app from space

Create a new space

Add/Invite new member to space

Send a direct message

Attach Ble(s)

Add App to space

Search message

Search user

Search apps

Remove member from space

Search mentions

Edit message

Delete message

Change default notiBcation settings

Upload document

Search space

Leave a space

Change space notiBcation setting

Interact with added app from space

Additional feedback on the di"culty of the interactions (optional)

Usage Analytics: Optimizing Feature Prioritization in Software Development

256

8.

Mark only one oval.

Not at all

A bit, but it does not change that much in general

Yes, I feel uncomfortable

9.

10.

This content is neither created nor endorsed by Google.

Do you think that capturing screenshot in!uences your activities? *

Any overall feedback for the experiment? (optional)

Name (optional)

 Forms

Usage Analytics: Optimizing Feature Prioritization in Software Development

257

Usage Analytics: Optimizing Feature Prioritization in Software Development

258

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix E

Survey Results

259

Enter your experiment user ID: 1 2 3 4 5 6 7 8 9

What is your experience with
Odoo Notes?

What is your experience with
note-taking (kanban-style)
applications?

If applicable, what is the
purpose of using a note-taking
application?

Which version of Odoo would
you prefer in general?

The reason for the above
choice

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Move Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Attach File]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Add tag]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Change Tag
Colour]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Create
Stage]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Delete
Stage]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Change
Note Colour]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Create new
tag]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Edit Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Comment in
Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Remove
follower from note]

Only heard of
it but have
not used it

Use it
occasionally

Use it
occasionally

Only heard of
it but have
not used it

Never heard
of it

Only heard of
it but have
not used it

Only heard of
it but have
not used it

Only heard of it
but have not
used it

Only heard of
it but have not
used it

Use it
occasionally

Use it
occasionally

Use it
everyday

Use it
everyday

Used it just a
few times

Only heard of
it but have
not used it

Use it
everyday

Used it just a
few times

Use it
occasionally

Both Personal Professional Both Personal Personal Both Professional Both

11 11 10 11 11 11 11 10 11

easy to
interact with
the
features;quick
to find the
required
features;simpl
er than the
other

easy to
interact with
the
features;quick
to find the
required
features;visua
lly
better;better
response time

easy to
interact with
the
features;bette
r response
time;simpler
than the
other

easy to
interact with
the
features;quick
to find the
required
features;simpl
er than the
other

easy to
interact with
the
features;visua
lly
better;better
response
time;simpler
than the
other

quick to find
the required
features;visua
lly
better;simpler
than the
other

quick to find
the required
features;bette
r response
time;simpler
than the
other

easy to interact
with the
features;visuall
y better;better
response time

easy to interact
with the
features;quick
to find the
required
features

10 10 10 10 10 10 10 10 10

10 10 10 10 None 10 10 11 10

10 None 10 10 Either Either 11 Either 10

11 Either 10 10 Either 10 10 11 Either

Either Either Either Either 10 Either 10 10 10

Either 10 Either Either 10 Either 10 10 10

11 10 10 10 10 10 10 10 10

10 11 Either None Either 11 10 10 10

Either 10 10 10 10 10 11 10 11

10 10 10 10 11 10 10 11 11

10 10 10 10 Either 11 11 None 11

Usage Analytics: Optimizing Feature Prioritization in Software Development

E.1 Survey Results - Odoo Notes

260

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Rename
Stage]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Search with
Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Invite and
Add follower]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Create
Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Delete
Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Open
commenting in note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Search with
both Tag and Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Invite User]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Drag and
Drop note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Open Note]

Which version of the action do
you prefer? Odoo version 10 or
Odoo version 11? [Search with
Tag]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Move Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Attach File]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Add tag]

10 11 11 Either 11 11 11 11 Either

11 11 Either 11 11 10 11 11 11

11 11 10 11 11 10 11 11 11

11 11 10 10 Either 11 11 11 11

11 11 10 10 Either 11 11 11 11

11 Either 10 11 11 11 10 Either 11

11 11 11 11 11 11 11 11 Either

11 None Either 11 11 Either 11 10 11

11 11 11 11 11 11 11 11 10

11 11 11 11 11 11 Either Either 10

11 11 11 11 11 11 11 11 10

4 5 3 5 5 4 5 4 3

5 5 2 4 4 3 5 4 4

3 3 4 4 5 4 5 3 4

Usage Analytics: Optimizing Feature Prioritization in Software Development

261

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Change Tag
Colour]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Create Stage]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Delete Stage]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Change Note
Colour]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Create new
tag]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Edit Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Comment in
Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Remove
follower from note]

3 3 4 4 4 5 5 4 5

3 1 2 3 4 2 2 2 4

4 4 1 2 3 4 3 4 3

3 3 2 3 5 3 4 4 2

4 2 3 4 3 4 4 2 4

3 4 2 5 2 4 2 1 3

3 4 1 3 4 5 1 1 2

3 5 2 2 2 2 2 1 2

Usage Analytics: Optimizing Feature Prioritization in Software Development

262

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Rename
Stage]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Search with
Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Invite and
Add follower]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Create Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Delete Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Open
commenting in note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Search with
both Tag and Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Invite User]

2 3 3 2 1 2 1 1 1

1 2 4 1 2 1 1 1 2

2 2 3 1 2 2 1 2 4

2 1 4 1 3 2 1 1 1

2 1 2 2 1 1 2 2 2

1 1 5 2 1 2 3 1 1

2 2 1 1 3 4 2 1 2

2 2 2 1 2 2 1 1 2

Usage Analytics: Optimizing Feature Prioritization in Software Development

263

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Drag and
Drop note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Open Note]

Compared to Odoo 10, how
easy was it to perform the
following actions in Odoo 11?
 1: Very Easy
 2: Easy
 3: Neutral
 4: Difficult
 5: Very Difficult [Search with
Tag]

Timestamp

1 1 1 1 1 1 2 2 2

2 2 1 1 1 1 2 2 1

1 1 4 2 1 1 1 2 1

2021-02-08
14:54:31

2021-02-10
16:18:25

2021-02-11
14:42:27

2021-02-15
16:20:14

2021-03-04
03:49:51

2021-03-06
22:34:42

2021-03-16
23:32:52

2019-09-28
17:40:25

2019-09-21
20:44:11

Usage Analytics: Optimizing Feature Prioritization in Software Development

264

Usage Analytics: Optimizing Feature Prioritization in Software Development

Appendix F

Consistency Scores

The consistency scores for the experiment tasks with the Odoo Notes application are shown in

the following table:

userId actionName consistency frequency consistency timespent

1 Add tag -0.01356857343 -18.90453815

1 Attach File 0 0

1 Change Note Colour -0.03379042211 -37.85884213

1 Change Tag Colour 0.006915298175 90.36656308

1 Comment in Note -0.006653275252 -7.796715021

1 Create Note -0.05427429371 -0.7291219234

1 Create Stage 0 0

1 Create new tag 0.003588660549 10.89690995

1 Delete Note -0.003326637626 -0.1371440887

1 Delete Stage 0 0

1 Drag and Drop note -0.04070572028 -16.39874506

1 Edit Note 0.03764110558 47.99980903

1 Invite User 0 0

1 Invite and Add follower -0.006653275252 -8.825518131

1 Move Note 0.05120967901 43.70661092

1 Open Note 0.0007860687685 99.99578142

1 Open commenting in note -0.003326637626 7.930943012

1 Remove follower from note 0 0

265

Usage Analytics: Optimizing Feature Prioritization in Software Development

1 Rename Stage 0 0

1 Search with Note 0 0

1 Search with Tag 0 0

1 Search with both Tag and Note 0 0

2 Add tag 0.07528221116 63.52208877

2 Attach File 0 0

2 Change Note Colour -0.04377033498 -61.4874022

2 Change Tag Colour -0.01689521105 -31.42152095

2 Comment in Note -0.003326637626 -1.036033154

2 Create Note -0.02354848631 -8.900658846

2 Create Stage 0.006915298175 1.421996832

2 Create new tag -0.03046378448 -30.02299309

2 Delete Note -0.02713714685 -7.428654909

2 Delete Stage 0.006915298175 26.44088101

2 Drag and Drop note -0.02713714685 -30.29785299

2 Edit Note 0.01050395872 -2.140885592

2 Invite User 0 0

2 Invite and Add follower 0.006915298175 12.91068697

2 Move Note 0.102419358 85.08754301

2 Open Note 0.1679836792 91.71218753

2 Open commenting in note 0.01715723398 13.15757418

2 Remove follower from note 0.0102419358 25.33299494

2 Rename Stage 0.006915298175 15.07517123

2 Search with Note 0.09576608276 66.49722314

2 Search with Tag 0.0379031285 58.69153404

2 Search with both Tag and Note 0.0409677432 40.74921799

3 Add tag -0.002540568858 15.52653718

3 Attach File 0 0

3 Change Note Colour 0.004374729317 -41.48875117

3 Change Tag Colour 0.02074589453 15.88193941

3 Comment in Note -0.05068563316 -14.43976116

3 Create Note -0.01278250466 122.0679915

266

Usage Analytics: Optimizing Feature Prioritization in Software Development

3 Create Stage -0.003326637626 -14.81203485

3 Create new tag -0.009979912878 3.511626244

3 Delete Note -0.03352839918 27.75095606

3 Delete Stage 0 0

3 Drag and Drop note -0.2578028951 -194.6696591

3 Edit Note 0.02100791745 19.69087315

3 Invite User 0 0

3 Invite and Add follower 0.01409261927 48.23670697

3 Move Note 0.2458064592 156.8133934

3 Open Note -0.1192349087 -51.23088598

3 Open commenting in note -0.06066554604 18.04998851

3 Remove follower from note 0.0102419358 6.929500103

3 Rename Stage 0 0

3 Search with Note -0.009979912878 2.328601837

3 Search with Tag -0.1182664774 -31.38717341

3 Search with both Tag and Note -0.01689521105 -0.9250850677

4 Add tag -0.02993973863 9.114121437

4 Attach File 0 0

4 Change Note Colour -0.05707688549 16.08052063

4 Change Tag Colour -0.009979912878 2.598886967

4 Comment in Note -0.03352839918 26.95632482

4 Create Note -0.03659301389 172.0924573

4 Create Stage 0.006915298175 25.70051575

4 Create new tag -0.006653275252 -0.8949689865

4 Delete Note 0.007177321098 38.86104465

4 Delete Stage 0.0102419358 5.514264107

4 Drag and Drop note -0.284940042 -160.4548419

4 Edit Note -0.02687512393 -11.10823894

4 Invite User 0 0

4 Invite and Add follower -0.009717889955 8.926298141

4 Move Note 0.2355645234 325.1020932

4 Open Note -0.313569666 -256.7997551

267

Usage Analytics: Optimizing Feature Prioritization in Software Development

4 Open commenting in note -0.05016158731 43.01380348

4 Remove follower from note 0 0

4 Rename Stage 0.0102419358 9.752995014

4 Search with Note -0.009979912878 -3.317331791

4 Search with Tag -0.06758084421 -20.53127217

4 Search with both Tag and Note -0.01689521105 -1.294410944

5 Add tag -0.02993973863 41.21458507

5 Attach File 0 0

5 Change Note Colour 0.01102800457 20.57898116

5 Change Tag Colour -0.009979912878 -0.9950740337

5 Comment in Note 0.003850683472 -11.88265896

5 Create Note -0.03326637626 187.5616546

5 Create Stage -0.003326637626 9.961589098

5 Create new tag -0.009979912878 -1.648380041

5 Delete Note -0.01995982576 70.44967103

5 Delete Stage 0 0

5 Drag and Drop note -0.3120771888 -146.8916204

5 Edit Note -0.009979912878 -18.70308185

5 Invite User 0 0

5 Invite and Add follower -0.01995982576 11.15162659

5 Move Note 0.2253225876 265.4299929

5 Open Note -0.2424001612 -96.77872944

5 Open commenting in note -0.006129229407 9.717289925

5 Remove follower from note 0 0

5 Rename Stage 0.0102419358 71.99710393

5 Search with Note -0.006653275252 1.376310825

5 Search with Tag -0.08062537179 12.32108426

5 Search with both Tag and Note -0.01689521105 -0.6063678265

6 Add tag 0.007439344021 51.55554485

6 Attach File 0 0

6 Change Note Colour 0.01768127982 12.38658571

6 Change Tag Colour -0.006653275252 -1.682683945

268

Usage Analytics: Optimizing Feature Prioritization in Software Development

6 Comment in Note -0.02328646338 45.40091372

6 Create Note -0.03659301389 308.8317707

6 Create Stage -0.003326637626 0.5205657482

6 Create new tag -0.006653275252 0.1369864941

6 Delete Note -0.03020176156 19.00878811

6 Delete Stage 0 0

6 Drag and Drop note -0.3120771888 -208.8755009

6 Edit Note -0.009979912878 -123.8971648

6 Invite User 0 0

6 Invite and Add follower 0.0005240458456 20.51992488

6 Move Note 0.2253225876 172.8433774

6 Open Note -0.3852632166 -179.1894655

6 Open commenting in note -0.03326637626 15.08556271

6 Remove follower from note 0 0

6 Rename Stage 0 0

6 Search with Note 0.01383059635 10.86717153

6 Search with Tag -0.08088739472 -7.483486414

6 Search with both Tag and Note -0.006653275252 3.947545767

7 Add tag -0.009717889955 99.28732777

7 Attach File 0 0

7 Change Note Colour -0.02328646338 18.10694098

7 Change Tag Colour -0.02022184868 -4.183352232

7 Comment in Note -0.02328646338 -35.5171926

7 Create Note -0.02302444046 158.0554397

7 Create Stage -0.003326637626 1.292878866

7 Create new tag -0.006653275252 -6.967528582

7 Delete Note -0.003064614703 13.17255497

7 Delete Stage 0 0

7 Drag and Drop note -0.2442343217 -111.4076192

7 Edit Note -0.009979912878 36.80671501

7 Invite User 0 0

7 Invite and Add follower -0.02328646338 74.21465635

269

Usage Analytics: Optimizing Feature Prioritization in Software Development

7 Move Note 0.2355645234 174.7639158

7 Open Note -0.5150817444 -230.2650464

7 Open commenting in note 0.04840708723 54.56279135

7 Remove follower from note 0 0

7 Rename Stage 0 0

7 Search with Note -0.04735899553 -21.80365825

7 Search with Tag -0.03020176156 -36.52036524

7 Search with both Tag and Note -0.003326637626 2.1539042

8 Add tag -0.04989956439 41.59093618

8 Attach File 0 0

8 Change Note Colour -0.04989956439 6.386523008

8 Change Tag Colour -0.009717889955 67.86098933

8 Comment in Note -0.03711705973 -18.18979216

8 Create Note -0.05296417909 150.0753648

8 Create Stage -0.003326637626 61.84516883

8 Create new tag -0.009979912878 5.674592972

8 Delete Note -0.03020176156 19.402704

8 Delete Stage 0 0

8 Drag and Drop note -0.379920056 -139.2924292

8 Edit Note -0.009979912878 -3.017534018

8 Invite User 0 0

8 Invite and Add follower -0.03020176156 -2.150266886

8 Move Note 0.2867742024 184.6075647

8 Open Note -0.4343767122 -123.7036674

8 Open commenting in note -0.01584711936 70.94940376

8 Remove follower from note 0 0

8 Rename Stage 0 0

8 Search with Note 0.04122976613 67.23090315

8 Search with Tag -0.08780269289 -14.26381278

8 Search with both Tag and Note -0.006653275252 0.7595999241

9 Add tag -0.02661310101 -14.2554841

9 Attach File 0 0

270

Usage Analytics: Optimizing Feature Prioritization in Software Development

9 Change Note Colour 0.01768127982 16.26469588

9 Change Tag Colour -0.009979912878 -32.35613108

9 Comment in Note 0.02407253215 18.8578794

9 Create Note -0.03326637626 171.2920566

9 Create Stage -0.003326637626 22.79887009

9 Create new tag -0.009979912878 2.222717285

9 Delete Note -0.03685503681 26.30660129

9 Delete Stage 0 0

9 Drag and Drop note -0.3120771888 -147.7014315

9 Edit Note 0.007177321098 30.76896572

9 Invite User 0 0

9 Invite and Add follower -0.003326637626 -0.5448291302

9 Move Note 0.2253225876 187.019875

9 Open Note -0.1878638446 116.9649484

9 Open commenting in note -0.01637116521 40.39643526

9 Remove follower from note 0 0

9 Rename Stage 0 0

9 Search with Note -0.02354848631 -9.84709692

9 Search with Tag -0.1082865645 -1.981745958

9 Search with both Tag and Note -0.01689521105 -13.40402484

271

Usage Analytics: Optimizing Feature Prioritization in Software Development

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development

methods: Review and analysis. Espoo, Finl. Tech. Res. Cent. Finland, VTT Publ., page 478.

Abras, C., Maloney-Krichmar, D., Preece, J., et al. (2004). User-centered design. Bainbridge, W.

Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications, 37(4):445–

456.

Aggarwal, C. C. and Yu, P. S. (2009). Data mining: The textbook. Springer.

Al-Bayati, B., Clarke, N., and Dowland, P. (2016). Adaptive behavioral profiling for identity ver-

ification in cloud computing: A model and preliminary analysis. GSTF Journal on Computing

(JoC), 5(1):21.

Alahyari, H., Svensson, R., and Gorschek, T. (2017). Hybrid approaches in software engineering:

Combining qualitative and quantitative methods. Journal of Software: Evolution and Process,

29(8):e1905.

Aldhaheri, R. and Abdullah, R. (2020). A multi-metric approach to software feature prioritiza-

tion using usage analytics. Journal of Software: Evolution and Process, 32(10):e2256.

Amininiaki, S. and Saidi, M. (2024). Advanced log data analysis techniques for software develop-

ment. International Journal of Software Engineering and Knowledge Engineering, 34(2):145–

162.

Apel, S., Lengauer, C., Möller, B., and Kästner, C. (2008). An algebra for features and feature

composition. In International Conference on Algebraic Methodology and Software Technology,

pages 36–50. Springer.

Appsero (2023). 7 steps to perform user feedback analysis for software development.

272

Usage Analytics: Optimizing Feature Prioritization in Software Development

Arias, G., Vilches, D., Banchoff, C., Harari, I., Harari, V., and Iuliano, P. (2012). The 7 key

factors to get successful results in the IT Development projects. Procedia Technol., 5:199–207.

Arora, G. and Malik, R. (2017). Evaluating consistency in user interactions for enhancing

software usability. Empirical Software Engineering, 22(6):3023–3050.

Atterer, R., Wnuk, M., and Schmidt, A. (2006). Knowing the user’s every move. Proceedings of

the 15th international conference on World Wide Web - WWW ’06, page 203.

Ballandies, M. C., Holzwarth, V., Sunderland, B., Pournaras, E., and Brocke, J. v. (2022).

Constructing effective customer feedback systems–a design science study leveraging blockchain

technology. arXiv preprint arXiv:2203.15254.

Banerjee, A. and Ghosh, J. (2001). Clickstream clustering using weighted longest common

subsequences. In Proceedings of the web mining workshop at the 1st SIAM conference on data

mining, volume 143, page 144.

Batory, D. (2006). Feature modularity for product-lines. Tutorial at: OOPSLA, 6:9.

Batory, D., Benavides Cuevas, D. F., and Ruiz Cortés, A. (2006). Automated analysis of feature

models: challenges ahead. Communications of the ACM-Software product line, 49 (12), 45-47.

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004). Scaling step-wise refinement. IEEE

Transactions on Software Engineering, 30(6):355–371.

Bauer, M., Sergieieva, K., and Meixner, G. (2017). Enabling Focused Software Quality Assurance

in Agile Software Development Processes for Mobile Applications using Text and Usage Mining

Methods. In Proc. 12th Int. Jt. Conf. Comput. Vision, Imaging Comput. Graph. Theory Appl.,

pages 128–132. SCITEPRESS - Science and Technology Publications.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-

ning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. (2001). Manifesto for agile software

development.

Benyon, D. (2013). Designing Interactive Systems: A Comprehensive Guide to HCI, UX and

Interaction Design. Pearson Education.

Berndtsson, M., Forsberg, D., Stein, D., and Svahn, T. (2018). BECOMING A DATA-DRIVEN

273

Usage Analytics: Optimizing Feature Prioritization in Software Development

ORGANISATION. In Proceedings of the 26th European Conference on Information Systems

(ECIS2018), Portsmouth, United Kingdom. AIS.

Beyer, H. and Holtzblatt, K. (1997). Contextual Design: Defining Customer-Centered Systems.

Morgan Kaufmann.

Bezemer, C. P., Zaidman, A., Platzbeecker, B., Hurkmans, T., and Hart, A. (2010). Enabling

multi-tenancy: An industrial experience report. IEEE International Conference on Software

Maintenance, ICSM.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,

21(5):61–72.

Bosch, J. (2000). Design and use of software architectures: adopting and evolving a product-line

approach. Pearson Education.

Bosch, J. (2012). Building products as innovation experiment systems. Lect. Notes Bus. Inf.

Process., 114 LNBIP(Icsob):27–39.

Bosch, J. and Olsson, H. (2014). Continuous software engineering: An update on the state of

the art. Journal of Systems and Software, 95:68–86.

Bosch, J. and Olsson, H. (2016). The real-time feedback imperative in software development. In

2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 847–850. ACM.

Bosch, J., Olsson, H. H., Björk, J., and Crnkovic, I. (2014). The early stage software startup

development model: A framework for operationalizing lean principles in software startups. In

Agile Conference, pages 40–50. IEEE.

Bucklin, R. E. and Sismeiro, C. (2009a). Click Here for Interact Insight: Advances in Clickstream

Data Analysis in Marketing. Journal of Interactive Marketing, 23(1):35–48.

Bucklin, R. E. and Sismeiro, C. (2009b). Modeling the clickstream: Implications for web-based

advertising efforts. Marketing Science.

Buse, R. P. and Zimmermann, T. (2012a). Data quality in software engineering. In Proceedings

of the 34th International Conference on Software Engineering, pages 1257–1267.

274

Usage Analytics: Optimizing Feature Prioritization in Software Development

Buse, R. P. and Zimmermann, T. (2012b). Information needs for software development analytics.

Proceedings of the 34th International Conference on Software Engineering (ICSE), pages 987–

996.

Buse, R. P. L. and Zimmermann, T. (2012c). Analytics for software development. In Proceedings

of the 34th International Conference on Software Engineering (ICSE), pages 921–930. IEEE.

CGI (2023). The future of agile: trends and predictions for 2023 and beyond.

Chaffey, D. and Patron, D. (2012). Digital Business and E-commerce Management: Strategy,

Implementation and Practice. Pearson Education.

Chandra, D. G. and Malaya, D. B. (2012). Role of cloud computing in education. In Computing,

Electronics and Electrical Technologies (ICCEET), 2012 International Conference on, pages

832–836. IEEE.

Chen, C. C., Liu, J. Y. C., and Chen, H. G. (2011). Discriminative effect of user influence and

user responsibility on information system development processes and project management.

Inf. Softw. Technol., 53(2):149–158.

Chen, C.-H., Wu, C.-H., and Shen, C.-L. (2013). Data mining for the online retail industry: A

case study of rfm model-based customer segmentation using data mining. Journal of Database

Marketing & Customer Strategy Management, 19(3):197–208.

Chen, J. and Jin, Y. (2016a). A survey on feature location techniques. Journal of Software:

Evolution and Process, 28(10):826–852.

Chen, L. and Jin, L. (2016b). A scalable feedback mechanism for modern software development.

Journal of Software: Evolution and Process, 28(8):660–671.

Chen, L. and Liu, Y. (2017). User-centric feature prioritization in software development: A case

study. Journal of Systems and Software, 123:159–171.

Cito, J., Leitner, P., Gall, H. C., Dadashi, A., Keller, A., and Roth, A. (2015a). Runtime

metric meets developer: building better cloud applications using feedback. In 2015 ACM

International Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software (Onward!), pages 14–27. ACM.

275

Usage Analytics: Optimizing Feature Prioritization in Software Development

Cito, J., Leitner, P., Gall, H. C., Dadashi, A., Keller, A., and Roth, A. (2015b). Runtime Metric

Meets Developer: Building Better Cloud Applications Using Feedback. In 2015 ACM Int.

Symp. New Ideas, New Paradig. Reflections Program. Softw., pages 14–27, New York, New

York, USA. ACM Press.

Claps, G. G., Berntsson Svensson, R., and Aurum, A. (2015). On the journey to continuous

deployment: Technical and social challenges along the way. Inf. Softw. Technol., 57(1):21–31.

Classen, A., Heymans, P., and Schobbens, P.-Y. (2008). What’s in a feature: A requirements

engineering perspective. In International Conference on Fundamental Approaches to Software

Engineering, pages 16–30. Springer.

Claypool, M., Brown, P. L., Le, T., and Waseda, M. (2001a). Inferring user interest from nav-

igation patterns. Proceedings of the International Conference on Intelligent User Interfaces,

pages 33–40.

Claypool, M. et al. (2001b). Implicit interest indicators. In Proceedings of the 6th International

Conference on Intelligent User Interfaces, pages 33–40.

Claypool, M., Le, P., Wased, M., and Brown, D. (2001c). Implicit interest indicators. Proceedings

of the 6th International Conference on Intelligent User Interfaces, pages 33–40.

Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative.

Prentice Hall Upper Saddle River, NJ.

Crowston, K. and Kammerer, E. (2003). Analyzing the reliability of user behavior patterns in

software usage data. Journal of Software Maintenance and Evolution: Research and Practice,

15(5):345–367.

Czarnecki, K., Østerbye, K., and Völter, M. (2002). Generative programming. In European

Conference on Object-Oriented Programming, pages 15–29. Springer.

De Chaves, S. A., Uriarte, R. B., and Westphall, C. B. (2011). Toward an architecture for

monitoring private clouds. IEEE Communications Magazine, 49(12):130–137.

Deka, G. and Vemuru, S. (2021). Best practices for implementing usage analytics in modern

software development environments. Journal of Systems and Software, 173:110878.

276

Usage Analytics: Optimizing Feature Prioritization in Software Development

Duvall, P. M., Matyas, S., and Glover, A. (2007). Continuous Integration: Improving Software

Quality and Reducing Risk. Addison-Wesley Professional.

Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., and Schroeder, U. (2012). Design

and implementation of a learning analytics toolkit for teachers. Educational Technology and

Society, 15(3):58–76.

Fabijan, A., Olsson, H. H., and Bosch, J. (2015). Customer Feedback and Data Collection

Techniques in Software R&D: A Literature Review. In 2014 40th EUROMICRO Conf. Softw.

Eng. Adv. Appl., number 210, pages 139–153. IEEE.

Fabijan, A., Olsson, H. H., and Bosch, J. (2016a). The Lack of Sharing of Customer Data in

Large Software Organizations: Challenges and Implications. In Int. Conf. Agil. Softw. Dev.

Springer, Cham, volume 251, pages 39–52.

Fabijan, A., Olsson, H. H., and Bosch, J. (2016b). Time to Say ’Good Bye’: Feature Lifecycle.

Proc. - 42nd Euromicro Conf. Softw. Eng. Adv. Appl. SEAA 2016, pages 9–16.

Fagerholm, F., Guinea, A. S., Mäenpää, H., and Münch, J. (2014). Building blocks for continuous

experimentation. In Proc. 1st Int. Work. Rapid Contin. Softw. Eng. - RCoSE 2014, pages

26–35, New York, New York, USA. ACM Press.

Féris, M. A. A., Zwikael, O., and Gregor, S. (2017). Qplan: Decision support for evaluating

planning quality in software development projects. Decision Support Systems, 96:92–102.

Ferreira, M. and Costa, P. (2024). Integrating surveys with user feedback mechanisms in software

development. Software: Practice and Experience, 54(4):789–804.

Fitzgerald, B. and Stol, K. J. (2017a). Continuous software engineering: A roadmap and agenda.

Journal of Systems and Software, 123:176–189.

Fitzgerald, B. and Stol, K. J. (2017b). Continuous software engineering: A roadmap and agenda.

J. Syst. Softw., 123:176–189.

Fitzgerald, B. and Stol, K.-J. (2017c). Data-driven software engineering: Analytics, metrics,

and beyond. Journal of Systems and Software, 125:1–10.

Fu, Q., Lou, J.-G., Lin, Q., Ding, R., Zhang, D., and Xie, T. (2013). Contextual analysis of

277

Usage Analytics: Optimizing Feature Prioritization in Software Development

program logs for understanding system behaviors. Proceedings of the 10th Working Conference

on Mining Software Repositories, pages 397–400.

FullScale (2023). The power of integrating data analysis in software development.

Ganter, B. and Wille, R. (1997). Formal Concept Analysis: Mathematical Foundations. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1st edition.

Gasparetti, F. (2017). Modeling user interests from web browsing activities. Data mining and

knowledge discovery, 31(2):502–547.

Ghezzi, C., Pezzè, M., Sama, M., and Tamburrelli, G. (2014). Mining behavior models from user-

intensive web applications. In Proceedings of the 36th International Conference on Software

Engineering, pages 277–287. ACM.

Gorschek, T., Fricker, S. A., and Palm, K. (2017). A lightweight innovation process for software-

intensive product development. IEEE software, 24(1):57–64.

Graf, S., Ives, C., Rahman, N., and Ferri, A. (2011). AAT: a tool for accessing and analysing stu-

dents’ behaviour data in learning systems. 1st International Conference on Learning Analytics

and Knowledge, pages 174–179.

Gulliksen, J. and et al. (2003). User-Centered Design - In Search of Common Ground. Human-

Computer Interaction, Lawrence Erlbaum Associates.

Guo, Y. and Barnes, S. (2012). Enhancing e-learning systems through user behavior analysis.

Computers & Education, 59(4):1377–1393.

Gupta, A., Mahajan, A., and Venkatesh, K. (2021). Clustering algorithms for analyzing user

behavior in software applications. Information and Software Technology, 132:106488.

Gurp, J., Bosch, J., and Selic, B. (2009). Evolving software systems through incremental im-

provement. IEEE Software, 26(4):72–79.

Hackos, J. T. and Redish, J. C. (1998). User and Task Analysis for Interface Design. Wiley.

Hamiot, N. and Verlaine, D. (2024). Integrating automated feedback with social media analysis

in software development. Journal of Software Engineering, 28(3):234–250.

278

Usage Analytics: Optimizing Feature Prioritization in Software Development

Han, S., Dang, Y., Ge, S., Zhang, D., and Xie, T. (2012). Performance debugging in the

large via mining millions of stack traces. In 2012 34th International Conference on Software

Engineering (ICSE), pages 145–155. IEEE.

Harker, S. D. and Eason, K. D. (1983). Data integration in software engineering. International

Journal of Man-Machine Studies, 18(2):233–248.

Helfert, M., Donnellan, B., and Ostrowski, L. (2012). The case for design science utility and

quality-evaluation of design science artifact within the. Systems, Signs & Actions, 6(1):46–66.

Hess, J., Randall, D., Pipek, V., and Wulf, V. (2013). Involving users in the wild—Participatory

product development in and with online communities. Int. J. Hum. Comput. Stud., 71(5):570–

589.

Hevner, A. and Chatterjee, S. (2010). Design research in information systems: theory and

practice, volume 22. Springer Science & Business Media.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of

information systems, 19(2):4.

Holmström Olsson, H. and Bosch, J. (2013). Towards Data-Driven Product Development: A

Multiple Case Study on Post-deployment Data Usage in Software-Intensive Embedded Sys-

tems. In Lect. Notes Bus. Inf. Process. B. Ser., volume 167, pages 152–164. Springer.

Huang, M.-H. and Rust, R. T. (2018). Data-driven service innovation: The role of big data and

analytics in predicting user satisfaction. Journal of Service Research, 21(2):181–193.

Iivari, J., Hirschheim, R., and Klein, H. K. (2000). A dynamic framework for classifying informa-

tion systems development methodologies and approaches. Journal of management information

systems, 17(3):179–218.

Iivari, J. and Venable, J. (2009). Action research and design science research-seemingly similar

but decisively dissimilar. In ECIS, pages 1642–1653.

Iqbal, M. and Ahmed, S. (2024). A/b testing combined with online forum feedback for software

improvement. Software Testing, Verification & Reliability, 34(2):98–115.

Jakobi, T. and Stevens, G. (2013). Always beta: cooperative design in the smart home. In Proc.

279

Usage Analytics: Optimizing Feature Prioritization in Software Development

2013 ACM Conf. Pervasive ubiquitous Comput. Adjun. Publ. - UbiComp ’13 Adjun., pages

837–844, New York, New York, USA. ACM Press.

Jensen, C. and Scacchi, W. (2005). Data integration in software development environments. In

Proceedings of the 2005 International Symposium on Empirical Software Engineering, pages

144–153. IEEE.

Jiang, L. and Naudé, P. (2011). User involvement and market orientation in the software

industry. Journal of Systems and Software, 84(1):109–124.

Jin, H. and Lee, K. (2013). Analyzing implicit feedback for improving user satisfaction in

software systems. In Proceedings of the 22nd International Conference on World Wide Web,

pages 785–796.

Johnson, R. and Smith, J. (2019). Continuous user feedback in software development: A sys-

tematic review. Information and Software Technology, 105:82–94.

Joshi, N. (2024). The role of user experience (ux) in custom software development.

Kakar, A. (2020). Mitigating consensus bias in feature prioritization: Insights from social influ-

ence theory. Journal of Software: Evolution and Process, 32(1):e2234.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990). Feature-

oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univ

Pittsburgh Pa Software Engineering Inst.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). Form: A feature-; oriented

reuse method with domain-; specific reference architectures. Annals of Software Engineering,

5(1):143.

Kapoor, A. et al. (2021). Implicit feedback for improving user experience in software systems.

ACM Transactions on Computer-Human Interaction (TOCHI), 28(2):1–22.

Kaptelinin, V. and Nardi, B. A. (2006). Acting with Technology: Activity Theory and Interaction

Design. MIT Press.

Karlsson, L. et al. (2007a). Prioritization of features in agile development using the kano model.

IEEE Software, 24(3):28–35.

280

Usage Analytics: Optimizing Feature Prioritization in Software Development

Karlsson, L., Thelin, T., and Regnell, B. (2007b). Requirements prioritization: An experiment

on exhaustive pair-wise comparisons versus planning game partitioning. Empirical Software

Engineering, 12(1):3–33.

Kesavulu, M., Bezbradica, M., and Helfert, M. (2017a). Generic refactoring methodology for

cloud migration-position paper. In International Conference on Cloud Computing and Services

Science, volume 2, pages 692–695. SCITEPRESS.

Kesavulu, M., Dang-Nguyen, D.-T., Bezbradica, M., and Helfert, M. (2018a). An Overview of

User-level Usage Monitoring in Cloud Environment. In The UK Academy for Information

Systems (UKAIS).

Kesavulu, M., Dang-Nguyen, D.-T., Bezbradica, M., and Helfert, M. (2018b). A usage analytics

model for analysing user behaviour in ibm academic cloud.

Kesavulu, M., Helfert, M., and Bezbradica, M. (2017b). A Usage-based Data Extraction Frame-

work for Cloud-Based Application - An Human-Computer Interaction approach. In Inter-

national Conference on Computer-Human Interaction Research and Applications (CHIRA),

Madeira, Portugal.

Kim, D. and Park, S. (2020). Actionable insights from user behavior analysis in software devel-

opment. Empirical Software Engineering, 25(3):1879–1905.

Kim, G., Humble, J., Debois, P., and Willis, J. (2016). The DevOps Handbook: How to Create

World-Class Agility, Reliability, & Security in Technology Organizations. IT Revolution Press.

Kim, J. W. et al. (2011). Understanding and improving information architecture of large-scale

analytics projects. In Proceedings of the 20th ACM International Conference on Information

and Knowledge Management, pages 1597–1602.

Kitchenham, B. A. and Charters, S. (2004). Procedures for performing systematic reviews. Keele

University Technical Report, 33(2004):1–26.

Kitchenham, B. A. et al. (2004). Empirical research methods in software engineering. Journal

of Empirical Software Engineering, 9(3):311–324.

Kittur, A., Chi, E. H., and Suh, B. (2008). Crowdsourcing user studies with mechanical turk.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

453–456.

281

Usage Analytics: Optimizing Feature Prioritization in Software Development

Krusche, S. and Alperowitz, L. (2014). Introduction of continuous delivery in multi-customer

project courses. In Companion Proc. 36th Int. Conf. Softw. Eng. - ICSE Companion 2014,

pages 335–343, New York, New York, USA. ACM Press.

Krusche, S. and Bruegge, B. (2014). User Feedback in Mobile Development. Proc. 2nd Int.

Work. Mob. Dev. Lifecycle - MobileDeLi ’14, pages 25–26.

Kumar, A., Sung, M., Xu, J. J., and Wang, J. (2004). Data streaming algorithms for efficient and

accurate estimation of flow size distribution. SIGMETRICS Perform. Eval. Rev., 32(1):177–

188.

Labib, C., Hasanein, E., and Hegazy, O. (2010). Early development of Graphical User Interface

(GUI) in agile methodoligies. INFOS2010 - 2010 7th Int. Conf. Informatics Syst.

Lambert, V. A. and Lambert, C. E. (2012). Qualitative descriptive research: An acceptable

design. Pacific Rim international journal of nursing research, 16(4):255–256.

Lee, C., Myrick, R., Asai, D., Coughlin, J. F., and Weck, O. L. D. E. (2013). Learning From a

Design Experience : Continuous User Involvement in Development of Aging-in-Place Solution

for Older Adults. ICED13 19th Int. Conf. Eng. Des., (August):1–10.

Lee, J. et al. (2020). User-centric development driven by usage analytics. Empirical Software

Engineering, 25(1):244–265.

Lee, K. and Taylor, R. (2021). Understanding the relationship between software features and user

actions for better software design. Journal of Software: Evolution and Process, 33(4):e2358.

Lethbridge, T. C. et al. (2005). An investigation of the limitations of traditional feedback

methods in software engineering education. In Proceedings of the 27th international conference

on Software engineering, pages 191–200.

Lindgren, E. and Münch, J. (2016). Raising the odds of success: the current state of experimen-

tation in product development. Inf. Softw. Technol., 77:80–91.

Litoiu, M. et al. (2010). Real-time feedback in adaptive systems. In 2010 32nd ACM/IEEE

International Conference on Software Engineering, pages 455–464. IEEE.

Liu, X., Zhang, Z., and Li, M. (2020). Advancements in real-time analytics platforms for software

development. Journal of Systems and Software, 162:110566.

282

Usage Analytics: Optimizing Feature Prioritization in Software Development

Lo, D. and Nagappan, N. (2015). Towards understanding user behavior consistency for soft-

ware feature improvement. In Proceedings of the 37th International Conference on Software

Engineering (ICSE), pages 314–324. IEEE.

Lo, D. and Zimmermann, T. (2013). Mining metrics to predict component failures. In Proceedings

of the 35th International Conference on Software Engineering (ICSE), pages 589–598. IEEE.

Lou, J., Lin, Q., Ding, R., and Fu, Q. (2013). Software analytics for incident management of

online services: An experience report. Automated Software . . . , pages 475–485.

Maalej, W., Happel, H.-J., and Rashid, A. (2009). When users become collaborators: towards

continuous and context-aware user input. In Proceedings of the 24th ACM SIGPLAN confer-

ence companion on Object oriented programming systems languages and applications, pages

981–990.

Maalej, W., Kurtanović, Z., Nabil, H., and Stanik, C. (2016). Bug report, feature request,

or simply praise? on automatically classifying app reviews. 2016 IEEE 24th International

Requirements Engineering Conference (RE), pages 283–293.

March, S. T. and Smith, G. F. (1995). Design and natural science research on information

technology. Decision support systems, 15(4):251–266.

Martin, C. et al. (2018). Enhancing user satisfaction through user-centric development practices.

Journal of Systems and Software, 137:289–299.

Masoudi, R. and Ghassemi, H. (2024). Enhanced clickstream analysis techniques for better

understanding user context. Journal of Web Engineering, 23(1):54–70.

Meijer, E. and Kapoor, V. (2014). The Responsive Enterprise: Embracing the Hacker Way.

Queue, 12(10):10–18.

Menzies, T. and Williams, L. (2011). Automated software engineering: An introduction. Auto-

mated Software Engineering, 18:105–107.

Menzies, T. and Zimmermann, T. (2013). Software analytics: so what? IEEE Software,

30(4):31–37.

283

Usage Analytics: Optimizing Feature Prioritization in Software Development

Moløkken-Østvold, K. and Jørgensen, M. (2003). A review of surveys on software effort esti-

mation. Proceedings of the 2003 International Symposium on Empirical Software Engineering

(ISESE), pages 223–230.

Montero, C. S. and Mart́ınez-Ruiz, F. J. (2009). Event logging in usability testing: Advantages

and disadvantages. In Human-Computer Interaction. New Trends, pages 196–199. Springer.

Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., and Antoniu, G. (2013). Gmone: A complete

approach to cloud monitoring. Future Generation Computer Systems, 29(8):2026–2040.

Mougouei, D. and Powers, D. M. W. (2017). Dependency-Aware Software Release Planning

through Mining User Preferences.

Muller, J. and Stein, L. (2019). Behavioral sequence analysis for software feature prioritization.

IEEE Transactions on Software Engineering, 45(6):1285–1297.

Müller, M., Hämäläinen, T., and Järvenpää, S. (2019). Sequence mining for analyzing user

behavior patterns. Journal of Systems and Software, 150:75–88.

Murphy, G. and Weiss, D. (2013). Prioritizing software features using usage data and user

feedback. Empirical Software Engineering, 18(5):877–904.

Muthitacharoen, A. M. and Saeed, K. A. (2009). Examining user involvement in continuous

software development. Commun. ACM, 52(9):113.

Nardi, B. A. (1996). Activity theory and human-computer interaction. Context and conscious-

ness: Activity theory and human-computer interaction, 436:7–16.

Newman, W. M. (2010). Heuristic Evaluation Methods: A Review. Academic Press.

Nguyen, T. and Wu, M. (2018). Behavioral analysis for user-centric feature prioritization in

software development. IEEE Transactions on Software Engineering, 44(11):1045–1061.

Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann.

Nielsen, J. (2012). Usability 101: Introduction to usability. Nielsen Norman Group.

Nielsen, J. and Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages 249–256. ACM.

284

Usage Analytics: Optimizing Feature Prioritization in Software Development

Norman, D. (2013). The Design of Everyday Things: Revised and Expanded Edition. Basic

Books.

Norman, D. A. and Draper, S. W. (1986). User Centered System Design; New Perspectives on

Human-Computer Interaction. CRC Press.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements engineering: A roadmap. In Proceedings

of the Conference on The Future of Software Engineering, pages 35–46. ACM.

Office, I. C. A. (2020). Leveraging ai to manage and prioritize feature requests. https://www.

ibm.com/blogs/research/2020/08/ai-feature-requests. Accessed: 2024-05-26.

Ogonowski, C., Ley, B., Hess, J., Wan, L., and Wulf, V. (2013). Designing for the living room:

long-term user involvement in a living lab. In Proc. SIGCHI Conf. Hum. Factors Comput.

Syst. - CHI ’13, number April, page 1539, New York, New York, USA. ACM Press.

Olsson, H. and Bosch, J. (2014a). From opinions to data-driven software r&d: A multi-case

study on how to close the ’open loop’ problem. Journal of Systems and Software, 95:122–134.

Olsson, H. and Bosch, J. (2014b). A systematic approach to feature prioritization in agile

software development. In Proceedings of the 2014 International Conference on Agile Software

Development, pages 47–56.

Olsson, H. H., Alahyari, H., and Bosch, J. (2012). Climbing the“ stairway to heaven”–a mulitiple-

case study exploring barriers in the transition from agile development towards continuous

deployment of software. In Software Engineering and Advanced Applications (SEAA), pages

392–399. IEEE.

Olsson, H. H. and Bosch, J. (2014c). From Opinions to Data-Driven Software R&D: A Multi-

case Study on How to Close the ’Open Loop’ Problem. In 2014 40th EUROMICRO Conf.

Softw. Eng. Adv. Appl., pages 9–16. IEEE.

Olsson, H. H. and Bosch, J. (2015). Towards Continuous Customer Validation: A Conceptual

Model for Combining Qualitative Customer Feedback with Quantitative Customer Observa-

tion. In Lect. Notes Bus. Inf. Process., volume 210, pages 154–166.

Pachidi, S., Spruit, M., and Van De Weerd, I. (2014). Understanding users’ behavior with

software operation data mining. Computers in Human Behavior, 30(January):583–594.

285

https://www.ibm.com/blogs/research/2020/08/ai-feature-requests
https://www.ibm.com/blogs/research/2020/08/ai-feature-requests

Usage Analytics: Optimizing Feature Prioritization in Software Development

Pagano, D. and Bruegge, B. (2013). User involvement in software evolution practice: A case

study. In 2013 35th Int. Conf. Softw. Eng., pages 953–962. IEEE.

Pagano, D. and Maalej, W. (2013). User involvement in software evolution practice: A case

study. In 2013 35th International Conference on Software Engineering (ICSE), pages 953–

962. IEEE.

Patton, J. (2014). User Story Mapping: Discover the Whole Story, Build the Right Product.

O’Reilly Media, Inc.

Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems. The Adaptive

Web, pages 325–341.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design science

research methodology for information systems research. Journal of management information

systems, 24(3):45–77.

Pereira, J. and Silveira, M. (2018). Integrating machine learning with traditional metrics for

feature prioritization in software development. Journal of Systems and Software, 145:85–101.

Petruch, K., Tamm, G., and Stantchev, V. (2012). Deriving in-depth knowledge from it-

performance data simulations. International Journal of Knowledge Society Research (IJKSR),

3(2):13–29.

Piccoli, G., Rodriguez, J., Palese, B., and Bartosiak, M. L. (2020). Feedback at scale: designing

for accurate and timely practical digital skills evaluation. European Journal of Information

Systems, 29(2):114–133.

Poppendieck, M. and Cusumano, M. A. (2012). Lean Software Development: A Tutorial. IEEE

Softw., 29(5):26–32.

Preece, J., Rogers, Y., and Sharp, H. (2015). Interaction Design: Beyond Human-Computer

Interaction. John Wiley & Sons.

ProductHQ (2023). Leveraging user feedback for software growth.

Puthal, D., Sahoo, B. P., Mishra, S., and Swain, S. (2015). Cloud computing features, issues,

and challenges: a big picture. In 2015 International Conference on Computational Intelligence

and Networks, pages 116–123. IEEE.

286

Usage Analytics: Optimizing Feature Prioritization in Software Development

Qu, L., Wang, Y., and Orgun, M. a. (2013). Cloud Service Selection Based on the Aggregation

of User Feedback and Quantitative Performance Assessment. IEEE Int. Conf. Serv. Comput.,

pages 152–159.

Racheva, Z., Daneva, M., and Buglione, L. (2010). A comparative study of feature prioritization

methods in agile software development. In 2010 36th EUROMICRO Conference on Software

Engineering and Advanced Applications, pages 367–374. IEEE.

Rahimi, A. and Jahanian, F. (2023). Enhancing in-app feedback with social media insights.

IEEE Transactions on Software Engineering, 49(1):120–135.

Rangel, C. and Martinez, L. (2024). Combining prototypes with user interviews for early design

validation. Design Studies, 79:101070.

Revelle, M., Dit, B., and Poshyvanyk, D. (2010). Using data fusion and web mining to sup-

port feature location in software. In 2010 IEEE 18th International Conference on Program

Comprehension, pages 14–23. IEEE.

Reyes, J. A. (2015). The Skinny on Big Data in Education. TechTrends, 59(2):75–80.

Riebisch, M. (2003). Towards a more precise definition of feature models. Modelling Variability

for Object-Oriented Product Lines, pages 64–76.

Ries, E. (2011). The Lean Startup - How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. Crown books.

Rigby, D. K., Sutherland, J., and Takeuchi, H. (2016a). Embracing agile. Harvard Business

Review, 94(5):40–50.

Rigby, P. C. et al. (2016b). Validation of software engineering practices: Case studies and lessons

learned. Harvard Business Review.

Rindos, A., Vouk, M., and Jararweh, Y. (2014). The virtual computing lab (vcl): an open

source cloud computing solution designed specifically for education and research. International

Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 5(2):51–

63.

Rissanen, O. and Munch, J. (2015). Continuous Experimentation in the B2B Domain: A

287

Usage Analytics: Optimizing Feature Prioritization in Software Development

Case Study. In 2015 IEEE/ACM 2nd International Workshop on Rapid Continuous Software

Engineering, pages 12–18. IEEE.

Rodden, K., Hutchinson, H., and Fu, X. (2010a). Measuring the impact of real-time feedback

in software development. Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, pages 2203–2212.

Rodden, T. et al. (2010b). The importance of real-time feedback in adaptive software systems.

In Proceedings of the 5th International Workshop on Software Engineering for Adaptive and

Self-Managing Systems, pages 74–83.

Rouse, M. (2018). Ibm’s data governance strategy. IBM Systems Journal, 57(3):17–29.

Ruhe, G. and Greer, D. (2002). The art and science of software release planning. IEEE software,

19(4):47–53.

Sabbagh, Y. and Khalil, R. (2024). Integrating bug tracking with usage data and online forums.

Empirical Software Engineering, 29(3):345–360.

Schellong, D., Kemper, J., and Brettel, M. (2017). Generating Consumer Insights from Big

Data Clickstream Information and the Link with Transaction-Related Shopping Behavior.

Proceedings of the 25th European Conference on Information Systems (ECIS), 2017:1–15.

Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., and Aguirre, L. (2010).

Feedback in Context: Supporting the Evolution of IT-Ecosystems. In Ali Babar, M., Vierimaa,

M., and Oivo, M., editors, Prod. Softw. Process Improv., pages 191–205, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Schwaber, K. and Sutherland, J. (2017). The Definitive Guide to Scrum: The Rules of the

Game. Retrospectiva del Sprint de Nexus. Scrum.org.

Science, T. and Organization, I. (2023). Scrum: A systematic literature review. International

Journal of Advanced Computer Science and Applications, 14(4):200–210.

Shams, I. and Hashemi, R. (2018). Anomaly detection in user access patterns for enhancing

application security. Journal of Network and Computer Applications, 109:102–113.

Shams, I., Hashemi, R., and Safari, M. (2020). Enhancing feature prioritization with user

engagement and feature abandonment metrics. Journal of Systems and Software, 165:110573.

288

Usage Analytics: Optimizing Feature Prioritization in Software Development

Shams, T. and Whittaker, I. (2020). Usage analytics for user-centered design and decision-

making in software development. Journal of Systems and Software, page 110763.

Sjoberg, D. I. et al. (2005). The importance of empirical validation in software engineering

research. Journal of Empirical Software Engineering, 10(1):117–137.

Sjøberg, D. I. K., Dyba, T., and Jørgensen, M. (2005). The future of empirical methods in

software engineering research. Proceedings of the 2005 International Symposium on Empirical

Software Engineering (ISESE), pages 148–157.

Smith, L. and Brown, A. (2019). Mapping user actions to software features: Insights for feature

prioritization. Software Quality Journal, 27(2):289–309.

Soltani, S. and Moussavi, Z. (2021). Refining feature prioritization through integrated usage

metrics and user feedback. Empirical Software Engineering, 26(3):3056–3080.

SoluteLabs (2023). Top agile trends to watch out for in 2023 - adapting to change.

Sun, X. (2016). Virtual Machine Optimizations Using Markov Chain Data Analytics in Hetero-

geneous Cloud Computing. In International Conference on Smart Cloud, pages 248–253.

Sun, Y. et al. (2019). Leveraging implicit feedback to enhance user experience in software

applications. IEEE Transactions on Software Engineering, 45(4):333–345.

Sweller, J., Ayres, P., and Kalyuga, S. (2011). Cognitive Load Theory. Springer.

Tang, A. and Zhang, H. (2011). Feature usage analysis for improving software systems. Journal

of Systems and Software, 84(3):481–497.

Tarmuji, F. and Abdullah, Z. (2024). Real-time dashboards with communication tools for

improved feedback interpretation. Journal of Systems and Software, 177:110938.

Tizard, J., Rietz, T., Liu, X., and Blincoe, K. (2022). Voice of the users: an extended study of

software feedback engagement. Requirements Engineering, 27(3):293–315.

Ulrich, K. T. and Eppinger, S. D. (2012). Product Design and Development. McGraw-Hill.

Vaismoradi, M., Turunen, H., and Bondas, T. (2013). Content analysis and thematic analy-

sis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences,

15(3):398–405.

289

Usage Analytics: Optimizing Feature Prioritization in Software Development

Vozniuk, A., Holzer, A., and Gillet, D. (2016). Increasing the efficiency of feedback collection

in software development. In 2016 IEEE 16th International Conference on Advanced Learning

Technologies (ICALT), pages 368–370. IEEE.

Waller, M. A. and Fawcett, S. E. (2020). Data governance and quality in software development:

Best practices and case studies. Journal of Business Logistics, 41(2):145–160.

Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L., and Wolf, M. (2011). A flexible

architecture integrating monitoring and analytics for managing large-scale data centers. ACM

International Conference on Autonomic Computing, page 141.

Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y. (2016). Unsupervised clickstream

clustering for user behavior analysis. In Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems, pages 225–236. ACM.

Wang, Z., Zhu, X., Adeli, E., Zhu, Y., Nie, F., Munsell, B., and Wu, G. (2017). Multi-modal

classification of neurodegenerative disease by progressive graph-based transductive learning.

Medical Image Analysis, 39:218–230.

Webster, J. and Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a

literature review. MIS quarterly, pages xiii–xxiii.

Wei, L., Liu, J., Wang, T., and Yu, P. S. (2019). Hybrid anomaly detection for large-scale

systems. IBM Journal of Research and Development, 63(2):69–83.

Wilcox, E., Nusser, S., Schoudt, J., Cerruti, J., and Badenes, H. (2010). Agile Development

Meets Strategic Design in the Enterprise. In Agil. Process. Softw. Eng. Extrem. Program.,

number July 2015, pages 208–212. Springer Berlin Heidelberg, Berlin, Heidelberg.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data mining: Practical machine

learning tools and techniques. Morgan Kaufmann.

Xia, F., Liu, J., and Liu, J. (2019). Improving cost-value analysis using advanced machine

learning techniques. Information and Software Technology, 110:82–94.

Xu, G., Zhang, Y., and Yi, X. (2008). Modelling user behaviour for Web recommendation using

LDA model. Proceedings - 2008 IEEE/WIC/ACM International Conference on Web Intelli-

gence and Intelligent Agent Technology - Workshops, WI-IAT Workshops 2008, (September

2015):529–532.

290

Usage Analytics: Optimizing Feature Prioritization in Software Development

Yaman, S. G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P., Oivo, M., and

Männistö, T. (2016). Customer Involvement in Continuous Deployment: A Systematic Liter-

ature Review. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), volume 9619, pages 249–265.

Yang, J., Wang, H., Lv, Z., Wei, W., Song, H., Erol-Kantarci, M., Kantarci, B., and He,

S. (2017). Multimedia recommendation and transmission system based on cloud platform.

Future Generation Computer Systems, 70:94–103.

Zave, P. (2003). An experiment in feature engineering. In Programming methodology, pages

353–377. Springer.

Zhang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., and Xie, T. (2011). Software analytics as

a learning case in practice. Proceedings of the International Workshop on Machine Learning

Technologies in Software Engineering - MALETS ’11, pages 55–58.

Zhang, H., Liu, Z., and Wang, X. (2018). Cost-value optimization of software product line

engineering. Journal of Systems and Software, 136:112–126.

Zhang, J. and Wang, X. (2018). Learning from usage data to improve software quality. Empirical

Software Engineering, 23(2):640–666.

Zhou, M. and Chen, L. (2017). Machine learning techniques for user behavior analysis in software

development. IEEE Transactions on Knowledge and Data Engineering, 29(5):1101–1114.

Zimmermann, T. and Nagappan, N. (2010). Towards data-driven feature prioritization in soft-

ware development. IEEE Software, 27(6):26–33.

Zimmermann, T. and Nagappan, N. (2019). Consistency metrics for evaluating user engagement

in evolving software systems. Journal of Systems and Software, 150:68–84.

Çökeli, H. (2024). A guide to product usage analytics and measuring software usage.

291

	Introduction
	Software Platforms Used in the Research
	IBM Academic Cloud
	IBM Watson Workspace
	Odoo Notes

	Motivations and Research Problems
	Motivations
	Research Problem

	Hypothesis and Research Questions
	Research Process and Methodology
	Limitations of the Research

	Literature Review and Related Work
	Typical Problems in Software Development
	Resource Provisioning
	Problem Diagnosis
	Understanding User Satisfaction

	Concept of Features in Software Development
	Action-based Usage Analysis

	Role of Usage Data in Software Development Life-cycle
	Analysis Techniques for Software Feature Usage
	Usage Data and User Feedback Collection Techniques
	Traditional Methods of Feature Prioritization

	Comprehensive Overview of Data Types and Analytics Metrics
	Key Data Types
	Analytics Metrics

	Gap Analysis of Existing Literature

	Research Methodology
	Using Design Science Research Methodology
	Problem Identification
	Design, Development and Demonstration
	Evaluation and Communication

	Research Design
	Platform Selection
	Participants in Evaluation of UAM
	Iterative Refinement Process
	Evaluation Methods

	Features and Usage data in Software Development
	The Concept of Features in Software Development
	User-level Features

	Usage Data
	Justification of the Selected Usage Data

	The Relationship between Software Features and User Actions
	Challenges With Usage Data and Analyzing User Actions

	Key Metrics for Analyzing Usage Data
	Features and Usage Data of selected Software Applications
	Features and Usage Data of IBM Watson Workspace
	Features and Usage Data of Odoo Notes

	Case Studies for Development of the Usage Analytics Method
	Overview of the Case Studies
	Integration of Empirical Designs
	Selection of Platforms for Case Studies

	Case Study 1: IBM Academic Cloud
	Goal - Research Problem Identification
	Design - Analysis of the Usage Analytics Process Model
	Result: Initial Design of the Usage Analytics Method and Feature Prioritization Challenges

	Case Study 2: IBM Watson Workspace
	Goal - Implementation challenges of UA
	Design - Development and Application of Usage Analytics Method
	Result - Improvement and Implementation of the Usage Analytics Method - Version 2

	Case Study 3: Odoo Notes
	Goal - Implementation and validation of the Usage Analytics method
	Design - Development of a custom Usage Data monitoring tool for Odoo Notes application and application of the UA method
	Results - Improvement of the Usage Analytics Method - Version 3

	Summary of Challenges in Developing Usage Analytics Method
	Challenges in IBM Academic Cloud (Case Study 1)
	Challenges in IBM Watson Workspace (Case Study 2)
	Challenges in Odoo Notes (Case Study 3)

	Key Challenges for Feature Prioritization

	Usage Analytics Method
	Design of the Usage Analytics Method
	Feature Identification
	Data Source Integration
	Data Extraction
	Analysis

	Experiment Design
	Experiment Data and Application of UA Metrics
	Post-experiment Survey

	Contributions of the Usage Analytics Method (UAM)

	Results and Evaluation of the Usage Analytics Method
	Evaluation of the Usage Analytics Method Through Case Studies
	Evaluation of Case Study 1: IBM Academic Cloud
	Goal of the case study 1
	Design of the case study 1
	Results of the case study 1

	Evaluation of the Case Study 2: IBM Watson Workspace
	Goal of the case study 2
	Design of case study 2
	Results of the case study 2

	Evaluation of Key Metrics - Case Study 2 and Case Study 3
	Results from the experiment with IBM Watson Workspace
	Results from the experiment with Odoo Notes

	Results of the Surveys Conducted

	Conclusion and Future Work
	Conclusion
	Contributions
	Design Knowledge Contributions

	Limitations of the Study
	Case Study 1: IBM Academic Cloud
	Case Study 2: IBM Watson Workspace
	Case Study 3: Odoo Notes

	Future Work

	URL Links for Repositories and other Documents
	Experiment tasks - Odoo
	Feature-Action map - Odoo
	Survey Forms
	Survey form - Odoo Notes
	Survey form - IBM Watson Workspace

	Survey Results
	Survey Results - Odoo Notes

	Consistency Scores

