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Abstract

“Domain Adaptation of Deep Neural Networks for

Medical Imaging under Limited Data Constraints”

Sidra Aleem

Medical imaging analysis has advanced significantly due to developments in com-

puter vision. However, deep learning models are typically trained on consistent

data distributions, which hampers generalizability when evaluated on datasets with

varying distributions. This issue is especially prominent in medical imaging, where

heterogeneity arises from differences in acquisition sites, imaging protocols, scanner

types, and patient demographics. Additionally, strong performance of neural net-

works is linked to the availability of large, labeled datasets. However, annotated

data is scarce in medical imaging, and domain expertise is not readily available,

further hindering robust model development.

This research addresses these challenges by proposing novel domain adaptation

methods to improve neural network generalization across diverse medical imaging

domains. The methods achieve effective adaptation while minimizing the depen-

dency on large labeled datasets, addressing the limited data availability in real-world

medical settings.

This work has developed three alternatives to supervised domain adaptation,

with several key innovations: (1) A novel, unsupervised, parameter-efficient domain

adaptation framework for multi-target medical imaging domains is proposed. It

overcomes the limitations of supervised training and the scarcity of labeled data.

(2) A novel test-time adaptation framework to adapt natural foundation models, en-

abling zero-shot transferability to medical tasks without relying on labeled data. It

addresses several key challenges: the need for supervised training, domain-specific

fine-tuning, the unavailability of annotated data, lack of domain expertise, and

computational constraints. (3) A few-shot learning framework is proposed to adapt

foundation models for fine-grained medical tasks, highlighting the intrinsic limita-

tions of foundation models when applied to complex medical tasks.

These frameworks have improved our understanding of how domain adaptation

can be effectively utilized for medical imaging analysis with limited labeled data

and high data variability. This thesis serves as a valuable resource for medical

practitioners and tool developers in designing innovative algorithms and applications

for healthcare.





Chapter 1

Introduction

Image segmentation is a critical task in medical imaging analysis. During segmen-

tation, an image is partitioned into meaningful regions. The precise segmentation

and labeling of these structures can assist clinicians with disease diagnosis, progno-

sis, and treatment planning. Deep learning models, particularly when trained on

large, labeled homogeneous datasets, have demonstrated the potential to match or

outperform the clinical experts in certain cases [21, 22, 23]. Segmentation tasks are

diverse in the medical domain, ranging from identifying large anatomical structures

to detecting subtle pathological changes. Importantly, the heterogeneous nature

of imaging modalities, acquisition protocols, patient demographics, and anatomical

differences limits the generalizability and practical usability of models trained to pre-

dict a fixed set of predetermined classes in real-world clinical settings, as additional

labeled data is required to capture new visual concepts.

This thesis explores alternatives to conventional supervised learning approaches

for adapting neural networks to diverse medical imaging segmentation tasks. It

focuses on the study of alternatives to address several key challenges that affect the

generalization of neural networks: the heterogeneity of data, imaging modalities,

patient demographics, acquisition sites, and protocols , the scarcity of annotated

datasets, the complexity of anatomical structures, and the limited availability of

domain expertise.

In the following chapters, innovative solutions are proposed for the robust adap-
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tation of neural networks with minimal reliance on additional data and computa-

tional resources. The generalization of the proposed methods is evaluated across

diverse medical imaging tasks.

This chapter provides an overview of the research presented in this thesis and

outlines the motivation behind it, as discussed in Section 1.1. Section 1.2 presents

the hypothesis and research questions. Section 1.4 outlines the structure of this

thesis.

1.1 Motivation

1.1.1 Domain Shift

Although deep learning models have shown impressive performance on supervised

learning tasks, they often struggle to generalize well when the training and test sets

do not share the same distribution [24, 25, 26, 27]. Traditional machine learning

models are typically trained under the assumption of independent and identically

distributed (i.i.d.) data, meaning that the train and test sets follow the same dis-

tribution and are independent of each other [28]. However, this assumption rarely

holds true in the real world.

Domain shift is a problem that arises when the data distribution in the train

set differs from the test set data distribution [24, 29, 1, 30]. The model’s generaliz-

ability significantly deteriorates when the model is presented with data from a new

unforeseen domain that it did not encounter during training [31, 32, 1]. Domain

shift can arise from various factors such as changes in lighting, acquisition devices,

and background variations, as well as differences in image collection methods, sensor

types, data sources, or geographical locations.

Figure 1.1 shows examples of how weather conditions can cause significant do-

main shift in image data. The first row shows images from the source domain, where

the model is trained, while the second row shows images from the target domain,

where the model is evaluated. These examples illustrate how variations in weather
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conditions and day/night cycles create substantial visual differences in the data,

even though all images were acquired from the same location. Such differences lead

to domain shift between the source and target domains.

Figure 1.1: Domain shift caused by variations in weather and the
day/night cycle [1].

Impact of Domain Shift

Below are a few key points to understand the impact of domain shift:

1. Poor Robustness and Generalization: A model that is not robust to do-

main shifts may fail to generalize well when evaluated on an unforeseen data

domain. For instance, as illustrated in Figure 1.1, even though the data is

collected from the same location, the day/night cycle and weather changes

introduced variations that the model may not have encountered during train-

ing. Consequently, it will impact the model’s generalizability, as illustrated in

Figure 1.2.

2. Decreased Model Accuracy: When a model is trained on data from one

domain (e.g., medical images from one hospital) and evaluated on another (e.g.,

images from a different hospital), differences in acquisition protocols, patient

populations, demographics, and data distributions (e.g., lighting, resolution)

can lead to a significant drop in accuracy. Thus, the model may not generalize

well to the new domain, leading to a sub-optimal performance as outlined in

Chapter 3.
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3. Increased Cost of Model Adaptation: Adapting models to address do-

main shifts often requires re-training or fine-tuning with data from the new

domain. This process demands a substantial amount of labeled data and is

resource-intensive (Section 2.4.1). This issue is particularly pronounced when

multiple target domains exist for a single task, such as (e.g, MRI scans from

various hospitals). Training separate models for each domain is not compu-

tationally efficient and is often impractical. These challenges are explored in

detail, with novel solutions proposed in Chapter 4.
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Figure 1.2: Impact of domain shift on the model’s generalizability. Figure
adapted from [2].

1.1.2 Domain Shift between Natural and Medical Imaging

Natural imaging datasets, such as ImageNet [33], significantly differ from medical

imaging domains like X-rays, MRIs, and CT scans in terms of content, structure,

and visual features [34, 35]. Models trained predominantly on natural images learn

features like edges, textures, and shapes of everyday objects, which may not be

suitable or effective for complex and challenging medical tasks, as experimentally

demonstrated in Chapter 5. Medical images often have specific intensity patterns,

contrasts, and structural elements that are not present in natural images. Their

grayscale nature (e.g., in X-rays) differs from the RGB color space of natural imag-
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ing [28]. Consequently, methods that perform well on natural images often fail to

achieve optimal results in the medical imaging domain (Chapter 5 and Chapter 6).

Medical imaging analysis tasks often require the identification of specialized

domain-specific features. The effective analysis further demands a detailed un-

derstanding of different image sub-regions to perform fine-grained tasks, such as

recognizing complex pathological structures with varying morphologies and spa-

tial patterns or detecting tumors that are subtle and small. These domain-specific

features are not well represented in the natural imaging domain, leading to signif-

icant differences in the statistical distribution of features, which can result in poor

performance when the model is evaluated on medical imaging tasks Section 5.5,

Sections 5.5.5 and 6.5.3).

Additionally, unlike classification tasks in natural imaging domains, such as ob-

ject identification, medical imaging tasks are considerably more complex. In medical

imaging, pathologies are often camouflaged, resembling other anatomical structures

(Figure 6.6). It is especially challenging to distinguish between various lesions due to

the diverse spatial patterns and varying appearances of pathologies (as discussed in

Section 6.5.3). Furthermore, classifying or recognizing anatomical structures based

on their spatial location presents additional challenges (see Sections 5.5.5, 6.5.2

and 6.5.3).

All the challenges mentioned above highlight the significant differences between

natural and medical imaging tasks, as well as the impact on a model’s generalizability

caused by domain shifts, especially due to the differences between features learned

from natural images and those from medical images. These challenges are thoroughly

investigated through experimentation, with novel solutions proposed in Chapter 5

and Chapter 6.

1.1.3 Domain Shift within Medical Imaging

The medical imaging domain does not only face challenges due to the domain shift

between natural imaging and medical imaging (Section 1.1.2) but also from the
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domain shift within medical imaging itself. The domain shift within medical imaging

can arise from various factors such as different imaging modalities, scanner types,

acquisition protocols, sites, patient populations, disease progression stages, age and

gender differences, as well as variations in noise and artifacts [25, 28].

The diverse nature of medical imaging modalities leads to variations in how

features are represented within the same region of interest. For instance, in multi-

modal imaging such as MRI and CT, the same anatomical region is represented

by distinctly different features and visual characteristics [23]. One such scenario is

illustrated in Figure 1.3 (Cross Modality), where chest CT and MRI scan highlighted

different features of the same region. Similarly, different types of microscopy produce

varying representations of pathological structures. Even within a single imaging

modality, where the imaging modality is the same, however, the variations in scanner

manufacturers, models, and acquisition parameters can cause significant differences

in the acquired data as illustrated in Figure 1.3 (Single Modality).

Microscopy

H&E stained
Immuno-

fluorescence

Histopathology (H&E stained) Cardiovascular MR 

Aperio
Scanner

Hmamstsu 
Scanner

Canon 
Scanner

GE
 Scanner

Radiology

Cross Modality Single Modality

CTMRI

Domain shift across different related modalities Domain shift across Inter/Intra dataset of same modality

Figure 1.3: Domain shift in medical imaging caused by variations in
imaging modalities.

Similarly, different imaging protocols, such as T1-weighted versus T2-weighted

MRI sequences, highlight distinct anatomical features and pathologies, leading to

divergent data characteristics [36]. Figure 1.4 shows the image-level distribution

heterogeneity caused by different scanners. Figure 1.5 illustrates the problem of

inter-center domain shift in terms of the intensity distribution of structural mag-

netic resonance imaging (MRI) at four independent sites (UCL, Montreal, Zurich,

Vanderbilt) in Gray Matter Segmentation [4].

These intra- and inter-modality variations pose significant challenges to the gen-
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Figure 1.4: Top row: im-
age slices, bottom row: cor-
responding intensity distri-
bution of normalized T1-
weighted (a, b) and T2-
weighted (c, d) MRIs from
different scanners [3].

Figure 1.5: Intensity distribution of
MRI axial-slice pixels for gray mat-
ter segmentation collected from four
different data sets [4].

eralizability of machine learning models, particularly when applied to diverse imag-

ing tasks. Models trained on data from a specific scanner or protocol fail to gener-

alize when evaluated on the data acquired under different conditions. It emphasizes

the need for robust domain adaptation techniques to mitigate the challenges of do-

main shift in medical imaging. These challenges are thoroughly explored through

experiments, with novel solutions presented in the following chapters of this thesis.

1.1.4 Medical Data Scarcity

Deep learning has fundamentally transformed computer vision, offering unprece-

dented capabilities to solve complex visual perception tasks. The availability of

large-scale, diverse, and well-annotated datasets (e.g., ImageNet [33]) has con-

tributed substantially to the success of deep learning models in computer vision

tasks [37, 1, 38]. Training on vast amounts of data enables neural networks to

learn complex representations that are robust and generalize effectively to unseen

samples [39, 40].

However, the data presented to the model has to be exhaustively annotated:

the presence of mislabeled samples or samples that do not belong to the expected
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distribution of classes can lead to degradation of the representations learned by the

model [41, 42, 43].

The acquisition of medical datasets poses unique challenges compared to natu-

ral imaging datasets. While the latter benefits from the relative ease of collecting

images of everyday objects, medical datasets are typically much smaller, often com-

prising only hundreds to thousands of images [44]. Although gathering data in the

medical imaging field might seem straightforward, the process is far more complex

than collecting images of common objects. The primary obstacle in acquiring large

datasets within the medical or clinical domain arises from the complex nature of

the data acquisition itself. This process is heavily influenced by a variety of factors

such as the type of disease, geographic location, the type and settings of imaging

equipment, time constraints, patient privacy concerns, and institutional copyright

restrictions [45].

While datasets such as RadImageNet [46], MIMIC-CXR [47], CheXpert [48],

and ARCH [49] are available, they are skewed toward radiology and X-ray images.

Furthermore, medical imaging datasets are often small, and training neural networks

on such limited data can lead to overfitting, particularly when using deep neural

networks [23, 39].

Moreover, annotating medical images requires specialized domain knowledge, to

ensure both accuracy and clinical relevance, which necessitates the involvement of

trained healthcare professionals [23, 50]. This expertise is often not available readily

and the process is both time-consuming and labor-intensive.

Additionally, medical imaging tasks are inherently more complex than those in

natural imaging. Medical imaging analysis tasks often require fine-grained region-

level annotations, in addition to global image-level labels. Acquiring such precise

labels in the medical domain is extremely challenging (Chapter 6).

Consequently, developing effective methods for training deep learning models

with limited or no labeled data is crucial for medical imaging applications.
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1.1.5 Domain Adaptation in Medical Imaging under Lim-

ited Data Constraint

Solutions to address the generalizability challenges of neural networks arising from

domain shifts in medical imaging (Sections 1.1.2 and 1.1.3) and the limited avail-

ability of extensively annotated medical data (Section 1.1.4) focus on developing

robust domain adaptation methods that require minimal or no annotated data.

• Labeled data is available only from the source domain (the domain on which

the model is trained), while the target domain (the domain to which the model

must be adapted) contains only unlabeled data.

• The source domain data is unavailable, and only unlabeled data from the

target domain is accessible.

In the first scenario, the model is initially trained on labeled data from the source

domain. The goal is to adapt the knowledge learned from the labeled source domain

to an unlabeled target domain. This approach is commonly known as “unsupervised

domain adaptation”. Our proposed approach for addressing this scenario, partic-

ularly within the realm of multi-target domain adaptation in the medical field, is

detailed in Chapter 4.

The second scenario, known as “test-time domain adaptation”, does not involve

a source domain. Instead, it adapts the model to a new, unseen target domain

during the testing phase, without the need to re-train on the entire dataset. This

adaptation relies solely on unlabeled data from the target domain. Solutions for

this scenario, particularly in the context of adapting natural foundation models to

medical organ segmentation, are discussed in Chapter 5.

A significant body of research has explored the adaptation of foundation models,

predominantly trained on natural imaging data, to medical imaging tasks. However,

most of these efforts have focused on global image-level tasks or tasks where clean,

labeled data is readily available. The application of these models to complex fine-

grained medical tasks (which have wider real-world applications) remains largely
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unexplored. Solutions for adapting foundation models to fine-grained medical tasks,

along with the associated challenges and limitations, are discussed in Chapter 6.

1.2 Hypothesis and Research Questions

The proposed hypotheses guided the development of this thesis toward address-

ing several core challenges in medical imaging analysis: (a) Assessing the impact

of domain shifts (Section 1.1.2, 1.1.3), especially regarding the generalizability of

neural networks and the computational constraints involved when adapting these

models across multiple medical domains. (b) Developing effective strategies to ad-

dress domain shifts and adapt neural networks to medical imaging scenarios with

limited or no annotated data. (c) Exploring the adaptation of foundation models,

predominantly trained on natural images, to diverse medical imaging tasks aims to

address several challenges in the medical domain. The evaluation is conducted on

both global image-level tasks and fine-grained medical analysis tasks.

Computer vision has relied heavily on models pre-trained on ImageNet [33] using

supervised learning. Recent advancements have introduced alternative “foundation

models” in computer vision, which benefit from increasingly large datasets [51, 13,

52, 53, 37].

The research presented in this thesis initially focused on the adaptation of convo-

lution neural networks and transformer-based approaches. However, with the evolu-

tion of the field, foundation models have gained significant attention, and their po-

tential benefits have been widely discussed in the literature. The research presented

in this thesis aligns with this paradigm shift. Thus two hypotheses are proposed:

Hypothesis 1 (H1) focuses on the adaptation of pre-foundation model approaches,

such as CNNs, while Hypothesis 2 (H2) explores the adaptation of foundation mod-

els for the medical imaging domain.

H1. In medical imaging scenarios with multiple target domains, low-rank adapters

can facilitate parameter-efficient adaptation of convolutional neural networks. It
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provides an alternative to training separate dedicated networks for each domain and

achieves performance similar to full model adaptation while reducing computational

overhead.

• Initial domain adaptation methods typically involve pre-training a model with

a labeled source domain, with the eventual adaptation on labeled/unlabeled

the target domain (Section 2.4.1). In medical imaging, there are diverse target

domains (Section 1.1.3), and creating separate models for each target domain,

with the same trainable parameters as the base model, is impractical and com-

putationally expensive. Parameter-efficient fine-tuning (PEFT) with low-rank

adaptation has proven effective in adapting Large Language Models (LLMs) to

various downstream tasks [10]. While PEFT-based adaptation has been widely

explored in LLMs and transformer-based architectures [24, 54, 55], its appli-

cation to convolution neural networks (CNNs), particularly for multi-target

domain adaptation in medical imaging, remains unexplored.

The following research questions have guided and shaped the exploration of Hy-

pothesis 1:

• RQ 1: What are the key challenges and limitations of supervised adaptation

approaches when applied to diverse medical imaging datasets? Specifically,

how do domain shifts and data scarcity affect the generalization of neural

networks for medical imaging tasks?

• RQ 2: How could the parameter-efficient adaptation approach be enforced in

the unsupervised adaptation of convolutional neural networks? Could con-

volutional neural networks benefit from the features learned through self-

supervised training when using parameter-efficient adaptation?

H2. In the absence of annotated data or domain expertise, the test-time adaptation

of foundation models (FMs) can enable efficient adaptation to diverse medical imag-

ing tasks. For fine-grained analysis, FM-extracted features can be easily adapted

without requiring large datasets.

12



Domain Adaptation for Medical Imaging under Limited Data Constraints

• The use of Vision-Language Foundation Models (VLFMs) in medical imaging

faces several significant challenges, including domain shift caused by features

learned from pre-training on natural images and adaptation to downstream

medical imaging tasks; overfitting due to limited medical data, and high com-

putational overhead [56, 57, 58]. VLFMs are typically adapted to downstream

medical imaging tasks through additional training, fine-tuning, or parameter-

efficient adaptation (Section 2.4.4). However, the adaptation of VLFMs in

medical imaging without additional training, domain-specific prompt engineer-

ing, or annotated data is not explored widely. Additionally, existing research

has primarily focused on the adaptation of VLFMs for coarse image-level med-

ical imaging tasks (Section 5.2). In contrast, medical imaging analysis tasks

often require fine-grained region understanding and precise labeling. This

research gap emphasizes the need for further exploration of VLFMs for fine-

grained medical imaging analysis tasks.

The following research questions have guided and shaped the exploration of Hy-

pothesis 2:

• RQ 3: Can test-time adaptation of foundation models provide a more robust

alternative to unsupervised or semi-supervised domain adaptation approaches?

Can foundation models be effectively adapted to diverse medical imaging tasks

without relying on annotated data, additional training, or specialized domain

expertise?

• RQ 4: Can foundation models be effectively adapted to challenging fine-

grained medical imaging tasks?

1.3 Contributions

This section presents a description of the main contributions of this thesis as a result

of the work described in subsequent chapters.
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• C1: This thesis introduces novel solutions to enhance the generalizability

of neural networks and addresses challenges posed by domain shift in medi-

cal imaging (Section 1.1.2 and 1.1.5) and the scarcity of annotated data and

domain expertise in the medical sector (Section 1.1.4). To overcome the lim-

itations of traditional supervised domain adaptation, this thesis specifically

proposes multiple novel alternatives, including unsupervised (Chapter 4), test-

time (Chapter 5), and few-shot (Chapter 6) domain adaptation strategies.

• C2: To overcome the limitations of traditional supervised domain adaptation

methods, such as the creating dedicated separate fine-tuned models for each

new domain and the risk of overfitting due to limited medical data, this re-

search proposes a novel unsupervised, parameter-efficient domain adaptation

approach tailored for multi-target medical imaging (Chapter 4). The key con-

tribution of this method is to offer an unsupervised alternative that not only

achieves high accuracy but also provides a computationally efficient solution

for adapting CNNs across multi-target medical applications.

• C3: This research presents a novel test-time adaptation method to adapt

foundation models, primarily trained on natural imaging, to medical imaging

in a zero-shot manner (Chapter 5). It overcomes several critical challenges in

adapting foundation models to the medical domain: it requires no annotated

data, eliminates the need for supervised or task-specific training, bypasses

the need for specialized domain knowledge in prompt engineering, and, as the

proposed approach is adapted fully at test time, it alleviates the computational

constraints typically associated with foundation models.

• C4: This research also experimentally evaluates several key challenges in

adapting foundation models specifically for fine-grained medical imaging tasks.

Unlike existing techniques that focus on global image-level tasks, the proposed

few-shot adaptation method focuses on adapting foundation models for fine-

grained medical imaging tasks (Chapter 6). The proposed method is evaluated
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on tasks such as recognizing organs based on spatial location and identifying

pathological structures that lack pre-defined shapes, spatial locations, or mor-

phology.

1.4 Thesis Structure

The remainder of the thesis is structured as follows:

In Chapter 2 the technical background of the thesis, covering the principles of

domain adaptation is provided. It also includes an overview of the fundamentals of

neural networks and deep learning techniques for medical image segmentation. It

presents a comprehensive literature review of domain adaptation research conducted

in the field of medical imaging.

Chapter 3 presents our work done for the STOIC 2021 COVID-19 AI Challenge.

It provides comprehensive details of all experiments conducted throughout the com-

petition. A comparative analysis of the proposed approach with other participating

teams is provided. Additionally, it highlights the insights gained from this chal-

lenge, particularly regarding domain shift issues in the medical imaging domain,

which helped shape the research presented in this thesis.

Chapter 4, presents our work on unsupervised parameter-efficient adaptation of

convolution neural networks for multiple medical target domains. It provides the

architectural details of our proposed parameter-efficient adaptation framework. It

also discusses current methods, highlighting their main limitation and suggesting

potential solutions based on experimental observations. This chapter offers an in-

depth comparative analysis of various domain adaptation approaches and insights

gained from experimental evaluations, on the impact of domain shift on neural

network generalizability across diverse medical imaging tasks.

Chapter 5 is focused on the adaptation of natural foundation models to the med-

ical imaging domain. It presents our proposed framework for test-time adaptation of

visual and language foundation models, including its architectural design and imple-

mentation details. It also includes a literature review of relevant work, highlighting
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limitations in the direct applicability of foundation models to medical imaging. Ad-

ditionally, it presents an extensive experimental evaluation of the proposed approach

to show its effectiveness across diverse imaging modalities.

Chapter 6 presents our work on adaptation of natural foundation models for

complex, fine-grained medical imaging analysis tasks. This chapter covers the archi-

tectural design and implementation details of the proposed approach. It provides a

literature review of existing approaches, highlighting their key limitations, followed

by potential solutions to address these issues. The extensive experimental evalua-

tion aimed at designing an effective framework to handle fine-grained pathological

structures in the medical domain is presented in detail. Additionally, the chal-

lenges and limitations of language models for fine-grained medical imaging tasks are

demonstrated experimentally.

Lastly, Chapter 7 provides a comprehensive overview of the research presented

in this thesis. It discusses the research objectives, highlights key contributions,

and outlines the limitations of the work. Additionally, it proposes potential fu-

ture directions for advancing domain adaptation research using neural networks and

foundation models to address complex medical imaging tasks.
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Chapter 2

Background

This chapter presents the theoretical background and a comprehensive literature

review related to domain adaptation in medical imaging segmentation, which is the

primary focus of this thesis. Section 2.1 provides the fundamentals of deep learn-

ing including convolutional neural networks and how neural networks are trained.

Section 2.2 provides a brief overview of medical imaging segmentation and the chal-

lenges deep learning methods encounter in generalizing within the medical domain

due to domain shift. Section 2.3 provides an overview of techniques to overcome

domain shift challenges. Finally, section 2.4 presents a detailed literature review of

relevant approaches to the challenges introduced in Chapter 1.

2.1 Deep Learning

Deep learning is a subfield of artificial intelligence and machine learning. In recent

years, it has gained significant attention due to its remarkable success in a variety

of tasks. Deep learning can be applied to various tasks, such as image classification,

natural language processing, speech recognition, and semantic segmentation. The

core idea of deep learning is to develop algorithms that are capable of mapping

the input data to successive levels of abstraction until reaching the output space

corresponding to the given task.
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2.1.1 Fundamentals of Deep Learning

A neuron is the basic processing unit within a neural network. It receives input either

directly from the raw input data or from the outputs of preceding neurons. It applies

a linear transformation to the input, followed by a non-linear activation function,

and provides the output to the subsequent neurons. The weights associated with

the linear transformation are adjusted during the training process by minimizing a

specified loss function (Section 2.1.3).

As depicted in Figure 2.1, inputs on the left (x1, x2, x3) are linearly combined

with the weights (w1, w2, w3). The non-linear function (g) , known as an activation

function, is then applied to the result. Additionally, each neuron has a bias (b) that

is added to the matrix multiplication. Hence, the output of a single neuron becomes

ŷ = g(wTx), where wT = (w0, w1, w2, w3) are the weights (and bias) of the neuron

and xT = (x1, x2, x3) are the features of the input vector (with x0 = 1).

Figure 2.1: Representation of a single neuron: The input features x1, x2

and x3 are linearly combined and weighted with the corresponding weights
w1, w2 and w3. The weight w0 corresponds to the bias of the neuron and
is added to the linear combination. The non-linear function (g) is then
applied to the output.

Given an input vector of n features xT = (x0, x1, ..., xn), each layer of the neural

network performs a matrix multiplication between this input and the weight matrix

associated with that layer. The weight matrix W = [w0, w1, ..., wd], has dimensions

n × d, where each column vector wT
i = (w0, w1, ..., wn) represents the weights cor-

responding to neuron i in the layer. This multiplication linearly projects the input

to a d dimensional space, that corresponds to the number of neurons in a layer.

After the linear transformation, a non-linear activation function (g) is applied to
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the resulting vector, yielding the output g(W Tx).

Activation functions

Activation functions are essential components of artificial neurons, as they introduce

non-linearity into the neural network. This non-linearity is crucial because it allows

the network to learn and approximate complex, non-linear patterns in the data.

Without it, the network would be limited to modeling only linear relationships,

regardless of its depth. Commonly used activation functions include the sigmoid,

hyperbolic tangent (tanh), and rectified linear unit (ReLU), along with variations

like leaky ReLU and parametric ReLU, as shown in Figure 2.2.

Figure 2.2: Graphical representation of different activation functions.

Figure 2.3 shows a common representation of a neural network. The leftmost

layer represents the input layer, which consists of the features derived from the

input samples. The subsequent layers, known as hidden layers, consist of multiple

interconnected neurons which extract the features. The rightmost layer denotes the

output layer, which generates predictions from the neural network for a given input.

While applying the traditional neural network structure to images, two main

challenges are encountered. Firstly, depending on the number of features from the

samples, the number of connections between the different layers would vary. For

instance, an image of 200 × 200 with 3 color channels (RGB), would lead to an

input layer with 200 × 200 × 3 = 120, 000 neurons and therefore 120,000 weights

for each neuron in the subsequent layer. Furthermore, it is highly desirable to

incorporate multiple neurons and layers, thereby resulting in a substantial increase

in the number of parameters. However, the utilization of complete connectivity is
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Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.3: Multi-layer structure of a neural network: an input layer with
three elements, hidden layer 1 and layer 2 with four neurons each, and
an output layer. Figure adapted from [5].

inefficient and leads to an excessive number of parameters, ultimately giving rise to

the issue of overfitting. Thus, scalability is the significant issue that is faced with

such an architecture. Secondly, as each of the pixels is treated as an individual

feature, the potential local spatial information within the data gets disregarded.

The convolutional neural networks discussed in the following section successfully

addressed these challenges.

2.1.2 Convolutional Neural Network

The primary feature of Convolutional Neural Networks (CNNs) is that each neuron

processes a localized subset of adjacent input features, often organized as a square

grid of pixels, particularly in visual tasks. Instead of processing every individual

pixel of the input, CNNs apply a set of shared weights across the image, allowing

for more efficient feature extraction and learning. This operation is called convolu-

tion [59] (illustrated in Figure 2.4), and formally can be expressed as:

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.1)

where I is the input and K is the kernel (or filter) that corresponds to a set of

weights associated with a neuron. Then m and n correspond to the dimensions of

the input. The convolution operation is equivalent to the traditional image filtering
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Figure 2.4: Convolution operation applied to one channel image. Figure
adapted from [6].

operation, where a filter, defined by its weights, is multiplied with every position in

the image. When the filter pattern aligns with a patch in the image, it produces

a high value and activates the corresponding neuron. It significantly reduces the

number of weights in the model.

Structure of CNN

A CNN consists of three main components: a convolutional layer, a non-linearity

function, and a pooling layer. The convolutional layer applies kernels, which per-

form linear transformations on the input data illustrated in Figure 2.4. In the im-

age domain, convolutions can be thought of as combinations of filtering operations

including edge detectors and Gaussian blurs among others. Following the convo-

lutional layer, a non-linearity is often introduced to allow the network to capture

complex, non-linear relationships between features. Pooling layers are then used to

progressively reduce the spatial dimensions of the feature maps by summarizing local

regions. It is typically achieved by taking the maximum or average value of neigh-

boring elements. This reduction helps the network become more invariant to small

translations in the input images. Pooling also serves to adapt CNNs to the fully

connected layers in the later stages of the model, where the input feature size needs

to remain consistent regardless of the original image dimensions. In some cases,

pooling layers can be replaced by larger strides in the convolutional process, which

reduces spatial dimensions by skipping input features during convolution, achieving
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a similar effect. The architecture of CNN is illustrated in Figure 2.5.

Figure 2.5: A CNN for handwritten digits classification. Figure adapted
from [7].

Other elements often found embedded into CNNs are normalization layers that

aim at stabilizing the training process by keeping the statistics of certain parts of

the network normalized (zero mean and unit standard deviation): the statistics of

the layer input [60], or the layer weights themselves [61].

2.1.3 Training a Neural Network

Training a neural network is a crucial step in deep learning. The parameters of

the model are updated during training by an iterative refinement process. At each

iteration, the input samples are fed to the model and the generated outputs are

compared with the corresponding ground labels using the loss function.

Loss Function

The loss function, also referred to as the objective function or cost function, quan-

tifies the difference between the predicted output and the target label for a given

input. The goal of training a neural network is to minimize the loss function across

the entire dataset. Various loss functions can be employed depending on the problem

type and the desired properties of the model. Common loss functions include mean

squared error (MSE) for regression tasks, cross-entropy for classification tasks, and
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more complex task-specific loss functions. One of the widely used cost functions is

cross entropy loss:

CE(θ) = − 1

N

N∑
i=1

yTi log(hθ(xi)) (2.2)

where θ refers to the model parameters, xi is the input, yi refers to one hot encoded

label of input xi, N corresponds to the size of training data, and hθ(xi) is the model’s

predicted output.

Gradient Descent

A variety of algorithms are available to minimize the loss function. For developing

basic intuition, gradient descent (GD) is the most suitable one. GD starts by ran-

domly initializing the weights (θ), it is considered the initial point within the loss

landscape. GD computes the best direction along which the weight vector should

be updated (which is mathematically guaranteed to be the direction of the steepest

descent). This direction is computed by calculating the gradient of the loss func-

tion. Once the weights are updated, GD takes another step following the same

strategy. This process is repeated until convergence. The following equation shows

the parameter update process:

θt+1 := θt − α∇θl(θt) (2.3)

where θt+1 are the weights of the model after the GD update and θt correspond to

the current weights of the model. l(θt) corresponds to the loss of the model with the

current set of weights and ∇θ denotes the gradient operation for θ. The parameter

α is called the learning rate. It defines the step size that the optimization algorithm

will take.

Choosing an excessively high learning rate causes the optimization algorithm

to oscillate between high-loss points and potentially diverge towards regions with

higher loss values, skipping local optima. On the other hand, a very low learning rate

leads to slow convergence towards a local minimum and the risk of getting trapped
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in a sub-optimal minimum. A common strategy is to start with a moderately high

learning rate to enable exploration of the loss landscape, gradually reducing it during

training.

Backpropagation

In neural networks, backpropagation provides an efficient method for calculating the

gradient of the loss. It employs the chain rule to compute the gradients of errors in

different layers with respect to their weights. This gradient indicates how sensitive

the error in each layer is to changes in its weights. By utilizing the chain rule, the

loss with respect to the weights is derived as:

∂l(θ)

∂θ
=

∂l(θ)

∂o
× ∂o

∂θ
(2.4)

where ∂l(θ)
∂o

is the derivative of l(θ) with respect to previous layer (o), ∂o
∂θ

is the

derivative of the output of the previous layer with respect to the weights of that

layer θ. For the previous layer, the gradients are computed similarly using the loss

associated with that layer.

As the name suggests, backpropagation involves propagating the error computed

in the last layer backward through the network to calculate the gradients for each

layer. The schematic overflow of the backpropagation is illustrated in Figure 2.6.

In the forward pass, the input data is propagated through the network to compute

the output predictions and the loss value. During the backward pass, gradients of

the loss function are calculated for each model parameter, starting from the output

layer and progressing toward the input layer. This calculation is accomplished by

applying the chain rule of calculus to determine the partial derivatives utilizing the

chain rule outlined in Eq. 2.4.
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Forward Pass

Backward Pass

Figure 2.6: Schematic of backpropagation: x represents the input vector,
y is the ground truth label, hw(·) is the neural network with w parameters,
hw(x) is the prediction of the network for the input x, and L(·) is the loss
function that computes the error value L(hw(x), y) used for the parameter
update.

2.2 Deep Learning in Medical Imaging Analysis

Medical image segmentation is a critical task in computer-aided diagnosis. It in-

volves identifying and isolating specific regions of interest (ROIs) within medical im-

ages. These ROIs can represent organs, lesions, or other anatomical structures [62].

Accurate segmentation is crucial for various clinical applications, including disease

diagnosis, treatment planning, and disease progression monitoring.

Deep learning-based models have widely been used for image segmentation.

Their ability to learn complex image features has significantly improved segmen-

tation accuracy across various tasks. In particular, U-shaped network variations

have remained the go-to architectures during these past years. To train these mod-

els, the basic and most used loss functions are the cross-entropy loss and the dice

score loss for segmentation [63].

However, the challenges associated with the generalization of deep learning mod-

els to various medical imaging tasks have been thoroughly discussed in Chapter 1.
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“Additional challenges include the scarcity of medical data...”

These challenges include: the task-specific nature of the models (Section 1.1.1),

impact on model generalization due to domain shifts between the feature distribu-

tions of natural imaging and medical imaging tasks (Section 1.1.2), domain shift

with the medical domain itself which arise from various factors such as differences

in scanners, imaging modalities, and institutions (Section 1.1.3), lack of medical

data availability (Section 1.1.4) and computational costs related to the adaptation

of pre-trained models to the downstream tasks. These challenges are multifaceted

and will be explored in depth in the subsequent chapters of this thesis.

2.3 Approaches to Overcome Domain Shift Chal-

lenges

2.3.1 Transfer Learning

Transfer learning is the most common approach to reduce the impact of domain

shift (Section 1.1.1) [64]. Transfer learning is a machine learning technique in which

knowledge learned through one task or dataset is used to improve model performance

on another related task/ a different dataset.

In a typical transfer learning setting, there are two concepts: “domain” and

“task” [8, 65, 66]. A domain refers to the feature space of a specific dataset and the

marginal probability distribution of features. A task refers to the main objective

function of the model. The goal of transfer learning is to transfer the knowledge

learned from the task Ta on domain A to the task Tb on domain B [8]. Note that

either the domain or the task may change during the transfer learning process.

Initially, a large model is trained on a domain with abundant data and anno-

tations. Subsequently, the model is fine-tuned on a different domain, where only a

smaller dataset is available as illustrated in Figure 2.7. It offers several notable ben-

efits. It can significantly enhance performance, particularly when the downstream
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Figure 2.7: Overview of transfer learning [8].

task has limited labeled data [67, 68]. It also speeds up the training process be-

cause the model is initialized with weights that have already been trained on a large

dataset. As a result, it can converge more quickly towards the new downstream

task [69].

One major limitation of transfer learning is its reliance on a large, annotated

dataset in the source domain, which is often not readily available. The medical

datasets are often small due to the challenges of acquiring labeled data like data pri-

vacy regulations, the high costs of expert annotation, and the variability in imaging

practices across healthcare institutions (Section 1.1.4). Fine-tuning a deep learning

model (with millions of parameters) on small datasets can lead to overfitting. It

also does not yield optimal results when there is a significant domain shift between

the source domain on which the model is pre-trained and the target domain used on

which the model is fine-tuned (Sections 3.5.2, 6.5.2). Furthermore, fine-tuning the

large models is expensive and requires substantial resources.

The pre-trained models can also be used as fixed feature extractors. However,

the pre-trained models are often trained on large, generic natural imaging datasets

(e.g., ImageNet [33]). On the other hand, medical images (e.g., MRI, CT scans,

X-rays) have vastly different features such as grayscale, high noise, and structural

variability. The medical imaging analysis tasks often require identifying minute,

domain-specific details like small tumors or subtle lesions. Thus using models as

fixed feature extractors may not transfer well in such high-precision domains, re-
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sulting in sub-optimal performance (as demonstrated experimentally in Chapter 6,

Section 6.5.1, 6.5.2). This discrepancy arises from domain shift, where the charac-

teristics of the source domain (natural images) differ from the target domain i.e.

medical images (Sections 1.1.1, 1.1.2, 1.1.3).

2.3.2 Domain Adaptation

Deep learning models do not generalize well if the test set has a different distribu-

tion from the training set due to domain shift between the two distributions (Sec-

tion 1.1.1). For instance, in medical image segmentation, the MRI and CT scans of

the same region of interest look very different. If a model trained on MRI scans is

applied to CT scans, it will likely perform poorly due to domain shift which arises

from differences in imaging modalities. However, obtaining annotated datasets for

each new imaging modality or task is not practically possible (Section 1.1.4).

Domain adaptation is a specific type of transfer learning that aims to adapt a

model trained on one domain to perform well on another domain. In this context,

the task remains the same but the data distribution changes [70, 71]. It involves two

domains: source domain: the domain on which the model is initially trained using

labeled examples. target domain: the domain whose data distribution differs from

the source domain. The target domain is either unlabeled or contains only a small

amount of labeled data. The model pre-trained on the source domain is evaluated

to perform a similar task in the target domain.

The source and target domains may differ in input feature distribution, out-

put labels, or both. One of the DA scenarios is illustrated in Figure 2.8, where a

model trained on the synthetic dataset is adapted to the real target domain for the

application of semantic segmentation.

The goal of domain adaptations (DA) is to address the differences in data dis-

tribution between the source and target domains so that the model generalizes well

across both as shown in Figure 2.9. DA approaches enable the model to identify

underlying patterns in the data that are relevant to the task at hand, while ignoring
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domain-specific discrepancies. In other words, the model must distinguish between

domain-specific features and task-relevant features, to generalize well on the latter.

Notation

Let X × Y represent the joint feature space and the corresponding label space

respectively. A source domain S and a target domain T are defined on X×Y , with

different distribution Ps and Pt i.e. D
S ̸= DT .

In the source domain, there are ns labeled samples represented asDS = {(xs, ys)}ns
i=1.

In the target domain, there are nt samples, which may or may not include labels,

represented as DT = {(xt)}nt
j=1.

The primary goal of domain adaptation is to adapt the model trained on source

domain (S) so it can generalize effectively on a related but different target domain

(T ), despite significant differences between the two domains.

2.3.3 Comparison of Adaptation Techniques

Domain adaptation, domain randomization, and domain generalization are com-

monly used for adaptation in machine learning. It is important to highlight how

domain adaptation is better suited for medical imaging, particularly under limited

data constraints.

Domain randomization introduces diverse variations during training to improve

generalization; however, it has limitations in medical imaging compared to domain

‘

Figure 2.8: Adaptation from the synthetic source domain to the real
target domain [9].
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Figure 2.9: Overview of domain adaptation. Figure adapted from [2].

adaptation. Randomizing intensity, contrast, noise, and anatomical deformations

may create unrealistic variations that do not reflect real pathological changes, lead-

ing to misleading feature learning [72]. Moreover, excessive randomization can dis-

tort critical diagnostic details, reducing model reliability. Additionally, in medical

imaging, clinical validation and trust are crucial; artificial variations introduced by

randomization may not accurately represent patient populations, limiting real-world

applicability [73]. Therefore, while domain randomization enhances robustness, do-

main adaptation remains a more reliable approach for adaptation in medical imag-

ing.

Domain generalization aims to train a model that generalizes well across unseen

domains, without access to data from the target domain during training [74]. The

model is trained on multiple source domains, and the goal is to make the model

robust to domain shift, such that it can perform well when exposed to a completely

new, unseen domain at test time. For domain generalization, the need for access to

multiple source domains presents challenges in the medical field, where labeled data

from multiple domains are often unavailable, limiting its applicability.

Therefore, compared to the aforementioned adaptation approaches, domain adap-

tation is better suited for medical imaging scenarios with limited data availability.
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2.4 Literature Review

This section gives a general overview of the domain adaptation landscape for the

medical imaging domain. It introduces the main work done within the topic and its

evolution over time. The critical literature review relevant to each piece of research

is presented in the corresponding chapters.

As outlined in Chapter 1, the research presented in this thesis aligns with the

research paradigm shift in computer vision. It first focuses on the adaptation of

convolutional neural networks and transformer-based approaches and evolves to-

ward foundation model-based domain adaptation methods. The literature review is

structured in a similar manner to reflect this progression.

2.4.1 Supervised Domain Adaptation

Supervised Domain Adaptation (SDA) is a subfield of domain adaptation in ma-

chine learning that leverages labeled data from a source domain to improve model

performance on a target domain, where a limited amount of labeled data is avail-

able [75].

One of the widely used SDA approaches involves adapting the model trained on

the source domain by fine-tuning the entire model for the target domain. The effects

of fine-tuning have been assessed in the context of brain lesion segmentation, utilizing

CNN models pre-trained on brain MRI scans [76]. The size of the target domain

dataset and the selection of different network architectures have been shown to

significantly influence adaptation performance. Inspired by this, several approaches

have employed CNNs pre-trained on ImageNet [33] for various medical imaging

analysis downstream tasks. Samala et al. [77] proposed a two-step approach that

first pre-trains an AlexNet using ImageNet [33] and then fine-tunes it with the

target domain. The target domain in this case is mass lesions for breast cancer

classification. Following this [78] pre-trained a VGG network on ImageNet and then

fine-tuned it using labeled MRI data for Alzheimer’s disease (AD) classification. For

chest X-ray image classification, ImageNet has been used to pre-train CNNs with
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evaluation adaptation to chest X-ray target domain [79].

However, in various medical imaging modalities, the target domain datasets are

often small. Fine-tuning the entire model with small datasets is prone to overfitting.

Furthermore, in the medical imaging domain, multiple target domains exist for a

single imaging modality (Section 1.1.3). Thus creating fine-tuned versions for each

downstream task is challenging and not practical. Moreover, adapting the entire

model imposes substantial computational constraints.

To address these challenges, a novel approach for parameter-efficient adaptation

of CNNs is proposed for multi-target domain adaptation in medical imaging that is

both accurate and computationally efficient which is outlined in detail in Chapter 4.

Another research direction for SDA involves employing deep learning models

as fixed feature extractors, followed by the adaptation of these extracted features

using shallower models. For instance, ResNet [80] has been effectively utilized as

a fixed feature extractor for mammographic images [81]. Using the extracted fea-

tures, three alignment-based for adaptation are used: Transfer Component Analysis

(TCA) [82], Correlation Alignment (CORAL) [83, 84], and Balanced Distribution

Adaptation (BDA) [85]. In another application, LeNet-5 is used as a fixed feature

extractor for histological images across different domains, for the task of classifica-

tion of epithelium and stroma [86]. To facilitate the alignment of extracted features

for adaptation, the extracted features were projected into a lower-dimensional space

using principal component analysis [87].

While leveraging deep learning models as fixed feature extractors is effective for

classification tasks where annotated and pre-defined class labels are available, this

approach does not offer the same benefits for complex pixel-level medical image

segmentation tasks. It is further exacerbated due to domain shift (Section 1.1.1),

especially when adapting models pre-trained on natural images for complex medi-

cal imaging tasks, as experimentally demonstrated in Section 3.5.2 and Chapter 5.

Furthermore, medical imaging analysis often requires a fine-grained understanding

of different regions within the image to accurately classify each of them. A few-shot
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adaption approach is proposed for this purpose, which is discussed in Chapter 6.

However, achieving such semantic labels in medical images is challenging and often

impractical as outlined in Chapter 1.

2.4.2 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to generalize large-scale models, pre-

trained on the source domain to an unlabeled target domain, eliminating the need

for costly data annotation [26, 88].

UDA techniques often focus on aligning the feature distributions of the source

and target domains. It involves strategies such as minimizing the distance between

the two distributions or utilizing adversarial training to make the features from

both domains indistinguishable. Some commonly used distance metrics for measur-

ing domain differences include maximum mean discrepancy (MMD) [89], correla-

tion alignment (CORAL) [83, 84], contrastive domain discrepancy (CDD) [90], and

Wasserstein distance [91].

However, medical images often contain complex, high-dimensional features with

subtle distinctions between classes, such as differentiating between visually similar

lesions. Furthermore, pathological structures lack a consistent anatomical shape or

pattern, and in some cases, they may closely resemble normal structures, as demon-

strated in Chapter 6 (Section 6.5.3). Additionally, medical images vary significantly

due to differences in imaging equipment, protocols, and settings (e.g., MRI machines

from different manufacturers (Figure 1.4)). In medical imaging, the domain shift

goes beyond simple distributional changes as discussed in Chapter 1.

As a result, feature-level alignment methods often fail to capture fine-grained and

localized distinctive features essential for accurate diagnosis, as they tend to focus

primarily on matching global feature distributions [4]. This limitation can lead to

reduced model performance in clinical applications, where high-level precision and

sensitivity to subtle variations are essential for reliable decision-making.

Image-level alignment is also used for UDA in the medical imaging domain. Pri-
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marily, deep generative models, such as generative adversarial network [92] are used

for image-level alignment. Zhu et al. proposed a cycle-consistent GAN (CycleGAN)

model that can translate one image domain into another without the demand for

paired training samples [93]. A cycle consistency loss is used to measure the differ-

ence between the input image and the reconstructed image. In [94] CycleGAN-based

UDA method is proposed for de-noising images. It learns a mapping between the

source (i.e., high noise) and the target domain (i.e., low noise) on unpaired OCT

images. CycleGAN’s application has also been evaluated for brain tumor segmenta-

tion [95]. First, synthetic MRI images of tumor-bearing tissue are generated using

a private simulation model. These images are then transformed into realistic MRIs

using CycleGAN to augment the training dataset.

While models like CycleGAN enable translation between source and target do-

main (e.g., MRI to CT), they struggle to preserve fine-grained anatomical details

essential for accurate diagnosis [96, 97]. The generative process can introduce subtle

artifacts or alter critical features, leading to potential misinterpretations [98]. Cycle-

GAN also encounters training instability challenges, such as model collapse, where

the generator produces limited output diversity [99, 100]. In medical imaging, this

can be particularly detrimental, as it may result in translated images that fail to

capture the necessary variability to accurately represent diverse patient anatomies

and pathological conditions.

Diffusion models are increasingly used in medical imaging for generating high-

quality synthetic data and augmenting datasets. However, their effectiveness in

domain adaptation is limited. They struggle to transfer knowledge across different

imaging domains (e.g., MRI vs. CT) due to variations in acquisition settings, scan-

ners, and patient demographics [101]. Models trained on one dataset may fail to

generalize to another, leading to poor adaptation. Additionally, diffusion models

can introduce artifacts or hallucinations, generating medically implausible struc-

tures that degrade model reliability, particularly in sensitive tasks like retinal imag-

ing [102].
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Disentangled representation involves training the model to separate, or “disen-

tangle”, the underlying features that potentially contribute to variation in data [103].

The model is trained to learn representations where each latent variable (or dimen-

sion of the learned representation) corresponds to a distinct, interpretable feature,

such as shape, color, lighting, or even more abstract properties like facial expression

or object pose. Disentangled representation learning embeds images from the source

and target domains into two distinct spaces: a shared domain-invariant content space

and a domain-specific style space. A cross-modality UDA method between MRI and

CT images based on disentangled representation learning for liver segmentation is

proposed in [104]. Zhao et al. [105] utilized disentangled features with a shared de-

coder to reconstruct the original data. In the new target domain, a private encoder

trained is employed on the reconstruction objective. To ensure minimal mutual in-

formation between class-invariant and class-shared features, a mutual information

minimization approach is applied [106].

In contrast to natural imaging, where domain-specific attributes (e.g., weather,

color intensity) facilitate clearer disentanglement, disentangling features in the med-

ical domain (especially for pathological structures) is challenging, as discussed in

Chapter 6. Moreover, the features disentangled by the model may not correspond

to clinically meaningful aspects of the disease, limiting their utility for diagnostic or

prognostic purposes [107].

2.4.3 Semi-Supervised Domain Adaptation

Semi-supervised Domain Adaptation (SSDA) aims to enhance the performance of a

model pre-trained on a labeled source domain when applied to a related but different

target domain with only a few available labels. The target domain consists of a

mix of labeled and unlabeled data, while the source domain contains a substantial

amount of labeled data [108].

Adversarial learning frameworks have been widely adopted for SSDA in the med-

ical imaging domain. These methods utilize generative adversarial networks (GANs)
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to align the feature distributions of the source and target domains [109]. For in-

stance, Chen et al. [110] proposed a semi-supervised GAN framework that effec-

tively reduces domain shift by generating synthetic samples for the target domain,

improving the segmentation performance of brain tumors in MRI scans. Madani et

al. [111] proposed a semi-supervised GAN-based SSDA framework for chest X-ray

image classification. The discriminator performs three-category classification (i.e.,

normal, disease, or generated image). During training, unlabeled target data can

be classified as any of those three classes but can contribute to loss computation

when they are classified as generated images. Through this way, both labeled and

unlabeled data can be incorporated into a semi-supervised manner. An SSDA frame-

work is proposed for electron microscopy image segmentation [112]. Specifically, a

“YNet” with one feature encoder and two decoders is proposed. One decoder is used

for segmentation, while a reconstruction decoder is designed to reconstruct images

from both the source and target domains. The network is initially trained in an

unsupervised manner. Then, the reconstruction decoder is discarded, and the whole

network is fine-tuned with labeled target samples to make the model adapt to the

target domain.

However, the application of GANs in the medical imaging domain is associated

with several challenges, which are discussed in detail in the previous Section 2.4.2

Self-training is another form of SSDA. Pseudo-labeling is one of the techniques

for self-training, where a model iteratively re-trains itself using its own predictions

on unlabeled data [113, 43]. In the context of brain tumor segmentation, Zhou

et al. utilized pseudo-labels to enhance segmentation performance by iteratively

refining model predictions based on high-confidence outputs [114]. Lee et al. in-

troduced the concept of pseudo-labeling in a semi-supervised setup, demonstrating

its effectiveness in various domains, including medical imaging [115]. A method

called self-training with noisy a student is proposed, which enhances model accu-

racy in various medical imaging tasks by generating pseudo-labels for unlabeled data,

demonstrating superior performance in lung disease classification tasks [113]. The
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term “noisy student” refers to a specific semi-supervised learning approach where

a student model is trained using pseudo-labels generated by a teacher model, often

with added noise to improve generalization.

Pseudo-labeling relies on the model predictions to generate labels for unlabeled

data. If the model is initially inaccurate, it may assign incorrect labels, propagating

errors, and degrading overall performance. The performance of pseudo-labeling can

diminish when the model encounters a target domain that is significantly different

from the source domain, especially if there is high variability and noise in medical

images.

Consistency regularization (CR) is also a form of self-training [43], it encourages

the model to produce similar predictions for perturbed versions of the same input

data. This technique has been effectively used in medical imaging tasks. CR is used

in lung nodule classification. The perturbed version of the image is created using

augmentation techniques to create variations of the input data [116]. The model

was trained to maintain consistent predictions across these variations, leading to

improved robustness against domain shift.

The effectiveness of CR heavily depends on the perturbed images. For instance,

if augmentations are used for perturbation, the poorly chosen augmentations can

lead to misleading results, as the model might learn to be consistent over irrele-

vant transformations rather than meaningful variations. If not carefully managed,

the model may overfit to the augmented versions of the training data rather than

generalizing to real-world data, limiting its practical applicability.

Ensemble learning leverages multiple models to generate more stable pseudo

labels. It has been adapted in SSDA, where a baseline CNN, referred to as the stu-

dent network is utilized, which processes labeled samples from the source domain

and makes predictions after being trained with a segmentation loss [4]. A second

network, known as the teacher network, generates predictions based solely on un-

labeled samples from the target domain. The teacher network is updated using an

exponential moving average of the student network’s weights, implementing a tem-
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poral ensemble strategy. During training, the domain shift is minimized through a

consistency loss that compares the predictions from both networks. This method

is evaluated on the SCGM challenge dataset [117], which consists of multi-center,

multi-vendor spinal cord anatomical MR images from healthy subjects. A similar

structure is employed based on SSDA for brain tumor segmentation. In addition

to the consistency loss that measures the discrepancy between the teacher and stu-

dent network predictions, they incorporate an adversarial loss to enhance adaptation

performance [118]. Their approach is validated through experiments on the BraTS

dataset [119].

However, ensemble approaches such as mean teacher, require careful manage-

ment of model and weights, which can complicate the training process and require

additional resources. Moreover, averaging weights over time can lead to slower con-

vergence rates, prolonging training times.

2.4.4 Adaptation of Foundation Models

Foundation models have revolutionized the field of computer vision by introducing

large-scale, pre-trained models capable of performing a wide range of tasks. Un-

like traditional task-specific models, foundation models are trained on vast, diverse

datasets, enabling them to learn general representations that can be adapted to new

tasks and domains with significantly reduced data and effort [15, 120, 121].

Since the research work presented in this thesis focuses on medical imaging anal-

ysis, this section introduces the foundation models that have been widely used in

this domain. Primarily, the foundation model- segment anything model (SAM), has

been used for two of the proposed approaches (Chapter 5 and Chapter 6). The de-

tailed related work on SAM adaptation for medical imaging is outlined in Chapter 5

(Section 5.2). Here the related work has been presented from the perspective of

different foundation models.

Despite the significant advancements in foundation models within NLP and com-

puter vision, their impact on medical imaging has been limited. One of the primary
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reasons for this is the difficulty in accessing and aggregating large-scale datasets com-

parable to those used in other domains. Medical imaging data are often fragmented

across different institutions and subject to stringent privacy regulations, making it

challenging to amass the extensive datasets required for training large foundation

models. Since its release, the segment anything model (SAM) has gained significant

attention [13]. It incorporates a ViT-based encoder and a lightweight transformer-

based decoder, showcasing remarkable zero-shot segmentation capabilities. The ar-

chitecture details are discussed in preliminaries Section 5.3.1. Several studies have

conducted assessments of SAM’s performance in medical imaging tasks using default

architectural design [122, 56, 123, 124, 125, 126]. Furthermore, researchers have ex-

plored slight modifications of the SAM model to tailor it specifically for medical

imaging applications [127, 128] or fine-tuned it for specific datasets [129, 130, 55].

While these architecture-based modifications and dataset specific fine-tuning

methods mentioned above have proven effective. Since SAM is a foundation model,

adapting it first to a source domain and then to downstream target domains in-

troduces significant computational overhead. To address this challenge, several

methods have employed parameter-efficient fine-tuning to adapt SAM, utilizing

lightweight adapters for enhanced efficiency. However, it is experimentally demon-

strated in Chapter 5, that the effectiveness of PEFT is highly dataset specific (Sec-

tion 4.5.6). Furthermore, most studies have evaluated SAM’s effectiveness in seg-

menting every region within an image. While this appears to be enticing, in the

medical domain it has limited practical application in real-world scenarios (Sec-

tion 5.1). Additionally, as a foundation model, SAM introduces significant compu-

tational overhead, which cannot be overlooked.

To address these challenges, a training-free/fine-tuning free framework-SaLIP is

proposed to adapt SAM specifically for the medical imaging domain, as detailed

in Chapter 5. SaLIP does not require source domain access, instead, it is fully

adapted to the target domain completely at test time, in a training-free manner,

allowing SAM to perform effectively in new medical imaging tasks with minimal
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computational overhead.

Segment everything everywhere all at once model (SEEM) [131] is another foun-

dational model for segmentation, which has shown excellent performance across

numerous benchmarks. However, there is currently limited research on its appli-

cation in the medical domain. Despite an extensive search, we found no relevant

references on its use in medical contexts, making it a compelling candidate for the

medical imaging domain.

The contrastive learning image pre-training family (CLIP) of models is pre-

trained on image-text pairs [132]. MedCLIP is the adaptation of CLIP for medical

imaging. It is trained on a massive dataset of unpaired medical images and text

descriptions. It has been evaluated on image classification, retrieval, and zero-shot

learning [133]. MedCLIP is predominantly pre-trained on X-ray datasets, including

MIMIC-CXR [47], CheXpert [48], COVID [134], and RSNA Pneumonia [135]. Its

evaluation is primarily conducted on chest X-ray datasets, with the learned knowl-

edge transferred through transfer learning for specific downstream applications. In

particular, MedCLIP’s transferability is assessed on downstream supervised tasks

and image-level classification tasks. In contrast, methods proposed in the subse-

quent chapters address a more challenging domain adaptation problem by bridging

the gap between general-purpose models and specialized medical tasks. Specifically,

the broader applicability is enabled across diverse medical imaging domains through

unsupervised adaptation for multi-target domains (Chapter 4), test-time adaptation

of foundation models (Chapter 5), and few-shot adaptation for fine-grained medical

imaging (Chapter 6).

A self-supervised contrastive learning method to detect multiple pathologies in

chest X-rays [136] by leveraging unlabeled data to learn discriminative feature rep-

resentations, thereby enhancing pathology classification accuracy. This approach

leveraged image-text pairings and zero-shot classification techniques to achieve radi-

ologist level performance, without explicit training on the target pathologies. BLIP

is trained on large datasets consisting of biomedical images (such as radiology, histo-
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pathology, and microscopy images) paired with relevant textual annotations (like

clinical notes, image captions, and descriptions) [137]. It employs contrastive learn-

ing techniques to maximize the similarity between matching image-text pairs while

minimizing it for non-matching pairs. A multi-modal global-local representation

learning framework for medical images by leveraging radiology reports in [138].

Specifically, an attention based framework for learning global and local represen-

tations by contrasting image sub-regions and words in the paired report.

BioMedCLIP [139], while a specialized model trained on biomedical data, it is

designed for tasks where the training and testing data come from similar biomed-

ical domains. Additionally, BioMedCLIP [139] is pre-trained on radiology reports,

making it skewed toward this type of data and is limited to certain medical imag-

ing types. BioMedCLIP’s [139] textual encoder is trained on existing biomedical

literature and captions. While this is useful for some medical tasks, it may not be

flexible in handling new terminologies, emerging diseases, or institution-specific vo-

cabularies. In contrast, the approaches proposed in the subsequent chapters of this

thesis are designed to be domain-agnostic.(Chapter 4, 5 and 6), which is key when

trying to address the robustness of medical image recognition in varied scenarios,

such as imaging from different hospitals, devices, or imaging modalities (e.g., MRI,

CT, X-ray).

The effectiveness of contrastive learning in the medical imaging domain has pri-

marily been evaluated on image-level/global tasks. To adapt CLIP for medical

applications, the approaches mentioned above, have used medical image-text pairs

to train CLIP. However, these datasets are largely skewed toward chest X-rays and

the radiology domain [140]. More importantly, in medical imaging analysis, partic-

ularly for disease diagnosis and prognosis, a fine-grained, region-level understanding

is essential.

Furthermore, acquiring biomedical text and images from web sources for fine-

grained, subtle anatomical structures and pathologies presents considerable chal-

lenges. When we opted for the recent research trends of leveraging large language
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models like GPT [52] to generate textual prompts, it worked well for medical organ

segmentation (Chapter 5). However, it showed limited effectiveness for fine-grained

recognition of anatomical structures based on spatial location and more complex

pathologies, as experimentally validated in Chapter 6.

DINOv2 (Distillation with No Labels v2) is a vision-based foundation model

developed by Meta [53]. It benefits from training on a large-scale curated dataset,

resulting in representations that capture the semantic meaning of images remarkably

well. DINOv2 is particularly notable for its ability to generate high-quality, dense

feature maps that improve downstream performance on tasks requiring detailed

spatial understanding. DINOv2 has been used for classification in several medical

tasks i.e. diabetic retinopathy, detecting lesions, and skin lesions and abnormalities

in lungs [141].

The effectiveness of DINOv2 has been primarily evaluated for image-level clas-

sification, whereas medical imaging analysis often requires pixel-level classification.

Obtaining region-level labels required for fine-grained tasks in medical tasks remains

extremely challenging and impractical (Section 6.1). When we evaluated DINOv2

for more complex fine-grained medical tasks, specifically the classification of lung re-

gions based on spatial localization and region-based pathological structures did not

yield favorable results for these fine-grained tasks (Chapter 6). This outcome sug-

gests limitations in DINOv2’s ability to handle the detailed feature differentiation

necessary for medical imaging applications.

2.5 Summary

This chapter provides an introduction to the fundamental principles of deep learn-

ing and their applications to computer vision applications in Section 2.1. A brief

overview of deep learning-based approaches for medical imaging analysis is outlined

in Section 2.2. Section 2.3 presents the widely used approach to overcome domain

shift and the challenges in the medical imaging domain. Section 2.4 presents a

comprehensive literature review for domain adaptation and its evolution over time
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with an emphasis on medical imaging segmentation.

In subsequent chapters, the results achieved through the course of this research

are described and discussed. Furthermore, each chapter includes an extended liter-

ature review focused on specific sub-topics, accompanied by comprehensive descrip-

tions of the employed methodologies and experiments conducted.
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Chapter 3

Domain Shift in Medical Imaging:

Need for Domain Adaptation

This chapter provides a comprehensive overview of findings from our participation

in the STOIC 2021 COVID-19 AI Challenge [20]. The objective of this challenge

was to automatically predict COVID-19 severity from Computed Tomography (CT)

scans of COVID-19 suspects and patients. The experiments in this chapter are con-

ducted on the STOIC dataset from STOIC 2021 COVID-19 AI Challenge [20]. It

addresses Research Question 1 (RQ1): “What are the key challenges and limita-

tions of supervised adaptation approaches when applied to diverse medical imaging

datasets? Specifically, how do domain shifts and data scarcity affect the generaliza-

tion of neural networks for medical imaging tasks?”

Importantly, participation in this challenge introduced us to the critical issue of

domain shift in the medical imaging domain (discussed in Section 1.1.1). Participa-

tion in the STOIC challenge helped us to establish a clear research direction for this

thesis, i.e., the need for robust domain adaptation techniques to address the chal-

lenges posed by domain shift and limited data availability in the medical domain.

Domain adaptation is a specific type of transfer learning that aims to adapt a model

trained on one domain to perform well on another domain. In this context, the task

remains the same but the data distribution changes [70, 71] (Section 2.3.2).
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Our proposed approach achieved the 4th position in the challenge. The work

discussed in this chapter has been published in the 25th IEEE Conference on Irish

Machine Vision and Image Processing Conference (IMVIP), 2023 [142]. The code

to replicate experiments and results is publicly available at:

https://github.com/aleemsidra/STOIC2021-COVID-19-AI-Challenge.

Section 3.1 outlines our motivation behind the research on COVID-19 severity

prediction and gives an overview of the STOIC 2021 – COVID-19 AI Challenge [20].

Section 3.2 reviews the existing methods for COVID-19 prediction. Section 3.3

outlines the proposed ensemble approach and its architectural design. Section 3.4

provides an overview of the STOIC dataset and the experimental setup. Section 3.5

presents a comprehensive in-depth analysis of all the experiments and a comparative

analysis of the proposed approach with other leading methods. Finally, Section 3.6,

summarizes the findings from the challenge and highlights how participation in the

STOIC challenge contributed to help shape the research direction for this thesis.

3.1 Introduction

The automated medical imaging analysis research domain has undergone a trans-

formative evolution, largely driven by advancements in deep learning [143]. This

progress not only stems from technical and algorithmic innovations but also from

the availability of high-quality labeled datasets [40, 144], which have facilitated the

exploration of new architectures. However, medical imaging analysis poses unique

challenges to the generalization of deep learning models due to several factors such

as diverse imaging modalities that can result in domain shift [145, 146, 147] (Sec-

tion 1.1.3). For instance, magnetic resonance imaging (MRI) provides excellent

contrast for soft tissue, while CT scans offer superior spatial resolution [148, 149],

as shown in Figure 1.3 (Cross Modality). Therefore, the choice of modality is crit-

ical in achieving accurate results for specific clinical applications. The choice of an

inappropriate imaging modality can result in diagnostic inaccuracies, hinder model

generalization, and degrade the performance of deep learning models trained on such
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Figure 3.1: Chest CT scans illustrating lung abnormalities associated
with various stages of COVID-19 progression.

data, ultimately leading to suboptimal outcomes.

The COVID-19 pandemic highlighted the critical role of medical imaging in di-

agnosis and emphasized the need for efficient automated diagnostic systems. Chest

X-rays have been more widely used in the prognosis and monitoring of COVID-19

patients due to their cost-effectiveness and availability [150, 151]. However, chest

CT scans are more accurate in detecting lung abnormalities associated with COVID-

19 [152, 153, 154]. CT has proven to be an invaluable tool for evaluating lung condi-

tions, aiding in the prediction and severity assessment of COVID-19, and detecting

related complications.

Several chest CT findings, such as ground-glass opacities, dilated vessels, consol-

idations, paving patterns, and cavitating lesions [154], have been directly associated

with COVID-19. In severe cases of COVID-19, chest CT scans often show ground

glass opacities in the peripheral lung regions and dilated pulmonary vessels. As

COVID-19 progresses, consolidations and cavitating lesions tend to increase [154].

These abnormalities are shown in Figure 3.1. Furthermore, previous studies have

focused primarily on COVID-19 positivity prediction or relevant features extrac-

tion [155, 156, 157, 158, 159, 160].
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3.1.1 Motivation

Given the advanced diagnostic capabilities and comprehensive clinical insights pro-

vided by CT imaging, this research utilizes the CT modality to analyze COVID-19

severity. While COVID-19 positivity prediction and feature extraction methods

contribute to diagnosing the disease, it is essential, to emphasize that these ap-

proaches alone are insufficient to aid treatment decisions or accurately predicting

disease severity. Proper assessment of COVID-19 severity is vital for effective clin-

ical management, as it directly affects treatment strategies and patient outcomes.

Additionally, the reliance on private datasets in COVID-19 research poses a sig-

nificant challenge, restricting data accessibility and impeding the reproducibility of

proposed methods. These challenges motivated our participation in the STOIC 2021

COVID-19 AI challenge [20].

3.1.2 STOIC 2021- COVID-19 AI Challenge: Overview

The STOIC 2021 COVID-19 AI Challenge focused on developing fully automated

methods to distinguish between severe and non-severe COVID-19 cases, with “se-

vere” defined as death or intubation within one month (AUC computed with COVID-

19 positive patients only, primary metric). The challenge was organized utilizing the

data from the STOIC dataset [161] (Section 3.4.1).

The STOIC 2021 challenge consisted of the following phases:

1. Qualification Phase: participating teams developed algorithms using the

STOIC public dataset, with evaluation conducted by submitting docker con-

tainers 1 of the proposed methods to the “Qualification” leaderboard. This

leaderboard ranked submissions based on performance on a subset of approxi-

mately 200 test scans. The participating teams were limited to one submission

per week on the leaderboard.

2. Qualification (Last Submission): determined which teams were eligible

1A docker container is a lightweight, standalone, and executable software package that includes
everything needed to run an application [162], Accessed: [08.02.2025].
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for the final phase. Submissions for this leaderboard were evaluated on a

separate test set of approximately 800 scans, distinct from the set used for the

“Qualification” leaderboard.

3. Final Phase: selected finalists could submit a docker container 2 to train

an improved model using the full train set of over 9,000 CT scans. This

set included 2,000 scans from the STOIC public dataset, 200 scans from the

“Qualification” leaderboard, approximately 800 scans from the “Qualification

(Last Submission)” leaderboard, and an additional 6,000+ scans from the

STOIC database [161].

3.2 Related Work

Several deep learning techniques have proven effective in medical diagnosis and

analysis while leveraging CT scan data. As discussed in Section 3.1, the majority of

the existing research focused on COVID-19 prediction and feature extraction. This

section provides an overview of the work conducted in these areas.

A fully automated method for detecting COVID-19 from chest CT scans is pro-

posed in [163]. The method first applies an image processing algorithm to exclude

CT images where the lung interior is not clearly visible. It then utilizes a novel archi-

tecture based on a feature pyramid network, designed for classification tasks [164].

A new dataset containing 48,260 CT scan images from 282 healthy subjects and

15,589 images from 95 COVID-19 infected subjects is introduced and evaluated us-

ing a 10-fold cross-validation approach. However, the proposed method has not been

clinically validated on a large, diverse population. Since the dataset was collected

from a single center, its generalizability to other populations is uncertain. The im-

pact of domain shift, arising from variations in acquisition sites and protocols, has

not been validated (Section 1.1.3). COVIDCTNet, a multi-step deep learning model,

is proposed for diagnosing COVID-19 using a small cohort of CT images [165]. The

2A docker container is a lightweight, standalone, and executable software package that includes
everything needed to run an application [162], Accessed: [08.02.2025].

48



Domain Adaptation for Medical Imaging under Limited Data Constraints

model detects COVID-19 from CT scans, achieving a sensitivity of 98.7% and speci-

ficity of 96.1% on a dataset of 349 CT scans from 105 COVID-19 positive patients

and 68 healthy individuals. However, the dataset used in this study is not publicly

available, limiting the model’s reproducibility. Moreover, the evaluation was con-

ducted on a small dataset, and further validation on larger, more diverse datasets

is necessary.

A 3D version of the regularized network (RegNet) has been employed for diag-

nosing COVID-19 using chest CT images [166]. RegNet is based on the regularized

network architecture [167] and is trained on a large dataset consisting of COVID-19

positive and negative cases. While the authors have implemented sample-efficient

techniques, there remains a risk of overfitting with deep learning models. Moreover,

the proposed method is limited by the dataset, which only includes COVID-19 pos-

itive and negative cases and lacks data for other lung diseases that may coexist.

As a result, the model’s performance could decline in the presence of such con-

ditions. Additionally, the model was trained and evaluated on a limited dataset

from a specific geographic region, potentially restricting its generalization to other

populations (Section 1.1.4). Hossein et al. [168] propose a deep learning model

leveraging self-attention and multi-scale encoder-decoder networks, demonstrating

strong performance in medical imaging tasks like lung nodule detection, retinal

vessel segmentation, and brain tumor segmentation. However, its effectiveness on

3D CT scans, a modality more suitable for detailed lung analysis (as discussed in

Section 3.1) remains unexplored.

A contrastive cross-site learning framework has been proposed to address the do-

main shift issue by leveraging information from multiple sources. This approach uses

a contrastive loss function to help the model learn shared representations across dif-

ferent datasets, facilitating better generalization across domains [169]. The method

was evaluated on two publicly available COVID-19 CT datasets: COVID-CT and

SARS-COV-2 CT-Scan [170], achieving an impressive accuracy of 97.3% on the com-

bined dataset. However, the dataset was imbalanced, with a relatively small number
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of COVID-19 positive cases compared to negative cases. This imbalance could in-

troduce bias in the model, hindering its ability to effectively learn the distinguishing

features of COVID-19 from CT scans.

3.3 Methodology

This section presents our proposed approach for COVID-19 severity prediction. It

begins with a detailed description of the pre-processing steps our method applied

to the STOIC dataset, as outlined in Section 3.3.1. Following this, Section 3.3.2

provides an in-depth discussion of the architectural design of our proposed ensemble

method.

3.3.1 Pre-Processing

The CT scans from the STOIC dataset have a spatial resolution of 512× 512 with

a depth ranging from 128 to 600 slices. The radiodensity within this volume is

measured using Hounsfield Units (HU), ranging from -1024 HU to 3071 HU, and

stored as 12-bit numbers [171]. However, directly scaling HU values to the range

of 0 to 1 can lead to low-contrast CT images, making it challenging to identify and

extract relevant features associated with COVID-19.

To overcome this challenge, a windowing function is applied to adjust the bright-

ness and contrast of CT images to enhance the visibility of specific structures or

tissues [172]. Windowing plays a critical role in accurate CT scan interpretation

by optimizing the visibility of specific anatomical features and pathological details

as shown in Figure 3.2. This refinement ultimately helps the models to make more

precise predictions, detect subtle patterns and increase their robustness in distin-

guishing features relevant to COVID-19 severity. Windowing has two components:

window width and window level. The window width controls the range of signal in-

tensities displayed in the CT image. The window level sets the center of the window

width range and adjusts the midpoint of the grayscale display [173]. By changing
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Figure 3.2: Comparative Analysis: a) Scaling b) Windowing.

the window level, specific tissues or structures can be highlighted, making them

more distinguishable from the background to obtain high-contrast images from CT

volumes. The upper and lower gray level values are calculated using window width

and window level as:

x = WL+
WW

2

y = WL− WW

2

(3.1)

where x is the lower gray level value, y is the upper gray level value, WW is window

width and WL is window level. To enhance the visibility of lung structures in

CT scans, a lung window with a window width (WW) of 1500 HU and a window

level (WL) of -600 HU is employed. This configuration optimizes the contrast and

brightness of the images, facilitating the detection of abnormalities such as ground-

glass opacities and consolidations.

Figure 3.2 demonstrates the effectiveness of windowing as compared to direct

scaling, highlighting its superior ability to enhance contrast differences, which can be

particularly useful for COVID-19 severe prediction. The windowing clearly enhanced

the visibility of key CT features, which could significantly improve the diagnostic

accuracy of models in detecting lung pathologies related to COVID-19.

A CT volume consists of numerous slices, but not all contain meaningful diagnos-

tic features. Utilizing all slices can increase training time and computational load

while potentially reducing accuracy due to the inclusion of irrelevant slices, such

as those that are completely black or lack features relevant to COVID-19 severity

prediction.

To address this issue, a sampling function is employed to retain only those slices

from the CT volume where the lung region is clearly visible. It is essential as these

51



Domain Adaptation for Medical Imaging under Limited Data Constraints

slices have essential features for COVID-19 severity assessment. Retaining only

the most relevant slices improves analysis accuracy while minimizing the impact

of irrelevant data or artifacts. Section 3.5.1 provides a comparative analysis and

evaluation of different sampling functions applied to standardize the STOIC dataset,

highlighting their overall impact on improving model performance.

Among the evaluated sampling strategies (Section 3.5.1), the centered sampling–

which selects 32 slices from the middle range of the CT scan after removing the first

12% and the last 6% of slices, outperformed the others. The exclusion range was

determined via data exploration of a few CT scans in the STOIC dataset [161].

The public STOIC dataset consists of only 2,000 CT scans. When trained on

such small data, the neural networks are prone to overfitting (Section 1.1.4). To

address this issue, CT volumes were converted into 2D slices. This transformation

significantly increases the dataset size. As a result, the training set became more

diverse, which enabled the model to better capture underlying patterns, generalize

well, and make more reliable predictions despite the data scarcity (experimentally

demonstrated in Section 3.5.2).

3.3.2 Ensemble of Neural Networks with Test Time Aug-

mentations

Ensemble models are machine learning methods that combine the predictions of mul-

tiple base models to produce more accurate predictions. The idea behind ensemble

methods is that when combined effectively, a group of diverse models can outper-

form individual models. These are particularly effective when dealing with limited

data as these models can capture different data features and reduce overfitting, a

common challenge with small datasets [174].

To overcome the risk of overfitting and improve the generalization, the training

data is first split into five random folds. Each fold is then processed through an

ensemble of ResNet18 [80] and MobileNetV3 [175] for COVID-19 severity predic-

tion. These models were selected to create an ensemble is based on experimental
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Figure 3.3: The schematic overview of our proposed ensemble approach
for COVID-19 severity prediction.

evaluation, as detailed in Section 3.5.2. Figure 3.3 illustrates the architecture of the

proposed ensemble approach for COVID-19 severity prediction.

In each data fold, every pre-processed slice (as detailed in Section 3.3.1) first

undergoes augmentation (Section 3.4.2) and is then processed by the ensemble of

ResNet18 [80] and MobileNetV3 [175] to generate feature vectors as:

zResNet
i = fResNet(Si)

zMobileNet
i = fMobileNet(Si)

(3.2)

where Si is the pre-processed slice, f(Si) is the feature extraction function, zResNet
i and

zMobileNet
i are the features extracted from each network respectively.

As detailed in Section 3.3.1, the proposed approach processes CT volumes as

individual 2D slices. However, our ultimate goal is to assess the overall COVID-19

severity based on the complete CT volume (evaluated using AUC). To achieve this,

the technique of selecting the maximally activated features across all slices of a 3D

volume is employed. This approach captures the most prominent and informative

features from the entire volume, while also reducing data complexity [176]. This

process involves evaluating the feature vectors generated for each slice (Eq. 3.2:

zResNet
i , zMobileNet

i ) and identifying the features with the highest activation values

across slice dimension. These features typically correspond to the most significant

patterns or anomalies related to the condition under study—in this case, COVID-19
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severity. The maximally activated features along the slice dimension of the feature

vectors are calculated as:

zmax
jResNet18 =

32
max
i=1

{zi,ResNet18}

zmax
jMobileNet =

32
max
i=1

{zi,MobileNet}
(3.3)

where max refers to the function used to evaluate the feature vectors of all slices

within a CT volume. It selects the maximally activated feature across the slice

dimension. zmax
jResNet18 and zmax

jMobileNet represent the maximally activated feature maps

extracted from the ResNet18 and MobileNet models, respectively.

These features are then passed through a fully connected layer to predict the

COVID severity x̂s and COVID positivity x̂p labels as shown in Figure 3.3. For

model ensembling, at each fold, the predicted probability from both the ResNet18

and MobileNet models are averaged to generate a combined prediction as shown in

Figure 3.3. This procedure is repeated across all five data folds, and the resulting

averaged probabilities from each ensemble are further averaged to obtain the final

predictions for COVID severity ŷs and ŷp.

During inference, our proposed approach leverages test-time augmentations (TTA).

The primary goal of TTA is to improve model performance by helping the model

generalize better to unseen variations of the test data. By augmenting the input

image in different ways (e.g., rotating, flipping, cropping– Section 3.4.2), the model

becomes less sensitive to the exact position, orientation, or scale of the objects in

the image and it makes the model robust to data variability [177]. The augmented

images generated through TTA are then fed into our ensemble model. The pre-

dictions of the augmented versions are initially combined using simple averaging.

Finally, the outputs from the ensemble model are aggregated to produce the final

labels for COVID-19 severity and positivity, as illustrated in Figure 3.3.
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3.4 Experimental Framework

3.4.1 Dataset

The STOIC 2021 dataset [161] comprises of chest CT scans from 10,735 subjects.

It was acquired during the first wave of the COVID-19 pandemic from multiple

hospitals in France, from March to April 2020. For STOIC 2021 COVID-19 AI

challenge, it has been divided randomly into a publicly available training set (2,000

subjects) released under the CC BY-NC 4.0 license. The final evaluation of the

algorithm is conducted by training on a private training set of over 7,000 subjects,

followed by testing on a private test set of approximately 1,000 subjects (challenge

phases are discussed in Section 3.1.2).

The CT scans are in .MHA format and have a resolution of 512 × 512. The

metadata includes each subject’s age (ranging from 35 to 85 years) and gender

information (distribution: 57.4% male, 42.6% female). RT-PCR results serve as the

ground truth for COVID-19 infection status, while one-month outcomes (death or

intubation) indicate severity. The primary goal of this challenge is to predict the

severity of COVID-19 from chest CT scans. The STOIC public dataset is highly

imbalanced, with only 301 out of 2000 subjects with severe cases.

3.4.2 Implementation details

To develop an effective approach for COVID-19 severity prediction, a variety of

convolutional neural networks (CNNs) were evaluated, including ResNet-18 [80],

MobileNetV3 [175], 3D U-Net, ConvNeXT Tiny [178], and a custom CNN model

with various configurations (Section 3.5.2). The STOIC public dataset was divided

into splits of 80:10:10 for training, validation, and testing, respectively. For all the

experiments we trained the models for 100 epochs using a batch size of 16 with a

learning rate of 5× 10−4, a learning rate decay of 0.5 every 40 epochs with StepLR.

To prevent model bias toward the majority class, a weighted random sampler was

used.
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The models were optimized using the binary cross-entropy loss with logits cri-

terion. The primary evaluation metric was the area under the curve (AUC) for

COVID-19 severity, while the AUC for COVID-19 positivity was used as a sec-

ondary evaluation metric, as defined by the STOIC challenge organizers.

Our findings indicate that data augmentations played a significant role in en-

hancing severity prediction during both training and testing. The values for different

hyperparameters are determined based on experimental evaluation. The following

augmentations have been used:

• Flip: randomly flips the image horizontally with a probability of 50%.

• Random Crop: the original image is randomly cropped, which makes the

model more robust to different object positions and sizes within the image.

The image is cropped from the original dimension of 512× 512 to 224× 224.

• Random Gamma: the original image brightness is adjusted by applying

random gamma values. It helps in simulating diverse environmental lighting

conditions. The gamma value is randomly selected between 0.8 and 1.2.

• Median Blur: each pixel’s value is replaced with the median value of the

neighboring pixels within a specified kernel size, effectively reducing noise while

preserving edges. The kernel size is set to 5.

• Color Jitter: applies random changes to the brightness, contrast, saturation,

and hue of an image. Brightness and contrast are adjusted by up to 50%.

Saturation is modified by up to 40% and hue is kept unchanged.

• Safe Rotate: the original image is rotated within a specified range while

ensuring that the content remains within the frame and is not distorted. The

rotation limit is set to 30 i.e. the image is randomly rotated within a range of

-30 to +30 degrees. The rotation probability is set to 70%.

• mixup: create new training examples by mixing or interpolating pairs of

images (or other types of data) and their corresponding labels [179]. It uses a
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random mixing coefficient derived from a beta distribution with a parameter

α. For all the models, α was set to 0.8, but for the ConvNeXT Tiny model,

an α value of 0.3 was found to be more optimal. mixup helps to improve

the model’s generalization by making it less sensitive to specific examples and

encouraging it to focus on broader patterns in the data.

• Test time Augmentation (TTA): For test-time data augmentation (TTA)

center cropping, corner cropping, and safe rotation are also used.

All experiments were conducted using Python 3.8.17 and the open-source library

PyTorch 2.0.1. The experiments were conducted on a desktop system with the

Ubuntu 20.04.6 LTS operating system, CUDA 11.6, an NVIDIA GeForce RTX 3090

GPU, and 64 GB of RAM.

3.5 Results and Analysis

3.5.1 Sampling function

The proposed approach employs sampling to retain slices containing lung structures,

to preserve meaningful features for COVID-19 severity prediction (Section 3.3.1).

To select the optimal sampling approach, various sampling methods were tested, as

detailed below:

• Uniform sampling with one window (US-1W): it uniformly samples 32

slices from the CT volume with a WW of 1500 HU and a WL of -600 HU.

• Centered sampling (CS-1W): it samples 32 slices from the middle of the

CT volume, excluding the first 12% and the last 6% of slices. The window

width (WW) is set to 1500 HU and the window level (WL) to -600 HU. The

exclusion is based on our data analysis of several CT scans from the STOIC

dataset, aimed at removing regions corresponding to the abdomen and lower

jaw. Figure 3.4 illustrates a few of the slices retained using CS-1W.
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Figure 3.4: Centered Sampling with One Window (CS-1W): Example of
slices retained with CS-1W.

• Centered sampling with three windows (CS-3W): Different windows

highlight distinct anatomical structures/features. To leverage the strengths of

different windows, CS-3W uses multiple windows and then combines these into

a single, more informative image as shown in Figure 3.5. The three windows

used are: Mediastinum windows (WW:-380, WL:1200), and custom windows

(WW:900, WL:-112), and used as three channels of a slice.

Figure 3.5: Centered sampling with three windows (CS-3W): Example of
slices retained with CS-3W.

The effect of all three sampling functions on COVID-19 severity prediction using

ConvNext model [178] is presented in Table 3.1. Notably, CS-1W outperformed the

other sampling methods, achieving the highest AUC for severity prediction. This

evaluation is performed on the STOIC public dataset (Section 3.4.1).

CS-1W retains only the central slices of a CT volume, where lung structures are
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Table 3.1: Comparison of Sampling Functions: Impact on AUC Perfor-
mance.

Sampling
STOIC Public Data

AUC Severity AUC COVID

US-1W 0.687 0.780
CS-1W 0.845 0.748
CS-3W 0.775 0.784

most prominent. This slice range was found to contain features most relevant to

COVID-19 severity prediction, as shown in Figure 3.4. In contrast, slices at the

beginning and end of the volume contain insufficient lung anatomy and were not

effective for this task.

In the case of CS-3W, utilizing additional windows alongside the lung window

highlighted other anatomical structures as well, which obscured the critical features

related to COVID-19 as illustrated in Figure 3.5. As a result, using additional

windows in this case proved detrimental, as reported in Table 3.1.

CS-1W outperformed the rest of the sampling approaches as reported in Ta-

ble 3.1. Based on these findings, CS-1W was selected for all the subsequent experi-

ments.

3.5.2 Model Evaluation and Selection for Qualification Phase

Stage 1: Model Evaluation on STOIC Public Data

Throughout the different stages of the STOIC challenge, several deep learning mod-

els were systematically tested and evaluated. Given the critical importance of model

selection, a quantitative comparative analysis was performed to identify the opti-

mal model. The model that achieved the highest AUC for the COVID-19 severity

label on the STOIC public dataset was submitted to the qualification leaderboard

to assess its generalization on the private test set (challenges phases are discussed

in Section 3.1.2). This approach was consistently followed throughout the compe-

tition with multiple submissions made to the challenge leaderboard. This section

outlines the various experiments conducted on the STOIC public dataset for model
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evaluation and selection for qualification phase submission.

The experimentation was initiated with a simple baseline model: a custom four-

layer convolutional neural network (CNN). Each layer included a convolution opera-

tion, followed by batch normalization, a ReLU activation function, and max pooling.

After these layers, an adaptive max pooling layer was incorporated, followed by a

fully connected layer. This model achieved AUC scores of 0.687 and 0.780, for

COVID-19 severity and positivity respectively.

Following the baseline model, a pre-trained model was fine-tuned using the

STOIC dataset from the challenge (Section 3.4.1). This approach is particularly

beneficial because pre-trained models can be adapted to specific tasks with limited

data, utilizing the knowledge gained from larger datasets [67]. Specifically, a 3D

UNet model, pre-trained on lung abnormalities, is used to improve the performance

for the downstream task i.e. COVID-19 severity prediction [180]. This model was

initially trained on 534 CT scans from the LIDC-IDRI dataset [181] and 77,074

X-ray images from the ChestXray dataset [182].

However, contrary to the anticipation of improved performance, the UNet-3D

model when fine-tuned on the STOIC dataset, achieved an AUC of 0.64 for COVID-

19 severity, which was lower than the AUC achieved with a custom CNN baseline

model trained from scratch as reported in Table 3.2.

This decline in performance can be attributed to two main factors: domain shift

within medical imaging domain: Although both the source domain (LIDC-IDRI

dataset [181]) and the target domain (STOIC dataset) contain CT scans of the same

anatomical region (lungs), however the acquisition sites and protocols are different.

This disparity in domain characteristics and predictive tasks led to a domain shift

(Section 1.1.1). Additionally, the pre-trained 3D UNet model was also trained on

chest X-ray datasets [182], further exacerbating the domain shift between the source

and target dataset (STOIC data consisting of CT scans). Thus both modalities focus

on lungs (a few examples of cross-modality in medical imaging are illustrated in

Figure 1.3 (cross modality)). As a result, the pre-trained model failed to generalize
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effectively to the downstream task of predicting COVID-19 severity, even after fine-

tuning. It limited the model’s ability to transfer its learned knowledge to the STOIC

dataset. b) Limited Data: Fine-tuning with a limited STOIC dataset did not

prove to be effective and resulted in sub-optimal adaptation to the downstream

task. Thus in the presence of substantial domain shift and limited data transfer

learning is not helpful (Section 2.3.1).

Notably, the CNN, trained from scratch on the STOIC dataset, outperformed the

pre-trained 3D UNet model. This suggests that the domain shift significantly hin-

dered the generalization ability of the 3D model, as reported in Table 3.2. Building

on these findings, further experimentation was conducted using 2D models.

During our participation in the STOIC challenge, Meta introduced the Con-

vNeXT model [178], which modernizes traditional CNNs by integrating advanced

normalization and activation functions. This update enhances performance and ef-

ficiency, bridging the gap between classic CNNs and newer architectures. The Con-

vNeXT tiny version was employed, leading to a substantial improvement in contrast

to CNN baseline performance. It achieved an AUC score of 0.845 for severity and

0.748 for positivity as shown in Table 3.2.

To compare the performance of ConvNeXT with more commonly used CNN

architectures, we trained and evaluated several models, including ResNet [80] and

MobileNetV3 [175]. Various versions of ResNet were tested, including ResNet-18,

ResNet-32, and ResNet-101, with ResNet-18 yielding the best performance. The

lower performance of the larger ResNet models can be attributed to their size. When

the large models are trained on limited data it can potentially lead to overfitting

(Section 2.3.1). In addition to ResNet, the latest version of MobileNetV3 [175] was

also evaluated, as the literature indicated its strong performance in online deep

learning challenges. The experimental results of these models are reported in Ta-

ble 3.2.

Building on the promising results from ResNet-18 and MobileNetV3, these mod-

els were further evaluated as fixed feature extractors. A logistic regression classifier
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Table 3.2: Evaluation of various models for COVID-19 severity predic-
tion.

Model
STOIC Public Data

AUC Severity AUC COVID

ConvNext [178] 0.845 0.748
MobileNetV3 [175] 0.817 0.780
ResNet18 [80] 0.775 0.784
MobileNetV3 + LR + HPO 0.750 0.701
MobileNetV3 + LR 0.702 0.660
CNN 0.687 0.780
Resnet-18 + LR + HPO 0.664 0.651
Resnet-18 + LR 0.654 0.601
3D U-Net [180] 0.642 0.60

was trained using the extracted features [183]. However, this approach yielded lower

AUC for COVID-19 severity prediction compared to training ResNet-18 and Mo-

bileNetV3 directly on the STOIC dataset, as shown in Table 3.2.

The reduced performance of using these models as fixed feature extractors can

be attributed to the fact that they were pre-trained on ImageNet, which may not

capture the domain-specific features required for COVID-19 severity prediction [33].

Thus these models are optimized for feature extraction from natural imaging, rather

than medical imagery. As a result, when leveraged as fixed feature extractors with-

out additional training or fine-tuning it proved to be less effective for downstream

medical tasks, specifically to COVID-19 severity prediction in this case. This issue

arises from the domain shift between natural and medical imaging and it impacts the

model’s generalization, as discussed in detail in Section 1.1.2. The results for this

approach are detailed in Table 3.2, presented as ResNet-18 + LR and MobileNetV3

+ LR.

To rule out the possibility that the decline in AUC when using models as fixed

feature extractors was due to the hyperparameters of the logistic regression classi-

fier, hyperparameter optimization was performed. While this optimization resulted

in small improvements, it still remained significantly lower than that of training

the models using STOIC datasets. The results for this approach are presented in

Table 3.2, as ResNet-18 + LR + HPO and MobileNetV3 + LR + HPO.
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Performance Evaluation on the Qualification Leaderboard

After evaluating the models on the STOIC public dataset (Section 3.5.2), the

next objective is to assess generalization on the private test by submitting the models

on the competition’s qualification leaderboard (Section 3.1.2). Due to submission

constraints set by the challenge rules, we only selected the best-performing mod-

els on the STOIC public dataset for submission to the qualification leaderboard.

As reported in Table 3.2, ConvNext Tiny, ResNet18 [80], and MobileNetV3 [175]

outperformed the other approaches and therefore we submitted them on the quali-

fication leaderboard.

The results of the generalization of the submitted models on the qualification

leaderboard’s private test set are reported in Table 3.3. This table provides a per-

formance comparison of these models on the STOIC public dataset, along with their

generalization to the previously unseen private test set from the qualification phase.

Table 3.3: Comparison of top-performing models on STOIC public data
and qualification phase private test set.

Model
STOIC Public Data Qualification Leadboard

AUC Severity AUC COVID AUC Severity AUC COVID

ConvNext [178] 0.845 0.7480 0.748 0.800
ResNet-18 [80] 0.775 0.784 0.752 0.784
MobileNetV3 [175] 0.817 0.780 0.779 0.735

Among the three submitted models, ConvNeXT [178] achieved the highest per-

formance on the STOIC public dataset. However, its performance significantly de-

creased on the test set and it failed to generalize effectively as reported in Table 3.3.

This decline can likely be attributed to ConvNeXT’s sensitivity to variations in data

distribution and noise, which were more pronounced in the qualification test set.

In contrast, well-established CNNs like ResNet-18 [80] and MobileNetV3 [175]

exhibited better generalization to the private test set and proved to be more robust

and adaptable to the variations, leading to more consistent performance across both

the STOIC public set and private test set from qualification phase as reported in

Table 3.3.
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Stage 2: Evaluation of Augmentation Techniques and Utilization of Meta-

data on STOIC Public Data

ResNet-18 [80] and MobileNetV3 [175] generalized well to the private dataset, demon-

strating robust performance on the unseen private test set in the qualification leader-

board (Section 3.5.2). Based on these results, further experiments were conducted

to improve the performance of these two models.

Metadata can complement the features extracted from deep learning models

by providing valuable contextual information, which enhances feature interpreta-

tion and improves model performance. Additionally, metadata enables more precise

model tuning and evaluation by offering insights into the data’s origin and charac-

teristics [184]. In the case of the STOIC dataset, metadata includes age and sex

labels. We encoded metadata and combined it with the features extracted from the

models to improve COVID-19 severity prediction

The results achieved by using extracted features from the models and metadata

are reported in Table 3.4. Contrary to the expectation, incorporating metadata

with the features extracted from the models led to a decline in AUC for COVID-19

severity prediction. Specifically, ResNet-18 [80] achieved an AUC of 0.775 using its

own extracted features, but the AUC dropped to 0.742 when metadata was included.

A similar pattern was observed with MobileNetV3 [175], where the AUC decreased

from 0.817 to 0.795 with the addition of metadata. This decline suggests that the

age and sex metadata may have introduced noise rather than providing valuable,

discriminative information to enhance model predictions. As a result, we did not

use metadata features in the final phase of the challenge.

Table 3.4: Impact of metadata on COVID-19 severity prediction (AUC).

Model
STOIC Public Data

Features Meta-data + Features

Resnet-18 0.775 0.742
MobileNetV3 0.817 0.795

Augmentations enhance the training set by introducing diverse variations, which
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improves model generalization and reduces overfitting, allowing the model to learn

from a wider range of representations [185, 186]. Thus, incorporating augmen-

tation strategies can lead to more robust and accurate models. Arange of data

augmentations are used to enhance further the performance of ResNet-18 [80] and

MobileNetV3 [175]. To assess the impact of augmentations on overall predictions,

we experimented with four different augmentation sets. The functionality of each

augmentation in these sets is outlined in Section 3.4.2.

1. Basic: includes horizontal flip, random crop to 224×224, random gamma ad-

justment, and color jitter with brightness of 0.5, contrast of 0.5, and saturation

of 0.4.

2. Advanced: builds upon basic augmentation set with additional transforma-

tions: safe rotation up to 30 degrees and median blur.

3. Comprehensive: combines basic, advanced augmentation sets, and Mixup [179]

using α set to 0.8.

4. Extended: incorporates comprehensive augmentation set along with test time

augmentation (TTA), which includes center crop, crops around four corners,

and safe rotations of -5, 5, and 10 degrees.

The performance improvements achieved with each of these augmentation sets

are presented in Table 3.5. Notably, every set contributed to enhancing the model’s

generalization to unseen data as compared to the baseline (where augmentations

were not used, reported in Table 3.2). Among the four sets, the extended augmen-

tation set achieved the most significant improvements. It improved the AUC for

COVID-19 severity from 0.775 to 0.863 for ResNet18 [80] and from 0.817 to 0.841

for MobileNetV3 [175].

Performance Evaluation on the Qualification Leaderboard

To identify the optimal set of augmentations, ResNet-18 [80] and MobileNetV3 [175]
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Table 3.5: Impact of augmentation on COVID Severity Prediction.

Augmentation
STOIC Public Data

Resnet-18 MobileNetV3

Basic 0.775 0.817
Advanced 0.795 0.831
Comprehensive 0.842 0.829
Extended 0.863 0.841

were evaluated with all four augmentation methods, and their generalization per-

formance was assessed on the qualification leaderboard test set.

Among the four augmentation sets, the extended set demonstrated a noticeable

improvement on the test set as shown in Table 3.6. The extended set has both

train and test time augmentation. This outcome highlights the importance of using

augmentation not just during training but also at test time.

Table 3.6: Effect of augmentation on model generalization to the private
test set.

Augmentation
Public data Qualification LB

ResNet18 MobileNet ResNet18 MobileNet

Basic 0.775 0.817 0.752 0.779
Advanced 0.795 0.831 0.781 0.793
Comprehensive 0.842 0.829 0.790 0.795
Extended 0.863 0.841 0.815 0.821

Stage 3: Evaluation of Performance Improvement with Data Splits on

the STOIC Public Dataset

To further enhance the generalization of ResNet-18 [80] and MobileNetV3 [175] data

splitting was employed. This technique involves dividing the dataset into multiple

subsets, each emphasizing different features and patterns. By training the models

on these diverse subsets, the risk of overfitting to specific data characteristics is min-

imized, allowing the models to learn more robust and generalized representations.

Data splitting also makes efficient use of the available dataset, enabling the models

to capture a broader range of data variations. Specifically, five random data splits

were created, and both models were trained on each split as shown in Figure 3.3.
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Table 3.7: Performance across various data splits (AUC: COVID-19
Severity).

Model Split 1 Split 2 Split 3 Split 4 Split 5

ResNet-18 0.788 0.786 0.811 0.810 0.805
MobileNetV3 0.854 0.804 0.766 0.830 0.799

The performance metrics for each split are presented in Table 3.7. ResNet-18 [80]

shows a consistent performance across the splits, suggesting it effectively captures

a broad range of features. MobileNetV3 [175], while exhibiting more variation in

performance, also benefits from learning different features in each split, which allows

it to adapt to the specific characteristics of each subset.

3.5.3 Final Phase Submission: Ensemble Approach with

TTA

ResNet18 [80] and MobileNetV3 [175] have demonstrated consistent performance

on the STOIC public dataset and strong generalization to the unseen test set in

the qualification phase as comprehensively discussed in Sections 3.5.2. Based on

these results, an ensemble approach is proposed that combines the strengths of

ResNet18 [80] and MobileNetV3 [175] is proposed (Section 3.3.2). This ensemble

method is coupled with the benefits of test-time augmentation (TTA) discussed in

the previous section.

The proposed ensemble model, combined with Test-Time Augmentation (TTA)

for the inference stage, was submitted in the final phase. In this phase, the mod-

els were first trained on the complete STOIC dataset (Section 3.1.2), and TTA

was subsequently applied during inference to further enhance COVID-19 severity

prediction

Comparative Analysis

The proposed ensemble approach was ranked 4th on the final leaderboard (Sec-

tion 3.1.2). The first ranked team initially pre-trained ConvNext [178] on the
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MosMed dataset [187] for severity classification and UperNet [188] on the TCIA

dataset [189] for lesion segmentation. The models were then fine-tuned on the

STOIC dataset, utilizing metadata along with the outputs of both pre-trained mod-

els as feature vectors. For evaluation, a 5-fold cross-validation approach was em-

ployed, and an ensemble model was used for final testing.

The team ranked second employed two vision encoders, pre-trained on iBot [190]

using self-supervised learning, to analyze both plain slices and segmented lung re-

gions. The extracted features were then concatenated with meta-data (age and sex

labels) and used as inputs for the logistic regression classifier to make predictions.

Team 3 utilized a lung segmentation model combined with autodidactic pre-

training on the segmented images. The network’s output was then merged with

age data and passed through a fully connected layer. Finally, an ensemble of five

models, along with test-time augmentation (TTA), was employed for predictions.

A comparison of our proposed method of ensemble models with TTA as com-

pared to these approaches is reported in Table 3.8. In contrast to the complex

methodologies employed by the top-ranking teams, the proposed ensemble approach

is notably simpler. Despite the reduced complexity, it achieved 4th rank on the final

leaderboard, highlighting its competitive performance. The simplicity of the pro-

posed approach did not compromise effectiveness, indicating that a well-designed

ensemble approach can be both effective while maintaining efficiency.

Table 3.8: Final leaderboard results: Comparison with top-ranked meth-
ods [20].

Rank AUC Severity AUC COVID

First 0.815 0.616
Second 0.811 0.845
Third 0.794 0.837
Fourth (Ours) 0.787 0.829

Experiments with the STOIC public dataset revealed that incorporating meta-

data did not enhance performance using the proposed approach (Section 3.5.2).

Consequently, we did not use metadata in the final phase. However, other teams,
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despite similar findings, chose to include metadata in their final submissions, which

appeared to contribute to performance improvements. Given that the results of our

proposed approach were very close to those of Team 3, it is plausible that includ-

ing metadata could have further improved the ranking of the proposed ensemble

method. In summary, while the proposed ensemble method is simpler compared to

others, it demonstrates competitive performance, and further refinement, such as

incorporating metadata could improve the performance.

3.6 Summary

This chapter presents the work we conducted during our participation in the COVID-

19 AI STOIC 2021 Challenge. It focused on COVID-19 severity prediction using the

STOIC CT scan dataset. To develop an effective solution, a variety of deep learning

models were comprehensively evaluated (Section 3.5.2). The assessment of these

models for COVID-19 severity prediction was conducted in two ways: a) fine-tuning

pre-trained models, and b) using models as fixed feature extractors and training a

logistic regression classifier on the extracted features.

Particularly, an ensemble approach is proposed that combines the strengths of

ResNet18 [80] and MobileNetV3 [175] (Section 3.3). The specific model choice is

based on comparative analysis and experimental evaluation of various models as

detailed in Section 3.5.2. The proposed ensemble approach was enhanced with test-

time augmentation (TTA), which proved effective in improving model generalization

on the unseen private test set during the qualification phase (Section 3.5.2).

The proposed ensemble approach coupled with TTA ultimately achieved 4rth

place in the challenge. It achieved an AUC of 0.787 and 0.829 for COVID sever-

ity and COVID positivity on the private test set of the final phase of the STOIC

challenge (Section 3.5.3).

Participating in this challenge offered valuable hands-on experience, enhancing

our practical skills in implementing and evaluating deep learning approaches while

addressing the associated challenges.
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3.6.1 Insights

Participation in this challenge proved highly valuable as it helped us to gain insights

on the applications of deep learning to real-world medical applications. A few of

these insights are:

1. Domain shift due to variations in imaging modalities and protocols poses a

significant challenge to model generalization. For example, ConvNext [178]

outperformed other evaluated models on the STOIC public dataset but it did

not generalize effectively to the STOIC private test set (Table 3.3). Although

both subsets of STOIC data used the same imaging modality, differences in

acquisition sites and protocols introduced a domain shift that affected the

model’s generalization (Section 3.5.2).

2. The nature of tasks in medical and natural imaging differs significantly, and

as a result, features learned from models pre-trained on natural imaging of-

ten fail to generalize effectively to real-world medical applications due to the

domain shift between the two (Section 1.1.2). For instance, when we used

these models as fixed feature extractors and adapted them to the COVID-19

severity prediction task using a classifier, they did not yield effective results

(Section 3.5.2, Table 3.2).

3. The medical imaging domain often suffers from limited available data, mak-

ing conventional approaches like fine-tuning models less effective and prone to

overfitting. For example, when we applied UNET-3D, pre-trained on medical

images, and fine-tuned it using the STOIC public dataset, its performance

was even lower than that of a simple CNN baseline trained from scratch (Sec-

tion 3.5.2, Table 3.2). This highlights the challenge of applying pre-trained

models in medical imaging tasks with small datasets, where fine-tuning may

not necessarily yield better results.

These insights have been pivotal in shaping the future research direction of this

thesis: developing innovative and robust adaptation approaches for neural networks
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to address domain shift challenges while minimizing reliance on annotated data and

computational resources with the aim for more efficient and scalable approaches.
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Chapter 4

Unsupervised Parameter Efficient

Domain Adaptation for

Multi-Target Medical Applications

This chapter outlines the key contributions of this research to unsupervised multi-

target domain adaptation. It addresses Research Question 2 (RQ2): “How could the

parameter-efficient adaptation approach be enforced in the unsupervised adaptation

of convolutional neural networks? Could convolutional neural networks benefit from

the features learned through self-supervised training when using parameter-efficient

adaptation ?” In this context, this chapter presents a novel, parameter-efficient ap-

proach for unsupervised adaptation of convolutional neural networks. It is evaluated

experimentally through segmentation tasks: brain segmentation from T1-weighted

MRI scans and cardiac structures segmentation from cardiac MRI scans. The work

presented in this chapter has been published in 21st IEEE International Symposium

on Biomedical Imaging, 2024 [25]. The code to replicate experiments and results is

publicly available at: https://github.com/aleemsidra/ConvLoRA.

Section 4.1 gives an introduction and outlines the motivation for developing an

unsupervised parameter-efficient domain adaptation approach for medical imaging,

highlighting the limitations of existing methods. Section 4.2 provides a literature
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review of domain adaptation approaches relevant to the proposed approach. Sec-

tion 4.3 introduces the proposed approach and elaborates on its architectural design.

Section 4.4 outlines the datasets used and the experimental framework. Section 4.5

presents the results obtained from the comprehensive experiments. Finally, Sec-

tion 4.6 presents the conclusion and highlights how the findings of this work guided

the subsequent research presented in the following chapters.

4.1 Introduction

Many computer vision applications leverage transfer learning to transfer knowledge

from large-scale pre-trained models to various downstream tasks. It typically in-

volves fine-tuning, a process that updates all parameters of the pre-trained model

via back-propagation [191] (Section 2.3.1). Deep neural networks have achieved

state-of-the-art performance when both train and test sets share the same distri-

bution. However, domain shift, (i.e., change in data distribution) between train

(source domain) and test (target domain) sets, significantly deteriorates the model’s

generalizability [24, 25, 27, 26, 88] (Sections 1.1.1, 1.1.2, and 1.1.3). This issue

is particularly pronounced in multi-center medical studies, where various imaging

centers employ different scanners, protocols, and subject populations [2, 88].

Furthermore, large-scale models’ performance relies on large-scale labeled data [192,

193, 194, 195]. To address performance degradation caused by domain shifts, one

approach is to acquire labeled data and retrain the model. However, in the medical

field, annotated data is often scarce due to privacy restrictions, limited availability,

and the need for expert intervention (Section 1.1.4). Consequently, large-scale mod-

els that require vast amounts of data cannot be directly applied to medical image

segmentation.

Unsupervised domain adaptation (UDA) aims to generalize large-scale models,

pre-trained on the source domain to an unlabeled target domain, eliminating the

need for costly data annotation [26, 88]. In such a scenario, the source domain

contains a vast amount of labeled data, while the target domain typically consists of
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a smaller, unlabeled dataset. UDA is generally achieved through fine-tuning, where

a model pre-trained on the source domain is adapted to different target domains.

However, a major downside of fine-tuning is that it results in a dedicated model for

each target domain with the same parameters as the original pre-trained model [10,

196]. As a result, multiple target domains would each require a dedicated model

models with the same parameter count as the original pre-trained model.

Thus UDA methods can be effective for single-target domain adaptation, re-

sulting in a single model for a specific target domain. Conversely, in multi-target

DA (MT-DA) the objective is to adapt the model to multiple unlabeled target do-

mains. MT-DA has a broader applicability to real-world scenarios. Specifically in

the medical domain, there are diverse target domains each with distinct charac-

teristics. These domains vary in imaging modalities (such as MRI, CT scans, and

X-rays), imaging acquisition devices, acquisition sites, and patient populations (Sec-

tion 1.1.3). Thus, training separate models for each target domain with the same

trainable parameters as the source model is impractical and prohibitively expensive.

Parameter Efficient Fine-Tuning (PEFT) aims to streamline fine-tuning by op-

timizing resource usage, reducing computational costs, and minimizing memory re-

quirements. Unlike conventional fine-tuning, PEFT keeps the majority of the core

model parameters frozen while adapting a significantly smaller subset of parame-

ters. [197, 198]. The idea is to adapt a pre-trained model to a specific task or dataset

without modifying all of its parameters, which can be computationally expensive and

require a lot of memory. PEFT has proven its effectiveness as an adaptation strat-

egy for Large Language Models (LLMs) [199, 200, 201, 202, 197]. It enables both

efficient learning and faster updates. PEFT outperforms approaches that adapt the

entire model, offering superior generalization, particularly in limited data scenar-

ios. By focusing on a smaller set of parameters, PEFT efficiently adjusts the model

without the need for extensive re-training, making it more effective when labeled

data is scarce [197, 203, 110]. There are various types of PEFT, which are discussed

in detail in Section 4.2.1.
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Existing approaches predominantly focus on applying PEFT to transformer-

based architectures [54, 55]. However, PEFT adapter-based approaches have not

been explored for adapting convolutional neural networks (CNNs) to diverse target

domains. To the best of our knowledge, both the use of PEFT in medical imaging

for unsupervised domain adaptation (UDA) and its application in CNN adaptation

have not yet been explored [204].

To address this research gap, a novel parameter-efficient approach for multi-

target unsupervised domain adaptation (MT-UDA) is proposed. It not only out-

performs conventional supervised fine-tuning based adaptation but is also computa-

tionally efficient and has a low memory footprint. First, Convolutional Low-Rank

Adaptation (ConvLoRA) is proposed, as an adaptation of Low-Rank Domain Adap-

tation (LoRA) in LLMs [10] (discussed in detail Section 4.3.1). ConvLoRA is specifi-

cally designed for application in CNNs, offering a novel approach to address domain

adaptation challenges in the context of image data. Instead of creating separate

fine-tuned models for each target domain—each with the same number of param-

eters as the base model—we integrate our proposed ConvLoRA adapters into the

pre-trained base model. We adapt only the ConvLoRA parameters while keeping the

rest of the base model’s parameters frozen. The architectural design and function-

ality of ConvLoRA are discussed in detail in Section 4.3.2. It allows faster updates

by adapting only a small subset of domain-specific parameters. inSecond, we fur-

ther mitigate domain shift introduced by statistical differences in mean and variance

between source and target data without additional training and computational re-

sources. It is achieved by utilizing Adaptive Batch Normalization (AdaBN) [30].

The rationale behind choosing AdaBN over traditional BN adaptation, along with

a detailed explanation of its functionality, is presented in Section 4.3.1.

Contributions

• Inspired by recent advancements in LLMs, a novel multi-target unsupervised

domain adaptation (MT-UDA) approach is proposed which leverages proposed

parameter-efficient ConvLoRA and AdaBN. To the best of our knowledge, this
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is the first work to adapt LoRA [10] to CNNs, specifically for UDA in the

context of medical image segmentation.

• The experimental results show that the proposed UDA pipeline achieves a

significant reduction of over 99% in trainable parameters while simultaneously

achieving competitive segmentation accuracy compared to other methods.

• The proposed framework is generic, flexible, and can be seamlessly integrated

with any CNN based architectures. It significantly reduces training costs and

enhances adaptability and generalization to multi-target domains.

4.2 Related Work

4.2.1 Parameter Efficient Adaptation

The development of parameter-efficient adapters for transformer-based models has

emerged as a critical area of research, focusing on enhancing model performance

while optimizing resource utilization. There are various techniques for parameter-

efficient adaptation: lightweight adapters, low-rank adaptation, prompt tuning, Bit-

Fit, and prefix tuning. Among these two are most commonly used: lightweight

adapter-based and prefix tuning.

The concept of adapters was initially introduced by Houlsby [205]. It involves

incorporating small, trainable modules called “adapters” into pre-trained models.

These adapters facilitate efficient task-specific adaptations without modifying the

core model parameters. This approach maintains the original model’s performance

while reducing the computational cost and resource requirements for fine-tuning.

This design enhances the model’s adaptability while maintaining a relatively com-

pact parameter footprint. In contrast, Lin et al. [206] proposed a more streamlined

approach with a single adapter layer per block, augmented by an additional Layer-

Norm [207].

Despite these advancements, inherent challenges associated with adapter layers
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must be critically evaluated. One such challenge is the computational overhead

introduced by integrating additional adapter layers into the base model. Although

adapter layers are designed with a small bottleneck dimension to minimize additional

FLOPs and parameter count, often constituting less than 1% of the original model’s

parameters. However, there are notable issues in practice. While the parameter

count remains low, the sequential processing requirement of adapter layers can lead

to increased latency, particularly in online inference scenarios where batch sizes

are minimal. This issue is exacerbated in environments lacking model parallelism,

such as running inference on a single GPU with models like GPT-2 [37], where the

latency impact of adapter layers becomes pronounced even with minimal bottleneck

dimensions.

Prefix tuning is used for adapting pre-trained language models to specific tasks

by learning a fixed-length prompt that is prepended to the input text [208]. This

method optimizes a small set of trainable parameters that modify the model’s be-

havior without changing the underlying pre-trained weights. One of the primary

issues is the difficulty associated with optimizing prefix tuning. Empirical observa-

tions corroborate the original findings of [209], revealing that the performance of

prefix tuning exhibits a non-monotonic relationship with the number of trainable

parameters. This suggests that increasing the number of trainable parameters does

not consistently translate into improved performance, which complicates the tuning

process.

For this work, we leveraged our proposed convolutional low rank adapters for

parameter-efficient adaptation to downstream tasks. It has no additional latency as

detailed in Section 4.3.2

4.2.2 Batch Normalization based Adaptation

Batch normalization based domain adaptation has been implemented in various

ways, such as by aligning distributions between source and target domains or by

using separate normalization parameters for each domain. In domain-specific batch
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normalization (DSBN), separate batch normalization parameters are maintained

for each domain (source and target). It allows the model to learn domain-specific

feature representations while sharing other parameters across domains [210]. How-

ever, batch normalization relies on batch statistics, which makes DSBN sensitive

to small batch sizes. In domain adaptation, especially in the target domain where

labeled data is limited, small batch sizes are often used, which can lead to inaccu-

rate estimates of batch statistics and degrade performance. An adversarial learning

approach incorporating batch normalization to align feature distributions between

domains is proposed in [211]. In this method, a domain discriminator is trained to

differentiate between source and target domain features, while the feature extractor

is optimized to extract domain-invariant features. However, this approach is prone

to over-reliance on the feature alignment.

Adaptation is achieved through unsupervised fine-tuning of batch normaliza-

tion layers in the target domain [210]. Adaptive batch normalization (AdaBN) is

proposed to compute the mean and variance for the batch normalization layer’s run-

ning statistics in the target domain, thereby improving generalization [30]. Specifi-

cally, AdaBN proposes a post-processing method to re-estimate batch normalization

statistics using target samples. Test-time adaptation mitigates domain shift by re-

calculating running statistics for the current test input [212, 213, 214].

This work incorporates AdaBN into the proposed parameter-efficient, self-training-

based adaptation approach, as detailed in Section 4.3.1 and illustrated in Figure 4.4.

4.2.3 Unsupervised Domain Adaptation (UDA)

Several works employ adversarial learning, such as CycleGAN [215] and domain-

invariant feature learning [216], to adapt segmentation models [217]. A method of

matching layer-wise activations across domains is proposed in [218]. An adversarial

network is proposed for brain lesion segmentation [219]. Kushibar et al. [220] show

that fine-tuning only the last CNN layer improves performance. However, it lacks

a comparison with other domain adaptation methods. The last CNN layer is fine-
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tuned, but this work focuses more on the training cases selection procedure rather

than on the fine-tuning method development [221]. Cross-modality domain adapta-

tion for cardiac MR and CT image segmentation is achieved by adapting low-level

layers [222]. Fine-tuning of early U-Net layers is done for skull segmentation [196].

4.3 Methodology

This section first discusses preliminaries: low rank adaptation and adaptive batch

normalization in Section 4.3.1. Subsequently, our proposed adaptation approach is

presented in detail in Section 4.3.2.

4.3.1 Preliminaries

Low Rank Domain Adaptation (LoRA)

A neural network consists of numerous dense layers that perform matrix multiplica-

tion. The weight matrices in these layers are typically of full rank [109]. LoRA up-

dates these weight matrices by leveraging the concept of low intrinsic rank [223, 224].

It refers to the idea that a large pre-trained model can be adapted to a new down-

stream task by updating/modifying a much smaller set of task-specific parameters,

rather than updating the gradients in the entire core model [10].

In the context of a pre-trained weight matrix in a neural network, LoRA con-

strains its updates through a low-rank decomposition of the weight matrix. In

contrast to regular fine-tuning, where all the parameters of the models are updated

during training, LoRA keeps the pre-trained weights frozen. Instead, only the low-

rank matrices, which hold the trainable parameters receive gradient updates.

The difference between the regular fine-tuning and LoRA is shown in Figure 4.1.

In the forward pass, both the pre-trained weight matrices (W ) and their low-rank

counterparts (A and B) are multiplied by the same input (d), and the resulting

outputs are summed coordinate-wise. However, only the low-rank matrices (A and

B) are updated during the backward pass.
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Figure 4.1: Comparison of regular fine-tuning and LoRA’s re-
parameterization. In LoRA, the pre-trained weight matrix W remains
frozen, while only the low-rank decomposition matrices A and B receive
gradient updates [10].

Thus, a single pre-trained model can be shared and used with various small LoRA

modules for different downstream tasks. LoRA optimizes only a limited number of

parameters, specifically the injected low-rank matrices (A and B in Figure 4.1). This

approach makes training more efficient by eliminating the need to compute gradients

or maintain optimizer states for most of the parameters [10]. Moreover, as illustrated

in Figure 4.1, the straightforward linear design integrates the trainable low-rank

matrices (A and B) with the pre-trained frozen weights (W ) during deployment.

This design does not introduce any additional inference latency as compared to

other methods [10].

Adaptive Batch Normalization (AdaBN)

Batch Normalization (BN) was originally designed to alleviate the issue of internal

covariate shifting, a common challenge encountered when training a very deep neural

network [60]. It first standardizes each feature in a mini-batch and then learns a

common slope and bias for each mini-batch. Formally, given the input to a BN

layer, X ∈ Rn×p, where n denotes the batch size, and p is the feature dimension,

the BN layer transforms a feature as:

x̂ =
x− E[X]√
V ar[X] + ϵ

.γ + β (4.1)
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where x is input, E[X] is the expected mean of the input data X, V ar[X] is the

variance of the X, ϵ is used for numerical stability as an arbitrarily small constant, γ

and β are the learnable parameters. This transformation guarantees that the input

distribution of each layer remains unchanged across different mini-batches. For

stochastic gradient descent optimization, a stable input distribution could greatly

facilitate model convergence, leading to much faster training speed for CNN [60, 80].

During the inference phase, the global statistics of all training samples are used to

normalize every mini-batch of test data.

Although BN was originally proposed to help SGD optimization, its core idea

is to align training data distribution. BN normalizes activation outputs based on

batch statistics. Due to the domain shift between source and target domains, ap-

plying source domain statistics to standardize the target domain can result in miss-

classification [225].

To overcome this issue, adaptive batch normalization (AdaBN) computes the

target domain-specific batch-wise mean and variance [30]. Standardizing each layer

by the respective domain’s statistics ensures that each layer receives data from a sim-

ilar distribution, whether it comes from the source or target domain. This approach

is straightforward to implement, has zero parameters to tune as mean and variance

are non-learnable parameters, and requires minimal computational resources [30].

In this work, we used AdaBN [30] instead of standard batch normalization.

4.3.2 Proposed Approach: Unsupervised Parameter-Efficient

Adaptation using Convolutional Low-Rank Adapta-

tion and Adaptive Batch Normalization

During fine-tuning, a neural network is initialized with pre-trained weights (Φ0),

which are iteratively updated to Φ0 +∆Φ by following the gradient to optimize the

model’s objective [109]. One of the main drawbacks of fine-tuning the entire model

is that for each downstream task, a different set of parameters ∆Φ is learned whose

dimension |∆Φ| equals |Φ0|. The specific U-Net architecture used for this work has
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approximately 24.3 million parameters (|Φ0| ≈ 24.3 million) [226]. Consequently,

storing and deploying numerous independently fine-tuned instances of this model

can be challenging and may not be feasible, particularly in multi-target domain

scenarios.

Convolutional Low Rank Adaptation (ConvLoRA)

To overcome this challenge, a new ConvLoRA adapter, an extension of LoRA [10]

is proposed, for parameter-efficient unsupervised domain adaptation (UDA). In

contrast to previous approaches, which focus on parameter-efficient adaptation of

transformers based architecture, ConvLoRA is designed specifically for parameter-

efficient adaptation of CNNs. For a pre-trained convolutional layer weight ma-

trix (WPTCONV
∈ Rm×n), ConvLoRA constrains the weight update by decomposing

WPTCONV
using a low-rank decomposition as:

WPTCONV
+∆WCONV = WPTCONV

+XY (4.2)

where WPTCONV
is the pre-trained weight matrix of convolutional layer, ∆WCONV

is the weight update, X ∈ Rm×r and Y ∈ Rn×r are low-rank matrices and r <<

min(m,n) is the rank. During training, WPTCONV
is frozen and does not receive

gradient updates, while only X and Y contain trainable parameters. Both WPTCONV

and ∆WCONV are multiplied by the input and the respective output vectors are

summed coordinate-wise. Hence, the forward pass operation is as follows:

h = WPTCONV
x+∆WCONV x = WPTCONV

x+XY x (4.3)

where x is input, X is initialized by random Gaussian distribution and Y is zero

in the beginning of training.

Step 1: Pre-training the Source Model on Source Domain

Initially, a U-Net referred to as the source model (Φsrc), is trained using labeled
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Figure 4.2: Source model (Φsrc) pre-trained on the source domain (src).

data from the source domain data (Xsrc) as shown in Figure 4.2. We adapted the

U-Net used in [226], it has 3×3 convolution kernels, ReLU activation functions, and

the skip connections are implemented as convolutions followed by a sum operation.

During this stage, all model parameters are updated using source domain data,

with standard batch normalization (BN) applied throughout the training process,

as illustrated in Figure 4.2.

Our goal is to adapt the source model to out-of-distribution unlabeled target data

(Ytar) in a parameter-efficient unsupervised manner. The source model is trained

using cross-entropy loss:

I(x, y)source = − 1

Ns

Ns∑
n=1

C∑
n=1

yn,clogpc(xn) (4.4)

where Ns is the number of samples in the source domain, pc(xn) is model’s predicted

probability and yn is a one-hot-encoded vector of the true label for pixel n.

Step 2: Early Segmentation Head Refinement

To prepare for the adaptation of the source model to the target domain, we first

add another segmentation head called the early segmentation head (ESH) after the

encoder as shown in Figure 4.3. ESH is a small CNN containing three convolution

layers each followed by a batch normalization layer. The placement of the ESH in

the network was determined through ablation studies, with the encoder identified
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as the optimal position (Section 4.5.4).

ESH is initialized on the source domain by pre-training with the cross-entropy

loss (Eq. 4.4) between the output of ESH (ŷESH(src)) and the source ground truth

mask (GTsrc) as shown in Figure 4.3. During this initialization process, all the

weights in the source model (Φsrc) are kept frozen, and the gradient is back-propagated

exclusively through the ESH weights, as illustrated in Figure 4.3 (loss calculation).

          Loss calculation

ESH

ESH prediction on source domain

src ground truth

Cross entropy loss

src running mean, variance

Shared layers 

Back-propagation

   ESH 

Source 
domain  

                    

        Early Segmentor Head Initialization on source domain

Source 
domain

Prediction

ESH

Source 
domain  

Figure 4.3: ESH initialization with the source domain. The source model
is frozen and the gradient is backpropagated only to ESH.

Now the model generates two probabilistic segmentation outputs: a preliminary

segmentation output from the ESH, denoted as (ŷESH(src)), and the final segmenta-

tion output which is obtained from the source model, denoted as (ŷPL), as shown in

Figure 4.3.

During the adaptation, the ESH will act as a student, which is trained by the

output of the source model (Φsrc), which acts as a teacher. As Φsrc and ESH share

the encoder component of the network, refining student on the target domain also

benefits the teacher.

Step 3: Adaptation through ConvLoRA and AdaBN in a Self-Training

Framework

For adaptation, our proposed ConvLoRA adapters are integrated into the en-
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Figure 4.4: 2D U-Net with Early Segmentation Head (ESH): ConvLoRA
adapters facilitate parameter efficient adaptation in the encoder, along
with AdaBN throughout the network.

coder of the source model (Φsrc). Specifically, it is integrated into all convolutional

layers within the encoder. An ablation study was conducted to identify which part

of the network is most susceptible to domain shift. The results of this experiment

indicate that the encoder is the most affected by such shifts (Section 4.5.4).

In our proposed adaptation scheme, all parameters of the source model (Φsrc) are

frozen, except for the ConvLoRA parameters and the running mean and variance of

the batch normalization layers as shown in Figure 4.4.

The target domain images (Xtar) are fed to both source model (Φsrc) and ESH

branches. However, the gradient updates are constrained only to ConvLoRA adapters

injected in the encoder as shown in Figure 4.4 (c). The cross-entropy loss is calcu-

lated between output of ESH (ŷESH(tar)) and output of the base model (ŷPL) as:

I(x)target = − 1

N

N∑
n=1

C∑
c=1

ŷ
(c)
PL(xn) log ŷ

(c)
ESH(xn) (4.5)

where N is the number of data points, C is the number of classes, ŷPL is the

probability of class ŷ
(c)
PL, ŷ

(c)
ESH(xn) is the is the probability of class c the predicted
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by the ESH.

We now leverage the segmentation output (ŷPL) from the source model as pseudo-

labels to refine predictions from ESH, i.e., (ŷESH(tar)) in a self-training framework as

illustrated in Figure 4.4. This process adapts the encoder features by updating the

ConvLoRA parameters, leveraging the higher-level information learned by the rest of

the network (ŷESH(tar)). The integration of the proposed ConvLoRA solely into the

encoder component resulted in superior performance compared to fine-tuning the

entire source model. This improvement was achieved with a substantially reduced

number of parameters, as detailed in Section 4.5.3, making our proposed method

both parameter- and computationally efficient (comparison of trainable parameters

is reported in Table 4.4). Furthermore, as the proposed adapters are lightweight,

they can be adapted to multi-target domains by modifying only a small subset of

ConvLoRA parameters while sharing a single base model.

To further enhance the domain adaptation, our proposed approach utilizes the

target domain’s running mean and variance, computed through AdaBN [30]. The

source domain statistics are updated by computing target-specific batch-wise run-

ning statistics as shown in Figure 4.4 “AdaBN for adaptation”.

As the running statistics of the batch normalization layer are not learnable pa-

rameters, hence adapting them according to the respective target domain throughout

the network is achieved in a parameter-free manner. Thus AdaBN does not intro-

duce additional computational overhead and facilitates parameter-free adaptation

without extra parameters and components. The experimental results demonstrated

that the performance of our proposed ConvLoRA is further complemented by the

leveraging AdaBN (Section 4.5).
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4.4 Experimental Framework

4.4.1 Datasets

The proposed approach is evaluated on the Calgary-Campinas (CC359) [11] and

M&M [12] datasets. CC359 is a multi-vendor (GE, Philips, Siemens), multi-field

strength (1.5, 3) magnetic resonance (MR) T1-weighted volumetric brain imaging

dataset. It has six different domains and contains 359 3D brain MRI scans, primarily

focused on the task of skull stripping. The six different domains are GE 3, GE 1.5,

Philips 1.5, Philips 3, Siemens 1.5, and Siemens 3. The name indicates the vendor

of the MRI machine and the number indicates the magnetic field strength. Each

domain exhibits two levels of domain shift: the MRI vendor and the magnetic field

strength. A few samples from each domain are shown in Figure 4.5.

Figure 4.5: CC359 dataset: Different domains [11].

The M&M dataset [12] consists of cardiac MRI scans from a total of 345 sub-

jects. It has four domains, each representing images obtained from different scanner

vendors: Siemens, GE, Canon, and Philips. These domains differ in their in-plane

resolution, slice thickness, number of slices, and number of time frames. This dataset

has three regions of interest: the left ventricle cavity (LV), the right ventricle cavity

(RV), and the left ventricle myocardium (MYO) as shown in Figure 4.6.
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Figure 4.6: M&M dataset [12]: Different domains. (Yellow: RV, Blue:
LV, Green: MYO).

4.4.2 Training setup

The source model (Φsrc) is pre-trained using source domain (GE 3T for CC359 [11]

and Philips for M&M dataset [12]) for 100 epochs using a batch size of 32, a learning

rate of 0.001, and optimized with the Adam optimizer using cross-entropy loss. Pre-

processing includes the removal of black slices, min-max scaling, and resizing all

images to a resolution of 256× 256.

The ESH is pre-trained on the source domain for 20 epochs, followed by our

proposed adaptation method, where the model is trained for only 5 epochs using 10

samples from the respective target domain with a learning rate of 0.0001. For the

adaptation of the ConvLoRA adapter to the downstream segmentation task, we set

the rank to r = 2, as the original kernel weight matrix has dimension was 3 × 3.

The surface Dice Score (SDS) [196] is used to evaluate the performance. This metric

is more informative than volumetric dice as it emphasizes the brain contour over

internal volume [196] and it is widely used in methods exploring CC359 dataset [226,

196, 222]. For the M&M dataset [12], dice score is used as the evaluation metric.

The processing pipeline is implemented in Python 3.8.17, and the open-source

library PyTorch 2.0.1 is used. All experiments were performed on a desktop com-

puter with the Ubuntu operating system 20.04.6 LTS with CUDA 11.6, NVIDIA

GeForce RTX 3090 GPU, and a total of 64 GB RAM.
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4.5 Results and Analysis

As we systematically discussed the different stages of our framework in Section 4.3.2,

the experimental results are also reported in the same sequential manner.

4.5.1 Source Model

It refers to the base model (Φsrc), which is trained exclusively on the source domain,

as discussed in Section 4.3.2. For experiments involving CC359 [11], GE 3T is used

as the source domain, and the remaining five domains are treated as target domains

(mentioned in Section 4.4.1). The source model is trained using 40 subjects from GE

3T, comprising 6,032 slices. The source model’s performance is then evaluated on

each of the five target domains during the inference phase. To assess the impact on

the generalization of the source model due to the domain shift of the target domains

and the effectiveness of the proposed unsupervised parameter efficient domain adap-

tation method, we first evaluate the source model on the target domains without

any adaptation.

Since our source domain is GE 3T, we initiated experiments first to evaluate the

source model on the target domain, which has the same vendor i.e. GE, but a dif-

ferent field strength (1.5T). Despite the using same vendor, domain shift impacted

the results significantly as shown in Figure 4.7. The first row shows the input data,

the second row shows the ground truth and the third row shows the performance

of the source model. The domain shift observed, even with the same vendor, can

be attributed to differences in field strength, which significantly affect image char-

acteristics such as signal-to-noise ratio, contrast, resolution, and artifacts. These

variations cause inconsistencies in imaging parameters and scanner performance,

leading to notable discrepancies in feature distribution between the source and tar-

get domains. As a result, even with the same vendor, these factors contribute to

the domain shift, adversely affecting the source model’s generalizability when used

without adaptation.

We also assessed the performance of the source model on the remaining four
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Figure 4.7: Performance of source model without adaptation on the tar-
get domain: GE 1.5 [11]

domains, which originate from different vendors and have varying magnetic field

strengths (discussed in Section 4.4.1). The results for each domain are shown in

Figure 4.8, 4.9, 4.10, 4.11 respectively. As evident from all the qualitative results,

when the source model trained exclusively on the source domain is evaluated on the

target domains without adaptation, the domain shift between the source and target

domain deteriorates the performance of the source model significantly.

Input

Ground Truth

Source Model

Target Domain: Philips 1.5

Figure 4.8: Performance of source model without adaptation on the tar-
get domain: Philips 1.5 [11].

Quantitative Analysis

A comprehensive quantitative analysis is conducted to evaluate the source model’s

performance across the entire dataset and examine the impact of domain shift on its
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Figure 4.9: Performance of source model without adaptation on the tar-
get domain: Philips 3 [11].

Input

Ground Truth

Source Model

Target Domain: Siemens 1.5

Figure 4.10: Performance of source model without adaptation on the
target domain: Siemens 1.5 [11].

Input

Ground Truth

Source Model

Target Domain: Siemens 3

Figure 4.11: Performance of source model without adaptation on the
target domain: Siemens 3 [11].

generalization. Table 4.1 presents a quantitative comparison between the proposed

method and the baseline [226] on the five target domains. In contrast to the baseline,
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which conducted experiments only once, our results are obtained by running the

experiments multiple times with different seed values to account for the impact of

randomness on the outcomes.

Table 4.1: Evaluation of the source model on the CC359 target do-
mains [11].

Target Domain
Source Model

UDAS [226] Ours

GE 1.5 0.558 0.73 ± 0.03
Philips 1.5 0.749 0.87 ± 0.02
Philips 3 0.658 0.61 ± 0.05
Siemens 1.5 0.704 0.82 ± 0.03
Siemens 3 0.886 0.84 ± 0.01

The results demonstrate that out of five target domains, superior performance

was achieved on three domains, even with the source model. This improvement can

be attributed to the pre-processing applied to the CT slices (Section 4.4.2). Fur-

thermore, crucial information regarding the data splits and other hyperparameters

is not reported in [226]. It could potentially account for the observed discrepancies

in the results. Moreover, in [226], the model adaptation relies exclusively on the

training set, which does not accurately reflect whether the predictions are improv-

ing. In contrast, our proposed approach employs a separate validation set for robust

evaluation, enabling a more reliable assessment of performance based on this set.

4.5.2 Early Segmentation Head Refinement

Following our proposed framework, the next step is to refine the early segmentation

head (ESH) using the source domain. ESH is pre-trained using the source domain for

20 epochs. The loss and the corresponding surface dice score (SDS) curves are shown

in Figure 4.12a and 4.12b respectively. The SDS is relatively low because the ESH

is a compact CNN with only three convolutional layers (discussed in Section 4.3.2

“Early Segmentation Head Refinement”). The primary objective of this stage is

to pre-train the ESH on the source domain to establish a robust starting point for

subsequent adaptation to the target domain as compared to the random weight
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initialization. At this stage, the goal is to prepare ESH for adaptation to the target

domain, rather than achieving a high score on the source domain.

(a) (b)

Figure 4.12: ESH initialization using the source domain: Loss and surface
dice score curves.

4.5.3 ConvLoRA based Parameter Efficient Domain Adap-

tation

A series of experiments are conducted to evaluate the effectiveness of our proposed

ConvLoRA adapters for unsupervised domain adaptation in medical imaging. The

first objective was to compare our proposed ConvLoRA adapters with methods that

confine adaptation to specific network segments, which we refer to as “constrained

adaptation”.

In constrained adaptation, only a specific segment of the network is adapted,

with all parameters within that segment updated through standard fine-tuning while

the rest of the network is frozen. To compare the effectiveness of our proposed

parameter-efficient ConvLoRA adapters (Section 4.3.2) against this constrained adap-

tation approach, ConvLoRA adapters were incorporated exclusively only the initial

segment of the U-Net which is shown in Figure 4.2. This configuration is referred

to as “constrained ConvLoRA”.

The results of this comparative analysis are reported in Table 4.2. It is evident

that even in the constrained adaptation setup, our proposed ConvLoRA approach

performs on par with constrained adaptation. Notably, ConvLoRA achieves compa-

rable performance with a significantly lower number of trainable parameters. The
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reduction in the the number of trainable parameters across various adaptations is

reported in Table 4.4. The U-Net model utilized (Figure 4.4) has 14,160 train-

able parameters in its initial segment. By incorporating the proposed ConvLoRA

adapters into this segment, the number of trainable parameters was reduced from

14,160 to just 3,954. This significant reduction demonstrates that our proposed

adaptation is both parameter and computationally efficient.

Table 4.2: Comparative analysis of Constrained adaptation: standard
fine-tuning and proposed ConvLoRA adapters.

Target Domain Base Model
Constrained Adaptation

Traditional Fine-tuning ConvLoRA

GE 1.5 0.729 0.727 0.736
Philips 1.5 0.805 0.822 0.846
Philips 3 0.624 0.823 0.709
Siemens 1.5 0.793 0.814 0.820
Siemens 3 0.830 0.887 0.810

The promising results from the initial experiments highlighted the potential of

the proposed ConvLoRA adapters. Building on these findings, the proposed Con-

vLoRA adapters were integrated into the encoder to achieve parameter-efficient

adaptation as it is found to be most susceptible to domain shift (ablation study:

Section 4.5.4). To evaluate the effectiveness of the proposed approach, it is com-

pared with various methods:

• Self-Training employs pseudo-labels of the target domain to iteratively en-

hance model performance [227].

• UDAS: refers to our baseline which uses self-training to adapt only the initial

layers of the network through pseudo-labels [226].

• UDAS ConvLoRA (Ours): for a fair comparison with UDAS we incorpo-

rated ConvLoRA only to the initial layers.

• ConvLoRA + AdaBN (Ours): builds on UDAS but does not restrict adap-

tation to the initial layers. Instead, the entire encoder is adapted using our
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Table 4.3: Comparative analysis of unsupervised domain adaptation ap-
proaches.

Target
Domain

Source
Model

Self-
Training [227]

UDAS
[226]

UDAS ConvLoRA
(Ours)

UDAS ConvLoRA
+ AdaBN (Ours)

GE 1.5 0.734 ± 0.03 0.530 0.758 0.836 ± 0.038 0.890 ± 0.019
Philips 1.5 0.871 ± 0.021 0.725 0.846 0.877 ± 0.005 0.902 ± 0.010
Philips 3 0.618 ± 0.005 0.662 0.662 0.719 ± 0.009 0.825 ± 0.019
Siemens 1.5 0.825 ± 0.031 0.692 0.824 0.803 ± 0.012 0.892 ± 0.009
Siemens 3 0.843 ± 0.012 0.891 0.887 0.849 ± 0.002 0.888 ± 0.006

proposed ConvLoRA, with the ESH positioned after the encoder. Addition-

ally, AdaBN is employed to adapt to the target domain’s running mean and

variance (Section 4.3.1).

Table 4.3 presents a comparative analysis of these methods alongside the pro-

posed approach. When compared to the baseline (UDAS [226]), our method (UDAS

ConvLoRA) outperforms in four out of five target domains. While for Siemens 1.5,

our method has a slight decrease in SDS (0.2% only) compared to UDAS [226]. It is

important to note that the proposed adaptation is achieved with a substantial reduc-

tion in trainable parameters, decreasing from 14,160 to just 3,954 — a remarkable

72.07% reduction (Table 4.4).

Additionally, when employing the proposed approach of combining ConvLoRA

with AdaBN, it enhanced accuracy for the Siemens 1.5 domain as well as shown

in Table 4.3)(UDAS ConvLoRA + AdaBN). The experimental results demonstrate

that our proposed approach not only enhances accuracy but also offers significant

computational efficiency.

Parameter Efficiency

As shown in Table 4.4, the proposed ConvLoRA-based adaptation achieves a signifi-

cant reduction in trainable parameters, reducing the original 24.3 million parameters

of the U-Net architecture [11] to just 57,714– a 99.80% reduction. Furthermore, when

combined with AdaBN (referred to as UDAS ConvLoRA+AdaBN), the ConvLoRA

adapter enhances model adaptation and outperforms all other methods, without

any additional parameters. This demonstrates that both the standalone ConvLoRA

95



Domain Adaptation for Medical Imaging under Limited Data Constraints

adapter and the ConvLoRA+AdaBN offer parameter-efficient adaptation while de-

livering competitive performance compared to other methods.

Table 4.4: Comparison of Trainable Parameters for Different Adaptation
Strategies.

Adaptation
Strategy

Total
Params

Trainable
Params

Trainable Params
reduction (%)

Full Model Fine-tuning 24.3 M 24.3M -
Constrained Adaptation 24.3 M 14,160 99.93
Constrained LoRA (Ours) 14,160 3,954 72.07
ConvLoRA + AdaBN (Ours) 24.3 M 57,714 99.57

Qualitative Results

The qualitative results are shown in Figure 4.13, where the first column displays the

target domain input images, the second column shows the corresponding ground

truth, the third column illustrates the results achieved with the source model, the

fourth column demonstrates the outcomes obtained through constrained adaptation,

and the fifth column shows the results attained by our approach. It is evident

that the source model (Section 4.3.2 (source model)) does not perform well and

lacks generalization as illustrated in column 3. As shown in column 4, constrained

domain adaptation (Section 4.5.3) yields improved performance compared to the

source model; however, it remains susceptible to the effects of domain shift. It is

evident that our proposed method effectively handles the domain shift, surpassing

both the base model and the constrained adaptation significantly as shown in the

last column. Furthermore, this enhanced performance is attained alongside the

added benefit of computational efficiency, further showing our approach’s strength

(Table 4.4).

Furthermore, we also report the qualitative results after adaptation for the im-

ages which were reported to show the impact of domain shift on the source model

(Section 4.5.1), as illustrated in Figure 4.14, 4.15, 4.16, 4.17 and 4.18.
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Figure 4.13: Qualitative Results for CC359 [11]

Figure 4.14: Qualitative comparison: source model vs proposed adapta-
tion for target domain: GE 1.5 [11]

4.5.4 Ablations

To identify blocks susceptible to domain shift, the proposed ConvLoRA adapters

are integrated into various segments of the network and evaluate the performance.
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Input

Ground Truth

Source Model

Adapted
(Ours)

Target Domain: Philips 1.5

Figure 4.15: Qualitative comparison: source model vs proposed adapta-
tion for target domain: Philips 1.5 [11]

Figure 4.16: Qualitative comparison: source model vs proposed adapta-
tion for target domain: Philips 3 [11].

First, the ConvLoRA adapters are integrated into different segments of the encoder.

The U-Net architecture we used has three blocks in the encoder (Figure 4.2). The

results of this ablation are reported in Table 4.5. Each column is named “Enc”

followed by a number that represents the encoder block. The optimal results were

achieved by adapting the full encoder block using the proposed ConvLoRA adapters

(Full Enc. Block in Table 4.5). Furthermore, using AdaBN along with ConvLoRA

in the encoder, further improved the performance (last column).
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Figure 4.17: Qualitative comparison: source model vs proposed adapta-
tion for target domain: Siemens 1.5 [11].

Input

Ground Truth

Source Model

Target Domain: Siemens 3

Adapted
(Ours)

Figure 4.18: Qualitative comparison: source model vs proposed adapta-
tion for target domain: Siemens 3 [11].

To evaluate the potential benefits of integrating ConvLoRA adapters into the

decoder, ConvLoRA adapters were incorporated into this part of the network. The

evaluation approach followed the same methodology used for assessing ConvLoRA

integration into the encoder. The U-Net used three decoder blocks (Figure 4.2).

ConvLoRA adapters were incorporated into each of the decoder blocks.

However, unlike the benefits it brought to integration in the encoder, its integra-

tion into the decoder proved to be detrimental, resulting in a decline in the surface

dice score as reported in Table 4.6. The reason for this decline is that the primary
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Table 4.5: Ablation Study: Placement of ConvLoRA adapters in the
encoder and respective SDS, (Enc: Encoder).

Target
Domain

Enc.
Block 1

Enc.
Block 2

Enc.
Block 3

Full Enc.
Block

Full Enc. Block +
AdaBN

GE 1.5 0.836 ± 0.038 0.827 ± 0.011 0.808 ± 0.010 0.861 ± 0.044 0.890 ± 0.019
Philips 1.5 0.877 ± 0.005 0.832 ± 0.102 0.840 ± 0.038 0.891 ± 0.027 0.902 ± 0.010
Philips 3 0.719 ± 0.009 0.738 ± 0.022 0.749 ± 0.014 0.765 ± 0.006 0.825 ± 0.019
Siemens 1.5 0.719 ± 0.009 0.852 ± 0.009 0.861 ± 0.028 0.840 ± 0.038 0.892 ± 0.009
Siemens 3 0.849 ± 0.002 0.856 ± 0.017 0.868 ± 0.021 0.858 ± 0.013 0.888 ± 0.006

function of the decoder in U-Net is to upsample and reconstruct spatial features to

match the resolution of the input, effectively translating learned feature representa-

tions back into a spatial context [228]. On the other hand, the proposed ConvLoRA

adapters, are used to approximate convolutional layers with low-rank decomposi-

tions and are optimized for parameter efficiency. Thus the low-rank approximations

inherently involve some level of information compression, which can be beneficial in

feature extraction stages (like in the encoder) but detrimental in stages where high-

resolution details are crucial (like in the decoder) which translates in our results

reported in Table 4.6.

Table 4.6: Ablation Study: Placement of ConvLoRA adapters in the
decoder and respective SDS, (Dec: Decoder).

Target
Domain

Dec.
Block 1

Dec.
Block 2

Dec.
Block 3

GE 1.5 0.631 0.644 0.798
Philips 1.5 0.598 0.790 0.8948
Philips 3 0.598 0.754 0.7565
Siemens 1.5 0.598 0.826 0.8479
Siemens 3 0.849 0.843 0.8449

To evaluate ConvLoRA’s effectiveness across the network, a Siamese network is

used [229]. A duplicate of the source model, referred as the ConvLoRA model is

created. Both models share identical weights, except that ConvLoRA adapters are

integrated into the convolutional layers throughout the ConvLoRA model as shown

in Figure 4.19.

During adaptation, target domain samples are processed by both the source

model and ConvLoRA model. The source model is kept frozen, while only the Con-
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Figure 4.19: ConvLoRA integrated to the entire network (ConvLoRA).

vLoRA adapter parameters in the ConvLoRA model are updated through gradient

back-propagation as shown in Figure 4.19. The output from the ConvLoRA model

is treated as a target prediction (PLConvLoRA). The ground truth labels are created

by mixing pseudo labels from the source model and ConvLoRA model as shown in

equation 4.6.

GT = α× PLsrc + (1− α)PLConvLoRA (4.6)

where α is a hyperparameter that controls the mixup ratio between the two

pseudo-labels used to generate the ground truth. PLsrc represents the pseudo-labels

generated by the source model, while PLConvLoRA refers to the segmentation mask

produced by the ConvLoRA model. As training progresses and the ConvLoRA

model improves, more weight is given to PLConvLoRA progressively.

However, applying ConvLoRA across the entire network did not result in better

generalization, as shown in Table 4.7. The proposed approach of integrating Con-

vLoRA in the encoder component (Figure 4.4) termed as “ConvLoRA Encoder”,

better generalized consistently on all the target domains as reported in Table 4.7.

Furthermore, batch normalization-based adaptation was also evaluated. Specifi-

cally domain-specific batch normalization (BN) for unsupervised domain adaptation,

following the approach proposed in [210] is used. This method aims to adapt to both

source and target domains by using separate batch normalization layers for each do-

main within convolutional neural networks while keeping all other model parameters

101



Domain Adaptation for Medical Imaging under Limited Data Constraints

Table 4.7: Impact of ConvLoRA: Comparing Integration into the Full
Model vs the Encoder.

Target
Domain

ConvLoRA
Full Model

ConvLoRA
Encoder

GE 1.5 0.778 0.890
Philips 1.5 0.598 0.902
Philips 3 0.735 0.825
Siemens 1.5 0.790 0.892
Siemens 3 0.752 0.888

shared between the domains. However, the results indicate that this domain-specific

BN did not yield performance improvements. Consequently, additional normaliza-

tion adjustments may be unnecessary or could even have a detrimental impact.

Thus, the experimental results and insights demonstrate that our proposed parameter-

efficient unsupervised domain adaptation using ConvLoRA and AdaBN within a

self-training framework, not only facilitates better generalization across multiple

target domains but also offers significant computational efficiency.

4.5.5 Evaluation on M&M Dataset

Apart from CC359 [11], evaluation is also performed on M&M dataset [12]. Across

the three target domains within the M&M (Section 4.4.1) dataset, our proposed

adaptation method demonstrated superior performance in two of the target domains

in contrast to the source model (baseline- UDAS) as shown in Table 4.8. It highlights

the robustness of our approach in handling diverse domain shifts, although further

investigation is required to address the performance gap in the third domain.

Table 4.8: ConvLoRA performance of M&M dataset [12] .

Target
Domain

Source
Model

Self-
Training

UDAS
ConvLoRA

+ AdaBN (ours)

Siemens 0.656 ± 0.095 0.546 0.536 0.771 ± 0.01
GE 0.542 ± 0.108 0.373 0.566 0.655 ± 0.040
Cannon 0.654 ± 0.023 0.664 0.520 0.519 ± 0.101

Following the approach used in the analysis of the CC359 dataset, a thorough
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qualitative evaluation is performed on the M&M dataset [12] to assess the adaptabil-

ity of the proposed approach. The qualitative results are shown in Figure 4.20, 4.21

and 4.22. These figures illustrate the comparison of the segmentation maps achieved

by the proposed adaptation and the ground truth. The first row shows the input

image, the second row displays the ground truth, and the third row presents the

adaptation results obtained using the proposed approach.

Input

Ground Truth

Adapted
(Ours)

Target Domain: GE

Figure 4.20: Qualitative results target domain: GE [12].

Figure 4.21: Qualitative results target domain: Siemens [12].
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Figure 4.22: Qualitative results target domain: Canon [12].

4.5.6 Analysis and Limitation

The results on the M&M dataset [12] as discussed in the above section highlight a key

limitation of the proposed approach: its effectiveness depends on the characteristics

of the dataset under consideration. Specifically, the performance of ConvLoRA

varies based on the complexity of the dataset.

For the CC359 dataset, the objective is to perform skull stripping on brain MRI

scans [11]. The robustness of the proposed approach on CC359 is comprehensively

demonstrated through the comprehensive experiments discussed in Section 4.5.3.

The proposed approach consistently delivers accurate segmentation results across

all domains, regardless of domain shift in the form of the scanner manufacturer and

field strength.

In contrast, M&M dataset [12], is a multi-class segmentation dataset and the

region of interest is small and subtle as shown in Figure 4.6. This dataset presents

a higher level of complexity, featuring three regions of interest. The challenge lies in

accurately segmenting these multiple anatomical structures while managing domain

shifts. This increased complexity leads to reduced performance compared to the

CC359 dataset [11], thereby diminishing the overall effectiveness of the proposed
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approach on the M&M dataset.

These findings indicate that while the proposed unsupervised adaptation ap-

proach shows promise in adapting to different domains and reducing the computa-

tional overhead of supervised methods (Section 4.5), its effectiveness is influenced

by the specific characteristics of the dataset. This highlights the need for further

optimization and refinement of the proposed approach to improve its generalization

to tackle more challenging domain adaptation tasks in medical imaging.

4.6 Summary

This chapter presents our work on unsupervised domain adaptation for multi-target

medical imaging domains. A parameter-efficient, convolutional low-rank unsuper-

vised adaptation approach is proposed for adapting convolutional neural networks

(Section 4.3.2). Unlike existing methods that focus solely on single-target domain

adaptation, our method addresses domain shifts across multiple target domains,

enhancing its robustness and applicability in diverse medical imaging settings. It

overcomes the limitations of supervised adaptation methods, which typically create

separate fine-tuned models dedicated to each target domain and rely heavily on

annotated data for supervision.

The proposed approach is evaluated through brain segmentation in brain MRI

scans and cardiac structures segmentation from cardiac MRI data. For the first task,

it achieved an average dice score of 0.881 across five target domains in the CC359

dataset (Section 4.4.1, 4.5.3). The source U-NET model that is used in this work

has 24.3 million parameters (Section 4.3). Our proposed approach achieved these

results by adapting only 57,714– a 99.80% reduction. Thus it makes our method

computationally efficient, significantly reducing the number of trainable parameters

compared to supervised approaches (Section 4.5.3), which adapts the entire model

(24.3 million parameters in this case).

For cardiac structures segmentation fromMRI scans, an average dice score of 0.75

was achieved across the different target domains in the M&M dataset (Section 4.4.1).
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Unlike brain segmentation, the M&M dataset presents a greater challenge due to the

complexity of cardiac structures, making accurate segmentation more difficult. De-

spite this, the experimentation with the M&M dataset [12] helped gain the valuable

insights highlighted in the following section.

4.6.1 Insights

While our proposed approach is effective, it has a few limitations as discussed in

the above section. To overcome these limitations, there is a need for more robust

domain adaptation approaches.

Recent advancements have led to the emergence of “foundation models”. These

models use large-scale datasets and rely predominantly on self-supervised learn-

ing for pre-training [141, 230, 15, 231, 232], enabling better generalization and

adaptability across diverse visual tasks [233, 234, 235]. These advancements have

changed the research paradigm from the conventional fine-tuning of CNNs to the

zero-shot transferability of foundation models. Due to these advancements, the tra-

ditional fine-tuning approaches are increasingly being replaced by prompting tech-

niques [233, 234, 235, 236, 237, 37].

These factors motivated us to explore foundation models for domain adaptation

with three key objectives:

1. Can the limitations of the proposed parameter-efficient unsupervised adapta-

tion be addressed using foundation models?

2. Is it possible to effectively adapt foundation models trained on natural images

to the medical imaging domain fully during test time, without any additional

training or fine-tuning?

3. Can visual and language foundation models be aligned for test-time adapta-

tion to alleviate the need for domain knowledge/expertise for medical imaging

tasks?
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These objectives have further helped shape the research focus and will be explored

in depth in the following chapters.
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Chapter 5

Test Time Domain Adaptation of

Foundation Models for Medical

Image Segmentation

This chapter presents our work on test-time adaptation of foundation models to the

medical imaging domain. It addresses Research Question 3 (RQ3) of this thesis:

“Can test-time adaptation of foundation models provide a more robust alternative

to supervised or semi-supervised domain adaptation approaches? Can foundation

models be effectively adapted to diverse medical imaging tasks without relying on

annotated data, additional training, or specialized domain expertise?” In this con-

text, a novel framework called SaLIP is proposed to adapt foundation models pre-

dominantly trained on natural imaging datasets to perform diverse medical imaging

tasks. Notably, SaLIP is a test-time adaptation framework that facilitates founda-

tion models adaptation to the medical domain fully at test time, without the need

for additional training, fine-tuning, or annotated data. Thus it addresses the chal-

lenges posed by the scarcity of medical data and lack of domain expertise in the

medical domain. Additionally, SaLIP also addresses the limitations of our proposed

unsupervised parameter-efficient domain adaptation through Convolutional Low-

Rank Adaptation (ConvLoRA) and Adaptive Batch Normalization [25] (introduced
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in Chapter 4). Our proposed SaLIP pipeline is evaluated across diverse medical seg-

mentation tasks: brain segmentation from MRI scans, lung segmentation from chest

X-rays, and fetal head segmentation from ultrasound images. The work presented

in this chapter has been published in the Computer Vision And Pattern Recognition

Conference, Workshop (CVPRW), 2024 [121]. The code to replicate the experiments

and results is publicly available at: https://github.com/aleemsidra/SaLIP.

Section 5.1 provides an introduction and the motivation behind adapting foun-

dation models to diverse downstream medical imaging tasks through test-time adap-

tation. Section 5.2 presents a comprehensive literature review of existing approaches

that utilized foundation models for medical imaging tasks. Section 5.3 provides a de-

tailed overview of our proposed framework and its architectural design. Section 5.4

outlines the datasets and experimental evaluation setup. Section 5.5 presents the

qualitative and quantitative results, along with ablation studies. Finally, Section 5.6

summarizes the findings of this work and highlights how these findings guided the

subsequent research work discussed in Chapter 6.

5.1 Introduction

Segmentation is a crucial task in medical imaging analysis. It focuses on identifying

and delineating regions of interest (ROI) in various medical imaging tasks. Depend-

ing on the imaging modality, these ROI may include organs, lesions, or tissues [62].

Accurate segmentation is vital for clinical applications such as disease diagnosis,

treatment planning, and monitoring disease progression [238, 22, 239]. Deep learn-

ing models have demonstrated significant potential in medical image segmentation,

due to their ability to learn complex image features and provide highly accurate seg-

mentation results. These models excel across a wide range of tasks from segmenting

specific anatomical structures to identifying pathological regions [240].

However, a significant limitation of many current medical image segmentation

models is their task-specific nature. These models are typically developed and

trained for a specific task, which hampers their generalizability across different do-
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mains. As a result, their performance can degrade substantially when applied to

new target domains, due to domain shift (Sections: 1.1.1, 1.1.2, 1.1.3). The impact

of task-specific nature of the model on its generalizability is also demonstrated in the

experimental sections of Chapter 3 and Chapter 4, where task-specific fine-tuning

was carried out for each dataset. This restricted form of supervision limits their gen-

eralizability and usability, creating a significant barrier to the broader application

of these models in clinical practice.

Large language models (LLMs) pre-trained on web-scale datasets are revolution-

izing natural language processing with impressive zero-shot and few-shot generaliza-

tion [237]. These “foundation models” [241] have exceptional ability to generalize

to new tasks and data distributions beyond those seen during training. This ca-

pability is often implemented using “prompt engineering” where carefully designed

text prompts guide the model to generate appropriate responses for a given task.

When scaled and trained with abundant text corpora from the web, the zero and

few-shot performance of foundation models compares surprisingly well (and even

matches in some cases) with fine-tuned models [237, 242]. Empirical evidence shows

that this performance improves consistently with increasing model size and dataset

diversity [237, 243, 244, 241].

Foundation models, characterized by their substantial size and self-supervised

training on diverse datasets, possess remarkable capabilities for generating meaning-

ful representations across multiple domains [241]. These models provide significant

advantages, including effective parameter initialization for a wide range of down-

stream tasks. These models have transformed the landscape of machine learning.

Traditional fine-tuning approaches are increasingly being replaced by prompting

techniques [233, 234, 235, 236, 237, 37].

The field of computer vision is arguably currently undergoing a similar trans-

formation. Notably, vision-language foundation models have demonstrated excep-

tional zero-shot capability and strong generalization across a wide range of applica-

tions [233, 234, 235]. Visual foundation models can be broadly classified into two cat-
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egories: feature encoding models, trained on pretext tasks (e.g., DINO [232, 232, 53],

CLIP [15], and BLIP [137]), and models designed for specific tasks, such as segmen-

tation e.g., SAM [13] and SEEM [131].

The transferability of visual language models (VLMs) has shown significant per-

formance improvements to various natural imaging tasks, such as open-vocabulary

detection [245, 246], visual grounding [247, 248], and image editing [249, 250]. Typi-

cally to adapt VLMs, either prompt engineering is used to facilitate zero-shot trans-

ferability, or additional training is conducted to adapt to each specific downstream

task [51]. However, medical imaging tasks face significant challenges, primarily due

to data scarcity arising from privacy and ethical concerns, as well as the need for

domain expertise in prompt engineering [251, 252]. Additionally, domain shift be-

tween the data used to pre-train foundation models and the target medical tasks

presents further challenges [141].

Current methods for adaptation of foundation models to the medical domain,

primarily focus on supervised/parameter-efficient unsupervised approaches (Sec-

tion 5.2). However, the potential of zero-shot transfer to medical imaging tasks,

where foundation models are applied without additional training or fine-tuning re-

mains largely under explored. Developing a framework for effective zero-shot test-

time transferability of foundation models could address several key challenges in the

medical field, including the need for additional supervised training, data scarcity,

task-specific fine-tuning, and specialized domain expertise in prompt engineering.

Segment Anything Model (SAM) is the first promptable segmentation model,

pre-trained on a vast dataset of over 1 billion masks. It enables SAM to adapt effec-

tively to a wide range of downstream tasks using interactive prompts [13]. SAM can

be utilized in two modes: either to segment everything in an image or to segment a

specific region based on the prompts as shown in Figure 5.1. The architectural de-

sign of SAM and the respective modes are discussed in detail in Section 5.3.1. SAM

has shown impressive results in a broad range of tasks for natural images but its per-

formance has been subpar when directly applied to medical images [58, 56, 126, 57].
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Input Segment everythingPoint promptsBox prompt

Figure 5.1: Various segmentation modes of the Segment Anything Model.

CLIP (Contrastive Language-Image Pretraining) model, developed by OpenAI,

is trained on a dataset of over 400 million image-text pairs. This extensive training

enables CLIP to learn rich associations between visual and textual information [132].

By establishing a joint text-vision embedding space, CLIP has been effectively uti-

lized for zero-shot classification, recognition, and retrieval tasks in the natural imag-

ing tasks [18, 120, 253, 51]. The architectural details of CLIP are discussed in detail

in Section 5.3.1.

SAM and CLIP have shown remarkable zero-shot transfer capabilities in vari-

ous downstream tasks for natural images. Despite their success in natural image

applications, the combined potential of SAM and CLIP in the complex and chal-

lenging medical imaging domain remains largely unexplored [121]. Investigating this

potential could lead to significant advancements in medical image analysis, where

accurate segmentation and recognition are critical for diagnosis and treatment.

While SAM can effectively segment different regions of an image using prompts

like bounding boxes and point prompts (Figure 5.1), it faces inherent limitations

to its application in medical image segmentation. One of the key challenges is its

reliance on prompts to identify and segment specific regions, which means that the

quality of the segmentation results is directly influenced by the prompts used. In

medical imaging domain, the effective prompt engineering requires domain expertise

or access to annotated data, both of which are often scarce. The limited availability

of high-quality labeled medical datasets and the need for specialized knowledge

complicates the prompt engineering process in the medical imaging domain.

To address these challenges, several studies have combined SAM with foundation
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models such as GroundingDINO [248] and YOLOv8 [254] to create prompts, such as

bounding boxes for regions of interest. However, these models are mainly trained on

natural imaging datasets, which can lead to generalization challenges due to domain

shift when applied to medical datasets (Section 1.1.2). Importantly, to effectively

use these models for prompt generation, additional training is required to optimize

them for medical imaging tasks [255, 256]. The application of these foundation

models in medical imaging faces several challenges:

a) Annotated data is required for fine-tuning and training foundation models, yet

such data is often scarce in the medical domain (Section 1.1.4). The model’s

performance heavily depends on the amount of training data, and it needs

careful evaluation and experimentation.

b) Foundation models like GroundingDINO [248] and YOLOv8 [254] need ad-

ditional textual prompts to generate prompts describing regions of interest

(ROIs). The performance of these can vary greatly depending on the quality

of these prompts. Creating effective prompts for medical tasks demands spe-

cialized domain expertise, which is not readily available in the field of medical

imaging. As a result, the lack of specialized knowledge often leads to ineffective

prompt engineering.

c) The considerable computational overhead of training foundation models fur-

ther adds complexity.

Additionally, while SAM’s ability to automatically “segment everything” in the

image (Figure 5.1), is appealing, there are significant challenges associated with

the application of SAM’s everything mode to medical imaging [257]. One of the

main challenges lies in the inherent variability of required segmentation tasks. For

example, when analyzing a CT image of liver cancer, the segmentation task can differ

depending on the specific clinical scenario and desired degree of granularity. One

clinician may be focused on segmenting the liver tumor, whereas another may require

segmentation of the entire liver along with the surrounding organs. Additionally,
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clinicians are primarily interested in analyzing specific anatomical organs such as the

liver, kidneys, spleen, lesions, etc. It becomes challenging to discern and focus on

ROI amidst the growing number of segmented areas. These such challenges impede

the direct application of SAM to medical image segmentation.

To overcome the challenges mentioned above, this work proposes a novel unified

framework called SaLIP, which harnesses the strengths of SAM and CLIP for zero-

shot organ segmentation. SAM can effectively perform organ segmentation when

prompts are provided. However, its effectiveness hinges on domain expertise and

annotated data for prompt engineering, which is not readily available in the medical

domain.

To circumvent these challenges, the proposed framework SaLIP, initially employs

SAM’s everything mode to automatically segment every region within the image as

illustrated in the general overview of SaLIP shown in Figure 5.2. This mode oper-

ates without any external prompts and does not need manual prompt engineering

(Section 5.3.1 (modes of SAM)). While SAM’s everything mode generates exhaustive

segmentation masks for different regions in the image, the resulting masks do not

include semantic labels (Section 5.3.2). To extract the relevant ROI mask from the

pool of SAM generated masks, the original input image is cropped based on each

of these masks. This set of cropped image regions is then processed through CLIP,

which retrieves the crop corresponding to ROI in a zero-shot manner using visually

descriptive text (VDT) sentences from GPT-3.5, related to the target organ, follow-

ing the approach proposed in [120] (Appendix A.1). Finally, the retrieved ROI crop

is used to generate bounding box prompts. These prompts are eventually used to

prompt SAM to segment specific organs as illustrated in Figure 5.2. To evaluate

the effectiveness of SaLIP, a thorough experimental evaluation is carried out across

three diverse medical imaging datasets encompassing MRI scans, ultrasound, and

X-ray (Section 5.5).

Contributions
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VDT
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CLIP 

GPT-3.5

SAM
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Final
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prompt

Figure 5.2: The proposed SaLIP framework: The input image is pro-
cessed through SAM’s “everything mode”, generating a set of masks for
potential regions in the image. The image is then cropped based on the
mask coordinates and passed to CLIP’s image encoder. GPT-3.5 is used
to generate visually descriptive sentences (VDTs) for target ROI. The re-
trieved ROI crop from CLIP is used to generate a bounding box prompt
based on the coordinates of the ROI. This prompt and the input image
are then passed to SAM’s probabilistic segmentation for final segmenta-
tion masks.

• A simple unified framework – SaLIP, is proposed that leverages the combined

capabilities of SAM and CLIP for medical image segmentation. It is experi-

mentally demonstrated that the cascade of these foundational models via the

proposed SaLIP framework can enhance zero-shot segmentation accuracy in

medical imaging.

• SaLIP is training/fine-tuning free and is independent of the specialized domain

expertise and labeled data required for prompt engineering.

• To effectively address above mentioned challenges, associated with applying

SAM directly to medical imaging and to optimize its utilization for medical

image segmentation, both segment everything and promptable segmentation

modes of SAM are used. To the best of our knowledge, this is the first work

to explore SAM’s dual modes for zero-shot medical image segmentation.

• SaLIP is adapted fully at test-time for zero-shot medical image segmentation,

thereby efficiently alleviating the training costs and computational overhead

associated with these foundation models.
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5.2 Related Work

5.2.1 Segment Anything Model

The Segment Anything Model (SAM) is the first promptable segmentation founda-

tion model, trained on the large-scale SA-1B dataset [13]. This extensive training

equips SAM with exceptional zero-shot generalization capabilities, enabling it to ef-

fectively perform zero-shot segmentation on new data distributions by using various

prompts. A prompt is a cue or instruction that guides the model in performing a

specific task. It helps define the desired output of the model by providing additional

context. For image segmentation, a prompt might specify which object or region in

an image to focus on, enabling the model to generate a relevant response or action.

There are various types of prompts, which may include spatial information such

as a bounding box, point, or mask, as well as textual descriptions that identify an

object. Based on the provided prompts, SAM generates a valid segmentation mask,

as illustrated in Figure 5.3(a).

SAM has three components: an image encoder, a prompt encoder, and a mask

decoder. SAM utilizes a transformer-based architecture [193], which has proven

to be highly effective in natural language processing [237] and image recognition

tasks [258]. Specifically, SAM adopts an image encoder based on Vision Transformer

(ViT) [258] to extract image embeddings, the prompt encoder is used to integrate

user interactions via different prompt modes, and a lightweight mask decoder to

predict segmentation masks by fusing image embeddings and prompt embeddings

as shown in Figure 5.3(b). The architectural details of all three components are

discussed in detail in Section 5.3.1.

5.2.2 Adapting SAM for Medical Image Segmentation

Although SAM has shown impressive performance with natural images, its effec-

tiveness in medical image segmentation is limited due to unique challenges arising

from domain shift, such as complex anatomical structures, low contrast, and inter-
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Figure 5.3: Components of the Segment Anything Model [13].

observer variability (as discussed in Section 1.1.2, 1.1.3). The following approaches

have been investigated for the adaptation of SAM to medical image segmentation.

Fine Tuning based Adaptation

The most straightforward approach for adapting SAM to medical image segmen-

tation is to directly fine-tune it for the specific task. Hu et al. [259] conducted a

fine-tuned SAM for skin cancer segmentation, showing a significant improvement in

the dice similarity coefficient (DSC) from 81.25% to 88.79%. PolypSAM is designed

specifically for segmenting polyps in the colon [260]. This method fine-tunes all

components of the SAM. The components of SAM are discussed in Section 5.3.1.

This approach achieved performance on five public datasets with dice scores all

above 88%. MedSAM [257] is introduced for universal medical image segmentation.

It adapted SAM by curating a diverse and comprehensive dataset containing more

than one million medical image mask pairs of 11 modalities. MedSAM surpasses

the performance of the U-Net models.

Updating all parameters of SAM is a time-consuming, computationally inten-

sive, and challenging process, making it less feasible for widespread deployment.

Consequently, many researchers focus on fine-tuning a small fraction of the pa-

rameters of SAM using various parameter-efficient fine-tuning (PEFT) techniques.

SAMed [130] adopts a low-rank-based fine-tuning strategy (LoRA) [10] and trains

a default prompt for all images in the dataset. Medical SAM Adapter (MSA) [55]

uses adapter modules for fine-tuning.
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While the fine-tuning methods for SAM demonstrate great potential, they require

substantial labeled data for supervised training and have not yet fully leveraged the

prompting ability of SAM (discussed in Section 5.3.2), which is the main strength

of SAM. Moreover, the effectiveness of PEFT approaches is reliant on the type

of the dataset and segmentation task in hand as experimentally demonstrated in

Chapter 4. Furthermore, as a foundation model, SAM has computational overload

during fine-tuning due to its substantial size, and high resource requirements and is

prone to overfitting when trained with limited data.

In contrast, our proposed approach effectively overcomes these challenges by

adapting SAM for zero-shot organ segmentation without additional training, task-

specific fine-tuning, and prompt engineering. Our framework facilitates the adapta-

tion of foundation models entirely at test time, which helps to mitigate issues related

to the scarcity of medical data, lack of specialized domain expertise for prompt

engineering, and the computational overload typically associated with supervised

adaptation of SAM to downstream tasks.

Auto Prompting Adaptation

SAM typically requires high quality prompts (i.e., points, boxes, and masks) to

achieve effective segmentation performance in medical image segmentation tasks.

These prompts are typically generated from the ground truth annotations [55, 257,

261]. However, creating accurate and reliable prompts requires domain-specific

knowledge. It is particularly challenging in the context of medical imaging, as do-

main expertise is often not readily available and difficult to obtain. To tackle these

challenges, several methods have employed automatic prompt generation techniques

to create prompts that can be provided to SAM for segmentation.

The YOLOv8 model [262] is employed to identify the regions of interest in X-rays,

CT scans, and ultrasound images [255]. The bounding box of the identified region

of interest i.e. lungs, brain, and the fetal head is passed as a prompt for SAM,

enabling fully automated segmentation. Grounding DINO [248] is used to detect
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the bounding box corresponding to the polyp in colon [256]. For this purpose, first,

the textual prompt describing “polyp” has to be provided to Grounding DINO.

MedLSAM [263] utilizes a few-shot localization process to identify 3D bounding

boxes around anatomical structures of interest in 3D medical images, based on the

premise that images with similar pixel distributions correspond to the same region

across different individuals. From these 3D boxes, 2D boxes are projected onto each

slice, directing SAM to automatically segment the target anatomy.

However, object detection foundation models like YOLOv8 [262] and Ground-

ingDino [248] are highly sensitive to the textual prompts provided to generate the

bounding prompts for ROI. This prompt engineering requires specialized domain

knowledge particularly in the medical domain. Engineering effective prompts to

recognize the object needs a lot of evaluation and testing. It is even more chal-

lenging in the medical imaging task which often leads to the failure to recognize

the correct ROI. Moreover, these models are optimized for natural imaging tasks

and cannot be used directly; they require training to optimize their performance for

medical imaging like polyp segmentation [262].

In contrast, our proposed method facilitates zero-shot test-time adaptation for

organ segmentation in medical imaging without requiring specialized domain knowl-

edge for prompt engineering. Instead, it effectively adapts SAM to medical imaging

segmentation by harnessing the capabilities of both SAM’s segment everything mode

and promptable mode (discussed in Section 5.3.1), using CLIP as the bridge between

the two (Section 5.3.2).

5.2.3 Contrastive Learning Image Pre-training

CLIP [15] is a pre-trained large visual language model known for its strong gen-

eralizability and impressive zero-shot domain adaption capabilities. In CLIP, the

classifier is constructed by plugging the class name into a predetermined prompt

template like ‘a photo of {class name}’ [15].

Prompt engineering is an effective technique for generating prompts that adapt
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CLIP to various domains by typically incorporating relevant semantic details re-

lated to the specific target task [120]. CLIPSeg [264] extends the CLIP model with

a transformer-based decoder that facilitates dense prediction. MedCLIP [133] fine-

tunes the CLIP model by separating medical images and texts to expand the avail-

able training data exponentially at a low cost. CXR-CLIP [265] improves its per-

formance in chest X-ray classification tasks by fine-tuning the CLIP image and text

encoders using samples from image-text and image-label datasets. These methodolo-

gies require supervised fine-tuning of medical image-text pairs. Other studies such

as [266, 267, 268] have demonstrated that incorporating text embeddings learned

from CLIP into medical segmentation models achieves state-of-the-art results.

However, these medical image-text pairs are collected under guidelines and with

the support of domain experts. Although Aa few publicly available datasets con-

tain medical image-text pairs such as RadImageNet [46], MIMIC-CXR [47], CheX-

pert [48], and ARCH [49]. However, these datasets are primarily skewed toward

radiology.

To generate textual prompts for medical organs for CLIP’s textual encoder, our

proposed framework employs prompt ensembles of visually descriptive sentences

(VDTs) generated using GPT-3.5 for each class [120] (Appendix A.1.1).

5.3 Methodology

This section first presents the preliminaries, including the Segment Anything Model

and Contrastive Learning Image Pre-Training in Section 5.3.1. Following this, our

proposed SaLIP framework is discussed in detail in Section 5.3.2.

5.3.1 Preliminaries

Segment Anything Model (SAM)

SAM is a prompt-driven segmentation foundation model. It consists of three main

components: an image encoder, a prompt encoder, and a lightweight mask decoder
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as illustrated in Figure 5.4.

Figure 5.4: Architecture of Segment Anything Model [13].

1. Image Encoder:

At the highest level, SAM employs a pre-trained masked auto-encoder (MAE)

is used as its image encoder [14]. MAE has demonstrated outstanding recog-

nition capabilities in natural imaging. During the training of MAE, a large

random subset of image patches (approximately 75%) is masked out. The

encoder processes a small subset of visible patches. The full set of encoded

patches and mask tokens is processed by a lightweight decoder that recon-

structs the original image in pixels as shown in Figure 5.5.

Figure 5.5: Architecture of Masked Auto-encoder [14].

After pre-training, the decoder is discarded and the encoder processes uncor-

rupted images (full sets of patches) for recognition tasks.

SAM uses the pre-trained encoder from MAE to generate image embeddings as

shown in Figure 5.4. These embeddings are generated only once per image and
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produced before prompting the SAM model allowing for seamless integration

into the segmentation process.

2. Prompt Encoder:

The prompt encoder can encode various types of prompts, such as background

points, masks, bounding boxes, and textual inputs, into an embedding vector

in real-time [13]. SAM supports two sets of prompts: sparse (points, boxes,

text) and dense (masks). Points and boxes are encoded using positional en-

coding [269] and summed with learned image embeddings from pre-trained

MAE auto-encoder (discussed in the above section), for each prompt type.

Dense prompts (i.e., masks) are embedded using convolutions and summed

element-wise with the image embedding as shown in Figure 5.4.

3. Mask Decoder:

A lightweight mask decoder predicts segmentation masks by utilizing the em-

beddings generated from both the image and prompt encoders, as illustrated

in Figure 5.4. SAM employs a modified decoder block followed by a dynamic

mask prediction head, drawing inspiration from existing Transformer decoder

blocks [193, 270, 271]. The modified decoder block uses prompt self-attention

and cross-attention in two directions (prompt-to-image embedding and vice-

versa) [13].

Having described all the components of SAM, the next step is to explain how

SAM works: Let an input image be I ∈ RH×W×3 and input visual prompt be

P ∈ RN , where H×W are the spatial dimensions and N is the number of prompts.

The SAM’s image encoder encodes an image into dense features: FSAM . The prompt

encoder encodes prompts P into sparse prompts Qsp. P can either be sparse, such as

points, boxes, or text, or dense, like masks as shown in Figure 5.3. The points and

boxes are represented by positional encoding [269] summed with learned embeddings

for each prompt type. Currently, SAM does not directly process text prompts and

the text-to-mask task is still in its exploratory stages and is not entirely robust [13].
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The mask decoder efficiently maps the encoded image features FSAM, Qsp, and

an output token to a mask. It uses prompt self-attention and cross-attention in two

directions (prompt-to-image embedding and vice-versa) to update all embeddings.

After running two blocks, a multilayer perceptron (MLP) maps the output token to

a dynamic linear classifier, which then computes the mask foreground probability

at each image location.

Modes of SAM:

SAM can operate in two distinct modes: segment everything mode and the prompt-

able segmentation mode as shown in Figure 5.1.

1. Segment Everything Mode (SAMEM): can segment everything in the im-

age without using any externally provided prompts. Instead, a grid of key

points is generated on the image, and this set of key points is used as prompts

to segment everything in the image as shown in Figure 5.1 (“segment every-

thing”). Specifically, SAMEM is prompted by a default 32×32 regular grid of

points, predicting a set of masks for each point that may correspond to valid

objects [13]. If a point lies on a part or subpart, SAM returns the masks for

the subpart, part, and whole object.

2. Promptable segmentation mode (SAMPSM): segments a specific region

of interest based on the prompts given to SAM. The prompts can be bounding

boxes, points, or free-form text as shown in Figure 5.1 (box, points).

Our proposed framework utilizes both modes of SAM i.e. SAMEM and SAMPSM

with CLIP as a bridge between them as reported in detail in Section 5.3.2.

Contrastive Learning Image Pre-training (CLIP)

Contrastive pre-trained large vision language models like CLIP have revolution-

ized visual representation learning by providing good performance on downstream

datasets. Models such as CLIP are pre-trained on web-scale datasets comprising over

400 million image-text pairs, resulting in a highly generalizable model with effec-

tive zero-shot domain adaptation capabilities [15]. Using contrastive pre-training on
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large image-text datasets, CLIP performs image classification. While vanilla super-

vised training is performed on a closed set of concepts or classes, CLIP pre-training

uses natural language. This results in a joint text-vision embedding space that is

not constrained to a fixed set of classes. CLIP aligns image and text modalities

within a shared embedding space as shown in Figure 5.6(1).

a) Contrastive Pre-training b) Create dataset classifier from label text

c)    Use for zero-shot prediction

Figure 5.6: Architecture of the CLIP model [15].

After pre-training, CLIP directly performs image classification on the target

dataset without any fine-tuning. For an image I ∈ RH×W×C , where H × W × C

denotes spatial dimension, the vision encoder (f) maps I into a joint embedding

space to get the image features E ∈ D with dimension D.

During inference, a prompt template such as ‘A photo of classname’ is used to

generate sentences for K different classes and passed through the text-encoder to

yield classifier weight matrix W ∈ RD×K as shown in Figure 5.6(2). Prediction

probabilities are then calculated by multiplying image feature f andW and applying

a softmax function as shown in Figure 5.6(3).

To construct textual prompts and process these prompts through CLIP’s tex-

tual encoder, our proposed framework uses ensembles of visually descriptive (VDT)

sentences to describe the organ to be segmented following the approach proposed

in [120]. These VDTs are generated using GPT-3.5 [52]. A detailed description of

this prompt generation process is provided in Appendix A.1.
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5.3.2 Proposed Approach: SaLIP

This section presents a comprehensive overview of our proposed framework– SaLIP,

which is a test time-adaptation approach for adapting foundation models for medical

organ segmentation without any training/fine-tuning and domain expertise. Specif-

ically, SaLIP achieves this without any form of supervision, such as ground truth or

domain expertise/knowledge for prompt engineering.

CLIP top-k

Figure 5.7: Architecture of our proposed SaLIP framework.

As illustrated in Figure 5.7, initially, SaLIP utilizes SAM’s everything mode

(SAMEM) to generate region proposals in the image. These region proposals are

part-based segmentation masks for different parts of the input image. SAMEM does

not require external prompts; instead, it generates a grid of keypoints G ∈ Rg2×2 on

the input image, where g is the point number along one side of the image [13]. These

points are used as prompts and if a point lies on a part or subpart, SAMEM will

return the subpart, part, and whole object as shown in Figure 5.8. Mask generation

by SAMEM using the grid of key points is performed as follows:

M = SAMEM(I,G) (5.1)

where I ∈ R3×H×W is the input image, G is the grid of key points, and M ∈

RN×H×W is the set of all the part-based generated masks, each having the same

spatial dimension as that of I, N refers to the number of SAMEM generated part

based masks and H ×W is the spatial dimension.
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Thus, a pool of segmentation masks is generated without any external prompts,

supervision, or domain knowledge as shown in Figure 5.8. Instead, the exceptional

SAM’s sophisticated ambiguity-aware design is used to annotate the input images

autonomously.

Pool of generated masks (M)

Input

Masks overlaid on 
input

Figure 5.8: Pool of region proposal masks predicted by SAMEM using
grid-wise point prompts (red).

The mask generation process by SAMEM is extremely sensitive and is highly in-

fluenced by the choice of hyper-parameters used in the SAM’s generator module [51].

Our experiments also revealed that this choice significantly impacts the generation

of part-based masks, as discussed in Sections 5.5.2 and 5.5.4.

To address this issue, SaLIP implements a random hyperparameter search to

select optimal hyperparameters for the SAMEM ’s mask generator module. Specif-

ically, SaLIP uses five randomly selected images and conducts a random search to

identify the best hyper-parameters for the SAMEM generator module and evalu-

ates the part-based segmentation achieved using each set of hyper-parameters. The

combination of hyperparameters which yields the highest average dice score for the

randomly chosen five images is eventually used as the final configuration of SAMEM .

This optimized configuration is then used to generate part-based masks for the entire

dataset. The potential benefits of this hyperparameter optimization are experimen-

tally demonstrated in detail in Section 5.5.2.

The next step in the SaLIP pipeline involves using CLIP to identify the mask

corresponding to the region of interest (ROI) from the set of SAMEM generated

masks (M) (Figure 5.7). As shown in Figure 5.8, each mask has the same spatial
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dimension as that of the input image. To guide CLIP in selecting the correct ROI,

the original input image is cropped according to each mask from SAMEM gener-

ated pool of masks. This results in several cropped regions of the image as shown

in Figure 5.9. CLIP then analyzes these cropped regions to identify which crop

corresponds to the desired ROI.

Set of crops (C)Pool of generated masks (M)                

Figure 5.9: Cropped regions of the original input image based on SAMEM

masks.

However, as SAMEM employs a grid-wise set of key points to generate masks

for different parts of an image, the resulting pool of generated masks may include

masks corresponding to the background or larger regions. In such instances, when

the input image is cropped, the resulting crop will have the same spatial dimension

as the input image. One such case is depicted in Figure 5.9, where the third crop in

the first row in the set of crops (C), has the same spatial dimension as that of the

original input (I). Such instances can result in miss-classification by CLIP, as it may

erroneously recognize the whole I as ROI as illustrated in Figure 5.10. Therefore, it

is crucial to manage these masks effectively to prevent miss-classification and ensure

that CLIP selects the correct mask corresponding to the ROI.

To address this issue, SaLIP does not directly feed the entire set of SAMEM

generated masks (M) to CLIP. Instead, it first filters out the masks {m ∈ M} that

likely correspond to the background/larger regions. SaLIP achieves this by applying

area-based filtering to each mask in M as illustrated in Figure 5.7.

To determine the optimal threshold for area-based filtering, SaLIP performs a
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random hyper-parameter search within the space defined by the areas of SAMEM

generated masks. This search is performed concurrently with the hyper-parameter

optimization for SAMEM , using the same approach as discussed above. The area

filtering on SAMEM generated masks is performed as follows:

Mfiltered = {m ∈ M : area(m) < Athreshold} (5.2)

where M is the set SAMEM generated masks, Athreshold is the area value deter-

mined through hyper-parameter search for filtering M , m represents a mask from

M , Mfiltered is the set of masks after removing the m potentially corresponding to

background/ larger regions encompassing ROI. The benefits of using area-based fil-

tering on the segmentation results are experimentally demonstrated in Section 5.5.4.

After removing the mask potentially corresponding to the background, SaLIP uti-

lizes SAMEM generated masks to crop input image (I), thereby producing a series

of crops as :

C = {crop(I,m) | m ∈ Mfiltered} (5.3)

where I is the input image, crop(I,m) represents the function used to crop I

according to m ∈ Mfiltered, and C refers to the set of generated crops.

SaLIP then feeds the set of crops (C) to CLIP to identify the specific crop

corresponding to the ROI. As shown in Figure 5.6, CLIP is a vision-language model,

Image crops (C)

top-k

Miss-classified 
 left lung 

Correct right 
lung mask

Image 
Encoder Text

Encoder

Figure 5.10: Retrieval of the relevant mask using CLIP
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to retrieve the relevant image from a set of input images, it needs the textual prompts

defining the target class.

To construct textual prompts describing the region of interest (organs in our

case), SaLIP uses prompt ensembling. It is a technique that constructs several

sentences to define each class and subsequently averages the classification vectors.

SaLIP uses prompt ensembles for each class generated following the approach pro-

posed in [120]. Specifically, in our cases, SaLIP utilizes prompt ensembles containing

visually descriptive text (VDT) information for the target organ to be segmented

(e.g., lungs, brain, fetal head, etc.). These VDT sentences are generated using GPT-

3.5 and the process of this prompt engineering is discussed in detail in Appendix A.1.

These VDT prompts are then processed through CLIP’s textual encoder to ob-

tain the text embeddings and averaged to obtain a single text prototype WT for

the organ under consideration. Now all the image crops in C are passed through

CLIP’s vision encoder to obtain vision embeddings (Ec) as shown in Figure 5.7.

Subsequently, the mask corresponding to ROI is retrieved as:

CROI = topk

(
argmax

c∈C
S(E c,W T)

)
(5.4)

where S(Ec,WT ) represents a similarity function that computes cosine similarity

between any embeddings Ec of any crop {c ∈ C} and the text embeddings WT . k

denotes the number of ROIs and it varies depending on the number of ROIs in the

image. CROI is the crop corresponding to ROI.

Finally, SaLIP computes the bounding box prompts using the minimum and

maximum X, Y co-ordinates of the retrieved CROI and uses it to prompt SAMPSM

as:

Sorg = SAMPSM(I, P ) (5.5)

where P ∈ RN×4 is the bounding box prompt computed from co-ordinates of CROI ,

N is the number of box prompts which varies according to ROI and Sorg is the final

segmentation map of ROI generated by SAMPSM as shown in Figure 5.7.
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5.4 Experimental Framework

5.4.1 Datasets and Metrics

The proposed SaLIP framework is evaluated across three diverse medical imaging

modalities, including two datasets focused on single-organ segmentation and one

more challenging dataset involving the segmentation of two distinct regions of in-

terest. Calgary-Campinas (CC359) [11] is a multi-vendor (GE, Philips, Siemens),

multi-field strength (1.5, 3) magnetic resonance (MR) T1-weighted volumetric brain

imaging dataset. It has six different domains and contains 359 3D brain MR image

volumes. The CC359 dataset is primarily used for the task of brain segmentation

in head MRI scans. The HC18 [17] consists of 2D fetal head ultrasound images ob-

tained throughout all trimesters of pregnancy. The region of interest in this dataset

is the fetal head. X-ray Masks and Labels dataset [16] consists of 2D chest X-ray

images. The target organs to be segmented are the left and right lungs. The evalua-

tion metrics used are the dice similarity coefficient (DSC) and the mean intersection

over union (mIoU).

5.4.2 Implementation Details

There are three different variants of the Segment Anything Model (SAM), primarily

differentiated by encoder size [13]. The proposed SaLIP pipeline uses the huge

variant of SAM (ViT-H). Similarly, CLIP has several variants, and SaLIP employs

its large variant (ViT-L/14) from OpenAI’s CLIP framework. The choice of specific

model variants is based on an ablation conducted to assess the impact of different

variants on performance (discussed in Section 5.5.6).

For CLIP, visually descriptive text prompts describing the organ to be segmented

are generated using GPT-3.5 [52]. The detailed process for generating these prompts

with GPT-3.5 is outlined in the appendix of this thesis, in Section A.1.

The U-Net architecture, used for comparison with our proposed test-time adap-

tation framework, is trained for 100 epochs using cross-entropy loss, with a learning
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rate of 1× 10−5 and a batch size of 32.

The SaLIP framework is implemented in PyTorch [272] using the SAM codebase

1. All experiments were conducted on a desktop running Ubuntu 20.04.6 LTS with

CUDA 11.6 and an NVIDIA GeForce RTX 3090 GPU. To ensure reproducibility, a

random seed of 1234 was used.

5.5 Results and Analysis

5.5.1 Comparative Analysis of SaLIP and Other Methods

Our proposed SaLIP framework is compared against the following methods:

• U-Net: is a prominent architecture widely adopted for medical image segmen-

tation [273]. To compare it with our proposed framework, U-Net undergoes

training separately on each of the three datasets (details are reported in Sec-

tion 5.4.1). Task-specific fine-tuning is required to optimize the performance

of U-Net for the specific segmentation task at hand.

• GT-SAM: Prompts relevant to the target organ are derived directly from

ground truth annotations and provided to the Segment Anything Model. It

represents an ideal scenario where annotated data is available and can be used

for prompt engineering. This configuration setup serves as a performance

upper bound.

• Un-prompted SAM: As our proposed SaLIP framework is adapted at test

time without using any labeled data. Thus, to ensure a fair evaluation of the

SaLIP framework and accurately reflect real-world medical imaging scenarios

where annotated data and domain expertise are often unavailable, an un-

prompted version of SAM is used. Unlike GT-SAM, this un-prompted version

does not rely on prompts derived from ground truth data. Instead, it uses

SAM’s default pre-trained prompt embeddings. This setup enables evaluation

1https://github.com/facebookresearch/segment-anything, Accessed: [15.06.2024]
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of SAM’s performance in challenging applications, like medical imaging, where

obtaining precise prompts is difficult or impractical.

• Supervised Adaptation: The entire SAM model is fine-tuned using anno-

tated data and ideal prompts derived from ground truth.

• Parameter-Efficient Adaptation: Specific modules of the SAM model are

adapted using low-rank adaptation [10], with prompts based on ground truth.

The primary difference between prompted SAM, unprompted SAM, and our

proposed SaLIP lies in how the prompts for each of them are generated, as mentioned

above.

The quantitative comparative analysis of our proposed approach with the above-

mentioned methods is reported in Table 5.1. Although the U-Net model outper-

formed other methods, it is important to highlight that it followed a standard train-

ing procedure using annotated data and underwent task-specific fine-tuning for each

of the three datasets (Section 5.4.1). In contrast, our proposed SaLIP framework fa-

cilitates unsupervised test-time adaptation. It is adapted to diverse medical imaging

segmentation tasks without additional training or task-specific fine-tuning. Instead,

it is adapted entirely at test time without any supervision and domain knowledge,

as detailed in Section 5.3.2. Consequently, SaLIP effectively circumvents the need

for extensive annotated data. Although the SaLIP framework leverages foundation

models, it avoids the computational overhead of training or fine-tuning. As a re-

sult, SaLIP significantly streamlines the segmentation workflow, enhancing robust-

ness and efficiency, particularly in medical imaging applications where annotated

datasets are scarce and costly to obtain. Its adaptability at test time across diverse

medical domains eliminates the need for task-specific training/fine-tuning, making

it a more practical solution.

The un-prompted SAM notably has a poor generalization in contrast to the other

evaluated methods as reported in Table 5.1. These results provided valuable insights

into SAM’s strong reliance on prompts for optimal segmentation and highlighted its
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Table 5.1: Comparison of SaLIP with other methods.

ROI Dataset U-Net GT-SAM ∗ Un-prompted SAM SaLIP (Ours)

DSC mIoU DSC mIoU DSC mIoU DSC mIoU

GE 1.5 0.98 0.93 0.95 0.91 0.33 0.29 0.92 0.87
Philips 1.5 0.97 0.95 0.96 0.93 0.41 0.31 0.94 0.85

Brain Philips 3 0.95 0.92 0.93 0.89 0.40 0.39 0.89 0.80
Siemens 1.5 0.97 0.95 0.95 0.91 0.39 0.26 0.90 0.81
Siemens 3 0.98 0.92 0.96 0.90 0.41 0.32 0.93 0.85

Lungs X-ray 0.98 0.95 0.94 0.90 0.47 0.31 0.83 0.76

Fetal head Ultrasound 0.95 0.91 0.95 0.91 0.55 0.40 0.81 0.72

∗ Note: GT-SAM uses the perfect prompts extracted from ground truth.

poor generalization to downstream medical tasks, particularly in scenarios where

prompts are unavailable. In such cases, when SAM’s default prompt embeddings

are used, its segmentation performance is poor due to the domain shift between the

features learned during pre-training and those needed for medical imaging tasks.

These limitations pose challenges in the application of the Segment Anything

Model in real-world scenarios, particularly in the medical domain, where annotated

data is often unavailable and there is a lack of domain expertise for prompt engineer-

ing. In contrast, our SaLIP framework consistently outperformed the un-prompted

SAM for all the evaluated segmentation tasks as reported in Table 5.1. Notably,

SaLIP facilitates robust adaptation across diverse medical imaging tasks without

specialized domain expertise for prompt engineering and annotated ground truth

for crafting perfect prompts. Instead, our proposed method autonomously gener-

ates prompts as discussed in detail in Section 5.3.2.

As reported in Table 5.1, for brain segmentation in the CC359 dataset [11],

our proposed approach achieved an average of 0.94 dice similarity coefficient(DSC),

significantly outperforming the un-prompted SAM’s average DSC of 0.31. When

evaluated for lung segmentation, SaLIP significantly enhances the generalization,

increasing the initial DSC from 0.31 achieved by unprompted SAM to 0.83. SaLIP

achieves an average DSC of 0.81 for segmenting the fetal head on HC18 [17], com-

pared to the unprompted SAM’s average DSC of 0.55. Thus, SaLIP consistently

generalizes well across diverse medical imaging segmentation tasks, achieving ex-
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ceptional zero-shot performance. It demonstrates significant improvements over un-

prompted SAM, with improvements of 63.46% for the brain, 50.11% for the lungs,

and 30.82% for fetal head segmentation compared to unprompted SAM as reported

in Table 5.1.

To gain deeper insights into the significantly lower performance of un-prompted

SAM, a thorough qualitative analysis is conducted. This analysis revealed that

un-prompted SAM tends to segment larger regions in the image, which often does

not correspond to the regions of interest. This behavior was consistently observed

across all three datasets examined. As illustrated in Figure 5.11, un-prompted SAM

segments the entire upper body region in the X-ray image, while the primary region

of interest (ROI) in this case is the lungs. Similarly, for the HC18 dataset [17], the

ROI is the fetal head in ultrasound images; however, un-prompted SAM incorrectly

segments the entire ultrasound image instead. In the case of the CC359 dataset [11],

which includes axial MRI scans, un-prompted SAM segments the entire head region

rather than ROI i.e. brain in this case.

Input Prediction Ground Truth

Segmentation results: Unprompted SAM

Brain

Fetal Head

Lungs

ROI

Figure 5.11: Qualitative Analysis of Un-prompted SAM’s Performance.

This qualitative analysis reveals that the consistent failure of un-prompted SAM
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across various medical imaging segmentation tasks is due to SAM’s strong reliance

on the prompts provided. Thus, the lack of annotated data or domain expertise for

prompt engineering hampers SAM’s ability to accurately identify specific anatomi-

cal structures and effectively segment ROIs. Hence, SAM’s applicability to medical

imaging scenarios is limited, where obtaining domain expertise and annotated data

for prompt engineering is challenging. In contrast, our proposed SaLIP approach

achieves accurate segmentation while alleviating these challenges, as it does not re-

quire annotated data or domain expertise to segment the specific anatomical organs

as demonstrated in Figure 5.12 and discussed in detail in Section 5.3.2.

GT-SAM achieves high dice scores of 0.95, 0.94, and 0.91 for brain, lung, and fetal

head segmentation respectively, as reported in Table 5.1. This strong performance

is due to its use of “perfect prompts” which are directly derived from ground truth

data, giving it a significant advantage.

While GT-SAM leverages prompts derived from annotated data, our proposed

approach does not require annotated truth for prompt engineering and is indepen-

dent of domain expertise for prompt engineering and annotated data. Our proposed

method achieves results comparable to GT-SAM and operates independently of ex-

ternal prompts, as shown in Figure 5.12 and Table 5.1. The effectiveness of SaLIP

compared to other methods is demonstrated qualitatively in Figure 5.12.

Thus both qualitative and quantitative results highlight the generalization of our

proposed SaLIP framework to real-world scenarios where annotated data or expert

knowledge is limited or unavailable. Thus our proposed SaLIP approach is a general

segmentation framework, which enables zero-shot segmentation of the target ROIs

without traditional supervised training, annotated data, task-specific fine-tuning, or

specialized domain expertise for prompt engineering.

In addition, the proposed test-time adaptation framework is compared with stan-

dard adaptation approaches. Supervised adaptation refers to the scenario where

the entire SAM model is adapted. However, when attempting to adapt the entire

model, our GPU ran out of memory. As a result, in this supervised adaptation
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Figure 5.12: Qualitative Analysis for Performance Comparison: GT-SAM
(Upper Bound), Un-prompted SAM, and SaLIP (Ours).

mode, we were only able to adapt the SAM decoder. We also evaluated parameter-

efficient adaptation methods, where we used LoRA to adapt both the encoder and

the decoder. For both of these adaptation settings, the bounding box prompts are

extracted using the ground truth. The results of these supervised adaptation ap-

proaches with our SaLIP framework are presented in Table 5.2. This evaluation is

carried out on CC359 dateset 5.4.1.

Our method is computationally efficient, taking only 30 minutes for inference on

the CC359 dataset (Section 5.4.1), compared to the 24, 15, and 8 hours required by

other approaches. Additionally, the slightly better performance of these methods

can be attributed to their use of perfect prompts extracted from ground truth.

In contrast, our approach is entirely independent of additional training, labeled

data, or manually created prompts. Instead, prompts are automatically generated,

eliminating the need for domain-specific knowledge. Furthermore, the performance

of SaLIP is comparable to that of these approaches and can potentially be enhanced

by implementing the alternatives suggested in Section 7.3.

Additionally, to provide clearer insights into the outcomes of the different stages

of the proposed framework, step-wise qualitative results of our SaLIP framework

are presented in Figure 5.13 and 5.14. The first column displays the input image,
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Table 5.2: Comparison of SaLIP with supervised adaptation approaches.

Dataset Supervised Adaptation PEFT- LoRA SaLIP (Ours)

Decoder Encoder Decoder Dice score

GE 1.5 0.93 0.94 0.91 0.92
Philips 1.5 0.95 0.96 0.93 0.94
Philips 3 0.92 0.93 0.89 0.89
Siemens 1.5 0.95 0.93 0.91 0.90
Siemens 3 0.92 0.94 0.90 0.93

Compute. time 24h 15h 8h 30 (mins)

while the second column presents the set of region proposals generated using the

Segment Anything Model’s “everything mode” (SAMEM) (Section 5.3.1– Modes

of SAM). The third column (also fourth in Figure 5.13) shows the retrieved crop

corresponding to a region of interest (ROI) that CLIP identified from the generated

masks. The next column shows the bounding box (BBOX) coordinates on the input

image calculated using the retrieved ROI crop (Section 5.3.2). Following that, the

next column shows the organ segmented by SAM’s promptable segmentation mode

(SAMPSM) by promoting it with the BBOX of the retrieved crop. Finally, the last

column presents the ground truth segmentation. It is evident that for both datasets,

SaLIP achieves segmentation results comparable to the ground truth.

DSC: 0.90

DSC: 0.94

DSC: 0.95

Image Region 
Proposals

ROI (1) ROI (2) BBOX
 co-ordinates

Prediction Ground Truth

DSC: 0.96

Figure 5.13: SaLIP Qualitative Results: X-ray labels and masks
dataset [16].
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DSC: 0.92

DSC: 0.97

DSC: 0.97

DSC: 0.91

Figure 5.14: SaLIP Qualitative Results: HC18 dataset [17].

5.5.2 Hyper-parameter Optimization

The process of mask generation for potential regions in an image using Segment

Anything Model’s “everything mode” (SAMEM) is highly sensitive. SAMEM ’s hy-

perparameters are vital in determining how effectively it can segment various regions

and features within an image.

For example, one of the hyperparameters in the SAMEM is the number of crop

layers (int : crop n layers) [13]. It sets the number of layers on the image to run,

where each layer has 2 ∗ ∗ilayer number of image crops. If crop n layers > 0, mask

prediction will be run again on crops of the image. The impact of changing values

for crop n layers on the respective mask predictions is illustrated in Figure 5.15.

The last column in Figure 5.15 illustrates how different sub-crops are generated for

an image. The various colored lines represent the different crop regions created by

SAM, with a predicted region shown within each crop.

These results demonstrate that even a small change to a hyperparameter “crop

layer” from 0 to 1 can significantly impact the SAMEM ’s region proposals, leading

to substantial changes in the pool of masks predicted by SAMEM for the same image

as evident in Figure 5.15.

138



Domain Adaptation for Medical Imaging under Limited Data Constraints

Input Ground Truth Crop layers: 0 Sub crops Crop layers: 1

Figure 5.15: Effect of hyperparameters on region proposals generated by
SAMEM in an image.

Additionally, in the majority of real-world cases, using SAM’s default hyperpa-

rameters configuration fails to segment the region of interest correctly or segments

irrelevant areas, which complicates the overall segmentation and stability of the re-

sults. Figure 5.16 demonstrates that the choice of hyperparameters for SAMEM

can lead to failures in generating masks for the region of interest. The first column

displays the input image, while the second column shows the ground truth. The

third column features results from SAM’s online demo; however, the specific hyper-

parameters used in this version are not publicly available [274]. The fourth column

demonstrates the default hyperparameters from SAM’s official repository [275].

It is evident in Figure 5.16 (fourth column), with SAM’s default settings, that

the region of interest (e.g., the brain in this example) is not predicted. Instead, the

entire head region from the axial scan is segmented (shown in green). Thus, proper

optimization of these hyperparameters is crucial; without careful adjustment, it can

lead to cases where no masks correspond to the regions of interest, as seen in the

fourth column. The last column demonstrates the effectiveness of our hyperparame-

ter optimization, where the region of interest is correctly segmented and highlighted

in gray (discussed in Section 5.3.2).

5.5.3 ROI Mask Retrieval

The proposed SaLIP pipeline leverages CLIP to identify the mask corresponding

to the target organ from the pool of masks generated by SAM’s everything mode

(Section 5.3.2). The decision to use CLIP was informed by our initial experiments,
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Figure 5.16: Effect of hyperparameter optimization on mask generation
by SAMEM .

during which alternative approaches were evaluated (as discussed in the following

section) but yielded unsatisfactory results.

Before leveraging CLIP in the proposed method, we explored manual area-based

filtering to retrieve the ROI from the SAM-generated region proposals. However,

applying a specific threshold, in this case, retrieved multiple masks from the pool of

SAM-generated masks, as many predicted masks lie within a similar area range, as

shown in Figure 5.17. The first image is the input image, while the second shows

the ground truth. The third image illustrates the masks generated by the Segment

Anything Model’s ‘everything mode’ (SAMEM). In the fourth column, the set of

masks retrieved by manual area-based filtering as ROI from the pool of SAMEM ’s

generated masks are depicted. The three predicted masks for the particular example

shown in Figure 5.17 (“area based filtering”) are: a brain mask in purple and a

background mask in brown, which eventually decreases the segmentation accuracy

as in this case only the brain mask corresponds to the region of interest while

threshold based method retrieved two irrelevant regions as well.

These results highlight the inherent variability in organ morphology, which lacks

fixed dimensions and can further fluctuate, especially under pathological conditions.

Consequently, selecting a single area-based threshold to reliably isolate the region

of interest becomes challenging. While one threshold may work effectively for larger

anatomical structures (e.g., lungs), it may fail to capture smaller, more subtle patho-

logical features (e.g., tumors).

In contrast, our proposed framework employs CLIP for retrieving ROI masks
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Figure 5.17: Comparison of various techniques for ROI mask retrieval.

from the pool SAMEM predicted masks. The last column in Figure 5.17, illustrates

that our proposed approach effectively leverages CLIP to accurately retrieve the

region of interest, which is the brain, highlighted in red.

In addition to the traditional area-based filtering approach, we also evaluated

large language models (LLMs) for visual inference in medical imaging. For this

purpose, we used ViperGPT– a framework that leverages code generation models

to compose vision and language models into subroutines to produce a result for any

query [276]. ViperGPT achieves this by using large language models to generate

modular programs to perform a specific task. This approach has proven highly

effective in natural imaging, for visual question-answering tasks, such as: 1) find the

children, and the muffins in the image, 2) count how many there are of each, and 3)

reason that ‘fair’ implies an even split, hence divide.

Motivated by its benefits in above mentioned scenarios, we employed ViperGPT

to create a sub-routine to automatically generate bounding box prompts for the brain

in MRI scans. As illustrated in Figure 5.18, this process begins with a query that is

given to ViperGPT i.e. “generate a bounding box prompt for identifying the brain in

a head MRI scan”. ViperGPT then outputs the modular code for this task, referred

to as “generated code” in Figure 5.18. This sub-routine is subsequently applied to

the input image in a step labeled as “execution”. Through this process, ViperGPT

facilitated autonomous prompt generation for our specific use case i.e., bounding

box prompt for brain region without requiring annotated data or specialized domain

knowledge.

However, ViperGPT has a significant limitation when applied to medical imag-
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Figure 5.18: Limitation of foundation models to perform domain-specific
tasks in medical domain [16].

ing tasks due to the complex nature of medical data. For example, as shown in

Figure 5.18, the generated sub-routine created the correct box prompt for the brain

region (highlighted in red) for the slice of an MRI scan depicted under the label

of “execution”. However, when applied to other slices of the same MRI scan, the

generated subroutine often failed to accurately detect the brain contour, resulting

in incorrect bounding box prompts (shown in red) for these cases, as illustrated in

Figure 5.18 (Limitation).

Due to these inconsistencies, ViperGPT lacks scalability for medical imaging

tasks. Given that the brain is relatively large and structurally distinct compared to

other anatomical regions, we initially expected ViperGPT to perform well. However,

its poor generalization, even in these seemingly straightforward cases (as shown in

Figure 5.18) indicates that LLMs can encounter even greater challenges when applied

to more complex anatomical structures with variable morphology.

5.5.4 Area-based Mask Filtering

CLIP may erroneously retrieve the crop corresponding to the background or an

extended area that encompasses the region of interest (ROI), rather than precisely

identifying the ROI itself, as illustrated in Figure 5.19. As discussed in Section 5.3.2,

our pipeline- SaLIP, reduces the likelihood of this miss-classification in such scenarios
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by applying area-based filtering before passing them to CLIP (Figure 5.7).

To address this issue, area-based filtering is applied to exclude masks that may

be erroneously classified as regions of interest (ROI). The hyperparameter optimiza-

tion process for our filtering approach is detailed in Section 5.3.2. A quantitative

comparison of results between our proposed area-based filtering and using all the

SAMEM ’s generated region masks directly is presented in Table 5.3. Our approach

shows a 3% improvement in brain segmentation accuracy [11] and approximately a

10% improvement in lung and fetal head segmentation [16].

Table 5.3: Comparative Analysis: impact of area-filtering on ROI Mask
Retrieval.

Dataset No Filtering Filtering (Ours)

CC359 [11] 0.91 0.94
X-ray [16] 0.75 0.83
HC18 [17] 0.71 0.81

Furthermore, the strength of our area-based filtering is demonstrated qualita-

tively in Figure 5.19. The Figure 5.19(a) shows the results without area filtering,

while Figure 5.19(b) illustrates that our proposed approach removes the masks en-

compassing ROI, thereby reducing the likelihood of miss-classification by CLIP in

the proposed SaLIP pipeline.

5.5.5 Limitations and Potential Solutions

Although our proposed SaLIP framework demonstrates effective performance, an

in-depth analysis highlighted two key limitations: one at the SAM level and the

other at the CLIP level.

Region Proposals Generated by SAM

It refers to the instances where SAM’s everything mode (SAMEM) (Section 5.3), fails

to generate a mask for the ROI. In both cases shown in Figure 5.20, it is evident

that SAMEM did not generate masks for ROI. The first row shows the instance

where no mask was generated for the fetal head, while the second row shows that
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DSC: 0.44 DSC: 0.90

DSC: 0.42 DSC: 0.93

DSC: 0.90
DSC: 0.46

Input 
Image

Region 
Proposals

BBox 
co-ordinates

Prediction Region 
Proposals

BBox 
co-ordinates Prediction

a) No filtering b)   Area filtering (Ours)

Figure 5.19: Qualitative Results: a) No Filtering : All SAM-generated
region proposals are fed to CLIP, leading to miss-classification of the ROI.
b) Area filtering (ours): applies area filtering to SAM-generated region
proposals to remove the masks encompassing ROI, thereby reducing the
likelihood of miss-classification by CLIP.

although a mask was produced for one of the ROI (the right lung), SAMEM failed

to predict the mask for the other ROI i.e. the left lung. In both cases, when the

original image crops generated using these SAMEM generated masks are passed to

CLIP (discussed in Section 5.3.2), it incorrectly classifies the wrong mask as the

ROI, as shown in the segmentation results in the fourth column of Figure 5.20.

Figure 5.20: SAM failure cases: First row: SAMEM fails to generate a
mask for the fetal head, resulting in miss-classification by CLIP. Second
row: SAMEM generates a mask for the right lung but fails to generate a
mask for the left lung, eventually CLIP retrieves the wrong crop as ROI.

These issues often arise because the SAMEM mask generator module is highly
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sensitive to hyperparameters, which can lead to poor performance. To address this,

our proposed approach incorporates hyperparameter optimization (Section 5.5.2).

This optimization has led to improved performance and the potential benefits are

discussed in Section 5.5.2. However, there are still instances where SAMEM fails to

generate masks for relevant regions of interest (ROIs) as illustrated in Figure 5.20.

Mask Retrieval by CLIP

These instances refer to the situations where SAMEM generates masks correspond-

ing to ROIs, but CLIP fails to retrieve the correct ROI. As shown in Figure 5.21,

the third column displays two cases where SAMEM accurately generated the masks

for the ROIs i.e. fetal head (first image: ROI is highlighted in purple, second im-

age: ROI is highlighted in green). However, as shown in the fourth column, CLIP

erroneously retrieves an incorrect image crop from the pool of crops generated us-

ing SAMEM ’s masks (Section 5.3.2) as the ROI despite the SAMEM had generated

masks for both cases.

Figure 5.21: Qualitative Results: CLIP Failure cases for HC18 [17]:
SAMEM predicts a mask for the fetal head (“region proposal column”).
However, CLIP does not retrieve the correct mask.

For lung segmentation analysis from the X-ray dataset [16], two primary lim-

itations were identified. The first issue arises due to SAMEM generates multiple

masks for a single image region. In such cases, CLIP sometimes retrieves the masks

corresponding to the same lung region for both the left and right lung, as illustrated

in Figure 5.22 (first row). The second issue arises when CLIP correctly identifies the
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crop corresponding to one of the lungs from the pool of image crops, but erroneously

classifies a non-lung region as the ROI for the other lung, as shown in Figure 5.22

(second row).

DSC: 0.56

DSC: 0.63

Input Region 
Proposals

ROI 1 ROI 2 BBOX
 co-ordinates

Prediction Ground Truth

Figure 5.22: CLIP failure cases: First row: SAMEM generates multiple
masks for both ROIs (left and right lung). CLIP while correctly recog-
nizing the right lung, identifies a second mask for the same lung region
and fails to retrieve the crop corresponding to the left lung. Second row:
CLIP did not retrieve the left lung crop.

We explored potential solutions based on the performance benefits reported in

the literature. These solutions are discussed in the following sections.

Potential Solution 1: Separate Prompts for Different ROIs

To retrieve the left and right lungs correctly from the pool of various image region

crops using CLIP, our proposed method uses a single set of visually descriptive

sentences that describe both lungs in a chest X-ray and passes these prompts to

CLIP’s text encoder (Appendix A.1.1). These prompts consist of general, visually

descriptive sentences about different attributes of the lungs. These sentences do not

include information on spatial alignment or the distinguishing features of the left

and right lungs.

To address the limitations mentioned above, we evaluated using a different set of

textual prompts, each specifically describing the left and right lung. By providing

detailed descriptions that highlight the spatial locations and distinct attributes of

each lung, we aimed to improve the differentiation between the two lungs, thereby

reducing the risk of misclassification by CLIP. This misclassification can occur due

to multiple mask generations for a single image, as shown in Figure 5.22 (first
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row). The process of generating the separate prompts for the left and right lung is

described in Section A.1.2.

Table 5.4 provides a quantitative comparison between the results obtained using

a single set of prompts with general visual descriptions of lung attributes (Sec-

tion A.1.1) and those using separate sets of prompts, each describing the distinct

features of the two lungs (Section A.1.2). SaLIP achieves 0.83 DSC for both lung

segmentation using the single set (labeled as “Combined (Ours)”, thereby outper-

forming the separate prompts for both lungs, which achieved 0.67 and 0.28 DSC for

the left and right lung, respectively.

Table 5.4: Quantitative Analysis: CLIP retrieval performance with Sep-
arate Prompts vs Combined Prompts

Right Lung Left Lung Combined (Ours)

DSC 0.67 0.28 0.83

Contrary to expectations, using separate prompts for each ROI to improve

CLIP’s classification performance and aid in retrieving the correct regions did not

yield the anticipated benefits. However, the results reported in Table 5.4 demon-

strated that CLIP has limited performance in precise localization and fine-grained

recognition tasks. It lacks semantic knowledge in distinguishing regions based on

their spatial alignment i.e. “left” and “right” for lungs in this context. Consequently,

employing separate sets of prompts to describe lungs based on their spatial align-

ment and distinct features did not improve CLIP’s ability to distinguish between

them.

One of the future works is the integration of inference mechanisms to detect such

failures and prevent their propagation to the subsequent steps in the pipeline. It

will help mitigate the occurrence of such failures and improve performance further.

Potential Solution 2: Visual Prompting

Recent research indicates that for precise location and recognition tasks, CLIP’s

performance can be enhanced through the utilization of visual prompting [51, 18,
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253, 277]. Visual prompting (VPT) involves the addition of visual markers like

colorful boxes or circles directly onto an image, aiding in highlighting specific targets

in image-language tasks [51]. VPT directs the attention of visual language models

toward desired targets while maintaining the global context. A few of the examples

of VPT are shown in Figure 5.23. The visual prompt in these examples is a red

circle. Multiple visual prompts are drawn on the same image and CLIP is tasked to

choose the correct one relevant to the given caption [18].

Figure 5.23: Visual Prompt Engineering: Multiple visual prompts i.e.,
red circle (in this case) are drawn over an image and CLIP is tasked to
choose the correct one given a caption. The image is taken from [18].

Based on the potential benefits of VPT on CLIP’s ability for precise localization

and recognition tasks in natural imaging, we investigated the potential of visual

prompts to enhance CLIP’s ability to distinguish between the left and right lungs.

Specifically, we incorporated visual markers onto the original image at spatial lo-

cations corresponding to the coordinates of the masks generated by SAMEM (Sec-

tion 5.3.2). This set of images is then fed to CLIP’s image encoder. Specifically,

three different visual prompts are evaluated: a red bounding box marker, contour

delineation, and a reverse gray box highlighting the masked area while blurring the

rest of the image [51] as shown in Figure 5.24.

However, unlike the advantages VPT brings to natural imaging, it failed to

perform well on medical datasets as evident from cases reported in Figure 5.24. For
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all three reported cases, although SAMEM generated masks for both lungs (shown

in the region proposal column), however, visual prompting did not aid CLIP in

correctly recognizing the left and right lungs. With the gray reverse mark and

contour visual prompt, the problem of retrieving the same mask for both lungs

persists as shown in columns ROI 1 and ROI 2 of Figure 5.24. While using red

bounding box prompts, the problem was worse as CLIP classified non-lung regions

as lungs. Consequently, none of the visual prompts proved effective in aiding CLIP

for localization tasks within the medical imaging domain.
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Figure 5.24: VPT results on X-ray labels and masks dataset [16]: Al-
though SAMEM generated masks for both lungs, VPTs did not facilitate
CLIP in accurately retrieving ROIs.

Furthermore, when these three VPT methods are compared with the proposed

SaLIP framework which does not use visual prompting, instead, it feeds the set

of crops of the original image to CLIP which are generated according to masks

generated by SAMEM (discussed in Section 5.3.2), our framework still achieves a

superior DSC of 0.65 as compared to other prompts as reported in Table 5.5.

These results indicate that, unlike the advantages of visual prompting in the

natural imaging domain, achieving similar benefits in the medical imaging domain

is challenging. These insights shaped the direction of the subsequent research pre-

sented in Chapter 6.
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Table 5.5: Evaluation of visual prompting to enhance CLIP’s recognition
performance.

VPT Dice Score

Box 0.49
Reverse blur 0.60
Contour 0.61
Crops (ours) 0.65

5.5.6 Ablations

Different SAM Variants

There are three different variants of SAM, primarily differentiated by the type of

encoder employed. The encoder is a masked auto-encoder (MAE) [14], pre-trained

on ViT [258]. The three variants are: Base version has ViT-B, SAM-Larg has ViT-

L, and SAM-H has ViT-H (huge). The quantitative results of our proposed SaLIP

framework with each of these variants are reported in Table 5.6. Notably, SAM-H

demonstrates superior performance due to the enhanced capabilities of the ViT-H

encoder. As a result, SaLIP strategically leverages the SAM-H variant to maximize

segmentation accuracy.

Importantly, our proposed method, SaLIP, is a test-time adaptation framework

that enables zero-shot segmentation without requiring additional training or fine-

tuning (Section 5.3.2). As a result, integrating the ViT-H encoder into the SaLIP

framework incurs no additional computational overhead associated with training

large foundation models, ensuring operational efficiency while significantly boosting

performance.

Table 5.6: Ablation: Comparison of SAM’s variant.

Dataset SAM-B SAM-L SAM-H

CC359 [11] 0.80 0.89 0.94
X-ray [16] 0.71 0.76 0.83
HC18 [17] 0.66 0.76 0.81
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Table 5.7: Ablation: Performance comparison between SAM-CLIP and
SaLIP (ours).

Dataset SAM-CLIP SaLIP

CC359 [11] 0.89 0.94
X-ray [16] 0.80 0.83
HC18 [17] 0.78 0.81

SaLIP vs SAM-CLIP

Our proposed SaLIP framework follows the sequence SAMEM → CLIP → SAMPSM

as detailed in the Section 5.3.2. To assess the benefit of this sequence, an ablation

study is conducted using only the SAMEM → CLIP .

With SAMEM → CLIP , SAMEM first generates masks corresponding to dif-

ferent image regions with spatial dimensions that match those of the input image.

Based on the predicted regions, image crops are created, and CLIP is used to retrieve

the crop corresponding to the ROI. The SAMEM ’s generated mask corresponding

to the retrieved ROI is then considered the final segmentation prediction. It may in-

clude irrelevant or extraneous information outside the target region as demonstrated

by the dice score reported in Table 5.7.

In contrast, our proposed method uses the ROI crop retrieved by CLIP to ob-

tain the bounding box coordinates corresponding to the crop within the original

input image. This box prompt is processed by SAM’s prompt encoder (Figure 5.4).

It helps to refine the segmentation process by guiding the SAM’s decoder to fo-

cus solely on the relevant features within the bounding box. This approach en-

hances segmentation precision by minimizing the small surrounding areas within

the bounding box that are outside the actual region of interest, thereby improv-

ing segmentation, as demonstrated in Table 5.7. Thus, the proposed sequence

SAMEM → CLIP → SAMPSM allows for a more targeted approach to segmenta-

tion, ensuring that the output accurately reflects the desired objects or areas within

the image, leading to improved performance and reliability of the proposed SaLIP

framework.
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5.6 Summary

This chapter presents our work on test-time adaptation of foundation models for

zero-shot medical organ segmentation. It comprehensively investigated the chal-

lenges in the adaptation of foundation models – trained predominantly on natural

images – to the downstream medical imaging tasks.

Prompt engineering is an integral component of foundation models and the

performance of these models is heavily influenced by the quality of prompts (Sec-

tion 5.5.1). In the natural imaging domain, prompt engineering is often straightfor-

ward because there is an abundance of annotated data to extract meaningful insights

and it does not need specialized domain knowledge. However, in medical imaging,

there is a scarcity of labeled data and domain expertise, which complicates prompt

engineering.

Additionally, the existing task-specific supervised methods for the adaptation of

foundation models in the medical domain have limitations. These methods require

a large amount of labeled data and do not fully exploit prompting capabilities which

is the primary strength of foundation models (Section 5.2.2). On the other hand,

adaptation using parameter-efficient fine-tuning largely depends on the nature of

the dataset and the specific segmentation task, as demonstrated experimentally in

Chapter 4. Additionally, fine-tuning foundation models has considerable computa-

tional challenges due to their substantial size and intensive resource requirements.

To address the aforementioned challenges, a new pipeline called SaLIP is pro-

posed to perform test-time adaptation foundation models for the medical imaging

domain. SaLIP leverages a cascade of foundation models pre-dominantly trained on

natural imaging to perform zero-shot medical organ segmentation. Notably, SaLIP

eliminates the need for additional training, annotated data, task-specific fine-tuning

or specialized domain knowledge for prompt engineering, thereby simplifying the

adaptation of foundation models to downstream medical segmentation tasks (Sec-

tion 5.3.2).

The proposed approach has been evaluated for organ segmentation across diverse
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medical imaging modalities: brain from MRI scans, lung from X-rays, and fetal head

from ultrasound. Despite the differences and lack of correlation between these tasks,

SaLIP consistently demonstrated strong performance, achieving dice scores of 0.94,

0.83, and 0.81, respectively (Section 5.5). These results highlight the robustness and

generalization capabilities of our method.

Furthermore, as SaLIP is fully adapted at test time, it considerably reduces

the computational overhead typically associated with the adaptation of foundation

models in supervised settings (Section 5.3.2). By leveraging large language mod-

els (LLMs), SaLIP ensures efficient and effective segmentation without additional

complexity, making it accessible for a wide range of applications in medical imaging.

5.6.1 Insights

While SaLIP demonstrated its strengths in medical organ segmentation, its experi-

mental evaluation gave us valuable insights:

1. Vision-language models like CLIP demonstrate impressive performance in global

image-level tasks, but their effectiveness is limited when it comes to instance-

level tasks in the medical imaging domain. This limitation is evident in our

experiments which involve recognizing lung regions based on spatial location

(i.e., left or right lung- Section 5.5.5, Appendix A.1.2). This challenge is even

more pronounced in fine-grained medical imaging tasks, such as recognizing

pathological structures, which often have variable spatial locations and mor-

phology.

2. In contrast to natural imaging, where LLMs have demonstrated impressive

performance in tasks like visual perception [276], their application in medical

imaging has been less effective. This limitation stems from the complexity and

domain-specific challenges unique to medical imaging. LLMs, being primarily

designed for general tasks, are not inherently equipped to address the special-

ized requirements of medical image analysis as experimentally demonstrated

in Sections 5.5.5, 5.5.3 and Figure 5.18.
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3. SaLIP generalizes well across different medical organ segmentation tasks, as

demonstrated by comprehensive experimental evaluations (Section 5.5). Dis-

ease diagnostics pose unique challenges due to the small size and variability

of affected regions. Therefore, it is essential to explore the effectiveness of

foundation models in challenging medical disease diagnostics tasks, particu-

larly regarding their ability to accurately identify and segment small disease

regions.

These insights helped shape the further research, which is subsequently discussed

in Chapter 6.
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Chapter 6

Adaptation of Foundation Models

for Fine-Grained Medical Imaging

Analysis

This chapter presents our work on adapting foundation models to perform challeng-

ing fine-grained medical imaging tasks. It addresses Research Question 4 (RQ4):

“Can foundation models be effectively adapted to challenging fine-grained medical

imaging tasks?” While foundation models’ transferability is typically assessed on

coarse/global image-level tasks, medical imaging analysis often demands precise,

highly specific, and granular analysis to address detailed diagnostic and clinical

requirements. In this context, a new framework called SaLIP-V is proposed to

adapt foundation models to fine-grained medical imaging tasks. It has been eval-

uated on two fine-grained medical imaging tasks: (a) localization/recognition and

segmentation of anatomical structures based on spatial location; and (b) recogni-

tion and segmentation of pathological structures, which exhibit considerable vari-

ability in shape, morphological structure, and spatial location. Specifically, this

work achieved improved performance on the first task compared to our approach

introduced in Chapter 5. The code to replicate the experiments is available at:

https://github.com/aleemsidra/SaLIP-V.
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Section 6.1 provides an introduction and our motivation for evaluating the per-

formance of foundation models and the need for their adaptation to fine-grained

medical tasks. Section 6.2 presents a literature review of existing approaches. Sec-

tion 6.3 outlines the proposed framework and provides a detailed explanation of

its architectural design. Section 6.4 outlines the datasets used and evaluation pro-

cedures. Section 6.5 presents the results, analysis, and ablation studies. Finally,

Section 6.6 summarizes the findings and insights gained from this work and high-

lights potential directions for future research.

6.1 Introduction

Vision-Language Models (VLMs), such as CLIP [132] and ALIGN [278], have demon-

strated impressive zero-shot transferability on image-level visual perception. These

foundation models are predominantly trained on large-scale image caption corpora

for image-level supervision [279, 280, 281]. As a result, they excel in global image-

level tasks, such as differentiating between domains like “Chest X-ray” or “Chest

CT”. Consequently, these models demonstrate limited generalization in fine-grained

tasks that demand precise recognition and classification, such as differentiating be-

tween specific sub-regions of an image and identifying those that contain pathological

structures (e.g., tumors) [51, 18].

VLMs also face significant challenges in medical imaging tasks that require se-

mantic understanding, such as spatial reasoning to interpret the relationships be-

tween different image regions or organs. This limitation is demonstrated in our

experimental evaluation in Chapter 5, where CLIP performed well in recognizing

larger structures, such as organs, which occupy a substantial portion of the image.

However, CLIP showed poor performance in recognizing lungs based on spatial loca-

tion (e.g., “left” or “right” Section 5.5.5). This poor generalization can be attributed

to CLIP’s lack of semantic knowledge and thus it fails to reliably distinguish between

regions based on relative spatial locations, such as “left” and “right” lung.

Similarly, LLMs are not inherently suited for instance-level tasks in the medical
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imaging domain. This is experimentally demonstrated in Chapter 5, where we task

LLMs to generate textual prompts describing lungs according to the distinct features

and spatial location of the lungs (Appendix A.1.2). However, the generated prompts

proved ineffective for the task at hand, as evidenced by the results presented in

Section 5.5.5. In a second task, we evaluated LLMs for generating subroutines to

create bounding box prompts for the brain region in MRI scans. In this case, LLMs

faced scalability challenges due to the diverse and complex nature of medical tasks,

as discussed in Section 5.5.3.

Another major challenge is VLMs show limited performance in fine-grained med-

ical imaging analysis such as recognizing pathological structures due to their subtle

nature, small size (e.g., tumors), inconsistent morphology (which can further alter

with disease progression), and high variability in appearance. Collecting large-scale

high-quality datasets for every visual task, specifically for challenging fine-grained

medical tasks, is labor-intensive and too expensive to scale [282]. Eventually, it

results in poor generalization of VLMs to fine-grained medical tasks.

A common method for encoding location information is to crop the image around

the desired area, creating a zoomed-in visual representation [278, 283, 121]. How-

ever, this approach often discards the global context essential for fine-grained medi-

cal tasks, such as disease recognition. One such example is illustrated in Figure 6.1,

where the colonoscopic image containing a polyp is cropped, and the resulting im-

age loses the global context needed to correctly recognize the polyp. Therefore, for

fine-grained medical tasks, processing only the cropped region can lead to misclas-

sification due to the loss of essential contextual information (Section 6.5.1).

Recent research in natural imaging has explored visual prompting as an alter-

native to cropping, aiming to enhance the zero-shot performance of VLMs. Visual

prompting is a technique used in image-language tasks, where visual markers such

as colorful boxes or circles are added directly onto an image to highlight specific re-

gions within the image [18, 51, 284]. These approaches hypothesize that the model

has encountered the selected visual markers during training, allowing it to under-
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stand the underlying concepts. An example of visual prompting specifically, a red

bounding box to highlight the polyp region in a colonoscopy image is shown in Fig-

ure 6.1 (visual prompt). Also, in medical imaging analysis, unlike cropping the ROI,

Figure 6.1: A polyp in the colon [19]. Cropping ROI in the image, results
in the loss of global context necessary for fine-grained medical imaging
tasks. While the visual prompting preserves the global context.

the visual prompt maintains the global context necessary for disease recognition as

shown in Figure 6.1 (visual prompt).

Currently, the application of visual prompting particularly for fine-grained med-

ical tasks largely remains unexplored. To address the above-mentioned challenges,

a new framework called SaLIP-V is proposed. It adapts foundation models to fine-

grained medical imaging tasks. SaLIP-V has two main phases:

1. Classification of fine-grained image sub-regions: In the first phase, a

lightweight linear classifier is trained in a few-shot setting to classify fine-

grained sub-regions of an image, as illustrated in Figure 6.2 (a). Our frame-

work autonomously generates masks for various regions within the image by

utilizing the Segment Anything Model (SAM). These region proposals are used

to overlay visual prompts (VPT) on the image, resulting in a set of images–

labeled as “Images + VPT” in Figure 6.2 (a), each highlighting a sub-region

of the image. The images in this set are classified as either regions of in-

terest (ROI) or irrelevant areas. To optimize the classification, this set is

first processed through CLIP’s frozen visual encoder (CLIP-V) to generate

robust feature representations. These extracted features are then adapted by

a lightweight linear classifier, which is trained in a few-shot setting to specifi-

cally distinguish ROIs from irrelevant regions from the set “image + VPT” as
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Figure 6.2: The proposed SaLIP-V framework: a) few-shot classifica-
tion of fine-grained image sub-regions: a linear classifier is trained in a
few-shot setting to classify different sub-regions of the image. b) segmen-
tation of fine-grained regions: the adapted classifier is used to identify
the correct ROI from the pool of SAM-generated various sub-regions,
and the selected ROI is then segmented.

illustrated in Figure 6.2 (a). This few-shot training is done only once to ini-

tialize the linear classifier for the effective classification of fine-grained image

sub-regions.

2. Segmentation of the fine-grained region of interest: images are first

processed through SAM to generate masks for potential regions in the images

as shown in Figure 6.2 (b). VPTs are then applied to the original input image

based on these identified regions. The resulting set of images (Image + VPT)

is then processed by CLIP-V to extract meaningful visual representations, to

facilitate the identification of fine-grained regions. These features are then

classified into distinct categories, such as ROI or irrelevant, using the adapted

linear classifier from the first phase (Figure 6.2(a)). The image labeled as ROI,

its VPT coordinates, and the original image is processed through the SAM to

segment the fine-grained ROI, as illustrated in Figure 6.2(b).

Contributions

• To the best of our current knowledge, our proposed framework called – SaLIP-

V is the first work focused on adapting foundation models to fine-grained med-

ical imaging tasks such as anatomical structure localization based on spatial

context, and segmentation of pathologies with varying spatial locations and

morphology.
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• SaLIP-V effectively addresses the challenge of labeling fine-grained regions

within medical images. An automated approach for labeling fine-grained

anatomical structures and pathologies is proposed that does not need man-

ual labeling or domain expertise.

• The SaLIP-V framework leverages a few-shot adaptation strategy to adapt

foundation models to fine-grained medical analysis tasks. It achieves this by

adapting their features with a straightforward linear classifier while keeping

the foundation models frozen.

6.2 Related Work

The related work on segmentation of medical imaging using foundation models,

specifically visual language models, is discussed in detail in Chapter 5 in Section 5.2.

This section will primarily focus on the work related to visual prompting to enhance

CLIP’s recognition capability, which is a key component of our proposed SaLIP-V

framework, as outlined in (Section 6.3).

Colorful Prompt Tuning (CPT) colors different regions of an image and uses a

captioning model to predict which object in an image an expression refers to by pre-

dicting its color [253]. While generating textual prompts to refer to specific objects

in natural images is feasible, creating effective textual prompts for specific regions in

medical images presents challenges. Medical terminology is complex and specialized,

making prompt engineering for these applications more difficult as experimentally

demonstrated in Section 6.5.2. CPT [253] creates crops of different image regions

and assigns them semantic labels using colored prompts. However, cropping images

to encode location information results in a loss of global context, which is essential

for fine-grained medical tasks, as discussed in Section 6.1.

RedCircle [18] demonstrated that drawing red circles around objects within an

image can effectively distinguish instances by enclosing them in inscribed ellipses

derived from proposal boxes. This approach was evaluated on the CUB-200-2011
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(CUB) dataset [285], which already includes key point annotations, and on the

SPair71k [286] animal image dataset, for which manual annotation was performed.

Since the SPair71k dataset consists of animal images, the visual prompt engineering

did not require specialized domain expertise for this dataset. Fine-grained visual

prompt engineering is achieved by introducing a Blur Reverse Mask to highlight

specific image regions [51]. A general segmentation model is first used to generate

masks for different regions within the image. For each region, the remaining areas

of the image are blurred while the target region is highlighted. This pool of Blur

Reverse Mask images is then fed to CLIP, which is tasked with selecting the image

containing the region of interest. However, medical imaging modalities, such as lung

imaging, often have a predominantly gray appearance, making the use of reverse gray

blur masking less effective. This limitation is experimentally validated with results

reported in Section 5.5.5.

Alpha-CLIP is an enhanced version of CLIP with an auxiliary alpha channel to

suggest attentive regions and fine-tuned with constructed millions of RGBA region-

text pairs [287]. Alpha-CLIP not only preserves the visual recognition ability of

CLIP but also enables precise control over the emphasis of image contents. While

Alpha-CLIP demonstrates effective performance in various scenarios requiring re-

gion focus, its current structure and training process limits its ability to model

relationships between multiple objects.

While the application of visual prompting for fine-grained tasks in natural imag-

ing has been explored, to the best of our knowledge it is not widely adapted for

fine-grained medical imaging analysis tasks. One study utilized visual prompting

for lung cancer classification [279], however, the visual prompts are engineered using

annotated data. Furthermore, lung cancer is a prevalent disease with a significantly

larger body of research compared to other pathological conditions, and abundant

annotated data is available, which can facilitate visual prompt engineering for this

task. The evaluation of this approach on more complex fine-grained medical imaging

analysis tasks is necessary to assess its generalization.
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To tackle these challenges, a new framework SaLIP-V is proposed, designed

specifically for adapting foundation models for fine-grained medical tasks, as dis-

cussed in the following section.

6.3 Methodology

This section presents our proposed framework named SaLIP-V, which is designed to

adapt foundation models specifically for fine-grained medical imaging tasks. SaLIP-

V consists of two main phases: (a) Few-shot setup for fine-grained image sub-regions

classification: Training a linear classifier on the top of the frozen CLIP visual branch

to enable classification across various fine-grained image regions and instances as

shown in Figure 6.2 (a). This few-shot training is done only once to effectively

initialize the linear classifier for the effective classification of fine-grained image

regions. (b) After training the linear classifier, it is used to classify different sub-

regions of the image into distinct classes. The regions labeled as regions of interest

are then segmented, as illustrated in Figure 6.2 (b).

The key preliminaries for understanding SaLIP-V are the Segment Anything

Model (SAM) and CLIP, which are discussed in detail in Section 5.3.1.

6.3.1 Foundation Models Adaptation

The zero-shot adaptation of the foundation model showed poor performance on fine-

grained medical tasks (Sections 5.5.4, 5.5.5,and 6.5.1). The first step of our proposed

approach is to use visual prompting and a linear probe as a lightweight adaptation

strategy to effectively adapt foundation models to classify fine-grained sub-regions

in medical imaging. The linear probe is a trainable linear layer, which is trained on

the features extracted from the foundation model. It is trained in a few-shot setting

while keeping the foundation model itself fixed.

The primary objective of the linear layer is to accurately classify different regions

within an image, with a specific focus on correctly identifying the ROI. However,
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several challenges arise in this context: a) Fine-grained mask acquisition: ob-

taining masks for different sub-regions in medical imaging is extremely challenging.

b) Lack of region-level semantic labels: in medical imaging, the annotated

data is not readily available specifically precise labels for fine-grained regions within

the image. c) Loss of global context: to isolate a specific ROI, the input image is

typically cropped, and a VLM is tasked to retrieve the crop corresponding to ROI.

However, cropping can lead to a loss of global context necessary for fine-grained med-

ical tasks as illustrated in Figure 6.1. It eventually leads to sub-optimal performance

for fine-grained medical tasks (experimentally demonstrated in Section 6.5.1).

To address the lack of region-level annotations for medical images, we employed

our approach proposed in Chapter 5. It automates the process of mask generation

for the different potential regions in the image by leveraging the Segment Anything

Model’s “everything mode” (SAMEM) (Section 5.3). Notably, this mask-generation

process is fully automated and does not require labeled data or domain expertise.

The generated region proposals lack semantic labels. To assign each proposed

sub-region to a specific category (ROI or irrelevant), an automated labeling approach

is proposed. This approach computes the dice score for each of the SAM generated

region proposals by comparing it with the ground truth of the input image. Masks

with a dice score above a specified threshold are classified as regions of interest

(ROIs), while the remaining are labeled as “irrelevant” class as shown in Figure 6.3

(a). This region-based labeling process can be mathematically represented as follows:

L
(k)
i =


‘polyp’ if Dice(Mi, GT ) ≥ τ

‘irrelevant’ if Dice(Mi, GT ) < τ

(6.1)

where k denotes the number of shots for which labels are generated, Mi is the

set of potential sub-regions in an image generated by SAMEM , GT is the ground

truth, τ is the threshold value used for comparing the dice score to classify a mask

as either ROI or irrelevant.

The next step is to classify different SAMEM generated image sub-regions and
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Linear 
Layer

Few-shot Adaption 

Polyp

Irrelevant

Image 
Encoder
(CLIP-V)

a) Few-shot Dataset Creation b)      Few-shot Training

Figure 6.3: Visual prompting and linear classifier adaptation: a) Few-shot
dataset creation: SAMEM generates region proposals for various regions in
the image (M). These sub-regions are labeled with specific class labels by
comparing (M) with the ground truth (GT). b) Few-shot training: Visual
prompts (VPT) are overlaid on the input image to create IV PT . This set
is processed through frozen CLIP-V, and a linear layer is trained using
few-shot examples to classify sub-regions as either ROI or irrelevant.

retrieve the regions corresponding to ROI. To optimize this classification, visual

prompting is employed to preserve the overall global context necessary for the clas-

sification of fine-grained regions within the image as shown in Figure 6.1 (visual

prompt). However, for the medical domain, the annotated data is not readily avail-

able for visual prompt engineering (Section 1.1.4).

To address the challenge of visual prompt engineering for fine-grained medical

imaging tasks, our proposed approach leverages SAMEM generated pool of region

proposals and draws “red bounding box” visual prompts on the input image, posi-

tioned according to the specific coordinates of each proposed region as illustrated

in Figure 6.3 (b) labeled as (IV PT ). The selection of this particular type of visual

prompt is based on an ablation conducted to evaluate the effectiveness of different

visual prompts for medical imaging tasks (Section 5.5.5). The process of applying

visual prompt markers to the image can be mathematically represented as follows:

IV PT = V PT (I,Mi) (6.2)

where I is the input image, Mi is the set of masks generated by SAMEM for I,

V PT is the function that draws visual prompts on the input image according to
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the coordinates of each mask in Mi. This results in a pool of images each having

an overlaid prompt highlighting different regions of the image (IV PT ) as shown in

Figure 6.3 (b).

While visual prompting enhances the zero-shot recognition capabilities of CLIP,

it is not sufficient for complex, fine-grained medical tasks (demonstrated by the

experimental results in Section 6.5.1). To optimize foundation models for these

fine-grained tasks some form of adaptation is required.

To accomplish this, our proposed method trains a simple linear layer in a few-shot

setting as shown in Figure 6.3 (b). Specifically, this linear layer adapts the features

extracted from CLIP’s visual branch (CLIP-V). To prevent overfitting, CLIP-V is

kept frozen and is used as a feature extractor to obtain rich visual representations

from IV PT that can aid in classifying various image regions. The linear layer is

then trained on these extracted features to categorize images in IV PT into distinct

classes/regions (e.g. “polyp” or “irrelevant”) as illustrated in Figure 6.3 (b). This

few-shot adaptation is performed only once. After adaptation, the linear layer is

integrated into the second phase of our framework as shown in Figure 6.4.

Our proposed framework does not utilize CLIP’s textual branch. This decision

is based on the experimental evaluation that showed poor performance when ap-

plying it to complex, fine-grained tasks requiring precise localization of anatomical

structures (see Section 6.5.2). This sub-optimal performance stems from the fact

that CLIP has primarily been trained on image captions for coarse image-level tasks,

which hinders fine-grained perception, specifically for medical tasks. Furthermore,

CLIP-V is selected over other vision encoders based on an ablation study demon-

strating its effectiveness for medical image analysis (Section 6.5.3).

6.3.2 Fine-Grained Segmentation

The second phase of our proposed SaLIP-V framework is used for segmenting fine-

grained regions in medical imaging in a zero-shot setting. The process begins by

leveraging SAMEM (Section 5.3.2) to generate the masks for different regions in an
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image (M). These generated masks are then used for visual prompt engineering,

which involves drawing red bounding box prompts on the input image based on

the coordinates of the generated masks using the V PT function in Eq. 6.2. This

process creates a set of images with visual prompts, referred to as (IV PT ) as shown

in Figure 6.4.

Image 
Encoder
(CLIP-V)

Adapted Linear 
Classifier

Fine-grained sub-region zero-shot segmentation

Figure 6.4: Architecture of our proposed SaLIP-V framework: SAMEM

segments image sub-regions using a grid of key-points (G), red bounding
box visual prompts are overlaid on the input image I according to the
resulting sub-regions (M) generating a pool of images IV PT . These images
are then processed through the frozen CLIP-V model and classified by the
adapted linear classifier. The images categorized as ROI by the classifier
are subsequently passed to SAMPSM to get the final segmentation mask.

The pool of images with overlaid visual prompts highlighting different image

sub-regions (IV PT ) are processed through the frozen CLIP-V to extract rich fea-

tures, which are then passed to an adapted linear classifier (from the first phase of

our method, discussed in Section 6.3.1). This adapted linear classifier categorizes

the images into distinct classes such as “polyp” or “irrelevant” for the polyp seg-

mentation task. Based on the linear classifier’s logits, each image in (IV PT ) that are

classified as regions of interest are selected from IV PT as illustrated in Figure 6.4.

This process can be mathematically represented as:

I
(ROI)
V PT = {Ii ∈ IV PT |Ci = “polyp”} (6.3)
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where IV PT is a set of images each with an overlaid visual prompt each highlighting

a different image sub-region, Ii refers to ith image in IV PT , I
(ROI)
V PT is the image which

is categorized as ROI by the classifier, Ci is ROI class label (“polyp” in this case).

Finally, the bounding box prompts for the retrieved I
(ROI)
V PT and the original in-

put image are passed to SAM’s promptable segmentation mode (SAMPSM) (Sec-

tion 5.3). In this mode SAM segments the regions enclosed by the visual prompt as

illustrated in Figure 6.4.

6.4 Experimental Framework

6.4.1 Datasets and Metrics

Our proposed approach is evaluated on two distinct fine-grained medical imaging

tasks: a) The localization and segmentation of anatomical structures based on their

spatial location. For this task, SaLIP-V is assessed using the X-ray Masks and Labels

dataset for lungs (described in Section 5.4.1). b) The recognition and segmentation

of pathological structures that have varying morphology and spatial location. This

evaluation is specifically done to recognize and segment polyps in colonoscopy im-

ages. For this purpose, the Kvasir-seg dataset [19] is utilized, which contains 1,000

images from inside the gastrointestinal tract during colonoscopy, featuring polyps

alongside. The evaluation metrics used are accuracy for classification and dice sim-

ilarity coefficient (DSC) for the segmentation.

6.4.2 Implementation Details

To adapt foundation models for fine-grained tasks, the first phase of our proposed

approach involves few-shot classification (Section 6.3.1). For this few-shot setup,

the extracted features from the models are adapted by training a linear classifier

(Figure 6.3). For lung classification, 20 shots are used to train the linear classifier,

while for polyp classification, 40 shots are used as it more challenging task than the

former. The linear classifier is trained for 100 epochs using cross-entropy loss with
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a learning rate of 1×−4 and a batch size of 32.

SaLIP-V utilizes the “huge” variant of SAM (ViT-H) from the official SAM

repository 1 and incorporates the large variant of CLIP (ViT-L/14) from OpenAI’s

CLIP framework.

6.5 Results and Analysis

6.5.1 Zero-shot Performance of CLIP on Fine-Grained Med-

ical Tasks

First, we evaluated the potential of visual prompting in improving the CLIP’s zero-

shot recognition performance for fine-grained medical tasks. The textual prompts

for CLIP’s text encoder are generated using GPT-3.5 [52]. This process of textual

prompt engineering to construct textual sentences describing the different image

sub-regions is detailed in Appendix A.1. The images are processed through CLIP

in two different setups to evaluate the potential benefits of visual prompting:

• Crop: different image sub-regions are cropped according to SAMEM gener-

ated image sub-region proposals (Section 5.3.2). CLIP’s vision encoder then

processes these zoomed-in crops of different image sub-regions (Figure 6.1-

image crops).

• Visual prompting (VPT): different image sub-regions are highlighted using

visual prompts, which are overlaid on the original image according to SAMEM

generated image sub-region proposals. The resulting set of images with over-

laid visual prompts is passed to CLIP’s vision encoder (Section 6.3.1).

The comparative analysis of these two configurations on CLIP’s zero-shot clas-

sification performance is reported in Table 6.1. When CLIP was tasked to retrieve

the crop corresponding to the region of interest (ROI) from the pool of crops of

different sub-regions of a chest X-ray image, it only identified 1 out of 40 left lung

1https://github.com/facebookresearch/segment-anything, Accessed: [12.07.2024]
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crops correctly, and for right lung 13 out of 40 crops were correctly classified, as

reported in Table 6.1. Thus, cropping different regions of the image (Chest X-ray in

our case) did not prove to be effective, as the global context to recognize the lungs

based on spatial location is lost (Section 6.1).

In contrast, using VPT to highlight different sub-regions, as discussed above,

improved CLIP’s zero-shot classification performance. Specifically, for the left lung,

CLIP correctly classified 32 out of 40 images, whereas, with the crop configuration,

only 1 out of 40 was correctly identified, as reported in Table 6.1. However, a similar

pattern was not observed for the right lung classification as only 1 out of 40 right

lung samples was correctly classified using VPT as shown in Table 6.1.

Table 6.1: Zero-Shot Classification Performance of CLIP: Crops vs.
BBOX VPT.

Class
No of. Crop BBOX VPT
Images Correct Accuracy (%) Correct Accuracy (%)

Left Lung 40 1 2.5 32 80
Right Lung 40 13 32.5 1 2.5
Irrelevant 590 540 91.5 335 56.8

The key insight from this experiment is that while VPT can enhance CLIP’s

recognition capabilities, it alone is insufficient for fine-grained tasks such as the

recognition of lungs based on spatial location. As shown in Table 6.1, while VPT

boosted CLIP performance for left lung classification, it exhibited inconsistent per-

formance for the right lung.

Therefore, to tackle complex fine-grained medical imaging tasks, especially in

the absence of domain expertise and annotated data for visual prompt engineering,

it is essential to supplement visual prompting with additional methods to optimize

the performance of foundation models in such scenarios.

6.5.2 Few-Shot Adaptation of CLIP using Adapters

Although visual prompting improved CLIP’s recognition performance compared to

cropping image regions (Section 6.5.1), further optimizations are necessary to en-
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hance performance in fine-grained medical imaging tasks due to inconsistencies in

the results, as reported in Table 6.1.

Fine-tuning the full CLIP model in a few-shot setting is ineffective due to its

large number of parameters, the limited availability of training examples, and the

associated risk of overfitting [132]. To better adapt CLIP, we kept the CLIP’s

backbone frozen and instead leveraged lightweight adapters to adapt the features

extracted from CLIP. These adapters are trained in a few-shot setting. We evaluate

three different adapters:

• Linear Adapter: An MLP adapter consisting of two linear layers is trained

to adapt the features extracted from CLIP’s image and/or text encoders.

• CLIP-A [200]: a small number of additional learnable bottleneck linear layers

are trained to adapt CLIP’s textual and image branches while keeping the

original CLIP backbone frozen. To prevent overfitting, CLIP-A further adopts

residual connections to dynamically blend the fine-tuned knowledge with the

original knowledge from CLIP’s backbone.

• CLIP-A-Self [120]: applies a self-attention mechanism on the set of all tex-

tual sentences for any class that is fed to CLIP’s text encoder. It learns to

select and aggregate the best subset of visual descriptive sentences for the

dataset from the few-shot training set.

To evaluate the impact of using the aforementioned adapters on improving

CLIP’s performance for fine-grained classification, we adapted CLIP using three dif-

ferent settings: 1) Adaptation of CLIP’s textual branch, 2) Adaptation of CLIP’s

visual branch, and 3) Joint adaptation of both textual and visual branches.

The experimental evaluation for each setup is detailed in the subsequent Sections.

1) CLIP’s Textual Branch Adaptation

In this setup, only the CLIP’s textual branch features are adapted using adapters,

while the image branch remains frozen. In contrast to the zero-shot setting (Sec-
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tion 6.5.1), all three adapters improved CLIP’s classification performance as reported

in Table 6.2. The column “corr” shows the number of instances that were correctly

classified and “acc” shows the class-wise accuracy.

Table 6.2: Few-shot adaptation of CLIP’s textual branch using various
adapters.

Class
Zero-shot Linear CLIP-A (0.2) CLIP-A (0.5) CLIP-A-Self

Corr Acc Corr Acc Corr Acc Corr Acc Corr Acc

Left Lung 32 80 7 17.5 39 97.5 34 85.0 7 17.5
Right Lung 1 2.5 14 35 18 45.0 17 42.5 2 5
Irrelevant 335 56.7 433 73.4 497 73.4 491 83.2 533 90.3

Avg. Acc 46.4 67.8 82.7 80.9 80.9

Specifically, CLIP-A with residual (α = 0.2) outperformed the other adapters.

α controls residuals style feature blending with the original pre-trained CLIP’s fea-

tures. CLIP-A significantly improves classification accuracy, improving from 31% in

the zero-shot setting to 82.7%.

This suggests that few-shot training of lightweight adapters to adapt the foun-

dation model’s extracted features, combined with visual prompts, enhances perfor-

mance while enabling efficient adaptation. Notably, this approach requires no modi-

fication of the foundation model, as only the adapters are fine-tuned (Section 6.3.1).

The second phase of the proposed method involves segmenting the ROI, where

the adapted classifier is utilized to identify the image sub-region corresponding to the

ROI (Section 6.3.2). Given that CLIP-A outperformed other adapters (Table 6.2),

it was integrated our SaLIP-V pipeline for this purpose (Figure 6.4).

• SaLIP [121]: it is our proposed approach for test-time adaptation of foun-

dation models for zero-shot organ segmentation (introduced in Chapter 5). It

is used as a baseline to evaluate the performance improvement with few-shot

adaptation of CLIP via light-weight adapters. The crops showing the zoomed-

in image sub-regions are processed through CLIP within the SaLIP framework

(Section 5.3.2).

• SaLIP-VPT: Instead of using image crops, visual prompts are overlaid to
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the original image to highlight different regions based on masks generated by

SAMEM (Figure 6.4 (IV PT )). These sets of images with visual prompts are

then processed through CLIP within the SaLIP framework (Figure 5.7).

• SaLIP-A: The above mentioned adapted CLIP-A is integrated into our pro-

posed SaLIP-V framework (Section 6.3.2). The image with visual prompts

is processed through SaLIP-V, where adapted CLIP-A is used to categorize

these images into specific classes.

The quantitative results of this evaluation are reported in Table 6.3. The column

labeled “Class Acc” reports the average classification accuracy for the left and right

lungs achieved by CLIP on few-shot data, while the column “Seg (DSC)” shows

the corresponding average segmentation dice similarity coefficient (DSC) across the

entire dataset for both lungs.

CLIP-A significantly enhanced CLIP’s classification performance, increasing its

average accuracy from 46.4% (zero-shot) to 82.7% (few-shot) in classifying all cat-

egories i.e., left, right, and irrelevant—across a pool of images with various visual

prompts corresponding to different regions (Table 6.2). However, when CLIP-A is

integrated into SaLIP-A (mentioned above), the final segmentation DSC is 0.654,

which is significantly lower than the DSC of 0.834 achieved by our proposed test-

time adaptation SaLIP pipeline (Chapter 5). Thus, CLIP-A did not prove effective

when applied to classify different sub-regions across the entire dataset, as indicated

by the corresponding segmentation DSC in Table 6.3.

Table 6.3: Performance comparison of different SaLIP-V configurations
on the chest X-ray dataset.

SaLIP
Class Seg
Acc (DSC)

SaLIP-VPT 0.31 0.56
SaLIP-A 0.82 0.65
SaLIP [121] - 0.83
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Analysis: Swapping Left and Right Lung Prompts

One potential reason for the lower segmentation DSC of SaLIP-A (Table 6.3) could

be attributed to the naming conventions used in medical image descriptions. In

medical terminology, the left side of an image typically represents the patient’s right

side, and vice versa. Specifically, our evaluation focuses on lung segmentation, and

regions of interest within the X-ray are ‘left’ and ‘right’ lungs. The textual prompts

are according to conventional left and right orientation in natural imaging (reported

in Appendix A.1.1). This mismatch of conventions may have contributed to the

lower performance of SaLIP-A, as reported in Table 6.3.

To address this issue, prompts for “left” and “right” lungs were adapted to

align with medical conventions by swapping the labels for the left and right lungs

accordingly. All three adapters are then re-evaluated after swapping prompts for

“left” and “right” lungs (Appendix A.1.2). The results of this re-evaluation are

reported in Table 6.4.

Table 6.4: CLIP’s textual branch adaptation branch using various
adapters with swapped prompts.

Class
Linear CLIP-A (0.2) CLIP-A (0.5) CLIP-A-Self

Corr Acc Corr Acc Corr Acc Corr Acc

Left Lung 22 17.5 39 97.5 34 85.0 7 17.5
Right Lung 22 35 18 45.0 17 42.5 2 5
Irrelevant 317 73.4 497 73.4 491 83.2 533 90.3

Avg. Acc 44.3 52.7 51.8 39.7

Contrary to expectations, adhering to medical domain naming conventions did

not enhance performance. The adapters with swapped prompts failed to improve

CLIP’s results and significantly underperformed as reported in Table 6.4. In con-

trast, the original prompts, which followed naming conventions from general natural

imaging, delivered better outcomes. This is reflected in the Avg. Acc” row in Ta-

ble 6.2 and Table 6.4. Specifically, the original prompts that followed the natural

imaging naming convention for describing spatial location “left” and “right” re-

sulted in an average classification accuracy of 82.7% while with swapped prompts
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the average classification accuracy was 52.7%. Thus, swapping prompts to follow

the medical imaging naming conventions, did not improve CLIP’s recognition based

on spatial location.

2) CLIP’s Visual Branch Adaptation

In this setup, only the features extracted from CLIP’s visual branch are adapted us-

ing adapters, while the textual branch remains frozen. The results for this evaluation

are reported in Table 6.5.

Table 6.5: CLIP’s visual branch adaptation: comparison of different
adapters.

Class
Zero-shot Linear CLIP-A (α : 0.2) CLIP-A (α : 0.5)

Corr Acc Corr Acc Corr Acc Corr Acc

Left Lung 32 80 39 97.5 16 40.0 11 27.5
Right Lung 1 2.5 0 0.0 10 25.0 23 57.5
Irrelevant 335 56.7 258 48.5 327 55.4 313 53.1

Avg. Acc 46.4 69.4 52.7 52.5

The results indicate a significant performance disparity between the adaptation

of CLIP’s textual (reported in the previous section) and visual branch in terms of

classification accuracy. For visual branch adaptation, a linear adapter outperformed

and achieved an average accuracy of 69.4% as reported in Table 6.5. While for

textual branch adaptation, CLIP-A outperformed and achieved an average classifi-

cation accuracy of 82% on few-shot data (Table 6.2). However, the integration of

this pre-trained CLIP-A into SaLIP-A did not yield satisfactory results on the full

dataset for lung segmentation, as demonstrated by segmentation DSC reported in

Table 6.3.

3) CLIP’s Visual and Textual Branch Adaptation

In this setup, both textual and visual branch features are adapted. The CLIP-

A (0.2) enhanced the textual branch features (Table 6.2) and the linear adapter

improved the visual branch features (see Table 6.5). Based on these results, these
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adapters are therefore utilized to adapt CLIP’s visual and textual branche features

respectively. The result of this adaptation is reported in Table 6.6.

Table 6.6: CLIP visual and textual features adaption in few-shot setting:
comparison of different adapters.

Class
Zero shot Linear CLIP-A (0.2)

Corr Acc Corr Acc Corr Acc

Left Lung 32 80 40 17 6 15
Right Lung 1 2.5 0 0 29 72.5
Irrelevant 335 56.7 0 288 243 243

Avg. Acc 46.4 6.0 41.5

However, adapting both the visual and textual branches also did not enhance

classification performance. Compared to adapting only the visual or textual branch

(Table 6.5 and 6.2) individually, this approach led to an even further decline in

classification performance as reported in Table 6.6.

Analysis

Extensive experimentation with CLIP adaptation is conducted in both zero-shot

(Section 6.5.1) and few-shot settings (Section 6.5.2). For-few shot setup, adapta-

tions of the textual branch, the visual branch, or both are evaluated. The results

highlighted the limitations of CLIP’s recognition capabilities for fine-grained medical

tasks, particularly in accurately identifying lung structures.

Though CLIP’s textual branch features adaptation using CLIP-A achieved an

average classification accuracy of 0.82 on few-shot data, a similar pattern is not

observed when CLIP-A is integrated into SaLIP-A to evaluate segmentation in the

entire dataset as reported in Table 6.3.

The results demonstrated that CLIP is highly sensitive to textual information,

posing challenges in achieving consistent and reliable outcomes, particularly for com-

plex fine-grained medical tasks. This sensitivity was evident in its limited ability

to accurately recognize lung structures based on spatial location, as evaluated in

the preceding sections (Section 6.5.1, 6.5.2). Furthermore, these findings highlight
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a significant limitation: CLIP’s embeddings lack sufficient medical domain knowl-

edge. As a result, its performance on the evaluated fine-grained medical tasks i.e.,

recognizing lungs based on spatial location, was suboptimal.

Additionally, leveraging LLMs to create accurate textual prompts for anatomical

structures related to spatial location proved to be both challenging and ineffective.

LLMs lack the intrinsic knowledge required to generate accurate textual prompts for

such tasks. For example, generating prompts to describe lungs based on their spatial

location and distinctive visual features was particularly difficult, as evidenced by the

results presented in Sections 5.5.5, 6.5.2. The process of this prompt generation is

outlined in Appendix A.1.2.

6.5.3 Evaluation of the Proposed SaLIP-V Framework on

Fine-Grained Medical Tasks

The strategies outlined in Section 6.5.2, rely on adapting either CLIP’s textual or

visual branch while keeping the other branch frozen but still utilized for extracting

the respective features. These configurations did not prove effective and resulted

in poor performance in recognition of lungs based on their spatial location. Ad-

ditionally, crafting precise textual prompts for fine-grained medical regions proved

complex and less effective.

To address these challenges and improve CLIP’s recognition performance for

fine-grained medical tasks, we exclusively utilized the CLIP visual encoder (CLIP-

V) for extracting rich visual features for fine-grained regions in images highlighted

by visual prompts. The extracted CLIP-V features are adapted using a simple linear

classifier as shown in Figure 6.3 (b).

Task 1: Spatial Localization and Segmentation of Lungs

To evaluate the effectiveness of CLIP-V in fine-grained tasks, we compared its per-

formance with DINOv2. DINOv2 is a vision-only foundation model that learns

robust visual features without any form of supervision, enabling it to excel in vari-
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ous visual recognition tasks [248]. DINOv2 has proven to be effective in contrast to

CLIP [141, 282]. CLIP-V and DINOv2 are evaluated and compared as follows:

• SaLIP-V: This approach begins by autonomously generating masks for differ-

ent image sub-regions using SAMEM , which are used to create visual prompts

to highlight different image sub-regions. The resulting set of images with vi-

sual prompts is then processed by the CLIP visual branch, as illustrated in

Figure 6.3 (b).

• SAM-DINO: This method also begins by generating masks for image sub-

regions using SAMEM . Subsequently, the images, overlaid with visual prompts

derived from the SAMEM generated regions, are processed by DINOv2.

The extracted features from DINOv2 and CLIP-V are individually adapted using

a linear classifier as shown in Figure 6.3 (b). The comparative analysis between these

two setups for lung classification and segmentation is reported in Table 6.7. The

column “Class Acc” shows the classification accuracy of the linear classifier on the

few-shot dataset’s test split. The column “Seg (DSC)” shows the segmentation dice

score, when the classifier individually trained on CLIP-V and DINOv2 features, is

integrated into the SaLIP-V framework (Figure 6.4).

Table 6.7: Few-Shot Adaptation Comparisons: CLIP-V vs. DINOv2.

Classification Class Seg
Approach Acc (%) (DSC)

SaLIP-A 0.820 0.650
SAM-DINO 0.881 0.747
SaLIP (Ours) [121] 0.906 0.839
SaLIP-V (Ours) 0.946 0.874

Contrary to our expectations, CLIP-V outperformed DINOv2, despite not lever-

aging CLIP’s textual branch. This indicates that CLIP-V effectively extracts de-

tailed visual features critical for analyzing complex medical images. It also sug-

gests that CLIP’s textual embedding space may not be well-suited for fine-grained
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medical imaging tasks, given the complexity and specificity of medical terminol-

ogy, as demonstrated in the results (Section 6.5.2). Additionally, in the context of

fine-grained medical images, crafting precise textual prompts to accurately describe

anatomical structures and pathologies presents a significant challenge.

By adapting only CLIP-V features, our proposed approach significantly improved

the performance i.e., the dice score significantly improved from 0.650 (using CLIP’s

textual features- SaLIP-A) to 0.874, as reported in Table 6.7. In comparison, DI-

NOv2 achieved a dice score of 0.747. Notably, our proposed method, SaLIP-V,

not only outperformed DINOv2 but also surpassed the baseline SaLIP, achieving a

notable improvement in the dice score from 0.839 to 0.874.

The extensive experimental evaluation in Sections 6.5.1, 6.5.2, 6.5.3 and results

reported in Table 6.7, demonstrate that our proposed SaLIP-V approach excels in

spatial localization tasks, achieving impressive performance without the need for

specialized domain expertise in prompt engineering or annotated data.

Task 2: Fine-Grained Polyp Classification and Segmentation

Building on the promising results of our proposed approach for the first fine-grained

task outlined in Section 6.5.3, we further evaluated it on a more challenging task:

recognition/localization and segmentation of tumors that have varying spatial loca-

tions, lack consistent anatomical morphology and are often subtle and small in size.

Specifically, for this task, the proposed approach is evaluated on polyp recognition

and segmentation in colonoscopic images from the Kvasir-seg dataset (Section 6.4.1).

To evaluate the effectiveness of our proposed approach for polyp classification,

CLIP-V is used in two different setups:

• Spatial Average of Patch Embeddings: transformer-based models pre-

serve the spatial information/structure of the input by using patch embed-

dings. Each patch embedding corresponds to a specific location in the original

image. By using patch embeddings, the model focuses on the local features of

each patch rather than a global representation of the entire image.
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• CLS Token: is a special class (CLS) token in transformer-based models like

vision transformers (ViT) [258]. It aggregates information from the entire

input image for tasks like classification. The CLS token captures the global

context.

After extracting features from CLIP-V within the above mentioned embedding

spaces, the classification of fine-grained image sub-regions is performed by adapting

the extracted features using the linear classifier (Section 6.3.1 illustrated in Fig-

ure 6.3). Table 6.8 presents the linear classifier’s performance, the column “spatial

avg” refers to the results obtained from the spatial average of CLIP-V’s patch em-

beddings, while “CLS token” presents the classification results achieved using the

CLIP-V’s CLS token embeddings. The classification performance of the linear classi-

fier did not vary significantly with either of the CLIP-V’s embeddings. With spatial

average and CLS token embeddings, the classifier achieved an average classification

accuracy of 0.828 and 0.79, respectively, as reported in Table 6.8 (“Avg. Acc” row).

Although the classifier achieved an average classification accuracy of 0.79 using

CLS token embeddings for the first phase of our proposed approach (i.e., few-shot

classification of fine-grained regions, see Section 6.3.1). However, when this classifier

was integrated into the second phase of our method for fine-grained region segmen-

tation (Section 6.3.2), the dice score significantly declined to only 0.50, as reported

in Table 6.8.

Table 6.8: Evaluation of SAM-CLIP-V: A comparison of classification
performance using the spatial average of patch embeddings vs CLS token
embeddings.

Class
No of. Spatial Avg CLS Token
Images Corr Acc Corr Acc

Polyp 109 101 0.93 96 0.88
Irrelevant 953 771 0.84 744 0.78

Avg. Acc - 0.82 0.79

SaLIP-V (DSC) - 0.49 0.50

The decline in the DSC can be attributed to the linear classifier being trained
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in a few-shot setting. For polyps, 40 shots were used to train the linear classifier

for few-shot image sub-region classification. These 40 shots were processed through

SAMEM , autonomously generating 559 masks, of which 50 were labeled as polyps

and 509 as irrelevant regions (see Section 6.3.1). From this pool, only 40 images (20

representing polyps and 20 irrelevant regions) were selected for few-shot training,

which may have led to overfitting.

As a result, both approaches achieved high classification accuracies of 0.828

and 0.79 in the first phase, where the adapted classifier was evaluated on the test

split of the few-shot dataset (Section 6.3.1). However, when the adapted linear

classifier was incorporated into the second phase (Section 6.3.2), overfitting caused

poor generalization, as demonstrated by the results in Table 6.8.

To address this issue, the entire set of image sub-region proposals generated

by SAMEM was utilized, rather than selecting a few-shot subset from the general

pool (Section 5.3.1). This approach still remains few-shot in nature because only a

limited number of samples (i.e., 40 shots) are utilized to generate masks for different

regions in the images using SAMEM (Figure 6.3). However, instead of selecting a

subset of the generated image sub-regions for training the linear classifier, the entire

set was utilized.

For the original 40 shots used for polyp classification, SAMEM generated 559

masks, of which 50 were labeled as polyps and 509 as irrelevant regions using our

proposed labeling approach, which is discussed in detail in Section 6.3.1. Given

the inherent class imbalance in the data, two sampling strategies were evaluated to

mitigate bias toward the majority class.

• Weighted Random Sampler: Assigns sampling probabilities based on class

weights. The probabilities are calculated as the inverse of the frequency of each

class, which increases the likelihood of selecting minority classes within each

batch during training.

• Balanced Sampler: ensures that each class is equally represented in batches

during training, regardless of the original class distribution in the dataset.
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The results of leveraging the full pool of SAMEM generated image sub-region

proposals for training the linear classifier are reported in Table 6.9. The column

“without sampler” presents the results achieved without using any sampler. In this

case, the linear classifier achieves a high overall average classification accuracy of

0.916 on the test split of the few-shot dataset. However, an evaluation of class-

wise accuracy indicates that without the sampler, the linear classifier exhibits a

significant bias towards the majority class. Out of a total of 1,062 masks generated

by SAMEM for the test split of the few-shot data, 953 samples belong to the majority

class i.e., irrelevant regions. Thus the linear classifier achieves a high accuracy of

0.964 for the majority class. In contrast, the model’s performance on the minority

class–“polyp”, which is the primary focus of this analysis, is considerably lower, with

an average classification accuracy of only 0.495. These results indicate that class

imbalance created a bias toward the majority class and eventually the classifier fails

to generalize well on the minority class.

Table 6.9: Performance Improvement Analysis with Samplers

Class No. of
Accuracy

images
Without Weighted Balanced
Sampler Sampler Sampler

Polyp 109 0.495 0.688 0.706
Irrelevant 953 0.964 0.927 0.926

Avg. Acc - 0.916 0.903 0.904

SaLIP-V (DSC) - - 0.484 0.481

In contrast, employing samplers improved classification accuracy for the minority

class, from 0.495 to 0.688 with the weighted sampler and to 0.706 with the balanced

sampler, as shown in Table 6.9. However, when the adapted classifier, was integrated

into the second phase of our proposed framework (Section 6.3.2) to segment the

recognized polyp regions in the images, the DSC remained low at 0.484 (Table 6.9

(SaLIP-V))

To investigate the reasons for this persistent poor performance, a qualitative

analysis was conducted, as detailed in the following section.
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Qualitative Analysis

The proposed SaLIP-V framework consists of two phases (Section 6.3), evaluation of

both phases is conducted to investigate the reasons for poor performance for polyps

classification and segmentation.

For the first phase of our method (i.e., the few-shot classification setup – Sec-

tion 6.3.1), the proposed labeling approach, along with the classification performance

of the linear classifier is evaluated. For the second phase of our method (i.e., seg-

mentation of fine-grained region – Section 6.3.2), the performance of both SAMEM

for generating masks of various fine-grained image sub-region as well as the adapted

linear classifier in recognizing and classifying different classes is evaluated.

Diversity and Variability of Fine-Grained Regions

One of the key factors that adversely affected the performance of our proposed

SaLIP-V framework in polyp localization is the wide diversity and variability in

polyp morphology and spatial location. The influence of this diversity on SaLIP-V’s

performance is demonstrated through a few examples shown in Figure 6.5. Across

the reported images, significant variations in polyp morphology, spatial location,

and shape are clearly visible, as shown in the ground truth displayed in the second

column. The red bounding box in the fourth column of Figure 6.5 (bbox coordinates)

shows the region of the image classified as ROI by our method, from the region

proposal generated by SAMEM (Section 6.3.2) as shown in Figure 6.5. The last

column shows the segmentation output from our method.

In the first row of Figure 6.5, the highlighted region (red bounding box) is classi-

fied as a polyp. This prediction appears accurate when evaluated independently, as

the predicted region resembles a pathological structure. However, it is an incorrect

prediction. Similarly, in the second row, the detected ROI appears accurate due to

its strong resemblance to the polyp structure in the first-row image. However, it is

incorrect when compared to the actual ground truth.

This variability in polyp’s morphology and spatial location poses significant chal-
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Figure 6.5: Impact of polyp variability on SaLIP-V performance.

lenges in accurately classifying ROI which impacts the generalization of our proposed

method. The miss-classification eventually impacts the segmentation result of fine-

grained regions corresponding to polyps as evident in Figure 6.5. Therefore, the

variability inherent in fine-grained medical imaging analysis tasks, such as the chal-

lenging tasks of polyp localization and segmentation, presents significant challenges

and needs further improvement.

To address these challenges, a potential direction for future work is to imple-

ment data augmentations and generate synthetic data from the few-shot dataset

to increase the volume of available data. By leveraging these augmentations, both

diversity and dataset size could be enhanced, leading to improved classification ac-

curacy and ultimately enhancing the segmentation performance of the proposed

framework.

Region Proposals Generated by SAM

In some cases, polyps exhibit a camouflaged morphological appearance with indis-

tinct boundaries, as demonstrated in the examples presented in Figure 6.6. Conse-
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quently, SAM often fails to generate accurate masks in these cases. The first column

presents the input image, the second column displays the ground truth, and the third

column shows the region proposals generated by SAM. In each of the three cases,

a comparison with the ground truth reveals that SAM failed to generate masks for

the polyp region, which is camouflaged in these reported cases.

Input Region 
Proposals

Ground 
Truth

Figure 6.6: SAM Limitation: No masks are generated for camouflaged
polyp regions. Region proposals: Masks generated by SAM.

Unlike the first evaluated fine-grained task, which focuses on lung spatial lo-

calization and segmentation involving relatively consistent anatomical structures

(Section 6.5.3), the second task i.e., polyp detection and segmentation—presents

considerably greater challenges.

This analysis provided valuable insights into the limitations of foundation models

in fine-grained medical tasks, where the region of interest may have varying morpho-

logical structures, inconsistent spatial locations, and camouflaged areas that blend

with the surrounding features and lack clear boundaries, such as polyps. This vari-

ability complicates the segmentation process, as demonstrated in Figure 6.5 and 6.6.
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Few-shot Dataset Creation

The first phase of our proposed approach is few-shot classification of fine-grained

regions (Section 6.3.1). The proposed labeling approach for the few-shot dataset

impacts the second phase of our method i.e., segmentation of the region of interest

picked by the adapted classier from the first phase (Section 6.3.1 (a)).

In the first evaluated fine-grained task involving localization and segmentation of

lungs (Section 6.5.3), the labeling process was straightforward, as the lungs consti-

tute the major region. Therefore, selecting the region from the SAMEM generated

image sub-regions that had the highest dice coefficient compared to the ground truth

proved effective for label creation.

In contrast for polyps recognition/classification, a single image may contain mul-

tiple polyps, as illustrated in Figure 6.7 (first row). We initially used the argmax

function to select the mask for the region of interest with the highest dice score from

the pool of SAM-generated region proposals. However, this approach resulted in the

selection of only a single polyp and resulted in reduced dice scores for the instances

where multiple polyps are present (Figure 6.7– first row).

Additionally, SAM often generates multiple masks corresponding to different

sub-parts of the same polyp region, rather than producing a single cohesive mask

that encompasses the entire polyp region. In such scenarios, using argmax function

selects only a sub-part of the polyp, leading to a reduced dice score, as shown in

Figure 6.7 (second row, third column).

To address these issues, we revised our labeling process for creating the few-

shot dataset and used a threshold-based labeling approach (Section 6.3.1). Each

sub-region generated by SAMEM with a dice coefficient greater than 0.5, when

compared to the ground truth, is labeled as a “polyp”. The last column in Figure 6.7

illustrates that our revised labeling approach effectively recognizes and segments

multiple polyps in the image (Figure 6.7– first row, fifth column). It also successfully

segments the entire polyp region, which was initially predicted as individual sub-

parts of the image by SAMEM as shown in Figure 6.7 (second row, fifth column).
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Figure 6.7: Few-shot dataset creation: comparison of labeling approaches.

The revised labeling approach highlighted another limitation of SAM: it often

segments only partial regions of polyps, failing to generate masks for the remaining

sub-regions that constitute the polyps, as illustrated in Figure 6.8. This partial

segmentation results in only a portion of the polyp being labeled as “polyp” dur-

ing the label creation process (Section 6.3.1). Consequently, this incorrect labeling

adversely affects the performance of the overall SaLIP-V framework, as the model

does not receive sufficient information to accurately classify different image regions

and retrieve the correct ROI.

Region  ProposalsGround Truth Label: Polyp Input

Figure 6.8: SAM Limitation: Partial segmentation of the region of inter-
est.

This analysis provided insights into several limitations of the SAM foundation

model in fine-grained medical imaging analysis tasks. Specifically, it struggles to

segment larger, continuous anatomical structures as a single cohesive region (Fig-

ure 6.8). Instead, it may generate multiple masks for sub-parts of the same structure
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(Figure 6.8, first row) or produce partial segmentation masks of anatomical regions

(Figure 6.8, second row). Such inconsistencies create challenges for our labeling

process, making it challenging for the linear classifier to accurately categorize the

SAMEM generated region proposals. As a result, these limitations pose significant

challenges to the application of foundation models in fine-grained medical tasks that

require precise recognition and segmentation of complex pathologies, such as polyps.

6.6 Summary

This chapter presents our work on the adapting foundation model to complex fine-

grained medical imaging tasks. We introduced a new framework called SaLIP-V

which facilitates light-weight adaptation of foundation models in a few-shot set-

ting. In contrast to existing approaches that primarily leverage foundation models

for coarse/global image-level tasks, SaLIP-V specifically targets fine-grained medi-

cal imaging analysis. These tasks involve the analysis of anatomical structures or

pathologies often have varying spatial locations and complex morphological features

and require fine-grained visual perception.

SaLIP-V is the first approach to employ visual prompting specifically for fine-

grained medical imaging tasks. Instead of relying on annotated data for visual

prompt engineering, it automatically generates visual prompts in a zero-shot man-

ner for different regions in medical images without any labeled data and domain

expertise (Section 6.3.2).

SaLIP-V is evaluated on two different fine-grained medical imaging tasks. First,

it is evaluated on the recognition and segmentation of anatomical structures based

on spatial locations and distinct features (Section 6.5.3 (Task 1)). This evaluation

specifically focuses on localization/recognition of lung in chest X-ray followed by

segmentation. SaLIP-V achieved a classification accuracy of 0.946 and a dice score

of 0.874 for segmentation (Section 6.5.3), achieving a 4% improvement over the

SaLIP framework introduced in Chapter 5.

The second fine-grained task involves the localization, recognition, and segmen-
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tation of polyps. For this task, SaLIP-V achieved a classification accuracy of 0.79

and a dice score of 0.50 for segmentation (Table 6.8). The performance of SaLIP-V

in this task is notably lower as compared to the first tasks. It is primarily because

polyps are small, subtle, have varying morphological structures, inconsistent spatial

locations (Figure 6.5), and are often camouflaged (Figure 6.6) which presents signif-

icant challenges for accurate identification (Section 6.5.3 (Task 2)). These are our

preliminary results, and we plan to further enhance SaLIP-V for this task in the

future.

A comprehensive analysis of SaLIP-V is conducted to evaluate the reasons behind

its limited performance on the second task (Section 6.5.3). This analysis provided

valuable insights into several limitations of foundation models for complex fine-

grained medical tasks (see Sections 6.5.2, and 6.5.3). These limitations suggest

potential research directions. A few of these include incorporating augmentation

techniques into the few-shot classification setup and applying generative methods to

synthesize additional data samples from the limited few-shot data. Such approaches

can provide SaLIP-V with diverse training examples, thereby enhancing its ability

to learn and adapt to the diverse nature of polyps.

6.6.1 Insights

SaLIP-V’s experimental evaluation on challenging fine-grained tasks, such as the

recognition of pathological structures that possess diverse spatial locations and vary-

ing morphological structures, has provided the following valuable insights:

1. While segmentation foundation models like SAM have shown exceptional zero-

shot transferability in segmenting natural images and large organs in medi-

cal imaging (Chapter 5), they often struggle with fine-grained segmentation.

Specifically, SAM fails to segment complex pathological structures, such as tu-

mors, which are often subtle and very small (Figure 6.5). Additionally, SAM

encounters challenges when tumors are camouflaged or lack distinct bound-

aries, a common issue in complex diseases like tumors, as illustrated in Fig-
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ure 6.6.

2. CLIP has demonstrated impressive performance across a wide range of recogni-

tion and classification tasks. Additionally, visual prompting further enhances

its zero-shot transferability in the natural imaging domain (Section 6.2). How-

ever, CLIP’s embedding space lacks the domain-specific semantic knowledge

required for fine-grained medical tasks. It makes CLIP less suited for such

tasks. The complex and domain-specific terminology of the medical domain

further poses challenges for CLIP’s generalized embeddings. Thus these chal-

lenges limit its effectiveness for tasks requiring precise anatomical localization

(Section 6.5.2).

3. Large language models (LLMs) like GPT-3.5 [52] have been widely used for

textual prompt engineering in image-level tasks [120]. It has also shown ef-

fectiveness in medical applications (Chapter 5), for prompt engineering to de-

scribe organs with promising results (Section 5.5). However, prompt engineer-

ing for fine-grained medical imaging tasks is more complex, and LLMs often

perform poorly in this context. This limitation stems from the inherent com-

plexity and domain-specific challenges of medical imaging. While LLMs are

designed for general tasks, they are not well-equipped to address the special-

ized demands of fine-grained medical image analysis, such as creating prompts

for anatomical structures based on spatial locations and distinguishing features

(Appendix A.1.2), or for complex pathologies that are subtle, vary in spatial

location, and have intricate morphological features. As a result, LLMs lead to

poor performance in these fine-grained medical imaging tasks (Section 6.5.2,

Appendix A.2.1).
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Conclusion

Neural networks have shown exceptional performance across medical imaging tasks,

becoming state-of-the-art tools in clinical workflows. However, this success is based

on certain requirements: the training and testing data are typically assumed to

be identically and independently distributed. Domain shift, however, can severely

impact a model’s generalizability, presenting significant challenges in maintaining

robust performance across diverse clinical settings. Adding to this challenge, neural

networks require large amounts of annotated data to achieve top results. However,

acquiring such datasets for medical applications is both costly and resource-intensive,

as labeling medical data typically requires expert knowledge. Moreover, privacy

concerns and restrictions on data sharing between institutions further exacerbate

the issue.

The research presented in this thesis addresses these challenges: Chapters 3

and 4, address model generalization issues caused by domain shifts across diverse

medical imaging domains, and propose alternatives to reduce reliance on strong su-

pervision during training. Chapter 5 proposes an efficient, supervision-free test-time

adaptation framework for adapting foundation models to diverse medical imaging

tasks. Chapter 6 focuses on developing a pipeline for adapting foundation models

to perform fine-grained medical tasks.

In particular, Chapter 3 investigates the impact of domain shift on model gener-

alization, emphasizing the limitations of supervised learning approaches in adapting
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to diverse medical imaging domains. The evaluation is conducted on raw medical

data from diverse domains, sourced from multiple hospitals, reflecting variations in

acquisition protocols. These differences pose significant challenges within a super-

vised training framework. To address these challenges, an ensemble deep learning

approach combined with test-time data augmentation is proposed to improve model

generalization across domains, with the limited available data.

In Chapter 4 we eased the supervision restriction and assumed the unavailabil-

ity of labeled samples from the target domain, i.e., unsupervised domain adapta-

tion. In this context, the proposed approach tackles two key challenges: creating

dedicated models for each downstream task and the computational overhead inher-

ent in supervised domain adaptation methods. Specifically, a parameter-efficient,

self-supervised domain adaptation strategy is proposed to adapt convolutional neu-

ral networks to multiple target domains. This chapter demonstrates that, when

properly regularized, parameter-efficient adaptation in an unsupervised manner can

achieve performance comparable to that of supervised domain adaptation.

Chapter 5 explores the test-time adaptation of foundation models for a wide

range of medical imaging tasks. This research addresses several key challenges: the

scarcity of labeled data, the need for domain expertise for prompt engineering, and

the significant computational cost of adapting foundation models to downstream

tasks. A novel framework, SaLIP is proposed to facilitate zero-shot adaptation of

foundation models for medical organ segmentation, without requiring labeled data

or specialized domain expertise for prompt engineering. Furthermore, we provide

valuable insights into how foundation models can generalize to medical imaging tasks

in scenarios where labeled data and domain-specific knowledge are limited or not

readily available.

Chapter 6, investigates the adaptation of foundation models for complex, fine-

grained medical tasks within a few-shot learning framework. It leverages visual

prompting techniques to guide foundation models in accurately identifying and an-

alyzing specific pathological features. In particular, a framework called SaLIP-V
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is introduced as a lightweight alternative designed to adapt foundation models for

fine-grained medical tasks.

In this chapter, Section 7.1 addresses the hypothesis described in Chapter 1, and

how the research presented in Chapters 3 to 6 addresses the hypothesis through

the research questions also introduced in Chapter 1. Section 7.2 summarizes the

research contributions of this thesis. Section 7.3 elaborates on the suggestions for

future research introduced in the main chapters of the thesis. Finally, Section 7.4

provides the closing remarks for this thesis.

7.1 Hypothesis and Research Questions

The hypotheses introduced in Chapter 1 are discussed in this section with respect to

the research presented in the corresponding chapters. Each of the research questions

associated with each hypothesis is addressed to provide a more concise notion of the

contribution of this thesis.

Hypothesis 1

In medical imaging scenarios with multiple target domains, low-rank adapters can

facilitate parameter-efficient adaptation of convolutional neural networks. It pro-

vides an alternative to training separate dedicated networks for each domain and

achieves performance similar to full model adaptation while reducing computational

overhead.

• Research Question 1: What are the key challenges and limitations

of supervised adaptation approaches when applied to diverse medi-

cal imaging datasets? Specifically, how do domain shifts and data

scarcity affect the generalization of neural networks for medical imag-

ing tasks?

The experiments described in Chapter 3 investigate the effect of domain shift on

the generalization of neural networks using data collected from different acquisi-
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tion devices and hospitals. To address the challenges of domain shift and limited

data availability, our proposed approach utilizes an ensemble of neural networks

combined with test-time augmentation. This method is evaluated on the STOIC

2021 dataset [161], which consists of raw CT scan images collected from multiple

hospitals over a period of time. While the proposed approach performed well,

securing fourth place in the STOIC challenge, the findings offered valuable in-

sights. Specifically, the results emphasize that supervised adaptation approaches

struggle to generalize effectively due to domain shifts and the scarcity of labeled

data. Furthermore, the experiments highlight that task-specific supervision alone

is not sufficient for tackling the diverse and complex nature of medical imaging

tasks.

• Research Question 2: How could the parameter-efficient adaptation

approach be enforced in the unsupervised adaptation of convolutional

neural networks? Could convolutional neural networks benefit from

the features learned through self-supervised training when using parameter-

efficient adaptation?

The experiments outlined in Chapter 4 demonstrate that convolutional neural net-

works can be effectively adapted to multi-target domains in a parameter-efficient

manner within a self-supervised framework. Our proposed convolutional low-

rank adaptation approach offers a parameter-efficient alternative to traditional

supervised adaptation methods. By adapting significantly fewer parameters, our

method provides several advantages: enhanced model generalization across multi-

target domains, reduced dependence on strong supervision, mitigation of over-

fitting risks associated with adapting the entire model with limited data, and

alleviation of the computational constraints tied to creating separate dedicated

fine-tuned models for each target domain through supervised training. In partic-

ular, we conclude that parameter-efficient adaptation in a self-supervised setup is

an effective alternative to supervised domain adaptation, particularly for multi-

target domain scenarios. Notably, the success of parameter-efficient adaptation
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techniques is influenced by task-specific characteristics, and regularization is es-

sential to achieve optimal performance.

Hypothesis 2

In the absence of annotated data or domain expertise, the test-time adaptation of

foundation models (FMs) can enable efficient adaptation to diverse medical image

tasks. FM-extracted features can be adapted for fine-grained analysis without requir-

ing large datasets.

• Research Question 3: Can test-time adaptation of foundation models

provide a more robust alternative to supervised or semi-supervised do-

main adaptation approaches? Can foundation models be effectively

adapted to diverse medical imaging tasks without relying on annotated

data, additional training, or specialized domain expertise?

Experiments described in Chapter 5, focus on exploring the inherent limitations

and challenges associated with adapting natural foundation models to the medical

imaging domain. Our proposed test-time adaptation framework is specifically de-

signed to address the constraints of supervised/semi-supervised adaptation meth-

ods and to overcome the inherent limitations of directly applying foundation mod-

els to medical tasks. Our proposed test-time adaptation framework is evaluated

through zero-shot organ segmentation across various medical imaging modalities,

demonstrating the robustness and effectiveness of our method. In conclusion, our

framework facilitates the test-time adaptation of foundation models for medical

organ segmentation, eliminating the need for additional supervised training, task-

specific fine-tuning, annotated data, or specialized domain expertise for prompt

engineering.

• Research Question 4: Can foundation models be effectively adapted to

challenging fine-grained medical imaging tasks?
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Experiments conducted in Chapter 6 explore the adaptation of natural founda-

tion models to fine-grained medical imaging tasks. A simple yet effective approach

is introduced to utilize the embedding space of foundation models, enabling the

extraction of features that can be efficiently adapted with a lightweight linear

classifier in a few-shot learning scenario. The results of these experiments demon-

strate that the foundation models can be effectively adapted for fine-grained tasks

that involve relatively stable, well-defined features, such as specific anatomical lo-

cations. However, foundation models are less effective for more complex tasks,

particularly those involving pathological structures with varying spatial locations

and morphology, or have camouflaged features. Furthermore, as experimentally

demonstrated in Chapter 6, large language models are not well-suited for fine-

grained medical tasks, such as textual prompt engineering for complex pathologi-

cal structures. In these contexts, LLMs tend to hallucinate which results in poor

generalization.

7.2 Research Contributions and Proposed Solu-

tions

The contributions of this research are summarized in the following list:

• Chapter 3: An Ensemble Approach with Test-Time Augmentations

1. The challenges of supervised learning, particularly regarding domain shift

and model generalizability, are assessed using real-world raw chest CT

volumes acquired from diverse hospitals and medical domains.

2. The proposed ensemble approach combined with test-time augmenta-

tion offers a simple yet effective solution and secured fourth place in

the STOIC COVID-19 AI Challenge.

• Chapter 4: Parameter efficient adaptation of convolution neural networks
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1. A new unsupervised parameter-efficient adaptation framework is pro-

posed for multi-target domain adaptation. Specifically, a new method

called Convolutional Low-Rank Adapter (ConvLoRA) is proposed to adapt

the convolutional neural network to multi-target medical imaging do-

mains. It offers an effective adaptation alternative to traditional super-

vised domain adaptation techniques.

2. Our ConvLoRAmethod is implemented in a self-supervised setting, which

facilitates the adaptation to target domains without relying on labeled

data.

3. ConvLoRA is a generic parameter-efficient adaptation method and can be

easily integrated into deep neural networks having convolutional layers,

thereby facilitating effective domain adaptation.

4. Experimental results demonstrate that our method is complementary to

existing approaches. Combining ConvLoRA with other domain adapta-

tion techniques further enhances model generalizability to diverse target

domains.

• Chapter 5: Test Time Adaptation of Foundation Models

1. A novel test-time adaptation framework called SaLIP is proposed to

adapt natural foundation models for the medical imaging domain. SaLIP

utilizes a cascade of foundation models to enable zero-shot medical or-

gan segmentation, effectively bridging the gap between general-purpose

models and specialized medical tasks.

2. SaLIP effectively addresses the key challenges associated with adapting

foundation models to medical imaging tasks. It does not need supervised

training, task-specific fine-tuning, and is independent of specialized do-

main expertise for prompt engineering, thus streamlining the adaptation

process.

3. SaLIP is evaluated across a range of medical imaging modalities, exper-
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imentally demonstrating its robustness and strong generalization across

diverse domains.

4. Through comprehensive analysis, we provide valuable insights into the

adaptation of foundation models without annotated data, highlighting

their relevance and applicability in real-world medical scenarios.

• Chapter 6: Few-shot Adaptation of Foundation Models

1. The adaptation of foundation models to complex, fine-grained medical

imaging tasks is evaluated through comprehensive experimental evalua-

tion.

2. A few-shot approach is proposed as a lightweight adaptation alternative,

designed to effectively leverage foundation models for extracting robust

and adaptable features for fine-grained medical imaging tasks.

3. Experimental results provided valuable insights into the inherent limi-

tations of current foundation models in performing fine-grained medical

imaging tasks. These limitations include challenges in the recognition

and localization of small, subtle pathological structures– such as tumors

– that have varying spatial locations, morphologies that change over time,

and, in some cases, are camouflaged. These challenges impede the effec-

tive adaptation of foundation models to complex, fine-grained tasks.

We also highlight potential research directions for each chapter, aiming to ad-

vance the field toward more realistic scenarios and enhance the applicability of neural

networks to real-world challenges. These insights are further elaborated in Sec-

tion 7.3.

7.3 Recommendations and Future Work

In this section, we outline potential future research directions based on the limita-

tions identified in each chapter. These limitations with the possible solutions and
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their respective outcomes are discussed in detail throughout the chapters. Here, we

provide a concise summary of these limitations and propose the potential research

direction for future exploration.

• Scalability and Robustness of Parameter Efficient Adaptation

– A limitation of the proposed approach is that, while it demonstrated

robustness across five different target domains for brain segmentation us-

ing the CC359 dataset [11], it was less effective for the segmentation of

complex cardiac structures in M&M dataset [12]. Although the method

improved model generalization for brain skull segmentation, its perfor-

mance on cardiac structures was relatively less effective.

– Future research could focus on architectural modifications of our proposed

method to enhance its robustness and scalability across a broader range

of diverse datasets.

• Test-Time Adaptation of Foundation Models

– While our proposed framework demonstrated strong and consistent per-

formance across a variety of medical imaging modalities, there were in-

stances where the Segment Anything Model (SAM) [13] struggled to gen-

eralize effectively and failed to accurately segment the region of interest

(Section 5.5.5).

– At the time of our research on test-time adaptation, the original SAM

had just been released [13]. Since then, its successor, SAM-2, has been

introduced and is reported to outperform the original model [288]. Fu-

ture work could explore whether SAM-2 enhances the performance of our

proposed framework.

– Since the proposed test-time framework relies on a cascade of founda-

tion models, a failure in any one component can lead to error propa-

gation throughout the pipeline. A promising avenue for future research
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involves integrating uncertainty estimation mechanisms into the proposed

pipeline. Such mechanisms could help detect failure points, prevent error

propagation, and enhance robustness by providing confidence estimates

for model predictions.

• Few-shot adaptation of foundation models for fine-grained medical imaging

tasks

– The proposed approach is our initial attempt at adapting foundation

models to fine-grained medical imaging tasks. While it showed promis-

ing results on one of the evaluated tasks, challenges persist in detecting

pathological structures with varying spatial locations and morphologies.

– Further improvements are necessary to optimize foundation model adap-

tation while preserving the proposed approach’s few-shot nature. Poten-

tial solutions may include leveraging additional synthetic data, enabling

the proposed adaptation approach to learn more universal robust features

required for fine-grained tasks.

– Data augmentation techniques can enhance the generalization of the pro-

posed framework. While current augmentation methods are primarily

image-specific, we see significant value in developing domain-agnostic ap-

proaches that can be generalized across various data types.

– Instead of developing specialized foundation models for individual tasks,

a more impactful research direction is to optimize existing models for a

broader range of domains. This strategy would improve the foundation

model’s robustness and generalizability across a diverse set of applica-

tions.

7.4 Closing Remarks

Recent advancements in computer vision, particularly driven by deep learning tech-

niques, have enabled significant progress in medical image analysis. The research
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conducted during the development of this thesis focused on the applicability of deep

learning methods in medical imaging, particularly in the context of challenging real-

world conditions: the reduced generalizability of models caused by discrepancies

between training and testing data distributions due to domain shifts, and the lim-

ited availability of annotated data. The motivation for the former stems from the

challenge that models are often trained with the assumption that the training and

testing datasets follow the same distribution. Moreover, model generalization is of-

ten evaluated by creating splits within the same dataset, which may not accurately

reflect real-world scenarios. The latter, however, is driven by the lack of sufficient

medical data, which is crucial for effectively training deep learning models.

The approaches explored and developed in this thesis improve model robustness

and generalization, addressing challenges such as domain shift and the limited avail-

ability of labeled medical data. In particular, our parameter-efficient adaptation

within a self-supervised learning framework offers significant benefits in scenarios

where multiple target domains exist with varying degrees of domain shift. These

challenges are especially pronounced in fields like medical imaging, where expert an-

notations are scarce due to the specialized knowledge required, or in self-driving cars,

where large volumes of data are readily available but costly and time-consuming to

annotate. Test-time adaptation of foundation models would be a valuable solution

in scenarios where source domain data is limited, overfitting is a risk, and computa-

tional resources are constrained. For example, in the medical domain, it eliminates

the need for task-specific supervision and specialized domain expertise, and in the

research itself, where comparing different computationally expensive algorithms of-

ten slows down the exploration of the field. Additionally, in smart environments, it

can enable models to be trained directly on edge devices. Few-shot adaptation of

foundation models would be especially beneficial in fields that require a fine-grained

understanding of data enabling models to quickly adapt to new tasks with mini-

mal labeled examples. For example in medical imaging to detect rare diseases or

conditions with limited labeled data and in autonomous driving, few-shot learning
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allows vehicles to quickly adapt to new or rare road conditions, weather patterns,

or geographical environments with limited labeled data.

Concretely, this thesis explores robust domain adaptation methods to improve

model generalizability across diverse target domains, particularly in the presence

of domain shift, limited data, and a lack of domain expertise. The author finds

it particularly interesting that models trained on a source domain often struggle to

generalize when evaluated on diverse target domains, resulting in poor performance.

However, by leveraging our proposed unsupervised parameter-efficient adaptation

approach, which involves adapting a significantly smaller number of parameters, the

model can generalize effectively across a wide range of target domains, allowing an

effective alternative to supervised training. In particular, the proposed test-time

adaptation method addresses the substantial performance degradation typically ob-

served in foundation models when evaluated on medical imaging datasets. Continued

research for adapting foundation models to the challenging scenarios outlined ear-

lier will be beneficial in developing robust domain adaptation techniques capable of

effectively handling real-world complexities. This exploration has the potential to

enhance model generalization and reliability across diverse practical applications.
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Appendix Title

A.1 Textual Prompt Engineering for SaLIP using

GPT-3.5

A.1.1 Lungs

In this study, we use a two-step prompting strategy to identify relevant charac-

teristics that aid in the detection of crops having the desired organ, following the

approach proposed in [120].

Example of the first prompt for the lung dataset:

I am creating a zero-shot lung recognition system in a chest x-ray. Write me 20

attributes to describe the lungs in the chest x-ray.

Creating a zero-shot lung recognition system involves identifying and describing

features that can uniquely identify and describe the lungs in a chest X-ray. Here are

20 attributes that could be relevant for such a task:

Lung Size: The overall size of the lungs, noting whether they are expanded, nor-

mal, or show signs of constriction or atelectasis. Lung Shape: The general shape of

the lungs, including any deviations from the typical butterfly shape. Opacity: The de-

gree of darkness observed in the lung fields, indicating the presence of fluids, masses,
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or other abnormalities. Texture: The internal texture of the lung fields, whether it

appears smooth, granular, or shows specific patterns such as reticular, nodular, or

cystic formations. Symmetry: The comparative symmetry between the right and left

lungs, noting any significant differences. Lung Borders: The clarity and integrity of

the lung borders, particularly against the heart and diaphragm. Hilum Position and

Appearance: The location and appearance of the lung hila, which may be displaced or

show signs of enlargement. Pleural Line: The visibility and condition of the pleural

line, including any thickening, plaques, or pneumothorax (air in the pleural space).

Costophrenic Angles: The sharpness and clarity of the costophrenic angles, noting

any blunting which may suggest pleural effusion. Vascular Markings: The visibility

and pattern of vascular markings within the lung fields. Air Bronchograms: The

presence of air-filled bronchi (tubular structures) against a background of opaque

lung, indicating consolidation. Tracheal Position: The position of the trachea, not-

ing if it is centered or displaced. Diaphragm Appearance: The contour and position

of the diaphragm, including any signs of elevation or abnormal curvature. Car-

diac Silhouette: The size and shape of the heart shadow as it relates to the lungs.

Mediastinal Width: The width of the mediastinum, noting any widening that may

suggest mediastinal masses or lymphadenopathy. Interstitial Markings: The pres-

ence of lines and markings that may indicate interstitial lung disease. Lung Apex:

The condition and appearance of the lung apex, looking for masses, fibrosis, or other

abnormalities. Presence of Calcifications: The presence and distribution of calcifi-

cations within the lung fields, which may suggest old infections or tumors. Pleural

Effusion: The presence of fluid in the pleural space, visible as an area of increased

opacity. Foreign Bodies or Devices: The presence of any foreign bodies, surgical

clips, pacemaker leads, or other medical devices. These attributes are critical for a

detailed analysis and recognition of lung health and disease in chest X-rays. Each at-

tribute can help differentiate between normal lung anatomy and various pathologies,

aiding in the development of a comprehensive zero-shot lung recognition system.

Example of the second prompt for the lung dataset which uses GPT-3.5’s re-
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sponse for the first prompt as part of the prompt:

Now write me sentence about each of these attributes with “lung” in the sentences

and return the answer as a Python dictionary, with lungs as a key.

The response of the second prompt constitutes the visual descriptive (VDT)

information about lungs.

“Lungs:” [“The X-ray shows the shape of the lungs, whether they appear rounded

or irregular.” “The X-ray indicates the relative size of the lungs within the chest cav-

ity, providing insights into lung health.”, “The X-ray helps assess the proper position

of the lungs within the chest cavity.”, “The X-ray reveals the density of the lung areas,

indicating the presence of air or tissue within the lungs.”, “The X-ray evaluates how

clear the lung fields appear by assessing the transparency of the lungs.”, “The X-ray

shows the texture of the lungs, whether they appear smooth or have irregularities.”,

“The X-ray provides insights into the vascular pattern within the lungs, aiding in

the assessment of lung circulation.”, “The X-ray examines the borders of the lungs,

assessing for normal anatomy or potential abnormalities.”, “The X-ray checks the

presence and integrity of lung fissures, the thin lines separating lung lobes.”, “The X-

ray evaluates structures at the lung hilum, such as lymph nodes and bronchi, for any

abnormalities.”, “The X-ray assesses the contour of the diaphragm where it meets

the lungs, ensuring proper lung function.”, “The X-ray checks the angles formed by

the diaphragm and the chest wall, assessing for effusion or pneumothorax in the

lungs.”, “The X-ray examines the appearance and distribution of bronchi and blood

vessels within the lungs.”, “The X-ray detects fine linear or reticular opacities within

the lung fields, indicating interstitial lung disease.”, “The X-ray assesses the space

between the lung and the chest wall for any effusion or pneumothorax.”, “The X-ray

evaluates the deviation of the trachea from its normal position, indicating potential

mediastinal shift or mass effect on the lungs.”, “The X-ray examines the appearance

of ribs surrounding the lungs, checking for integrity and potential fractures.”, “The

X-ray shows the outline of the heart within the chest, which can influence the appear-
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ance of the lung fields.”, “The X-ray assesses the structures within the mediastinum,

providing insights into their impact on the adjacent lungs.” ]

A.1.2 Prompt Engineering based on Spatial Location of Lungs

Example of the first prompt for the lung dataset:

I am creating a zero shot right and left lung recognition system in a chest x-ray.

Write me 10 attributes to describe the left and right lungs in the chest x-ray.

Attributes of the Left Lung:

“Position: Situated on the left side of the thoracic cavity.” “Size: Slightly smaller

than the right lung to accommodate the heart.” “Lobes: Consists of two lobes -

the superior and inferior lobes, separated by the oblique fissure.” “Function: Main

function is to exchange oxygen and carbon dioxide with the blood during respira-

tion.” “Medical Significance: Annotated images showing the left lung are essential

in medical imaging for diagnosing various respiratory conditions.” “Blood Circula-

tion: Receives oxygenated blood from the pulmonary veins and sends deoxygenated

blood to the pulmonary arteries.” “pH Regulation: Plays a role in regulating blood

pH through the removal of carbon dioxide.” “Development: Undergoes morpho-

logical changes during development, including the formation of bronchial buds and

bronchopulmonary segments.” “Susceptibility: Susceptible to infections such as

pneumonia and tuberculosis, which can cause inflammation and compromise respi-

ratory function.”

Attributes of the Right Lung:

“Position: Located on the right side of the thoracic cavity.” “Size: Slightly

larger than the left lung due to the presence of the heart.” “Lobes: Divided into

three lobes - the superior, middle, and inferior lobes, separated by the horizontal

and oblique fissures.” “Function: Plays a crucial role in oxygenating the blood and

removing carbon dioxide from the body.” “Medical Significance: Medical annota-

tions on images showing the right lung aid in diagnosing diseases such as pneumonia,
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lung cancer, and tuberculosis.” “Blood Circulation: Receives deoxygenated blood

from the systemic circulation via the pulmonary arteries and returns oxygenated

blood to the heart through the pulmonary veins.” “Aspiration Risk: More prone

to injury from aspiration due to its more vertical orientation of the main bronchus

compared to the left lung.” “Diseases: Susceptible to diseases such as emphysema,

bronchitis, and pulmonary embolism, which can impair respiratory function.” “De-

velopment: Undergoes branching morphogenesis during embryonic development to

form the bronchial tree and alveoli.” “Gas Exchange: Has a larger capacity for gas

exchange compared to the left lung due to its larger surface area.”

Example of the second prompt for the lung dataset which uses GPT-3.5’s re-

sponse for the first prompt as part of the prompt:

Now write me a sentence about each of these attributes with “left lung” and “right

lung” in the sentences of each respective class and return the answer as a Python

dictionary, with right and left lung key labels.

The response of the second prompt constitutes the VDT information about left

lung and right lung.

“lungs:” { “left lung”: “A left lung is situated on the left side of the thoracic

cavity.”, “It is slightly smaller than the right lung to accommodate the heart.”, “The

left lung consists of two lobes: the superior and inferior lobes, which are separated

by the oblique fissure.”, “Its main function is to exchange oxygen and carbon dioxide

with the blood during respiration.”, “Annotated images showing the left lung are

essential in medical imaging for diagnosing various respiratory conditions.”, “The

left lung receives oxygenated blood from the pulmonary veins and sends deoxy-

genated blood to the pulmonary arteries.”, “In addition to its respiratory function,

the left lung also plays a role in regulating blood pH through the removal of carbon

dioxide.”, “Certain diseases, such as pulmonary edema and pulmonary fibrosis, can

affect the left lung’s ability to function properly.”, “During development, the left
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lung undergoes morphological changes, including the formation of bronchial buds

and the establishment of bronchopulmonary segments.”, “The left lung is suscepti-

ble to infections, such as pneumonia and tuberculosis, which can cause inflammation

and compromise its respiratory function.” ,

“right lung”: “A right lung is located on the right side of the thoracic cavity.”,

“It is slightly larger than the left lung due to the presence of the heart.”, “The

right lung plays a crucial role in oxygenating the blood and removing carbon diox-

ide from the body.”, “Medical annotations on images showing the right lung aid in

diagnosing diseases such as pneumonia, lung cancer, and tuberculosis.”, “The right

lung is divided into three lobes: the superior, middle, and inferior lobes, separated

by the horizontal and oblique fissures.”, “It receives deoxygenated blood from the

systemic circulation via the pulmonary arteries and returns oxygenated blood to the

heart through the pulmonary veins.”, “The right lung is more prone to injury from

aspiration due to its more vertical orientation of the main bronchus compared to the

left lung.”, “Diseases affecting the right lung include emphysema, bronchitis, and

pulmonary embolism, which can impair its respiratory function.”, “During embry-

onic development, the right lung undergoes branching morphogenesis to form the

bronchial tree and alveoli.”, “The right lung has a larger capacity for gas exchange

compared to the left lung due to its larger surface area.” }

A.1.3 Fetal Head

Example of the first prompt for the fetal head segmentation:

I am creating a fetal head recognition system from the transthalamic and transven-

tricular ultrasound planes; write me 20 attributes to describe the fetal head.

Head Circumference: Measurement of the circumference of the fetal head, indi-

cating overall size. Biparietal Diameter (BPD): Distance between the two parietal

bones, a key indicator of fetal head size and gestational age. Head Shape: Describing
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the overall shape of the fetal head, which can vary from round to more elongated.

Skull Density: Density of the fetal skull bones, influencing ultrasound image con-

trast. Fontanelle Size: Size and appearance of the fontanelles, indicating the stage

of skull ossification. Cerebral Ventricles: Presence and size of cerebral ventricles

within the fetal brain. Cranial Bone Integrity: Assessment of the integrity of the

cranial bones, looking for any fractures or abnormalities. Midline Structures: Iden-

tification of midline structures such as the falx cerebri and cavum septi pellucidi.

Cerebellar Vermis: Presence and size of the cerebellar vermis, important for assess-

ing brain development. Third Ventricle: Measurement and appearance of the third

ventricle, indicative of normal brain development. Cerebral Hemispheres: Assess-

ment of the size and symmetry of the fetal cerebral hemispheres. Occipitofrontal

Diameter (OFD): Measurement from the occipital bone to the frontal bone, provid-

ing another indicator of fetal head size. Nuchal Fold Thickness: Thickness of the

nuchal fold, which can indicate chromosomal abnormalities. Facial Features: Iden-

tification and characterization of facial features such as the nose, lips, and orbits.

Fetal Neck: Assessment of the fetal neck for any abnormalities or masses. Eyes and

Eye Orbit: Identification of the eyes and assessment of the eye orbits for normal

development. Temporal Bone Anatomy: Examination of the temporal bones for any

abnormalities or ossification issues. Brain Symmetry: Assessment of symmetry in

brain structures, including the hemispheres and ventricles. Brain Parenchyma Tex-

ture: Evaluation of the texture and appearance of the fetal brain parenchyma. Fetal

Presentation: Determination of the fetal presentation (cephalic, breech, transverse),

which can impact the segmentation process.

Example of the second prompt for the fetal head dataset which uses GPT-3.5’s

response for the first prompt as part of the prompt:

Now write me sentences about each prompt of these attributes with “fetal head”

in the sentences, and return the answer as a python dictionary, with fetal head as
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key.

The response of the second prompt constitutes the VDT information about fetal

head.

“fetal head” : [“Fetal head circumference is a crucial metric measured to as-

sess overall growth and development.”, “Biparietal diameter (BPD) provides insight

into fetal head size and gestational age.”, “The fetal head’s shape varies, ranging

from round to more elongated forms.”, “Skull density contributes to the clarity and

contrast of structures within the fetal head.”, “Fontanelle size offers information

about the fetal head’s ossification stages and cranial development.”, “Cerebral ven-

tricles within the fetal head are assessed to ensure normalcy and appropriate size.”,

“Cranial bone integrity is essential for the protection and development of the fetal

head.”, “Midline structures, such as the falx cerebri, contribute to the overall ar-

chitecture of the fetal head.”, “The cerebellar vermis, located within the fetal head,

influences motor coordination and balance.”, “The third ventricle within the fetal

head is examined to evaluate central nervous system development.”, “Symmetry of

the cerebral hemispheres is crucial for the overall morphology of the fetal head.”,

“Occipitofrontal diameter (OFD) measurement aids in assessing the proportionality

of the fetal head.”, “Nuchal fold thickness measurement provides insights into po-

tential abnormalities affecting the fetal head.”, “Facial features within the fetal head

region contribute to the overall assessment of anatomical development.”, “Evaluation

of the fetal neck ensures proper alignment and structural integrity of the fetal head

and neck.”, “Eyes and eye orbits within the fetal head region are assessed to evaluate

ocular development.”, “Temporal bone anatomy within the fetal head is evaluated to

detect any abnormalities or ossification issues.”, “Brain symmetry within the fetal

head is assessed to ensure proper development and alignment of structures.”, “Tex-

ture and appearance of the brain parenchyma provide insights into overall health and

development within the fetal head.”, “Fetal presentation, whether cephalic, breech,

or transverse, influences the positioning and segmentation of the fetal head during

imaging.” ]
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A.2 Textual Prompt Engineering for Fine-grained

Medical Tasks

A.2.1 Polyps

Example of first prompt

I am creating a zero shot polyp recognition system in colonoscopy image. Write

me 10 attributes to describe the polyp in the colonscopic image.

Attributes of Polyps:

Shape: A polyp in the colon often takes the shape of a small, rounded bump or

mushroom-like protrusion. Size: The size of a polyp can vary greatly, ranging from a

tiny few millimeters to several centimeters in diameter. Color: A polyp typically has

a reddish-pink color, though it may appear paler or darker depending on its blood

supply. Surface Texture: The surface texture of a polyp can be smooth, granular, or

have a lobulated appearance. Attachment Type: A polyp may be sessile with a flat

base, or pedunculated, attached to the colon wall by a thin stalk. Vascularization:

Fine blood vessels may be visible on the surface of a polyp, indicating its vascu-

larization. Margins: The margins of a polyp can be well-defined or may blend into

the surrounding tissue. Consistency: A polyp often has a softer consistency than

the surrounding tissue and may appear slightly translucent. Occurrence: While

a polyp can occur in isolation, it’s not uncommon to find multiple polyps during

a colonoscopy. Impact on Mucosa: A polyp can disrupt the normal mucosal fold

patterns of the colon lining.

Now write me a sentence about each of these attributes with “polyp” in the sen-

tences of each respective class and return the answer as a Python dictionary, with

polyp as key.

The response of the second prompt constitutes the VDT information about

polyps.
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“polyp”:[ “A polyp in the colon often takes the shape of a small, rounded bump

or mushroom-like protrusion.”, “The size of a polyp can vary greatly, ranging from

a tiny few millimeters to several centimeters in diameter.”, “A polyp typically has

a reddish-pink color, though it may appear paler or darker depending on its blood

supply.”, “The surface texture of a polyp can be smooth, granular, or have a lob-

ulated appearance.”, “A polyp may be sessile with a flat base, or pedunculated,

attached to the colon wall by a thin stalk.”, “Fine blood vessels may be visible on

the surface of a polyp, indicating its vascularization.”, “The margins of a polyp can

be well-defined or may blend into the surrounding tissue.”, “A polyp often has a

softer consistency than the surrounding tissue and may appear slightly translucent.”,

“While a polyp can occur in isolation, it’s not uncommon to find multiple polyps

during a colonoscopy.”, “A polyp can disrupt the normal mucosal fold patterns of

the colon lining.” ]
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Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised

vision transformers. In Proceedings of the IEEE/CVF international conference

on computer vision, pages 9650–9660, 2021. 106, 111

[233] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming

He. Scaling language-image pre-training via masking. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

23390–23400, 2023. 106, 110

[234] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang,

Tiejun Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits

of masked visual representation learning at scale. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

19358–19369, 2023. 106, 110

[235] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Im-

proved training techniques for clip at scale. arXiv preprint arXiv:2303.15389,

2023. 106, 110

[236] John George Allen MacGregor Willes. Open-world few shot recognition. Mas-

ter’s thesis, University of Toronto (Canada), 2021. 106, 110

242



Domain Adaptation for Medical Imaging under Limited Data Constraints

[237] Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan,

P Shyam, G Sastry, A Askell, S Agarwal, et al. Language models are few-shot

learners. arXiv preprint arXiv:2005.14165, 1, 2020. 106, 110, 116

[238] David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger,

Curtis P Langlotz, Paul A Heidenreich, Robert A Harrington, David H Liang,

Euan A Ashley, et al. Video-based ai for beat-to-beat assessment of cardiac

function. Nature, 580(7802):252–256, 2020. 109

[239] Guotai Wang, Maria A Zuluaga, Wenqi Li, Rosalind Pratt, Premal A Patel,

Michael Aertsen, Tom Doel, Anna L David, Jan Deprest, Sébastien Ourselin,
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