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On-demand Crowdsourced Federated Learning over

Edge Devices

Mehreen Tahir

Abstract

Federated learning (FL) is attributed to training a machine learning (ML) model over

a number of distributed devices while keeping all their training data localized. Under

these settings, the edge devices perform computations on their local data before sending

the required updates to the central server to improve the global model. This approach has

shown great potential since hundreds of devices can potentially contribute to learning a

single task without sharing their local data. Despite its success in many domains, current

FL systems face significant challenges in scaling client participation and handling data

heterogeneity, which impede the training of high-performing models.

To address these limitations, this thesis argues that there’s a need for a dynamic learn-

ing platform where edge devices could volunteer to collaboratively learn a task through

FL. It further proposes FedOnDemand, an on-demand crowdsourced FL framework that

dynamically incorporates edge devices based on demand and availability. The research

aims to optimize client participation and resource allocation in FL systems to ensure an

efficient and scalable learning process.

We present a novel client selection mechanism designed to optimize the contribution

of clients based on their computational resources and data quality. By implementing a

multi-criterion client selection protocol, the system dynamically selects clients based on

their suitability for a given FL task. To secure this process, we incorporate attribute-

based access control measures, ensuring that client selection is both effective and secure.

This approach not only enhances the quality of the contributions but also safeguards the

19



Crowdsourced Federated Learning

integrity of the FL process.

To manage data heterogeneity and improve model robustness, we model FL as a

Bayesian process. Clients employ Stochastic Variational Inference (SVI) to approximate

local posterior distributions, while the server utilizes Bayesian learning techniques to ag-

gregate these updates, effectively managing uncertainty. Furthermore, we explore fairness-

aware incentive mechanisms based on data valuation, ensuring clients are rewarded pro-

portionally to their contributions. These mechanisms are designed to foster active and

robust participation across diverse network environments. Empirical evaluations using

benchmark datasets demonstrate significant improvements in convergence speed, model

accuracy, and system scalability compared to traditional FL approaches.

This research contributes to the field by providing a framework that enhances the op-

erational efficiency of FL models and ensures greater participant engagement and system

integrity. The implications of this study are far-reaching, potentially influencing future

designs of ML systems that require decentralized data inputs across highly dynamic and

privacy-sensitive environments.
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Chapter 1

Introduction

1.1 Research Motivation

In recent years, the rapid proliferation of the Internet of Things (IoT) and edge devices

has led to an unprecedented surge in data generated at the network’s edge. According

to recent data from Statista, the number of connected IoT devices is projected to exceed

27.1 billion by 20281. During the same period, global data volumes are forecast to rise

to approximately 394 zettabytes (ZB)2, a significant portion of which will be generated

by IoT and edge devices. These IoT devices are an integral part of smart ecosystems

such as smart homes, wearable health monitors, industrial sensors, etc. These devices

continuously generate diverse, context-rich data streams, which can be exploited to train

sophisticated machine learning (ML) models. For instance, in the healthcare domain,

wearable devices such as Fitbit and Apple Watch continuously monitor patient vitals,

detecting early signs of conditions like atrial fibrillation or hypertension. Machine learn-

ing models trained on such data can improve early diagnosis and personalized healthcare

interventions, allowing hospitals and telemedicine platforms to detect anomalies more ef-

fectively and optimize treatment plans [1]. Similarly, in smart cities, sensors embedded

in roadways and public transportation systems continuously collect data on traffic con-

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
2https://www.statista.com/statistics/871513/worldwide-data-created/
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gestion, pedestrian movements, and energy usage. ML models trained on this data can

enable dynamic traffic light adjustments, predictive maintenance of public infrastructure,

and real-time energy grid optimization, improving urban efficiency [2].

However, Traditional ML approaches rely on centralized data collection and process-

ing, where data from various sources is aggregated in data centers or cloud servers for

the purpose of training models. While effective in controlled environments, this approach

faces significant challenges in the context of edge environments. The sheer volume of data

generated by edge devices makes centralized collection impractical due to bandwidth lim-

itations, high communication costs, and increased latency [3]. Moreover, transmitting

sensitive data over networks raises serious privacy and security concerns. Stringent data

privacy regulations like the General Data Protection Regulation (GDPR) and the Cali-

fornia Consumer Privacy Act (CCPA) impose strict requirements on data handling and

sharing, limiting the feasibility of centralized data collection.

To mitigate the aforementioned issues, edge computing has become increasingly popu-

lar, enabling data processing directly at the device level rather than relying on centralized

cloud infrastructure [4]. Fog computing emerged as an extension of edge computing, in-

corporating intermediary nodes such as gateways and local servers to further distribute

computation and storage closer to the data source. Initially, these paradigms were in-

troduced to execute simple queries over low-powered, distributed devices [5, 6]. More

recently, research in this field has focused on training ML models centrally and then de-

ploying the trained models on local devices to provide personalization, and mobile user

modeling [7]. However, with the advancements in storage and computational capabilities

of edge devices, we can utilize their local resources to train ML models using distributed

data sets. This led to the inception of Federated Learning (FL), a decentralized ML

paradigm that enables the edge devices to collaboratively train ML models. Unlike tra-

ditional ML approaches, FL shifts the learning process closer to the data source. In

this paradigm, a central server distributes an untrained or partially trained ML model,

known as the global model, to participating edge devices. Each participating device,
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often referred to as a client, performs localized training using its local data, updating

the model parameters through optimization techniques like stochastic gradient descent

(SGD). Once the local training phase is complete, clients transmit these updated model

parameters back to the central server. The server aggregates the updates from all the

clients using techniques such as model averaging to update the global model parameters

and sends the updated model back to the clients. This process is repeated over multiple

communication rounds until the global model converges to a stationary point or prede-

fined communication rounds are complete [8]. A classic example of this is the Google

keyboard (Gboard). When the keyboard shows a possible suggestion, the phone locally

stores the information about the current context and whether the suggestion was clicked.

This on-device information is then used to improve the next iteration of Gboard sugges-

tions [9]. Figure 1.1 provides a visual representation of classic FL architecture and its

training process.

The standard FL problem involves learning a globally shared statistical model from

data residing on tens to potentially thousands of remote devices. This model is trained

under the constraint that the data generated on the edge device is kept and processed

locally, with only periodic updates communicated to the central server. By keeping data
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local to the device, FL minimizes the risk of data breaches and complies with privacy

regulations, making it especially suitable for applications in healthcare [10, 11], finance

[12], recommendation systems [13], and other sensitive domains. It also reduces communi-

cation overhead, as only model parameters or gradients are transmitted over the network

instead of sending large volumes of raw data.

Despite the success and its benefits, FL continues to face a range of challenges that

limit its broader applicability. These challenges include non-independent and identically

distributed data (non-IID) across clients, communication efficiency, security, and, more

importantly, auditing and scaling both the data and clients to optimize the performance of

the federated network. Since the edge devices only have limited data to train the learning

model, a key open research challenge is to motivate a large and diverse pool of clients, col-

lectively providing sufficient data samples to ensure cooperation for training high-quality

models. However, existing FL approaches largely operate under controlled assumptions,

such as homogeneous data distributions and fixed participation patterns. These assump-

tions do not align with the realities of edge networks, where devices and data exhibit

significant heterogeneity and dynamic availability. For example, in intelligent transporta-

tion systems, autonomous vehicles and roadside sensors continuously collect traffic and

environmental data. However, these clients are highly mobile and may only contribute

intermittently, making traditional FL approaches impractical due to their reliance on pre-

defined client participation. In such dynamic environments, the need for an adaptable

and scalable FL framework becomes evident—one that can adjust to varying participation

levels, support heterogeneous data sources, and incentivize long-term engagement.

Additionally, the existing implementations of FL primarily focus on learning a single

task with a single objective. This narrow scope significantly limits the potential of FL,

as it restricts the range of applications and the adaptability of the models to dynamic,

real-world scenarios. These implementations also assume that participating devices inher-

ently possess subsets of the required training data, which oversimplifies the complexities

of practical deployments. Such constraints limit the FL from evolving into a truly ver-
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satile framework capable of supporting diverse applications across a wide range of edge

environments.

To address these limitations, this thesis envisions a more dynamic and generalized FL

framework that transcends the constraints of existing approaches. The goal is to design

a platform where devices can volunteer to participate and collaboratively learn multiple

tasks and objectives in a flexible and crowdsourced manner. This vision relies on creating

mechanisms that enable seamless integration of devices with varying capabilities, while

dynamically adapting to the heterogeneity of data, resources, and network conditions.

By fostering an open and inclusive ecosystem, this platform would support on-demand

analytics over a large number of edge devices, enabling FL to unlock its full potential.

Achieving this outcome requires a paradigm shift towards frameworks that embrace the

inherent complexities of real-world edge networks while promoting voluntary, equitable,

and secure collaboration across diverse participants.

1.2 Research Questions

Based on the challenges, vision, and opportunities identified above, we have formulated

the following key research questions to guide this thesis:

RQ1: How can we design a dynamic and open FL ecosystem that supports voluntary

client participation while improving scalability and model performance? Specifically,

what mechanisms can enable on-demand participation, while adapting to client

availability and ensuring their effective contribution to the global model?

RQ2: How can the FL training process be optimized to effectively handle client and data

heterogeneity to enhance efficiency and accuracy? Specifically:

RQ2.1: What optimization techniques can be used to dynamically manage client par-

ticipation and effective resource utilization, ensuring training efficiency and

model accuracy in diverse environments?
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RQ2.2: What techniques can be used to manage non-IID data in FL to ensure robust

model convergence and accuracy, particularly in the presence of uncertainty

arising from diverse data distributions?

RQ2.3: How can the challenges of heterogeneous client updates be addressed to main-

tain consistent global model performance while minimizing variability and un-

certainty?

RQ3: How can we ensure the security and trustworthiness of an open FL ecosystem,

protecting the global model and client data from adversarial threats, unauthorized

access, and vulnerabilities inherent to decentralized systems?

RQ4: How can fairness-aware incentive mechanisms be designed to motivate active and

sustained client participation, ensuring equitable compensation while promoting

long-term engagement and scalability?

1.3 Contribution of the Thesis

This dissertation aims to enhance the scalability, efficiency, security, and fairness of FL

in dynamic environments, particularly over edge devices. To achieve this, we introduce a

crowdsourced FL framework that enables voluntary client participation while addressing

key challenges related to client heterogeneity, security risks, and incentive mechanisms.

The proposed approach integrates multiple advancements in FL, including dynamic client

selection, optimization techniques for training on heterogeneous data, security mechanisms

for decentralized learning, and incentive models for sustained participation. The primary

contributions of this dissertation are summarized as follows:

1. Crowdsourced Federated Learning with Dynamic and Voluntary Client

Participation

To improve FL scalability and flexibility, we propose a crowdsourced framework

to enable dynamic and voluntary client participation in the FL training process.

26



Crowdsourced Federated Learning

This approach allows clients to join and leave the FL process on demand, effectively

managing the variability in client availability and willingness to participate. By

facilitating on-demand client participation, the ecosystem leverages the computing

power and data contributions of a diverse set of clients, enhancing the scalability

and performance of the global model. The open participation model addresses the

challenge of engaging a wide range of devices in the FL process, ensuring a scalable

and adaptable system for real-world FL deployments.

2. Optimizing FL Training in Heterogeneous Environments

To address the challenges posed by data and system heterogeneity, we developed

strategies to optimize the FL training process, improving model performance and

reducing overall training time. This includes:

• Effective Utilization of Client Resources and Adaptive Client Man-

agement through Multi-Criterion Client Selection

We designed a sophisticated multi-criterion client selection mechanism that

evaluates and selects clients based on various criteria such as computational

resources, data quality, network conditions, and device availability. By dynam-

ically adapting to the current state of the network and the specific requirements

of the FL task, this approach ensures that the FL process capitalizes on the

most relevant data and computational power available. This enhances train-

ing efficiency and model accuracy by selecting clients whose participation will

most benefit the global model, thereby optimizing the trade-offs between per-

formance and training time.

• Bayesian Federated Learning

To handle the uncertainty and variability inherent in non-IID data across

clients, we integrated Bayesian methods into the FL framework. Specifically,

we employed Stochastic Variational Inference (SVI) on the client side and Hier-

archical Bayesian Modeling on the server side. This Bayesian approach allows
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FL to model the distributional diversity of client data more effectively, ensuring

robust model convergence and accuracy despite heterogeneous data distribu-

tions. By accounting for uncertainty and incorporating prior knowledge, the

Bayesian methods enhance the learning process, making it more resilient to

the challenges posed by data heterogeneity.

3. Implementation of Zero-Trust Security Architecture for Federated Learn-

ing

Recognizing the critical importance of security in FL, we implemented robust se-

curity mechanisms to protect the global model and client data from unauthorized

access and adversarial threats, especially in crowdsourced environments. We in-

tegrated zero-trust security principles into the FL framework, developing a secure

Attribute-Based Access Control (ABAC) mechanism. This system allows for fine-

grained control over client participation, ensuring that only authorized and trustwor-

thy devices can contribute to the model training process. By verifying the attributes

of each client before granting access, the ABAC mechanism prevents unauthorized

participation and reduces the risk of malicious activities. This security layer is es-

sential for protecting the integrity of the global model against potential adversarial

attacks, such as data poisoning, and ensures that the learning process remains secure

and reliable.

4. A Fairness-Aware Incentive Mechanism for Crowdsourced Federated

Learning

To encourage active and sustained participation from clients, we designed a fairness-

aware incentive mechanism grounded in data valuation. The mechanism calculates

the marginal contribution of each client’s data to the overall model performance,

ensuring that rewards are distributed proportionally based on the value of their

contributions. By fairly compensating clients based on the quality and quantity of

their data, the incentive mechanism addresses concerns over resource consumption
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and privacy. This promotes equitable participation and maintains client trust in

the FL network, which is crucial for the long-term success and scalability of the FL

ecosystem.

5. Empirical Validation

We provide empirical evidence through extensive simulations and experiments using

benchmark datasets and real-world data to validate the proposed methods. The re-

sults demonstrated significant improvements in model accuracy, convergence speed,

and overall system robustness compared to traditional FL approaches. This valida-

tion confirms the effectiveness of integrating crowdsourcing mechanisms, adaptive

client management, Bayesian learning, robust security measures, and fair incen-

tivization within the FL framework, showcasing the practical applicability of the

proposed solutions and their potential impact on real-world FL deployments.

Together, these contributions constitute a practical and extensible framework for en-

abling scalable FL in dynamic, real-world settings. By addressing challenges related to

participation, heterogeneity, trust, and sustainability, the proposed approach advances

the broader goal of making FL more inclusive, secure, and adaptable.

1.4 Organization

The rest of this dissertation is organized as follows: Chapter 2 provides the technical

background, discussing the foundational concepts of distributed learning, edge comput-

ing, and the principles of FL. It also highlights the key challenges FL faces, including

heterogeneity, security, scalability, and incentive mechanisms. Chapter 3 presents an ex-

tensive literature review, examining existing solutions and identifying gaps in key areas,

including heterogeneity in FL, client selection strategies, Bayesian learning approaches,

security mechanisms, incentivization, and the use of crowdsourcing in distributed systems.

The subsequent chapters detail the primary contributions of this work. Chapter 4
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introduces the concept of Crowdsourced Federated Learning, focusing on enabling dy-

namic and voluntary client participation to create an open ecosystem. Chapter 5 focuses

on optimizing the FL training process in heterogeneous environments. It introduces a

multi-criterion client selection mechanism, details its design and implementation, and

discusses its impact on model performance and training efficiency. Chapter 6 explores

Bayesian Federated Learning, employing Stochastic Variational Inference (SVI) to ad-

dress the challenges of non-IID data distributions and improve global model robustness

and accuracy.

Chapter 7 discusses the implementation of robust security mechanisms within the FL

framework. It explores the integration of zero-trust security principles and the develop-

ment of a Secure Attribute-Based Access Control (ABAC) mechanism and Public Key

Infrastructure (PKI) certificates to protect the global model and client data from unau-

thorized access and adversarial threats. Chapter 8 introduces a fairness-aware incentive

mechanism using the Shapley Value to calculate the contribution of each client’s data,

ensuring equitable rewards and sustained participation. Finally, Chapter 9 concludes the

dissertation by summarizing the key findings, reflecting on the limitations of the research,

and offering directions for future work.
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Chapter 2

Background

The exponential growth of data and the increasing demand for real-time processing have

propelled advancements in machine learning (ML) technologies. Traditional centralized

ML approaches, which rely on aggregating large volumes of data in a single location,

face numerous challenges, including scalability limitations, data privacy concerns, and

substantial communication overheads. To address these issues, distributed computing

frameworks have emerged, enabling the parallel processing of data across multiple nodes

and devices. This chapter explores the evolution of these paradigms, highlighting their

principles, benefits, and limitations, and examines how FL integrates their strengths to

enable privacy-preserving and decentralized model training. The chapter concludes by

discussing the key challenges in FL, setting the stage for the research and contributions

presented in subsequent chapters.

2.1 Distributed Learning

Distributed learning involves distributing the training process of ML models across mul-

tiple machines to manage extensive datasets and overcome the computational limitations

inherent in single-machine environments. This approach enhances both the scalability and

efficiency of model training by leveraging the combined computational power and stor-
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age capacity of a distributed network [14, 15]. By partitioning the workload, distributed

machine learning facilitates the handling of large-scale data that would otherwise be im-

practical to process on a single machine, thereby accelerating the training process and

improving model performance [16].

One of the primary methodologies in distributed learning is distributed data paral-

lelism, where a large dataset is partitioned into smaller subsets that are distributed across

different computational nodes. It involves duplicating the model across multiple GPUs

or CPU cores, and each processes a subset of the data simultaneously [17]. Periodically,

the results of the models are combined through a parameter server, resulting in a global

model [18]. This approach significantly reduces computation time with negligible or no

model performance degradation and enables the handling of datasets that exceed the

memory capacity of individual machines. Figure 2.1 provides a visual representation of

data parallelism in distributed learning.

The effectiveness of distributed data parallelism has been demonstrated in various

large-scale machine learning tasks. For instance, Google’s DistBelief system utilized dis-

tributed data parallelism to train deep neural networks on massive datasets, achieving sub-

stantial improvements in training speed and model accuracy [19]. Similarly, Facebook’s
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implementation of synchronous distributed training enabled the training of ResNet-50 on

the ImageNet dataset in record time by leveraging numerous GPUs across multiple servers

[20].

Despite its advantages, distributed learning introduces several challenges such as com-

munication overhead, synchronization efficiency, and above all, data privacy and security.

Moreover, a critical assumption in many distributed learning frameworks is that the data

distribution across different nodes is independent and identically distributed (IID) or that

the system designer can manipulate and adjust the data distribution to achieve IID con-

ditions, thereby facilitating faster convergence [21, 22]. However, in real-world scenarios,

data is often non-independent and identically distributed (non-IID), posing significant

challenges to model training and convergence rates. Addressing these assumptions is

essential for developing more robust and flexible distributed learning systems that can

operate effectively in heterogeneous environments.

2.2 Edge Computing

Edge computing extends distributed learning by bringing computation and data storage

closer to the data sources, typically at the edge of the network, on devices like smart-

phones, sensors, and IoT devices [3, 23]. This approach addresses several key challenges

identified in distributed learning, particularly those related to communication overhead

and latency. By processing data locally, edge computing significantly reduces the need to

transmit large volumes of raw data to centralized servers, thereby conserving bandwidth

and enabling real-time analytics [24]. This is especially beneficial for latency-sensitive ap-

plications, such as autonomous vehicles [25, 26], industrial automation [27], and healthcare

diagnostics [28]. This decentralization also ensures that each device can independently

process and analyze the data it generates, creating a more distributed approach to resource

utilization. Figure 2.2 provides a visual representation of an edge computing architecture.

Unlike distributed learning systems that require a robust communication infrastruc-
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ture to synchronize nodes or aggregate global insights, edge computing primarily focuses

on localized operations. Each edge device processes its data independently, often tailored

to specific contextual requirements, without necessitating regular communication or syn-

chronization with other devices in the system [29]. This approach makes edge computing

particularly suitable for environments with limited or unreliable network connectivity,

where maintaining consistent communication between devices is impractical.

While distributed learning frameworks often assume a homogeneous environment with

uniform computational resources and data distributions, edge computing is inherently de-

signed to operate in heterogeneous environments. Edge devices vary significantly in terms

of hardware capabilities, energy availability, and operational conditions. This diversity is

not merely accommodated but forms a fundamental characteristic of edge computing, re-

quiring algorithms and models that can adapt dynamically to varying resource constraints

[30, 31]. This flexibility allows edge computing to thrive in settings where traditional dis-

tributed systems would struggle to function effectively. Edge computing also emphasizes

task-specific optimization, wherein models and algorithms are often designed or pruned

to fit the specific requirements and constraints of individual devices. This differs from
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broader distributed learning strategies, which typically aim to achieve global optimiza-

tion and uniformity across all participating nodes [32, 33]. By tailoring computations

to localized needs, edge computing maximizes efficiency while minimizing unnecessary

overhead.

While edge computing is a powerful paradigm for enabling localized and resource-aware

computation, it faces challenges in coordinating learning as the scale and complexity of

distributed applications grow. The device-centric design of edge computing and the lack of

a cohesive framework for collaborative learning across devices keep the learning isolated,

leading to fragmented models that fail to generalize across the system. Additionally, the

diverse and dynamic environments of edge devices make it difficult to coordinate their

contributions effectively [34]. Ensuring that devices with varying capabilities, data distri-

butions, and connectivity can collectively improve learning outcomes requires a framework

that balances autonomy with collaboration, which edge computing alone cannot achieve.

These limitations set the stage for FL, which introduces mechanisms to enable coordi-

nated, decentralized learning while preserving the autonomy of edge devices.

2.3 Federated Learning

Federated Learning (FL) builds upon the edge computing paradigm by introducing a

structured approach to decentralized learning, where multiple edge devices collabora-

tively train a shared model without exchanging raw data. It provides a framework that

allows distributed devices to contribute to a global model while maintaining local auton-

omy. This section provides the necessary background on FL’s core principles, its iterative

training process, and the fundamental methods used to aggregate model updates across

participating clients.

The goal of FL is to learn a global model w that fits all client’s C = {c1, c2, . . . , cn}

local data, where ci represents the ith client in the system. In a typical FL setup, the

central server initializes the global model w0 at communication round t = 0. For each
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subsequent round t ≥ 1, the server selects a subset of clients St ⊆ C from the set of all

available clients to participate in that round. The global model wt is then sent to each

selected client ci ∈ St. The clients proceed to train the received global model wt using

its local dataset Di by performing E epochs of Stochastic Gradient Descent (SGD). The

goal of local training is to minimize the client’s loss function, defined as:

Fi(wi) = min
wi

(
1

|Di|
∑
j∈Di

fj(wi)

)
(2.1)

Here, wi represents the local model parameters for client ci, and fj(wi) is the loss for

data sample j within the dataset Di. The objective is to determine the optimal model

parameters wi that minimize this local loss function Fi(wi). To achieve this, the local

model is iteratively refined over E epochs, following the update rule:

wr+1
i = wr

i − η∇Fi(w
r
i ) (2.2)

where r = 0, 1, . . . , E − 1 represents the local epochs, η is the local learning rate, and

∇Fi(w
r
i ) is the gradient of the local loss function with respect to wr

i .

After local training, each client obtains an updated local model wt+1
i . The client then

sends this updated model back to the central server. Upon receiving the updated models

{wt+1
i }ci∈St from the clients, the central server aggregates them to update the global model

wt+1. A common aggregation method is Federated Averaging (FedAvg), which computes

a weighted average of the received updates based on the number of data samples at each

client [8]:

wt+1 =
1

Nt

∑
ci∈St

|Di|wt+1
i (2.3)

where Nt =
∑

ci∈St
|Di| is the total number of data points across all selected clients in

round t. This weighting ensures that clients with more data have a proportionally greater

influence on the updated global model.
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The server then broadcasts the updated global model wt+1 to a (potentially different)

subset of clients St+1 in the next communication round t + 1. This iterative process

continues until convergence criteria are met, such as a satisfactory level of model accuracy

or a maximum number of communication rounds.

By minimizing the aggregate loss function across all clients, FL seeks to find a global

model that generalizes well despite the data being distributed and potentially heteroge-

neous. The use of FedAvg as the aggregation method is particularly effective under the

assumption of data being IID across clients. However, in practical scenarios where data

is often non-IID, additional techniques and considerations are required to ensure conver-

gence and robust model performance. It is also important to note that the learning rate

η, the number of local epochs E, and the client selection strategy significantly impact the

convergence behavior and performance of the FL process. Balancing these parameters is

essential for efficient training, especially in environments with resource constraints and

varying data distributions.

While the decentralized architecture and privacy-preserving mechanisms of FL make it

a powerful tool for enabling collaborative ML, it continues to face various challenges both

internally in its design and in its external environment. These challenges include managing

communication overhead, ensuring security and trust within the federated system, and

addressing the scalability of clients, data, and models. Additionally, incentivizing a larger

pool of clients to participate voluntarily, despite limited local data and computational

resources, remains a key open research problem.

2.4 Challenges in Federated Learning

This section explores the challenges in FL in detail.
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2.4.1 Scalability

Scalability is a primary challenge in FL, particularly as the number of participating clients

increases. To train sophisticated models capable of generalizing well, FL systems require

contributions from a large and diverse set of clients [35]. In many edge learning scenarios,

individual clients possess limited amounts of data, which may not be representative or

diverse enough to train an effective model independently. For example, in an FL setup

for smart city applications, individual sensors or devices may only collect data related

to their immediate surroundings, such as local traffic flow, air quality, or energy usage.

Aggregating data from numerous sensors distributed across the city is essential to capture

comprehensive patterns and variability necessary for training robust models that can

optimize urban traffic management, environmental monitoring, or energy distribution [36].

Without sufficient data from a wide array of sources, the models may fail to accurately

represent city-wide conditions, limiting their effectiveness in making informed decisions

for smart city initiatives.

However, as the number of participating clients increases, issues such as load balancing,

efficient client selection, and resource allocation become increasingly complex. Managing

and coordinating training across a vast and potentially dynamic set of clients can also

strain the central server [37], leading to bottlenecks and degraded performance if not

managed effectively. The exchange of model updates between the server and clients

results in significant communication costs and latency. Even though FL reduces the need

to transmit raw data, the cumulative communication required for model updates in large-

scale networks can overwhelm network resources, especially in bandwidth-constrained

environments [38]. Additionally, the variability in client availability and participation

rates further complicates the scalability of FL systems, necessitating robust mechanisms

to ensure consistent and efficient model training across diverse and fluctuating client

populations [39].
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2.4.2 Communication Efficiency

FL usually requires iterative and frequent data exchanges between clients and the central

server. The local model updates from clients, which include gradients or weight parame-

ters, must be transmitted across the network after each local training iteration. Modern

deep learning models often contain millions of parameters, resulting in substantial data

transmission requirements each time an update is sent or received [40]. This continual

communication can lead to significant bandwidth consumption and increased latency, par-

ticularly in environments with limited or unreliable network connectivity [41, 42, 43], as

the time consumed in transmitting large model updates can significantly slow down the

overall training process, delaying the convergence of the global model [44].

Moreover, the heterogeneous nature of client connections complicates the communi-

cation efficiency challenge further. Clients exhibit diverse network conditions, such as

varying bandwidth capacities and fluctuating connectivity, resulting in asynchronous and

inconsistent communication patterns [45]. These disparities can lead to delays in model

aggregation, as the central server may need to wait for updates from slower or intermit-

tently connected clients, thereby extending the training time. Techniques such as model

compression [46, 47], gradient compression [48], quantization [49], federated dropout [50]

and sparse updates [51] have been proposed to mitigate these issues by reducing the size

of the transmitted updates [52, 53]. However, achieving a balance between reducing com-

munication overhead and maintaining model accuracy remains a challenge, as excessive

compression can degrade the quality of the aggregated model.

2.4.3 Heterogeneous Data and Non-IID Distributions

Distributed optimization problems are often modeled under the assumption that data is

IID, which means that each data point is drawn from the same distribution independently

of others. However, the data residing on each client device in FL often originates from di-

verse sources and reflects varying usage patterns, environments, and user behaviors. For
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instance, in a mobile keyboard prediction application, different users may have unique

typing habits, vocabularies, and contextual usage, resulting in highly personalized and

heterogeneous datasets on their respective devices [9]. Similarly, in healthcare applica-

tions, patient data can vary widely based on demographic factors, medical histories, and

treatment protocols, leading to non-uniform data distributions across different hospitals

or clinics [54]. This inherent diversity leads to non-IID data distribution across clients,

which adds complexity to problem modeling, solution formulation, analysis, and optimiza-

tion, as the global model must effectively learn from heterogeneous data sources without

being biased towards any particular client’s data distribution.

One of the primary implications of non-IID data in FL is the potential for slower

convergence and reduced model accuracy. The non-IID nature of data can cause the

local models trained on individual clients to diverge significantly. Traditional aggregation

mechanisms in FL, such as Federated Averaging (FedAvg), which aggregate model updates

by averaging gradients or weights from participating clients, may struggle to aggregate

these updates to form a generalized global model. If certain clients have disproportionately

influential data due to the size or nature of their datasets, the resulting model may become

biased towards those clients, and the global model struggles to generalize well across all

clients [55]. This inconsistency complicates the optimization process and leads to a slower

convergence or even divergence of the global model in some cases. As a result, ensuring

consistent and reliable model performance in the face of heterogeneous data remains a

challenge for federated networks.

2.4.4 Resource Constraints and Client Heterogeneity

FL operates in highly decentralized environments where participating clients exhibit sig-

nificant heterogeneity not only in terms of data but also computational capabilities, mem-

ory capacity, and energy resources. This dual aspect of heterogeneity presents signif-

icant obstacles to effective and efficient FL deployment. Clients range from powerful
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servers with abundant processing power and storage to resource-constrained devices such

as smartphones, IoT sensors, and embedded systems that have limited computational

resources and battery life. This variability in hardware capabilities means that while

high-performance devices can perform extensive local computations and participate ac-

tively in multiple training rounds, the devices with constrained resources may struggle to

perform intensive local computations required for training complex ML models, leading

to delays in their participation, or even dropout from the training process altogether [56].

This inconsistency can result in uneven contributions to the model, where the updates

from more capable clients disproportionately influence the global model, potentially bias-

ing its performance and limiting its generalizability across diverse data distributions [57,

58]. Moreover, memory limitations on edge devices restrict the size and complexity of the

models that can be trained locally. Larger models may not fit into the available memory,

often necessitating the use of either lightweight and compressed models or forcing devices

to offload parts of the computation to external resources, which can introduce additional

latency and security concerns.

The client heterogeneity further extends to the variability in energy constraints and

network connectivity. Intensive local computations required for training can lead to rapid

battery depletion in battery-operated devices, reducing the operational lifespan of these

devices and limiting their availability for ongoing participation in the FL process [59,

60]. This energy drain not only affects the individual device’s usability but also impacts

the overall training timeline, as devices may need to conserve energy by limiting their

participation or by shutting down intermittently. Additionally, varying network speeds

across clients can create disparities in the time it takes for updates to be transmitted and

received, leading to delayed or missed updates and affecting the convergence of the global

model [61]. Combined, these factors make it challenging to maintain an efficient training

workflow under heterogeneous clients.
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Figure 2.3: An example of Data and Model Poisoning in FL

2.4.5 Data Privacy and Security

FL fundamentally aims to enhance data privacy by keeping the client data localized,

thereby mitigating the risks associated with centralized data storage and transmission.

However, the decentralized and distributed nature of FL introduces unique security chal-

lenges, particularly concerning the trustworthiness of participating clients. In traditional

centralized machine learning, data and computations are managed within secure, con-

trolled environments. However, in FL, the server must rely on numerous clients to perform

local computations and share model updates without direct oversight, raising concerns

about the integrity and reliability of the training process.

One of the primary security issues in FL is the risk of malicious or unreliable clients

participating in the training, as shown in Figure 2.3. furthermore, since clients operate

independently and may join or leave the network dynamically, there is a potential for

adversaries to infiltrate the system by masquerading as legitimate clients. Malicious

clients can impair the training process in several ways:

• Unauthorized Access: Without proper mechanisms to verify and authenticate
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clients, unauthorized entities could gain access to the FL process. Even though

raw data is not shared, the gradients or weights transmitted during the training

process can inadvertently reveal sensitive information about the local datasets [38].

Adversaries with access to these updates can employ inference attacks to extract

private data or infer characteristics about individual data points [62]. This poses

significant privacy risks, especially in scenarios where clients hold highly sensitive

or proprietary information.

• Data Poisoning: Clients with compromised or malicious intent might use con-

taminated or fabricated data for local training. This can lead to the global model

learning incorrect patterns, affecting its reliability and trustworthiness [63, 64].

• Model Poisoning: Adversaries may intentionally alter their local model updates to

degrade the performance of the global model. By submitting incorrect or corrupted

updates, they can introduce biases or reduce the model’s accuracy [65, 66].

Additionally, the absence of robust client authentication and authorization mecha-

nisms in many FL systems further aggravates these security concerns. Unlike centralized

systems, where access control can be enforced strictly, FL’s distributed nature makes it

challenging to monitor and regulate client activities effectively. The server often has lim-

ited information about the clients, making it difficult to assess their trustworthiness or

enforce participation policies.

2.4.6 Performance Trade-offs

FL systems often involve inherent trade-offs between model performance [67], computa-

tional efficiency [68, 69], communication costs[70, 71] and privacy [72]. Achieving high

model performance often requires including a large number of clients, running more com-

munication rounds, or aggregating richer updates from diverse data distributions. How-

ever, these improvements come at the cost of increased communication overhead, compu-

tation time, and energy consumption. In contrast, limiting the number of participating
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clients or reducing the frequency and size of updates can speed up training and lower

resource usage, but may compromise model accuracy or lead to biased learning if the

selected clients are not representative.

FL systems must also balance privacy and security requirements with both perfor-

mance and efficiency. Techniques such as differential privacy, secure aggregation, and

fine-grained access control can enhance data protection and system integrity but intro-

duce overhead in terms of computation and communication. For example, secure aggre-

gation protocols often require multiple cryptographic operations and additional message

exchanges, which can slow down training and increase latency. Similarly, adding noise

to updates for privacy may degrade model performance if not carefully tuned. These

privacy-preserving mechanisms must be carefully integrated to avoid undermining either

model quality or training efficiency.

In practical FL deployments, striking the right balance across these dimensions is

crucial. Overemphasizing any single aspect—such as maximizing performance without

considering privacy or enforcing strict security at the cost of scalability—can limit the

real-world applicability of the system. Designing protocols that adaptively manage these

trade-offs based on application needs, resource availability, and data sensitivity remains

an open and critical area of research in FL.

2.4.7 Architectural Challenges

While significant progress has been made in addressing the inherent challenges of FL,

the current FL architectures still face significant challenges limiting their scalability, in-

teroperability, and overall effectiveness. As the number of participating clients increases,

managing communication overhead, ensuring efficient synchronization, and maintaining

model consistency becomes increasingly complex [37]. However, traditional centralized

architectures may not scale efficiently, leading to bottlenecks and degraded performance

in large-scale deployments. Additionally, current architectures often lack the adaptability
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required to handle clients with varying levels of participation and fluctuating resource

availability [73]. This rigidity can result in poor model generalization and inefficient re-

source utilization, as the system may not effectively leverage the full spectrum of client

capabilities and data diversity [74].

To overcome these architectural challenges, there is a growing recognition of the need

for an open and interoperable ecosystem in FL that fosters collaboration and stan-

dardization. An open ecosystem can facilitate scalability by promoting interoperable

protocols and frameworks that allow seamless integration of diverse clients [39]. By en-

couraging open standards, FL systems can better accommodate heterogeneous devices and

support large-scale deployments. Such an ecosystem would also encourage the participa-

tion of a broader range of clients, increasing the diversity and volume of data available

for training. This inclusivity can help mitigate data scarcity and imbalance issues, im-

proving model robustness and generalization. By lowering barriers to entry and providing

incentives for participation, an open ecosystem can harness the collective data and com-

putational resources of a vast network of clients. Furthermore, such an ecosystem could

also enhance flexibility by enabling the development of modular and extensible architec-

tures where developers and researchers contribute and share components that address

specific challenges. This collaborative approach accelerates innovation and allows FL

architectures to evolve in response to emerging needs and technologies.

2.4.8 Incentivization

Encouraging active participation from clients in FL is a significant challenge, particu-

larly when their resources are limited and the benefits are not immediately apparent.

Clients may be reluctant to participate in the training process due to concerns over re-

source consumption, privacy risks, and a lack of direct incentives. Local training requires

computational power, memory, and energy, which can be burdensome for devices with con-

strained resources or battery life. Despite FL’s aim to preserve data privacy by keeping
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data localized, clients may still fear potential privacy breaches through inference attacks

or unintended information leakage. Moreover, the absence of clear and tangible bene-

fits can deter clients from contributing their data and computational resources to FL.

The voluntary nature of client participation means that clients must perceive sufficient

value or incentive to allocate their limited resources towards contributing to the global

model. Without appropriate incentives, FL systems risk experiencing low participation

rates, which can lead to insufficient data diversity, reduced model accuracy, and biased

learning outcomes [75].

To address these issues, developing robust incentive mechanisms is crucial. Implement-

ing fair and transparent reward systems ensures that clients are adequately compensated

for their contributions, thereby encouraging active and sustained participation [76]. Addi-

tionally, incorporating privacy-preserving techniques and trust-building measures can help

alleviate privacy concerns, making clients more willing to engage in FL and contribute

high-quality data and resources.
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Chapter 3

Literature Review & Empirical

Analysis

3.1 Introduction

FL faces significant challenges, including data and system heterogeneity, communication

inefficiency, and security vulnerabilities. These challenges have also been acknowledged

and thoroughly discussed in literature [35, 37, 38, 77, 78, 79, 80]. Over the years, numer-

ous optimizations have been proposed to address these limitations, ranging from novel

aggregation mechanisms to advanced client selection strategies, robust security frame-

works, and incentive-driven participation models. These advancements aim to improve

the performance, efficiency, scalability, and reliability of FL systems, especially under

realistic heterogeneous conditions.

This chapter provides a critical examination of the state-of-the-art techniques devel-

oped to tackle the key challenges in the field. It reviews existing approaches for managing

heterogeneity, optimizing client selection, improving aggregation methods, and tackling

security and incentivization issues. Additionally, it includes experimental analysis to

empirically assess the effectiveness of these techniques. The progress achieved and the

remaining gaps are identified, offering insights that serve as the foundation for the con-
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tributions detailed in the subsequent chapters.

3.2 Addressing Heterogeneity in Federated Learning

FedAvg [8] has served as the foundational algorithm for FL, offering an efficient way to

aggregate local model updates. However, it does not necessarily account for heterogeneity

in its design. As a result, FedAvg often struggles under heterogeneous conditions, leading

to slower convergence, biased global models, and inefficient resource utilization [38]. To

mitigate these issues, extensive research has proposed various strategies tailored to address

both types of heterogeneity in FL, data heterogeneity, and system heterogeneity. The

following sections explore these challenges in detail, reviewing state-of-the-art methods

designed to enhance FL performance under such conditions.

3.2.1 Data Heterogeneity

Data heterogeneity, often characterized by non-IID data across clients, poses significant

challenges to FL since it can lead to model divergence, reduced generalization capabili-

ties, and slower convergence rates. Several studies, such as those by [57, 81, 82], have

investigated the impact of data heterogeneity on FL performance and demonstrate that

non-IID data could cause significant degradation in model accuracy and slow down con-

vergence. The impact of data heterogeneity becomes more pronounced in scenarios with

a small client population or when clients possess limited data samples. In such cases,

the divergence in local updates can significantly skew the global model, resulting in poor

generalization.

To mitigate the effects of data heterogeneity, various aggregation algorithms and opti-

mization techniques have been proposed. One common approach is to modify the FedAvg

algorithm to account for statistical heterogeneity. Methods like FedProx [83] introduce a

proximal term in the local objective to restrict the divergence between local and global

models, thereby improving stability and convergence in heterogeneous environments. The
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authors of [84] employ control variates to mitigate client drift resulting from non-IID data,

ensuring more accurate and consistent updates during the aggregation process. While a

few other approaches propose to tackle heterogeneity using sample weights [85], regular-

ization techniques [86] and virtual homogeneity learning [87].

Another effective strategy involves personalized Federated Learning, where models are

tailored to individual clients while still benefiting from shared global knowledge. Meta-

learning-based techniques, such as those proposed in [88, 89, 90], enable the global model

to adapt quickly to each client’s specific data distribution by learning a good initializa-

tion that can be fine-tuned locally. Multi-task learning frameworks also allow for the

simultaneous training of a global model and multiple personalized models, thereby ac-

commodating the unique characteristics of each client’s data [91].

Clustering-based methods have also been employed to group clients with similar data

distributions, allowing for more specialized aggregation within each cluster [92, 93]. For

instance, FedCluster dynamically identifies and clusters clients based on their data charac-

teristics, facilitating the training of cluster-specific models that better capture the under-

lying data patterns [94]. These approaches not only aim to enhance model accuracy but

also the scalability of FL systems by reducing the complexity of managing highly hetero-

geneous data. Besides clustering-based approaches, a few other studies have also explored

Transfer Learning and domain adaptation techniques to address data heterogeneity [95].

Furthermore, advanced optimization algorithms also play a significant role in addressing

data heterogeneity. Adaptive Federated Optimization techniques, such as FedAdam and

FedYogi, incorporate adaptive learning rates and momentum terms to better handle the

variability in client updates [96]. These optimizers enhance the convergence properties

of FL by dynamically adjusting the optimization process based on the observed update

patterns.

However, despite these advancements, our field experiments over the MNIST dataset

[97] indicate that many proposed solutions may not fully address the challenges posed

by non-IID data [98]. We evaluate the performance of algorithms like FedAvg, FedProx,
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FedPD, and SCAFFOLD under varying degrees of data heterogeneity and find that while

all algorithms performed well under IID conditions, they experienced significant accuracy

drops when faced with non-IID data distributions. Specifically, our experiments show

that FedAvg’s accuracy decreased by 7.09% under non-IID settings, reflecting its lack

of mechanisms to handle heterogeneity effectively. More notably, algorithms designed

to mitigate heterogeneity, such as FedPD [99] and SCAFFOLD [84], exhibit even larger

accuracy drops of 30.24% and 19.22%, respectively, while QFedAvg behaves similarly to

FedAvg, showing no improvement despite its weighted aggregation mechanism. This is

likely due to the random selection of clients in each round, which prevents QFedAvg from

consistently prioritizing high-loss clients, effectively neutralizing its intended advantage.

Furthermore, some algorithms demonstrate sensitivity to local hyperparameters like batch

size and aggregation weighting. For instance, SCAFFOLD may require smaller batch

sizes to perform adequately, but this can lead to increased training times and may not

be feasible in resource-constrained environments, while QFedAvg’s effectiveness depends

on the choice of the scaling factor q, which controls how much higher-loss clients are

prioritized in the aggregation. These unexpected results suggest that existing algorithms

may not be as robust to statistical heterogeneity as claimed. Specifically, there is a gap in

developing algorithms that can dynamically adapt to varying degrees of data heterogeneity

without relying heavily on hyperparameter tuning, which can be impractical in real-

world scenarios. Moreover, the lack of mechanisms to consistently prioritize clients with

significant contributions to model improvement highlights a need for more sophisticated

client selection strategies. We summarize the results of our experiments in Figure 3.1.

These observations highlight the need for more effective strategies to handle data

heterogeneity in FL. Potential approaches could include developing aggregation methods

that are robust to distributional differences and designing client selection mechanisms that

consider the statistical properties of client data. Moreover, incorporating personalized

models that account for individual client distributions, while contributing to a shared

global model, may offer a promising direction [100].
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(a) IID data distribution (b) non-IID data distribution

Figure 3.1: Average accuracy of FL algorithms for MNIST data set

3.2.2 System Heterogeneity

In addition to data heterogeneity, FL systems face significant challenges due to system

heterogeneity, which refers to the variations in computational capabilities, memory, en-

ergy resources, and network connectivity among participating clients. These diversities

introduce significant delays in the FL process and can lead to biased updates if certain

devices consistently contribute less due to resource limitations [35, 101, 102].

Similar to data heterogeneity, a few studies, such as those by [103, 104, 105] have

made attempts to characterise the impact of device and system heterogeneity and report

significant performance degradation and longer convergence times. One of the primary

challenges reported by these studies is the presence of stragglers — clients that, due to

limited computational power or poor network connectivity, take significantly longer to

complete local training tasks compared to others. This delay occurs because FL servers

typically wait to receive updates from all participating clients in a given round before

proceeding to aggregate the results and update the global model. This synchronous ag-

gregation approach means that faster clients, which complete their local training quickly,

remain idle while waiting for stragglers to finish. Consequently, the overall training pro-

cess slows down, leading to increased latency and delayed convergence of the global model
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[106].

Inspired by these studies, we evaluate the performance of various FL algorithms under

varying levels of device heterogeneity. Specifically, we conducted extensive experiments

to assess how stragglers affect both training time and model accuracy. Each client was

allotted a fixed number of local epochs to complete the training process. Clients who failed

to do so within the specified time frame were considered stragglers. Furthermore, we set

a threshold for the number of stragglers to simulate varying levels of system heterogeneity

and conducted the experiments over both IID and non-IID data distributions. Our results,

as shown in Figure 3.2, demonstrate that system heterogeneity prolongs the training time,

regardless of whether the data distribution is IID or non-IID.
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Figure 3.2: Training time of FL algorithms over MNIST data for varying levels of
stragglers

The results also show that the impact of heterogeneity varies depending on the scenario

and sensitivity of the algorithm. A small threshold of stragglers is less likely to affect the

model performance if the network has an IID data distribution. However, this impact

becomes more significant in scenarios where both statistical and system heterogeneity

come into the picture. For instance, we did not observe any accuracy drop for a threshold

of 10% stragglers over an IID data distribution, as can be seen in Figure 3.3. On the

other hand, Figure 3.4 shows the same 10% threshold reports an accuracy drop of 16.04%

over non-IID data for FedMed.
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(a) 10% stragglers (b) 30% stragglers (c) 50% stragglers

(d) 70% stragglers (e) 90% stragglers

Figure 3.3: Average accuracy comparison of different aggregation protocols over IID
data for the MNIST dataset under varying levels of straggler devices

We extended our experiments to include the highly heterogeneous environment where

data is distributed in a non-IID manner and up to 90% of the participating devices

are stragglers. Under these settings, FedAvg reported an accuracy drop of 22.54% and a

training time up to 3.42× longer. This behavior can be expected because FedAvg does not

account for system or statistical heterogeneity in its design. We also observed an accuracy

drop of 20.03% and 4.84% in the performance of qFedAvg and FedProx, respectively, while

FedMed, FedPD, and SCAFFOLD led to model divergence.

These findings indicate that while some FL algorithms show resilience to moderate

levels of heterogeneity, many are still highly sensitive to system constraints. Algorithms

that perform well under IID data often struggle in real-world non-IID scenarios where

system heterogeneity is prevalent. For example, FedProx showed a smaller accuracy drop

than FedAvg due to its design, which takes heterogeneity into account. However, un-

der extreme heterogeneity, even these solutions struggle to maintain model performance.
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(a) 10% stragglers (b) 30% stragglers (c) 50% stragglers

(d) 70% stragglers (e) 90% stragglers

Figure 3.4: Average accuracy comparison of different aggregation protocols over non-IID
data for the MNIST dataset under varying levels of straggler devices

Figure 3.5 summarises these results over varying levels of stragglers. Here, the devices

are chosen at random for each training iteration, which skews the distribution more and

results in model divergence.

Our experiments illustrate the significant impact of both system and statistical het-

erogeneity on FL performance and support the findings reported by earlier studies. Since

then, researchers have proposed a number of techniques to improve the training efficiency

of FL under heterogeneous conditions [107, 108, 109, 110, 111], most notable of which is

asynchronous federated learning (AFL). Unlike synchronous methods, AFL allows clients

to send their model updates independently without waiting for all clients to finish their

local computations [112, 113, 114]. This reduces waiting times and improves overall train-

ing efficiency, though it introduces complexities in ensuring the consistency and stability

of the global model [115].

Client selection strategies have also been developed to address system heterogeneity.

54



Crowdsourced Federated Learning

FL algorithms

Te
st

 a
cc

ur
ac

y 
fo

r 5
0 

gl
ob

al
 e

po
ch

0.00%

25.00%

50.00%

75.00%

100.00%

Fed
Avg

Fed
Med

Fed
PD

Fed
Prox

qF
ed

Avg

sc
aff

old

0% stragglers

10% stragglers

30% stragglers

50% stragglers

70% stragglers

90% stragglers

(a) IID Data Distribution

FL algorithms

Te
st

 a
cc

ur
ac

y 
fo

r 5
0 

gl
ob

al
 e

po
ch

0.00%

25.00%

50.00%

75.00%

100.00%

Fed
Avg

Fed
Med

Fed
PD

Fed
Prox

qF
ed

Avg

sc
aff

old

0% stragglers

10% stragglers

30% stragglers

50% stragglers

70% stragglers

90% stragglers

(b) non-IID Data Distribution

Figure 3.5: Average accuracy of FL algorithms over the MNIST dataset for varying
levels of stragglers

The idea is to select a subset of clients that can reliably participate in each training

round. Techniques such as resource-aware client selection prioritize clients based on their

current computational load, battery levels, and network conditions [56, 116]. By selecting

clients that are more likely to complete their training tasks efficiently, these strategies help

maintain a steady flow of updates and prevent the training process from being stalled by

less capable or unreliable devices.

Beyond individual client selection, a few researchers have also explored structural

approaches such as Hierarchical federated learning (HFL) to mitigate heterogeneity. HFL

is organizing clients into clusters and leveraging intermediate aggregation points like edge

servers to manage subsets of clients and offload some of the aggregation workload from

the central server. This hierarchical restructuring reduces communication bottlenecks

[117, 118] and enables more localized coordination [119]. Moreover, this approach allows

clients with similar characteristics to collaborate more effectively, improving the efficiency

of local updates before they are aggregated at the global level [120].

Adaptive aggregation algorithms complement these structural strategies by dynami-

cally adjusting the aggregation process based on the varying capabilities and contributions

of clients. Techniques like FedProx [83] and FedDyn [121] ensure that updates from clients

are appropriately weighted, accounting for differences in local training duration or steps.
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Furthermore, resource allocation algorithms ensure that clients with limited resources

are not overburdened, thereby preventing premature dropout and ensuring active partic-

ipation throughout the training process [122, 123, 124]. These algorithms dynamically

allocate computational tasks and communication resources based on the real-time avail-

ability and capacity of each client, promoting a balanced and efficient FL ecosystem. A

few techniques also allow adaptive partial training, enabling more clients to participate in

the training process [125]. However, despite significant progress, existing techniques often

fall short in fully mitigating the complexities introduced by system heterogeneity. Chal-

lenges such as ensuring consistent model performance, maintaining fairness across clients,

and optimizing resource utilization under dynamic conditions persist, highlighting the

need for ongoing research and more sophisticated solutions.

3.3 Client Selection in Federated Learning

FL relies on decentralized training across edge devices, making the performance and ef-

ficiency of the system closely tied to the characteristics of the participating clients. Due

to resource constraints and scalability requirements, only a subset of clients is typically

selected to participate in each training round. This selective participation is not only prac-

tical but also critical for managing computational and communication costs, improving

convergence efficiency, and maintaining the quality of the global model. However, client

selection strategies were largely rudimentary in the early stages of FL development, with

random selection being the foundational approach [8]. The underlying principle of ran-

dom selection is to randomly select clients to participate in the training process to ensure

unbiased participation across all clients. While it guarantees an equitable opportunity for

diverse clients to contribute to the learning model, it exhibits limitations in effectively

managing the heterogeneity of client devices in practical FL applications and can lead

to convergence issues, as discussed in Section 3.2. Despite its simplicity, this approach

provided insights into the dynamics of client participation and highlighted the need for
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Figure 3.6: Taxonomy of Client Selection Strategies in Federated Learning

strategies that consider client diversity and operational factors. Since then, several stud-

ies have made significant advancements to optimize FL performance in various aspects

[126, 127] such as minimizing computational and communication costs and dealing with

heterogeneity issues [128, 129]. These strategies can be broadly categorized into several

dimensions, as illustrated in Figure 3.6

The following subsections provide a comprehensive overview of these strategies, high-

lighting their key characteristics, advantages, and limitations.
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Data-Centric and Heterogeneity Management Strategies

Client selection strategies in this category focus on optimizing client selection based on

the data characteristics and distribution. They specifically target challenges arising from

non-IID data, data skewness, and variations in data quality among clients, thereby aiming

to improve both the efficiency and performance of the learning model. For instance, Zhang

et al. [130] proposed to select the clients with the least degree of non-IID data. Adaptive

algorithms, such as those introduced by Chen et al. [131], propose to select clients based

on their local statistical heterogeneity and previous training performance, while others

consider both the system and data heterogeneity to dynamically adjust the number of

selected clients [132]. On the other hand, the authors in [133] proposed a Determinantal

Point Process (DPP) based method, which diversifies the participants’ datasets in each

round of training to accelerate FL training. More sophisticated approaches employ Deep

Reinforcement Learning (RL) to optimize learning over Non-IID data. For instance, the

authors in [134] model the client selection as a Markov decision process. They integrate a

top-p sampling strategy into the Double Deep Q-Network (double-DQN) algorithm and

introduce a novel client sampling algorithm.

Clustered FL was proposed as a strategy to efficiently mitigate the adversities of

non-IID data. Fraboni [135] demonstrated that clustered sampling-based client selection

leads to better client representativity and reduces variance in aggregation weights. Some

strategies in this domain, such as those proposed by Albaseer et al. [136] and Arisdakessian

et al. [137], leverage the statistical as well as device heterogeneity for clustering-based

client selection, while others, further improved clustered FL with active client selection,

using active learning to speed up the process and enhance model accuracy [138].

Concurrently, the focus on data quality has become increasingly prominent, with

strategies aiming to select clients with high-quality, rich, and diverse datasets to improve

model performance. Techniques like the irrelevance sampling method and Federated Data

Quality Profiling (FDQP), as proposed by [139] and [140] respectively, consider both the

quality and quantity of data for client selection. Authors in [141] propose an RL-based
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framework that considers multiple factors, including data size, data quality, and learning

budget, to automatically learn client selection policies based on the observed client status.

Some other studies [142, 143, 144] in this area have proposed techniques that consider the

client contribution to adjust the probability of client selection. However, client selection

in FL is not solely dependent on the client’s data. Other factors, such as the client’s

hardware configurations, communication resources, and other environmental factors, also

play a significant role.

Resource Aware Selection Strategies

Resource-aware selection strategies in FL focus on optimizing client participation based on

their available resources, ensuring the efficient operation of the FL system under varying

resource and energy constraints. For instance, the authors in [56] suggest managing the

clients based on their available resources and allowing as many client updates as possible.

Yu et al. [145] proposed a similar approach to maximizing client updates but emphasized

minimizing energy consumption through fixed resource allocation. Similarly, several other

studies suggest client selection strategies based on the learning quality of the clients,

within a limited resource budget [146, 147]. More sophisticated approaches in this regard

propose a deep RL-based approach with a focus on minimizing energy consumption [148]

and enhancing communication and computational efficiency [149, 150]. Several studies,

including those by He et al. [151] and Luo et al. [152], focus on reducing both time and

computational costs.

More recent works in this regard emphasize addressing computational challenges,

adaptability, and efficiency. Chen et al. [153] suggest dynamically adjusting client se-

lection based on clients’ trained models and their available computational resources while

Niu et al. [154] propose a framework that expedites the learning process by selecting

clients with a significant impact on the global model, enabling faster convergence and in-

corporating an early stopping mechanism to conserve resources. A few other studies, such

as [116, 155], further emphasize resource conservation while maintaining model accuracy.
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[155] in particular, tackles the challenges posed by waiting times and straggler devices by

dynamically adjusting training based on clients’ resources.

Communication Efficient and Network-Aware Selection Strategies

To improve the efficiency and practicality of the FL learning process, many studies have

focused on client selection to minimize the communication costs while maintaining, or

even enhancing, the learning efficacy. Studies such as those by Cho et al. [156] suggest

that biased client selection towards those with higher local loss results in faster error con-

vergence. They propose a bandit-based communication-efficient client selection strategy

to achieve faster convergence with lower communication overhead. Ribero et al. [157] and

Marnissi et al. [158] support the same idea and propose to select a subset of clients with

significant weight updates and with the highest norms of gradient values, respectively.

Recent works in this regard also suggest using Shapley Value to identify and select clients

with the highest marginal contribution to model accuracy to complete model training

within the fixed budget of communication rounds.

A few other studies in this domain propose a joint client selection and bandwidth

allocation strategy to reduce the convergence time and model transmission latency [159,

160]. On the other hand, the authors in [161] dynamically adjust client selection and gra-

dient compression in response to client capabilities to reduce communication loads and

address the straggler effect. Another approach to accelerating FL is through topology

optimization. For instance, the Topology-Optimized Federated Edge Learning (TOFEL)

scheme has been proposed to tackle the issue of excessive learning time due to the ex-

istence of straggler devices in Federated Edge Learning [162]. Several other studies also

suggest topology optimization to accelerate FL and highlight that optimizing FL models,

frameworks, and algorithms with a focus on their network topologies can lead to improved

performance [163].

Security-Focused Selection Strategies
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In FL, the participating clients impact the robustness, security, and overall performance

of the learning process. Various approaches, including blockchain [164], trust-based [165,

166], and reputation-based client selection strategies [167] have been proposed to address

these concerns.

The integration of blockchain technology into client selection strategies offers increased

security through its immutable and auditable characteristics. Nguyen et al. [164] leverage

this idea to enforce secure selection over random clients, while Qammar et al. [168] propose

forward bidding to select optimized clients. These strategies help mitigate the biased and

malicious influence of participants.

Many studies use trust and reputation as criteria for selecting clients. For instance,

Rjoub et al. [165] and Wehbi et al. [166] both propose trust-based client selection strate-

gies. Rjoub’s approach uses trust-based deep RL to optimize client selection, while We-

hbi’s approach is based on mutual trust and matching game theory to select trustworthy

clients. Concurrently, Wang et al. [167] and Tan et al. [169] propose to evaluate and

select clients based on their reputation profiles.

Fairness-Driven Selection Strategies

Client Selection strategies in this category emphasize the importance of fair participation,

equitable resource distribution, and bias mitigation. Strategies such as the one proposed

by Huang et al. [170] propose a client selection method with a fairness guarantee. Shi

et al. [171] proposed a similar approach where they dynamically adjust FL clients’ se-

lection probabilities by jointly considering their reputations, times of participation in FL

tasks, and contributions to the resulting model performance. The authors in [172], how-

ever, proposed a different approach where they use a biased client selection strategy but

dynamically adjust the weight assigned to each client to improve the resulting fairness.

However, focusing on fairness may increase the final global accuracy but might result in

lower training efficiency due to the performance-fairness trade-off.
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Adaptive Strategies

FL environments are inherently dynamic and necessitate adaptive client selection strate-

gies that can effectively respond and adjust to the changes in the environment. This

is particularly relevant in scenarios where the data distribution, model structure, and

participating clients of the overall framework are not fixed but change over time [173].

A key strategy in this context is proposed by Qu et al. [174] that uses the Contextual

Combinatorial Multi-Armed Bandit framework to optimize client selection by analyzing

the computing and transmission context of client-edge Server pairs, significantly improv-

ing training efficiency. Moreover, RL-based approaches have also been implemented to

address the challenges of dynamic environments [148, 175]. For instance, a multi-agent

hybrid deep RL-based algorithm, as discussed in [176], optimizes client selection and pay-

ment actions in scenarios with dynamic client participation, resource constraints, and

limited budgets. Similarly, Zhang et al. [177] also discuss an efficient client selection

approach in FL using multi-agent RL. However, the sophistication of these methods of-

ten demands higher computational resources and advanced algorithmic tuning to ensure

effectiveness.

Strategic and Game Theory-based Approaches

Client selection strategies in this category employ economic and algorithmic principles

to enhance system efficiency and incentivize participants. For instance, Nagalapatti and

Narayanam address the problem of selecting relevant clients by introducing a Shapley

value-based method. Wehbi et al. [178] use game theory and matching algorithms to

design preference functions for client IoT devices and federated servers, allowing them to

rank each other. This approach focuses on maximizing both client revenues and model

accuracy and takes into account the preferences of both parties in their selection, leading

to more effective client selection. Yin et al. [179] propose a Stackelberg game-based client

selection framework that considers system heterogeneity, client heterogeneity, and client

fairness to reduce latency. Incentive mechanisms, on the other hand, are designed to
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motivate client participation through various forms of rewards [180], which can be mon-

etary or otherwise. These mechanisms range from auction frameworks, where clients bid

for participation [181], to collaborative models that offer benefits like data or computing

resource exchanges [182]. The goal is to align client participation with the objectives of

the FL system, ensuring robust data contribution and efficient model training.

While these client selection strategies build a strong foundation to optimize the various

aspects of FL, many of these approaches tend to simplify the problem, focusing solely on

optimizing a single objective, such as computational efficiency. This singular focus can

lead to an imbalance, where gains in one area might result in shortcomings in another.

For instance, strategies that excel in reducing computational load might not adequately

address the challenges posed by non-IID data distribution, potentially affecting the overall

model performance. Moreover, if the algorithm continually selects the fastest devices, it

might result in unfair selection, omitting certain data portions and reducing data diversity,

which could adversely affect model training performance. This observation suggests that

a single-dimensional approach might be insufficient for the complex ecosystem of FL.

Instead, there is a clear need for multi-criterion client selection. Such an approach would

not just focus on one aspect of client selection but would simultaneously consider a range

of factors, including data quality, energy consumption, and computational constraints. By

doing so, it can provide a more holistic solution that aligns with the diverse requirements

and challenges of FL systems.

FL systems are complex, involving diverse data sources, varying computational and

communication capabilities, and a range of application needs, necessitating a more com-

prehensive approach. Moreover, the effectiveness of these strategies is highly context-

dependent. What works well in one setting, like networks of mobile devices, might not be

as effective in another, such as in industrial applications involving the Internet of Things

(IoT). This variability signifies the importance of flexible and adaptable algorithms that

are not only efficient but can also be tailored to meet the unique demands of various FL

environments.
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3.4 Bayesian Federated Learning

The traditional FL framework has made significant progress in enabling decentralized

model training over potentially a large number of clients. Within this framework, aggre-

gation mechanisms, such as FedAvg, serve as the backbone of the collaborative training

process, orchestrating how individual client updates are combined to form a global model.

Acknowledging the limitations of FedAvg, subsequent aggregation strategies have been de-

veloped to address specific challenges inherent in FL, such as heterogeneity [96, 121, 183],

communication efficiency [184], robustness to adversarial attacks [185, 186], and ensuring

model convergence and accuracy [187]. While these strategies lay a robust groundwork

and have been effective in improving model performance and efficiency to a certain extent,

they remain limited by their deterministic nature, which restricts their ability to model

and adapt to the complex, probabilistic relationships inherent in diverse datasets. These

limitations have pushed researchers to seek more sophisticated methodologies to enhance

the FL framework that can better handle uncertainty and variability.

Bayesian Federated Learning (BFL) emerges as a comprehensive extension of the tra-

ditional FL framework, incorporating Bayesian principles to provide a probabilistic ap-

proach to model aggregation and parameter estimation. Unlike deterministic aggregation

mechanisms, BFL treats model parameters as random variables with associated probabil-

ity distributions [188]. This probabilistic treatment allows BFL to quantify uncertainty in

model predictions and parameter estimates, enabling a more adaptive and robust learning

process. By maintaining and updating posterior distributions of model parameters, BFL

can effectively capture the variability across different clients’ data, thereby improving

the robustness and generalizability of federated models [189]. Additionally, the Bayesian

framework facilitates the incorporation of prior knowledge, which can be particularly

beneficial in scenarios with limited or highly heterogeneous data.

Several key studies have advanced the integration of Bayesian learning principles

within the FL framework, demonstrating the potential of BFL to overcome the limi-
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tations of traditional methods. Early studies, such as those by Yurochkin et al. [190],

introduced Bayesian nonparametric methods that effectively synthesize global models

from local neural network weights with minimal communication, showcasing significant

utility in image classification tasks. While the authors in [191] provide a comprehensive

survey of BFL methodologies, highlighting their advantages in addressing heterogeneity

and data constraints compared to classical FL approaches.

Recent advancements in BFL have focused on addressing challenges related to per-

sonalization, communication efficiency, and model robustness. For example, Zhang et al.

[192] developed the pFedBayes framework, which employs Bayesian variational inference

to optimize personalized models that account for client-specific data distributions. This

was further extended by Chen et al., who introduced frameworks that enable shared and

individual uncertainty representations, fostering robust collaborations across heteroge-

neous clients [193]. To address the communication efficiency challenge, Lee et al. (2020)

introduced the scalable-BFL (SBFL) algorithm, which reduces communication overhead

through optimized aggregation of quantized gradients [194]. Similarly, Barbieri et al.

proposed a compressed BFL method that reduces communication overhead without com-

promising model calibration and accuracy [195].

BFL has also made significant contributions to improving the security and reliability

of federated systems. For instance, Kumari et al. [196] suggest that probabilistic updates

can be leveraged to identify and exclude malicious contributions, thus providing defense

against backdoor attacks. Likewise, the hierarchical Bayesian frameworks have also been

shown to ensure secure and private model training while offering strong theoretical guar-

antees on convergence and generalization [197]. Additionally, some other advancements

in the field, such as the online Laplace approximation by Liu et al. [198] and adap-

tive dropout strategies by Xue et al. [199], have enhanced the operational efficiency and

robustness of BFL frameworks in heterogeneous and non-IID data environments.

Despite these advancements, several gaps remain in the current body of research on

BFL. Scalability and computational efficiency continue to pose significant challenges, as
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Bayesian methods often involve complex probabilistic computations that can be computa-

tionally intensive and difficult to scale to large numbers of clients or high-dimensional mod-

els. Additionally, the increased communication overhead resulting from the transmission

of probabilistic model parameters, such as distributions or variational approximations,

remains an area requiring further research efforts to match the efficiency of deterministic

methods. Furthermore, there is a lack of standardized benchmarks and evaluation proto-

cols for Bayesian FL methods, making it difficult to systematically compare and assess the

effectiveness of different approaches. Lastly, the theoretical foundations of BFL require

further development to better understand the convergence properties and generalization

capabilities of Bayesian FL algorithms, particularly in highly heterogeneous settings.

3.5 Enhancing Security in Federated Learning Sys-

tems

While FL inherently promotes data privacy by keeping raw data localized on client devices,

it is still vulnerable to various security threats and privacy attacks that can compromise

both the model and the data, as explained in Section 2.4.5. Recent advancements in

the literature have thus focused extensively on mitigating these security threats through

a combination of robust aggregation techniques, access control protocols, and client au-

thentication mechanisms. For example, robust aggregation techniques like Krum [200,

201] and Trimmed Mean [202, 203, 204] have been proposed to identify and exclude

anomalous updates from malicious clients, thereby preserving the integrity of the global

model. Additionally, Byzantine-resilient algorithms have been introduced to tolerate a

certain proportion of adversarial clients without degrading the overall model performance

[205, 206, 207].

Beyond data and model poisoning attacks, the adversaries can also carry out infer-

ence attacks where they attempt to extract sensitive information from the model updates
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[208, 209, 210]. Additionally, communication between clients and the central server can

be intercepted or tampered with, leading to breaches in confidentiality and integrity [37].

Defense against these attacks requires the integration of cryptographic techniques such as

homomorphic encryption [211] and secure multi-party computation (SMPC) [212] for the

confidentiality of model updates during the aggregation process. Homomorphic encryp-

tion allows the server to perform computations on encrypted data without decrypting it,

thereby preventing potential information leakage [213, 214, 215]. The authors in [216]

have also explored combining homomorphic encryption with digital signatures to enhance

model integrity by preventing unauthorized modifications and ensuring traceability. Sim-

ilarly, SMPC protocols enable multiple parties to jointly compute functions over their

inputs while keeping those inputs private, further enhancing the security of the FL pro-

cess [217, 218]. These cryptographic approaches ensure that sensitive information remains

protected even if the server is compromised. However, these approaches come at the cost

of computational overhead and significantly suffer from inherent trade-offs, such as the

privacy-utility tradeoff.

Another critical aspect of enhancing FL security is to ensure that only legitimate clients

participate in the FL process. Authentication clients before they are granted access to the

FL system can help prevent unauthorized access and potential attacks [219]. For instance,

Li et al. propose a certificateless authentication-based trustworthy federated learning

framework to mutually authenticate clients and servers and prevent model poisoning

attacks [220]. Yuan et al. propose a pseudonym-based authentication mechanism [221]

while several other studies have suggested blockchain-based decentralized authentication

for lightweight and anonymous communication [222, 223]. These approaches not only

verify the identities of participating clients but also ensure that the transmitted updates

remain secure from eavesdropping and tampering. However, most current solutions focus

on specific attack vectors, leaving other potential vulnerabilities unaddressed, which can

easily be exploited by adaptive adversaries who modify their strategies to bypass existing

defenses.
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Despite these advancements, the existing security models still struggle to scale effec-

tively, particularly as the number of participating clients increases. Many robust aggre-

gation and authentication techniques become computationally intensive and inefficient in

large-scale deployments. Additionally, there is an absence of comprehensive access con-

trol mechanisms that can dynamically manage client permissions and roles within the FL

framework. Furthermore, adaptive and sophisticated adversaries, who can modify their

attack strategies based on the defense mechanisms in place, pose ongoing challenges,

necessitating the development of more resilient and adaptive security protocols.

To address these challenges, zero-trust security mechanisms are gaining traction as a

means to enhance the robustness and reliability of FL systems. These security models

do not assume any implicit trust in any user, device or network entity [224]. Instead, ev-

ery interaction must be authenticated, authorized, and validated before access is granted

[225]. In a zero-trust FL system, every request to access the FL platform experiences thor-

ough authorization checks to mitigate the risks associated with compromised devices and

unauthorized access [226, 227]. Advanced access control techniques, such as Blockchain

[228, 229] or Attribute-Based Access Control (ABAC) [230, 231], are required to imple-

ment zero-trust environments. Notably, ABAC enables fine-grained access control based

on client attributes, such as role, location, or device characteristics, making it suitable for

the heterogeneous nature of FL clients [232].

3.6 Crowdsourcing in Machine Learning and Dis-

tributed Systems

Crowdsourcing refers to the practice of obtaining data, services, or contributions from

a large group of participants. This approach leverages the collective intelligence and

diversity of participants, making it a scalable and cost-effective solution for tasks that

are otherwise time-consuming or resource-intensive [233]. Originating from the notion of
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outsourcing tasks to a distributed workforce, crowdsourcing enables the distribution of

various tasks, such as data annotation, problem-solving, and resource provisioning, across

a vast and often heterogeneous pool of contributors [234]. In the context of machine

learning and distributed systems, crowdsourcing is particularly valuable for collecting and

labeling large-scale datasets. It aids in model evaluation, addresses challenges such as data

imbalance, and optimizes system performance, thereby contributing to the development

of robust and adaptive technologies.

3.6.1 Crowdsourcing in Machine Learning

Crowdsourcing has become an essential tool for acquiring and annotating comprehensive

datasets that enhance the generalizability and performance of ML models. Platforms

such as Amazon Mechanical Turk (MTurk) enable researchers and developers to collect

large-scale labeled data for various tasks, including image classification, natural language

processing, and recommendation systems [235]. For instance, Callison [236] demonstrates

the effectiveness of MTurk in generating high-quality labeled data for natural language

processing tasks, highlighting the platform’s potential in accelerating ML model devel-

opment. A few other studies, such as those by Kittur et al. [237], Jennifer [238], and

Abhigna et al. [239] explored the dynamics of crowd-powered systems, emphasizing how

diverse contributor inputs can lead to more robust and unbiased models.

The use of crowdsourcing in ML extends beyond data labeling to address challenges

like imbalanced or sparse datasets. For instance, Ratner et al. introduced Snorkel, a

system that leverages crowdsourced weak supervision to train models without extensive

labeled data, thereby reducing the reliance on manual annotation [240]. Shi et al. pro-

posed a Distribution Aware Self-training approach that enhances annotation distribution,

significantly improving the performance of models trained on skewed datasets [241]. Xu

et al. [242] demonstrated how integrating blockchain into crowdsourcing workflows can

improve transparency and traceability, enhancing the overall reliability of crowdsourced
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data.

The scalability and flexibility of crowdsourcing have also enabled its adoption in spe-

cialized ML domains. Frameworks like WeCrowd [243] leverage social networks to increase

user engagement and participation in crowdsourcing tasks. This integration of social and

technological factors highlights the potential of crowdsourcing to address complex chal-

lenges in ML, particularly those requiring diverse and representative datasets.

3.6.2 Crowdsourcing in Distributed Systems

In distributed systems, crowdsourcing enhances the efficiency and scalability of computa-

tional tasks by distributing workloads across multiple participants. Distributed systems

inherently involve the coordination of multiple interconnected components. Crowdsourc-

ing provides a mechanism to leverage the collective resources and expertise of distributed

participants to address complex system-level challenges. This helps mitigates the limita-

tions of traditional systems, such as bottlenecks and single points of failure, by leveraging

the collective processing power of a distributed network. Crowdsourced distributed com-

puting platforms, like BOINC (Berkeley Open Infrastructure for Network Computing),

exemplify how distributed resources can be utilized to perform large-scale computations

for scientific research, data analysis, and simulation tasks [244]. Crowdware combines

GPU-based public resource computing with energy-aware incentive mechanisms to op-

timize resource allocation while minimizing energy consumption [245]. Hosseini et al.

introduced Crowdcloud, a crowdsourced cloud infrastructure system that pools com-

putational resources from the public [246]. Other frameworks such as SETI@home1,

Folding@home2 and Milkyway@home3 also demonstrate the power of crowdsourcing in

distributed systems. Folding@home, for example, stands at the computing power of ap-

proximately 16.9 petaFLOPS as of 11th November 2024, leveraging the computational

resources and processing power from volunteers worldwide. Such computational capac-

1http://setiathome.ssl.berkeley.edu/
2https://en.wikipedia.org/wiki/Folding@home
3http://milkyway.cs.rpi.edu/milkyway/
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ity has been achieved using almost 1,133 AMD GPUs, 7,256 NVidia GPUs, and 22,905

CPUs4. Similarly, SETI@home has historically utilized the unused computing cycles of

volunteer devices to process signals from space, showcasing the ability of crowdsourcing

to aggregate vast distributed resources for a shared goal. These platforms highlight the

potential of crowdsourced distributed computing to tackle computational challenges at

scale.

While crowdsourcing has significantly advanced machine learning and distributed sys-

tems, its application to leveraging both data and computational resources presents unique

opportunities and challenges. By integrating crowdsourcing principles with distributed

systems, there is immense potential to create frameworks that harness the collective com-

putational power and diverse data resources of participants. This integration can enable

scalable, privacy-preserving, and cost-effective solutions for collaborative model training,

particularly when combined with the decentralized nature of edge devices. Such frame-

works promise to enhance real-time data processing, reduce communication overhead, and

foster resilient, adaptive systems for distributed learning.

However, realizing these opportunities requires addressing critical challenges, partic-

ularly in assessing the quality of contributions and incentivizing participation. Ensuring

the reliability of computational and data resources contributed by diverse participants is

essential for maintaining system robustness. Additionally, sophisticated mechanisms are

needed to fairly reward contributions, balancing cost-efficiency with participant engage-

ment.

3.7 Incentive Mechanisms

Incentive mechanisms have long been studied in the literature to encourage active volun-

teer participation, ensure quality data, and enhance the robustness of environments reliant

on volunteer contributions. These mechanisms are essential for motivating participants to

4https://stats.foldingathome.org/os
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contribute their resources, whether it be data, computational power, or expertise, thereby

ensuring the sustainability and effectiveness of collaborative systems such as crowdsourc-

ing and, more recently, FL.

In crowdsourcing, incentive mechanisms were introduced to attract and retain con-

tributors who perform tasks such as data annotation, transcription, and problem-solving.

Early studies, such as the one by Kittur et al. [247], highlighted the importance of mone-

tary rewards in platforms like Amazon Mechanical Turk to compensate workers for their

efforts. However, monetary incentives alone were found to be insufficient for ensuring

high-quality outputs. Subsequent research introduced non-monetary incentives, such as

computation credits, reputation systems, tokenized incentives, and gamification elements,

which recognize and reward contributors based on their performance and reliability [248,

249]. These approaches not only motivated participants to maintain high standards but

also fostered a sense of community and achievement among workers [250].

As crowdsourcing matured, more sophisticated incentive mechanisms were developed

to address specific challenges such as task complexity and worker reliability. A few studies,

such as [251, 252], explored performance-based incentives to adjust rewards based on the

accuracy and reliability of submitted work, promoting high-quality data annotation and

reducing the incidence of errors or malicious contributions. Auction-based mechanisms

have also been explored to dynamically price tasks based on demand and supply, ensuring

efficient task allocation and fair compensation for contributors [253, 254, 255]. Xu et al.

took a different approach and proposed an online reverse auction model to encourage

participation while ensuring fair compensation in mobile crowdsourcing systems [256].

While Pang and Liu explored the use of linear variable compensation schemes to weed

out low-quality participants and incentivize higher-quality contributions [257].

In FL, incentive mechanisms have been explored to promote the submission of high-

quality data, ensuring that the aggregated updates are both reliable and informative [258].

However, FL presents unique challenges for incentive design, requiring that incentive

mechanisms must account for the computational costs, data contribution, and potential
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privacy risks involved. Early adaptations of incentive mechanisms from crowdsourcing

and distributed learning emphasize the need for mechanisms that ensure participants are

adequately rewarded for their contributions without compromising the integrity of the

federated model [38]. Consequently, various approaches have been proposed to design

effective incentive mechanisms in FL. Game theory-based frameworks are commonly em-

ployed to model the interactions between the central server and the clients. In these

frameworks, the server aims to maximize the utility of the global model, while clients

seek to maximize their own rewards [259, 260]. For instance, Kang et al. [250] introduced

a contract theory-based approach where the server designs contracts that specify the

rewards for different levels of client participation and data quality. However, these mech-

anisms often face limitations such as scalability issues and the complexity of designing

fair and optimal contracts in dynamic environments [261].

Another innovative approach involves the use of Shapley values from cooperative game

theory to fairly allocate rewards based on each client’s marginal contribution to the global

model [262, 263]. Shapley values provide a principled method for quantifying the contri-

bution of each client by considering all possible subsets of clients, ensuring that rewards

are distributed fairly and proportionately. This method not only incentivizes participa-

tion but also encourages clients to provide high-quality and diverse data, as their rewards

are directly tied to the actual improvement they bring to the model [264]. However, cal-

culating Shapley values is computationally expensive, especially as the number of clients

increases, making it impractical for large-scale FL systems. While the existing works lay

a solid foundation for incentivizing clients, challenges remain in designing scalable and

efficient incentive mechanisms that can balance fairness, computational feasibility while

ensuring sustainable client participation.
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FedOnDemand: A Crowdsourced

Federated Learning framework

4.1 Introduction

Motivated by the requirement of an open ecosystem for FL, this chapter introduces the

concept of Crowdsourced Federated Learning (CFL) which integrates the decentralized

training capabilities of FL with the collaborative and participatory nature of crowdsourc-

ing. This integration establishes an open ecosystem where a diverse and extensive network

of devices can voluntarily contribute to the training of machine learning models. While FL

enables the development of global models by aggregating updates from individual clients

without sharing raw data, crowdsourcing introduces mechanisms for voluntary partic-

ipation, incentivization, and dynamic engagement from a broad range of contributors.

By utilizing the collective resources and varied data sources available in a crowdsourced

environment, this integration effectively overcomes major limitations of traditional FL,

including scalability challenges and the necessity for continuous client participation.

By facilitating on-demand participation, CFL can accommodate the dynamic availabil-

ity and varying capabilities of devices, thereby increasing the system’s flexibility and ro-

bustness. Additionally, fair and transparent incentive mechanisms encourage high-quality
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contributions and sustained engagement, which are essential for achieving optimal model

accuracy and scalability.

In this chapter, we propose FedOnDemand, a CFL framework designed to support

dynamic participation, incentivize meaningful contributions, and ensure efficient collab-

oration in distributed environments. We outline its core components, including device

registration, task discovery, model training, and incentive mechanisms, while also ad-

dressing practical challenges such as security, data quality, and client heterogeneity. This

chapter serves as a foundation for the in-depth exploration of client selection, secure access

control, and fairness-aware reward allocation presented in later chapters.

4.2 Objectives

The goal of this chapter is to develop a Crowdsourced Federated Learning framework that

supports scalable, secure, and equitable participation across a wide range of devices. By

merging crowdsourcing principles with FL, the proposed FedOnDemand framework aims

to address the critical challenges of participant heterogeneity, intermittent availability,

and the need for effective incentive strategies.

Specifically, the objectives include:

• Supporting voluntary and dynamic participation from diverse edge devices.

• Optimizing collaborative model training in the presence of device and data hetero-

geneity.

• Establishing robust mechanisms for secure client registration and participation.

• Promoting fairness and engagement through contribution-based reward distribution.

Together, these objectives guide the design of FedOnDemand to improve the practi-

cality and effectiveness of FL in decentralized and real-world environments.
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Figure 4.1: An overview of FedOnDemand: Crowdsourced Federated Learning over
Edge Devices

4.3 FedOnDemand: Enabling Crowdsourced Feder-

ated Learning

This section presents the design and workflow of FedOnDemand, focusing on its core

components—device registration, task publishing, client selection, training, and incen-

tivization. The section outlines how these elements interact to support dynamic, secure,

and efficient collaboration at scale.

Figure 4.1 illustrates the proposed FedOnDemand framework. At its core, the sys-

tem is designed around user registration, where participants voluntarily list their edge
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devices for training purposes. The central server is responsible for client registration,

task distribution, client coordination, global model management, and maintaining system

scalability. The server is optimized to support a large number of devices and frequent

model updates with minimal overhead. Participants register their devices by specifying

relevant attributes, such as computational capabilities and communication protocols. The

registration process incorporates a robust security mechanism, including Attribute-Based

Access Control (ABAC), which evaluates each requesting device against a predefined set

of computation and communication criteria (using security policies), ensuring that only

devices meeting the essential thresholds are added to the system. Once registered, these

devices join the system’s pool of available training devices.

When the platform receives a request for training an ML model, it is translated into

the requirements of FL using edge devices. The central server plays a vital role in selecting

suitable clients to participate in the training process for a given task. This decision takes

into account multiple factors, including the device’s capabilities, the relevance of its data,

and the current resource availability. Selected clients then undertake the training task

using their local data. Each client independently trains the model while preserving the

privacy of their data. The updated model parameters are then sent back to the central

server. During this exchange, the server also collects performance statistics from the client

devices, assessing their individual contributions to the overall model.

To ensure the integrity and accuracy of the global model, the central server selec-

tively accepts the model updates from the clients based on each client’s performance and

alignment with the request. By evaluating the received updates and aggregating them

appropriately, the server improves the global model’s quality. Once the learning process

concludes, the participating devices are recognized and compensated for their contribu-

tions, reinforcing their importance in the on-demand FL paradigm.

The following sections present a comprehensive explanation of each component of

FedOnDemand.
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Figure 4.2: An example of crowdsourcing smartwatch data, through a mobile device, for
FL with FedOnDemand

4.3.1 Device Registration and Profiling

As shown in Figure 4.2, consider a scenario where a device owner intends to share a

specific type of data generated by one of their devices. With the Device Registration

and Profiling component in FedOnDemand, device owners can register their devices and

provide essential parameters to participate in the training process. This registration not

only allows their devices to be part of the collaborative model training but also augments

the platform’s diversity of resources.

When registering a device on the platform, owners typically provide the following

parameters:

• Device Configuration: Specifies the device’s hardware details, including CPU, mem-

ory, and storage capacity. This information helps assess the computational capabil-

ities of the device and determine the device’s suitability for participation in various

FL tasks.

• Data Type: Denotes the type of data the device generates, whether it’s sensor

readings, images, text, or audio. This allows the platform to match devices with

relevant tasks and ensure that the data contributed aligns with the learning objec-

tives. To ensure semantic consistency among these data types, the platform employs
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a standardized ontology-based mapping system, cross-verifying the data’s semantic

integrity with the specified type.

• Availability: Indicates when the device can be tapped for FL tasks. This informa-

tion aids in scheduling and resource allocation, ensuring that devices are efficiently

utilized during the training process. FedOnDemand assumes that devices remain

available during their specified availability window. However, if a device becomes

unreachable or drops out mid-training, it is simply excluded from that round. The

system is designed to tolerate such dropouts without affecting overall convergence.

• Communication Capabilities: Details the supported communication protocols, such

as Wi-Fi, Bluetooth, or cellular networks. This information helps determine the

feasibility of device participation based on the task-specific communication require-

ments.

The device registration process is tightly controlled by an Attribute-Based Access

Control (ABAC) mechanism. ABAC evaluates the requesting devices against pre-defined

computation, communication, data compliance, and security benchmarks to authorize

the registration. These policies are enforced using security policies. Only devices that

meet these thresholds are authorized to be registered with the platform. This design

supports fine-grained access control and allows for dynamic enforcement of policies as

device attributes evolve. Figure 4.3 shows a basic ABAC security model.

In FedOnDemand, ABAC not only controls the registration process but also governs

the entire lifecycle of a client in the system, from onboarding to model contribution. A

detailed treatment of the ABAC framework and how it enforces zero-trust principles in a

federated setting is provided in Chapter 7.

Once registered, the devices become part of the available pool for FL tasks. The

system dynamically selects devices based on task requirements, device capabilities, and

real-time availability, ensuring that the most suitable devices are leveraged for efficient

model training.
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Figure 4.3: Attribute-Based Access Control Security Model

4.3.2 Task Publishing and Requirements Specification

In the FedOnDemand platform, task publishing operates as a dynamic marketplace where

requesters submit tasks for training specific machine learning models, along with their as-

sociated requirements and test set T . By specifying detailed parameters and constraints,

requesters can define a well-structured and customized FL process that aligns with their

objectives. This mechanism ensures that tasks are matched with suitable devices, opti-

mizing the performance and efficiency of the training process.

To initiate the FL process, requesters provide the particular needs and constraints of

their tasks. These parameters, though they may vary across problem domains, generally

include desired data features, necessary solution functions, the selected learning model,

and specific hyperparameters. Furthermore, requesters allocate a budget B and estab-

lish corresponding incentives for the task, encouraging device owners to contribute their

resources and expertise.

For example, consider a requester with the goal of training an image classification

model for an e-commerce platform using a large and diverse image dataset. In this sce-
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nario, they would specify preferences such as the convolutional neural network architecture

(e.g., ResNet, VGG), image preprocessing techniques (e.g., normalization, data augmen-

tation), and specific hyperparameters (e.g., learning rate, batch size). Depending on the

complexity and scale of the task, they would also establish the budget and corresponding

compensation.

Upon receiving all necessary details, the FedOnDemand platform acts as a central

hub for task publishing and discovery. It facilitates the dissemination of task details

to potential workers, enabling them to browse and identify tasks that align with their

capabilities and interests.

4.3.3 Preliminary Training & Attribute Gathering

Once clients opt into a task, the server distributes the initial global model w0 and invites

clients to perform preliminary training on a subset of their local data. During this process,

the platform gathers critical system-level metrics H = {h1, h2, ...} (where hi represents

available CPU, memory, battery level, etc.), network-level attributes N = {n1, n2, ...}

(like bandwidth and latency), and a data quality measure Q (data size and local loss

value gauged against the publisher’s test set) as well as current trust score T . For each

client Ci, the collected attributes form a vector Vi = [gj(ci) | j ∈ {H,N,Q, T}]. This

data is crucial for the subsequent steps of the system, including estimating the sample

complexity and selecting the most suitable clients for the training task.

4.3.4 Sample Complexity Estimation

In the FedOnDemand platform, we estimate the sample complexity to achieve the desired

level of model performance and accuracy. Sample complexity refers to the minimum

number of data points necessary to ensure the global model achieves a target generalization

error ϵ. Given the distributed and non-IID nature of data across clients, we employ a

PAC-Bayesian framework to derive bounds for this estimation.
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The PAC-Bayesian framework is commonly used to provide probabilistic guarantees on

the generalization error by combining prior knowledge and empirical observations. In this

context, we derive a PAC-Bayesian bound, refined using Bernstein’s inequality, to account

for the variance in client data and the divergence between client-specific posterior and prior

distributions. This approach ensures that our bound incorporates both the uncertainty

in the data and the model’s complexity.

At a high level, the sample complexity N =
∑K

k=1 nk is derived to ensure that the

generalization error ϵ remains within a desired threshold with high probability 1 − δ.

The detailed mathematical derivation of this estimation, along with assumptions and

practical considerations, can be found in Appendix A.1. In summary, the key result of

this derivation is as follows:

N ≥ 8ϵ2

C2

(
K∑
k=1

p(k)
(
DKL(Qk∥Pk) + σ2

k

)
+

log(1/δ)

2nk

)

Where:

• ϵ is the target generalization error,

• DKL(Qk∥Pk) represents the KL divergence between the posterior and prior distri-

butions for client k,

• σ2
k denotes the variance in the loss function for client k,

• δ is the confidence level, and

• C bounds the loss function.

By estimating N and given the local data size each client holds, the platform can

dynamically determine the number of clients required for the training process, adjusting

the selection process accordingly.
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4.3.5 Multi-Criteria Client Selection and Task Assignment

In our proposed system, we assume that the edge devices voluntarily participate in the

FL training, expecting rewards. Therefore, the central server must assess the suitability

of a participant for a given learning task to ensure an efficient learning process and high-

quality solution. To address this intricate decision-making task, we reconceptualize client

selection as a ranking problem and employ a widely adopted multi-criteria decision-making

(MCDM) technique called PROMETHEE. PROMETHEE is a family of methods designed

to rank and select alternatives based on multiple, often conflicting criteria [265]. Within

this family:

• PROMETHEE I provides a partial ranking through pairwise comparisons.

• PROMETHEE II, which is employed in our framework, offers a complete rank-

ing of the alternatives. This is achieved using the concept of a ”net flow”, which

consolidates various criteria into a single score for each alternative, enabling a clear

ranking from best to worst.

Unlike methods that rely on hierarchical comparisons or strict scoring schemes,

PROMETHEE II uses preference functions to compare each pair of clients across all

criteria to compute the net flow score. This allows us to flexibly encode task-specific

priorities and generate a clear ranking of participating devices. Furthermore, it supports

both qualitative and quantitative attributes, allowing fine-tuned preference modeling via

customizable functions, and avoids the full pairwise comparison matrix required by meth-

ods like AHP. This makes it suitable for real-time decision-making in FL systems that

must adapt to heterogeneous and dynamic environments.

In the context of FedOnDemand, the PROMETHEE II-based client selection method,

namely FedPROM, systematically evaluates clients based on availability, hardware and

network specifications, reputation scores, data quality, and budget constraints. By aggre-

gating these factors, the method identifies the top-performing clients for each FL task,
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ensuring efficient performance while adhering to budgetary limits. The specifics of this

client selection process are detailed in Chapter 5.

However, PROMETHEE has some limitations, particularly around computational

scalability with a large number of clients. The method is also sensitive to the choice

of preference functions, requires normalization, and may become difficult to manage as

the number of criteria increases. To mitigate these issues, we implement a sorting-based

variant of PROMETHEE that avoids exhaustive pairwise comparisons and streamlines

the net flow computation. This improves speed and scalability without compromising se-

lection quality. We detail the process of multi-criteria client selection using sorting-based

PROMETHEE in Section 5.7.

We also considered other MCDM techniques such as AHP, TOPSIS, and ELECTRE.

While each has its merits, AHP struggles with scalability due to its reliance on full pairwise

comparisons. TOPSIS is computationally efficient but assumes linear trade-offs between

criteria, which can oversimplify client heterogeneity. ELECTRE supports more complex

decision logic but is less interpretable and more expensive to compute. PROMETHEE,

particularly in its optimized form, offers a middle ground—providing flexibility, scalability,

and clear rankings, making it well-suited for the client selection needs of FedOnDemand.

Through this comprehensive selection approach, FedOnDemand improves the overall

performance and accuracy of the FL process by:

• Selecting clients with sufficient resources and stable network connectivity.

• Ensuring only trustworthy clients with relevant, high-quality data participate, thus

improving security and reliability.

• Prioritizing clients that best align with task requirements, minimizing communica-

tion delays, and operational costs.

After selecting the top-ranked clients, FedOnDemand distributes the initial model to

the selected devices for local data training.
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4.3.6 Collaborative Model Training

Clients in FedOnDemand collaboratively update the global model parameters using their

local datasets and send these updates to the central server. The process follows a standard

flow, where local learning and model aggregation occur iteratively across multiple commu-

nication rounds, with the goal of improving the global model over time. We model FL as

a Bayesian process to handle the uncertainty associated with varying data distributions.

The training process follows the steps outlined below:

• Model Initialization: The central server initializes the global model and its pa-

rameters, distributing it to the selected clients for training. The initial model may

undergo pre-training to establish a starting point. In order to reduce communica-

tion overhead, the model size is optimized to ensure efficient transfers between the

server and client devices.

• Local Learning: Each client performs local training using its private dataset. At

this stage, Stochastic Variational Inference (SVI) is employed to approximate the

posterior distribution over the client-specific parameters. Clients minimize their

local loss function based on this distribution, generating updated parameters that

reflect both their local data and the prior global model. These updated parameters

are then sent back to the server.

• Aggregation: Upon receiving updates from participating clients, the central server

performs Hierarchical Bayesian aggregation. To account for the variability in

data quality across crowdsourced devices, updates are variance-weighted—clients

with more consistent local training (lower variance) contribute more to the global

model—ensuring that noisy updates have a reduced influence on the final param-

eters. This process incorporates the client-specific updates while accounting for

uncertainty and variability across the clients’ data distributions. The aggregated

model reflects the diverse contributions of the clients, ensuring that the global model
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evolves in a robust and reliable manner.

In a crowdsourced environment, the challenge of efficiently managing communica-

tion and resource constraints across a wide variety of devices is significant. By utilizing

Bayesian learning principles, the system can effectively handle the non-IID nature of

client data, ensuring that updates are aggregated in a way that balances contribution

quality and performance. Furthermore, the updates in FedOnDemand are expected to

be dynamic, where each round may involve different clients based on availability, and

the influence of each client’s update changes depending on its variance. This allows the

global model to continuously adapt in response to real-time participation and varying

data characteristics.

This process of local training and global aggregation is repeated over several commu-

nication rounds or until the global model reaches a desired level of accuracy. We detail

the process of Bayesian learning for FL in Chapter 6.

4.3.7 Fair Incentive Mechanism

In a crowdsourced environment, the client devices volunteer to participate in the training

process with the expectation of receiving rewards. Traditional incentive mechanisms often

fail to account for the varying quality of contributions from individual participants and

adopt a one-size-fits-all pricing system. This approach risks undervaluing high-quality

data contributions and may inadvertently attract malicious actors.

To address these limitations, FedOnDemand utilizes a Shapley value-based incentive

mechanism, which ensures a fair and rational allocation of rewards based on the value of

each participant’s data contribution [266, 267]. Figure 4.4 shows a high-level overview of

the adopted incentive mechanism.

The Shapley value treats each data contributor as a player in a cooperative game,

where the utility of any subset of contributors is determined by the collective value they

add to the trained model. This profit-sharing mechanism fairly distributes the total gains
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Research Question 4

How can we motivate participation with equitable and sustainable incentives?

● FL relies on voluntary participation, making sustained engagement a challenge.

● Unequal contributions from clients create fairness concerns in reward distribution.
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Figure 4.4: Illustration of a fairness-aware incentive mechanism in Federated Learning.
Individual client updates are assessed using Shapley values to determine equitable

reward distribution based on each client’s contribution.

among all participants and is characterized by its fairness, rationality, and decentralized

nature.

The Shapley value for each participant is calculated based on their marginal contri-

bution to the coalition. For any participant i, the Shapley value, denoted as ϕ(i), is

defined as the average of the marginal contributions across all possible permutations of

participants. Mathematically, it can be expressed as:

ϕ(i) =
∑

S⊂N\i

|S|!(N − |S| − 1)!

|N |!
(v(S ∪ i)− v(S)) (4.1)

Where N represents the set of all participants in the system, v(S) denotes the con-

tribution of the model collaboratively trained by the subset S, and (v(S ∪ i) − v(S))

represents the marginal contribution of participant i to the subset S.

By employing the Shapley value-based incentive mechanism, FedOnDemand promotes

fair distribution of rewards among the clients as it recognizes and rewards the individual

contributions of participants based on the unique value they bring to the collaborative
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training process. Consequently, it incentivizes active participation, encourages the shar-

ing of high-quality data, and enhances the overall performance and effectiveness of the

crowdsourced FL ecosystem.

4.4 Summary

This chapter introduced FedOnDemand, a crowdsourced federated learning framework de-

signed to support dynamic client participation, task-driven training, and fair contribution-

based incentives. It outlined the system’s architecture and core components, including

device registration with ABAC-based access control, task publishing, adaptive client se-

lection using PROMETHEE, Bayesian model training, and Shapley value-based reward

allocation.

Each component is designed to address a specific operational challenge in deploying

federated learning across diverse and intermittently available devices. Together, they en-

able a scalable and secure learning environment without assuming consistent participation

or homogeneous resources.

The remainder of this dissertation builds on this foundation by examining and for-

malizing the key submodules of FedOnDemand. The next chapter begins with the design

and optimization of the client selection mechanism to ensure efficient and context-aware

participation across large client pools.
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Chapter 5

Multi-Criteria Client Selecting for

Efficient Federated Learning

5.1 Introduction

The practical deployment of FL in real-world scenarios is often limited by the inherent

heterogeneity of both data and system resources. Clients in a federated network often

possess vastly different computational capabilities, network conditions, and data distribu-

tions. This heterogeneity can lead to inefficient training processes, prolonged convergence

times, and degraded model performance. In such scenarios, the challenge is to optimize

the FL training process in the presence of system and data heterogeneity, and the partic-

ipating clients effectively determine the success of the learning task.

Unlike traditional centralized machine learning, FL involves a large number of dis-

tributed clients, each equipped with its own local data and computational resources.

These clients perform training on local data and periodically send model updates to a

central server. Given the variability in client devices and data quality, selecting the ap-

propriate clients to participate in each round of training is crucial to ensuring both the

efficiency and effectiveness of the global model.

Client selection, therefore, must balance multiple factors, including the availability of
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computational resources, the quality and quantity of local data, and the network condi-

tions of each client. Furthermore, in many practical FL systems, the number of clients

far exceeds the number that can participate in each training round. As a result, effec-

tive client selection is not only important for reducing communication overhead but also

for maximizing model performance and ensuring fair participation across a diverse set of

clients.

The need for efficient client selection becomes even more apparent in scenarios where

clients have limited resources, such as mobile devices or IoT sensors, or when data is

highly heterogeneous, leading to non-IID data distributions across the network. Without

proper selection strategies, these issues can result in slower convergence, biased models,

or inefficiencies in resource utilization.

This chapter explores the mechanisms behind client selection in FL, addressing the

challenges posed by heterogeneous data, varying client capabilities, and the need for

fairness. Through optimizing client participation, the overall system performance and

scalability of FL systems can be significantly improved, ensuring that the global model

benefits from high-quality data while minimizing system resource consumption.

5.2 Objectives

This research aims to optimize the client selection process in FL and introduces a multi-

criteria client selection mechanism that evaluates clients based on their computational

resources, communication bandwidth, data quality, and trustworthiness. The objective is

to enhance system performance while reducing training time, addressing the challenges of

client heterogeneity and inefficient resource utilization. By selecting clients based on these

criteria, the framework seeks to improve system performance and model convergence in

real-world environments.
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5.3 Challenges

This research faces several challenges in optimizing client selection within FL systems.

The primary challenge arises from the heterogeneity of clients, as each device differs sig-

nificantly in terms of computational power, energy availability, and network conditions.

This diversity complicates the selection of clients that can contribute effectively to the

training process without introducing delays or inefficiencies. Another challenge is manag-

ing the trade-off between performance and training time. Selecting clients with stronger

computational capabilities may reduce training time but could compromise the diversity

of data contributions, leading to biased or less generalizable global models. Additionally,

finding the optimal client selection scheme that dynamically adapts to varying conditions,

such as fluctuating network bandwidth and computational resources, adds complexity to

the task. Lastly, the need to operate under budget constraints, particularly in resource-

constrained environments like mobile and IoT networks, further complicates the selection

process. Addressing these challenges is essential for developing a client selection frame-

work that balances system performance and efficiency.

5.4 Contribution

This chapter introduces a novel approach to client selection in FL, addressing the chal-

lenges of heterogeneity, performance trade-offs, and resource constraints through a multi-

criteria optimization framework. The key contributions of this work are as follows:

• We formulate the client selection problem as a dual optimization task that balances

the trade-off between performance and training time. This approach ensures that

selected clients provide both high-quality data and efficient computation, optimizing

the overall performance of the FL system.

• A multi-criteria client selection framework is proposed, which evaluates clients based

on computational resources, data quality, and network conditions. This method
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adapts dynamically to changes in the environment, ensuring optimal client selection

at each communication round.

• The proposed framework incorporates budget constraints into the client selection

process. By doing so, the system can operate within practical limits while maintain-

ing high performance, making the framework suitable for deployment in resource-

constrained environments such as IoT and mobile devices.

5.5 Problem Formulation

The inherent heterogeneity of edge devices in terms of computational resources, network

conditions, and data distributions poses significant performance challenges. Addressing

these challenges requires a strategic approach to client selection that balances the need for

efficiency and achieving high model accuracy, all under privacy and security constraints.

Formally, let C = {c1, c2, ..., cn} represent the set of all available clients. Each client ci

has a local dataset Di of size |Di| and characterized by an attribute vector Vi comprised

of client’s system [H], network [N ], data quality [Q], and trustworthiness metrics [T ].

Vi = [gj(ci) | j ∈ {H,N,Q, T}]

In this context, gj(ci) serves as a generic function that, depending on the attribute j

being considered, evaluates the corresponding aspect of a client’s potential contribution

to FL. Specifically:

• gH(ci) evaluates the client’s system-level metrics such as available CPU, memory,

storage, and battery level.

• gN(ci) denotes the client’s network-level attributes, such as connection status, band-

width, and latency.
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• gQ(ci) quantifies data quality measured as a function of local loss and the size of

the client’s dataset |D′i|.

• gT (ci)): represents the client’s trustworthiness based on behavior metrics and com-

pliance with access control policies.

We elaborate on these criteria in the following sections. Additionally, the inclusion of

each client ci in the FL training process incurs a particular cost, cost(ci), which accounts

for the computational resources expended during local training, the communication over-

head involved in transmitting model updates, and the contribution of the client’s data to

the global model in terms of quality, quantity, and statistical relevance.

To address both performance and training efficiency, we formulate client selection as

a dual objective optimization problem: from a given pool of clients C, identify a subset

of clients S ⊆ C that maximizes global model utility while minimizing overall training

time, under a given budget constraint. Mathematically, the optimization problem can be

written as follows:


maxS⊆C w

(t+1)
global =

1
NS

∑
ci∈S nciw

(t)
ci

minS⊆C Ttotal(S) = fT (S, {Vi|ci ∈ S})

Subject to:

∑
ci∈S

cost(ci) ≤ B

Where:

• w
(t+1)
global represents the global model’s accuracy after updates, calculated through a

weighted average of the updates provided by the selected subset of clients, S. Each

client’s update, w
(t)
ci , is weighted by the proportion of data samples nci they con-
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tribute, relative to the total number of samples NS from all clients in S. This for-

mulation ensures that clients contributing more data have a correspondingly larger

influence on the global model’s parameters and aligns well with our objective. How-

ever, in practice, weighted aggregation can be replaced by any other aggregation

mechanism.

• Ttotal(S) denotes the total time required to train the global model using the selected

client subset S. This duration is modeled as the aggregate of individual training

times across all selected clients in S and integrates the effects of each client’s com-

putational and communication capabilities.

• The budgetary constraint stipulates that the cumulative cost associated with en-

gaging the selected clients,
∑

ci∈S cost(ci), must not exceed the predefined budget

B. This cost includes considerations for computational resources, network usage,

and data contributions.

The dual objectives aim to maximize model accuracy by selecting clients with high-

quality and diverse data while minimizing total training time by considering computa-

tional and network resources. Determining the optimal subset S that satisfies these ob-

jectives is computationally challenging. In fact, the problem can be shown to be NP-hard,

as it involves combinatorial optimization over the set of all possible client subsets.

Theorem: The multi-criteria optimization problem for client selection in FL, as we

formulated above, is NP-hard.

Proof : We demonstrate the NP-hardness of our client selection problem by construct-

ing a reduction from the Knapsack problem, which is a well-known NP-hard problem.

In the Knapsack problem, the goal is to select items to maximize the total value

without exceeding a weight limit. We map this problem to our client selection context as

follows:

• Items in Knapsack : Each item in the Knapsack problem corresponds to a client in

the FL network.
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• Weight of Items : The weight of each item in the Knapsack problem is analogous to

the cost associated with selecting a client for training.

• Value of Items : The value of an item in the Knapsack problem maps to a combined

metric in the FL problem, representing each client’s contribution to model accuracy

and the efficiency of training. This metric could be a function of the client’s data

quality and the reciprocal of its expected training time, where shorter training times

are more valuable.

• Weight Capacity : The weight capacity in the Knapsack problem equates to the total

available budget in our problem, encompassing overall resource limitations.

The transformation function T takes an instance of the Knapsack problem (items,

weights, values, and capacity) and maps it to an instance of the client selection problem

with corresponding clients, resource costs, contributions to accuracy, and training time

efficiency under a budget constraint.

Since solving the transformed problem effectively solves the Knapsack problem in-

stance and the Knapsack problem is NP-hard, it follows that the client selection problem,

with its dual objectives of maximizing accuracy and minimizing training time under bud-

get constraints, is also NP-hard. This complexity arises from the need to optimize multiple

conflicting criteria simultaneously.

5.6 Multi-Criteria Client Selection for FL Using

PROMETHEE

The inherent complexity and NP-hardness of multi-criteria client selection in FL make

traditional deterministic approaches inefficient. Practical solutions simplify the problem

to one solvable in polynomial time, balancing multiple conflicting criteria to optimize

accuracy and training time. This section introduces a novel method, using MCDM,
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Figure 5.1: Overview of FedPROM Protocol. Solid black lines denote computation
processes, while dashed lines indicate wireless communications.

of treating FL client selection as a ranking problem. MCDM helps evaluate multiple

conflicting criteria systematically, avoiding exhaustive optimal searches by ranking clients

based on predetermined criteria and weights. Our approach utilizes the PROMETHEE

decision-making process, known for its flexibility and effectiveness in handling qualitative

and quantitative assessments. PROMETHEE compares clients pairwise based on criteria,

assigning normalized scores to quantify attributes and facilitate effective client selection.

The main steps include:
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• Define the criteria and assign relative importance (weights) to each criterion.

• Select appropriate preference functions for each criterion, indicating how the

decision-maker’s preference increases as the performance on that criterion improves.

• Compute the degree of preference for each pair of alternatives based on their per-

formance on each criterion and the corresponding preference functions.

• Aggregate the pairwise preferences to determine the overall ranking of the alterna-

tives.

Figure 5.1 shows the overview of the proposed protocol.

In FedPROM, each client ci is represented by a set of aggregated attributes gj(ci)

such as hardware, network, data quality, and trustworthiness. Consolidating individual

attributes (e.g., CPU, RAM, latency) into these broader categories allows for a scalable

and efficient ranking process as it reduces complexity by evaluating each client’s over-

all capability within the defined category rather than conducting granular comparisons

on specific hardware or network metrics. To facilitate client ranking and selection, we

quantify these aggregated attributes by defining associated scores using utility functions.

These scores are normalized between 0 and 1, where 1 represents the highest possible

quality or performance for each criterion. We define the aggregated scores as follows:

• Hardware Scores (gH(ci)): Quantifies a client’s computational capabilities for

FL tasks, assessed during registration and preliminary training. It incorporates the

device’s computing power, RAM size, storage capacity, power, etc., into a composite

score:

gH(ci) = f(ComputationUtility,MemoryUtility,

StorageUtility, PowerUtility)

(5.1)
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Each utility function (e.g., ComputationUtility, MemoryUtility) is defined as the

ratio of the device’s available resources to the minimum required for the task. For in-

stance, the ComputationUtility function assesses CPU and GPU capabilities based

on processing speeds, translating them into a score relative to the task require-

ments. These functions map the raw attribute data to a normalized score and

aggregate them using a weighted average into a composite score, as defined above.

Here, the weights of the individual utility are determined based on the FL task

requirements. For example, for compute-intensive tasks, ComputationUtility and

MemoryUtility may be assigned higher weights to prioritize clients with better

computational resources. In other scenarios, PowerUtility may be higher where

long-term connectivity is required.

• Network Scores (gN(ci)): Evaluate the client’s network attributes like connection

status, bandwidth, and latency. These metrics directly affect data transfer rates and

the client’s responsiveness during training and model updates, hence, are crucial for

efficient FL communication. We use the same approach, as defined for hardware

scores, to determine the composite score for the network as well:

gN(ci) = f(ConnectionStatus,Bandwidth, Latency) (5.2)

This function assesses the overall network health, prioritizing stable connections

with high bandwidth and low latency, and returns a composite score for the network.

• Data Quality Scores (gQ(ci)): Reflects a client’s data utility for the federated

model, calculated as:

gQ(ci) = f(DataSize, LocalLoss) (5.3)
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where f represents the function that assesses the client’s data size and the impact

of its local loss on learning effectiveness. Prospectively, this formulation could be

extended to include additional parameters such as data freshness or the degree of

non-IIDness, offering a more comprehensive evaluation of data quality.

• Trust Scores (gT (ci)): Represents the client’s trustworthiness based on compliance

with security policies, behavior metrics, and trust evaluations. This score is dynam-

ically updated after every training round to reflect the client’s ongoing adherence

to security and operational standards.

• Other Scores: While hardware capabilities, network conditions, data quality, and

trust scores are foundational, other contextual factors could also significantly influ-

ence client selection in FL environments. For our scenario, we assume all clients

are available when needed, focusing on their hardware, network, data quality, and

trustworthiness. In any other case, the client’s attribute vector can be expanded to

include other contextual factors to enable a more comprehensive client evaluation.

These scores are then used to evaluate and rank clients based on their contribution to

the FL system, which is determined by the preference function.

For two clients ci and ck, the preference Pj of ci over ck for a criterion j is determined

using a linear preference function that takes into account the difference in criterion values

between two clients:

Pj(gj(ci)− gj(ck)) =


0 if d ≤ qj

d−qj
pj−qj if qj ≤ d ≤ pj

1 if d ≥ pj

(5.4)

Where d = gj(ci) − gj(ck) represents the difference in criterion values between the

two clients. The term qj here represents an indifference threshold for the criterion j.

This parameter is crucial as it signifies a range within which the scores’ differences are
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deemed non-impactful. It effectively states that if the difference between the scores of

two alternatives under a given criterion is less than qj, then these two alternatives are

regarded equally preferable with respect to that criterion. Conversely, pj defines a strict

preference zone leading to a preference value of 1.

In the context of FedPROM, we set a low value of the indifference threshold qj (close

to 0) to ensure that even minor differences could play a decisive role in client selection.

These individual criteria preferences are then integrated to generate a global preference

score for each client. A global preference score, π(ci, ck), indicates the degree to which

client ci is preferred over client ck for m criteria, and is computed as follows:

π(ci, ck) =
m∑
j=1

WjPj(gj(ci)− gj(ck)) (5.5)

Here, Wj represents the weight associated with the criterion j, ensuring the relative

importance of the criteria is captured. The purpose of the global preference is to have a

comprehensive measure that encapsulates all criteria to compare any two clients directly.

The Outranking Flows generalize this idea to provide a broader perspective, analyzing how

one client compares to all other clients in the set. For example, the positive outranking

flow, ϕ+(ci), computes the average of the global preference values of the client ci over all

other clients. Essentially, it provides an idea of how preferable client ci is when compared

to every other client in the system. Similarly, the negative outranking flow, ϕ−(ci), inverts

this and computes the average of global preference values of all other clients over the client

ci. It gauges the average extent to which other clients are preferred over the client ci.

These flows are calculated as follows:

ϕ+(ci) =
1

n− 1

n∑
k=1,k ̸=i

π(ci, ck) (5.6)

ϕ−(ci) =
1

n− 1

n∑
k=1,k ̸=i

π(ck, ci) (5.7)
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Lastly, the final ranking of the clients is determined based on the net outranking flow

ϕ(ci).

ϕ(ci) = ϕ+(ci)− ϕ−(ci) (5.8)

A high net flow for a client suggests that, on average, this client is more preferred

when compared to most others in the system, making it an optimal candidate for the

task. Following these steps, the top k clients can be selected directly.

Algorithm 1 Multi-Criteria Client Selection Using FedPROM
1: Input: Set of clients C = {c1, c2, . . . , cn} with attributes gj(ci) for j ∈ Vi = {Hi, Ni, Qi, Ti}, Budget B.
2: Output: Selected client set S.
3: Initialize S = ∅
4: Initialize AvailableBudget = B
5: for each client ci ∈ C do
6: Compute normalized attributes g′j(ci)

7: end for
8: for each criterion j do
9: Compute pairwise preference Pj(g

′
j(ci), g

′
j(ck)) for all client pairs (ci, ck)

10: end for
11: for each client ci ∈ C do
12: Calculate global preference score π(ci, ck)
13: Calculate outranking flows ϕ+(ci) and ϕ−(ci)
14: end for
15: Rank clients based on net outranking flow ϕ(ci)
16: while there are clients in C and AvailableBudget > 0 do
17: Select cbest from C with the highest ϕ(cbest) and within budget
18: if cost(cbest) ≤ AvailableBudget then
19: Add cbest to S
20: Update AvailableBudget = AvailableBudget− cost(cbest)
21: end if
22: Remove cbest from C
23: end while
24: return S

Algorithm 1 presents the pseudocode of FedPROM. By transforming the problem into

a ranking task, we essentially sidestep the combinatorial complexity inherent in direct

subset selection.

5.6.1 Complexity Analysis

In the worst case, the computational complexity of our proposed solution involves:

• The complexity of computing pairwise preferences for m criteria across n clients

is O(m · n2), which, while substantial, is significantly more manageable than the
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combinatorial explosion associated with NP-hard problems.

• Sorting clients based on their net outranking flows involves an additional computa-

tional complexity of O(n log n) following the computation of preferences.

These steps combine to give the FedPROM protocol an overall computational com-

plexity of O(m · n2 + n log n). To further reduce the complexity, we pre-filter the clients

based on the required hardware and network capabilities, which significantly decreases

the pool of clients, thus reducing the overall complexity. While this complexity is man-

ageable in static environments where client attributes remain relatively stable over time,

it poses significant challenges in dynamic, large-scale environments. In scenarios where

client attributes such as trustworthiness, data quality, or network conditions frequently

change, the necessity to recompute the entire preference matrix for every modification

becomes computationally intensive. To enhance scalability and reduce processing over-

head, we utilize an optimized version of the PROMETHEE algorithm that leverages a

sorting-based approach combined with sliding window optimizations to achieve a more

efficient O(m · n log n) computational complexity [268]. This optimization ensures that

client ranking remains both accurate and computationally feasible, even as the client pool

grows dynamically.

5.7 Multi-Criteria Client Selection using Sorting-

Based PROMETHEE

To reduce the computational complexity further, we utilize a sorting-based PROMETHEE

approach [268] that allows efficient ranking of clients even in dynamic environments by

only updating the affected rankings when new clients join, leave, or modify their at-

tributes. For each criterion j ∈ {H,N,Q, T}, clients are sorted based on their scores,

producing four separate, sorted lists. We utilize the same composite score as mentioned

earlier in the section. Sorting these scores ensures that comparisons between clients can
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be limited to those within a specific preference window, significantly reducing the need

for full pairwise comparisons across all clients.

For two clients ci and ck, the preference Pj of ci over ck for a criterion j with score

gj(ci) and gj(ck) is computed using a linear preference function as described in Equation

5.4.

Pj(gj(ci)− gj(ck)) =


0 if d ≤ qj

d−qj
pj−qj if qj ≤ d ≤ pj

1 if d ≥ pj

Where d = gj(ci)− gj(ck) represents the difference in criterion values between the two

clients.

To optimize the computational efficiency of the preference calculation, we implement

a preference window approach. For each criterion j, the system defines the lower bound l

and upper bound u using the thresholds qj and pj to create a preference window for each

client. Specifically, for a client ci with criterion score gj(ci), the bounds can be defined as

follows:

lj = gj(ci)− pj

uj = gj(ci)− qj

Using these bounds, only clients with scores gj(ck) on criterion j falling within a speci-

fied range, referred to as the “window” [l, u], are considered comparable to ci. SecureFed-

PROM computes this window incrementally, moving it along the sorted list, adding or

removing clients from the window based on their criterion scores relative to ci.

Based on the partial comparisons within this window, the system computes both the

uni-criterion positive flow ϕ+
j (ci) and negative flow ϕ−j (ci) for the client ci. The uni-
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criterion positive flow ϕ+
j (ci) measures the extent to which client ci is preferred over other

clients within the window on a single criterion j. Conversely, the uni-criterion negative

flow ϕ−j (ci) assesses the degree to which other clients are preferred over ci on the same

criterion j. These flows are computed as follows:

ϕ+
j (ci) =

1

|window|
∑

ck∈window

Pj(gj(ci)− gj(ck)) (5.9)

ϕ−j (ci) =
1

|window|
∑

ck∈window

Pj(gj(ck)− gj(ci)) (5.10)

Here, ϕ+
j (ci) represents the degree to which ci is preferred over other clients in the

preference window, while ϕ−j (ci) represents the degree to which other clients are preferred

over ci on the same criterion j within this window. Algorithm 2 presents the pseudocode

for computing these preferences for a given criterion, known as uni-criterion flows, with a

sliding window approach.

These uni-criterion flows for all criteria are then aggregated to compute a comprehen-

sive preference measure for each client. Each client’s ranking is derived directly using its

positive and negative flows and aggregating them using a weighted sum across all criteria.

ϕ+(ci) =
m∑
j=1

Wjϕ
+
j (ci)

ϕ−(ci) =
m∑
j=1

Wjϕ
−
j (ci)

(5.11)

Here, Wj represents the criterion weights, which denote the relative importance of

each criterion j ∈ {H,N,Q, T} in the overall client ranking. It ensures that the overall

ranking reflects the strategic priorities of the FL task, allowing certain criteria to have

a greater influence on the final client selection. For example, higher Wj for trust scores

may be assigned for model training on sensitive data to prioritize clients that comply with
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Algorithm 2 Compute Uni-Criterion Flows with Sliding Window
Input: Set of clients C′ = {c′1, c′2, . . . , c′n} with scores gj(c

′
i) for criterion j, thresholds qj and pj

Output: Positive and negative flows ϕ+
j (c′i), ϕ

−
j (c′i) for all c′i ∈ C′

1: procedure ComputeUniCriterionFlows(C′, gj(c′i), qj , pj)
2: Sort C′ in ascending order of gj(c

′
i)

3: ϕ+
j ← ComputeFlows(C′, gj(c′i), qj , pj)

4: Define g′j(c
′
i) = −gj(c′i) for all c′i ∈ C′

5: ϕ−
j ← ComputeFlows(C′, g′j(c

′
i), qj , pj)

6: return (ϕ+
j , ϕ−

j )

7: end procedure
8: procedure ComputeFlows(C′, gj(c′i), qj , pj)
9: Initialize ϕj(c

′
i)← 0, sum in window ← 0, start← 1, end← 1

10: for i← 1 to n do
11: lj ← gj(c

′
i)− pj , uj ← gj(c

′
i)− qj

12: while start < i and gj(C
′[start]) < l do

13: ▷ Adjust window
14: sum in window ← sum in window − gj(C

′[start])
15: start← start+ 1
16: end while
17: while end ≤ n and gj(C

′[end]) ≤ u do
18: ▷ Expand window
19: sum in window ← sum in window + gj(C

′[end])
20: end← end+ 1
21: end while
22: if end− start > 0 then

23: ϕj(c
′
i)←

(end−start)·(gj(c′i)−qj)−sum in window

(pj−qj)·(n−1)

24: end if
25: end for
26: return ϕj(c

′
i)

27: end procedure

security policies and exhibit trustworthy behavior. To balance multiple criteria, we start

with equal weights for each criterion.

Lastly, the final ranking of the clients is determined based on the net outranking flow

ϕ(ci) using Equation 5.8.

ϕ(ci) = ϕ+(ci)− ϕ−(ci)

This net flow score reflects the overall preference of ci compared to all other clients.

A high net score implies that, on average, client ci is preferable when compared to other

clients in the system, making it an optimal candidate for the task.

The clients are then ranked based on their net flow scores, and the top K clients

can be selected directly for the FL task. For static environments where client attributes

might not change, the top x% clients can be selected to participate in the subsequent

training rounds, further sub-sampling either randomly or subject to budget constraints.
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Algorithm 3 Optimized Multi-Criterion Client Selection Using SecureFedPROM
Input:

• Set of clients C = {c1, c2, . . . , cn} with attributes gj(ci) for j ∈ {H,N,Q, T}

• Weights for each criterion Wj

• Thresholds qj and pj for each criterion j

• Budget B

Output:

• Selected client set S

1: procedure FedPROM Optimized(C, W , q, p, B)
2: Initialize S ← ∅
3: Initialize AvailableBudget← B
4: Initialize flow scores ϕ+(ci)← 0 and ϕ−(ci)← 0 for all ci ∈ C

▷ Compute Uni-Criterion Flows for Each Criterion
5: for each criterion j ∈ {H,N,Q, T} do
6: (ϕ+

j , ϕ−
j )← ComputeUniCriterionFlows(C, gj(ci), qj , pj)

7: for each ci ∈ C do
8: ϕ+(ci)← ϕ+(ci) +Wj · ϕ+

j (ci)

9: ϕ−(ci)← ϕ−(ci) +Wj · ϕ−
j (ci)

10: end for
11: end for

▷ Calculate Net Outranking Flow for Each Client
12: for each ci ∈ C do
13: ϕ(ci)← ϕ+(ci)− ϕ−(ci)
14: end for

▷ Rank Clients and Select Within Budget
15: Sort C in descending order based on ϕ(ci)
16: for each ci ∈ sorted(C) do
17: if Cost(ci) ≤ AvailableBudget then
18: Add ci to S
19: AvailableBudget← AvailableBudget− Cost(ci)
20: end if
21: if AvailableBudget ≤ 0 then
22: break
23: end if
24: end for
25: return S
26: end procedure

In dynamic environments where client attributes such as trustworthiness or data quality

may change over time or a new client joins, the partial ranking for the clients can be

efficiently updated with only localized recalculations for each criterion.

Algorithm 3 presents the complete pseudocode of SecureFedPROM. By transforming

the problem into a ranking task, we essentially sidestep the combinatorial complexity in-

herent in direct subset selection and address the challenges of dual-objective optimization

efficiently.
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5.7.1 Complexity Analysis

SecureFedPROM leverages a sorting-based PROMETHEE approach to achieve efficient

multi-criterion client selection. In the worst case, the computational complexity of our

proposed solution involves:

• Uni-Criterion Flow Computation: For each criterion, clients are sorted by their

attribute scores, resulting in O(n log n) complexity. The sliding window mechanism

then computes flow scores in O(n) for each criterion. With m criteria, the overall

complexity for uni-criterion flow computation is O(m · n log n).

• Net Outranking Flow Aggregation: After computing the uni-criterion flows,

weighted sums are applied to aggregate these into net flow scores for each client,

incurring a complexity of O(m · n).

• Client Ranking and Selection: Finally, clients are ranked by sorting the net flow

scores, which adds a complexity of O(n log n).

Thus, the overall complexity of SecureFedPROM is dominated by the uni-criterion

flow computation, which remains O(m · n log n) in the worst case. This efficiency is ideal

for dynamic FL environments where clients frequently join or leave the system, as the

proposed approach can update the client ranking incrementally, without recomputing the

entire preference matrix. Furthermore, the overhead introduced by the SecureFedPROM

mainly revolves around preference flow computations and is conveniently handled at the

FL server. This balance of computational efficiency and accurate client selection makes

SecureFedPROM ideal for large-scale, resource-constrained, and highly dynamic FL en-

vironments.
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Table 5.1: Hardware Configuration of Simulated Environment

Low-End Mid-Range High-End Excellent
CPU Count 1 (Single Core) 1 (Dual Core) 2 (Quad Core) 4 (Octa Core)
Cores 1 2 4 8
Frequency (GHz) 1.2 2.5 3.5 3.5+
CPU Utilization (%) 43-100 (High Load) 25-49 (Moderate Load) 12-35 (Low Load) 6-36 (Variable Load)
GPU Absent Absent Absent Present
RAM (GB) 1-2 2-4 4-8 8-64
Available RAM (GB) 0.5-1 (Minimal) 1-3 (Moderate) 3-7 (Ample) 5-64 (Extensive)
Storage (GB) 1-4 (Minimal) 4-8 (Moderate) 8-64 (Ample) 32-64 (Extensive)

Table 5.2: Network Configuration of Simulated Environment

Poor Average Good Excellent
Bandwidth (Mb/s) 1-4 4-10 10-100 100-1000

Latency (ms) 20-100 20-80 5-50 1-10

5.8 Results and Discussions

5.8.1 Experimental Setup

This study’s experimental design meticulously simulates both statistical and system het-

erogeneity to evaluate the effectiveness of our multi-criterion client selection strategy under

realistic conditions. Clients are categorized based on a spectrum of hardware specifica-

tions and network conditions, mirroring the diverse device and connectivity environments

encountered in typical FL scenarios. Table 5.1 and Table 5.2 summarize the simulated

environment’s hardware and network configurations.

All the simulated clients were run on a workstation equipped with a 12th Gen Intel(R)

Core(TM) i7-12700K CPU clocking at 3.60 GHz, and 64GB of RAM. Our simulations

employ heuristic-based estimates for network delays and training times to account for

realistic operational delays. The network delay Tnetworkdelay accounts for the time required

to download and upload the model and is calculated as:

Tnetwork delay =
Size of Data Transferred

Bandwidth
+ Latency (5.12)

For model training time (Ttraining), the heuristic considers computational workload

and system capabilities:
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Ttraining =
comp

Processing Capacity
×Memory Impact Factor (5.13)

Here, comp represents the total floating point operations required for the training,

adjusted to the system’s available processing capacity and the available memory ratio.

These heuristics help in accounting for the varying capabilities of devices and network

conditions and provide a more realistic simulation of FL environments.

Utilizing benchmark ML datasets, we distribute data among simulated clients under

non-IID settings, thereby simulating statistical heterogeneity inherent in real-world set-

tings. Most datasets used in this study are sourced from the LEAF benchmarks [269],

which provides a suite of standardized datasets and partitioning strategies designed to

evaluate the performance and scalability of FL algorithms under varied conditions. Specif-

ically, we use the following datasets:

1. Federated Extended MNIST (FEMNIST) is the federated version of Extended

MNIST (EMNIST) [270]. Unlike standard EMNIST, FEMNIST partitions data

based on individual writers of the digit/character, creating a highly non-IID distri-

bution where each client has data from only a few users.

2. CelebA which partitions the Large-scale CelebFaces Attributes Dataset [271] by

individual celebrities.

3. Reddit, a federated text dataset containing user-generated posts and comments

from the Reddit platform. This dataset is partitioned based on users posting on

Reddit and exhibits strong user-specific non-IID characteristics.

4. Synthetic, a modified version of the synthetic dataset presented in [272].

5. CIFAR10 is the only dataset used outside of LEAF to study the non-IID label

distribution, where each client received a random subset of 50 to 1,000 samples.
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Table 5.3 summarizes the key statistics of the datasets used in this study. We trained

the FL model on these datasets using the model architectures defined in LEAF, with

TensorFlow employed to build and execute the experimental setup efficiently.

• In our experiments using the FEMNIST dataset, we subsample 10% of the data

and use a model with two convolutional layers followed by pooling and a final dense

layer with 2048 units. We used a learning rate of 0.004 to train 20 clients per round

using a single local epoch for 50 rounds.

• For CelebA, we again subsample 10% of the data and use the same model as de-

scribed above for FEMNIST. However, we used a small batch size of 5 and trained

20 clients for 50 rounds using a learning rate of 0.001.

• For the Reddit dataset, we train a stacked LSTM model with a batch size of 5 and

a learning rate of 5.65, selecting 20 clients per round for 50 training rounds.

• For the experiments with the Synthetic dataset, as described in the LEAF bench-

mark, we use 1,000 devices and train a perceptron model with sigmoid activations.

We train this model over 20 clients per round, each training the model for a single

local epoch with a batch size of 5 and a learning rate of 0.1.

• For the CIFAR 10 dataset, we use 255 devices and train a modified version of the

pre-trained ResNet-50 model, adjusted with an adaptive average pooling layer and

a final fully connected layer outputting ten classes. In each training round, we select

20 devices, each performing 5 local epochs using a learning rate of 0.01.

We compared the achieved accuracy with other state-of-the-art client selection strate-

gies, such as Active selection, Power of Choice (pow-d), Greedy, Resource aware, and

Price first. In the following section, we will discuss the results derived from this setup

and the implications of our proposed multi-criterion client selection method.
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Table 5.3: Statistics of Experimental datasets

Dataset
No. of
devices

Total samples
Samples per User

mean std Skewness
FEMNIST 3,597 817,851 227.37 88.8 0.74
CelebA 9,343 200,288 21.44 7.63 -0.54
Reddit 1660912 56588034 34.07 63.1 1.85
Synthetic 1,000 107,553 107.55 213.22 3.10
CIFAR 10 255 50000 196.07 99.07 -0.12

5.8.2 Evaluation and Results

To evaluate our strategy’s effectiveness, we compared its performance against the stan-

dard Federated Averaging (FedAvg) algorithm and other state-of-the-art client selection

strategies. Here, we provide an in-depth overview of each strategy and the results ob-

tained.

• Random Selection: Based on the study [8], this strategy randomly chooses a

predefined number of clients without considering specific client attributes or perfor-

mance characteristics.

• Active Selection: This strategy selects clients primarily based on their loss met-

rics, with a fraction chosen at random for diversity [273].

• Power of Choice: This method selects clients by prioritizing those with the highest

validation loss, assuming they will contribute the most to global model updates [143].

• Greedy: This client selection protocol selects clients based on the ratio of the

number of training samples to cost, preferring clients with more samples per cost

unit.

• Resource aware: We modify the technique presented in [56]. This client selection

protocol selects clients based on their computation and communication information

with the aim of minimizing the training time.
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• Price first: It prioritizes the clients with low prices for a given learning task, aiming

to select as many clients as possible within the limited budget.

• FedPROM: This is our proposed multi-criteria client selection strategy, which

considers client-specific hardware capabilities, network conditions, and data quality

to ensure optimal client selection.

We thoroughly investigated the performance of each client selection method across a

spectrum of evaluation metrics, providing a comprehensive understanding of their impacts

on the FL process. A key consideration in our assessment was the efficiency of these

methods, which were evaluated by measuring key factors such as the time required to

reach specific accuracy level benchmarks.

5.8.3 Performance Evaluation and Discussion

To thoroughly evaluate the performance of these strategies, we considered the following

key factors:

1. Accuracy vs. Number of Rounds: This metric denotes the accuracy achieved at

different training stages, emphasising a strategy’s effectiveness as training progresses

through multiple rounds.

2. Time of Arrival at a Desired Accuracy (ToA@x): This measure provides a

snapshot of efficiency, documenting the time taken to reach a certain accuracy level.

The earlier a method reaches the benchmark, the better.

3. Performance after the final deadline: This captures the performance of each

strategy in terms of accuracy, after 50 rounds of training, providing an overview of

long-term effectiveness.
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Table 5.4: Results obtained for FEMNIST, CelebA, and Synthetic dataset over non-IID
data as described in Table 5.3. ToA@x represents the time (in seconds) required to

arrive at a testing classification accuracy of x (the earlier the better). NaN means that
the method did not achieve the testing classification accuracy of x in the given 50

rounds of training.

Method
FEMNIST

ToA@50% ToA@60% ToA@70% Training time Final accuracy
Random selection 536.26s 1523.79s 3775.06s 7930.84s 75.55%
Active selection 2365.46s 2894.20s 4298.21s 4380.21s 70.20%
Power of Choice 312.09s 408.95s 602.3s 4500.28s 61.19%
Greedy selection 718.06s 1023.50s 1938.95s 5097.28s 75.55%
Resource-aware 138.24s NaN NaN 432.024s 35.64%
Price-first 489.73s 628.74s 1045.76s 3471.94s 60.13%
FedPROM 56.41s 81.79s 145.15s 627.96s 80.60%

Method
CelebA

ToA@50% ToA@60% ToA@70% Training time Final accuracy
Random selection 37.87s 95.41s 318.80s 2480.71s 77.09%
Active selection 50.00s 101.38s 419.39s 2599.72s 73.69%
Power of Choice 57.28s 57.28s NaN 2555.97s 67.98%
Greedy selection 59.32s 177.97s NaN 2966.18s 62.53%
Resource-aware 15.18s 45.54s NaN 75.90s 55.92%
Price-first 48.89s 48.89s NaN 2444.63s 61.10%
FedPROM 15.35s 15.35s 115.91s 818.28s 84.33%

Method
Synthetic

ToA@50% ToA@60% ToA@70% Training time Final accuracy
Random selection 11.32s 80.05s 244.68s 549.32s 76.79%
Active selection 153.33s 311.09s NaN 572.46s 63.39%
Power of Choice 9.59s 220.31s NaN 564.13s 61.88%
Greedy selection 12.04s NaN NaN 602.00s 49.11%
Resource-aware 1.28s NaN NaN 64.21s 50.74%
Price-first 308.34s NaN NaN 592.98s 50.49%
FedPROM 5.85s 39.55s 93.32s 371.52s 81.01

Performance comparison

With the configurations mentioned earlier, we then train the model and compare the

performance of FedPROM with the benchmark client selection protocols. Particularly,

we emulate an FL environment for each learning task, where the features of the candidate

clients follow the description in Section 5.8.1. Following the standard, we only select a

fraction of clients to participate in each training iteration. Figure 5.2 shows the accuracy

of each learning task using different client selection strategies. We can observe that for

all learning tasks and FL settings, our proposed strategy, FedPROM, outperforms other

state-of-the-art client selection strategies. Specifically, in the FEMNIST and CelebA
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datasets, FedPROM exhibited a swift convergence to peak accuracy levels, outperforming

other client selection strategies that displayed either a slower improvement rate or a lack of

stability in convergence. This trend continued in the analysis of the Synthetic and CIFAR

10 datasets, where the FedPROM protocol not only achieved higher final accuracy quickly

but also maintained a lead throughout the communication rounds. This indicates that our

proposed protocol may reduce the frequency of data transmissions necessary to achieve

high accuracy, thereby suggesting a potential reduction in communication overhead and

energy consumption.

However, the Reddit dataset (Figure 5.2e) presents a unique challenge due to the sparse

and highly skewed data distribution across clients. Here, FedPROM shows a modest

improvement in accuracy over other strategies, which indicates that while our method is

advantageous, the complexity of text-based, imbalanced data requires additional strategies

to enhance performance significantly.

Time of Arrival at a Desired Accuracy (ToA@x)

We observed the changes in the accuracy on testing datasets over time and analyzed

when the accuracy reached a certain level for the first time. Specifically, we report Time

of Arrival at a Desired Accuracy (ToA@x) for FEMNIST, CelebA, and Synthetic datasets

under non-IID data settings for 50%, 60%, and 70% accuracy levels. We summarize these

results in Table 5.4.

We can observe that FedPROM consistently outperforms the existing client selection

strategies regarding both time and rounds required for convergence. For the FEMNIST

dataset, FedPROM required only 56.41 seconds and 4 rounds to reach a 50% accuracy

level, demonstrating a substantial efficiency gain over other methods. Specifically, it

showed an 86.73% reduction in time and a 33.33% reduction in rounds required com-

pared to Random selection, an 81.93% reduction in time and a 50% reduction in rounds

compared to Power of Choice, and a 92.13% reduction in time and a 42.86% reduction

in rounds over Greedy selection. Similarly, for the CelebA and Synthetic datasets, Fed-
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(a) FEMNIST (b) CelebA

(c) Synthetic (d) CIFAR 10

(e) Reddit

Figure 5.2: Performance comparison of client selection strategies with 20 candidate clients.

PROM achieves 50% accuracy in just 15.35 and 5.85 seconds, demonstrating a 73.20% and

39% reduction compared to Power of Choice and a stark contrast to Greedy and Active

selection strategies, which did not reach the same efficiency levels within the specified 50
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Table 5.5: Features of selected clients across different client selection strategies when the
budget is set to 50.

Client Selection Strategy Random Active Power of Choice Greedy Resource Aware Price First FedPROM
Avg. no. of clients selected 38 26 32 45 6 50 16
Avg. data size per client 227.15 300 243 242 169 146 294
No. of unique training samples 81118 44023 45918 16786 15148 15423 37775
Final accuracy 66.95% 72.01% 66.03% 69.44% 38.29% 44.79% 75.63%

rounds of training.

Moreover, Table 5.5 compares various client selection strategies using different metrics

for each strategy, highlighting how each approach performs under a fixed budget scenario.

The finding demonstrates how FedPROM outperforms other client selection strategies

in terms of final accuracy. This experiment also indicates that despite selecting fewer

clients (only 16 on average) and having a relatively high average data size per client

(294), FedPROM is more effective in leveraging client data for training, leading to better

model performance than the other strategies listed.

Impact of Budget

In this section, we systematically evaluate the impact of budget constraints on final model

accuracy across various client selection strategies. To accurately assess this impact, we

first establish a cost model. This model quantifies the computational and communication

overhead associated with each client’s participation in a learning round and defines cost

as a function of resources utilized by the client and the volume of data transmitted during

model updates. These metrics capture the resource expenditure of the FL process and

are critical for evaluating the efficiency of client selection strategies under varying budget

conditions. We varied the budget parameter from 5 to 50 and trained the model to explore

its impact. Taking FEMNIST as an example, we summarize these results in Figure 5.3.

The findings indicate a general trend: increasing the budget correlates with improved

accuracy across all client selection strategies. However, the magnitude of this improve-

ment and the efficiency of budget utilization vary significantly among the strategies. With

the most stringent budgets, all strategies perform comparably, struggling to achieve even
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(a) Budget=5 (b) Budget=10

(c) Budget=15 (d) Budget=20

(e) Budget=50

Figure 5.3: Impact of varying budgets on performance

moderate accuracy levels after 50 communication rounds. This implies that overly restric-

tive budget constraints hamper the learning capability of federated systems. However,

it can be seen that FedPROM maintains a relatively stable performance and offers a
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slight edge compared to other client selection strategies. As the budget increases to 10,

strategies like FedPROM and Power of Choice selection begin to differentiate themselves,

achieving higher accuracy than others. FedPROM, in particular, shows substantial gains,

indicating its effective utilization of additional resources.

(a) FEMNIST

(b) CIFAR10

Figure 5.4: Impact of criteria weighting on global model accuracy and training time

The separation between strategies becomes more explicit at a moderate budget of 15

and 20. FedPROM continues to lead, surpassing the 60% accuracy mark rapidly com-
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pared to others. Notably, Power of Choice and Greedy selection also benefit from the

increased budget, showing improved performance, yet they do not match the efficiency

of FedPROM. Resource-aware and Price-first strategies demonstrate moderate improve-

ments but remain less efficient in utilizing the increased budget. As the budget increases,

FedPROM exhibits diminishing returns on accuracy gain, although it still maintains the

lead and offers more stable performance. This pattern suggests an optimal budget range

for FedPROM, beyond which resource allocation does not directly translate into propor-

tional accuracy improvements; however, it stabilizes the model. Conversely, strategies

like Random selection and Active selection show continued, albeit modest, improvements,

indicating that they may benefit from larger client pools.

Impact of Criteria Weighting

In FL, client selection significantly influences both training time and model accuracy.

Intuitively, hardware and network capabilities could be presumed to significantly influence

training time, given their direct relationship with computational efficiency. Meanwhile,

data quality is directly tied to model performance, assuming that higher-quality data

would boost the model’s performance.

In this section, we further aim to quantify the extent of impact each criterion exerts

on the FL process. By manipulating the weights of these criteria from 0 to 1, while

ensuring their cumulative weight remained constant at 1, we aim to observe and analyze

the sensitivity of the training duration and final model accuracy to these factors. We

present these results in Figure 5.4.

Using FEMNIST and CIFAR10 as examples, the empirical results reveal distinct sen-

sitivities to the criteria under consideration. When considering hardware weight, the

CIFAR10 dataset showed a decreased training time with increased weight. The FEM-

NIST dataset exhibited a similar trend but more significant reductions in training time,

which could be attributed to the dataset’s relative simplicity. Yet, this improvement was

not mirrored in terms of accuracy, which suggests that while better hardware accelerates
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computation, it does not inherently enhance the model’s learning ability for more complex

tasks. We observed a similar trend with the network weight; training times decreased as

we increased the network weights. However, it plateaus at higher levels, indicating an

optimal network capacity for efficiency gains.

The data quality criterion, however, shows a positive correlation with both the model

performance and training efficiency. We observed that increasing the data quality weights

translates into accuracy gains across both datasets, thereby confirming the hypothesis that

data quality is paramount for model performance. Notably, training time also diminished

with higher data quality weights, illustrating that when models train with higher-quality

datasets, they converge more rapidly and with greater fidelity.

One of the most noteworthy observations is that no single weight combination univer-

sally optimized both model accuracy and training time across all datasets. This suggests

that the ideal weight distribution is highly context-dependent. However, it’s worth not-

ing that the most significant improvements in accuracy and training time reduction were

generally observed when the weights were more balanced across hardware, network, and

data quality criteria. Imbalanced weight distributions often led to either high accuracy

at the expense of longer training times or vice versa.

An additional observation worth noting is the uniformity of the impact across all

three criteria (hardware, network, and data quality) for each dataset. Specifically, the

percentage improvements in accuracy and reductions in training time were remarkably

consistent when varying any of these weights. For instance, in the FEMNIST dataset,

the sensitivity to all three criteria was almost identical, indicating that the FEMNIST

dataset is generally less sensitive to the specific criteria and may perform well with various

client selection strategies. In contrast, the CIFAR10 dataset showed the most variability

in achieving high accuracy and an overall reduction in training time. This suggests that

CIFAR10, which is a more complex image classification task, could be more sensitive to

the quality of the data and might require a more thoughtful selection of client devices for

optimal performance.
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This uniformity or variability across criteria can offer insights into the robustness of an

FL model against different environmental factors. For simpler tasks like FEMNIST, the

model may be more forgiving, allowing for more flexible client selection. However, a more

balanced and cautious approach to weight distribution may be crucial for achieving high

accuracy and reasonable training times for complex tasks. In the context of FedPROM,

these experiments reveal that not only does it offer a more balanced approach to client

selection, but it also provides the flexibility to set weight preferences for any criteria,

allowing for a tailored optimization strategy based on the task and resource constraints,

which is beneficial for its practical usage in various FL scenarios.

5.9 Key Findings

The findings from this chapter demonstrate the effectiveness of a multi-criteria client selec-

tion framework in FL environments. Our approach, FedPROM, addresses key challenges

associated with client selection by balancing computational power, network conditions,

and data quality, resulting in improved system performance and fairness. Optimizing

client selection based solely on a single criterion, such as computational resources or data

quality, tends to introduce biases that degrade model accuracy and reduce the diversity

of the training data. For example, selection strategies focusing on computational capa-

bilities often prioritize high-performing devices, but at the cost of neglecting clients with

more diverse or higher-quality data. Similarly, prioritizing data quality alone can lead to

longer training times and inefficient resource usage, as clients with better data may not

have the necessary computational power to process it quickly.

Our experiments demonstrated that FedPROM significantly reduces training time

while maintaining or improving model accuracy. For instance, when applied to the FEM-

NIST dataset, FedPROM achieved 80.60% accuracy with a training time of just 627.96

seconds, outperforming traditional strategies like Random Selection and Power of Choice.

Furthermore, by using a combination of criteria, our method ensures fairer client par-
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ticipation, which leads to better generalization of the global model. This multi-criteria

approach also showed resilience against client heterogeneity, ensuring stable convergence

rates even under non-IID data distributions, which is a common challenge in FL.

Moreover, our findings suggest that optimizing both performance and training time

helps not only in reducing communication overhead but also in ensuring a more equitable

distribution of computational load across clients. This is crucial in practical scenarios

where devices have limited resources and energy, such as mobile phones or IoT sensors.

The adaptability of our client selection framework makes it well-suited for diverse and

dynamic environments.

5.10 Summary

This chapter introduced our initial contribution, a multi-criteria client selection frame-

work aimed at optimizing both performance and training time. The proposed approach

addresses the fundamental challenges in client selection, such as managing client het-

erogeneity, reducing communication overhead, and ensuring fairness in client participa-

tion. By framing the client selection task as a dual-objective optimization problem, Fed-

PROM balances multiple factors—computational resources, data quality, and network

conditions—resulting in improved global model performance and faster convergence.

We demonstrated that FedPROM outperforms traditional single-criterion methods in

various experiments, particularly by reducing the time to achieve target accuracies while

maintaining high levels of model accuracy. This framework integrates energy and budget

constraints, making it a practical solution for resource-constrained environments, such as

IoT networks and mobile devices.

Our contributions in this chapter mark a significant step forward in improving the

scalability and efficiency of FL systems. By leveraging a multi-criteria approach, Fed-

PROM offers a balanced and flexible solution for selecting clients in diverse, real-world

FL scenarios. The next chapter will build on this work by exploring further optimizations
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in the client selection process, including the incorporation of dynamic client availabil-

ity and adaptive learning rates, to further enhance the efficiency and effectiveness of FL

systems.
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Chapter 6

Bayesian Federated Learning using

Stochastic Variational Inference

6.1 Introduction

In FL, one of the core challenges is to address the inherent uncertainty and heterogeneity

across distributed clients. Traditional FL methods, such as Federated Averaging (Fe-

dAvg), treat model updates as deterministic, without accounting for the uncertainty in

data distributions or the variances in model updates across clients. This approach often

leads to suboptimal performance, particularly in scenarios where data distributions are

non-IID or when clients have vastly different amounts of data.

Bayesian Federated Learning (BFL) offers a more flexible and robust alternative by

modeling the FL process probabilistically. By formulating the learning task within a

Bayesian framework, we can better capture the uncertainty in client updates and make

more informed decisions during the aggregation process. This not only helps in dealing

with heterogeneous data but also improves model generalization. Through the use of

Stochastic Variational Inference (SVI), BFL introduces a scalable approach to approx-

imate posterior distributions at the client side, ensuring that the communication and

computational overheads remain manageable.
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This chapter explores how Bayesian principles can be effectively integrated into the FL

framework, offering a structured method for dealing with the variability in client updates

and enhancing model performance under challenging conditions.

6.2 Objectives

The primary objective of this chapter is to introduce and optimize a Bayesian framework

for FL that addresses the limitations of traditional deterministic methods like FedAvg.

By modeling the uncertainty in client updates through a Bayesian inference approach, we

aim to enhance the robustness and generalization of the global model. Specifically, this

chapter seeks to leverage SVI to approximate posterior distributions at the client level,

enabling efficient handling of non-IID data while maintaining scalability. Additionally,

we aim to improve model convergence by incorporating uncertainty into the aggregation

process. The ultimate goal is to empirically validate the superior performance of Bayesian

approaches compared to traditional aggregation methods.

6.3 Contribution

Our contribution in this chapter is threefold:

• We introduce BayFL-SVI, a novel Bayesian federated learning framework that in-

tegrates SVI for scalable and efficient Bayesian inference.

• We provide a rigorous theoretical analysis of our approach, including convergence

guarantees, highlighting the effectiveness of the proposed method.

• We present comprehensive empirical results demonstrating significant improvements

in convergence rates and model accuracy compared to traditional aggregation pro-

tocols in FL.
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6.4 Proposed Protocol

This section introduces our proposed protocols, BayFL-SVI, detailing its components

and the methodology employed to address the challenges of data variability and efficient

aggregation in federated learning. By formulating the FL process as a Bayesian inference

problem, our approach allows for integrating prior knowledge and managing uncertainty

in model updates. The framework comprises the client-side local training process and

server-side hierarchical Bayesian aggregation.

6.4.1 Bayesian Formulation

In a Bayesian framework, model parameters θ are treated as random variables with an

associated prior distribution p(θ). The objective is to update the distribution of these

parameters based on the posterior distributions received from clients. For each client i,

we denote its local dataset as Di, and the likelihood of the data given the parameters θ

is represented as p(Di|θ).

The posterior distribution of the model parameters after observing the data from client

i can be determined using Bayes’ theorem:

p(θ|Di) =
p(Di|θ)p(θ)

p(Di)
(6.1)

where:

• p(θ) is the prior distribution of the model parameters.

• p(Di|θ) is the likelihood of the data given the model parameters.

• p(Di) is the marginal likelihood or evidence, which is a normalization constant.

In FL, directly computing the posterior p(θ|D) where D =
⋃

i Di is infeasible due

to its decentralized nature. Instead, we approximate this posterior using local posterior

distributions from each client, qi(θ).
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6.4.2 Client-Side Training with SVI

Each client in the BayFL-SVI framework performs local training using SVI to approxi-

mate the posterior distributions of their model parameters. In variational inference, we

approximate the true posterior p(θ | Di) with a simpler distribution qi(θ | ϕi), parame-

terized by ϕi (which includes the mean µi and variance σ2
i ). The goal is to minimize the

Kullback-Leibler (KL) divergence between qi(θ | ϕi) and the true posterior p(θ | Di). This

is equivalent to maximizing the Evidence Lower Bound (ELBO):

L(ϕi) = Eqi(θ|ϕi)[log p(Di | θ)]−KL(qi(θ | ϕi)∥p(θ)) (6.2)

where:

• Eqi(θ|ϕi)[log p(Di | θ)] is the expected log-likelihood of the data under the variational

distribution.

• KL(qi(θ | ϕi)∥p(θ)) is the Kullback-Leibler divergence between the variational dis-

tribution qi(θ | ϕi) and the prior p(θ).

The ELBO balances model fit to the data (first term) and model complexity (second

term). Clients optimize the ELBO using stochastic gradient descent. For each mini-

batch of local data, the client updates its variational parameters to maximize the ELBO,

ensuring that the variational distribution qi(θ | ϕi) closely approximates the true posterior.

The steps involved are as follows:

1. Initialization: Each client receives the initial global model parameters θ0 from the

server and initializes its local variational parameters ϕi including µi and σ2
i .

2. Mini-batch Processing: Clients process their local data Di in mini-batches. For

each mini-batch, the client computes the ELBO L(ϕi) using the current variational

parameters as given in Equation 6.2.
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3. Gradient Updates: The client performs stochastic gradient descent to maximize

the ELBO L(ϕi), updating the variational parameters ϕi to better approximate the

true posterior p(θ|Di). The update rule can be simply described as:

ϕi ← ϕi + η∇ϕi
Li(ϕi) (6.3)

Here, η is the learning rate.

4. Local Model Parameter Update: After processing all mini-batches, the client

updates its local model parameters θi based on the optimized variational parameters

ϕi. The optimized variational parameters ϕi, which now represent the local posterior

distribution, are then sent to the server.

This iterative update ensures that the variational approximation qi(θ | ϕi) improves

incrementally with each client update.

6.4.3 Server-Side Aggregation with Hierarchical Bayesian Mod-

eling

After clients perform local training using SVI and send their local posterior distributions

to the server, the server aggregates them to update the global model parameters. This is

done using a Hierarchical Bayesian Modeling approach, which allows us to capture both

global trends and client-specific variability in a principled way.

Hierarchical modeling leverages a two-level structure: client-level posteriors are in-

formed by local data, while the global model aggregates these with shared priors, captur-

ing uncertainty at both levels. This is especially useful in non-IID settings, where data

distributions differ significantly across clients. Other Bayesian aggregation methods, such

as naive averaging of posteriors or simple Bayesian ensembling, lack this expressiveness

and tend to underperform in heterogeneous environments. The hierarchical approach of-

fers a more flexible and theoretically grounded way to account for data diversity while
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maintaining robustness in the aggregation process.

Hierarchical Bayesian Aggregation

In the Hierarchical Bayesian framework, we treat the global model parameters θ as having

a prior distribution, and each client’s local posterior distribution is used to update this

prior to form a global posterior. Let’s denote:

• µi and σ2
i as the mean and variance of the local posterior distribution qi(θ) from

client i.

• µ0 and σ2
0 as the prior mean and variance of the global model parameters.

• N as the total number of clients.

1. Global Prior and Hyperprior: Assume a global prior distribution for the model

parameters θ:

p(θ | λ) = N (θ | µ0, σ
2
0) (6.4)

where λ = (µ0, σ
2
0) are the hyperparameters of the global prior.

2. Client Variational Distributions: Each client i computes a local variational

distribution qi(θ | ϕi) to approximate the posterior distribution. If the variational

distribution is Gaussian:

qi(θ | ϕi) = N (θ | µi, σ
2
i ) (6.5)

Here, ϕi = (µi, σ
2
i ) are the variational parameters of client i, the result of the client-

side training using SVI, as described in the previous Section 6.4.2.

3. Aggregating Client Distributions: To aggregate the variational parameters

from clients, we utilize a Bayesian update. Assume that the global posterior q(θ) is

also Gaussian:

q(θ | ϕ) = N (θ | µ, σ2) (6.6)
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where ϕ = (µ, σ2) are the global variational parameters to be determined.

4. Update Rules for Global Variational Parameters:

To update the global variational parameters, we use the following rules:

1

σ2
g

=
1

σ2
0

+
N∑
i=1

1

σ2
i

(6.7)

µg = σ2

(
µ0

σ2
0

+
N∑
i=1

µi

σ2
i

)
(6.8)

These update rules ensure that the global posterior incorporates information from

both the prior and the clients’ updates. Once aggregated, the server broadcasts the

updated global parameters to all clients for the next round of local training.

By adopting this hierarchical Bayesian approach, the server can effectively combine

the local posterior distributions from the clients, taking into account their variability and

uncertainty, to construct a robust global model. This method ensures that the global

model leverages the diverse data distributions across clients, offering a principled ap-

proach to aggregate updates in Federated Learning. The theoretical analysis and proof

of convergence are thoroughly explained in the next section.

6.5 Theoretical Convergence Analysis

To demonstrate the convergence of the proposed framework, BayFL-SVI, we show that

the aggregated posterior q(θ) converges in distribution to the true posterior p(θ | D) as

the number of clients increases.

6.5.1 Assumptions

To establish the convergence performance of the aggregated model, we adopted the fol-

lowing assumptions.
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1. Smoothness: The objective function f(θ) is smooth, i.e., it has Lipschitz continu-

ous gradients:

∥∇f(θ1)−∇f(θ2)∥ ≤ L∥θ1 − θ2∥ for some constant L > 0 (6.9)

2. Bounded Variance: The stochastic gradients have bounded variance:

E[∥∇fi(θ)−∇f(θ)∥2] ≤ σ2 for some constant σ > 0 (6.10)

3. Bounded Gradients: The gradients are bounded:

∥∇f(θ)∥ ≤ G for some constant G > 0

4. Convexity: The objective function f(θ) is convex:

f(θ1) ≥ f(θ2) +∇f(θ2)T (θ1 − θ2)

5. Local Exchangeability: Within each client’s dataset, the data points are ex-

changeable.

6. Proper Prior: The global prior p(θ | λ) is properly specified.

6.5.2 Variational Inference Convergence

Each client approximates the posterior distribution p(θ | Di) with a simpler distribution

qi(θ | ϕi), parameterized by ϕi. The goal is to maximize the Evidence Lower Bound

(ELBO):

L(ϕi) = Eqi(θ|ϕi)[log p(Di | θ)]−KL(qi(θ | ϕi) ∥ p(θ))
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Clients optimize the ELBO using stochastic gradient descent (SGD).

Lemma: Under the assumptions of smoothness and bounded variance, the variational

parameters ϕi updated using SGD converge to a stationary point of the ELBO:

ϕt+1 = ϕt + η∇ϕL(ϕt)

Proof:

Using the smoothness assumption, we have:

L(ϕt+1) ≤ L(ϕt) +∇ϕL(ϕt)
T (ϕt+1 − ϕt) +

L

2
∥ϕt+1 − ϕt∥2 (6.11)

Substituting the SGD update rule, ϕt+1 = ϕt + η∇ϕL(ϕt):

L(ϕt+1) ≤ L(ϕt) + η∥∇ϕL(ϕt)∥2 +
Lη2

2
∥∇ϕL(ϕt)∥2 (6.12)

Choosing a sufficiently small learning rate η ensures that the ELBO increases mono-

tonically until it converges to a stationary point ϕ∗, where ∇ϕL(ϕ∗) = 0. Substituting ϕ∗

into the gradient equation:

ϕ∗ = ϕt + η∇ϕL(ϕt) =⇒ 0 = ∇ϕL(ϕ∗) (6.13)

This shows that the gradient of the ELBO at ϕ∗ is zero, indicating convergence to a

stationary point.

6.5.3 Convergence of the Global Model

Lemma: Under the assumptions of local convergence and proper prior, the global varia-

tional distribution q(θ) ≈ N (θ | µg,Σg) converges to the true global posterior p(θ | D) as
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the number of clients N increases.

Proof:

Assume a global hierarchical prior given by:

p(θ | λ) = N (θ | µ0,Σ0)

The objective is to aggregate the local variational parameters received from the clients

to form a global posterior distribution where each client’s local variational distribution is

approximated as qϕi
(θ) ≈ N (µi,Σi).

To aggregate these local distributions, the server updates the global variational param-

eters, global covariance Σg and mean µg, using the update rules mentioned in equations

6.7 and 6.8.

1

σ2
g

=
1

σ2
0

+
N∑
i=1

1

σ2
i

µg = σ2

(
µ0

σ2
0

+
N∑
i=1

µi

σ2
i

)

Here:

• σ2
g represents the global uncertainty associated with the parameter estimates.

• 1
σ2
g
is the inverse of the global variance. It is the sum of the inverse of the prior

variance ( 1
σ2
0
) and the inverse of the local variances (

∑N
i=1

1
σ2
i
).

• µg is calculated as a weighted combination of the prior mean (µ0) and the local means

(µi), where the weights are given by the respective precisions. As N increases, the

influence of the local means µi dominates over the prior mean µ0, assuming the local

data is informative.

Given that each client uses SVI, by Lemma 6.5.2, we assume that the variational

133



Crowdsourced Federated Learning

approximation qϕi
(θ) ≈ N (µi,Σi) converges to the true local posterior p(θ | Di):

qϕi
(θ)→ p(θ | Di)

Using the law of large numbers and the central limit theorem, as the number of

clientsN increases, the aggregated global variational distribution q(θ) ≈ N (µg,Σg) should

approximate the true global posterior p(θ | D).

• The KL divergence between the aggregated variational distribution

q(θ) ≈ N (µg,Σg) and the true posterior p(θ | D) decreases as the number of clients

increases:

KL(q(θ) ∥ p(θ | D))→ 0 as N →∞

• Given local exchangeability and a proper prior, the aggregated posterior q(θ) con-

verges in distribution to the true posterior p(θ | D) as the number of clients increases.

Lemma: Under the assumptions of smoothness, bounded variance, bounded gradi-

ents, and convexity, the BayFL-SVI protocol converges to a stationary point of the global

objective.

Proof:

• By Lemma 6.5.2, the variational parameters ϕ at each client converge to a local

stationary point of the ELBO.

• By Lemma 6.5.3, the aggregated variational parameters at the server converge to

the global variational posterior.

• The convergence of local variational parameters ensures that client updates are

unbiased and consistent. The server’s hierarchical Bayesian aggregation further

refines these updates, leading to global convergence.
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Figure 6.1: Convergence Analysis - Synthetic Data

As T → ∞, the sequence of global model parameters θt, converges to the global op-

timum θ∗. The exchangeability assumption within each client’s dataset and the proper

hierarchical prior ensure that the aggregated posterior distribution converges to the true

global posterior distribution as the number of clients increases. This comprehensive ap-

proach highlights the robustness and applicability of Bayesian Federated Learning in the

presence of data heterogeneity and privacy constraints.

6.6 Results and Discussion

We conducted several experiments to validate the proposed protocol, BayFL-SVI, demon-

strating its convergence behaviour, effectiveness, and robustness in handling non-IID data.

Our experiments involved synthetic datasets with known true parameters and real-world

datasets to evaluate BayFL-SVI comprehensively.

Firstly, we observe the convergence behavior of the variational parameters of a

Bayesian logistic regression on a synthetic dataset of 100 dimensions. Specifically, we dis-

tribute 1000 samples among 100 simulated nodes. Each node had different biases added

to the true parameter values to simulate non-IID conditions. In each training round, a
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Figure 6.2: Aggregated Means of params using BayFL-SVI over California Housing
dataset

subset of 10 nodes was selected. The true mean for each parameter was artificially set

to specific values to provide a known ground truth. We implemented a Bayesian Linear

Regression model using SVI on each client, aggregating the local posterior distributions

using the proposed hierarchical Bayesian approach to update the global model parameters.

This process was repeated five times, leading to the convergence of the global mean and

the local client means, which were tracked over time. Figure 6.1 shows the convergence of

the global mean values for a few sampled parameters, along with confidence intervals and

the true mean values, demonstrating that the global model parameters converged towards

the true mean values over iterations.

We repeated the same sets of experiments using the California Housing dataset to

assess BayFL-SVI in a real-world regression scenario with continuous target values and

moderate feature dimensionality. This dataset is widely used for evaluating regression

models and offers a practical testbed for analyzing the behavior of Bayesian inference

under federated settings. Here, the Bayesian Linear Regression model was implemented

using TensorFlow to optimize the local SVI updates. Local posterior distributions from

a subset of randomly selected clients were aggregated at each round to update the global
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model parameters. As illustrated in Figure 6.2, the convergence of the global mean values

for all 8 parameters is shown with confidence intervals over multiple runs.

Datasets like the California Housing provide the observed data, such as feature and

target values. The relationships between the features and the target variable are not

explicitly known. Hence, ground truth parameter values (true µ) cannot be assumed.

Instead, we observe the reduction in mean squared error (MSE) loss over iterations to

validate the performance of the resulting global posterior distribution. Figure 6.3 illus-

trates that BayFL-SVI aggregates the local variational parameters, effectively reducing

loss iteratively and converging to a stationary point, validating our theoretical analysis.

Lastly, we compare the performance of the BayFL-SVI framework with other state-of-

the-art aggregation protocols in FL, such as FedAvg, FedProx [83], Federated Optimiza-

tion [96], and FedMA [274] over FEMNIST and CelebA datasets. We subsampled 5% of

the data for both datasets and selected 10 clients in each training round. For FEMNIST,

we train a model with two convolutional layers followed by pooling, and a final dense

layer with 2048 units and a learning rate of 0.004. For CelebA, we train a model with

three convolutional layers, each followed by max pooling. The output is then flattened

and passed through a dense layer to produce a single logit for binary classification. This

model is trained using a learning rate of 0.01. Given these settings, Figure 6.4 shows the

accuracy distribution for different aggregation mechanisms over 50 training rounds for

both datasets.

The results indicate that BayFL-SVI consistently achieves the highest median accu-

racy across both datasets. For FEMNIST, BayFL-SVI demonstrates a narrow interquar-

tile range (IQR), indicating stable performance despite a few lower-end outliers. On the

CelebA dataset, BayFL-SVI continues to outperform other protocols, achieving the high-

est median accuracy with a narrow interquartile range (IQR) and no significant outliers.

This further demonstrates the effectiveness and consistent performance of BayFL-SVI

across different datasets. In comparison, other aggregation protocols such as FedMA,

FedOpt, FedAvg, and FedProx exhibit lower median accuracies and greater variability.
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Figure 6.3: Loss Reduction over multiple training rounds using BayFL-SVI over California
Housing dataset

(a) FEMNIST (b) CelebA

Figure 6.4: Performance Comparison of different aggregation protocols

Specifically, FedMA shows relatively high median accuracy but still falls short of BayFL-

SVI, while FedOpt, FedAvg, and FedProx display broader IQRs and more frequent in-

stances of lower performance.

It is to be noted that all these experiments were conducted using non-IID data. The

overall results from these experiments, summarized in Table 6.1, confirm the effectiveness

of the BayFL-SVI framework in aggregating local model updates and converging towards

accurate global model parameters. The method has shown robustness in handling non-

IID data, accounting for client variability, and reducing overall model loss, validating its
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Table 6.1: Comparison of different aggregation protocols in FL on FEMNIST and CelebA
datasets over non-IID data distribution. The table presents the final accuracy and loss
values after 50 training rounds and the accuracy distribution (represented by median and
Quartile Range (Q1-Q3)) for each method.

FEMNIST
Final accuracy Final loss Median accuracy Q1-Q3

FedAvg 73.38% 1.03 65.88% 57.47% - 70.08%
FedProx 76.64% 0.77 71.82% 68.02% - 75.70%
FedOpt 75.98% 0.78 72.86% 65.50% - 75.12%
FedMA 76.82% 0.76 72.66% 65.80% - 74.88%
BayFL-SVI 79.28% 0.76 73.69% 70.12% - 76.74%

CelebA
Final accuracy Final loss Median accuracy Q1-Q3

FedAvg 75.42% 0.49 62.53% 56.57% - 69.22%
FedProx 65.6% 0.54 60.93% 54.21% - 67.33%
FedOpt 82.87% 0.36 73.55% 63.92% - 78.71%
FedMA 83.5% 0.36 74.53% 64.54% - 79.38%
BayFL-SVI 84.9% 0.34 77.07% 68.88% - 81.80%

utility.

6.7 Limitations

The proposed Bayesian Federated Learning with Stochastic Variational Inference (BayFL-

SVI) framework has some limitations that warrant further investigation. While SVI offers

a scalable approximation to full Bayesian inference, it still introduces a non-trivial com-

putational burden, particularly at the client side. Each client must perform variational

inference by optimizing both the mean and the variance of the posterior, which involves

multiple gradient computations per local update and requires floating-point arithmetic.

This is especially challenging for resource-constrained or battery-operated devices that

must also manage energy efficiency. The floating-point operations, storage of variational

parameters (e.g., means and variances), and repeated gradient updates over multiple

mini-batches make the client-side training more computationally intensive than standard

methods like FedAvg.

On the server side, the hierarchical Bayesian aggregation involves weighted averaging

of client distributions based on their variances. While this remains scalable, the added

complexity compared to simple averaging may impact overall runtime in large-scale de-

ployments. As the dataset size and model complexity increase, both client and server-side
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computational demands scale accordingly, which may limit applicability in some environ-

ments.

In addition to computation, communication overhead is another practical limitation.

Transmitting posterior distribution increases the size of each client-server update com-

pared to simpler scalar or vector-based aggregation schemes. This added data column can

strain bandwidth, especially in systems with limited connectivity or strict communication

budgets. Furthermore, the need for frequent and accurate updates to maintain model

consistency may compound this overhead.

Another consideration while working with posterior distributions is that they might

introduce a smoothing effect in the aggregation process. Since each update integrates prior

beliefs, the global model may behave like a low-pass filter, stabilizing the training process

by damping abrupt client-specific fluctuations. While this improves robustness, it can also

reduce responsiveness to rapid shifts in the data distribution. In applications where the

timely detection of rare events or sharp anomalies is critical, this filtering behavior might

limit sensitivity and delay adaptation. Exploring alternative formulations or introducing

mechanisms to preserve sensitivity to important deviations could help address this trade-

off.

While the added computation and communication cost of BayFL-SVI could be justified

by improved robustness and accuracy, further optimization, such as model pruning, quan-

tization, or low-rank approximations, may be needed to make it more viable for highly

constrained environments. Future work could also explore lighter-weight variational in-

ference methods or hybrid approaches that reduce client-side complexity. Investigating

adaptive techniques to selectively apply Bayesian updates based on device capabilities

or data characteristics may also improve efficiency. Additionally, studying trade-offs in

accuracy and convergence when using alternate approximation methods like Monte Carlo

sampling or Laplace approximation could help make the approach more practical in real-

world systems.
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6.8 Key Findings

The introduction of BFL addresses key challenges in traditional Federated Learning (FL)

systems by incorporating uncertainty through Bayesian inference. This probabilistic ap-

proach allows us to model the uncertainty in client updates, making the global model

more robust to variations in data distributions, particularly in non-IID settings. The use

of SVI at the client side ensures that local updates are efficiently approximated as pos-

terior distributions, providing a scalable solution to handle large-scale FL environments.

Key observations from the experiments highlight that BFL improves model generaliza-

tion, enhances convergence rates, and demonstrates better performance compared to tra-

ditional FL methods like FedAvg. Additionally, the hierarchical Bayesian aggregation at

the server ensures that the model benefits from diverse data while efficiently managing

the uncertainty in client contributions.

Bayesian methods also offer a distinct advantage through the use of distributions

rather than point estimates. Since clients send variational distributions, not raw model

weights or gradients, the information shared is inherently less direct and more abstract.

This probabilistic representation adds a natural layer of obfuscation, making it harder for

adversaries to reverse-engineer individual data points or reconstruct local models. Unlike

techniques such as differential privacy [275], Bayesian approaches diffuse information by

design. While this is not a formal privacy guarantee, it reflects a shift in how information is

encoded and transmitted in FL. However, further exploration is needed to investigate how

much information leakage is reduced in practice, or how this implicit privacy compares

empirically to standard mechanisms.

6.9 Summary

This chapter presented a Bayesian approach to Federated Learning, utilizing SVI to man-

age the uncertainty inherent in distributed and heterogeneous data environments. The
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proposed BayFL-SVI framework enables each client to approximate posterior distribu-

tions locally, which are then aggregated using a hierarchical Bayesian approach at the

server. This method not only improves the robustness and generalization of the global

model but also enhances its performance in non-IID and heterogeneous data conditions.

Our empirical results confirm that BayFL-SVI consistently outperforms traditional FL

methods, demonstrating faster convergence and higher accuracy across multiple datasets.

Future work will focus on addressing the computational overhead introduced by Bayesian

methods and exploring their potential in improving privacy in FL scenarios.
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Chapter 7

Zero Trust Federated Learning

7.1 Introduction

While FL offers significant advantages regarding privacy and data locality, its distributed

nature also introduces security concerns. The diverse and potentially unsecured nature of

client devices that connect and contribute to shared model updates exposes FL systems

to a range of vulnerabilities, including unauthorized access, identity spoofing, and data

and model poisoning attacks [276, 277]. Malicious clients can disrupt the training process,

compromise model integrity, and leak sensitive information, posing significant barriers to

the broader adoption of FL. These risks make robust security measures a critical priority

for FL systems.

Traditional security models often assume a trusted network perimeter and hence do

not adequately address the diverse range of vulnerabilities to which FL systems are often

exposed. Addressing these vulnerabilities requires a robust security framework built on

zero-trust principles, assuming no device is inherently secure, regardless of its position

within or outside the network [278]. In federated settings, where numerous devices request

access to participate in collaborative training, such an approach is essential. Integrating a

dynamic authentication and authorization mechanism supports this zero-trust model by

enabling dynamic and conditional access based on a comprehensive evaluation of device
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attributes. This ensures that only devices meeting stringent security criteria contribute

to the learning process. Additionally, secure aggregation techniques can be layered on top

of these mechanisms to mitigate vulnerabilities further, ensuring the system maintains

performance even in the presence of malicious clients.

7.2 Objectives

The primary objective of this chapter is to enhance the security of FL systems by imple-

menting dynamic authentication and authorization mechanisms. This involves designing a

framework that ensures only trusted and compliant devices can participate in the FL pro-

cess, thereby protecting the model from vulnerabilities introduced by malicious clients.

Another key objective is to incorporate secure aggregation techniques that protect the

model updates during the training process, maintaining or even improving the system’s

performance under adversarial conditions. Ultimately, the chapter aims to demonstrate

that with these security enhancements, FL systems can achieve robust performance and

reliability, even when faced with potential security threats.

7.3 Contributions

This chapter presents a comprehensive security framework for FL systems, integrating

zero-trust principles with robust authentication and secure aggregation techniques. The

key contributions of this work are as follows:

• We design an Attribute-Based Access Control (ABAC) model to enforce fine-grained

authentication and authorization. This approach ensures that only trusted and

compliant edge devices can register and participate in FL tasks.

• We extend the previously proposed Bayesian aggregation methods to include a se-

cure aggregation mechanism, developed to address vulnerabilities such as data and
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model poisoning. This method ensures the confidentiality of client updates while

maintaining model robustness against adversarial attacks.

• Empirical evaluations demonstrate the effectiveness of the proposed security en-

hancements. The framework is shown to preserve model accuracy and system per-

formance, even under adversarial conditions, while introducing minimal overhead to

the training process.

7.4 Access Control Model for Zero Trust Federated

Learning

This section outlines the access control model that supports the registration and partici-

pation process for users’ devices in our Zero Trust FL environment. We integrate Public

Key Infrastructure (PKI) [279] with an adapted attribute-based access control [280, 281]

model to provide robust authentication and authorization mechanisms. Devices are autho-

rized based on a comprehensive set of predefined attributes, including device capabilities

(e.g., processing power, memory), security posture (e.g., encryption protocols, firewall

status), and compliance with organizational policies (e.g., software updates, antivirus

status). Upon successful authorization, devices are issued digital certificates via PKI.

These certificates are authenticated in the subsequent communication to ensure secure

and verifiable communication within the FL network. Only devices that meet these strict

criteria and possess valid certificates are granted access, ensuring a secure and reliable

client pool for FL tasks. Figure 7.1 represents the abstract ABAC model, while Table 7.1

illustrates the formal definitions of its components.

7.4.1 Model Components

A new edge device requests registration to the client pool (CP), a repository of devices

authorized to participate in the FL training process. An edge device can be a laptop,
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Table 7.1: ABAC Model Definitions for Zero Trust FL

Basic Sets and Functions:

• C: A finite set of edge devices, often referred to as clients in FL.

• CP: A singleton set {clientPool} where clientPool represents the repository of devices authorized to partic-
ipate in FL tasks.

• A: A finite set of access operations, {register, participate}, where {register} is the operation allowing an
edge device to join the client pool, and {participate} permits a device to take part in an FL training task.

• ATT: A finite set of attributes defining the properties, security posture, and compliance state of each device.
These attributes are used in evaluating access control policies.

• Range(att): For each attribute att ∈ ATT , Range(att) defines the set of allowable values. For example,
RAM and DiskSpace may have numerical ranges, while EncryptionProtocols may have enumerated values
(e.g., Active, Inactive).

• attType: A function, {ATT = set, atomic}, that classifies each attribute as either to be set or atomic valued.

• POLICY: A set of authorization policies, each consisting of a rule or set of rules that specify conditions for
granting or denying access for the operations defined in A.

• Credentials(c): Cryptographic credentials, such as PKI certificates, issued to an edge device upon successful
registration.

• TrustScore(c): A numerical value assigned to each device to reflect its compliance and trustworthiness,
which is dynamically updated based on behavior and policy adherence.

• ValidityWindow(c): A time window during which a device’s credentials are valid

Authorization function including policies
For each access operation op ∈ A, the authorization function Authorizationop(c: C, clientPool: CP) is defined using
propositional logic.

• α ::= expr | expr ∧ expr | ∀x ∈ set.α

• expr ::= atomic atomicAttValCompare atomic | set setAttValCompare set

• atomicAttValCompare ::=≥ | =

• setAttValCompare ::=⊆ | ∩ ≠ ∅

• atomic ::= att(c) | value
where for each att ∈ ATT, c ∈ C, attType(att) = atomic

• set ::= att(c) | setValue
where for each att ∈ ATT, c ∈ C, attType(att) = set

Authorization Decision Function
A client c ∈ C is allowed to perform an access operation op ∈ A on client pool CP , stated as Authorizationop(c:
C, clientPool: CP) if the required policies needed to allow the operation are evaluated and satisfied. Formally,
Authorizationop(c: C, clientPool: CP) = True.

Raspberry Pi, AWS DeepLens, or any other device that may or may not have minimal

computation capabilities for training an ML model. Access (A) represents the opera-

tion that the edge device requests to perform on the CP. In this scenario, the ABAC

model defines two primary access operations: ‘register’ to the authorized client pool and

’participate’.
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Figure 7.1: A conceptual ABAC model for device registration & participation

The process is initiated when an edge device submits a request to join the CP and

seeks authorization to participate in FL training. This request is evaluated at the Access

Decision Point (ADP), shown as a diamond-shaped box in Figure 7.1, which determines

whether to grant access based on pre-defined security policies. Our illustrated ABAC

model utilizes a comprehensive set of attributes (ATT) associated with the client c, in-

cluding device specifications, security posture, and compliance status, to ensure only

qualified devices join the FL network. For example, a device may be allowed to register

to the client pool if it has a minimum of 4GB of RAM, 5GB of available disk space,

full-disk encryption enabled, and if it connects over secure protocols (e.g., VPN or TLS)

to minimize risks associated with data interception. To begin, the client c generates a

unique public-private key pair using a secure cryptographic algorithm within PKI. This

key pair is used for subsequent communication and authentication within the FL network.

The client then generates a Certificate Signing Request (CSR), which includes its public

key and the device attributes collected for the registration phase. This CSR represents a

formal request for a digital certificate that binds the client’s identity to its public key. We

assume an honest server that, in this case, serves as a Certificate Authority (CA). The

server evaluates the device’s attributes in accordance with the defined ABAC policies,

determining if the device meets the criteria for network access. Upon satisfying the access

control policies, the server signs the CSR with its private key, thereby issuing a digital

certificate to the client. This certificate encapsulates the client’s public key and autho-
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rized attributes, serving as a verifiable credential of its identity. The client c receives the

signed digital certificate, which it can use, along with its private key, to authenticate fu-

ture interactions and participate in the FL training process. Simultaneously, a trust score

is assigned to c, representing its trustworthiness based on compliance with the ABAC

policies. At the registration stage, c is provided with minimal access rights that include a

validity window to limit its lifetime, thereby enforcing periodic re-evaluation. The trust

score is also periodically updated based on device compliance and behavior metrics, such

as adherence to communication protocols and successful task completion. Devices failing

to meet task-specific thresholds are flagged for re-evaluation or removed from the client

pool.

When the client c wishes to participate in a specific FL task, it submits a ‘participate’

operation. The ADP re-evaluates the client’s attributes and current trust score against

task-specific policies to verify the required clearance. For example, a higher trust score

might be required for tasks involving sensitive data or models. The c uses its private

key to sign the participation request and any subsequent updates. The server verifies the

signature using the client c’s public key from its certificate, ensuring the authenticity and

integrity of the communications. This approach ensures continuous vetting of devices,

both at the point of registration and during participation in FL tasks (in alignment with

zero-trust security principles). It minimizes the risk of unauthorized access and potential

malicious activity within the FL network.

7.4.2 ABAC Model Definitions

As illustrated in Table 7.1, each edge device has attributes att with values assigned from

a set of allowable values, denoted by Range(att), for each attribute att ∈ ATT . In this

model, attributes can either be atomic (assigned a single value) or set-valued (assigned

multiple values or a range), determined by the function attType.

In our model, the set of policies POLICY is specified as the propositional logic using
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the Backus-Naur Form (BNF) grammar. We use the BNF notations to express the condi-

tions included in the policies enabling the system to evaluate both atomic and set-valued

attributes before allowing a device to register or participate in FL tasks. To handle atomic

attributes, such as RAM and TrustScore, we follow the rule of ‘greater than or equal

to’ (≥) to compare the real values against the system-defined threshold values. For

set-valued attributes, such as SupportedEncryptionProtocols and AuthenticationMeth-

ods, we require that the device’s values align with those accepted by the system. For

instance, policies require that the SupportedEncryptionProtocols of a device include at

least one protocol from the set {AES-256, RSA-2048}. This is enforced by rules such as

⊆ and ∩ ̸= ∅, ensuring that the device meets compatibility requirements beyond sim-

ple threshold comparisons. The authorization function Authorizationop(c: C, clientPool:

CP) evaluates the device’s attributes against the conditions in the corresponding policy

and returns true or false based on the evaluation. If this evaluation returns true, the

device is allowed to proceed with the requested operation. If any condition is not met,

the function returns False, denying access.

7.4.3 Policy Enforcement and Data Flow Model

Figure 7.2 illustrates the policy enforcement architecture and the data for handling access

requests in the FL environment. When an edge device submits a request to register

with the client pool or participate in a specific FL task, the policy enforcement system

evaluates the request against the defined ABAC policies to determine access permissions.

This architecture is designed to handle various client pools, operations, and attribute-

based policies. The policy enforcement architecture consists of the following components.

• Policy Administration Point (PAP) defines and manages access policies, which

it stores in the Policy Repository in a structured format, like a JSON file.

• Policy Enforcement Point (PEP) intercepts access requests from edge devices

and forwards these to the Policy Decision Point (PDP) along with relevant operation
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Figure 7.2: ABAC policy enforcement architecture

details (e.g., register or participate).

• Policy Decision Point (PDP) upon receiving a request, retrieves the relevant

policy from the Policy Repository. It then queries the Policy Information Point

(PIP) for the required device attributes needed for policy evaluation.

• Policy Information Point (PIP) collects the necessary attribute values from

the requesting device and returns these values to the PDP for evaluation when

requested.

• The PDP evaluates the attributes against the policy conditions and makes a deci-

sion on whether the device should be allowed access. If the device meets all policy

requirements, the PDP authorizes the request and sends a positive decision to the

PEP. If not, the PDP denies the request.

• The PEP enforces the decision by allowing or denying the device’s access to register

with the client pool or participate in the FL task.

For register operation, if the PDP authorizes the requesting client, it is issued a digital

certificate by the server.
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7.4.4 Register Operation: System Setup

In our setup, the digital certificates authenticate the identity and compliance of clients.

These certificates bind a device’s public key, unique identifier, and attributes, enabling

secure participation in FL tasks at a later stage. The process of certificate generation

and issuance involves key pair generation for the server and clients, CSR creation, and

certificate issuance.

We assume an honest server who also acts as a CA, responsible for issuing and veri-

fying certificates. During the initialization phase, the server generates an Elliptic Curve

Cryptography (ECC) key pair using the secp256r1 curve. The secp256r1 curve is widely

used in cryptography due to its balance between computational efficiency and security.

The 256-bit key length provides adequate security against brute-force attacks, while the

curve’s parameters are well-documented and standardized. The server key pair consists

of the following:

• CA Private Key (dCA): A randomly selected scalar dCA ∈R [1, n− 1], where n is

the order of the curve.

• CA Public Key (PCA): Derived as PCA = dCA ·G, where G is the curve’s generator

point.

The order n is the number of points on the curve that can be generated by repeatedly

adding the generator point G to itself. This ensures a large enough keyspace for cryp-

tographic security. The server securely stores dCA and shares its public key PCA to all

clients, allowing them to verify the CA’s digital signatures. Simultaneously, each client

device generates its own ECC key pair using the secp256r1 curve. This process ensures

that the client’s cryptographic identity is unique and secure. The key pair includes:

• Private Key (di): A randomly selected scalar di ∈R [1, n− 1], kept securely on the

device.

• Public Key (Pi): Derived as Pi = di ·G, serving as the client’s public identity.
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After generating the key pair, the client prepares a CSR request to initiate the certificate

issuance process. The CSR contains the following components:

• The client’s public key (Pi).

• A unique client identifier (IDi), such as a device ID.

• Device attributes (ATTi) required for ABAC evaluation, including compliance pa-

rameters like encryption protocols.

The CSR is digitally signed by the client using its private key (di) to ensure its authenticity

and integrity:

CSRi = Signdi
(Pi ∥ IDi ∥ ATTi)

where ∥ denotes concatenation. The signed CSR is transmitted to the server.

Upon receiving the CSR, the server evaluates the client’s attributes against the ABAC

policies using the Authorizationregister(c, CP ) function. If the device satisfies the policies,

the server proceeds to generate a digital certificate (Certi):

Certi = {Pi, IDi, ATTi, SigCA}

where Pi is the client’s public key, IDi is the unique identifier for the client, ATTi is the

set of device attributes and SigCA is the CA’s signature over the concatenated public key,

identifier, and attributes given below:

SigCA = ECDSA Sign(dCA, H(Pi ∥ IDi ∥ ATTi))

where H is a cryptographic hash function SHA-256, and ∥ denotes concatenation. The

server securely transmits the signed certificate back to the client. Each certificate is

assigned a validity window (V alidityWindow), ensuring that certificates are short-lived.

This practice reduces the risk associated with potential key compromises and necessitates
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periodic renewal, thereby maintaining up-to-date compliance with ABAC policies. The

client securely stores Certi and di for subsequent authentication.

The issuance of a digital certificate marks the completion of the register operation in

the ABAC framework. These certificates bind the client’s identity to its cryptographic

key pair and validated attributes, ensuring that only authorized and authenticated clients

are allowed to join the FL client pool. Once a client receives its certificate, it can securely

participate in FL tasks.

7.4.5 Participate Operation: Authorization and Secure Com-

munication

Even with strong authorization measures in place, the decentralized nature of FL intro-

duces risks such as eavesdropping, data leakage through shared gradients, or tampering

during communication. To tackle these challenges, it is essential to establish secure and

encrypted communication channels between clients and the server. At this stage, we

leverage the PKI for mutual authentication with the central server and establish a secure

communication channel.

After a client completes the register operation and obtains a digital certificate, it

can request to participate in specific FL tasks. The participate operation is designed

to dynamically authorize clients for each task, ensuring compliance with task-specific

requirements and maintaining a secure communication environment for the transmission

of global models. This phase integrates the previously issued digital certificates and ABAC

policies into a robust framework for mutual authentication and secure model distribution.

To participate, client ci initiates a TLS handshake with the server and includes a

signed participation request in its communication. The request contains the client’s digital

certificate (Certi) and is signed using the client’s private key (di):

Participate Requesti = Signdi
(Certi ∥ ATTi)
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Upon receiving the request, the server first validates the client’s certificate Certi to

verify the client’s identity. The certificate verification process uses the CA’s public key

(PCA) to authenticate the signature of the certificate:

ECDSA Verify(PCA, H(Pi ∥ IDi ∥ ATTi), SigCA) = True

where H is a cryptographic hash function SHA-256. If the certificate is invalid or has

expired, the server terminates the handshake, and the client’s participation request is

denied. If the certificate is valid, the server proceeds to evaluate the client’s attributes

against task-specific ABAC policies. The server uses the following authorization function:

Authorizationparticipate(Ci,Task) =


True, if ATTi satisfies task policies

False, otherwise

This ensures that only clients meeting the task’s specific requirements can proceed further.

If either the certificate validation or ABAC policy evaluation fails, the server denies the

request, and the connection is terminated.

For authorized clients, the server completes the TLS handshake to establish a secure

communication channel. The handshake uses ephemeral key pairs generated with the

same secp256r1 curve employed during the registration phase. Each party generates its

private and public keys as follows:

• Server Private Key: dephServer

• Server Public Key: P eph
Server = dephServer ·G

• Client Private Key: dephi

• Client Public Key: P eph
i = dephi ·G

During the handshake, the client and server exchange their public keys (P eph
i and
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P eph
Server) to compute a shared session key Ksession using Elliptic Curve Diffie-Hellman

(ECDH):

Ksession = H(dephi · P eph
Server) = H(dephServer · P

eph
i )

where H is a key derivation function. This session key is used to encrypt all subsequent

communication between the client and server. This phase ensures that only authenticated

and authorized clients can securely contribute to the learning process. The use of cer-

tificates and task-specific ABAC policies maintains the integrity of the FL process, while

the encrypted channel ensures the confidentiality of communications. The next section

details how the established channel during the authentication phase can be leveraged for

secure communication.

7.5 Secure Aggregation in Zero Trust FL

Once the client’s participation request is authorized, the server transmits the global model

θglobal to the client over the secure TLS channel established during the participation phase.

To preserve confidentiality, the global model is encrypted using the session key Ksession

established during the TLS handshake:

Enc(θglobal, Ksession)

Encrypting the model parameters ensures that it remains inaccessible to unauthorized

entities even if intercepted during transmission. Upon receiving the model, the client

decrypts it using the same session key and prepares it for local training:

θglobal = Dec(Enc(θglobal, Ksession), Ksession)

Using its local dataset (Di), the client trains the model by employing SVI to approx-

imate the posterior distribution of the model parameters, as explained in Section 6.4.2.
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The training process maximizes the ELBO using Equation 6.2 and produces the update:

Ui = {µi, σ
2
i }

where µi represents the mean and σ2
i the variance of the posterior. This compact repre-

sentation encapsulates the client’s local learning while preserving data privacy by avoiding

the transmission of raw model parameters. Using its private key di, the client generates

a digital signature based on the ECDSA algorithm and signs the generated model update

Ui.

Signaturei = ECDSA Sign(di, H(Ui))

where H(Ui) is the cryptographic hash of the update. The client then transmits the signed

package {Ui, Signaturei} to the server over the encrypted TLS channel.

Upon receiving the signed update package, the server performs the following steps to

verify its authenticity and integrate the update into the global model:

1. The server extracts the client’s public key Pi from the client’s certificate Certi,

issued during the registration phase.

2. Using Pi, the server verifies the client’s signature on the update:

ECDSA Verify(Pi, Signaturei, H(Ui)) = True

ensuring that the update Ui was indeed generated by the authenticated client and

has not been tampered with during transmission.

3. If the signature is valid, the server accepts the client’s update Ui = {µi, σ
2
i } for

aggregation.

The updates from all clients are then aggregated using Hierarchical Bayesian princi-

ples, as explained in Section 6.4.3. This method models the global posterior distribution
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θglobal while accounting for the heterogeneity in client data distributions and ensuring

that the global model can adapt to diverse data while remaining robust against potential

adversarial influences. We can further weigh the client-specific posterior to reflect the

reliability and data quality of each client for faster model convergence.

In cases where signature verification fails or a client is found to have violated com-

pliance policies, the server discards the update and logs the event for further analysis.

Additionally, the client may be flagged for re-evaluation or revocation to ensure that only

reliable and compliant contributions are integrated into the training process.

7.6 Performance Evaluation and Results

This section evaluates the proposed Zero-Trust FL framework, integrating ABAC and

secure Bayesian aggregation, under adversarial scenarios. The evaluation focuses on two

core security aspects: authentication and authorization (ABAC) and secure aggregation.

The results demonstrate the framework’s robustness against unauthorized access, imper-

sonation, man-in-the-middle (MITM) attacks, and various poisoning attacks (data and

model poisoning). Comparisons are made with standard protocols to establish the efficacy

of the proposed solution.

7.6.1 Security Against External Adversaries

To evaluate the security capabilities of our proposed Zero Trust FL protocols against ex-

ternal adversaries, we simulated multiple common attack scenarios in a controlled FL

environment: 1: Unauthorized Access, 2: Impersonation, and 3: Man-in-the-Middle

(MITM) Attacks. These scenarios were designed to test the framework’s ability to detect

and prevent malicious attempts during various stages of the FL process, including client

registration, participation, and communication.

We simulated various scenarios where adversaries used forged or stolen credentials to

simulate unauthorized clients trying to access the system. Moreover, in some scenarios,
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Table 7.2: Simulation Results for Zero Trust FL in Detecting Attack Scenarios

Attack Scenario Total Attempts Detection Rate (%) False Positive Rate (%)
Unauthorized Access 50 92.00 4.17
Impersonation 50 88.00 6.38
Man-in-the-Middle 50 62.00 10.87
Overall 150 80.67 7.14

adversaries intercepted communications during model update transfer and tampered with

transmitted data. The proposed protocol successfully detected these adversaries and pre-

vented them from accessing the system, maintaining the integrity of the learning process.

The detection rates for each scenario were recorded and analyzed. We summarize these

results in Table 7.2.

7.6.2 Robustness Against Internal Threats

The framework’s secure aggregation component, implemented using Bayesian methods,

was evaluated against adversarial attacks targeting the learning process. These included:

• Label Flip Attacks: Malicious clients flip labels in their local datasets to poison

the global model.

• Gradient Scaling Attacks: Adversaries randomly scale their gradients to bias

the global model.

• Random Weights Attacks: Malicious clients submit random model updates to

disrupt training convergence.

The experiments in this section used the FEMNIST dataset with non-IID partitioning

and included two varying adversarial client ratios. The proposed protocol was compared

to FedAvg, Median, Krum, Multi-Krum, and Bayesian aggregation mechanisms.

In scenarios with 10% malicious clients performing label flipping, the Zero-Trust frame-

work achieved an accuracy of approximately 78% after 30 communication rounds, main-

taining stable performance compared to other methods, followed closely by Bayesian ag-

gregation at 75%. Multi-Krum, Krum, and Median showed some resistance but exhibited
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fluctuating performance, with accuracies ranging between 60% and 65%. FedAvg, with no

built-in defenses, struggled to maintain a stable performance. With 20% malicious clients,

(a) 10% malicious clients (b) 20% malicious clients

Figure 7.3: Test accuracy of algorithms in the first 50 rounds in FEMNIST when
adversaries perform a label-flipping attack

the accuracy of the Zero-Trust framework dropped slightly during the early rounds. How-

ever, it maintains its superiority over other methods in the subsequent rounds. Bayesian

aggregation followed closely, while Multi-Krum and Median also demonstrated perfor-

mance drops due to their inability to consistently filter out poisoned updates. We sum-

marize these results in Figure 7.3.

Gradient scaling attacks involve malicious clients scaling their gradients to bias the

global model. Under this scenario, the Zero-Trust framework maintained robust per-

formance, achieving around 80% accuracy. As can be seen in Figure 7.4, Bayesian ag-

gregation closely followed, while showing some fluctuations in accuracy over the rounds.

Multi-Krum showed moderate robustness but fluctuated significantly under higher adver-

sarial pressure. Median and Krum demonstrated further instability, while FedAvg again

struggled to converge due to its lack of defense mechanisms.

Random weight attacks were simulated using a fraction of adversaries submitting

random model updates to poison the global training process. The proposed framework

demonstrated consistent performance, with an accuracy of 78%. However, in this case,
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(a) 10% malicious clients (b) 20% malicious clients

Figure 7.4: Test accuracy of algorithms in the first 50 rounds in FEMNIST when
adversaries perform a gradient scaling attack

Bayesian aggregation struggles to maintain a robust aggregation mechanism. Figure 7.5

shows that the global model struggles to converge under Bayesian and FedAvg aggregation

mechanisms. While other aggregation mechanisms also show a decrease in accuracy.

(a) 10% malicious clients (b) 20% malicious clients

Figure 7.5: Test accuracy of algorithms in the first 50 rounds in FEMNIST when
adversaries perform a random gradient attack

The results across all scenarios highlight the efficacy of the Zero-Trust FL framework

in mitigating both external network threats and internal adversarial attacks. The ABAC

mechanism ensures that only legitimate and trusted clients participate in the training pro-

cess, significantly reducing the risks posed by unauthorized or compromised devices. The
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secure aggregation further enhances robustness against poisoned updates, maintaining

high accuracy and stable performance, even under adversarial conditions.

7.7 Discussion and Limitations

While our experimental results demonstrate significant improvements in training efficiency

and model performance compared to existing methods, it is essential to acknowledge the

inherent trade-offs and limitations of our approach. The integration of security mecha-

nisms such as ABAC and PKI enhances the security posture of the system by ensuring that

only authenticated and authorized clients participate in the training process. However,

these security measures introduce additional computational and communication overhead,

potentially impacting system efficiency. The overhead arises from the need to perform

authentication and authorization checks during client registration and before aggregating

model updates. Verifying digital certificates and enforcing access control policies consume

resources and may slightly delay the aggregation process, especially in environments with

a large number of clients or limited computational capacity. Nevertheless, these trade-offs

between accuracy, efficiency, and security reflect the inherent complexities of designing a

practical zero-truth FL framework.

As the number of attributes, clients, and access operations grows, managing complex

ABAC policies and PKI configurations may become increasingly challenging. These lim-

itations raise important questions about the scalability and maintainability of the frame-

work in large-scale deployments. To address these concerns, a promising direction would

be to integrate the proposed protocol with cloud-native FL platforms that already support

zero-trust features. Most cloud infrastructures offer built-in services for ABAC, PKI, or

certificate management, which could be leveraged to enforce fine-grained access control,

manage identities, and handle secure communications more efficiently. This architectural

enhancement would help scale the system while reducing management overhead, making

it more compatible with diverse FL environments and real-world deployment scenarios.
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Another direction could be to incorporate dynamic or real-time trust assessment mech-

anisms to improve the responsiveness to malicious behavior and support more adaptive

security policies. Sophisticated anomaly detection mechanisms could also be incorporated

to strengthen the security posture of the framework.

7.8 Summary

This chapter presented a comprehensive framework for Zero-Trust FL that integrates

ABAC and secure aggregation protocol to address the inherent vulnerabilities of FL sys-

tems. The proposed framework ensures robust authentication and dynamic authorization

of clients, preventing unauthorized access, impersonation, and man-in-the-middle attacks.

By combining ABAC policies with PKI, the system enforces strict access controls and dy-

namically evaluates client attributes and trust scores, ensuring that only compliant devices

participate in the learning process.

The secure aggregation component, implemented using hierarchical Bayesian princi-

ples, enhances the framework’s robustness against data and model poisoning attacks,

including label flipping, gradient scaling, and random weight injection. Extensive evalu-

ations demonstrated the framework’s superiority over existing methods, such as FedAvg,

Median, Krum, and Multi-Krum, under varying adversarial conditions. The results high-

light the framework’s ability to maintain high accuracy and stable convergence, even

when up to 20% of participating clients are adversarial. This highlights the applicability

of zero-trust FL protocols in diverse and dynamic FL environments where no trust can

be assumed. Future work will explore further optimizations to enhance communication

efficiency and reduce computational overhead within the zero-trust framework. Another

possible direction is designing a more sophisticated and robust security protocol.

162



Chapter 8

A Fairness-Aware Incentive

Mechanism for Crowdsourced

Federated Learning Using Shapley

Value

8.1 Introduction

In Crowdsourced Federated Learning, clients contribute varying amounts of data and

computational resources, making their contributions highly heterogeneous. A key chal-

lenge in such systems lies in incentivizing clients effectively while ensuring that rewards

are distributed fairly based on their actual contributions to the global model. Without

a fair and robust incentive mechanism, participants may lose motivation or attempt to

”game the system”, leading to reduced model quality and trust in the system. A fair in-

centive mechanism is essential not only for encouraging genuine participation but also for

defending against adversarial behaviors. Free riding and poisoning attacks, where clients

provide negligible contributions and attempt to degrade model performance, can severely

impact CFL’s effectiveness. An effective reward distribution method must address these
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challenges by objectively evaluating each client’s contribution and ensuring proportional

compensation.

In our proposed protocol, FedOnDemand, we address these challenges by incorporat-

ing the Shapley Value as the foundation of the incentive mechanism. The Shapley Value

is a well-established concept in cooperative game theory that offers a systematic frame-

work for measuring contributions by considering the marginal impact of each participant

on the overall system. By integrating Shapley Value-based incentives, FedOnDemand

can achieve fairness and transparency in reward allocation while discouraging adversarial

behaviors. Furthermore, to make the computation feasible in large-scale CFL systems,

FedOnDemand employs a Truncated Monte Carlo (TMC) to approximate the Shapley

Value efficiently without compromising accuracy. This approach ensures that the incen-

tive mechanism remains scalable and effective, even with a large number of participating

clients.

This chapter focuses on leveraging the Shapley Value to design a fairness-aware in-

centive mechanism for CFL. The proposed mechanism aligns the interests of clients and

the server by linking rewards to contributions, ensuring equitable profit distribution while

protecting against adversarial threats.

8.2 Objectives

The primary objective of this chapter is to design and evaluate a fairness-aware incentive

mechanism for the FedOnDemand protocol in Crowdsourced Federated Learning (CFL).

The mechanism aims to address the critical need for equitable reward distribution among

clients, ensuring that each participant is compensated based on their actual contribution

to the global model. A secondary, but equally important objective, is to enhance the

robustness of the learning process against adversarial behaviors where clients attempt to

gain rewards with minimal or no meaningful contributions. By integrating fairness into

incentive mechanisms, we aim to promote sustained participation, resilience, and foster
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trust in the FedOnDemand protocol.

8.3 Contributions

This chapter builds upon the established concept of the Shapley Value, leveraging its prin-

ciples to design an efficient incentive mechanism tailored for the FedOnDemand protocol.

The key contributions of this work are as follows:

• We design a fairness-aware incentive mechanism for FedOnDemand that ensures

equitable profit allocation among participating clients by evaluating their contribu-

tions using the Shapley Value.

• We propose an efficient approximation for Shapley Value computation using TMC

sampling to address the computational challenges in large-scale CFL systems.

• We validate the proposed incentive mechanism through theoretical analysis and

empirical evaluations, showcasing its effectiveness in promoting fairness, scalability,

and robustness against adversarial behaviors.

8.4 Preliminaries

The Shapley Value is a classic game theory solution designed to fairly allocate rewards

among players in a cooperative game, which has been applied widely in fields such as

management science, economics, and to design incentive mechanisms in classic crowd-

sourcing. It quantifies the marginal contribution of each player with respect to the total

value generated by the coalition.

Consider a set of n players, C = {c1, c2, . . . , cn}, engaged in a cooperative game. A

value function v : 2C → R is defined, which assigns a real number v(Z) to each subset (or

coalition) Z ⊆ C. The value v(Z) represents the utility or total payoff that the coalition Z

165



Crowdsourced Federated Learning

can achieve collectively. The goal is to distribute the total utility v(C) among all players

in C such that each player’s reward reflects their contribution to the coalition’s success.

As originally shown by Shapley [282], the Shapley Value for a player ci ∈ C is defined

as:

ϕci(v) =
∑

Z⊆C\{ci}

|Z|!(n− |Z| − 1)!

n!
[v(Z ∪ {ci})− v(Z)] (8.1)

where |Z| is the size of the coalition Z, and n = |C|. This formulation computes ci’s

marginal contribution to every possible coalition Z that excludes ci, averaged over all

such coalitions.

The Shapley Value satisfies several desirable properties that ensure its fairness and

effectiveness:

• Efficiency: The total value v(C) of the grand coalition C is fully distributed among

all players, ensuring that the sum of all individual Shapley Values equals the total

utility generated by the entire set of players.:

n∑
i=1

ϕci(v) = v(C) (8.2)

• Symmetry: If two players ci and cj have identical contribution to every coalition

Z ⊆ C \ {ci, cj}, then their Shapley Values are the same:

If v(Z ∪ {ci}) = v(Z ∪ {cj}), ∀Z ⊆ C \ {ci, cj}, then ϕci(v) = ϕcj(v) (8.3)

• Null Player: If a player ci does not contribute to any coalition, their Shapley Value

is zero:

If v(Z ∪ {ci}) = v(Z), ∀Z ⊆ C \ {ci}, then ϕci(v) = 0 (8.4)

• Additivity: For two independent games with value functions v1 and v2, the Shapley

Value for their combined game v1 + v2 is the sum of the Shapley Values for v1 and
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v2, ensureing that the Shapley Value respects the linearity of value functions.

These properties collectively establish the fairness and robustness of the Shapley Value

for reward allocation in cooperative systems. However, its exact computation requires

evaluating the marginal contribution for all 2n subsets of players, which becomes compu-

tationally expensive as n increases. Efficient approximation techniques, such as Truncated

Monte Carlo sampling, are therefore essential for applying the Shapley Value in large-scale

systems.

8.5 Incentive Mechanism for Crowdsourced Feder-

ated Learning

We design the incentive mechanism for the FedOnDemand protocol using the same princi-

ples of cooperative game theory outlined above. Each client participating in the learning

process is treated as a player in a cooperative game. The total utility or value generated

by a coalition of clients corresponds to the improvement in the performance of the global

model when the contributions of those clients are aggregated. The objective is to evaluate

each client’s contribution to the overall utility and allocate rewards fairly based on these

contributions.

Let C = {c1, c2, . . . , cn} represent the set of n clients willing to participate in the

learning process. For each training round t in FL, only a subset of these clients, St ⊆ C,

is selected and invited to participate in the training. Since only these selected clients

contribute to the model in that particular round, it is only logical to treat each training

round as a separate cooperative game. The additivity property of the Shapley Value

ensures that contributions calculated per round can be summed to determine the total

contribution of each client across the entire training process.

In the t-th training round, the value function vt(St) represents the performance im-

provement of the global model resulting from the contributions of the selected clients St.
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This value function is defined as:

vt(St) =
∑
ci∈St

xi +
∑

ci,cj∈St

ci ̸=cj

αxixj (8.5)

where xi denotes the contribution of client ci in terms of data and computational resources

while α > 0 captures the interaction effect between client contributions. For example, a

higher α indicates that client contributions complement each other significantly, amplify-

ing the overall value generated by the coalition. Similarly, the marginal contribution of

ci to a coalition Z ⊆ St \ {ci} is computed using the following equation.

∆ci(Z) = vt(Z ∪ {ci})− vt(Z) (8.6)

The Shapley Value for a client ci ∈ St in the t-th round is then computed as the weighted

sum of all marginal contributions using Equation 8.1

ϕt
ci
(vt) =

∑
Z⊆St\{ci}

|Z|!(|St| − |Z| − 1)!

|St|!
∆ci(Z)

Here, ϕt
ci
(vt) represents the average marginal contribution of ci in t-th training round over

all possible coalitions formed from the subset St of actively participating clients in that

round. After all training rounds are completed, the total Shapley Value for each client ci

across the entire process is computed as:

ϕci(v) =
T∑
t=1

ϕt
ci
(vt) (8.7)

where T is the total number of training rounds. This aggregated value reflects ci’s cumula-

tive contribution to the global model and serves as the basis for fair reward allocation. By

treating each training round as an independent game, we significantly reduce the compu-

tational burden compared to evaluating the contributions of all n clients in every round.

This design also aligns with the dynamic nature of CFL, where client availability may vary
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across rounds, ensuring that rewards are distributed fairly based on actual participation.

We take a simple example to verify the rationale behind this formulation. Consider

an FL system with five clients, C = {c1, c2, c3, c4, c5}, participating in the learning. For

example, consider a training process that spans only two rounds, where:

• Round 1: Clients S1 = {c1, c2, c3} are selected to participate in the training.

• Round 2: Clients S2 = {c2, c4, c5} are selected.

During the training process, each client contributes xi, representing their data and com-

putational resources. The budget R allocated to the task determines the total reward

pool available for distribution, while the cost of participation for each client is modeled

as costi(xi) = βx2
i , where β is a monotonically increasing parameter that scales with the

contribution.

In the first training round, v1(S1) measures the improvement in the global model’s

performance based on the contributions x1, x2, x3 from c1, c2 and c3 respectively, and

their interactions using Equation 8.5.

v1(S1) = x1 + x2 + x3 + α(x1x2 + x1x3 + x2x3)

Using the Equation 8.6, the marginal contributions of c1, c2, and c3 are computed by

considering their impact on all coalitions within S1. For instance, the contribution of c1

would be computed over the following permutations:

v1({c1, c2})− v1({c2}), v1({c1, c3})− v1({c3}), v1({c1, c2, c3})− v1({c2, c3})

The contribution of c2 and c3 can be computed similarly. The Shapley Value for

clients c1, c2, and c3 is then computed by evaluating their marginal contributions across all

permutations of S1 using Equation 8.1. Specifically, consider the following permutations

in S1:
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1. Permutation 1 σ1 = [c1, c2, c3]: Client c1 is the first client in this permutation.

Since there are no other clients in the coalition at this point (Z = ∅), the value of

the coalition is v(Z) = 0. The marginal contribution of c1, using Equation 8.6, is:

∆c1 = v1({c1})− v1(∅) = x1

The client c2 enters as the second client in this coalition. The coalition before c2

is Z = {c1}, with value v1(Z) = x1. Thus, the marginal contribution of c2 can be

expressed as follows:

∆c2 = v1({c1, c2})− v1({c1}) = x2 + αx1x2

Lastly, client c3 is the third and final client in this permutation. The coalition

before c3 is Z = {c1, c2}, with value v1(Z) = x1 + x2 + αx1x2. Thus, the marginal

contribution of c3 is:

∆c3 = v1({c1, c2, c3})− v1({c1, c2}) = x3 + α(x1x3 + x2x3)

2. Permutation 2 σ2 = [c2, c1, c3]: In this permutation, client c2 is the first client.

Since Z = ∅, v1(Z) = 0. The marginal contribution of c2 is:

∆c2 = v1({c2})− v1(∅) = x2

Client c1 is the second client in this permutation. Using the same formulation as

established before, the coalition before c1 is Z = {c2}, with value v1(Z) = x2. The

marginal contribution of c1 is:

∆c1 = v1({c2, c1})− v1({c2}) = x1 + αx1x2
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Similarly, the coalition before c3 is Z = {c2, c1}, with value v1(Z) = x2+x1+αx1x2.

The marginal contribution of c3 is thus, computed as follows:

∆c3 = v1({c2, c1, c3})− v1({c2, c1}) = x3 + α(x1x3 + x2x3)

3. Permutation 3 σ3 = [c3, c2, c1] This permutation considers c3 as the first client.

Since, for the first client in the permutation, Z = ∅, v1(Z) = 0, the marginal

contribution of c3 is:

∆c3 = v1({c3})− v1(∅) = x3

For c2, the marginal contribution can be shown as:

∆c2 = v1({c3, c2})− v1({c3}) = x2 + αx2x3

While for c1, since there are 2 other players in the coalition already, the coalition

before c1 is Z = {c3, c2}, with value v1(Z) = x3 + x2 + αx2x3. The marginal

contribution of c1 is thus given as:

∆c1 = v1({c3, c2, c1})− v1({c3, c2}) = x1 + α(x1x2 + x1x3).

The Shapley Values for each client in Round 1 are then calculated as the weighted

average of their marginal contributions across all 3 permutations using Equation 8.1. At

the end of Round 1, each participating client receives a Shapley Value ϕ1
ci
(v1) that reflects

their contribution. In the next training round, the subset S2 participates, and the same

process is repeated again, The value function v2(S2) can be represented as:

v2(S2) = x2 + x4 + x5 + α(x2x4 + x2x5 + x4x5)

Similarly, the marginal contributions of c2, c4, and c5 are calculated for all coalitions
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within S2, and the Shapley Values ϕ2
ci
(v2) are determined. Note that c2 participated in

both rounds, so their contributions are evaluated separately in each round.

Once training is completed, the total Shapley Value for each client is computed using

Equation 8.7:

ϕci(v) = ϕ1
ci
(v1) + ϕ2

ci
(v2)

For example, since c2 has contributions in both rounds, its total Shapley Value can be

computed as follows:

ϕc2(v) = ϕ1
c2
(v1) + ϕ2

c2
(v2)

On the other hand, c1 only participated in Round 1. Thus:

ϕc1(v) = ϕ1
c1
(v1)

The rewards ri for each client are proportional to their total Shapley Value and can be

computed as:

ri = ϕci(v) ·R (8.8)

where R is the budgeted reward pool. Finally, the net profit for each client is:

πi = ri − costi(xi)

where costi(xi) = βx2
i . This mechanism allows us to evaluate client contributions fairly

within individual training rounds as well as across rounds to account for varying participa-

tion. Since the reward is allocated based on the cumulative Shapley value across rounds,

it balances individual contributions with participation costs. However, the computation

of Shapley Values, as outlined above, requires evaluating all possible permutations of par-

ticipating clients within each training round. This leads to a total of |St|! permutations

for a subset St in each round and results in a computational complexity of O(2n), where

n is the number of participants. This can introduce a number of challenges for federated
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networks, including latency and bottlenecks. To address this challenge, we employ TMC

sampling, which provides an efficient approximation to the Shapley Value. The next sec-

tion explains the TMC sampling, its algorithmic implementation, and its efficiency and

accuracy analysis.

8.6 Efficient Shapley Value Estimation via Truncated

Monte Carlo

Monte Carlo (MC) methods provide a stochastic approach to approximating the Shapley

Value by sampling random coalitions instead of exhaustively enumerating all subsets.

The TMC method further optimizes this by terminating the sampling process once the

contribution of the client being evaluated can be reasonably estimated. This approach

dramatically reduces the number of coalitions that need to be evaluated by limiting the

number of sampled permutations and focusing on the most relevant contributions.

The key idea behind TMC sampling is to approximate the marginal contribution

of a client ci by iteratively simulating coalitions in a random order and computing the

incremental value added by ci when added to these coalitions. It operates by iterating over

randomly sampled permutations of clients. Instead of traversing the entire sequence of

clients in a permutation, it stops after a predefined truncation length L, capturing only the

marginal contributions of the first L clients. This truncation is based on the assumption

that the most significant contributions to the Shapley Value arise from smaller coalitions

and early positions in the permutation. The TMC estimator for the Shapley Value can

be defined by:

ϕ̂i(v) =
1

M

M∑
m=1

∆
(m)
i (8.9)

where:

• ϕ̂i(v) is the approximate Shapley Value for client ci
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Algorithm 4 Truncated Monte Carlo Sampling for Shapley Value Estimation
Input: Value function v, Set of clients C, Total samples M , Truncation length L
Output: Approximate Shapley values ϕ̂ for all clients in C

1: Initialize ϕ̂i = 0 for each client ci ∈ C
2: for m = 1 to M do
3: Randomly permute the clients in C to obtain a sequence σ
4: Initialize the coalition Z = ∅
5: for k = 1 to min(L, |C|) do
6: Let ci = σ[k] (the k-th client in the permutation)
7: Compute the marginal contribution ∆ = v(Z ∪ {ci})− v(Z)

8: Update ϕ̂i = ϕ̂i +∆
9: Update Z = Z ∪ {ci}
10: end for
11: end for
12: Normalize ϕ̂i = ϕ̂i/M for all clients ci ∈ C

13: return ϕ̂

• M is the total number of sampled permutations

• ∆
(m)
i is the marginal contribution of client ci in the m-th sampled truncated per-

mutation.

During each iteration, a random permutation of the clients is sampled, and contributions

are evaluated only up to the truncation length L, beyond which no further coalitions are

considered. This significantly reduces computation while maintaining a strong approxima-

tion of the true Shapley Value. The parameters M (the number of sampled permutations)

and L (the truncation length) balance computational efficiency and approximation accu-

racy and can be adjusted based on the system’s available resources and desired accuracy.

Larger M improves precision while L ensures that the truncation captures meaningful

contributions without unnecessary overhead. Algorithm 4 presents the pseudocode for

the TMC sampling process for approximating the Shapley Value in our framework.

Once the Shapley Values are approximated for each round using TMC sampling, the

total Shapley Value for each client is computed by summing their contributions across all

training rounds. Using Equation 8.7, the total estimated Shapley Value of client ci can

be represented by:

ϕ̂ci(v) =
T∑
t=1

ϕ̂t
ci
(vt) (8.10)

The rewards are then distributed proportionally to their total Shapley Values. Algo-
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Algorithm 5 Fairness-aware Incentive Mechanism using Shapley Value and Truncated
Monte Carlo
Input: Set of clients C, Total training rounds T , Value functions {vt}Tt=1, Budget R, Parameters M,L for TMC sampling
Output: Rewards {ri}ni=1 and net profits {πi}ni=1 for all clients

1: Initialize ϕ̂ci = 0 for each client ci ∈ C
2: for t = 1 to T do
3: Let St ⊆ C be the set of participating clients in round t
4: Approximate Shapley Values {ϕ̂t

ci
}ci∈St using Algorithm 4 with inputs vt, St,M,L

5: for ci ∈ St do
6: ϕ̂ci ← ϕ̂ci + ϕ̂t

ci
7: end for
8: end for
9: ϕ̂ci ← ϕ̂ci/

∑n
j=1 ϕ̂cj for all ci ∈ C

10: ri ← ϕ̂ci ·R for all ci ∈ C
11: πi ← ri − costi(xi) for all ci ∈ C, where costi(xi) = βx2

i
12: return {ri}ni=1, {πi}ni=1

rithm 5 provides a comprehensive view of the complete incentive mechanism.

8.6.1 Computational Efficiency Analysis of TMC Estimation for

Shapley Value

To analyze the efficiency of TMC Estimation for Shapley Value, we extend the same

example of an FL system with five clients C = {c1, c2, c3, c4, c5}, where S1 = {c1, c2, c3}

participate in Round 1 and S2 = {c2, c4, c5} participate in Round 2. The value functions

for the rounds, using Equation 8.5, are given as:

v1(S1) = x1 + x2 + x3 + α(x1x2 + x1x3 + x2x3)

v2(S2) = x2 + x4 + x5 + α(x2x4 + x2x5 + x4x5)

We now demonstrate how TMC approximates the Shapley Value for these clients using

M = 3 sampled permutations and a truncation length L = 2.

In Round 1, the TMC estimator, as given in Equation 8.9, randomly samples three per-

mutations of the participating clients:

1. Permutation 1 σ1 = [c2, c1, c3]:

In this permutation, c2 is the first client in the coalition. Using the same formulations

as established in the case of exact Shapley Value computation:

175



Crowdsourced Federated Learning

• For the first client, Z = {c2}, v(Z) = x2. Thus the marginal contribution

can be computed using Equation 8.6 as ∆c2 = x2.

• For second client in the permutation, Z = {c2, c1}, v(Z) = x2 + x1 + αx1x2

and the marginal contribution is computed as ∆c1 = x1 + αx1x2.

Since the truncation length is L = 2, it limits further computation. Hence, the

contributions of c3 are truncated and not evaluated.

2. Permutation 2 σ2 = [c3, c1, c2]:

• First client in this permutation is c3. Thus, Z = {c3}, v(Z) = x3 and the

marginal contribution is ∆c3 = x3.

• Client c1 is the second player in this coalition. Thus, Z = {c3, c1}, v(Z) =

x3 + x1 + αx1x3 and marginal contribution is ∆c1 = x1 + αx1x3.

The contribution evaluation of c2 are truncated due to L = 2.

3. Permutation 3 σ3 = [c1, c3, c2] :

• Since c1 is the first client in this permutation, Z = {c1}, v(Z) = x1 and its

marginal contribution is computed as ∆c1 = x1.

• Second client if c3. Hence, Z = {c1, c3}, v(Z) = x1 + x3 + αx1x3 and the

marginal contribution of c3 is ∆c3 = x3 + αx1x3.

Again, contributions of c2 are truncated due to truncation length L = 2.

The approximate Shapley Values for Round 1 are then calculated by averaging the

marginal contributions across the sampled permutations:

ϕ̂1
c1
=

1

3
((x1 + αx1x2) + (x1 + αx1x3) + x1)

ϕ̂1
c2
=

1

3
(x2 + 0 + 0)
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ϕ̂1
c3
=

1

3
(0 + x3 + (x3 + αx1x3))

The Shapley Value for Round 2, S2 = {c2, c4, c5}, can be approximated using the same

TMC sampling process. We sample three random permutations of the participating clients

and evaluate the marginal contributions for the first L = 2 clients in each permutation.

The approximate Shapley Values for Round 2 can then be shown as:

ϕ̂2
c2
=

1

3
((x2 + αx2x4) + x2 + (x2 + αx2x5))

ϕ̂2
c4
=

1

3
(x4 + 0 + 0)

ϕ̂2
c5
=

1

3
(0 + (x5 + αx2x5) + x5)

By sampling only 3 permutations and truncating at L = 2, TMC significantly reduces

computation compared to the exact Shapley Value calculation, which would require eval-

uating all possible permutations (6 per round). Once the approximate Shapley Values for

each client are computed for individual rounds, the total Shapley Value for each client is

calculated by summing their contributions using Equation 8.10:

ϕ̂ci(v) =
T∑
t=1

ϕ̂t
ci
(vt) (8.11)

Efficiency Gains

In the exact Shapley Value computation, all permutations of St must be evaluated which

results in:

• Total permutations for S1: |S1|! = 3! = 6

• Total permutations for S2: |S2|! = 3! = 6

Each permutation requires computing marginal contributions for all clients, resulting in

18 total computations per round. Across just two rounds evaluated in the example, the
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exact Shapley Value calculation involves 36 computations. On the other hand, using TMC

with M = 3 sampled permutations and truncation L = 2 involve:

• Total computations for S1: M × L = 6

• Total computations for S2: M × L = 6

This results in a total of 12 computations across both rounds, reducing the number of

computations by 66.7%. While the efficiency gains depend on the chosen M and L, it can

be safely concluded that TMC achieves significant efficiency gains while maintaining an

accurate approximation of the Shapley Values. We further present the accuracy analysis

of our estimation in the next section.

8.6.2 Accuracy Analysis of TMC Estimation

The accuracy of the TMC estimator, ϕ̂i(v), depends on two critical factors: the number of

samples M and the truncation length L. These parameters govern the trade-off between

computational efficiency and approximation precision. The goal is to approximate the true

Shapley Value ϕi(v) with high accuracy while ensuring scalability in large-scale systems.

Here, the interplay of M and L introduces two key sources of error in the TMC estimator:

• Bias: A systematic error arising because truncation limits the evaluation of coali-

tions to the first L clients in each permutation, excluding potential contributions

from larger coalitions.

• Variance: A stochastic error resulting from the randomness of sampling, reflecting

the variability in marginal contributions across different sampled permutations.

These two factors directly impact the expectation and variance of the TMC estimator,

which are key to understanding its accuracy. Here, the expectation of the TMC estimator

represents the average value the estimator would converge to over an infinite number of

samples and is given by:

E[ϕ̂i(v)] = ϕi(v) + Bias(M,L) (8.12)
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where ϕi(v) is the true Shapley Value, and Bias(M,L) is the error introduced by trunca-

tion and finite sampling. While increasing L reduces bias by capturing more significant

contributions, it also increases computational costs. Therefore, Lmust be carefully chosen

to balance computational efficiency and bias minimization.

Similarly, minimizing the variance introduced by the sampling process ensures the

accuracy of the approximation. The variance of the estimator is given by:

Var(ϕ̂i(v)) =
1

M

(
E[∆2

i ]− (E[∆i])
2
)

(8.13)

where ∆i denotes the marginal contribution of client ci in a sampled coalition. Increasing

M reduces this variance, improving the stability and accuracy of the estimator. To

establish performance guarantees for the TMC estimator, we analyze its error bounds

under the assumption that the value function v(S) is Lipschitz continuous with respect

to coalition size.

Theorem 1: Given a truncation length L and a number of samples M , for any tolerance

level ϵ > 0 and confidence level 1− δ, there exist sufficiently large M and L such that the

TMC estimator satisfies the following bound:

Pr
(
|ϕ̂i(v)− ϕi(v)| < ϵ

)
≥ 1− δ (8.14)

Proof: We combine Hoeffding’s concentration inequality with an analysis of truncation

bias to bound the deviation of the estimator from the true value. Hoeffding’s inequality

provides a bound on the probability that the sample mean deviates from its expected

value by more than ϵ. For M independent samples of marginal contributions ∆i:

Pr
(
|ϕ̂i(v)− E[ϕ̂i(v)]| > ϵ

)
≤ 2 exp

(
− 2Mϵ2

Range(∆i)2

)
(8.15)
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where Range(∆i) = max∆i−min∆i is the maximum possible value range of the marginal

contributions ∆i. This inequality shows that as M increases, the probability of large devi-

ations between the estimator ϕ̂i(v) and its expected value E[ϕ̂i(v)] decreases exponentially.

We have already discussed that the truncation length L introduces bias by excluding

contributions from coalitions. This bias depends on the smoothness of the value function

v(S). If v(S) is Lipschitz continuous with respect to the coalition size, the contributions

of excluded coalitions diminish as L increases. Formally:

Bias(M,L) = ϕi(v)− E[ϕ̂i(v)] (8.16)

where Bias(M,L) can be controlled by selecting L large enough to include the most

significant contributions. The total error is the combination of the truncation bias and

the sampling variance:

|ϕ̂i(v)− ϕi(v)| ≤ |ϕ̂i(v)− E[ϕ̂i(v)]|+ |E[ϕ̂i(v)]− ϕi(v)| (8.17)

Now, using Hoeffding’s inequality for the first term and controlling the second term by

choosing L appropriately, we can ensure the total error is bounded by ϵ with high proba-

bility. Specifically, by choosing M and L such that:

Pr
(
|ϕ̂i(v)− E[ϕ̂i(v)]| > ϵ/2

)
≤ δ/2 (8.18)

and ensuring the bias satisfies:

|E[ϕ̂i(v)]− ϕi(v)| ≤ ϵ/2 (8.19)

the total probability of exceeding ϵ can be bounded as:

Pr
(
|ϕ̂i(v)− ϕi(v)| < ϵ

)
≥ 1− δ (8.20)
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Thus, for sufficiently large M and L, the TMC estimator approximates the true Shapley

Value ϕi(v) with high confidence and precision.

8.7 Experimental Evaluation and Analysis

This section evaluates the proposed incentive mechanism using various metrics to validate

its effectiveness, efficiency, and fairness. The experiments are designed to compare the

accuracy of the proposed TMC approximation with other Shapley Value approximations,

assess its payout distribution, and analyze its resilience to free-riding attacks.

The experiments were conducted on a simulated FL environment. Since computing

the exact Shapley Value is computationally expensive, we start with a small client pool

of five clients. The clients contributed data and computational resources, and their con-

tributions were evaluated using the Shapley Value. To ensure robustness, we introduced

free riders—clients that contributed negligible data or computational resources—to test

the mechanism’s ability to fairly reward benign clients while penalizing malicious actors.

8.7.1 Comparison of Shapley Value Approximations

We compare the cumulative Shapley Values across epochs for five clients using different

approximation methods: Exact Shapley, k-subset Shapley, SOR Shapley, TMR Shapley,

and the proposed TMC Shapley, with the Exact Shapley Value serving as the baseline.

These methods vary in their approach to approximating the Shapley Value:

• Exact Shapley computes the true Shapley Value by evaluating the marginal con-

tributions of each client across all possible coalitions, resulting in a computational

complexity of O(2n). This serves as the gold standard for fairness but is computa-

tionally infeasible for large-scale systems.

• k-subet Shapley subset Shapley reduces the complexity by sampling k random sub-

sets of clients for each evaluation instead of all possible coalitions. While this method
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improves efficiency, it introduces biases that can lead to deviations from the true

Shapley Value, particularly in scenarios with high heterogeneity among client con-

tributions.

• SOR Shapley uses the Sampling of Random Orders (SOR) approach, where only

a subset of client permutations is considered, reducing the computational burden.

However, this method often overestimates contributions due to its heuristic-based

coalition sampling, especially for clients with high interaction effects.

• TMR Shapley employs Truncated Marginal Regression (TMR) to approximate

Shapley Values. It iteratively fits marginal contribution curves but struggles to

capture higher-order interaction effects among clients, leading to systematic under-

estimation of contributions.

Figure 8.1: Comparison of cumulative Shapley Values across different approximation
methods.

182



Crowdsourced Federated Learning

As shown in Figure 8.1, the proposed TMC method demonstrates significant improve-

ments over these approximations. The cumulative Shapley Values obtained using TMC

closely align with the Exact Shapley, with minimal deviations observed across epochs.

This is because the TMC approach leverages truncated sampling of coalitions, focusing

computational effort on the most impactful coalitions while maintaining accuracy. In

contrast, k-subset Shapley and SOR Shapley deviate considerably due to their reliance

on coarse-grained sampling strategies. TMR Shapley, while more stable, underestimates

contributions due to its inability to account for higher-order interactions effectively. The

results confirm that the TMC method strikes a balance between computational efficiency

and accuracy, making it well-suited for large-scale Crowdsourced Federated Learning sys-

tems. Its ability to approximate Shapley Values closely to the Exact Shapley ensures

fairness in reward distribution while overcoming the computational challenges posed by

exhaustive evaluations.

8.7.2 Payout distribution

To validate the fairness of reward allocation using the proposed Truncated Monte Carlo

(TMC) method, we compared the payout distribution derived from TMC-based Shapley

Values to the distribution based on Exact Shapley Values. The results, depicted in Figure

8.2, demonstrate a high degree of alignment between the two methods. The payouts for

each client are proportional to their cumulative Shapley Values, ensuring that clients

contributing more to the global model receive higher rewards.

The distribution highlights the robustness of the TMC approach in approximating

the true Shapley Value while maintaining fairness. For example, Client 2, which has the

highest contribution to the model, receives the largest payout across both Exact and TMC

methods, with only a marginal difference of 1.3%. Similarly, the payouts for other clients

also closely align, with deviations of less than 2% in all cases. This demonstrates that the

TMC method captures the relative contributions of clients accurately, ensuring that the
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Figure 8.2: Payout comparison of proposed TMC Shapley Value

proportionality in reward allocation is preserved.

Such consistency is critical for fostering trust in FL systems, as it ensures that partici-

pants are compensated fairly based on their contributions without introducing significant

biases. Moreover, the minimal deviation between Exact and TMC payouts underscores

the computational efficiency of the TMC method, which achieves fairness without the

prohibitive overhead associated with Exact Shapley Value computation. This makes the

TMC method a viable choice for large-scale deployments where scalability and fairness

are both paramount.

8.7.3 Resilience Against Free-Riding Attacks

Free-riding attacks pose a significant challenge in FL systems, where some clients may

attempt to claim rewards without contributing meaningfully to the global model. To

evaluate the resilience of the proposed incentive mechanism against such behavior, we

simulated a FL scenario involving both benign clients and free riders. Figure 8.3 illustrates

the Shapley Values assigned to benign clients versus free riders over 100 training rounds.
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Figure 8.3: Comparison of Shapley Values assigned to Benign clients vs Free riders

The results reveal that benign clients consistently receive higher Shapley Values than

free riders, reflecting their substantial contributions to the model’s performance. In con-

trast, the Shapley Values for free riders decline sharply in the early rounds and stabilize

near zero, indicating the mechanism’s ability to identify and penalize non-contributing

participants. This behavior is achieved by leveraging the Shapley Value’s marginal contri-

bution framework, which directly ties rewards to tangible improvements in model perfor-

mance. Since free riders contribute little to no value, their marginal contributions—and

hence their Shapley Values—are minimal.

Furthermore, the ability of the incentive mechanism to dynamically evaluate contri-

butions on a per-round basis ensures that free riders are unable to exploit the system over

time. As the training progresses, the Shapley Values of benign clients exhibit consistent

growth, affirming that the mechanism promotes sustained and meaningful participation.

These findings demonstrate the robustness of the proposed TMC-based incentive mech-

anism in deterring free-riding behavior, ensuring that rewards are distributed equitably

among clients who genuinely contribute to the success of the FL process. This resilience

enhances the overall reliability and fairness of the system, making it well-suited for real-
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world CFL deployments.

The experimental results validate the proposed incentive mechanism’s effectiveness

in addressing key challenges in Crowdsourced FL. It ensures efficient and fair reward

distribution while providing resilience by effectively penalizing free riders.

8.8 Limitations and Future Directions

While the proposed TMC-based Shapley Value incentive mechanism offers efficiency, sev-

eral limitations remain. First, the use of TMC sampling introduces bias compared to exact

Shapley Value computation. Since sampling may stop early when a client’s marginal con-

tribution is clear, later-positioned clients in the permutation may be underrepresented.

This loss of fairness can disproportionately reward clients with unique or early-stage con-

tributions. Although increasing the number of samples or the truncation length can help

reduce this bias, it comes at the cost of additional computation.

In its current form, the reward mechanism operates offline, with rewards calculated

only after training is complete. A more responsive mechanism could dynamically adjust

rewards during training based on real-time system performance and client behavior. This

would better align incentives, especially in long-running or streaming FL tasks, and could

help discourage free-riding or erratic participation.

Deploying this mechanism in real-world systems involves additional overhead. Even

though TMC reduces computation relative to the exact Shapley Value, it still requires

tracking contributions per round and computing marginal improvements, which may im-

pact system latency and resource usage. Moreover, system stability under changing client

behavior or data quality remains a practical concern. Monitoring and adapting to these

changes requires infrastructure that can handle fluctuating client sets and performance

metrics.

There is also a broader design space of incentive mechanisms that could be considered.

Alternatives such as auction-based strategies, reputation systems, or contract-theoretic
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approaches may offer different trade-offs in terms of simplicity, scalability, and robustness.

Integrating these with Shapley-based methods may yield hybrid solutions that are more

adaptable in heterogeneous or adversarial environments.

Future work could also investigate how to adapt the mechanism for diverse FL

platforms and resource-constrained settings, while preserving fairness. For example,

lightweight approximations or tiered reward models might help scale the mechanism with-

out compromising its core principles.

8.9 Summary

In this chapter, we proposed a fairness-aware incentive mechanism for Crowdsourced FL

using the Shapley Value as the foundation for reward allocation. By leveraging the TMC

estimator, we addressed the computational inefficiencies of exact Shapley Value compu-

tation, making the mechanism scalable for large FL systems. The proposed method was

rigorously evaluated against existing approximations, demonstrating competitive accuracy

while significantly reducing computational overhead.

Our experiments highlighted the mechanism’s ability to fairly distribute rewards

among clients based on their contributions, ensuring robustness against free-riding attacks

and adversarial behaviors. Benign clients consistently received higher rewards, reflecting

their meaningful contributions to the global model. This approach not only incentivizes

genuine participation but also fosters trust and sustainability in CFL environments. The

findings from this chapter lay a solid foundation for future extensions aimed at improving

fairness, scalability, and resilience in FL systems.
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Conclusion

9.1 Summary of Contributions

This dissertation represents a significant step towards transforming Federated Learning

(FL) into a dynamic and scalable paradigm, capable of adapting to real-world challenges.

The research introduces FedOnDemand, a novel crowdsourced FL framework that em-

phasizes voluntary participation, scalability, and security, addressing key limitations of

traditional FL systems. Below, we outline the major contributions of this work:

First, this research introduces the concept of a dynamic and open FL ecosystem. By

incorporating principles of crowdsourcing, the FedOnDemand framework creates an envi-

ronment where clients can join and leave the learning process based on their availability

and willingness to contribute. This dynamic participation ensures that the framework

can scale seamlessly to accommodate the variability and diversity of edge devices, which

is essential for building an inclusive and robust FL system.

To address the inherent heterogeneity of edge environments, this thesis proposes inno-

vative mechanisms to optimize the FL training process. A multi-criterion client selection

protocol was developed to evaluate and select clients based on their computational and

communication resources. It also considers the client’s data quality and trustworthiness

as a critical criterion for client selection. This adaptive approach not only improves the
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efficiency of the training process but also ensures that the most impactful clients are

prioritized, leading to enhanced global model performance. Additionally, the integration

of Bayesian Federated Learning introduces uncertainty modeling into the FL pipeline,

providing a robust method for managing non-IID data and ensuring reliable model con-

vergence in heterogeneous environments.

Recognizing the critical importance of security in decentralized systems, this research

integrates zero-trust principles into FL. By implementing Attribute-Based Access Con-

trol (ABAC) and Public Key Infrastructure (PKI) mechanisms, the proposed framework

enforces strict access controls and prevents unauthorized client participation. These secu-

rity measures protect the integrity of the FL process while mitigating risks such as data

poisoning and malicious updates.

Another key contribution is the design of a fairness-aware incentive mechanism that

leverages Shapley Value-based data valuation to measure client contributions. This mech-

anism ensures that rewards are distributed equitably based on the value of each client’s

data and resources. By aligning incentives with contributions, this approach fosters trust

and motivates active participation, addressing a critical gap in existing FL frameworks.

Empirical validation through extensive simulations and experiments using benchmark

and real-world datasets highlights the effectiveness of the proposed methods. The results

demonstrate significant improvements in model accuracy, convergence speed, and system

robustness compared to traditional FL approaches. These findings confirm that the inte-

gration of dynamic client participation, optimized resource utilization, Bayesian learning

techniques, robust security measures, and fair incentivization collectively enhances the op-

erational efficiency and scalability of FL systems. Together, these contributions establish

a solid foundation for the next generation of FL systems.
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9.2 Key Findings and Insights

This dissertation addresses several fundamental challenges in FL, offering theoretical and

empirical advancements in client selection, Bayesian learning, security, and incentiviza-

tion. While the overarching FedOnDemand framework proposes a theoretical solution

for scalability and adaptability in FL, this section emphasizes the practical findings and

insights gained from implementing and validating its key components.

• The multi-criterion client selection mechanism demonstrated its effectiveness in dy-

namically optimizing the selection of clients based on diverse metrics such as com-

putational resources, data quality, and network conditions. Experimental results

confirmed that this approach significantly improved global model accuracy and con-

vergence rates, particularly in heterogeneous environments. However, the imple-

mentation also revealed inherent trade-offs. For instance, while prioritizing higher-

quality clients maximized model performance, it occasionally led to underutilization

of other clients, raising questions about fairness in participation. Balancing model

optimization with equitable client engagement remains an open area for exploration.

• The integration of Bayesian learning principles addressed critical challenges related

to non-IID data distributions. By employing Stochastic Variational Inference (SVI)

on the client side and hierarchical Bayesian aggregation on the server side, the

proposed framework achieved robust model performance despite high variability in

client contributions. These methods not only improved accuracy but also provided

uncertainty estimates, making the learning process more interpretable. However,

the computational overhead introduced by Bayesian techniques, particularly on

resource-constrained devices, posed practical challenges. Future refinements could

explore lightweight Bayesian approximations to reduce this overhead.

• The zero-trust security model, incorporating Attribute-Based Access Control

(ABAC) and Public Key Infrastructure (PKI), effectively protects the FL process
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against unauthorized participation and adversarial threats. While this approach

provided fine-grained control over client access and reduced the risk of data poisoning

and malicious updates, it introduced significant computational and communication

overhead. The overhead arises from the need to perform continuous authentication

and authorization. Verifying digital certificates and enforcing access control policies

consume resources and may introduce latency as well, especially in environments

with a large number of clients or limited computational capacity. Nevertheless, these

trade-offs between accuracy, efficiency, and security reflect the inherent complexities

of designing a practical zero-truth FL framework and highlight the need for scalable

authentication protocols in future deployments.

• The fairness-aware incentive mechanism, grounded in Shapley Value calculations,

proved effective in promoting sustained client participation. Experimental evalua-

tions showed that clients contributing higher-quality data were rewarded proportion-

ally, addressing concerns of inequity and fostering long-term engagement. However,

the computational complexity of Shapley Value estimation, even with efficient ap-

proximations like TMC, remains a limiting factor in large-scale deployments. While

TMC achieved significant efficiency gains, balancing computational feasibility with

accuracy continues to be a critical area for optimization.

While the individual components of FedOnDemand were validated through experiments,

the full realization of this crowdsourced FL framework remains theoretical. The inte-

gration of dynamic client participation, secure access control, Bayesian learning, and

incentivization holds promise for addressing scalability and adaptability in FL. However,

implementing such a system at scale would require addressing several challenges, includ-

ing real-time client orchestration, communication efficiency, and ensuring equitable access

to FL tasks across diverse devices. These challenges highlight the complexity of transi-

tioning from theoretical frameworks to practical implementations. However, we believe

this dissertation provides fertile ground for future research and would guide future FL
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system designs.

9.3 Future work

The findings of this dissertation pave the way for several avenues of future research aimed

at advancing the practicality and scalability of crowdsourced FL systems. While the

proposed FedOnDemand framework outlines a promising direction, its realization at scale

requires overcoming numerous technical and operational challenges.

• Scalable and Adaptive FL Architecture: One significant area for future work

is the integration of real-time client orchestration and adaptive resource allocation

mechanisms. One direction is to integrate reinforcement learning (RL) for client

and resource orchestration: an RL agent could learn to dynamically schedule clients

and tune training configurations based on system state and historical performance.

Initial studies have demonstrated that a trust-aware deep RL approach can effec-

tively select appropriate clients by balancing resource consumption and training

time. Similarly, the communication strategy between the server and clients can be

made adaptive to reduce overhead. For instance, clients might adjust their update

frequency or compress model updates based on real-time bandwidth predictions.

Such adaptive communication protocols would mitigate communication bottlenecks

when many devices participate, addressing current scalability limitations. In sum-

mary, enhancing FedOnDemand with learning-based orchestration and communica-

tion adaptation promises a more efficient and resilient FL platform.

• Dynamic Client Selection Strategies: Our multi-criterion client selection

method can be further improved to handle more complex and dynamic scenarios.

A key limitation noted was the static weighting of selection criteria, which might

not adapt optimally to changing data distributions or client availability. Future

research could formulate client selection as a sequential decision problem and ap-
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ply reinforcement learning or bandit algorithms to continually refine the selection

policy. A deep RL agent, for example, could learn which clients to invite in each

round to maximize long-term model performance under resource constraints. This

would allow the system to automatically discover the best trade-offs between multi-

ple criteria (e.g., accuracy, latency, energy) rather than relying on preset heuristics.

Another promising direction is to incorporate additional factors such as model un-

certainty or data novelty into the selection process. By prioritizing clients that

offer the most informative data (analogous to active learning), the federation could

converge faster and generalize better. The selection mechanism could also be made

fairness-aware: for instance, ensuring that clients with lower resources or those from

underrepresented data groups are not consistently neglected. Finally, scaling the se-

lection process to very large client pools may require hierarchical or decentralized

approaches (selection done in stages or by regional aggregators) to reduce complex-

ity. By addressing these issues, the client selection strategy would become more

robust against the heterogeneity and unpredictability inherent in crowdsourced FL.

• Efficient Bayesian Inference in FL: We noted several limitations in BayFL-

SVI, especially the computational and communication overhead that it introduces.

Another limitation of the current approach is the approximation error introduced

by SVI and the constrained form of the variational posterior. Future work could

investigate more exact or flexible Bayesian inference techniques, albeit with careful

consideration of their feasibility in a federated setting. For example, one could em-

ploy Markov Chain Monte Carlo (MCMC) methods to sample from the posterior

distribution of the global model. Recent studies have shown that combining local

MCMC sampling on clients with efficient global updates can improve convergence to

better optima. While MCMC is computationally intensive, research into federated

posterior sampling (e.g., parallel chains on clients or tempered sampling strategies)

could make it practical. Another avenue is to explore hybrid approaches that retain
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the scalability of SVI while borrowing accuracy improvements from MCMC, such

as using MCMC periodically to recalibrate the variational approximation. Beyond

inference algorithms, future Bayesian FL could consider models with hierarchical

or personalized components to better capture client-specific variability and uncer-

tainty. Theoretical work is also needed to understand the convergence properties of

Bayesian FL – for instance, studying conditions under which the federated posterior

approaches the true posterior as more clients and data participate. Advancing the

Bayesian FL component will likely involve a mix of more powerful inference methods

(like MCMC), new Bayesian model architectures, and analyses of uncertainty’s role

in improving federated outcomes.

• Decentralized and Trust-Aware Security Models: In the current zero-trust

FL design, we assumed a Public Key Infrastructure (PKI) and Attribute-Based Ac-

cess Control (ABAC) for authenticating clients and restricting their actions. To

improve scalability and ease of deployment, future work could explore integrating

ABAC with modern Identity and Access Management (IAM) systems. IAM frame-

works can simplify client onboarding, centralize policy enforcement, and provide

visibility into access patterns across dynamic networks. These systems also allow

real-time adaptation by updating trust scores based on observed behavior, such as

protocol compliance, model contribution quality, and consistency. Such scores can

guide authorization decisions dynamically, enhancing both security and flexibility.

Additionally, future directions may include investigating alternative or certificate-

less authentication approaches, such as identity-based encryption or lightweight key

agreement protocols. These methods reduce the reliance on traditional certificate

management, which can be burdensome in edge or resource-constrained environ-

ments. Exploring such mechanisms could help streamline authentication while pre-

serving the zero-trust principles required for secure and adaptive federated learning

deployments.
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• Fairness and Incentivization at Scale: Ensuring fairness among heterogeneous

clients remains an open challenge that extends beyond contribution-based reward al-

location. While this dissertation employs Truncated Monte Carlo (TMC) sampling

to approximate the Shapley Value efficiently, future work could explore ways to more

tightly integrate this fairness mechanism with the training dynamics. For instance,

recent studies have suggested using Shapley-based weights during model aggregation

to improve global model quality, especially in imbalanced or non-IID data settings.

Building on this, future work could investigate personalizing model updates or final

models based on individual contributions, thereby promoting fairness not just in

compensation but also in the model’s outcomes. Another promising direction in-

volves blending contribution-based incentives with fairness objectives from broader

machine learning research. Methods like q-Fair FL, which aim to equalize model

performance across clients with differing data quality or device capabilities, could be

incorporated to prevent the system from disproportionately benefiting high-resource

participants. Additionally, applying tools from cooperative game theory and mech-

anism design could help analyze how rational clients might adapt their behavior

in response to incentive schemes and identify strategies to guide these behaviors

toward more equitable outcomes. Ultimately, a more holistic view of fairness—one

that accounts for both contribution and utility—will be critical for building robust,

inclusive crowdsourced FL systems.

Lastly, the theoretical promise of the FedOnDemand framework needs to be validated

through large-scale real-world experiments. This includes evaluating the interplay of the

proposed client selection, Bayesian aggregation, security, and incentive mechanisms in di-

verse environments. Such studies would provide practical insights and uncover unforeseen

challenges, ultimately bridging the gap between theoretical advancements and practical

deployments. By addressing these challenges, future research can unlock the full poten-

tial of crowdsourced FL systems, enabling them to scale effectively, operate securely, and
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foster equitable participation in real-world applications.
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Appendix

A.1 PAC-Bayesian Bound for Sample Complexity

Estimation in Federated Learning with Non-IID

Data

Theorem. Consider a federated learning setup with K clients, each possessing its own

dataset Dk, where the number of samples for client k is denoted as nk and the total

number of samples across all clients is N =
∑K

k=1 nk. Let the loss function ℓ(hk(xk), yk)

be bounded by a constant C, i.e., ℓ(hk(xk), yk) ∈ [0, C], and assume that each client holds

a prior distribution p(θ) and a posterior distribution qi(θ | ϕi), where qi(θ | ϕi) is learned

via Stochastic Variational Inference (SVI). Then, the sample complexity N required to

achieve a generalization error ϵ with high probability 1− δ is bounded as:

N ≥ 8ϵ2

C2

(
K∑
k=1

(
KL(qi(θ | ϕi)∥p(θ)) + σ2

k

)
+ log

(
1

δ

))

where σ2
k is the variance of the loss function for client k and KL(qi(θ | ϕi)∥p(θ)) is the

Kullback-Leibler divergence between the variational distribution qi(θ | ϕi) and the prior

p(θ).
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Proof. We begin by defining the empirical risk and population risk for each client k.

The empirical risk is given by:

L̂k(qi(θ | ϕi)) = Ehk∼qi(θ|ϕi)

[
1

nk

nk∑
i=1

ℓ(hk(x
i
k), y

i
k)

]

and the population risk is defined as:

Lk(qi(θ | ϕi)) = Ehk∼qi(θ|ϕi)E(xk,yk)∼Dk
[ℓ(hk(xk), yk)]

The variance of the loss function for client k is:

σ2
k = E(xk,yk)∼Dk

[ℓ(hk(xk), yk)
2]−

(
E(xk,yk)∼Dk

[ℓ(hk(xk), yk)]
)2

To bound the deviation between the empirical risk and the population risk, we apply

Bernstein’s inequality. For each client k, Bernstein’s inequality provides:

P

Lk(qi(θ | ϕi)) ≤ L̂k(qi(θ | ϕi)) +

√
2σ2

k log(1/δ
′)

nk

+
3C log(1/δ′)

nk

 ≥ 1− δ′

where δ′ is the failure probability for each individual client.

To maintain an overall confidence level of 1 − δ across all K clients, we apply the

union bound. By setting δ′ = δ
K
, we ensure that the cumulative failure probability does

not exceed δ. Thus, with probability at least 1− δ, the population risk across all clients

satisfies:

L(Q1, . . . , QK) ≤ L̂(Q1, . . . , QK) +
K∑
k=1

p(k)

√2σ2
k log

(
K
δ

)
nk

+
3C log

(
K
δ

)
nk


where p(k) = nk

N
represents the weight associated with client k’s contribution, reflecting

data heterogeneity.

Next, we integrate the PAC-Bayesian framework by introducing the Kullback-Leibler
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(KL) divergence between the posterior qi(θ | ϕi) and the prior p(θ). The PAC-Bayesian

bound provides a trade-off between the empirical risk and the complexity of the posterior

relative to the prior. Specifically, for each client k, the PAC-Bayesian inequality states

that:

Lk(qi(θ | ϕi)) ≤ L̂k(qi(θ | ϕi)) + KL(qi(θ | ϕi)∥p(θ)) + σ2
k +

log
(
1
δ′

)
2nk

Summing over all K clients and weighting by p(k), we obtain:

L(Q1, . . . , QK) ≤ L̂(Q1, . . . , QK) +
K∑
k=1

p(k)
(
KL(qi(θ | ϕi)∥p(θ)) + σ2

k

)
+

K∑
k=1

p(k)
log
(
K
δ

)
2nk

To further refine this bound, we apply the Gibbs variational inequality, which allows us

to express the KL divergence in terms of the difference between the expected losses under

the posterior and prior distributions. Specifically, for each client k:

Ehk∼qi(θ|ϕi)[ℓ(hk(xk), yk)]− Ehk∼p(θ)[ℓ(hk(xk), yk)] ≤ KL(qi(θ | ϕi)∥p(θ))

Substituting this into our PAC-Bayesian bound, we obtain:

L(Q1, . . . , QK) ≤ L̂(Q1, . . . , QK)+

K∑
k=1

p(k)
(
Ehk∼qk(θ|ϕk)[ℓ(hk(xk), yk)]− Ehk∼p(θ)[ℓ(hk(xk), yk)] + σ2

k

)
+

K∑
k=1

p(k)
log
(
K
δ

)
2nk

To estimate the total sample size N required to achieve a desired generalization error

ϵ, we set the refined PAC-Bayesian bound to be less than or equal to ϵ:

ϵ ≥
K∑
k=1

p(k)
(
Ehk∼qi(θ|ϕi)[ℓ(hk(xk), yk)]− Ehk∼p(θ)[ℓ(hk(xk), yk)] + σ2

k

)
+

K∑
k=1

p(k)
log
(
K
δ

)
2nk

Given that p(k) = nk

N
, where N =

∑K
k=1 nk is the total sample size, we substitute and
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rearrange the terms to solve for N :

ϵ ≥ 1

N

K∑
k=1

(
KL(qi(θ | ϕi)∥p(θ)) + σ2

k

)
+

log
(
K
δ

)
2N

To isolate N , we multiply both sides by N :

N · ϵ ≥
K∑
k=1

(
KL(qi(θ | ϕi)∥p(θ)) + σ2

k

)
+

log
(
K
δ

)
2

Rearranging to solve for N , we obtain:

N ≥ 8ϵ2

C2

(
K∑
k=1

(
KL(qi(θ | ϕi)∥p(θ)) + σ2

k

)
+ log

(
1

δ

))

The constant 8 arises from bounding the terms involving C and consolidating the log-

arithmic terms, ensuring that the sample complexity N sufficiently accommodates both

the complexity of the posterior distributions and the variance inherent in the clients’ data.

Discussion. The derivation presented above is grounded in several key assumptions

that are crucial for its applicability in real-world federated learning scenarios.

Firstly, the boundedness of the loss function ℓ(hk(xk), yk) ∈ [0, C] is a fundamental

assumption that facilitates the application of Bernstein’s inequality. In practice, this

can be achieved by selecting appropriate loss functions or by normalizing the outputs of

the model. For instance, in classification tasks using cross-entropy loss, it is standard

to bound the loss by setting C = 1. This boundedness ensures that the concentration

inequalities hold, providing reliable bounds on the generalization error. However, if the

loss function inherently produces unbounded values, additional measures such as clipping

or normalization must be employed to satisfy this assumption.

Secondly, the selection of priors p(θ) plays a pivotal role in the PAC-Bayesian frame-

work. Priors can be chosen based on domain knowledge, previous training rounds, or

shared information among clients. A well-informed prior can lead to a smaller KL di-

vergence, thereby tightening the generalization bound and reducing the required sample
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complexity. In federated learning, initializing priors based on historical data or aggregat-

ing information from previous iterations can enhance the effectiveness of the bounds.

The variance terms σ2
k capture the heterogeneity of data across clients. High variance

indicates significant variability in the loss function, necessitating a larger sample size to

achieve the desired generalization performance. In practice, σ2
k can be estimated empiri-

cally from the data or bounded based on theoretical considerations. Accurate estimation

of variance is essential, as underestimation can lead to insufficient sample sizes, while

overestimation may result in unnecessarily large sample sizes, impacting the efficiency of

the federated learning process.

Moreover, the application of the union bound with the confidence adjustment δ′ = δ
K

ensures that the overall confidence level 1−δ is maintained across all clients. This adjust-

ment is critical in federated learning, where multiple clients contribute to the final model,

and cumulative failure probabilities must be controlled to guarantee reliable generalization

performance.

In summary, this derivation provides a robust framework for estimating the sample

complexity in federated learning settings characterized by non-IID data distributions.

By integrating Bernstein’s inequality and the Gibbs variational inequality into the PAC-

Bayesian bounds, we achieve a more nuanced and tighter estimation that accounts for both

variance and divergence among client-specific posteriors. These theoretical advancements

are instrumental in designing efficient and reliable federated learning systems, ensuring

that sufficient data is allocated to each client to achieve desired performance metrics while

accounting for data heterogeneity and model complexity.
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