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projected. Positional embeddings are then added to these embed-
dings, and the resulting sequence of vectors is passed through a stan-
dard Transformer encoder. In order to perform classification, the
standard approach of adding an extra learnable “classification token”

to the sequence is followed. Figure from [Dosovitskiy et al., 2020].

This figure illustrates the application of self-supervised pretraining
to a downstream task. The process begins with pretraining a model
on a large unlabeled dataset using a self-supervised objective. The
resulting pretrained weights are then transferred to a model that is
fine-tuned on a smaller, labeled dataset specific to the downstream

task. Figure from [Schiappa et al., 2023]. . . . . ... ... ... ...

During the pretraining phase, a substantial portion of image patches
(typically 75%) are randomly masked. The encoder operates only on
the remaining visible patches. Following the encoder, learnable mask
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sentations. This combined sequence is then processed by a lightweight
decoder tasked with reconstructing the original image in pixel space.
Once pretraining is complete, the decoder is discarded, and the en-
coder is used independently on full, unmasked images for downstream
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VideoMAE extends the masked autoencoding framework to video

by adopting an asymmetric encoder-decoder architecture, where spa-

tiotemporal cubes are randomly masked and subsequently reconstructed.

To better leverage the high redundancy and temporal coherence in-
herent in video data, the model employs a tailored tube masking
strategy with an exceptionally high masking ratio (ranging from 90%
to 95%). This design introduces a more challenging pretraining task,
thereby encouraging the model to learn more informative and robust

spatiotemporal representations. Figure from [Tong et al., 2022].

CLIP is trained by jointly optimizing an image encoder and a text
encoder to correctly associate image-text pairs within each training
batch. During inference, the pretrained text encoder enables zero-
shot classification by encoding textual descriptions or class names
from a target dataset, which are then compared to image embeddings
to perform classification without additional fine-tuning. Figure from

[Radford et al., 2021]. . . . . . . ... .. o

Two-Stream architecture for action recognition in video. Figure from

[Simonyan and Zisserman, 2014]. . . . .. ... oL

The spatial and temporal streams are fused using two different strate-
gies. On the left, both streams are merged into a single CNN after
the fourth convolutional layer. On the right, the spatial stream is in-
tegrated into the temporal stream after the fifth convolutional layer.
In this configuration, the spatial CNN is preserved and later fused
with the resulting spatio-temporal hybrid network. Figure from [Fe-

ichtenhofer et al., 2016]. . . . . . .. ... ... ... ... ...
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Temporal Shift Module. Spatial feature maps from four frames are
stacked along the temporal dimension. The values in the first channel
are shifted backward by one frame, while those in the second channel
are shifted forward by one frame. The rest of the channels remain

stationary. Figure from [Lin et al., 2019a]. . . . . . . . ... ... ..

Comparison between different architectures for action recognition.

Figure from [Carreira and Zisserman, 2017a). . . . . . . . ... .. ..

Video Transformer Network consists of a 2D spatial backbone (f(x))
for extracting features, followed by a temporal encoder based on at-
tention mechanisms (Longformer [Beltagy et al., 2020]). This encoder
processes the feature vectors (¢;), which are enriched with positional
encodings. The final class prediction is obtained by passing the [CLS]
token through a classification MLP head. Figure from [Neimark et al.,
2021]. L.

The proposed model extracts spatio-temporal features from an input
video clip using the initial layers of I3D. The center frame of the
feature map is passed through an RPN to generate bounding box
proposals, and the feature map (padded with location embedding)
and each proposal are passed through ‘head’ networks to obtain a
feature for the proposal. This feature is then used to regress a tight
bounding box and classify into action classes. The head network
consists of a stack of Action Transformer (Tx) units, which generates

the features to be classified. Figure from [Girdhar et al., 2019]. . . . .

Multiscale Vision Transformers (MViT) build a hierarchical represen-
tations by transitioning from spatially dense, low-channel features to
spatially coarse, high-channel ones. This is achieved through multi-
ple stages that progressively increase the number of channels in the
latent representation while reducing its length and spatial resolution.

Figure from [Fan et al., 2021]. . . . . ... ... ... ... ......
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tion drawing inspiration from ViT in the image domain. To efficiently
handle the large number of spatio-temporal tokens, several model
variants are introduced that factorise different components of the
Transformer encoder across spatial and temporal dimensions. These
factorisations lead to distinct attention patterns over space and time.

Figure from [Arnab et al., 2021a]. . . . . . ... ... ... ... ...

TimeSformer investigates various video self-attention blocks, where
each attention layer applies self-attention [Vaswani et al., 2017] over
a defined spatiotemporal neighborhood of frame-level patches. Resid-
ual connections are employed to integrate information from different
attention layers within each block. Additionally, a single-hidden-layer
MLP is applied at the end of each block. The complete model is built
by stacking these blocks in a repeated manner. Figure from [Bertasius

et al,, 2021al. . . ...

The proposed self-supervised spatiotemporal representation learning
involves rotating each video by four different angles (0°, 90°, 180°, and
270°). The 3DRotNet model is then trained to predict the specific

rotation applied to each input video.. Figure from [Jing et al., 2018] .

In each mini-batch, a video speed is selected from four possible choices,
corresponding to different frame skipping rates in the original video.
The 3D-CNN then receives a mini-batch containing a mixture of four
types of transformed sequences: speed (based on the chosen frame
skipping), random, periodic, and warp. The network outputs the
probability of which motion type a sequence belongs to and the prob-

ability of which speed type the speed-transformed sequence has.
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Overview of Memory Augmented Dense Predictive Coding (MemDPC).
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quence segmented at a shot cut, followed by transitions between ac-
tions such as running, jumping, and standing up (with the dominant
subject highlighted in a red circle). 2) A change in color or brightness.

3) New subject appears. Figure from [Shou et al., 2021]. . . . . . ..

[lustration of a normal frame and an anomalous frame in single-scene

benchmarks for video anomaly detection. Figure from [Ramachandra

et al.,, 2020b]. . . ..

The overall architecture consists of two stages: a) Stage 1 involves
the pre-training of the modified ResNet50 encoder (augmented with
a MotionSqueeze layer) with four pretext tasks using a contrastive
learning based objective; b) Stage 2 consists of fine tuning of the

encoder on the downstream GEBD task. . . . . . . . ... ... ...

Qualitative Analysis I: visualization of some detected boundaries on
the validation set of Kinetics-GEBD. Compared with baseline PC
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tively. Our VAD framework unifies estimation of reconstruction qual-

ity (eq. 4.4), temporal irregularity (eq. 4.5) and semantic inconsistency. 82

Qualitative Assessment: Visualisation of spatial and temporal PAs

using segmentation masks. This approach also works with random

During inference, aggregate anomaly score is computed by calculating
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tion; reconstruction quality w; (eq 4.8), temporal irregularity wy (eq

4.9) and semantic inconsistency ws. . . . . ... .. ...
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Understanding Videos by Learning Structured, Robust and

Efficient Representations

Ayush K. Rai

Abstract

With an enormous volume of unstructured video content constantly being gener-
ated online, designing intelligent systems for automatic understanding of visual
data could have a direct and beneficial effect on several fields such as real-world
surveillance, robotics, healthcare, entertainment, content retrieval etc. However,
extracting meaningful and relevant information from videos still remains a challeng-
ing task and an open area of research. Learning powerful representations in the
video domain involves multiple facets such as structural feature learning, modeling
motion, multi-modal feature learning, feature disentanglement etc., with the pri-
mary goal of holistic video understanding. Recently, self-supervised learning has
gained prominence as an effective paradigm for representation learning in images
and videos, eliminating the need for additional label annotations. The objective of
this thesis is to thoroughly investigate various video modeling techniques, primarily
aimed at learning structured, robust, and efficient video representations within the
framework of self-supervised learning.

To focus on learning structured video representations, this work first addresses
the task of generic event boundary detection by revisiting a self-supervised method
and enhancing it by incorporating a differentiable motion estimation module to
capture the generic spatial and temporal diversities in the videos. Extensive exper-
iments on the Kinetics-GEBD and TAPOS datasets demonstrate the efficacy of the
proposed approach compared to the other self-supervised state-of-the-art methods.

In order to embed robustness into learned video representations, the thesis then
tackles the problem of video anomaly detection from the perspective of recognizing
out of distribution samples. A novel method is proposed to generate spatio-temporal
pseudo-anomalies by inpainting masked image regions with a pre-trained Latent Dif-
fusion Model and perturbing optical flow using mixup to simulate spatio-temporal
distortions. Additionally, a unified framework is introduced to detect real-world
anomalies under the one-class classification setting by learning three anomaly indica-
tors: reconstruction quality, temporal irregularity, and semantic inconsistency. Rig-
orous evaluations on Ped2, Avenue, ShanghaiTech, and UBnormal benchmarks high-
light the method’s effectiveness compared to existing state-of-the-art approaches.

To learn video representations efficiently, this research proposes a novel and gen-
eralizable Trajectory-Aware Adaptive Token Sampler (TATS) module that learns
to adaptively sample motion-centric tokens for masked autoencoder (MAE) pre-
training by modeling their motion trajectories in videos. Additionally, a unified
training recipe is also introduced that facilitates the joint optimization of both
MAE and TATS from scratch using Proximal Policy Optimization to ensure stable
convergence during pre-training even with aggressive masking. Comprehensive eval-
uation on benchmark datasets (Kinetics-400, Something-Something v2, UCF101,
HMDB51) for action recognition demonstrates the effectiveness, generalization, trans-
ferability, and efficiency of our work compared to the state-of-the-art methods.




Chapter 1

Introduction

1.1 Motivation

Recently, Computer Vision (CV) has witnessed a great deal of progress due to the
development of advanced Deep Learning (DL) based models, which are very effective
at extracting and learning meaningful representations from images or videos. DL has
achieved remarkable breakthroughs in traditionally challenging tasks such as image
classification ([He et al., 2016|, [Krizhevsky et al., 2012a]), and object detection
(|Girshick, 2015], [Ren et al., 2015a]). These techniques have also led to a great
breakthrough in video understanding tasks such as action anticipation [Miech et al.,
2019a, Abu Farha et al., 2018], temporal action detection [Chao et al., 2018, Gao
et al., 2017], temporal action segmentation [Lea et al., 2016a, Kuehne et al., 2014]
and temporal action parsing [Pirsiavash and Ramanan, 2014, Shao et al., 2020a].
The remarkable success of DL across various domains is largely dependent on
the availability of large-scale annotated datasets. However, acquiring annotations
is costly and labor-intensive, which poses an even greater challenge for video data.
Moreover, the use of human-generated annotations often leads to models with bi-
ased learning and poor domain generalization and robustness. As an alternative,
self-supervised learning (SSL) [Oord et al., 2018, Chen et al., 2020b, Dave et al.,
2022] provides a way for representation learning which does not require annota-

tions and has shown promise in both image and video domains. Unlike the image
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domain, learning video representations is more challenging due to the presence of
the extra temporal dimension and motion dynamics in the videos. However, these
challenges also provide opportunities for exploring novel research ideas to enhance
representation in the video domain.

The fundamental step in designing a DL pipeline for video understanding tasks
involves a vital step of video feature extraction referred to as wvideo representation
learning. To acquire more expressive, generalizable, and transferable representa-
tions, harnessing the potential of SSL for end-to-end video representation learning
has shown significant potential. SSL enables pre-training a single model to learn
foundational features, which can then be finetuned for various downstream tasks.
SSL also allows for designing pretext tasks to incorporate specific desired proper-
ties into the model while eliminating the need to learn separate models for different
tasks. There are various video-specific SSL pretext tasks that can be used including
temporal ordering [Fernando et al., 2017, Lee et al., 2017, Misra et al., 2016, Wei
et al., 2018, Wang et al., 2019a], future prediction [Vondrick et al., 2016, Mathieu
et al., 2016, Lotter et al., 2017, Vondrick et al., 2018, Diba et al., 2019], spatiotem-
poral contrast [Feichtenhofer et al., 2021, Han et al., 2019, Qian et al., 2021b, Sun
et al., 2019], temporal coherence [Goroshin et al., 2015, Wiskott and Sejnowski,
2002] object motion [Agrawal et al., 2015, Pathak et al., 2017, Wang and Gupta,
2015, Wang et al., 2019¢], and masked modeling [Tong et al., 2022, He et al., 2022a].

Though many challenging topics in video representation learning remain under-
explored, two are particularly important: (1) What makes a good video representa-
tion and (2) What properties should a video representation have? A desirable video

representation should have a number of characteristics. It should be:

e Structured video representation implies modeling spatial diversities, fine-grained
temporal coherency, long range temporal dependencies and learning motion

patterns in the video.

e Robustness in video representation indicates the ability to remain resistant

to spatio-temporal variations such as changes in lighting, background noise,
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and visual clutter, while maintaining strong focus on the important aspects

elements such as actions, motion patterns, and human—object interactions.

e Efficient (adaptive) video representation refers to the idea of learning only the

relevant information while discarding redundant content, using computation-
ally less expensive strategies by augmenting deep learning models for videos

with adaptive computation techniques.

e Disentangled video representation involves decomposing video representation
into semantically meaningful factors such as objects, entities, inter-object re-

lationships, contextual information etc.

e Causal video representations capture the cause and effect relationships within
the video and not just correlations or visual patterns. The goal is to understand

why certain events happen, rather than just recognizing what is happening.

These characteristics are essential for learning generic features that can generalize
effectively to unseen datasets. In this thesis, we focus on learning structured, robust,

and efficient representations in a self-supervised setting, as highlighted above.

Structured Video Representation Learning. Many widely studied tasks in
video understanding, such as temporal action detection [Chao et al., 2018, Gao
et al., 2017], temporal action segmentation [Lea et al., 2016a, Kuehne et al., 2014]
and temporal action parsing [Pirsiavash and Ramanan, 2014, Shao et al., 2020a,
are predominantly addressed using temporally local (processing short intervals of
time) techniques, which do not sufficiently capture the structure of the video. This
raises a fundamental question: Is there a canonical approach to summarizing a video
representation?. To put this in another way: Can we inherently learn a video’s
structure by capturing temporally granular (fine-grained) and temporally persistent
(global) features while leveraging motion patterns? The goal of structured video
representation learning is to develop novel DL models to address these issues. In

this thesis, generic event boundary detection (GEBD) [Shou et al., 2021, Kang et al.,
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2021b] is chosen as an appropriate downstream task for understanding this aspect
of video representations (this is further explained in Chapter 2 and Chapter 3).
Robust Video Representation Learning. Video representations must be re-
silient to spatio-temporal perturbations, such as lighting variations, background
noise, and clutter, while ensuring strong attentiveness to the relevant information
(action, motion patterns, human-object interaction) within the videos. To explore
robust video representation we investigate the problem of video anomaly detection
(VAD) [Ramachandra et al., 2020b] as detailed in Chapter 2 and Chapter 4. Learn-
ing a robust representation ensures that the model filters out irrelevant noise, such
as lighting variations and background clutter while remaining highly sensitive to
meaningful deviations caused by real-world anomalies (unusual object or activity in
the scene). VAD is an ideal downstream task for investigating solutions to this whilst
effectively generalising across different datasets and unseen real-world anomalies.
Efficient Video Representation Learning. Learning video representations effi-
ciently remains a significant challenge for DL models due to their heavy reliance on
large computational resources. While capturing spatio-temporal features in videos
can enhance generalization across various downstream video understanding tasks,
much of this information is highly redundant and needs to be filtered out while
preserving the relevant details, resulting in computationally efficient pre-training of
the DL model. To accomplish this, integrating adaptive computation [Veit and Be-
longie, 2018, Li et al., 2021a, Meng et al., 2020] with the SSL pre-training objective
proves to be highly effective. In order to learn efficient video representation, we
incorporate a learnable and adaptive token sampler module into the masked video

modeling (MVM) [Tong et al., 2022] objective as described in Chapter 5.

1.2 Hypotheses and Research Questions

As explained above, in this thesis we focus on learning structured, robust, and ef-
ficient representations in a self-supervised setting. Our four hypotheses revolve

around learning these characteristics of good video representations.
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Hypothesis 1 (H;): We hypothesize that a structure can be embedded into a
video representation by designing relevant self-supervised pretext tasks that can
model spatial diversities, fine-grained temporal coherency, long range temporal de-
pendencies and motion patterns in videos. The downstream task selected to evaluate
structured video representations is Generic Event Boundary Detection, GEBD (in
Chapter 2, 3), which aims to detect moments in videos that are naturally perceived
by humans as generic and taxonomy-free event boundaries. GEBD is well suited to
validate whether a structure has been encoded into a learned video representation
or not due to the generic nature of event boundaries. This leads us to research

questions R; and R,.

R : How can we leverage the power of SSL to capture spatio-temporal diversities

and relationships involved in videos?

R, : How can we develop an SSL framework for video understanding that ac-

counts for both appearance and motion features? Do we need an explicit motion-

specific training objective, or can this be implicitly achieved?

Hypothesis 2 (H): We hypothesize that robustness to spatio-temporal pertur-
bations can be instilled into the learned video representation by exposing the DL
models to near-distribution samples (samples lying on the periphery of the data
distribution) during the self-supervised pre-training step while maintaining their
sensitivity to real-world anomalies such as unusual object or activity in the scene.
We aim to examine the robustness attribute of video representation by exploring
the problem of video anomaly detection, VAD (Chapter 2,4) under the one-class
classification (OCC) setting. Here, the OCC setting refers to a scenario where the
training data consists of videos containing only normal instances, while the test data
includes both normal and anomalous instances. Also in the context of VAD, we refer
near-distribution samples as pseudo-anomalies (PAs). This provides the basis for

research questions R3 and Rj.
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Rj3 : Is it possible to synthetically generate generic PAs by introducing spatio-
temporal distortions into normal data in order to detect real-world anomalies

effectively? Furthermore, can such PAs transfer across multiple VAD datasets?

R4 : How can we design a VAD pipeline that aggregates different anomaly indi-

cators to create a unified anomaly scoring mechanism that effectively captures

spatial, temporal, and semantic inconsistencies?

It should be noted in this context that a robust representation does not mean
that the model ignores anomalies. Rather, learning a robust representation enables
a model to filter out irrelevant noise while maintaining high sensitivity to meaningful
deviations caused by real-world anomalies. Furthermore, it should generalize well
across different datasets and unseen anomalies.

Hypothesis 3 (Hs) : We hypothesize that integrating adaptive computation strate-
gies into the self-supervised training objective can facilitate the learning of more
transferable and generalizable video representations in a more efficient manner com-
pared to those learned with static computation. More specifically, adaptive com-
putation in this context refers to dynamic token sampling of the most informative
space-time tokens in videos, while the self-supervised objective is based on MVM.
To assess the quality of learned video representation, we choose the downstream task

of action recognition on benchmark datasets. This leads us to research questions R

and Rg.

Rs : How can we incorporate adaptive computation in a self-supervised pre-
training objective such as MVM to dynamically select informative space-time

tokens based on the given input?

Rg : Are representations learnt through dynamic computation (adaptive mask-
ing) as transferable to downstream tasks (action recognition) as the ones learnt

with static computation (random masking)?
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1.3 Structure of the Thesis

This thesis is structured as follows. Chapter 2 presents the technical background
necessary for understanding the research presented in the thesis and also provides a

high-level overview of related work.

Chapter 3 delves into the concept of learning structured video representations
within the self-supervised learning (SSL) framework. Specifically, we examine Hj
(R1, Ry), which suggests that designing effective self-supervised pretext tasks can
embed spatial diversity, fine-grained temporal coherence, long-range temporal de-
pendencies, and motion patterns into the learned model. To validate Hy, we propose
a self-supervised approach that integrates frame-level and clip-level pretext tasks,
along with a differentiable motion learning module, and assess its performance on the
GEBD task (Chapter 2). This chapter concludes by demonstrating that the struc-
tured representation learned by our self-supervised framework achieves comparable
performance to state-of-the-art methods on this challenging task. The proposed
motion-aware self-supervised approach achieves comparable performance to other
self-supervised state-of-the-art methods for generic event boundary detection while
being significantly simpler than prior methods in terms of architectural complexity

and it learns general motion features without explicit motion pretext tasks.

Chapter 4 explores how to incorporate robustness into learned video represen-
tations within a self-supervised setting. Specifically, this chapter investigate Hy
(R3, Ry), which presumes that robustness to spatio-temporal perturbations can be
achieved by exposing the model to near-distribution samples during SSL pre-training
while maintaining sensitivity to real-world anomalies. To validate Hy, we examine
the VAD task within the OCC setting. Using available normal data, we generate
PAs through generative models such as diffusion models [Rombach et al., 2022] or
by applying mixup augmentation [Zhang et al., 2018] to distort optical flow [Zach
et al., 2007], incorporating them into the VAD framework’s pre-training. The spa-
tial, temporal, and semantic information extracted from PAs further enables the

aggregation of multiple anomaly indicators, enhancing real-world video anomaly de-
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tection. Our model achieves competitive anomaly detection performance compared
to state-of-the-art reconstruction-based methods. The proposed approach achieves
comparable performance to state-of-the-art methods while avoiding strong inductive
biases and demonstrating transferability across multiple datasets.

Chapter 5 investigates efficient video representation learning. Specifically, we
investigate Hz (Rs5, Rg), which hypothesizes that integrating adaptive computation
strategies into the self-supervised training objective can facilitate the learning of
transferable and generalizable video representations more efficiently than static com-
putation methods. To assess Hg, we propose a Trajectory-Aware Adaptive Token
Sampler module that dynamically selects the most relevant motion-centric space-
time tokens for the self-supervised pre-training objective of MVM. The effectiveness
of the learned representation is evaluated through the downstream task of action
recognition on benchmark datasets. The proposed approach delivers effective and
generalizable action recognition across multiple benchmark datasets, outperforming
state-of-the-art masking methods while remaining memory-efficient.

Finally, Chapter 6 provides a summary of the research conducted in this the-
sis. The results and findings are discussed by relating them to the hypotheses and
research questions presented in this thesis. We conclude with some suggestions for

possible future work and some general remarks.




Chapter 2

Background

This Chapter provides the theoretical and technical background necessary for under-
standing the research discussed in the thesis. In particular, this Chapter introduces
fundamental terminologies and concepts in deep learning for computer vision, while
also explaining the technical details needed for understanding video representation
learning. Section 2.1 provides an overview of key concepts for representation learn-
ing in machine learning and deep learning. Section 2.2 and Section 2.3 discuss
various strategies for extracting video representations under the supervised and self-
supervised framework respectively. Section 2.5 outlines different downstream tasks
used in the thesis while Section 2.6 provides details about the datasets used for

experimentation and evaluation.

2.1 Background in Machine Learning

In this Section, we review fundamental concepts in ML and DL essential for under-

standing the research discussed in this thesis.

2.1.1 Swupervised Learning

Supervised machine learning involves training a system to automatically predict an
output given an input, based on a set of labeled examples. If the output value is

a continuous quantity then it is a regression problem, while if the output value is

10
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Object Recognition Object Detection

Deer

Semantic Segmentation Instance Segmentation

Figure 2.1: Examples of Supervised Learning Problems in Computer Vi-
sion - (Top-Left) Object Recognition: The task is to predict which object is present
in the input image. (Top Right) Object Detection: The task is to detect objects
by predicting the bounding box locations as well as the object categories. (Bottom
Left) Semantic Segmentation: The task involves predicting the pixel mask for each
detected object. (Bottom Right) Instance Segmentation: Extends semantic segmen-
tation by distinguishing between individual object instances within the same object
class.

discrete class label, then it is a classification problem. In this section, we focus on the
classification task however the explanations are easily transferable to the regression
task. Some of the supervised learning problems in computer vision are illustrated

in Figure 2.1.

Problem setup. x C X and y C ) are assumed to be the input and the output
of the supervised learning model, where X and ) represent the input and output
space respectively. For example, in the case of object recognition, x is an image and
y is the object category index whose values are ranging from 1 to C' where C' is the

number of classes.

The training set D = {(x;,y;)}iv; C X X YV is composed of N training samples.
The goal is to learn a mapping f C F that can correctly predict the label y given
the input x, where F represents the set of all functions. The predicted label y is
the output of the machine learning model f and is obtained using the following

equations:

11
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fx) =y (2.1)

y = argmax y* (2.2)

[

where y is a C-dimensional prediction vector which can be used to obtain a proba-
bility distribution over the set of possible classes such that ¢,y = 1 and y© > 0
Ve = 1...C. The value y© corresponds to the probability that the input x belongs
to the c-th category. The ML model or the mapping function f is learned using
the training examples from D with the underlying goal of generalizing to unseen

examples.

Neural Network. We restrict the mapping function or the machine learning model
f to feedforward neural networks since all the approaches proposed in this thesis
belong to this category. Neural networks are composed of many different functions
or layers, where each layer is itself a neural network. The term feedfoward means
that the information flows strictly in a forward direction from the input to the
output, such as shown in Figure 2.2. The mapping function f is composed of n

layers and is parameterized such that:

Fx) = fox) = fo.(Jou s (- Jo (- So, (x).)..) (2:3)

hi. = fo,(hr—1) (2.4)

where 6 = {01,605, ...,0,,} € O is the set of trainable parameters of f, © is the param-
eters space and f, is the k-th layer whose input, output and trainable parameters are
given by hyp_1, hy, 0, respectively. Since f is parametrized by the trainable param-
eters 6, we use fy for denoting the mapping function. In other words, a feedfoward

neural network fp can also be seen as acyclic directed graph as shown in Figure 2.2.

Optimization. In order to learn the function fy a loss function £ : )Y x Y — R*

12
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Forward Flow of Information

Backpropagation of Errors

Figure 2.2: Feedforward Neural Network. A mapping function f is a feedfor-
ward neural network that can be composed of n layers or functions. The green node
corresponds to the input while the orange node is the output. The information flows
feedforward (from left to right) for producing an output given an input. And the
system is trained by backpropagating the error in a backwards manner (from right
to left).

is defined on data points corresponding to the cost of predicting y when the label
is actually y. Most commonly used loss function in the classification task is the

cross-entropy loss [Le Cun et al., 1997] given by:

Lcp(y,y) Zyclogy (2.5)

where y is a one-hot vector representation of the groundtruth class such that y €
{0,1}¢ and chzl y¢ =1

In order to learn the most optimal fy, we follow the principle of Empirical Risk
Minimization (ERM) where the risk is defined as the expectation of the loss function
L. Since we do not know the joint distribution of the data points we cannot compute
the true risk. Instead, we minimize the empirical risk by averaging the output of the
loss function £ on the training set D. Hence, the optimization problem for obtaining

the set of most optimal parameters 6* is of the general form:

= Y L(fex),y) +R(0) (2.6)
(x,y)€D
0" = argmin J(0) (2.7)
9o

where J is the objective function composed of the loss function £ and R is a regular-

ization term. This optimization problem is a non-convex optimization problem due

13
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to the presence of non-linear functions in fy. In practice, Stochastic Gradient De-
scent (SGD) and the backpropagation rule is availed for estimating the parameters
as described below.

Stochastic Gradient Descent. The standard approach to minimizing an objec-
tive function J over a training set D in the context of neural networks is to use
stochastic gradient descent (SGD). This requires that the model fy be differentiable
with respect to all parameters in 6. Basically the method involves computing the

gradient of the objective function ag{g&) on the training set D and updating the

parameters in the opposite direction of the gradient.

However, computing the exact gradient of the objective function can be com-
putationally expensive when the training set is large. To address this, a common
approach is to use a variant known as mini-batch stochastic gradient descent (SGD).

ENAC)

This method replaces the true gradient with an estimate =5~ computed over a mini-

batch S, which is a subset of examples randomly sampled from the full training set

D such that:
07(0) _0J0) o1
RS 2.
o0 90 20 | |S] > Lifo(x).y) + R(O) (28)
(x,y)ES
Initialization
X \ } Incremental Step
L(0)

Local Minima

Optimal Solution

¢

Figure 2.3: Illustration of the optimization process of the gradient descent method.
The optimization can get stuck in a local minimum as it is dependent on the initial-
ization.

14
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07 (6)

0J(0)
i the

To ensure that 56>

is a good approximation of the true gradient
mini-batch & must be representative of the full training set D. This can be achieved
by selecting a sufficiently large number of training examples in §. The parameters
are then updated in the direction opposite to the estimated gradient according to
the following equation:

07 (0)

where 7 is the learning rate.

Mini-batch SGD is an iterative process that begins with random initialization of
the trainable parameters in #. An epoch consists of a complete pass over all mini-
batches. The training process is repeated across multiple epochs until convergence is
achieved on the training set. Both the learning rate n and the initialization values of
the parameters are crucial for the training procedure. If the learning rate is too small,
training can be slow and may get stuck in local minima due to poor initialization.
On the other hand, if the learning rate is too large, the optimization may fail to
converge. Figure 2.3 illustrates an example of the iterative nature of the gradient
descent algorithm. To ensure generalization on the unseen data, a validation set is
often used to monitor progress. The training process stops when the performance

metric computed on the validation set no longer improves or reaches a plateau.

Backpropagation. Training the machine learning model fy using mini-batch SGD

87 (0)
o0

involves calculating the gradient as shown in Equation 2.9. However, comput-

g ILUe(%).y)

ing 55>, which is a part of the overall gradient, can become computationally

expensive as fy grows deeper. One approach to address this challenge is to apply

the chain rule and compute the gradient layer by layer, as follows:

mewzmﬁ?m<gfm)% (2.10)

00, kﬁwlﬁ

This principle is known as the backpropagation rule and consists of an iterative

backward propagation of errors from the last layer such as shown in Figure 2.2.
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Figure 2.4: Depiction of a convolution operation on grid-like structure (could also
be thought of as image pixels). Figure from [Dumoulin and Visin, 2016]

Convolutional Neural Networks (CNN). Convolutional layers [LeCun, 1998|
are a fundamental part of CNN models. They involve applying a convolutional
operation using learnable spatial kernels on the input. The input h;_; and output

k—1 k—1 k

hy are feature maps of dimension m{™' x m5s™* x ms~' and mF K

Yxomb x omk. A
conventional layer consists of a bank of m?} filters and each filter detects a particular
spatial feature at every location. The i-th output feature map denoted by hf is

given by:

m’f_l
L =B+ ) Kfxhi (2.11)
j=1

where * is the convolution operator, BY is a learnable bias matrix and Kfj is the
learnable spatial kernel filter of connecting the j-th feature map of hy_; with i-th
feature map of hj. The success of the convolutional layer is largely due to the
weight sharing strategy, where each filter is applied to the entire input, reducing
the number of parameters and making the model more computationally efficient.
Figure 2.4 illustrates the application of the convolutional operator to a grid-like

structure, such as image pixels.

Pooling Layers. Pooling layers involves downsampling the information from the

feature maps. It can be applied at any stage k of the neural network using a mean

or max operator, given a spatial kernel size F'* and a stride S*. The pooling layer
k—1

takes as input a feature map of dimension mj;™" X m’;l X mlg’l produces a feature

map of size my x m5 x m% with the following equation:
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mb = mh~! (2.12)
mh = (mh=t — F*)/S% 11 (2.13)
m = (mi=t — F*)/S% 41 (2.14)

It is commonly used following a convolutional layer to decrease the spatial di-
mensions of a feature map.
Activation Functions. Activation functions (denoted by o) introduce non-
linearity into a neural network. Given an activation function o, the output at stage

k of the neural network is given by:

hk = O‘(hk_l) (215)

Empirical evidences have demonstrated that incorporating activation function
helps modeling function through neural network. In practice, the Rectified Lin-
ear Unit (ReLU) operation [LeCun et al., 1989] is a common nonlinear activation
function used in modern architecture.

Fully Connected Layers. are an extension of the Perceptron [Rosenblatt, 1957].
This layer applies a linear transformation on the input a vector h;_; of dimension

k

m*~1 for producing an output vector hy;, of dimension m* as shown below:

hy, = Wihy_1 + by (2.16)

where Wj is a matrix and by is a bias parameter. Stacking together multiple fully
connected layers is known as multi-layer perceptron. Fully connected layers are
usually followed by activation functions.

Recurrent Neural Network. There are other types of neural network layers pro-

posed for tackling sequential data such as Recurrent Neural Network (RNN) [Jordan,

17
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1990] and Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997].
For such layers, the input data x = (xy, ..., X, ..., X7) is a sequence composed of T’
elements. RNNs use a hidden state vector, denoted by h, which is recursively up-
dated at each timestep based on the current input. The output v is then predicted

from this hidden state.

hy = o, (Wrxy + Uphi—1 + by) (2.17)

Uy = O'y(Wyht + by) (218)

where o), and o, are activation functions, and W}, W,,, U, are weight matrices, while

by, and b, are bias terms.

RNNs [Bengio et al., 1994] suffer from the vanishing and exploding gradient
problem especially when dealing with long sequences. This is due to the explosion
(or vanishing) of the product of derivatives during the computation of the gradient
using the backpropagation through time. A common solution is to use LSTMs, which
employ a gating mechanism. This mechanism allows the gradient to backpropagate
more easily, essentially by smoothing out the update of the hidden vector h at
each timestep by using activation functions. An alternative is the Gated Recurrent
Unit (GRU), which simplifies the LSTM’s gating structure while retaining similar

benefits.

Multi-head Self Attention (MHSA) layers. Recently Transformers [Vaswani
et al., 2017] have emerged as the core component of most of the modern DL archi-

tectures. The self-attention mechanism is fundamental unit of Transformers.

The self-attention mechanism relies on a trainable associative memory composed
of (key, value) vector pairs. A query vector ¢ € R? is matched against a set of k key
vectors, which are organized into a matrix K € R¥*?, using inner products. These
inner products are then scaled and passed through a softmax function to produce

k attention weights. The final attention output is computed as a weighted sum of
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Figure 2.5: An image is divided into fixed-size patches, each of which is linearly
projected. Positional embeddings are then added to these embeddings, and the
resulting sequence of vectors is passed through a standard Transformer encoder. In
order to perform classification, the standard approach of adding an extra learnable
“classification token” to the sequence is followed. Figure from [Dosovitskiy et al.,
2020].

k value vectors, packed into a matrix V € R¥*¢, When applied to a sequence of
N query vectors (stacked in a matrix Q € R¥*?) the mechanism yields an output

matrix of dimensions N x d as shown below.

Attention(Q, K, V) = Softmax(QK™ /v d)V, (2.19)

where the softmax function is applied over each row of the input matrix and the
d term provides appropriate normalization. Query, key and values matrices are
themselves computed from a sequence of N input vectors (packed into X € RV*P):
Q =XWq, K = XWg,V = XWy, using linear transformations Wy, Wg, Wy with

the constraint £ = N i.e. the self-attention is in between all the input vectors.

Finally, MHSA is defined by considering h attention heads, i.e. h self-attention
functions applied to the input. Each head provides a sequence of size N x d. These
h sequences are rearranged into a N X dh sequence that is reprojected by a linear

layer into N x D.
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Vision Transformer. Vision Transformer (ViT) [Dosovitskiy et al., 2020] modifies
the original Transformer architecture [Vaswani et al., 2017] to handle 2D image
data with minimal adjustments. Specifically ViT divides an input image into N
non-overlapping patches, x; € R"™% (where h is the height and w is the width of
the patch) and then applies a linear projection to each patch, and subsequently
flattens them into 1D token embeddings z; € RY. These tokens are then arranged
into a sequence that serves as the input to the Transformer encoder as given by the

following equation:

2 = |zus, Exq, Exa, ..., Exy| + P, (2.20)

where the projection by E is equivalent to a 2D convolution. As shown in Figure
2.5, a learned classification token z., is prepended to this sequence, and its repre-
sentation at the final layer of the encoder serves as the final representation used by
the classification layer [Kenton and Toutanova, 2019].

Additionally, a learned positional embedding, p € RV*9, is added to the tokens
to retain positional information, as the subsequent self attention operations in the
transformer are permutation invariant. The tokens are then passed through an
encoder consisting of a sequence of L transformer layers. Each layer comprises of
MHSA [Vaswani et al., 2017], layer normalisation (LN) [Ba, 2016], and MLP blocks

as follows:

y' = MHSA(LN(z")) + 2’ (2.21)

7z = MLP(LN(y')) +y' (2.22)

MLP consists of two linear projections separated by a GELU (Gaussian Error
Linear Unit) non-linearity [Hendrycks and Gimpel, 2016] and the token-dimensionality,
d, remains fixed throughout all layers. Finally, a linear classifier is employed to clas-

sify the encoded input, using either the token z% € R? (if it was prepended to the

cls
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input) or the global average pooling of all the tokens z’.

2.1.2 Unsupervised Learning

Unsupervised learning involves extracting meaningful data representations without
relying on manual annotations. We review various unsupervised approaches, along
with an introduction to recent advancements in self-supervised learning techniques.
Problem setup. In case of unsupervised learning, the training set D = {x;}¥, C
X is composed of N training samples, where X C RP is a high-dimensional space of
dimensionality p. The objective of unsupervised learning is learn a machine learning
model or function f that maps an input to a representation z in a lower-dimensional
space Z C R* where k is the dimensionality of the lower-dimensional space and
k < p. In the Z, the inputs with similar semantic meanings lie close to each other.
Through unsupervised learning the underlying structure of X can be inferred.
Pretraining.  Pretraining refers to the process of learning a representation Z
in an unsupervised manner, with the goal that this learned representation will be
beneficial for solving downstream tasks where only a limited number of annotated
examples are available.
Clustering Methods. A standard approach to handling unannotated data in-
volves employing clustering methods [Jolliffe, 2005, Likas et al., 2003, McLachlan
and Krishnan, 2008], which aim to group similar entities together. The goal of clus-
tering is to learn useful data representations for subsequent processing. Here we
review a traditional clustering technique known as K-means.

An important design choice of a clustering method is the distance function.
Typically Fuclidean distance is the most commonly availed distance function as

given below:

p

d(xi, %) = | Y (xi — X;)? (2.23)

Jj=1

The K-means algorithm [Likas et al., 2003] applies vector quantization by assign-
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ing each data point to a specific cluster among K clusters. The goal is to assign each
data point to a cluster, among K clusters, which involves to learn the cluster cen-
troids u for k in 1...K. The resulting representation z is subject to the constraint
2z, € {0,1} and Zle 2, = 1, ensuring a one-hot encoding of the cluster assignment
of each data point. The loss function £ consists of computing the distance between

a data point x and its assigned centroid such as:

L(x,p) = zrd(x, i) (2.24)

where p = {1, ..., i } is the set of cluster centroids. The objective function J to

be optimized is defined as followed:

T () = L(x, ) (2.25)

xeD

" = argmin J(0) (2.26)
pell

where IT = {p1,...,ux}. At the start of optimization, the cluster centroids
are randomly initialized. The optimization process consists of two steps that are
repeated until convergence of the algorithm. First, each data point is assigned to
its nearest cluster centroid. Second, each cluster centroid is updated by averaging
vectors assigned to the cluster.

The output representation z produced by the K-means algorithm is quite lim-
ited in its expressiveness, as it is represented by a one-hot vector. This output
representation is the only part learned during optimization, since the computation
of cluster centroids is solely determined by z. Furthermore, the absence of any in-
termediate representations can result in the loss of fine-grained information, critical
for visual data. More advanced clustering techniques such as Gaussian Mixture
Models [Reynolds, 2009] and spectral clustering [von Luxburg, 2007] have also been
proposed. However they also do not fully resolve this limitation since they require

low-dimensional input representations to function effectively.
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2.1.3 Self-supervised Learning

Recently SSL, a paradigm within unsupervised learning, has gained significant atten-
tion due to its competitive performance relative to supervised models, particularly
across a range of video understanding tasks. SSL exploits the underlying structure
of the data, instead of relying on a manual supervisory signal (labelled training
data) as used in supervised learning. SSL enables DL models to learn rich and gen-
eralizable representations by solving pretext tasks derived from unlabeled data. An
example of self-supervised learning is Autoencoders, where the pretext task involves
reconstructing the input.
Autoencoder. An autoencoder [Hinton and Zemel, 1993] is a type of feedforward
neural network trained in an self-supervised manner to learn compact representa-
tions of input data. The model aims to encode an input x into a latent representation
z that captures the most salient features, and then reconstruct the original input
from this latent representation. To ensure that the model learns meaningful com-
pression rather than simply memorizing the input, the dimensionality of the latent
space is constrained in order to avoid convergence to a trivial identity function.
Autoencoder comprises of two networks, an encoder and a decoder. The encoder
f compresses the input x into a low-dimensional vector representation z (the com-
pressed or latent representation). The decoder g takes as input z and reconstructs

the input x such that:

z = fo(x) (2.27)

% = g,(2) (2.28)

where 6, ¢ are the learnable parameters of the encoder and the decoder respectively.
The dimensionality of the latent representation z is usually smaller than the input x
however z should be trained to be a compressed representative of x. The loss function

L for training the Autoencoder consists of estimating the following reconstruction
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error between the input x and the reconstruction X:

L(x) = Z l|%; — %] (2.29)

The loss function is optimized using SGD as explained in Section 2.1.1.

Several variants of autoencoder have been proposed to enhance their expressiv-
ity. [Vincent et al., 2008a] introduced the denoising autoencoder, a variant designed
to learn robust representations by corrupting a portion of the input x and training
the model to reconstruct the original uncorrupted input. This encourages the net-
work to extract more meaningful and generalizable features. Similarly, contractive
autoencoder [Rifai et al., 2011] was proposed to inject robustness against small per-
turbations in the input by introducing a regularization term R that enforces strong
constraints on the model parameters. [Ng et al., 2011] aims to encourage sparsity in
the learned latent representations by minimizing the number of active units, lever-
aging the Kullback—Leibler (KL) divergence as a sparsity penalty. [Kingma, 2014]
extends the autoencoder framework into a generative model by adopting a varia-
tional approach. They incorporate strong assumptions on the latent variables z by
using a variational approach such that the latent variable should follow a prior dis-
tribution. This encourages independence of the values of the latent representation
and also leads to the learning of semantically meaningful representations.
Pre-training. [Vincent et al., 2010] demonstrate that using autoencoders for self-
supervised pretraining can enhance performance on downstream tasks. Specifically,
they initialize the parameters of the supervised model with those learned by the
encoder during the self-supervised phase. This two-stage training strategy, where
the model is first pretrained and then fine-tuned for the target task, yields improved
results compared to training from randomly initialized weights.

Building on the idea of self-supervised pretraining, [Kenton and Toutanova, 2019
introduced BERT (Bidirectional Encoder Representations from Transformers) in
the domain of Natural Language Processing (NLP). BERT can be interpreted as a

form of denoising autoencoder [Vincent et al., 2008a]. During pretraining, a fixed
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proportion (e.g., 15%) of tokens in the input sentence is masked, and the autoencoder
is trained to predict the missing words based on the surrounding context. This large-
scale pretraining on unannotated text corpora proves highly effective for a variety

of downstream NLP tasks including sentiment analysis and text summarization.
Downstream task

1

1

1

1 Model Dowlnstryeam
1 Objective
1

1

Labeled Dataset 4

Figure 2.6: This figure illustrates the application of self-supervised pretraining to a
downstream task. The process begins with pretraining a model on a large unlabeled
dataset using a self-supervised objective. The resulting pretrained weights are then
transferred to a model that is fine-tuned on a smaller, labeled dataset specific to the
downstream task. Figure from [Schiappa et al., 2023].

Self-supervised Learning in Vision. In computer vision, several works in self-
supervised learning ([Gidaris et al., 2018, Caron et al., 2018, Novotny et al., 2018])
have been proposed utilizing different pretraining strategies in order to train the
encoder. Figure 2.6 illustrates the typical pretraining and finetuning pipeline used
in self-supervised learning.

[Gidaris et al., 2018] propose a self-supervised approach where a CNN is trained
to predict the rotation angle randomly applied to an input image. Despite its sim-
plicity this pretext task effectively captures low-and mid-level visual features and
performs comparable to supervised learning on large-scale labeled datasets such as
ImageNet [Krizhevsky et al., 2012b]. [Caron et al., 2018] extend clustering-based
methods to an end-to-end training paradigm by jointly learning CNN parameters
and cluster assignments of the extracted features, using K-means clustering and
vector quantization as supervisory signals. [Oord et al., 2018] propose to predict
the future in latent space in an autoregressive manner by using a probabilistic con-
trastive loss. This ensures that semantic information is captured and is useful to
predict the future. Following a similar strategy, [Hjelm et al., 2018] introduce Deep-

InfoMax that consists of maximizing the mutual information between the input and
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the output of the neural network.
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Figure 2.7: During the pretraining phase, a substantial portion of image patches
(typically 75%) are randomly masked. The encoder operates only on the remaining
visible patches. Following the encoder, learnable mask tokens are introduced and
combined with the encoded visible representations. This combined sequence is then
processed by a lightweight decoder tasked with reconstructing the original image in
pixel space. Once pretraining is complete, the decoder is discarded, and the encoder
is used independently on full, unmasked images for downstream recognition tasks.
Figure from [He et al., 2022a]

Masked Autoencoders. Masked Autoencoder (MAE) [He et al., 2022a] per-
forms the masking and reconstruction task with an asymmetric encoder-decoder

R3*H*W it is first divided into regular

architecture. Given an input image [ €
non-overlapping patches of size 16 x 16, and each patch is represented with token
embedding. A subset of tokens are then randomly masked with a high masking ratio
(75%), and only the remaining ones are fed into the transformer encoder ¢e,.. Fi-
nally, a shallow decoder ¢g.. is placed on top of the visible tokens from the encoder
and learnable mask tokens to reconstruct the image. The loss function is mean

squared error (MSE) loss between the normalized masked tokens and reconstructed

ones in the pixel space:
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Figure 2.8: VideoMAE extends the masked autoencoding framework to video by
adopting an asymmetric encoder-decoder architecture, where spatiotemporal cubes
are randomly masked and subsequently reconstructed. To better leverage the high
redundancy and temporal coherence inherent in video data, the model employs a
tailored tube masking strategy with an exceptionally high masking ratio (ranging
from 90% to 95%). This design introduces a more challenging pretraining task,
thereby encouraging the model to learn more informative and robust spatiotemporal
representations. Figure from [Tong et al., 2022].

where p is the token index, 2 is the set of masked tokens, I is the input image,
and I is the reconstructed one. Figure 2.7 illustrates the pre-training strategy of
MAE. Video Masked Autoencoders (VideoMAE) [Tong et al., 2022] (Figure 2.8) and
Spatio-temporal MAE [Feichtenhofer et al., 2022] extended MAEs for video data by
proposing tubelet and random space-time masking strategies.

Contrastive Learning. Another popular self-supervised learning framework is
contrastive learning. Contrastive learning approaches minimize the distance be-
tween positive samples while maximizing the distance between negative samples in
the joint embedding space. For vision tasks, the positives could, e.g., be random
transformations of the same image (also referred as the anchor image), while the
negatives are any other images. The idea of contrastive learning is not new, it can
be traced back to [Chopra et al., 2005, which presented one of the earliest training
objectives for deep metric learning in a contrastive fashion. However, it has been
popularized recently by [Wu et al., 2018] and [Oord et al., 2018].

The loss function used in contrastive learning is derived from Noise Contrastive
Estimation (NCE) [Gutmann and Hyvérinen, 2010] and its variations. The idea is
to use logistic regression to discriminate the target data from noise (as the negative
samples). Let x be the target sample ~ P(x|C' = 1;0) = pp(x) and X ~ P(x|C =

0) = ¢(x) be the noise sample. Note that the logistic regression models the logit
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(i.e. log-odds) and in this case, the goal is to model the logit of a sample u from

the target data distribution instead of the noise distribution:

pe(u)

q(u)

After converting logits (u = fy(x)) into probabilities with sigmoid o(.), the

lo(u) = log = logpp(u) — logg(u), (2.31)

binary cross entropy loss can be applied:

Lxon = —% Nlogor(lo(x:)) + log(1 — o (la(:)))], (2.32)

1 I )
1+exp(—I) Po+q°

where o(l) = In the above, the loss is applied for a single negative
sample, but it can be easily extended to multiple negative samples. Based on NCE,
InfoNCE uses categorical cross-entropy loss to identify the positive sample among
a set of unrelated noise samples [Chen et al., 2020b]. InfoNCE is defined for 2n
instances of images from a given n instances in a batch B = [ #(x1), t(X2), ....t(Xn)] ,

where t ~ T is a set of random transformation samples from the set of transforma-

tions 7.

exp(sim(r;, rj))
320 W1 exp(sim(r, rm))

Lnce(xij) = —log (2.33)

X4.Xj

= Tl which is also referred to as cosine similarity and r; =
i J

where sim(x;, X;)
9s(fo(xi)) and g4 refers to MLP projection head.

Multimodal Contrastive Learning CLIP (Contrastive Language-Image Pre-
training) [Radford et al., 2021], developed by OpenAl, is a vision-language pretrain-
ing framework that aligns visual and textual modalities within a shared embedding
space. It achieves this by jointly training a visual encoder and a text encoder using a
contrastive objective, encouraging corresponding image-text pairs to map closely to-
gether while pulling apart unrelated pairs. CLIP integrates a vision encoder model
with a language encoder model. The visual component can be based on either

ResNet [He et al., 2016] or Vision Transformer [Dosovitskiy et al., 2020], while the

language encoder is rooted in a transformer-based model like BERT [Kenton and
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Toutanova, 2019]. CLIP receives a batch of images and their corresponding text
descriptions as input in each iteration. Following the encoding process, the embed-
dings are normalized and mapped to a joint image-text latent space. That is, the
input images and texts are encoded into I € RY*P and T € RV*P | respectively,
where N denotes batch size and D represents embedding dimensionality.
Contrastive pre-training plays a crucial role in aligning image-text pairs. Di-
verging from conventional models that are sculpted for a singular and predefined
task, CLIP’s optimization revolves around contrastive pre-training between paired
image-text information. In particular, N2 image-text pairs can be constructed given
a batch size of N, among which there are N matched image-text pairs and (N?— N)
unmatched image text pairs (negative pairs). The pre-training objective for the im-

age encoder is hence denoted as:

exp(o(1;, T;)/T)
Lime = Zl BEN exp(0(L,. T5)/7) (2:34)

where ¢(.,.) indicates cosine similarity, 7 is a learnable temperature parameter, I;

and T; represent the iy, image embedding and text embedding, respectively. The

objective for the text encoder is defined symmetrically:

exp(¢(Ti, 1) /7)
Foe Zl S5, e (o(Ti )/7) 2

The total optimization objective of CLIP is hence calculated via the average of

equation 2.34 and 2.35:

'Cimg + ‘Ctxt

. (2.36)

'Ctotal -

Since CLIP is pre-trained to predict whether an image matches a textual descrip-
tion, it naturally lends itself to zero-shot recognition. This process is accomplished
by comparing image embeddings with text embeddings, which correspond to tex-
tual descriptions specifying certain classes of interest. Let [ represent the image

features extracted by the image encoder for a given image z, and let {W}X, be
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Figure 2.9: CLIP is trained by jointly optimizing an image encoder and a text
encoder to correctly associate image-text pairs within each training batch. During
inference, the pretrained text encoder enables zero-shot classification by encoding
textual descriptions or class names from a target dataset, which are then compared

to image embeddings to perform classification without additional fine-tuning. Figure
from [Radford et al., 2021].

the set of class embeddings generated by the text encoder. Here, K denotes the
number of classes, and each W is derived from a text prompt resembling “a photo
of a [CLASS]”, where the class token is substituted with the specific class name.

The probability of prediction is then calculated as follows:

exp(p(L, W;)/7)
Y exp(o(1, W)/ )

ply =i/I) = (2.37)

where 7 is a temperature parameter learned during pre-training, and ¢(.,.) repre-
sents the cosine similarity. In contrast with traditional classifier learning methods
where closed-set visual concepts are learned from scratch, CLIP pre-training allows
for the exploration of open-set visual concepts through the text encoder. This leads
to a broader semantic space and, consequently, makes the learned representations
more transferable to downstream tasks. The overall architecture is shown in Figure

2.9.

2.2 Supervised Models for Video Understanding

In this section, we provide a brief overview of popular supervised learning models

widely used for video understanding tasks.
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2.2.1 Convolutional Networks for Video Understanding

Two-Stream Convolutional Networks. [Simonyan and Zisserman, 2014] intro-
duced the first two-stream architecture (Figure 2.10) for video-based action recogni-
tion, leveraging separate spatial and temporal pathways to extract complementary
static and dynamic information. The spatial stream focuses on still frames, cap-
turing appearance-related features such as objects and scenes as many actions are
closely tied to specific objects and environments. However, for actions where ap-
pearance alone is insufficient, such as those involving objects interacting in multiple
ways, the temporal stream plays a crucial role. By capturing motion patterns, it

helps to resolve ambiguities and enhances the model’s overall performance.
Spatial stream ConvNet

-
convl (| conv2 || conv3 || conv4 || conv5 || fulle fullz
7X7x96 |[5x5x256 || 3x3x512 |[3x3x512 || 3x3x512 || 4096 2048
- stride 2 || stride 2 || stride 1 || stride 1 || stride 1 ([ dropout || dropout
L norm. norm. pool 2x2

single frame pool 2x2 || pool 2x2

Temporal stream ConvNet
‘ convl || conv2 || conv3 || conv4 || conv5 fullé fullz
7X7x96 |[5x5x256 || 3x3x512 |[3x3x512 || 3x3x512 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

- norm. ||pool 2x2 pool 2x2
multi-frame pool 2x2

optical flow

Figure 2.10: Two-Stream architecture for action recognition in video. Figure from
[Simonyan and Zisserman, 2014].

During training, the spatial stream receives a single randomly sampled frame
from the video, while the temporal stream receives a randomly sampled sequence
of consecutive optical flow frames, capturing both horizontal and vertical motion
components. Each stream is trained independently. During inference, the softmax
outputs from the two CNNs are combined using the late fusion strategy to determine
the action class. Two fusion strategies have been explored, one involves averaging
the classification scores from both streams, and the other employs a multi-class
SVM [Crammer and Singer, 2001] trained on the softmax outputs as feature vectors,
with the latter showing superior performance in experiments.

The spatial network is initially pre-trained on the ImageNet dataset [Deng et al.,
2009]. To fine-tune the temporal CNN on the relatively small UCF101 [Soomro et al.,

2012] and HMDB51 [Kuehne et al., 2011] datasets, the authors employ a multi-task
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learning approach, training the temporal stream on both datasets simultaneously.
This strategy effectively increases the amount of training data, helping to mitigate
overfitting.

Convolutional Two-Stream Network Fusion. Late fusion combines informa-
tion from two separate CNN streams. Since the CNNs are trained independently and
fusion occurs only at the classification stage, traditional two-stream architectures us-
ing this approach are unable to capture pixel-level correspondences between spatial
and temporal features. To overcome this limitation, [Feichtenhofer et al., 2016]
proposed a two-stream network, building on the architecture of [Simonyan and Zis-
serman, 2014] in which the spatial and temporal streams are integrated using a 3D
convolutional layer. This allows the model to learn discriminative spatio-temporal

features for the actions.

Loss
fusion
Loss f{‘!' ‘\
fc8 C
fc7 fc7 fc8
fc6 fc6 fc7
pool5 pool5 fc6
conv5 fusion pool5
fusion 4 A 4
/ '\ convs convs
conv4 convd conv4 conv4
conv3 conv3 conv3 conv3
pool2 pool2 pool2 pool2
conv2 conv2 conv2 conv2
pooll pooll pooll pooll
convl convl convl convl

g ¢ B B

Figure 2.11: The spatial and temporal streams are fused using two different strate-
gies. On the left, both streams are merged into a single CNN after the fourth
convolutional layer. On the right, the spatial stream is integrated into the temporal
stream after the fifth convolutional layer. In this configuration, the spatial CNN is

preserved and later fused with the resulting spatio-temporal hybrid network. Figure
from [Feichtenhofer et al., 2016].

Two different approaches were explored for fusing the spatial and temporal

streams, as shown in Figure 2.11. First approach involves combining the spatial and
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temporal streams into a single CNN after a certain convolutional layer (as shown
in the figure on the left), which helps to reduce the overall number of parameters.
Second, a dual branch architecture can be adopted. In this design, the spatial and
temporal streams are processed separately through CNN layers and fused only after
the fully connected layers as shown in Figure 2.11 on the left. In order to fuse the
feature maps, 3D convolution is applied followed by a 3D pooling layer enabling the
model to learn spatio-temporal relationships. Learning spatio-temporal relation-
ships between the two streams is highly effective. On both UCF101 [Soomro et al.,
2012] and HMDB51 [Kuehne et al., 2011}, the convolutional two-stream fusion archi-
tecture outperforms other CNN-based approaches, especially those using different

two-stream designs, as well as LSTM and fully 3D convolution-based models.

Temporal Modeling with 2D CNNs. [Wang et al., 2016] introduced Temporal
Segment Networks (TSN), an efficient framework for capturing long-range video dy-
namics. Based on the observation that consecutive frames are often redundant, TSN
sparsely samples frames across the video. It divides the video into n equal segments
and randomly selects one frame from each segment. These sampled frames are pro-
cessed individually by a frame-based CNN, and their predictions are combined using
a consensus function. This approach effectively models long-term action dynamics

while maintaining low computational cost.

TSN adopts the Inception network with Batch Normalization [Ioffe, 2015] as the
backbone, employing a two-stream architecture with late fusion. During testing,
scores from 25 uniformly sampled RGB frames and optical flow stacks are combined
using a weighted average, with higher weight assigned to the spatial stream based
on empirical results. Motion is encoded not only through optical flow but also via
two additional modalities: RGB difference and warped optical flow. RGB difference
captures pixel-wise changes between consecutive frames, providing a simple motion
representation, while warped optical flow reduces camera motion to better isolate

actual action dynamics. This approach achieved state-of-the-art performance on

UCF101 [Soomro et al., 2012] and HMDB51 [Kuehne et al., 2011] outperforming
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[Simonyan and Zisserman, 2014] on HMDB51 and UCF101, showing the efficacy of

the employed sparse sampling and training techniques.

Temporal Relation Network. Temporal relation reasoning involves understand-
ing how an entity (object or person) changes over time. [Zhou et al., 2018 noted
that in many widely used datasets, such as UCF101 [Soomro et al., 2012], actions
can often be recognized without explicit temporal reasoning. RGB inputs alone are
typically sufficient for state-of-the-art models to perform well on such datasets. This
is the case when actions are strongly characterised by the appearance of the involved
objects and actors, or by the motion patterns. However, for actions that depend on
temporal transformations or interactions between entities, conventional recognition

methods struggle to capture the underlying dynamics effectively.

Motivated by this, [Zhou et al., 2018] proposed Temporal Relation Network
(TRN). TRN was inspired by [Santoro et al., 2017], which proposed a module to learn
the spatial relationship of objects in static images. TRN is effectively simple: a multi
layer perceptron (MLP) 6 is employed to model the relation between temporally
ordered pairs of frame. More precisely, 6 receives the frames’ features produced
by a given CNN. Another MLP ¢ operates on the output produced by 6 on all
the combinations of temporally ordered pairs of frames. The two MLPs are then
extended to work on ordered tuples of n frames. This amounts to encoding the
relationship between a sequence of frames at multiple temporal scales. The output
of ¢ is used to predict the action. During training, n random ordered frames are
sampled, while during testing frames are uniformly sampled throughout the video.
The whole network with the TRN module is optimised with a standard cross-entropy

loss.

The TRN module is integrated with the Inception network using Batch Nor-
malization [loffe, 2015] and evaluated on the Something-Something [Goyal et al.,
2017], 20BN-Jester [Materzynska et al., 2019], and Charades [Sigurdsson et al.,
2016] datasets. TRN consistently outperforms other methods across all benchmarks

datasets, highlighting the significance of temporal relation reasoning in action recog-
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nition.
Temporal Shift Module. [Lin et al., 2019a] observed that although 2D CNNs
are computationally efficient, they struggle to capture meaningful spatio-temporal
relationships across video frames. In contrast, 3D CNNs are better at modeling
temporal dynamics and yield higher accuracy, but at the expense of significantly
increased computational load. To address this trade-off, [Lin et al., 2019a] introduce
the Temporal Shift Module (TSM), which aims to maintain high performance while
minimizing computational overheads.

The TSM module enables any standard image classification CNN to function as
a pseudo-3D model by introducing temporal modeling capabilities. It operates by
shifting portions of the spatial feature maps across the temporal axis, as shown in
Figure 2.12. Given a random set of contiguous frames and their respective feature
maps, a subset of channels is shifted one frame ahead, while another subset of

channels is shifted one frame behind. The remaining channels are not shifted.
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Figure 2.12: Temporal Shift Module. Spatial feature maps from four frames are
stacked along the temporal dimension. The values in the first channel are shifted
backward by one frame, while those in the second channel are shifted forward by one
frame. The rest of the channels remain stationary. Figure from [Lin et al., 2019a.

The temporal shift mechanism interleaves spatial features from neighboring frames,
allowing a 2D CNN to effectively capture spatio-temporal relationships. The ap-
proach utilizes both RGB and optical flow inputs within a late-fusion two-stream
framework. During training, either 8 or 16 consecutive frames are randomly se-
lected. At test time, the same number of frames are uniformly sampled, and their

classification scores are averaged to determine the final action prediction.
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TSM is not only computationally efficient, with minimal overhead from the
shift operation, but also achieves high accuracy across various datasets, includ-
ing Kinetics [Kay et al., 2017], Something-Something [Goyal et al., 2017], 20BN
Jester [Materzynska et al., 2019], UCF101 [Soomro et al., 2012], and HMDB51 [Kuehne
et al., 2011]. The proposed model is compared to a 2D baseline, specifically TSN
with the same backbone CNN. TSM outperforms TSN across all datasets, with the
largest improvements seen in datasets that emphasize temporal modeling. Notably,
TSM achieves a 29% improvement on Something-Something and a 12% improvement
on 20BN Jester compared to TSN. On Something-Something, TSM also surpasses
TRN (by 7% and 8% on versions v1 and v2, respectively), which focuses on learning
temporal relations, and I3D [Carreira and Zisserman, 2017b], which by employing

3D convolutions is computationally expensive.

The results show that TSM, despite using a 2D architecture, is highly effective
at modeling temporal relationships. The comparison also highlights its performance
relative to floating point operations (FLOPs), indicating that TSM, relying solely

on cost-efficient temporal shifting, maintains low computational overhead.

Two-Stream Inflated 3D CNN. [Carreira and Zisserman, 2017a] introduced a
3D architecture in which the 2D filters from image classification CNNs are expanded
to create a spatio-temporal model. This approach offers the significant advantage of
leveraging successful image-based architectures, along with their pre-trained weights,
for the task of video action recognition. This work was motivated by the observation
that CNNs used for tasks like pose estimation and object segmentation have gained

remarkable performance boost when using ImageNet pre-training.

The work comprises of experiments with several state-of-the-art architectures,
as shown in Figure 2.13. The first model evaluated is a CNN+LSTM design, where
visual features extracted by an image classification CNN are passed to an LSTM.
This approach is commonly used to address the lack of temporal modeling in CNN,
which process only single images. While LSTMs are effective at capturing long-term,

high-level dynamics, they may struggle to model salient fine-grained brief motion
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Figure 2.13: Comparison between different architectures for action recognition. Fig-
ure from [Carreira and Zisserman, 2017a].

when receiving solely spatial features.

Secondly, the work also investigates C3D (Convolutional 3D) [Tran et al., 2015].
Although 3D CNNs are naturally suited for modeling temporal information, their
large number of parameters makes them challenging to train. Additionally, standard
3D CNNs like C3D cannot take advantage of pre-trained 2D models due to their
architectural differences, which limits their performance as they must be trained
from scratch. This major drawback was in fact the key factor that inspired the

design of the inflated 3D model.

Finally, the work introduces their new model, Two-Stream Inflated 3D CNN
(I3D). The core concept is that instead of developing a new 3D model from scratch,
state-of-the-art 2D CNNs can be transformed into 3D models. This transformation is
achieved by inflating both the convolutional and pooling kernels, essentially adding a
temporal (third) dimension to the existing filters. The weights of pre-trained models
are also inflated, with the parameters of the 2D convolutional filters being replicated
n times to form a cube. These replicated 2D kernel weights are then averaged along
the temporal axis. This inflation technique is the key contribution of 13D, giving it

a significant advantage over other 3D architectures.

Experiments indicate that while 3D models are capable of capturing temporal
patterns directly from RGB frames, incorporating an additional stream based on
optical flow leads to improved performance. As a result, they train separate spatial

and temporal CNNs and combine their predictions using late fusion during test-
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ing. For training, the network processes randomly sampled stacks of 64 consecutive

frames, while during testing, the entire video clip is input into the model.

The I3D model is evaluated against the aforementioned action recognition ar-
chitectures on UCF101 [Soomro et al., 2012, HMDB51 [Kuehne et al., 2011], and
Kinetics [Kay et al., 2017] benchmark dataset. Across all these benchmarks, I3D
consistently outperforms the other methods, achieving an average improvement of
5% in top-1 accuracy. Both the late-fused and 3D-fused two-stream models show
similar performance and come closest to I3D. The CNN+LSTM model, which relies
solely on RGB frames, ranks slightly below the two-stream variants. C3D yields the
lowest results, likely due to the absence of pre-training. Unlike the other models,
which were initialized with ImageNet weights, C3D had to be trained from scratch,

as pre-trained 2D weights cannot be transferred to its architecture.

Factorised 3D Convolutions. R(2+1)D [Tran et al., 2018] and S3D [Xie et al.,
2018] factorise 3D convolutions into separate spatial and temporal convolution. In-
stead of using a 3D filter of size t X d X d, they first apply a 2D convolution of size
d x d independently across t frames. This is followed by a 1D temporal convolution

over the resulting ¢ spatial feature maps using a kernel of size ¢t x 1.

This method offers two advantages. Firstly, the models are easier to optimise
given that there are no 3D kernels to be tuned. Secondly, by decomposing 3D
convolutions which are often more susceptible to overfitting—into separate opera-
tions, the models can achieve better classification performance. This is further vali-
dated by experiments on datasets such as Kinetics, Something-Something, UCF101,
and HMDBb51, where factorized 3D models matched or surpassed the accuracy of
state-of-the-art methods. Notably, [Tran et al., 2018] achieved results within 1% of
I3D [Carreira and Zisserman, 2017a], while [Xie et al., 2018] outperformed I3D by

3% on the Kinetics validation set.
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Figure 2.14: Video Transformer Network consists of a 2D spatial backbone (f(z)) for
extracting features, followed by a temporal encoder based on attention mechanisms
(Longformer [Beltagy et al., 2020]). This encoder processes the feature vectors (¢;),
which are enriched with positional encodings. The final class prediction is obtained
by passing the [CLS] token through a classification MLP head. Figure from [Neimark
et al., 2021].

2.2.2 Video Transformers for Video Understanding

Video Transformer. Based on the success of vision transformer [Dosovitskiy
et al., 2020], transformer architectures have also been extended to videos such as
the Video Transformer Network [Neimark et al., 2021], Video Vision Transformer
(ViViT) [Arnab et al., 2021a], TimesFormer [Bertasius et al., 2021a] and Multiscale
Vision Transformers (MViT) [Fan et al., 2021].

[Neimark et al., 2021] proposed the Video Transformer Network (VIN) (Fig-
ure 2.14), which first extracts frame-level features using a 2D CNN, and then em-
ploys a Transformer encoder based on Longformer [Beltagy et al., 2020] to model

the temporal dependencies. Longformer is well-suited for handling long sequences
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due to its linear O(n) complexity. The classification token output is passed through
a fully connected layer to predict actions or events. Using a Transformer encoder
on top of spatial features provides two key benefits. First, it enables processing
an entire video in a single forward pass, and second, it enhances both training and
inference efficiency by avoiding computationally expensive 3D convolutions. This de-
sign makes VTN particularly effective for analyzing long videos where interactions
between entities are spread throughout the video length. The experiments on the
Kinetics dataset [Kay et al., 2017] with various backbones (ResNet [He et al., 2016],
ViT [Dosovitskiy et al., 2020] and DeiT [Touvron et al., 2021]) shows competitive

performance.
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Figure 2.15: The proposed model extracts spatio-temporal features from an input
video clip using the initial layers of I3D. The center frame of the feature map is
passed through an RPN to generate bounding box proposals, and the feature map
(padded with location embedding) and each proposal are passed through ‘head’
networks to obtain a feature for the proposal. This feature is then used to regress a
tight bounding box and classify into action classes. The head network consists of a
stack of Action Transformer (Tx) units, which generates the features to be classified.
Figure from [Girdhar et al., 2019].

[Girdhar et al., 2019] proposed a variant of Transformer architecture aimed at
aggregating person-specific contextual cues for action recognition and localization,
as illustrated in Figure 2.15. In the beginning, the model uses a processing pipeline
similar to Faster R-CNN [Ren et al., 2015b], where a backbone network extracts
features that are passed to a Region Proposal Network (RPN) to generate candidate
object region proposals. Region of Interest (Rol) pooling is then applied to obtain
object-specific features. These features are subsequently processed by a series of

MHSA layers arranged in a cascade. Within each Transformer unit, the feature
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of a specific person acts as the query (@), while features from surrounding video
frames serve as the keys (K) and values (V). Positional information is explicitly
embedded into the input feature map, ensuring that the self-attention mechanism
is spatially aware. For a 400 x 400 x 64 video clip, the key and value tensors have
dimensions 16 x 25 x 25 x 128, while the query is a 128-dimensional vector. Although
the model uses only RGB input, incorporating additional modalities such as optical
flow or audio would significantly increase computational demands. Moreover, the
Transformer was found to be less effective for precise action localization, due to its
tendency to incorporate global information. Therefore, it is important to achieve
the right trade-off between the global and local context for problems that demand

precise delineation (e.g., action localization and segmentation).
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Figure 2.16: Multiscale Vision Transformers (MViT) build a hierarchical representa-
tions by transitioning from spatially dense, low-channel features to spatially coarse,
high-channel ones. This is achieved through multiple stages that progressively in-
crease the number of channels in the latent representation while reducing its length
and spatial resolution. Figure from [Fan et al., 2021].

Multiscale Vision Transformer (MViT) [Fan et al., 2021] build a feature hierarchy
by progressively expanding the channel capacity and reducing the spatio-temporal
resolution in videos as shown in Figure 2.16.

ViViT [Arnab et al., 2021b] proposed a pure transformer for video classification
problems. In particular two tokenization strategies i.e. uniform frame sampling and
tubelet embedding were proposed. Several design architectures for video transform-

ers were proposed (inspired fron ViTs) that capture pairwise interactions among all
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spatio-temporal tokens. Building on this, more efficient variants were introduced
by factorizing the spatial and temporal dimensions of the input video at different
stages within the Transformer architecture. Figure 2.17 illustrates the four types
of video transformer architecture discussed in ViViT [Arnab et al., 2021b] namely
Transformer encoder, factorised encoder, factorised self-attention and factorised dot-
product. These factorisations correspond to different attention patterns over space

and time.
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Figure 2.17: ViViT proposed a pure-transformer architecture for video classification
drawing inspiration from ViT in the image domain. To efficiently handle the large
number of spatio-temporal tokens, several model variants are introduced that fac-
torise different components of the Transformer encoder across spatial and temporal
dimensions. These factorisations lead to distinct attention patterns over space and
time. Figure from [Arnab et al., 2021a].

TimeSformer [Bertasius et al., 2021b] also adapted the standard Transformer
architecture [Vaswani et al., 2017] to video by enabling spatiotemporal feature learn-
ing directly from a sequence of frame level patches. The study compared various
self-attention schemes namely space attention, joint space-time attention, divided
space-time attention, sparse local global attention and axial attention for video
transformer. Their findings indicate that divided space-time attention in which
temporal and spatial attention are applied separately within each block—achieves

the highest video classification accuracy among the evaluated design choices.
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Figure 2.18: TimeSformer investigates various video self-attention blocks, where
each attention layer applies self-attention [Vaswani et al., 2017] over a defined spa-
tiotemporal neighborhood of frame-level patches. Residual connections are employed
to integrate information from different attention layers within each block. Addition-
ally, a single-hidden-layer MLP is applied at the end of each block. The complete
model is built by stacking these blocks in a repeated manner. Figure from [Bertasius
et al., 2021a.

2.3 Self-supervised Models for Video Understand-

ing

Self-Supervised learning has emerged as a successful way for pre-training deep mod-
els for video understanding. It is a promising alternative where a model can be
trained on large-scale datasets without the need of labels and with improved gener-
alizability. SSL trains the model using a learning objective derived from the train-
ing samples itself. Typically, the pre-trained model is then finetuned on the target
dataset as shown in Figure 2.6. In this section, we provide a brief overview of popu-
lar self-supervised learning models for video understanding tasks. We split the works
in video self-supervised learning into three high level categories: pretext, generative,

contrastive.
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2.3.1 Pretext Task.

A pretext task refers to a SSL objective where the model is trained to solve a
pre-designed task in order to learn representations that can be used later for down-
stream tasks. The core idea is that if a model is able to solve a complicated task that
requires a high level understanding of its input, then it will learn more generaliz-
able features. Pretext task-based methods usually depend on leveraging appearance
statistics, temporal ordering, jigsaw puzzles, and playback speed information to

design self-supervised training objectives.
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Figure 2.19: The proposed self-supervised spatiotemporal representation learning
involves rotating each video by four different angles (0°, 90°, 180°, and 270°). The
3DRotNet model is then trained to predict the specific rotation applied to each
input video.. Figure from [Jing et al., 2018]

Appearance Statistics. In this task, the model is trained to predict an appearance-
transforming augmentation applied to a video clip. Typical augmentations include
changes in color, rotations, and the addition of random noise. Rotation-based aug-
mentation, initially introduced in the image domain, was extended to video in [Jing
et al., 2018], where each frame of a video is individually rotated by four angles

(0°, 90°, 180°, and 270°). These rotated frames are then independently fed into
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a 3D CNN, and a cross-entropy loss is used to compare the predicted and actual
rotations during training as shown in Figure 2.19. Although effective, this method
adapts an image specific strategy to videos without explicitly modeling temporal
dynamics. To better capture the temporal dimension, [Wang et al., 2019b] propose
using optical flow as a pretext task. The method is based on predicting motion and
spatial statistics across a vertical and horizontal grid overlaid on video frames, such
as identifying where the largest motion statistic and dominant orientation statistic

occurs within the grid.
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Figure 2.20: In each mini-batch, a video speed is selected from four possible choices,
corresponding to different frame skipping rates in the original video. The 3D-CNN
then receives a mini-batch containing a mixture of four types of transformed se-
quences: speed (based on the chosen frame skipping), random, periodic, and warp.
The network outputs the probability of which motion type a sequence belongs to
and the probability of which speed type the speed-transformed sequence has.

Playback Speed. This pretext task comprises of classifying the playback speed
of an augmented video clip. Clips of ¢ frames are extracted from each video V' €
RTXCXHXW “and then the playback speed is altered (either by speeding up or slowing
down the video) by sampling every p-th frame, where p represents the playback rate.

[Jenni et al., 2020] proposed a pretext task that adds a motion type permutation that
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results in either the modified speed, random, periodic or warped transformations.
The task involves two multi-class classification problems, one to identify the type
of transformation applied and another to determine the playback rate p as shown
in Figure 2.20. To improve performance, later approaches utilize additional tasks
to the classification of p. [Yao et al., 2020] introduced a reconstruction objective,
where the model encodes a modified version of a clip and reconstructs it at its
original playback speed. In contrast, [Wang et al., 2020a] found that a contrastive
loss yielded better results, where the original clip is the anchor, positive samples are

a modified speed of the same clip, and negative samples are clips from other videos.

Temporally Correct order

Original video
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Figure 2.21: Temporal Ordering Classification Task. Figure from [Misra et al., 2016].

Temporal Ordering. In temporal order classification, each video V is divided
into clips of ¢ frames. Within each set of clips, one clip is in the correct order,
while the others have their order shuffled. This pretext task called as odd-one-out
learning [Fernando et al., 2017], involves training a model to determine whether
a clip is in the correct or incorrect order using a binary classifier. However, in
frame ordering tasks, the difference between two frames may not be sufficient to
capture motion changes for certain actions. To tackle this, [Xu et al., 2019] extracts

shorter sub-clips and randomizes their order. This clip-based ordering improves the
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comparison because the dynamics of an action are preserved within the sub-clip. To
further enhance the retention of motion dynamics, time windows are selected where
the motion is most prominent, ensuring that the model can distinguish between two
frames and their respective motion [Misra et al., 2016], [Lee et al., 2017]. Specifically,
[Misra et al., 2016] extracts triplets of frames for each video sampled from various
temporal windows, as shown in Figure 2.21. The selected frames are those that
exhibit the largest motion, computed through optical flow. Negative samples consist
of triplets with an incorrect order, while positive samples are correctly ordered,
including reversed sequences (e.g., (t3,t2,%1)). The model is trained using the odd-
one-out method. In [Lee et al., 2017], the learning process is further refined by
sorting frames based on pairwise feature extraction for each frame pair, instead of
using the odd-one-out strategy. This method directly predicts the correct order of

clips using shuffled, high-motion frames as input.
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Figure 2.22: Overview of Video Jigsaw. Figure from [Ahsan et al., 2019].

Jigsaw. The jigsaw pretext task was originally introduced in the image domain by
[Noroozi and Favaro, 2016], where an image is split into multiple patches and then
shuffled. Each patch is assigned a number, and a permutation P is applied to reorder
these numbers (e.g., 9, 4, 6, 8, 3, 2, 5, 1, 7). [Noroozi and Favaro, 2016] created

a set of candidate permutations by maximizing the Hamming distance between the
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original and permuted orders. The final selection of permutations consists of the
top-k most dissimilar ones, forming a set S. The task is formulated as a multi-class
classification problem, where the model is trained to predict which permutation
Sk € S was applied to the given image.

This method has also been adapted to the video domain. A major challenge in
extending the Jigsaw task to videos is the significantly larger number of patches,
which leads to a drastic increase in the number of possible permutations compared
to the image-based version. In [Ahsan et al., 2019] (Figure 2.22), a video is divided
into clips of three frames, which are treated as a single large image, and all patches
across frames are shuffled. The permutation sampling strategy was modified by
constraining spatial coherence over time. The patches in a given frame were shuffled
before shuffling the frames themselves. Building on the idea of combining jigsaw
and frame ordering, [Zhao and Dong, 2020] addressed the increase in permutations
by proposing a multi-stream CNN, where each shuffled visual sample is processed
through a separate branch. To better incorporate temporal information, [Kim et al.,
2019] introduced methods that represent video clips as 3D cubic representation
over space and time. In particular, a video clip is divided into a 3D grid of cells,
and the model is trained to classify which permutation was applied to modify the

spatiotemporal structure.

2.3.2 Generative Approaches

Generative methods for representation learning leverage the capability of neural
networks to synthesize videos for the purpose of pretraining. We provide a brief
overview of frame prediction and masked modeling techniques within generative
approaches for self-supervised video representation learning.

Frame Prediction. Instead of focusing solely on reconstructing motion, [Liang
et al., 2017] and [Tian et al., 2020a] explored generating motion from RGB frames
and vice versa to predict future unseen frames. They employed a combination of

a discriminator and a variational autoencoder (VAE) to evaluate the quality of the
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Figure 2.23: Overview of Memory Augmented Dense Predictive Coding (MemDPC).
Figure from [Han et al., 2020a].

generated frames by comparing them with ground truth RGB frames and optical
flow. Unlike traditional approaches that rely directly on optical flow, [Tian et al.,
2020a] introduced a method that uses encoded features from pairs of frames to
decode and produce low-resolution motion maps. These are then refined into high-
resolution motion maps using contextual features drawn from spatial regions. The
model predicts the next frame at various resolutions, with reconstruction loss used

to assess the quality of each generated frame.

In order to explicitly model temporal dynamics, [Tulyakov et al., 2018] represents
sequences of video frames as trajectories, allowing the model to handle videos of
varying lengths. A recurrent neural network (RNN) constrains the learning of a
path in the motion subspace to physically plausible motion. Recurrent structures
have also been utilized in [Han et al., 2020a] which propose Memory-augmented
Dense Predictive Coding (MemDPC) as shown in Figure 2.23. In this method,
videos are divided into equally sized frame blocks, which are encoded into feature
embeddings. These embeddings are temporally aggregated using RNNs. During
training, a predictive addressing mechanism is used to access a memory bank shared

between the entire dataset to draw a hypothesis and predict future blocks.

Masked Modeling. Masked Modeling was initially proposed for the image do-
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main as in MAE [He et al., 2022a]. It involves masking parts of an image, where
the model encodes visible patches and decodes both the visible and masked patches.
This idea has also been adapted for video in several studies [Wei et al., 2022, Fe-
ichtenhofer et al., 2022, Wang et al., 2022b], with a focus on temporal components.
These methods usually employ a ViT [Dosovitskiy et al., 2020] backbone to fa-
cilitate the masking task. In particular, [Feichtenhofer et al., 2022] adapts the
image-based MAE framework to video by incorporating spatio-temporal learning,
randomly masking space-time patches in videos and training an autoencoder to re-
construct them at the pixel level. Similarly, VideoMAE [Tong et al., 2022] applies
MAE to videos using tube masking, as illustrated in Figure 2.8. BEVT [Wang et al.,
2022b] extends image-based MAE by leveraging both image and video streams dur-
ing the pre-training. MotionMAE [Yang et al., 2022a] focuses on temporal aspects
by masking patches and feeding the encoder’s output into separate Time and Space
heads, which process visible and masked tokens to reconstruct frame patches and
motion. MaskFeat [Wei et al., 2022] also introduces space-time cubes, where the

model predicts the masked areas using context and motion cues.

2.3.3 Contrastive Learning

Contrastive learning offers a self-supervised framework that encourages represen-
tations of positive input pairs to be closer together, while pushing negative pairs
further apart in the feature space. Typically, a positive pair is formed using an
anchor frame and another frame from a different time point within the same video.
Negative samples are generated by pairing the anchor frame with frames from dif-
ferent videos. The strategy used to construct positive and negative pairs is a key
distinguishing aspect among various contrastive learning methods.

The most widely used contrastive learning training objectives are variations of
the NCE loss. The NCE loss operates by taking a positive sample pair and a set of
negative samples, with the goal of minimizing the distance between the positive pair

while maximizing the distance between the negative pairs [Gutmann and Hyvérinen,
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2010, Oord et al., 2018]. The primary distinction among various methods lies in how
positive and negative pairs are generated to achieve this goal. In the image domain,
this is typically done by applying different augmentations to an image to generate
positive samples [Wu et al., 2018, Ye et al., 2019b, He et al., 2020, Chen et al.,
2020b, Misra and Maaten, 2020]. These augmentations include transformations such
as rotation, cropping, random grayscale, and color jittering [Ye et al., 2019b, Chen

et al., 2020b].

Extending these works to video can be challenging because each video comparison
adds to the memory required, especially if using multiple augmentations for multiple
positive samples. Another difficulty is incorporating temporal information into the
augmentations. Some approaches apply the same augmentations used in images to
each individual frame [Hjelm and Bachman, 2020, Han et al., 2020b, Tian et al.,
2020b, Feichtenhofer et al., 2021]. Other methods introduce additional temporal-
based permutations, such as frame shuffling [Knights et al., 2021, Lorre et al., 2020].
Alternatively, some methods use motion and optical flow maps as positive samples
[Rai et al., 2021b]. Furthermore, these approaches vary in how they maintain col-
lections of negative pairs to optimize computational efficiency and memory usage,
often employing techniques like memory banks or momentum encoders [Pan et al.,
2021]. To enhance memory efficiency and overall performance, contrastive learning
has been expanded to incorporate other video modalities, such as audio and text

[Patrick et al., 2020, Amrani et al., 2021, Xu et al., 2021, Miech et al., 2019b)].

Multimodal or cross-modal approaches involve learning relationships between
video, audio, and/or text. Text is commonly used as a secondary modality due
to the origins of NCE loss in NLP [Mnih and Kavukcuoglu, 2013] and its ability
to provide rich semantic information without requiring detailed video annotations.
These methods are typically trained using pairwise comparisons between separate

embeddings of each modality.
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2.4 Foundation Models for Video Understanding

Foundation models are large-scale, general-purpose models trained on large, diverse,
unlabeled datasets using self-supervised pretraining objectives such as next-token
prediction. These models are designed to learn general representations that can be
adapted or fine-tuned for a wide range of downstream tasks across multiple domains
(e.g., language, vision, audio, video, robotics). The field of video representation
learning has undergone a rapid transformation, evolving from early transformer-
based models to large-scale multimodal foundation models. Initial research in this
direction led to architectures such as TimeSFormer [Bertasius et al., 2021b] and
ViViT [Arnab et al., 2021b], which investigated several formulations of applying
spatio-temporal attention mechanisms to the video data in supervised setting.

Such models laid the ground work for self-supervised approaches like Video-
CLIP [Xu et al., 2021], which aligned video and language embeddings through con-
trastive learning and Video-CoCa [Yan et al., 2022], which combined causal lan-
guage modeling with contrastive objectives to learn joint video-text representations
enhancing the semantic understanding of video content in a self-supervised man-
ner. VideoMAE [Tong et al., 2022] leveraged masked auto-encoding for efficient
self-supervised pretraining to learn meaningful spatiotemporal features from unla-
beled video data. InternVideo [Wang et al., 2022d] efficiently explored masked video
modeling and video-language contrastive learning as the pretraining objectives, and
selectively coordinate video representations of both of complementary frameworks
in a learnable manner to boost various video applications.

The success of these vision-specific models paved the way for multimodal founda-
tional models capable of general-purpose video-language understanding. Flamingo [Alayrac
et al., 2022] demonstrated few-shot video question answering by conditioning visual-
language models on sequences of video frames, setting a precedent for multimodal
video understanding. Video-LLaMA [Zhang et al., 2023b] and VideoChatGPT [Maaz
et al., 2024] adapted large language models to video inputs through instruction

tuning and multimodal pretraining, enabling frame-wise video comprehension and
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interactive dialogue-based interfaces.

Subsequent foundation models have significantly expanded in terms of scalabil-
ity and generalization. LLaMA-2 [Touvron et al., 2023] and its successor LLaMA-
3 [Grattafiori et al., 2024], though primarily trained on textual data, have been ex-
tended in research settings to support visual and video reasoning through adapter-
based or instruction-tuned pipelines. Claude 3.5 (Anthropic, 2024) and GPT-40
(OpenAl, 2024) support limited video understanding via multi-frame input and vi-
sion adapters. NVLM [Dai et al., 2024] introduced a scalable multimodal foundation
model explicitly trained on images and video, offering robust video-language align-
ment. Gemini 1.5 [Team et al., 2024] represents one of the most comprehensive
multimodal models to date, capable of long-context reasoning over video, audio,
and text. Recently released Gemini 2.5 [Comanici et al., 2025] offers unique com-
bination of long context, multimodal and reasoning capabilities can be combined
to unlock new agentic workflows. To assess and standardize these capabilities, new

benchmarks and training paradigms have emerged.

2.5 Downstream Tasks

We now present an outline of three downstream tasks which can be supported by
the various kinds of spatio-temporal video analysis described earlier.

Generic Event Boundary Detection. GEBD [Shou et al., 2021] focuses on local-
izing moments where humans naturally perceive event boundaries. As illustrated in
Figure 2.24, these boundaries can occur when an action changes (e.g., from running
to jumping), the subject changes (e.g., a new person appears), or the environment
changes (e.g., a sudden increase in brightness), among other instances. These event
boundaries are generic and taxonomy free. Spatial diversity arises from both low-
level (e.g., brightness, appearance) and high-level changes (e.g., camera angle shifts,
subject transitions). Temporal diversity stems from variations in action, object in-
teractions, and speed. These spatio-temporal factors make GEBD a challenging

problem.
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Figure 2.24: Examples of generic event boundaries include: 1) A long jump sequence
segmented at a shot cut, followed by transitions between actions such as running,
jumping, and standing up (with the dominant subject highlighted in a red circle).
2) A change in color or brightness. 3) New subject appears. Figure from [Shou
et al., 2021].

Video Anomaly Detection. Video anomalies, as discussed in [Ramachandra
et al., 2020b], can be defined as either the presence of unusual appearance or mo-
tion attributes or the occurrence of usual appearance or motion attributes in an
unexpected locations or times. Figure 2.25 describes the problem of video anomaly

detection.

Action Recognition. The task of action recognition [Carreira and Zisserman,
2017a, Wang et al., 2016, Simonyan and Zisserman, 2014, Varol et al., 2017, Feicht-
enhofer et al., 2016] involves identifying and classifying human actions or activities

in videos.
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Figure 2.25: Illustration of a normal frame and an anomalous frame in single-scene
benchmarks for video anomaly detection. Figure from [Ramachandra et al., 2020b].

2.6 Datasets

This subsection outlines a number of well-known open datasets which are used to
compare the performance of various video analysis approaches.

Kinetics-GEBD. [Shou et al., 2021] This dataset was introduced for detecting
generic event boundaries without the need of a predefined target event taxonomy.
The Kinetics-GEBD training set comprises 20,000 videos randomly sampled from
the Kinetics-400 training set, as described in [Kay et al., 2017]. Similarly, the
Kinetics-GEBD test set includes an additional 20,000 videos randomly selected from
the Kinetics-400 training set. For validation, the entire set of 20,000 videos in
the Kinetics-400 validation set is used. To construct these sets, all videos in the
Kinetics-400 training set are ranked by video-level class. From this ranked list,
20,000 videos are uniformly sampled to form the training set, and another 20,000
videos are sampled to establish the test set. This sampling approach ensures that
the selected videos reflect a distribution similar to that of the Kinetics-400 dataset.
TAPOS. [Shao et al., 2020b] To facilitate intra- and inter-action understanding,
the Temporal Action Parsing of Olympic Sports (TAPOS) dataset was constructed
[Shao et al., 2020b]. TAPOS contains a total of 16,294 valid instances across 21
action classes, with an average duration of 9.4 seconds per instance. The dataset is
divided into training, validation, and test sets, containing 13,094, 1,790, and 1,763
instances, respectively.

UCF Ped2. [Liet al., 2014] dataset is comprised of 16 training and 12 test videos
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and all videos have the same scene in the background. The videos with normal events
consist of pedestrians only, whereas the videos with anomalous events include bikes,

skateboards and carts, apart from pedestrians.

Avenue. [Lu et al., 2013] This dataset is comprised of 16 training and 21 test
videos with every video having the same background scene. Normal events involve
people routinely walking around while the abnormal instances include abnormal ob-
jects such as bikes and abnormal human actions such as unusual walking directions,

running around or throwing things.

ShanghaiTech [Luo et al., 2017c| The dataset includes 330 training and 107 test
videos recorded at 13 different background locations with complex lightning condi-
tions and camera angles, making it the one of the largest one-class anomaly detection
datasets. The test split captures a total of 130 anomalous events including running,

riding a bicycle and fighting.

UBnormal. [Acsintoae et al., 2022] This is a synthetic dataset with multi-scene
backgrounds and a diverse set of anomalies. The dataset consists of training, valida-
tion and test split with both normal and abnormal events. The normal events include
walking, talking on the phone, walking while texting, standing, sitting, yelling and
talking with others. It should be noted that abnormal events in each of the train,
validation and test split are different to each other. The train split includes ab-
normal events like falling, dancing, walking injured, running injured, crawling, and
stumbling walk. The validation split comprises fighting, sleeping, dancing, stealing,

and rotating 360 degrees. All the evaluations are conducted on the validation set.

Among different types of abnormal events, the train split contains falling, danc-
ing, walking injured, running injured, crawling and stumbling walk. The abnormal
events in the validation split include fighting, sleeping, dancing, stealing and rotat-
ing 360 degrees. All our evaluations in this thesis are performed on validation sets
while the test split contains running, having a seizure, laying down, shuffling, walk-
ing drunk, people and car accident, car crash, jumping, fire, smoke, jaywalking and

driving outside lane as the abnormal.
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Kinetics. This is the most popular pre-training dataset for video-only self-
supervised learning approaches [Kay et al., 2017]. It is a large-scale, human-action
dataset containing 650,000 video clip covering either 400, 600, or 700 human action
classes. Each video clip lasts around 10 seconds and is labeled with a single action
class.

Something-Something v2. This dataset focuses on evaluating temporal ele-
ments in videos using everyday human activities. It is a large-scale dataset with
220,847 videos with a total of 174 activities. Some examples are “putting something
into something”, “turning something upside down” and “covering something with
something”.

UCF-101. This is one of the most popular benchmarks to evaluate models on
action-recognition because of its smaller size [Soomro et al., 2012]. It has only
13,320 video clips which are classified into 101 categories. The categories fall within
five types of activity: body motion, human-to-human interaction, human-to-object
interaction, playing musical instruments and sports. The videos are user-generated,
collected from YouTube, and have a fixed frame rate of 25 FPS and fixed resolution
of 320 x 240.

HMDB51. This dataset contains videos collected from a variety of sources, in-
cluding commercial movies and public video hosting services [Kuehne et al., 2011].
There are 6,849 video clips in total averaging 10 seconds each with 51 action cate-
gories. Fach action category contains at least 101 clips. The action categories are
split into five types: facial actions (e.g. smiling), face-to-object interaction (e.g.
eating), general body movement, body-to-object interactions (e.g. brush hair) and

human-to-human interaction (e.g. hugging).

2.7 Conclusion

This chapter presented the technical and theoretical background and basic termi-
nology related to ML and DL in the context of video understanding required to

understand the research presented in the remainder of this thesis. The following
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chapters investigate the various research hypotheses and questions introduced in

Chapter 1.
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Chapter 3

Structured Video Representation

Learning

This Chapter explores the notion of learning structured video representation within
the SSL framework. In this Chapter, we investigate H; (R;, Rs), as introduced in
Chapter 1, that designing relevant self-supervised pretext tasks can embed spatial
diversity, motion-patterns, fine-grained and long-range temporal dependencies into
a learned model. To validate H, we develop a self-supervised approach incorporat-
ing frame-level and clip-level pretext tasks, enhance it with a differentiable motion
learning module, and evaluate its performance on the GEBD task (Chapter 2). The
performance achieved by our model compares favorably to the other self-supervised
state-of-the-art methods. The research resulting from this work was published at
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
Hawaii, 2023.

3.1 Motivation

The task of Generic Event Boundary Detection (GEBD) aims to detect moments
in videos that are naturally perceived by humans as generic and taxonomy-free
event boundaries. Modeling the dynamically evolving temporal and spatial changes

in a video makes GEBD a difficult problem to solve. Existing approaches involve
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very complex and sophisticated pipelines in terms of architectural design choices,
hence creating a need for more straightforward and simplified approaches. In this
chapter, we address this issue by revisiting a simple and effective self-supervised
method and augment it with a differentiable motion feature learning module to
tackle the spatial and temporal diversities in the GEBD task. We perform extensive
experiments on the challenging Kinetics-GEBD and TAPOS datasets to demonstrate
the efficacy of the proposed approach compared to other self-supervised state-of-the-
art methods. We also show that this simple self-supervised approach learns motion
features without any explicit motion-specific pretext task. This is important as our
framework without relying on any pretext task explicitly optimizes for motion learns
motion features that generalize well and incur lower computational overhead within

the self-supervised learning paradigm.

Modeling videos using deep learning methods in order to learn effective global
and local video representations is an extremely challenging task. Current state-
of-the-art video models [Feichtenhofer et al., 2019] are built upon a limited set
of predefined action classes and usually process short clips followed by a pooling
operation to generate global video-level predictions. Other mainstream computer
vision tasks for video processing have mainly focused on action anticipation [Miech
et al., 2019a, Abu Farha et al., 2018], temporal action detection [Chao et al., 2018,
Gao et al., 2017], temporal action segmentation [Lea et al., 2016a, Kuehne et al.,
2014] and temporal action parsing [Pirsiavash and Ramanan, 2014, Shao et al.,
2020a]. However, only limited attention has been given to understanding long form
videos. Cognitive scientists [Tversky and Zacks, 2013] have observed that humans
perceive videos by breaking them down into shorter temporal units, each carrying a
semantic meaning and we can also reason about such long form videos. This creates
an opportunity to investigate research problems to detect temporal boundaries in
videos that is consistent with their semantic validity and interpretability from a

cognitive point of view.
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To this end, the GEBD task was recently introduced in [Shou et al., 2021]!
with an objective to study the long form video understanding problem through
the lens of a human perception mechanism. GEBD aims at identifying changes in
content, independent of changes in action, brightness, objects, etc., i.e. detecting
generic event boundaries, making it different to tasks such as video localization [Xia
and Zhan, 2020]. Video events could indicate completion of goals or sub-goals, or

occasions where it becomes difficult for humans to predict what will happen next.

The recently released Kinetics-GEBD dataset [Shou et al., 2021] is the first
dataset specific to the GEBD task. It is annotated by 5 different human event
boundary annotators, thereby capturing the subtlety involved in human perception
and making it the dataset with the greatest number of temporal boundaries (8x
EPIC-Kitchen-100 [Damen et al., 2018] and 32x ActivityNet [Fabian Caba Heilbron
and Niebles, 2015]). The primary challenge in the GEBD task is to effectively model
generic spatial and temporal diversity as described in DDM-Net [Tang et al., 2021].
Spatial diversity is primarily the result of both low-level changes, e.g. changes in
brightness or appearance, and high-level changes, e.g., changes in camera angle,
or appearance and disappearance of the dominant subject. Temporal diversity, on
the other hand, can be attributed to changes in action or changes by the object
of interaction with different speeds and duration, depending on the subject. These

spatio-temporal diversities make GEBD a difficult problem to address.

In order to address the biased nature of video models trained over predefined
classes in a supervised setting, and the spatial diversity in GEBD, we leverage the
power of self-supervised models. Self-supervised techniques like TCLR [Dave et al.,
2022] and CCL [Kong et al., 2020] have achieved breakthrough results on various
downstream tasks for video understanding. The representations learned using self-
supervised learning (SSL) methods are not biased towards any predefined action
class making SSLL methods an ideal candidate for the GEBD task. In addition,

in order to characterize temporal diversity in GEBD, learning motion information

'LOVEU@CVPR2021, LOVEUQCVPR2022
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is essential to capture the fine-grained temporal variations that occur during the
change of action scenarios. Previous methods in video modeling learn temporal
motion cues by pre-computing the optical flow [Lin et al., 2018, Lin et al., 2019b, Liu
et al., 2018a] between consecutive frames, which is done externally and requires
substantial computation. Alternatively, methods such as those described in [Ilg
et al., 2017, Fischer et al., 2015] estimate optical flow internally by learning visual
correspondences between images. The motion features learnt on-the-fly can also be
used for downstream applications such as action recognition as illustrated in [Zhao
et al., 2018, Kwon et al., 2020].

This presents an interesting research question: how can we develop an SSL
framework for video understanding that accounts for both appearance and motion
features (R;)? Do we need an explicit motion-specific training objective or can
this be implicitly achieved (R2)? We answer these questions by rethinking SSL by
reformulating the training objective proposed in VCLR [Kuang et al., 2021] at clip-
level and further integrating it with a differentiable motion estimation layers using
the MotionSqueeze (MS) module introduced in [Kwon et al., 2020] to jointly learn
appearance and motion features for videos. To summarise, the main contributions

of this chapter are as follows:

e We revisit a simple self-supervised method VCLR [Kuang et al., 2021] and
introduce a noticeable change by modifying its pretext tasks by splitting them
into frame-level and clip-level to learn effective video representations (cVCLR).

We further augment the encoder with a differentiable motion feature learning

module for GEBD.

e We conduct extensive evaluations on the Kinetics-GEBD and TAPOS datasets
and show that our approach achieves comparable performance to the self-
supervised state-of-the-art methods without using enhancements like model

ensembles, pseudo-labeling or the need for other modality features (e.g. audio).

e We show that a model can learn motion features under self-supervision even
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without having any explicit motion specific pretext task.

3.2 Related Work

3.2.1 Generic Event Boundary Detection.

The task of GEBD [Shou et al., 2021] is similar in nature to the Temporal Action
Localization (TAL) task, where the goal is to localize the start and end points of
an action occurrence along with the action category. Initial attempts to address
GEBD were inspired from popular TAL solvers including boundary matching net-
works (BMN) [Lin et al., 2019b] and BMN-StartEnd [Shou et al., 2021], which
generates proposals with precise temporal boundaries along with reliable confidence
scores. Shou et al. [Shou et al., 2021] introduced a supervised baseline Pairwise
Classifier (PC), which considers GEBD as a framewise binary classification prob-
lem (boundary or not) by having a simple linear classifier that uses concatenated
average features around the neighbourhood of a candidate frame. However, since
GEBD is a new task, most of the current methods are an extension of state-of-the-art
video understanding tasks, which overlook the subtle differentiating characteristics
of GEBD. Hence there is a necessity for specialized solutions for GEBD.

DDM-Net [Tang et al., 2021] applied progressive attention on multi-level dense
difference maps (DDM) to characterize motion patterns and jointly learn motion
with appearance cues in a supervised setting. However, we learn generic motion
features by augmenting the encoder with a MS module in a self-supervised setting.
Hong et al. [Hong et al., 2021] used a cascaded temporal attention network for
GEBD, while Rai et al. [Rai et al., 2021a] explored the use of spatio-temporal fea-
tures using two-stream networks. Li et al. [Li et al., 2022b] designed an end-to-end
spatial-channel compressed encoder and temporal contrastive module to determine
event boundaries. Recently, SC-Transformer [Li et al., 2022a] introduced a struc-
tured partition of sequences (SPoS) mechanism to learn structured context using

a transformer based architecture for GEBD and augmented it with the computa-
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tion of group similarity to learn distinctive features for boundary detection. One
advantage of SC-Transformer is that it is independent of video length and predicts
all boundaries in a single forward pass by feeding in 100 frames, however it requires

substantial memory and computational resources.

Regarding unsupervised GEBD approaches, a shot detector library? and Pre-
dictAbility (PA) have been investigated in [Shou et al., 2021]. The authors of UBoCo
[Kang et al., 2021b, Kang et al., 2021a] proposed a novel supervised/unsupervised
method that applies contrastive learning to a TSM? based intermediary representa-
tion of videos to learn discriminatory boundary features. UBoCo’s recursive TSM?
parsing algorithm exploits generic patterns and detects very precise boundaries.
However, they pre-process all the videos in the dataset to have the same frames per
second (fps) value of 24, which adds a computational overhead. Furthermore, like
the SC-Transformer, UBoCo inputs the frames representing the whole video at once,
whereas in our work we use raw video signals for pre-training and only the context
around the candidate boundary as input to the GEBD task. TeG [Qian et al., 2021a]
proposed a generic self-supervised model for video understanding for learning persis-
tent and more fine-grained features and evaluated it on the GEBD task. The main
difference between TeG and our work is that TeG uses a 3D-ResNet-50 encoder as
their backbone, which makes the training computationally expensive, whereas we
use a 2D-ResNet-50 model and modify it by adding temporal shift module (TSM?*)
[Lin et al., 2019a] to achieve the same effect as 3D convolution while keeping the

complexity of a 2D CNN.

GEBD can be used as a preliminary step in a larger downstream application,
e.g. video summarization, video captioning [Wang et al., 2022c|, or ad cue-point
detection [Chen et al., 2021]. Tt is, therefore, important that the GEBD model not
add excessive computational overhead to the overall pipeline, unlike many of the

examples of related work presented here.

’https://github.com/Breakthrough/PySceneDetect
3 Temporal Self-Similarity Matrix
4Temporal Shift Module
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3.2.2 SSL for video representation learning.

Self-supervision has become the new norm for learning representations given its
ability to exploit unlabelled data [Noroozi and Favaro, 2016, Gidaris et al., 2018,
Doersch et al., 2015, Asano et al., 2019, Caron et al., 2020, Zbontar et al., 2021,
Bardes et al., 2021, Chen et al., 2020b, Oord et al., 2018, Krishna et al., 2021, Djilali
et al., 2021]. Recent approaches devised for video understanding can be divided into
two categories based on the SSL objective, namely pretext task based and contrastive

learning based.

Pretext task based. The key idea here is to design a pretext task for which
labels are generated in an online fashion, referred to as pseudo labels, without any
human annotation. Examples include: predicting correct temporal order [Misra
et al., 2016], Video Rot-Net [Jing et al., 2018] for video rotation prediction, clip
order prediction [Xu et al., 2019], odd-one-out networks [Fernando et al., 2017],
sorting sequences [Lee et al., 2017], and pace prediction [Wang et al., 2020a]®. All
these approaches exploit raw spatio-temporal signals from videos in different ways
based on pretext tasks and consequently learn representations suitable for varied

downstream tasks.

Contrastive learning based. Contrastive learning approaches bring semanti-
cally similar objects, clips, etc., close together in the embedding space while con-
trasting them with negative samples, using objectives based on some variant of Noise
Contrastive Estimation (NCE) [Gutmann and Hyvérinen, 2010]. The Contrastive
Predictive Coding (CPC) approach [Oord et al., 2018] for images was extended to
videos in DPC [Han et al., 2019] and MemDPC [Han et al., 2020a], which augments
DPC with the notion of compressed memory. Li et al. [Tao et al., 2020] extends the
contrasting mutli-view framework for inter-intra style video representation, while
Kong et al. [Kong et al., 2020] combine ideas from cycle-consistency with con-
trastive learning to propose cycle-contrast. Likewise, Yang et al. [Yang et al., 2020a]

exploits visual tempo in a contrastive framework to learn spatio-temporal features.

Sleverages contrastive learning as an additional objective as well.
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Similarly, [Dave et al., 2022, Bai et al., 2020] use temporal cues with contrastive
learning. VCLR [Kuang et al., 2021] formulates a video-level contrastive objective
to capture global context. In the work presented in this Chapter, we exploit VCLR
as our backbone objective. However, different to pretext tasks in VCLR, which per-
form computation only on frame level, we modify those pretext tasks to not only
operate on frame-level but also on clip-level thereby leading to better modeling of the
spatio-temporal features in videos. See [Schiappa et al., 2022] for a more extensive

review of SSL methods for video understanding.

3.2.3 Motion estimation and learning visual correspondences

for video understanding.

Motion estimation. Two-stream architectures [Feichtenhofer et al., 2016, Si-
monyan and Zisserman, 2014] have exhibited promising performance on the action
recognition task by using pre-computed optical flow, although such approaches re-
duce the efficiency of video processing. Several other methods [Fan et al., 2018, Jiang
et al., 2019, Lee et al., 2018a, Piergiovanni and Ryoo, 2019, Sun et al., 2018b] have
proposed architectures that learn motion internally in an end-to-end fashion. The
work presented in [Li et al., 2021b, Yang et al., 2020b] introduced a motion-specific
contrastive learning task to learn motion features in a self-supervised setting.
Learning visual correspondences.  Many recent works have proposed to
learn visual correspondences between images using neural networks [Fischer et al.,
2015, Han et al., 2017, Lee et al., 2019a, Min et al., 2019, Rocco et al., 2017, Sun
et al., 2018a]. Regarding learning correspondences for video understanding, CPNet
[Liu et al., 2019] introduced a network that learns representations of videos by
mixing appearance and long-range motion features from an RGB input only. Zhao
et al. [Zhao et al., 2018] proposed a method that learns a disentangled representation
of a video, namely static appearance, apparent motion and appearance change from
RGB input only. MotionSqueeze (MS) [Kwon et al., 2020] introduced an end-to-end

trainable, model-agnostic and lightweight module to extract motion features that
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Figure 3.1: The overall architecture consists of two stages: a) Stage 1 involves the
pre-training of the modified ResNet50 encoder (augmented with a MotionSqueeze
layer) with four pretext tasks using a contrastive learning based objective; b) Stage
2 consists of fine tuning of the encoder on the downstream GEBD task.

does not require any correspondence supervision for learning.

3.3 Method

In order to apply a contrastive learning framework to videos specifically for generic
event boundary detection, we follow the framework proposed by VCLR, [Kuang et al.,
2021] and make noticeable modifications to it. For simplicity, the notations are kept

similar to [Kuang et al., 2021] unless otherwise explicitly stated.

3.3.1 SSL for Video Representation Learning

1: Contrastive encoder. Our processing backbone is a ResNet-50 based encoder
equipped with four pretext tasks, as defined in VCLR [Kuang et al., 2021}, trained
following a contrastive objective as defined in MoCo-V2 [Chen et al., 2020c|. Let
x, = T(x,) be an augmented view of an anchor image x, with 7 ~ P (P =
{random scaling, color-jitter, random grayscale, random Gaussian blur, and random

horizontal flip} being set of augmentations) and N~ negative samples. x, and x,
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are processed through query (f;(x,)) and a key (fx(x,)) encoder respectively. In
addition, these encoders are appended with projection heads (MLP layers) to get
low dimensional representations of inputs i.e. ¢ = g,(f,(%4)),p = gr(fx(x,)). The

overall objective can be optimized by InfoNCE loss [Oord et al., 2018]:

eSim(g,p)
Lnee(q,p,N7) = —log ) (3.1)

esim(q,p) | Z?I: . esim(q,n;)

where sim(-, -) is a similarity function. We note that g, and g, can be thought of as
a task-specific projection heads with further details below®.

2: Pre-text setup. In order to capture different generic subtle nuances (spatial
variations, temporal coherency, long range dependencies) for video understanding,
the pretext tasks defined in VCLR [Kuang et al., 2021] are a good candidate for pre-
training as they serve the purpose of capturing such semantics for powerful video
representation from raw video signals. We alter the pretext task setup in VCLR to
ensure that Intra and Inter instance discrimination (ID) tasks operate at frame-level
while computation of the video segment ID and temporal order regularization tasks
occurs at clip-level. Below we elaborate on the intuition behind this notion.

For frame-level pretext tasks, consider three randomly selected frames from a
video, v1, vy and vs. vy that undergo different augmentations to generate v¢ and v; .
N~ represents negative samples from other videos. v{ is processed through query
encoder f,(v¢), while (vy, v, v3) is processed through key encoder fi. (). While
depending upon the pretext, the projection head varies across the tasks.

For clip-level pretext tasks, a video V is divided into K (set to 3) segments
{S1, Sa, ..., Sk} of equal duration. Two tuples, comprising of 4 frame long clips, are
randomly and independently sampled from each of these segments to form an anchor
tuple and a positive tuple. For instance, let ¢ = {u, us, us, us} where ¢, denote
the ordered clip sampled from the k" segment while w;.....u, represent the frames in
that clip. Similarly the anchor and positive tuple are given by t* = {c{,c§,...c%}

and tT = {c],c5,...ck} respectively.

Ssubscript ¢, k in f and g represent the query and key
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a. Intra-frame ID task. In order to model spatial diversity for the GEBD task,
we adopt the intra-frame instance discrimination task proposed in VCLR [Kuang
et al., 2021] to model inherent spatial changes across frames. For this task only v;" is
considered as a positive example while v, and v3 represent negative examples. MLP
heads are given by g and g;, while anchor embedding ¢i = g;(f,(v{)), positive em-
bedding as p; = gi(fi(v])) and the negative sample” embeddings ps = gi( fx(v2)),

p3 = g;.(fr(vs)). The loss objective is given by:
LIntra - ‘CNCE(q(llap;ra {p27p3})' (32)

b. Inter-frame ID task. Detecting generic event boundaries requires encod-
ing fine-grained temporal structures from a coherent action, which are consistent
with each other. To model this, inter-frame instance discrimination task considers
v§ as an anchor frame and (v]", vy, v3) as positive samples while AN/~ as negative
samples. g; and gi are MLP projection heads which output the anchor embed-
ding ¢f = g¢(f,(v%)) and positive embeddings as pt = gf(fu(v7)), p» = g5 (F()).

p3 = g (fr(vs)). Let p’ € {pf,p2, p3}, hence the inter objective becomes:

1 o
'Clnter = g ZENCE(Q?ap 7N ) (33)
p

c. Video segment based ID task. Learning long range temporal diversity in
a video is also crucial for the GEBD task. For capturing the evolving semantics in
the temporal dimension we need to incorporate global video level information. The
contrastive loss objective is chosen in a way that each clip in the clip anchor and
clip positive tuples i.e. t* and ¢+ learn a video-level embedding through consensus

operation (denoted by C) e.g. average. Mathematically this can be represented as:

qg = g;(c | C(fq(ctll))7c(fQ(cg))’ s 7C(fQ(C(II()))7 (34)

"Note: Negative samples comes from the same video i.e. two samples as shown in Eq. (3.2).
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Pl = gi(C [ C(fule))).C(fu(ez)), - - C(flek))), (3.5)

'CSegment = LNCE(qgapj_aN_)- (36)

Here, g7 and gj represent the MLP heads, C(f,(cf)) indicates the average over the
encoder representation of the individual frame in the k™ clip while ¢¢, p; denotes
the final embeddings for anchor and positive clip tuples. The video-level contrastive
loss is given by Lsegment-

d. Temporal order regularization task. In order to enforce inherent se-
quential structure on videos for signalling supervision in self-supervised video repre-
sentation learning, we need a pretext task to learn the correct temporal order of the
video data. This can also be attained through pretext tasks proposed in [Fernando
et al., 2017, Wang et al., 2020a]. However, in this work we restrict ourselves to
use the temporal ordering as a regularization term (denoted by Lorqer) Within the
contrastive framework as explained in Section 3.3 in [Kuang et al., 2021] though we
reformulate it to include clip-level computation.

The modifications made to video segment based ID task and temporal order regular-

ization task in VCLR to incorporate clip-level computation is referred to as cVCLR

(clip-VCLR).

3.3.2 Motion Estimation

For learning motion features we use the MotionSqueeze (MS) module presented in
[Kwon et al., 2020], a learnable motion feature extractor that can be inserted into any
video understanding architecture to learn motion features and replace the external
computation of optical flow. The motion features are learned in three steps:

1: Correlation computation. Consider F) and F**V represent two adjacent
input feature maps of spatial resolution H x W and channel dimension C'. The cor-

relation tensor S is computed by calculating a correlation score for every spatial

70



Understanding Videos by Learning Structured, Robust & Efficient Representations

position x with respect to displacement p following the correlation layer implementa-
tion in FlowNet [Fischer et al., 2015]. The correlation for position x is only computed
in neighborhood size P = 2] + 1 by restricting a maximum displacement p € [—1, []?

and the value of P is set to 15.

2: Displacement estimation. The next step involves estimating the displacement
map of size H x W x 2 from the correlation tensor S®). To get the best matching
displacement for position x, kernal-soft-argmaz [Lee et al., 2019a] is used. In ad-
dition, a motion confidence map (of size H x W x 1) of correlation as auxiliary
motion information is obtained by pooling the highest correlation on each position
x as described in [Kwon et al., 2020]. The motion confidence map helps in identify-
ing displacement outliers and learn informative motion features. The displacement
map is then concatenated with the motion confidence map to create a displacement

tensor D® of size H x W x 3.

3: Feature transformation. In order to convert displacement tensor D® to a
relevant motion feature M® (with the same channel dimension C' as input F®),
D® is passed through four depth-wise separable convolutions [Howard et al., 2017]
similar to [Kwon et al., 2020]. Contrary to [Kwon et al., 2020], in our work, we
apply this feature transformation in a self-supervision setting to learn a displacement
tensor and motion confidence map (generic motion features). Finally, the motion
features M) are added to the input of the next layer using an element-wise addition
operation : F' = F® 1 M® _  The resulting fused feature F'(*) is passed as input

to the next layer. For more details we refer the reader to [Kwon et al., 2020].

3.3.3 Optimisation

The overall contrastive loss objective is given by:

‘Ctotal = ['Inter + 'Clntra + 'CSegment + ‘COrder- (37)
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Our encoder is augmented with an MS module (introduced after conv3_x®) to jointly
learn appearance and motion features. More precisely, a ResNet-50 [He et al., 2016]
model is adopted as the CNN encoder and we insert a TSM* [Lin et al., 2019a]
for each residual block of ResNet. FEach of the four losses contribute equally to
Liota1 although weighing them appropriately might boost performance. The overall

framework is illustrated in Figure 3.1.

3.3.4 Architectural Design Choice

Temporal Shift Module (TSM) [Lin et al., 2019a] is inserted in every residual block
of the ResNet50 encoder. A MotionSqueeze module is added after the conv3_x layer

of the ResNet50 encoder.

Table 3.1: Modified ResNet50 Encoder

Layers ‘ ResNet-50 ‘ Modified ResNet-50 ‘ Output size
convl | 7 X 7,64, stride 2 | 112x112
‘ 3 x 3, max-pool, stride 2 ‘
11,64 1 3811\164
conv2_x 3x3,64| x3 ’ x 3 56 X 56
1% 1,256 33,64
' [ 1% 1,256
1x1,128 1 E?I\i%
conv3.x 3% 3,128 x4 ' x4 28 x 28
1% 1,128 33,128
' [1x 1,128
MS Module | X | v 28 % 28
1x 1,256 ) 3?1\;6
convd_x 3%3,256 | x6 3v3 2;6 x 6 14 x 14
1x1,1024 '
[1x1,1024]
1x1,512 1 3?1\212
convh_x 3x3,512 | x3 3% 3’ 512 X 3 Tx7
1x1,2048 |1 x 1,2048

It should be noted that our encoder definition is consistent with the architecture
design introduced in ResNet [He et al., 2016] and is different from the encoder in

the work of MotionSqueeze in [Kwon et al., 2020] as shown in Table 3.1.
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Table 3.2: F1 scores on the Kinetics-GEBD validation set with Relative Distance
threshold ranging from 0.05 to 0.5 with step of 0.05. i: soft-labels, {: hard-labels.
* is pretrained on Kinetics-400 [Kay et al., 2017] dataset.

Rel. Dis Threshold Finetuning  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg
BMN't [Lin et al., 2019Db] X 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241 | 0.223
BMN-SE [Lin et al., 2019b] X 0.491  0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683 | 0.640
TCN-TAPOS [Lea et al., QU]GbJ‘ v 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687 | 0.627
TCN [Lea et al., 2016b] X 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712 | 0.685
Supervised PC [Shou et al., 202]]‘ v 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 | 0.817
SBoCo-Res50 [Kang et al., 2021b] X 0.732 - - - - - - - - - 0.866
SBoCo-TSN [Kang et al., 2021b] X 0.787 - - - - - - - - - 0.892
DDM-Net [Tang et al., 2021]t X 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 | 0.873
Li et.al. [Li et al., 2022})]1 X 0.743 0.830 0.857 0.872 0.880 0.886 0.890 0.893 0.896 0.898 | 0.865
SC-Transformer [Li et al., 2022a]* X 0.777 0.849 0.873 0.886 0.895 0.900 0.904 0.907 0.909 0.911 | 0.881
SceneDetect [Catellano, 2014] X 0.275 0.300 0.312  0.319 0.324 0327 0330 0.332  0.334  0.335 | 0.318
PA - Random [Shou et al., 2021] X 0.336  0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 | 0.506
PA [Shou et al., 2021] X 0.396  0.4838 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 | 0.527
Un-supervised UBoCo-Res50 [Kang et al., 2021b] X 0.703 - - - - - - - - - 0.866
UBoCo-TSN [Kang et al., 2021b]* X 0.702 - - - - - - - - - 0.892
TeG-PS [Qian et al., 2021a] v 0.699 - - - - - - - - - -
(Self-supervised) TeG-FG [Qian et al., 2021a]' v 0.714 - - - - - - - - - -
Ours’ v 0.680 0.779 0.806 0.818 0.825 0.830 0.834 0.837 0.839 0.841 0.809
Ourst 4 0.711  0.777 0.791 0.795 0.798 0.799 0.801 0.802 0.802 0.803 0.788

3.4 Experimental Setup

3.4.1 Implementation Details.

Stage 1: Pre-training. We closely follow VCLR [Kuang et al., 2021] to train the
encoder. The model was pre-trained end-to-end with the objective as defined in
Eq. (3.7) on 2 NVIDIA GeForce RTX-2080Ti GPUs with an effective batch size (B)
of 8 distributed across the GPUs (4 each) with temperature set to 0.01 across all pre-
text tasks. The input to the frame level and clip level pretext task is (B, 3, 3,224, 224)
and (B, K, 4, 3,224, 224) respectively with K = 3. TSM* and MotionSqueeze is only
applied on clip level task. The encoder is initialised to MoCo-v2 [Chen et al., 2020c]
weights with negative samples N~ (queue size) set to 8192 and is trained with SGD
for 400 epochs with a warm-start of 5 epochs following a cosine decay with base
learning rate of 0.01. Pre-training is only performed on the Kinetics-GEBD [Shou
et al., 2021] dataset.

Stage 2: Finetuning. Input to the encoder is based on the temporal window
(W=5) which defines a context over a candidate frame (before and after) with a
stride m = 3? resulting into a 4D tensor (10,3,224,224) as input. (W, m) can

be thought of as hyper-parameter, setting a larger value of each might introduce

Snotation as in [He et al., 2016]
9selecting one frame out of every 3 consecutive frames
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Table 3.3: F1 scores on the TAPOS validation set with Relative Distance threshold
ranging from 0.05 to 0.5 with step of 0.05. i: soft-labels, T: hard-labels. (-) : Not
clear.

Rel. Dis Threshold Finetuning  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

ISBA [Ding and Xu, 2018] 0.106  0.170  0.227 0.265 0.298 0.326 0.348 0.369 0.376  0.384 | 0.314
TCN [Lea et al., 2016b] 0.237 0312 0331  0.339  0.342  0.344  0.347 0348 0.348 0.348 | 0.330
CTM [Huang et al., 2016] 0244 0312 0.336  0.351 0361 0.369 0.374 0.381 0.383  0.385 | 0.350
Supervised Transparser [Shao et al., 2020a] 0.289 0.381 0.435 0475 0.500 0.514 0.527 0.534 0.540 0.545 | 0.474
PC [Shou et al., 2021] 0.522  0.595 0.628 0.647 0.660 0.666 0.672 0.676 0.680 0.684 | 0.643
DDM-Net [Tang et al., 2021] 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 | 0.728
SC-Transformer [Li et al., 2022a]* 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 | 0.742

SceneDetect [Catellano, 2014] 0.035  0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 | 0.051
Un-supervised PA - Random [Shou et al., 2021] 0.158 0.233  0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384 | 0.314
PA [Shou et al., 2021] 0.360  0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 | 0.543
(Self-supervised) Ours’ 0.573  0.614 0.639 0.656 0.669 0.679 0.687 0.693 0.700 0.704 | 0.661
Ourst 0.586 0.624 0.648 0.663 0.675 0.685 0.692 0.697 0.704 0.708 | 0.668

NN X X X[ XX\ 0 X

noise information when two different boundaries lie close to each other, a smaller
value might be unable to capture the necessary context information for a boundary.
Among the 5 annotations available for Kinetics-GEBD for every video, the ones
with highest annotator F1 consistency score is used for fine-tuning. We fine-tune
the model end-to-end with a binary cross entropy (BCE) (boundary is 0/1) as the
objective augmented with Gaussian smoothing (0 = 3) for soft labeling as in [Li
et al., 2022a]. The learning rate set to 7.5e~* for Kinetics-GEBD, while for TAPOS

it was set to le ™.

Balance sampling is applied to each batch during training to
avoid class imbalance. We finetune the model for 8 epochs and use early stopping
to find the best model.

To select the final boundary predictions for the video, we apply post-processing
scheme on the obtained boundary proposals. First, proposals should be greater then
a threshold of 0.5. Second, we aggregate all the proposals within a 1 second time

window. The code for reproducing the results presented in this Chapter is available

at https://github.com/rayush7/motion_ssl_gebd.

3.4.2 Evaluation Protocol.

We conduct evaluation on two datasets Kinetics-GEBD [Shou et al., 2021] and
TAPOS [Shao et al., 2020a]. For evaluation, we follow the standard evaluation
protocol explained in [Shou et al., 2021], which uses the F1 score as the measure-

ment metric. Rel. Dis (Relative Distance) is used to decide whether a detected
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Figure 3.2: Qualitative Analysis I: visualization of some detected boundaries on the
validation set of Kinetics-GEBD. Compared with baseline PC [Shou et al., 2021],
our method produces more precise boundaries that are consistent with the ground
truth.

event boundary is correct (if detection probability > 0.5) or otherwise incorrect.
More formally, Rel. Dis is defined as the error between detected and ground-truth
timestamps, divided by the length of the whole video. F1 score calculated at Rel.
Dis threshold 0.05 was used as the evaluation metric for the GEBD challenge'®
We compare our detection results with all annotations (5 annotations per video for
Kinetics-GEBD and 1 annotation for TAPOS) in the same video and select the

annotation with the highest F'1 score.

3.4.3 Results

We perform extensive quantitative and qualitative studies on the given datasets. In
Tables 3.2 and 3.3, we report F1 scores for different thresholds ranging from 0.05 to
0.5 with a step of 0.05, for the Kinetics-GEBD and TAPOS datasets respectively.
On the Kinetics-GEBD dataset, our model outperforms the supervised baseline PC

[Shou et al., 2021] with Rel. Dis threshold 0.05 and is also comparable with other

WLOVEU@QCVPR2021, LOVEUQCVPR2022
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Table 3.4: Ablation study on validation set of TAPOS and Kinetics-GEBD for F1
score at Rel. Dis threshold 0.05

Method TAPOS  Kinetics-GEBD
Vanilla VCLR 0.496 0.596

cVCLR 0.502 (1) 0.605 (1)

+ MotionSqueeze 0.573 (1) 0.680 (1)

+ Soft labels 0.586 (1) 0.711 (1)

state-of-the-art unsupervised /self-supervised GEBD models like UBoCo [Kang et al.,
2021b] and TeG [Qian et al., 2021a] in terms of performance. Table 3.2 illustrates
the result on the Kinetics-GEBD dataset. On the TAPOS dataset, which consists
of Olympic sport videos with 21 action classes, we have a similar observation. Our
model outperforms the supervised baseline PC [Shou et al., 2021] at the Rel. Dis
threshold of 0.05 and is comparable on other thresholds. Other state-of-the-art
methods on TAPOS like DDM-Net [Tang et al., 2021} and SC-Transformer [Li et al.,
2022a] fall in the supervised category and cannot be directly compared with our
results. We were unable to find other state-of-the-art un/self-supervised models
for GEBD to directly compare our results with, on the TAPOS dataset shown in

Table 3.3.

We also perform a qualitative analysis of boundaries detected by our method and
compare them with the supervised baseline PC [Shou et al., 2021] and the ground
truth annotation in Figure 3.2. Figure 3.3 shows a visualization of the motion
confidence map learned by the MS module during pre-training. We observe that
motion confidence generalizes well to the TAPOS dataset too, which was not used
for pre-training. This validates that the MS module learns general motion features
even in a self-supervised setting without any explicit motion specific pretext task.
In addition, our model’s event boundary detection results on the TAPOS dataset
further justifies that our model is a generic event boundary detector, as after fine-
tuning it generalizes beyond Kinetics-GEBD dataset to the TAPOS benchmark. We
also found that linear evaluation (freezing the encoder) on the downstream GEBD

task resulted in poor performance.
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Figure 3.3: Qualitative Analysis II: visualization of the learned motion confidence
map. The first two blocks (categories: jumping on trampoline and situp respec-
tively) are taken from the Kinetics-GEBD dataset, while the bottom block (cat-
egory: uneven bar) is derived from TAPOS. In each block, the first row shows
the RGB frames while the second depicts the motion confidence map learnt by the
model. Note: the model is only pre-trained on Kinetics-GEBD but it generalizes
to the TAPOS dataset as well.
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3.4.4 Ablation Studies

1: Does MotionSqueeze through self-supervision helps? As shown in Fig-
ure 3.3, the MS module shows high confidence in regions of images that are more
dynamic. The module learns optical flow in an online fashion even under self-
supervision. Intuitively, temporal order regularization and video segment instance
discrimination pre-text tasks implicitly complements the MS module to learn generic
motion features. From Table 3.4, we observe that by incorporating the MS module,
the F1@0.05 score on the GEBD task increases by 7.5% on Kinetics-GEBD and
7.1% on TAPOS, which is a significant increase.

2: Does soft labelling helps in boosting the performance? Kinetics-GEBD
has 5 annotators to capture human perception differences but this introduces ambi-
guity. Ideally the neighbouring frames of the candidate boundary frame should also
have a high value of the ground truth label. To tackle this issue, we use Gaussian
smoothing (o = 3) to create soft labels from hard labels, which ensures that model
avoids making over confident predictions for the event boundary. As shown in Table
3.4, soft labels improves the F1@0.05 score by 3.1% on Kinetics-GEBD and 1.3%
on TAPOS dataset.

3.5 Conclusions and Discussion

This Chapter addresses the hypothesis H; (Chapter 1) which deals with the notion
of embedding a structure into the learned video representation by designing relevant
self-supervised pretext tasks. In particular, the goal of this chapter is to evaluate R4
: How can we leverage the power of SSL to capture spatio-temporal diversities and
relationships involved in videos? and Rg : How can we develop an SSL framework for
video understanding that accounts for both appearance and motion features? Do we
need an explicit motion-specific training objective, or can this be implicitly achieved?

The downstream task selected for this study is the task of GEBD (Chapter 2,3).

To summarise in this Chapter, we presented a self-supervised model that can
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be pre-trained for the GEBD task. The GEBD task is an ideal problem for self-
supervised learning given that the task aims to learn generic boundaries and is
not biased towards any predefined action categories from pre-trained state-of-the-
art action recognition models. In order to learn spatial and temporal diversity
we reformulate SSL objective at frame-level and clip-level to learn effective video
representations (c(VCLR) (answering R;). In addition we augment our encoder
with a MS module and find this indeed compliments the overall performance on the
downstream GEBD task. Furthermore, the motion features learnt are generic since
the model is only pre-trained on Kinetics-GEBD but generalizes to TAPOS dataset
as well (answering R»). Through our extensive evaluation, we achieve comparable
performance to self-supervised state-of-the-art methods on the Kinetics-GEBD as
shown in Table 3.2.

However, there are limitations with the work presented in this Chapter. First,
we have not used more powerful models, e.g. transformers as in [Li et al., 2022a],
or cascaded networks as in [Hong et al., 2021]. Second, since MS module is directly
applied on feature maps, it learns global motion features. However, in GEBD the
boundaries are generic and every type of motion may not indicate a boundary,
hence a more fine-grained motion module can boost the performance. Third, due
to computational constraints, our self-supervised model is only pre-trained on the
Kinetics-GEBD dataset; however, pre-training the model on Kinetics-400 could yield

even better performance on the downstream GEBD task.
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Chapter 4

Robust Video Representation

Learning

In this chapter, we examine how to embed robustness into learned video represen-
tations in a self-supervised setting. To this end, we investigate Hy (R3, Ry), as
introduced in Chapter 1, which posits that robustness to spatio-temporal pertur-
bations can be achieved by exposing the model to near-distribution (PAs) samples
during SSL pre-training while retaining its sensitivity to real-world anomalies. To
verify Ha, we investigate the VAD task within the OCC setting. From the avail-
able normal data, we generate near-distribution samples or PAs, using generative
models such as diffusion models [Rombach et al., 2022] or availing of mixup aug-
mentation [Zhang et al., 2018] to distort the optical flow [Zach et al., 2007] and
use them for pre-training the VAD framework. The spatial, temporal and semantic
information extracted from PAs also facilitate the aggregation of several anomaly
indicators, which can further help in detecting real-world anomalies. The anomaly
detection performance achieved by our model is competitive against the other state
of-the-art reconstruction based methods. The research resulting from this work was
published at the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshop, Seattle, 2024.
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4.1 Motivation

Video Anomaly Detection (VAD) is an open-set recognition task, which is usu-
ally formulated as a one-class classification (OCC) problem, where training data
is comprised of videos with normal instances while test data contains both normal
and anomalous instances. Recent works have investigated the creation of pseudo-
anomalies (PAs) using only the normal data and making strong assumptions about
real-world anomalies with regards to the abnormality of objects and their speed in
order to inject prior information about anomalies in an autoencoder (AE) based
reconstruction model during training. This Chapter proposes a novel method for
generating generic spatio-temporal PAs by inpainting a masked-out region of an im-
age using a pre-trained Latent Diffusion Model and further perturbing the optical
flow using mixup to emulate spatio-temporal distortions in the data. In addition,
we present a simple unified framework to detect real-world anomalies under the
OCC setting by learning three types of anomaly indicators, namely reconstruction
quality, temporal irregularity and semantic inconsistency. Extensive experiments on
four VAD benchmark datasets, namely Ped2, Avenue, ShanghaiTech and UBnormal,
demonstrate the effectiveness of our work against other existing state-of-the-art PAs
generation and reconstruction-based methods under the OCC setting. Our analysis
also examines the transferability and generalisation of PAs across these datasets,

offering valuable insights by identifying real-world anomalies through PAs.

Video Anomaly Detection [Liu et al., 2018a, Liu et al., 2021, Ionescu et al.,
2019a, Zaheer et al., 2020a, Gong et al., 2019a, Park et al., 2020, Astrid et al.,
2021a, Astrid et al., 2021b, Sultani et al., 2018, Pourreza et al., 2021, Georgescu
et al., 2021b, Georgescu et al., 2021a, Ji et al., 2020, Wang et al., 2022a, Zaheer et al.,
2022b] refers to the task of discovering the unexpected occurrence of events that are
distinct and follow a deviation from known normal patterns. The rarity of anomalies
in the real-world and the unbounded nature (open-set recognition [Geng et al.,
2020]) of their diversities and complexities have led to unbalanced training datasets

for VAD, making it an extremely challenging task. Therefore VAD is commonly
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Figure 4.1: The overall architecture of our approach consists of spatio-temporal PAs
generators. Spatial PAs generator (eq. 4.2) : Fy(stack(x,x ® m, m);#)and tempo-
ral PAs (eq. 4.3) : Fi(¢(x¢,X+1))). The spatial and temporal PAs are sampled
with probabilities p, and p;, respectively. Our VAD framework unifies estimation
of reconstruction quality (eq. 4.4), temporal irregularity (eq. 4.5) and semantic
inconsistency.

addressed as an OCC problem where only normal data is available to train a model
[Hasan et al., 2016, Zhao et al., 2017a, Luo et al., 2017d, Luo et al., 2017a, Gong
et al., 2019a, Park et al., 2020, Astrid et al., 2021a, Astrid et al., 2021b, Georgescu

et al., 2021a, Liu et al., 2021].

Reconstruction-based approaches exploiting an AE are usually adopted to tackle
the OCC task [Astrid et al., 2021a, Astrid et al., 2021b, Park et al., 2020, Gong
et al., 2019a]. The intuition behind this is that during training, the AE would learn
to encode normal instances in its feature space with the assumption that during
the test phase a high reconstruction error would correspond to an anomaly and a
low reconstruction error would indicate normal behaviour. Contrary to this, [Gong
et al., 2019a, Astrid et al., 2021a, Zaheer et al., 2020a] observed that when trained
in this setting, the AE learns to reconstruct anomalies with high accuracy, resulting
in a low reconstruction error in the testing phase. Hence, the capability of the AE

to distinguish normal and anomalous instances is greatly diminished (Figure la in

[Astrid et al., 2021a]).

[Park et al., 2020, Gong et al., 2019a] introduced a memory-based AE to restrict
the reconstruction capability of the AE by recording prototypical normal patterns

during training in the latent space therefore shrinking the capability of the AE to
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reconstruct anomalous data. However, such methods are highly sensitive to memory
size. A small-sized memory may hinder reconstruction of normal data as memorising
normal patterns can be interpreted as severely limiting the reconstruction boundary
of the AE, resulting in failure to reconstruct even the normal events during the

testing phase (Figure 1b in [Astrid et al., 2021a).

Astrid et al. [Astrid et al., 2021a] proposed the generation of two types of
PAs (patch based and skip-frame based) to synthetically simulate pseudo-anomalous
data from normal data and further introduced a novel training objective for the
AE to force the reconstruction of only normal data even if the input samples are
anomalous. Patch based PAs are generated by inserting a patch of a specific size
and orientation from an intruder dataset (e.g. CIFAR-100) using the SmoothMixS
[Lee et al., 2020a] data augmentation method while in order to create skip-frame
based PAs, a sequence of frames is sampled with irregular strides to create anomalous
movements in the sequence. The intuition behind this training procedure is based on
limiting the reconstruction boundary of the AE near the boundaries of the normal
data resulting in more distinctive features between normal and anomalous data
(Figure 1c in [Astrid et al., 2021a]). A notable limitation of the approach proposed
in Astrid et al. [Astrid et al., 2021a] is its heavy reliance on a predefined set of
assumptions and inductive biases. These assumptions encompass various aspects,
including the specific intruding dataset selected for patch insertion, the patch’s size
and orientation, and the idea that altering the movement speed by skipping frames

could introduce temporal irregularities into the normal data.

With such assumptions, there is no guarantee that the test anomalies which
comprise of an unbounded set of possible anomalous scenarios would comply with
pseudo-anomalous samples. This creates a need for more generic solutions for cre-
ating PAs from the normal data. Since VAD is an open-set recognition problem
and anomalies present an inexhaustible set of possibilities, every pseudo-anomaly
synthesiser carries strong or weak inductive biases and thus it is inherently chal-

lenging to emulate real-world anomalies through PAs. Furthermore, there are other
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challenges, such as the fact that certain normal behaviours are rare but possible and
therefore not well represented in the normal data. This presents an interesting re-
search question: “Is it possible to synthetically generate generic PAs by introducing
spatio-temporal distortions into normal data in order to detect real-world anomalies
effectively?, and importantly, can such PAs transfer across multiple VAD datasets?”

Our work is motivated by [Astrid et al., 2021a] and extends it by addressing its
drawbacks and proposing a more generic PAs generator. We focus on generating
PAs by injecting two different types of anomaly indicators, the first being distortion
added through image inpainting performed by a pre-trained latent diffusion model
(LDM) [Rombach et al., 2022], the second being the addition of temporal irregular-
ity through perturbation of the optical flow [Zach et al., 2007] using mixup [Zhang
et al., 2018]. Our simple VAD pipeline focuses on reconstructing the spatio-temporal
PAs and also measures the semantic inconsistency between normal samples and PAs
using semantically rich ViFi-CLIP [Rasheed et al., 2023] features. This unifies es-
timation of reconstruction quality, temporal irreqularity and semantic inconsistency
under one framework. We conduct an extensive study on understanding the gen-
eralisation and transferability of such PAs over real-world anomalies. Overall, our

main contributions are:

e We propose a novel and generic spatio-temporal pseudo-anomaly generator for
VAD encompassing inpainting of a masked out region in frames using an LDM

and applying mixup augmentation to distort the optical flow.

e We introduce a simple unified VAD framework that measures and aggregates
three different indicators of anomalous behaviour, namely reconstruction qual-

ity, temporal irregularity and semantic inconsistency in an OCC setting.

e Extensive experiments on Ped2, Avenue, ShanghaiTech and UBnormal show
that our method though not objectively state-of-the-art (SOTA) achieves com-
parable performance to other existing SOTA PAs generation and reconstruc-

tion based methods under the OCC setting (Table 4.4, 4.3) without any end-
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to-end finetuning or any post-processing. This validates our hypothesis that
our method is a generic video anomaly detector and our spatio-temporal PAs

generation process is transferable across multiple datasets.

4.2 Related Work

4.2.1 Restricting Reconstruction Capacity of an AE

A standard approach to address VAD is to adopt an OCC strategy by training an
AE model to reconstruct the input data [Hasan et al., 2016, Zhao et al., 2017a, Luo
et al., 2017d, Luo et al., 2017a, Gong et al., 2019a, Park et al., 2020, Astrid et al.,
2021a]. During training, only normal inputs are used for learning the AE with the
assumption that reconstruction of anomalies during testing would yield a higher
reconstruction error. However, in practice it has been shown that the AE can also
reconstruct anomalous data [Gong et al., 2019a, Astrid et al., 2021a, Zaheer et al.,
2020a]. [Gong et al., 2019a, Park et al., 2020] mitigated this issue by augmenting the
AE with memory-based techniques in the latent space to restrict the reconstruction
capability of an AE. However the performance of such methods are directly impacted
by the choice of the memory size, which may over-constrain the reconstruction power
of the AE resulting in poor reconstruction of even the normal events during testing.

To alleviate this issue, [Astrid et al., 2021a, Astrid et al., 2021b] utilised data-
heuristic based PAs built on strong assumptions to limit the reconstruction capacity
of the AE. Patch-based PAs were generated by inserting a patch from an intruding
dataset (CIFAR-100) into the normal data by using techniques such as Smooth-
MixS [Lee et al., 2020a]. For modeling motion-specific anomalous events, PAs were
generated by skipping frames with different strides to induce temporal irregular-
ity. The training configuration was set up to minimise the reconstruction loss of
the AE with respect to the normal data only. PAs can be interpreted as a type
of data-augmentation [Bengio et al., 2011, Krizhevsky et al., 2012b], where instead

of creating more data of the same distribution, pseudo-anomalous data is created
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that belongs to a near-distribution i.e. between the normal and anomaly distri-
butions. [Tang et al., 2020b, Zhang et al., 2019] adopted adversarial training to
generate augmented inputs, which were also effective as an adversarial example for

the model.

Our method falls into the category of restricting the reconstruction capability of
an AE. Inspired by the method introduced in [Astrid et al., 2021a], we propose a
novel technique for simulation of generic spatio-temporal PAs without making bold

assumptions about dataset specific anomalies.

4.2.2 Generative Modeling

Generative models have been used to generate out of distribution (OOD) data for
various applications in semi-supervised learning (Bad GAN [Dai et al., 2017], Mar-
gin GAN [Dong and Lin, 2019]), anomaly detection (Fence GAN [Ngo et al., 2019)),
OOD detection (BDSG [Dionelis et al., 2020, Du et al., 2022]), medical anomaly
detection [Wolleb et al., 2022] and novelty detection [Mirzaei et al., 2023]. How-
ever, such methods mostly work with low dimensional data and are not suitable for
generating OOD data for VAD. OGNet [Zaheer et al., 2020a, Zaheer et al., 2022a]
and G2D [Pourreza et al., 2021] exploit a GAN-based generator and discriminator
for VAD. During the first phase of training, a pre-trained state of the generator is
used to create PAs while in the second phase, binary classification is performed to

distinguish between normal and PAs samples.

Several VAD works have exploited DMs though their specific methodologies and
goals vary. [Tur et al., 2023a, Tur et al., 2023b, Yan et al., 2023] focus on recon-
struction and prediction of spatio-temporal and compact motion features extracted
from 3D-ResNet/3D-ResNext based encoders using an end-to-end trainable DM.
We design our model from the perspective of generating generic spatio-temporal
PAs where a generative model (pre-trained LDM) is availed to generate spatial PAs

while the mixup method is exploited to create temporal PAs from optical flow.
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4.2.3 Other VAD Methods

Non-Reconstruction Based Methods: Various non-reconstruction based meth-
ods have also been proposed which derive their anomaly scores from various different
indicators of anomaly in addition to reconstruction loss. The work presented in [Liu
et al., 2018a] utilised a future frame prediction task for VAD and estimated optical
flow and gradient loss as supplementary cues for anomalous behaviour. [Georgescu
et al., 2021a, Ionescu et al., 2019a] performed object detection as a pre-processing
step under the assumption that anomalous events are always object-centric. Several
other works added optical flow components [Ji et al., 2020, Lee et al., 2020b] to detect
anomalous motion patterns and a binary classifier [Zaheer et al., 2020a, Pourreza
et al., 2021] to estimate anomaly scores. In our work, we also use a segmentation
mask and optical flow to generate corresponding spatial and temporal PAs during
the training phase. However during inference we do not carry out any object detec-
tion and perform anomaly detection solely based on reconstruction of whole images

and optical flow.

Non-OCC methods: [Georgescu et al., 2021a] introduced a self-supervised method
where different pretext tasks such as arrow of time, middle-box prediction, irregular
motion discrimination and knowledge distillation were jointly optimised for VAD.
[Wang et al., 2022a] adopted a self-supervised single pre-text task of solving de-
coupled temporal and spatial jigsaw puzzles Several works have also addressed the
VAD problem as a weakly supervised problem through multiple instance learning
[Sultani et al., 2018, Wu et al., 2020, Zhu et al., 2022, Zhang et al., 2023a]. Unsu-
pervised VAD methods involve the cooperation of two networks through an iterative
process for pseudo-label generation [Zaheer et al., 2022b, Pang et al., 2020, Zaheer
et al., 2020c, Zaheer et al., 2020b, Zaheer et al., 2020d, Lin et al., 2022|. Zero-
shot VAD was introduced in [Aich et al., 2023] where a model was trained on the
source domain to detect anomalies in a target domain without any domain adapta-
tion. USTN-DSC [Yang et al., 2023] a proposed video event restoration framework

for VAD while EVAL [Singh et al., 2023] presented a technique for video anomaly
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localisation allowing for human interpretable explanations.
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Figure 4.2: Qualitative Assessment: Visualisation of spatial and temporal PAs using
segmentation masks. This approach also works with random masks.

4.3 Method

4.3.1 Preliminaries

Latent Diffusion Models (LDMs): Diffusion Probabilistic Models (DMs) [Sohl-
Dickstein et al., 2015, Ho et al., 2020, Song et al., 2020] are a class of probabilistic
generative models that are designed for learning a data distribution pqag.(x). DMs
iteratively denoise a normally distributed variable by learning the reverse process of
a fixed Markov Chain of length T through a denoising score matching objective [Song

et al., 2020] given by:

EprdataaTNpTveNN(OyI) [y — fo(x7;¢,7)] |§]a (4.1)

where X ~ Pgata, the diffused input can be constructed by x, = a,x+0,€, ¢ ~ N(0,1)
and is fed into a denoiser model fy, (0., ;) denotes the noise schedule parameterised
by diffusion-time 7, p, is a uniform distribution over 7, ¢ denotes conditioning
information and the target vector y is either the random noise € or v = a, € — o, X.

The forward diffusion process corresponds to gradual addition of the Gaussian noise
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to x such that the logarithmic signal-to-noise ratio A, = log(a?/0?) monotonically
decreases.

LDMs [Rombach et al., 2022] were proposed to make standard DMs efficient by
training a VQGAN [Esser et al., 2021] based model to project input images i.e. x ~
Pdate into a spatially lower dimensional latent space of reduced complexity and then
reconstructing the actual input with high accuracy. In particular, a regularised AE
[Rombach et al., 2022] is used to reconstruct the input x such that the reconstruction
is given by : X = fge o fon(x)! = x, where f,, and f4, denotes encoder and decoder
respectively. Furthermore an adversarial objective is added using a patch-based
discriminator [Isola et al., 2017] to ensure photorealistic reconstruction. DM is then
trained in the latent space by replacing x with its latent representation z = fe,(x)

in eq. (4.1). This leads to reduction in number of learnable parameters and memory.

4.3.2 Generating Spatial-PAs

Real world anomalies are highly context specific without having a ubiquitous defi-
nition. Ramachandra et al. [Ramachandra et al., 2020b] loosely define them as, the
“occurrence of unusual appearance and motion attributes or the occurrence of usual
appearance and motion attributes at an unusual locations or times”. Examples of
such cases include: an abandoned object in a crowded area or suspicious behaviour
of an individual. We address this notion of occurrence of unusual appearance at-
tributes through generation of spatial PAs.

Since LDMs achieve state-of-the-art performance on the image inpainting task,
they can be exploited as a spatial PAs generator. In particular, we hypothesise
that an off-the-shelf pre-trained LDM model [Rombach et al., 2022] without any
finetuning on VAD datasets can inpaint the image with enough spatial distortion
that can serve as spatially pseudo-anomalous samples for training a VAD model.
We follow the mask generation strategy proposed in LAMA [Suvorov et al., 2022] to

generate both randomly shaped and object segmentation masks m. We concatenate

Lo : denotes function composition
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image x, masked image x ® m ? and mask m over the channel dimension and give
this 7 channel input to UNet [Ronneberger et al., 2015]. We denote the normal data

samples as x unless otherwise explicitly stated. The spatial PAs P,(x) is given by:

Ps(x) = Fs(stack(x,x @ m, m);0), (4.2)

where Fs is the inpainting model that uses latent diffusion with pre-trained model
parameters . Some examples of the spatial PAs are shown in Figures 4.2a and 4.2b.

We avoid regress tuning of LDM hyperparameters due to limited available compute.

4.3.3 Generating Temporal-PAs

We address the notion of unusual motion occurrences (such as person falling to
ground) through the generation of temporal PAs. Various video diffusion models
[He et al., 2022b, Ho et al., 2022, Voleti et al., 2022] have been proposed, which
can be exploited to induce temporal irregularity in the video. However due to
limited computational resources, we introduce a simple but effective strategy for the
generation of temporal PAs by applying a vicinal risk minimisation technique mixup
[Zhang et al., 2018] to the optical flow of the normal videos. More specifically, given
a normal video v, its frame x¢, and its corresponding segmentation mask m¢ and
another consecutive frame X1y, we compute the optical flow ¢(x¢,X(t11)) using
the TVL1 alogrithm [Zach et al., 2007]. For simplification, we use ¢ as an alias to
represent ¢(X¢, X(t4+1)). Let us consider a rectangular patch p’ in ¢ corresponding
to the mask my in the frame x; with dimensions u; and p,. In order to perturb
the optical flow ¢, we take another rectangular patch p,” at a random location in
¢ with the same dimensions as p’ and apply mixup to yield p, which is a convex
combination of p’ and p,’ given by : p = Ap’ + (1 — \)p,/, where X is sampled from
a beta distribution with v = 0.4 as in [Zhang et al., 2018]. We denote the temporal

PAs as P(x) given by:

2® : denotes point-wise multiplication
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Pi(x) = Fu(d(xe, X(641))), (4.3)

where F; is the temporal PAs generator. Some examples of temporal PAs are de-
picted in Figure 4.2a. It is important to note that our PAs generation method
does not explicitly require segmentation masks, it can also generate PAs using ran-
dom masks. Since segmentation masks carry semantic meaning, using them enables
generation of more semantically informative PAs as further validated by our exper-

iments.

4.3.4 Reconstruction Model

During training regardless of the input (Z) i.e normal (x/¢) or PAs (Py(x)/P(x)),
the network is forced to reconstruct only the normal input using a 3D-CNN (Convo-
lutional Neural Network) based AE model adapted from the convolution-deconvolution

network proposed by [Gong et al., 2019a] (Table 4.2).

We train two different AEs with the aim of limiting their reconstruction capacity
by exposing them to spatial and temporal PAs. We represent the spatial (temporal)
AE by A5(A") with A(AL) and A5 (AL, ) denoting its encoder and decoder respec-
tively. The reconstruction output of A® is given by : X = Aj, o A%(x) while the
reconstruction output of A’ is computed by : ¢ = Al o AL(¢). In order to train
A® and A’ PAs (Ps(x) or P,(x)) are given as respective inputs with a probability
ps (or p;) while the normal data is provided as input with probability of (1 — py)
(or (1 —p;)). ps (or py) is a hyperparameter to control the ratio of PAs to normal

samples. Overall, the loss for A* and A’ is calculated as:

1 | 11x—x]|3 ifZ=x
Ly = o (4.4)

1Ps(x) = x5 if T =Py(x),
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1| lle—ol3 if 7= ¢
EA(t):ﬁ (45)

||73t(X) - ¢||% if 7 = Py(x),

where 1/II is normalisation factor, II =7 x C' x H x W and ||.||2 is the £y norm,
where 7,C, H and W are the number of frames, channels, height, and width of
frames in the input sequence (Z), respectively. The design of A*(A") is purposefully
chosen to be simplistic (3D-CNN) instead of complex models (vision transformers
[Dosovitskiy et al., 2020], 3D ResNets/ResNexts [Hara et al., 2018, Xie et al., 2017])
to explore the degree to which the results can be enhanced by incorporating simple

methods.

4.3.5 Estimating Semantic Inconsistency

While measuring the spatial reconstruction quality and temporal irregularity be-
tween normal and anomalous data is essential for real-world VAD, it is also crucial
to learn and estimate the semantic inconsistency (degree of misalignment of seman-
tic visual patterns and cues) between normal and anomalous samples (e.g. abnormal
object in the crowded scene). In practice, to emulate this idea in our approach, we
extract frame-level semantically rich features from the ViFi-CLIP [Rasheed et al.,
2023] model (pre-trained on Kinetics-400 [Kay et al., 2017]) and perform binary
classification between normal data samples x and spatial pseudo-anomalies Ps(x)
using a discriminator D, (Table 4.1), which can be viewed as an auxiliary component
to AEs. Intuitively, it is highly likely that latent space representation of PAs will be
semantically inconsistent to the normal scenarios. Our overall architecture is shown

in Fig. 4.1.
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4.4 Experimental Setup

4.4.1 Implementation Details

(a): UBnormal data-split under OCC Setting. In order to use this dataset
in the one class classification (OCC) setting, we train our model using only the
normal 186 videos in the training split and the pseudo-anomalies (PAs) generated
using them (i.e. totally ignoring the abnormal samples provided in the train set).
We tested our model on all the videos in the validation split, comprising of 64
videos with both normal and abnormal events. Such a setting was chosen to keep
consistency in evaluation as with other datasets under the OCC setting. The frame-
level groundtruth annotation for validation set of UBnormal [Acsintoae et al., 2022]

was created using the script® provided by the authors.

(b): Pseudo-Anomaly Construction. We take an off-the-shelf Latent Diffusion
Model [Rombach et al., 2022] (LDM?) pre-trained on the Places dataset [Zhou et al.,
2017]. We do not perform any finetuning of the LDM on any video anomaly dataset
and therefore it is “under-trained” on video data and hence capable of spatially
distorting them. For inpainting the masked out regions of the images, 50 steps of
inference were carried out. It is to be noted that due to lack of computational
resources we did not experiment with other values of timesteps or any end-to-end
finetuning. A very low number of timesteps may produce mostly noisy inpainting
output while a very high value might result in inpainted images very close to the
input image. The strategy for generation of random and segmentation masks was
adopted from the code® provided by the authors of LAMA [Suvorov et al., 2022].
If a segmentation mask was not detected for a frame, a random mask was selected

instead.

c). Training Spatial (A°) and Temporal (A") AE’s: We closely follow the

training procedure described in [Astrid et al., 2021a] to train A* and A’. The

3https://github.com/lilygeorgescu/UBnormal /tree/main /scripts
thttps://github.com/CompVis/latent-diffusion/tree /main
Shttps://github.com/advimman /lama/tree/main/saicinpainting
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architecture of A% and A’ is adapted from [Gong et al., 2019a], however instead of
relying on single channel image as input we use all 3 channels. A% and A’ were
trained on respective datasets from scratch with the objective defined in eq. 4.4 and
eq. 4.5 respectively on 2 NVIDIA GeForce 2080 Ti GPUs with effective batch size
(B) of 24 distributed across the GPUs (12 each). The input to A% and A" is of size
(B xT x3x256x256), where 7 = 16. The spatial and temporal PAs were sampled
by probability p, = 0.4 and p; = 0.5 respectively. A°® is trained with Adam optimiser
for 25 epochs with a learning rate of le—4. During training, the reconstruction loss
is calculated across all 16 frames of the sequence. The training of the A’ follows a
similar procedure, however the input to the model is the optical flow representing

normal events i.e ¢ and temporal PAs Py(x).

(d): Extracting ViFi-CLIP Features. For the training split of the benchmark
datasets and their corresponding spatial pseudo-anomalies, we extract frame level
features using the ViFi-CLIP [Rasheed et al., 2023] model. The input to the ViFi-
CLIP model has size : B x T’ x 3 x 224 x 224, where B’ (batch size) was set to 1 and
T" (# of frames) was set to 16. All frames were passed into ViFi-CLIP in a sliding
window fashion with a stride of 16 therefore we obtain a 512-dimensional feature for
every frame. ViFi-CLIP uses the backbone of ViT-B/16 [Dosovitskiy et al., 2020]
and is pre-trained on Kinetics-400 [Kay et al., 2017]. It is to be noted that the ViFi-
CLIP model performs temporal pooling of the CLIP [Radford et al., 2021] features,
however we do not perform temporal pooling and use the frame level representations
as during inference we evaluate our pipeline using frame level micro AUC scores. For
the frames of the videos in test split (Ped2, Avenue, ShanghaiTech) and validation

split (UBnormal), we follow the same procedure for feature extraction.

e). Training the Discriminator (D): During the training phase, the input to D
has a batch size of 16 and feature dimension of 512. The model was trained using a
SGD optimiser with a learning rate of 0.02, momentum of 0.9 and weight decay of
1073 for 20 epochs. The groundtruth for normal and PAs samples are given labels

0 and 1 respectively. Figure 4.1 depicts the complete pipeline.
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4.4.2 Architectural Details

Table 4.1: Discriminator (D) architecture details

Layers (Input size, Output size)
Linear Layer 1 (512,128)

ReLU -
Linear Layer 2 (128,1)

Table 4.2: Autoencoder (A* and A") architecture details

Layer

Input Channels

Output Channels

Filter Size

Stride

Padding

Negative Slope

Encoder

Conv3D
BatchNorm3D
LeakyReLU
Conv3D
BatchNorm3D
LeakyReLU
Conv3D
BatchNorm3D
LeakyReLU
Conv3D
BatchNorm3D
LeakyReLU

3

96

96

(3,3,3)

(3.3.3)

(3,2_3,3)

(3.3.3)

(1,2.2)

(2,5,2)

(2,5,2)

(2.2.2)

(1,1,1)

(11,1)

(1,1,1)

(11,1)

0.2
0.2
0.2

0.2

Decoder

ConvTranspose3D
BatchNorm3D
LeakyReLU
ConvTranspose3D
BatchNorm3D
LeakyReLU
ConvTranspose3D
BatchNorm3D
LeakyReLU
ConvTranspose3D
Tanh

(3,573)

(3,5%,3)

(3,573)

(3,2_3,3)

(2.2.2)

(2,5,2)

(2:2.2)

(1,5,2)

(1,1.1)

0.2
0.2
0.2

4.4.3

Inference

During inference (Figure 4.3), our goal is to temporally localise the anomaly by mea-

suring all three types of anomaly indicators of all frames in the test video in the

given dataset i.e reconstruction quality, temporal irregularity and semantic incon-

sistency. Therefore, our anomaly score holistically combines these aspects to gain

deeper insights into real-world anomalies in videos.

In order to measure the reconstruction quality, we follow the recent works of

[Dong et al., 2020a, Liu et al., 2018a, Park et al., 2020], which utilise normalised

Peak Signal to Noise Ratio P, (PSNR) between the test input frame at time ¢
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and its reconstruction from A° to calculate the anomaly score wgt). The input to

A? is given in a non-overlapping sliding window fashion with dimensions 1 x 16 x
3 x 256 x 256, where batch size is 1 and 16 (window size) represents number of
frames. At test time, only the 9" frame of a sequence is considered for anomaly
score calculation as in [Astrid et al., 2021a]. For measuring temporal irregularity,
a similar strategy is followed as for frames but instead of measuring the PSNR,
the normalised Ly loss (denoted by wét)) is computed between the input test ¢ at
time ¢ and its reconstruction from A’. For measuring semantic inconsistency, the
sequence of input frames is fed into D in a sliding window fashion (window size =
16). We compute the output probability of a frame at time ¢ to be anomalous from
its ViFi-CLIP feature representation and denote it by wét). The aggregate anomaly
score is given by the weighted average:

Thfﬂgt) + 772W§t) + 773w§t), w/ D

WO — (4.6)

agg
me 4wl w/o D; (13 = 0)

where 11, 12, 73 are tuned for every dataset. (Refer to section 4.5 for further details).
The code for reproducing the results presented in this Chapter is available at

https://github.com/rayush7/unified_PA.

4.5 Evaluation Criteria

To measure the reconstruction quality, we follow the recent works of [Dong et al.,
2020a, Liu et al., 2018a, Park et al., 2020], which utilised normalized Peak Signal to
Noise Ratio (PSNR) P; between an input frame and its reconstruction to calculate

the anomaly score. This is illustrated in the following equation.

2

M
By =10 logyy 17— (4.7)
§||Xt — X3

P, — min,(P)

(t)
=1
“1 max,(P,) — ming(B;)’

(4.8)

96


https://github.com/rayush7/unified_PA

Understanding Videos by Learning Structured, Robust & Efficient Representations

AS$ L
" .__’

2 = W1

w3

ViFi-CLIP
Encoder

Optical Flow

At
———b..__, _’£2:> )

Figure 4.3: During inference, aggregate anomaly score is computed by calculating
the weighted sum (eq 4.10) of all the three types of anomaly information; reconstruc-
tion quality wq (eq 4.8), temporal irregularity ws (eq 4.9) and semantic inconsistency
ws.

where x; is the input frame at time ¢, X; represents reconstruction of x¢, R denotes
the total number of pixels in X¢ and My, is the maximum possible pixel value of
Xt. The anomaly score wgt) is an indicator of reconstruction quality of the input

frame. For measuring the temporal irregularity, we compute the normalised L5 loss

between input optical flow at time ¢ and its reconstruction given by the equation:

1 .
wy = ﬁ||¢(xt»x(t+1)) — o(x¢, Xe41))| |3, (4.9)

where ¢(X¢,X(¢11)) is the input optical flow frame calculated using consecutive
frames x¢ and X41), (;Aﬁ(xt,x(tﬂ)) represents the reconstruction of ¢(x¢, X(t+1)),
R’ denotes the total number of pixels in qg(xt,x(tﬂ)). To measure the semantic
inconsistency, the input frames sequence is fed into D in a sliding window fashion
with a window size of 16. The output probability (wgt)) of a frame at time ¢ to be
anomalous is computed using its ViFi-CLIP feature representation.

A higher value of wgt), wgt) and w:(f) represents higher reconstruction error for
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frame and optical flow and high anomaly probability at time ¢ in the test videos
during inference. Alternatively, they are indicators of poor reconstruction quality,
temporal irregularity and semantic inconsistency and their aggregation can aid in
determining real-world anomalies. The aggregate anomaly score is given by the
following equation :

Ulwy) + 772Wg) + 773w§t)> w/ D

wt = (4.10)

me 4wl w/o D; (n3 = 0)

where 7y, 12, n3 are weights assigned to wf)? wét) and wét) respectively. The values

of m1, me and n3 lies in the interval [0, 1] and their sum is equal to 1. We manually
tune the values of ny, 19, 3 for all the datasets. The values of (n1,72,n3) for all
the datasets are given by - Ped2 (0.65,0.25,0.1), Avenue (0.45,0.5,0.05), Shanghai
(0.85, 0.13, 0.02) and UBnormal (0.4, 0.5, 0.1). In all of the cases, any of the three
component can be excluded during evaluation by setting the corresponding weight
(m1,m2,m3) to zero.

Note : We also experimented with the learnt weights for the three anomaly indi-
cators but there was a marginal decrease in the performance compared to manually
tuning their weights.

Evaluation Metric. For evaluation, we follow the standard metric of frame-level
area under the ROC curve (micro-AUC) as in [Zaheer et al., 2020a]. We obtain the
ROC curve by varying the anomaly score thresholds to plot False Positive Rate and
True Positive Rate for the whole test set for a given dataset. Higher AUC values

indicate better performance and more accurate detection of anomalies.

4.5.1 Results

We performed extensive and exhaustive quantitative and qualitative assessments on
four datasets namely Ped2 [Li et al., 2014], Avenue [Lu et al., 2013], ShanghaiTech
[Luo et al., 2017c|] and UBnormal [Acsintoae et al., 2022].

Baselines: We compare our results with memory based AE [Gong et al., 2019b,
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Table 4.3: Micro AUC score comparison between our approach and existing state-
of-the-art methods on val split of UBnormal [Acsintoae et al., 2022].

Reconstruction Methods UBnormal [Acsintoae et al., 2022]
Baseline (without PAs) 54.06 %
LNTRA Astrid et al. [Astrid et al., 2021a] - Patch based 57.09 %
LNTRA Astrid et al. [Astrid et al., 2021a] - Skip-frame based 55.48 %
Ours w/o D 57.53 %
Ours w/ D 57.98 %

Park et al., 2020] and other reconstruction based method trained with pseudo-
anomalous samples created using other simulation techniques [Astrid et al., 2021a,
Astrid et al., 2021b]. The network trained without any PAs is represented as the
standard baseline. The model design of the AE is fixed across all the experimental
settings. Object-level information is only considered for perturbing the normal data
during training while at inference we evaluate results strictly based on reconstruction
and classification outputs i.e. without any object detection. Hence our method is
not directly comparable to object-centric methods.
1. Quantitative Assessment: In Table 4.4, we report micro AUC comparisons
of overall scores of our model and existing SOTA methods on test sets of Ped2,
Avenue and Shanghai datasets. We follow the same practice as in [Astrid et al.,
2021a] of dividing the SOTA methods into 5 categories - 1) Non Deep Learning 2)
Object centric approaches which formulates VAD based on anomalous behaviour
of objects and employs the use of an object detector during training and inference
3) Prediction based method that performs the task of next frame prediction 4)
Reconstruction based techniques follow the strategy of reconstructing the inputs 5)
Miscellaneous, which do not lie within any of these categories.

Our method is closest to reconstruction based methods though we also avail
the discriminator D as the auxiliary component to learn the distance between
normal data distribution and PAs distribution. For clarity, we provide results

with _and without D for all the datasets. Compared to memory-based networks,

our unified framework trained on synthetically generated spatio-temporal PAs out-
performs MemAE [Gong et al., 2019b] and MNAD-Reconstruction [Park et al.,
2020] on Avenue and Shanghai while on Ped2 surpasses MNAD-Reconstruction and

achieves comparable performance as MemAE. We also compare our results with
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other PAs generator methods such as STEAL Net [Astrid et al., 2021b] and LNTRA
[Astrid et al., 2021a]. We observe that on the Avenue dataset our model outper-
forms LNTRA (patch, skip-frame based) though marginally lags behind STEAL-Net
whereas STEAL-Net and LNTRA achieve better performance than our model on
Ped2 and Shanghai dataset. However such methods generate PAs under bold as-
sumptions and inductive biases which may cause them to fail in particular cases. We
report such cases in the Ablation study (Figure 4.6). In Table 4.5 we show that the
transfer performance of our model is comparable with other PAs generation methods
(see section 4.5.2). We do employ optical flow like other methods (Frame-Pred [Liu
et al., 2018a]) and observe that our results outperform Frame-Pred on the Avenue,

achieve comparable performance on ShanghaiTech and are marginally less on Ped2.

In Table 4.3, we show a comparison between baseline, [Astrid et al., 2021a] and
our approach on the validation set of the UBnormal dataset by training only on
the normal videos in the train split. This is done to ensure consistency in evalua-
tion under the OCC setting. The training and evaluation for baseline and LNTRA
(patch, skip-frame) based methods on UBnormal was performed using scripts pro-
vided by the authors of LNTRA®. We observe that our method outperforms baseline
and LNTRA achieving micro AUC score of 57.98% and implying that our PAs are
generic and applicable for more diverse anomalous scenarios. Both in Table 4.4, 4.3
we notice that the effect of adding D is minimal, which validates the intuition that

VAD cannot be directly addressed as a classification problem.

Table 4.4, 4.3 show that no single reconstruction-based method excels on all
datasets. This is because anomalies are context-dependent. Different methods have
inductive biases that work for specific datasets but not others. Our work provides
a generic solution towards generating PAs without making bold assumptions about

dataset’s anomalies.

2. Qualitative Assessment: We conduct qualitative analysis of the anomaly

score over time for sample videos in Avenue, Shanghai (Figure 4.4) and Ped2, UB-

Shttps://github.com/aseuteurideu/LearningNot ToReconstruct Anomalies
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Table 4.4: Micro AUC score comparison between our approach and state-of-the-
art methods on test split of Ped2 [Li et al., 2014], Avenue (Ave) [Lu et al., 2013]
and ShanghaiTech (Sh) [Luo et al., 2017c|. Best and second best performances are
highlighted as bold and underlined, in each category and dataset.

Methods Ped2 [Li et al., 2014] Ave [Lu et al., 2013] Sh [Luo et al., 2017¢|

e MDT [Mahadevan et al., 2010] 82.90% - -

‘2| Lu et al. [Lu et al., 2013] - 80.90% -

T| AMDN [Xu et al., 2017] 90.80% - -

"2| Del Giorno et al. [Del Giorno et al., 2016] - 78.30% -

| LSHF [Zhang et al., 2016] 91.00% - -

2| Xu et al. [Xu et al., 2014] 88.20% - -

7| Ramachandra and Jones [Ramachandra and Jones, 2020] 88.30% 72.00% -
OLED [Jewell et al., 2022] 99.02% - -
AbnormalGAN [Ravanbakhsh et al., 2017] 93.50% - -
Smeureanu et al. [Smeureanu et al., 2017 - 84.60% -
AMDN [Xu et al., 2015, Xu et al., 2017] 90.80% - -
STAN [Lee et al., 2018b] 96.50% 87.20% -
MC2ST [Liu et al., 2018b] 87.50% 84.40% -

»| Tonescu et al. [Tonescu et al., 2019b] - 88.90% -

g BMAN [Lee et al., 2019b] 96.60% 90.00% 76.20%

Z| AMC [Nguyen and Meunier, 2019] 96.20% 86.90% -

S| Vu et al. [Vu et al., 2019] 99.21% 71.54% -

Z| DeepOC [Wu et al., 2019] - 86.60% -

Z| TAM-Net [Ji et al., 2020] 98.10% 78.30% -
LSA [Abati et al., 2019] 95.40% - 72.50%
Ramachandra et al. [Ramachandra et al., 2020a] 94.00% 87.20% -
Tang et al. [Tang et al., 2020a] 96.30% 85.10% 73.00%
Wang et al. [Wang et al., 2020b] - 87.00% 79.30%
OGNet [Zaheer et al., 2020a] 98.10% - -
Conv-VRNN [Lu et al., 2019) 96.06% 85.78% -
Chang et al. [Chang et al., 2020] 96.50% 86.00% 73.30%
USTN-DSC [Yang et al., 2023] 98.10% 89.90% 73.8%
EVAL [Singh et al., 2023] - 86.06% 76.63%

o| MT-FRCN [Hinami et al., 2017] 92.20% - -

g Ionescu et al. [lonescu et al., 2019a] 7 94.30% 87.40% 78.70%

8| Doshi and Yilmaz [Doshi and Yilmaz, 2020a, Doshi and Yilmaz, 2020b] 97.80% 86.40% 71.62%

£ | Sun et al. [Sun et al., 2020] - 89.60% 74.70%

= VEC [Yu et al., 2020] 97.30% 90.20% 74.80%

O| Georgescu et al. [Georgescu et al., 2021b] 98.70% 92.30% 82.70%
Frame-Pred [Liu et al., 2018a] 95.40% 85.10% 72.80%

—| Dong et al. [Dong et al., 2020b] 95.60% 84.90% 73.70%

2| Luetal [Lu et al., 2020] 96.20% 85.80% 77.90%

:=| MNAD-Pred [Park et al., 2020] 97.00% 88.50% 70.50%

2| AnoPCN [Ye et al., 2019a] 96.80% 86.20% 73.60%

A| AMMOC-Net [Cai et al., 2021] 96.90% 86.60% 73.70%
DLAN-AC [Yang et al., 2022b] 97.60% 89.90% 74.70%
AE-Conv2D [Hasan et al., 2016] 90.00% 70.20% 60.85%
AE-Conv3D [Zhao et al., 2017b] 91.20% 71.10% -
AE-ConvLSTM [Luo et al., 2017b] 88.10% 77.00% -

H TSC [Luo et al., 2017¢] 91.03% 80.56% 67.94%

‘| StackRNN [Luo et al., 2017c] 92.21% 81.71% 68.00%

Z| MemAE [Gong et al., 2019b] 94.10% 83.30% 71.20%

Z| MNAD-Recon [Park et al., 2020] 90.20% 82.80% 69.80%

§ Baseline (without PAs) 92.49% 81.47% 71.28%

/| STEAL Net [Astrid et al., 2021b] 98.40% 87.10% 73.70%
LNTRA Astrid et al. [Astrid et al., 2021a] - Patch based 94.77% 84.91% 72.46%
LNTRA Astrid et al. [Astrid et al., 2021a] - Skip-frame based 96.50% 84.67% 75.97%
Ours w/o D 93.52% 86.51% 71.76%
Ours w/ D 93.53% 86.61% 71.65%

normal (Figure 4.5). We also compare our model’s anomaly score over time with
those obtained from LNTRA (skip-frame, patch-based). It can be concluded that on
the Avenue and Ped2 datasets, our method detects anomalies fairly well and perfor-
mance is equivalent with LNTRA models. Though there exist certain failure cases
in the Shanghai and UBnormal datasets which occur due to anomalies occurring due
to abnormal interaction between two objects i.e. fighting between two individuals

in Shanghai and accident with a bike in UBnormal. Though our PAs generator is
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Figure 4.4: Qualitative Assessment : Visualisation of anomaly score over time for
sample videos in Avenue (left) and ShanghaiTech (right), compared with other PAs
generator and reconstruction based methods in LNTRA [Astrid et al., 2021a] - patch

and skip-frame based.

generic, end-to-end finetuning is further needed to emulate such complex real-world

anomalies.
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Figure 4.5: Qualitative Assessment : Visualization of anomaly score over time for
sample videos in Ped2 (left) and UBnormal (right), compared with other PAs gen-
erator and reconstruction based methods in LNTRA [Astrid et al., 2021a] - patch

and skip-frame based.

4.5.2 Ablation Studies

1: How transferable are PAs? We also examine how well PAs transfer across
various VAD datasets. We use our pre-trained model on UBnormal dataset, which
contains a wide range of anomalies and backgrounds, making it suitable for trans-
ferability. We tested the model on rest of the datasets without fine-tuning. Our
results in Table 4.5 show that our model outperforms the patch-based method on
all other datasets while achieves competitive performance compared to the skip-

frame based method. This provides an interesting insight that our PAs are generic
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and transferable.

Table 4.5: Transfer Performance : micro-AUC scores.

Method Ped2  Avenue Shanghai
Patch [Astrid et al., 2021a] 7880 % 4394 % 61.57 %
Skip-Frame [Astrid et al., 2021a] 85.21 % 83.82 % 70.52 %
Ours w/ D 85.37 % 83.50 %  70.07 %

2: How to interpret PAs? In Figure 4.6, we compare error heatmaps generated
using a model trained with patch and skip-frame based PAs and with our spatial-
PAs on all the respective datasets. Since skip-frame and patch based PAs carry
strong assumptions, they tend to have problems detecting complicated real-world
anomalies in ShanghaiTech such as a baby carriage (anomalous object) whereas our
model trained with spatial-PAs yields high error for such cases. Furthermore, our
PAs also give strong results on the synthetic dataset UBnormal, where patch and
skip-frame based PAs fail to detect complex violent scenes as temporal irregularity
induced through skip-frames is not generic. However, even our spatial-PAs, which
are not explicitly trained to detect temporal anomalies are able to determine such
real-world anomalies. On Avenue and Ped2 datasets, our model yields comparable
error to patch based PAs for an anomalous activity however we observe that skip-
frame based PAs overly estimates the reconstruction error for the same. Intuitively
this indicates that even though skip-frame performs reasonably well on benchmark
datasets but it is susceptible to amplification of the error. An explanation for this
phenomena could be due to underlying strong assumption of skipping frames based
on a specific stride value to model temporal irregularity. These observations validate
that our PAs are generalised and enable understanding of which real-world anomalies
can be detected using which type of PAs.

3: Random vs Segmentation masks: Table 4.6 shows the effect of using ran-
dom and segmentation masks for generating spatial PAs. We observe that using
a segmentation mask gives better AUC score on Ped2 and Avenue dataset, which
is intuitively justified as segmentation masks contain more semantic information.
Despite this, our method is flexible in terms of type of mask chosen.

4: Effect of changing the probability of sampling PAs. We conduct an
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Figure 4.6: Visualisation of error heatmap for sample videos compared with other
PAs generator methods in LNTRA [Astrid et al., 2021a].

Table 4.6: Effect of Random and Segmentation masks on micro-AUC scores, using
the output of A* when trained with p, = 0.4.

Mask Type Ped2  Avenue
Random Mask 91.18 % 83.13 %
Segmentation Mask 92.71 % 84.51 %

experimental study by varying the probability of sampling spatial and temporal
PAs (ps, pt) on Ped2 during training between 0.1 to 0.5 and measuring micro AUC
scores during inference. Figure 4.7 shows that the model achieves best performance

when p; = 0.4 and p; = 0.5.

4.6 Conclusions

This Chapter addresses hypothesis Hy (Chapter 1), which deals with the idea of
instilling robustness to spatio-temporal perturbations into the learned video rep-
resentation by exposing the DL models to near-distribution samples ( referred as
PAs in our study). We examine the robustness attribute of video representation by
exploring the problem of VAD (Chapter 2,4) under the OCC setting. In particular,
the aim of this chapter is to answer Rg : [Is it possible to synthetically generate

generic PAs by introducing spatio-temporal distortions into normal data in order to
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Figure 4.7: Comparison of micro-AUC scores on Ped2 dataset calculated from output
of A* (A") trained on a range of values of ps (p;) between {0.1,0.5}. We observe
that setting p; = 0.4 and p, = 0.5 yields the best performance as shown in (a) and
(b) respectively. These probability values are fixed for all other experiments.

detect real-world anomalies effectively? Furthermore, can such PAs transfer across
multiple VAD datasets? and Ry : How can we design a VAD pipeline that aggre-
gates different anomaly indicators to create a unified anomaly scoring mechanism

that effectively captures spatial, temporal, and semantic inconsistencies?.

To summarise, in this Chapter we presented a novel and generic spatio-temporal
PAs generator vital for VAD tasks without incorporating strong inductive biases.
We achieve this by adding perturbation in the frames of normal videos by inpaint-
ing a masked out region using a pre-trained LDM and by distorting optical flow
by applying mixup-like augmentation (Figure 4.2a,4.2b) (answering R3). We also
introduced a simple unified VAD framework that learns three types of anomaly indi-
cators i.e. reconstruction quality, temporal irregularity and semantic inconsistency
in an OCC setting (Figure 4.1) (answering R4). Extensive evaluation shows that
our framework is not objectively SOTA but achieves comparable performance to
other SOTA reconstruction methods and PA generators with predefined assump-
tions across multiple datasets (Table 4.4, 4.3) without any end-to-end finetuning or
any post-processing. This indicates the effectiveness, generalisation and transfer-

ability of our PAs.

However, there are limitations with the work presented in this Chapter. First,
due to limited computational resources our model was not trained end-to-end and

doesn’t avail more powerful architectures (vision transformers or 3D-ResNets), which
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might boost the performance. It would also be interesting to make this setting
adaptive by learning a policy network to select which anomaly indicator among poor
reconstruction quality, temporal irregularity and semantic inconsistency contributes
more towards detection of real-world anomalies. Second, the notion of generating

latent space PAs through LDMs or manifold mixup remains to be investigated.
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Chapter 5

Efficient Video Representation

Learning

This Chapter focuses on efficient video representation learning. In this Chapter we
inspect Hg (R5, Rg), as introduced in Chapter 1, which presumes that incorporating
adaptive computation strategies into the self-supervised training objective can pro-
mote the learning of transferable and generalizable video representations in a more
efficient manner compared to those learned with static computation. To evaluate
Hj3, we design a Trajectory-Aware Adaptive Token Sampler module that dynam-
ically learns to select the most relevant motion-centric space-time tokens for the
self-supervised pre-training objective of MVM. The quality of the learned represen-
tation is evaluated using the downstream task of action recognition on benchmark

datasets.

5.1 Motivation

Masked video modeling (MVM) has emerged as a highly effective pre-training strat-
egy for visual foundation models, whereby the model reconstructs masked spatiotem-
poral tokens using information from visible tokens. However, a key challenge in such
approaches lies in selecting an appropriate masking strategy. Previous studies have

explored predefined masking techniques, including random and tube-based mask-
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ing, as well as approaches that leverage key motion priors, optical flow and semantic
cues from externally pre-trained models. In this work, we introduce a novel and
generalizable Trajectory-Aware Adaptive Token Sampler (TATS), which models
the motion dynamics of tokens and can be seamlessly integrated into the masked
autoencoder (MAE) framework to select motion-centric tokens in videos. Addi-
tionally, we propose a unified training strategy that enables joint optimization of
both MAE and TATS from scratch using Proximal Policy Optimization (PPO). We
show that our model allows for aggressive masking without compromising perfor-
mance on the downstream task of action recognition while also ensuring that the
pre-training remains memory efficient. Extensive experiments of the proposed ap-
proach across four benchmarks, including Something-Something v2, Kinetics-400,
UCF101, and HMDB51, demonstrate the effectiveness, transferability, generaliza-

tion, and efficiency of our work compared to other state-of-the-art methods.

Self-supervised video representation learning has recently emerged as a promi-
nent area of research due to the generalization capabilities of the learned embed-
dings. Such representations can be applied to several downstream tasks such as
action recognition [Wang et al., 2022b, Han et al., 2020b], object detection [Akiva
et al., 2023], and segmentation [Aydemir et al., 2023] in videos. Due to the scarcity
of labeled data, a standard approach in self-supervised learning (SSL) methods for
video understanding involves defining a pretext task. A pretext task can be inter-
preted as a self-supervised pseudo-objective for pre-training a model. Intuitively, if
a model learns to solve a complex task that requires a high-level understanding of

its input, then the features learned as a result should generalize well to other tasks.

Inspired by BERT [Kenton and Toutanova, 2019] used in language modeling,
masked modeling in the form of masked autoencoders (MAE) has been adopted for
images [Wei et al., 2022, He et al., 2022a, Li et al., 2022¢] and for videos [Feichten-
hofer et al., 2022, Tong et al., 2022, Wang et al., 2023a] as a self-supervised pretext
task. Masked modeling involves masking a large fraction (between 75-95%) of the

input data and then learning to reconstruct or predict the removed content based
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on the visible information. Although this concept is simple, it has been shown to
improve performance [Feichtenhofer et al., 2022, He et al., 2022a|, generalization [Fe-
ichtenhofer et al., 2022, He et al., 2022a], data efficiency [Tong et al., 2022], memory
efficiency [Feichtenhofer et al., 2022, Bandara et al., 2023, scalability [Wang et al.,
2023a, He et al., 2022a], robustness [Hendrycks et al., 2019] and to reduce overfitting

[Girdhar et al., 2023] on downstream tasks.

Several studies have explored different formulations of MAE, focusing on masking
portions of input, features, or augmenting the masked modeling objective [Bao et al.,
2022, Dong et al., 2023, Li et al., 2022c, Xie et al., 2022, Zhou et al., 2022, Xie et al.,
2023, Wei et al., 2022]. However, less emphasis has been given to adaptive masking
mechanisms that adaptively select space-time patches based on the input. The
masking mechanism forms a crucial component of the family of MAE methods, as it
is responsible for selecting which information is to be exploited by the encoder and

predicted by the decoder.

[He et al., 2022a, Xie et al., 2022] explored random masking approaches for
image patches, blocks, and grids. Though such approaches have shown promise and
performance gains on downstream tasks, there still exists a research gap in terms
of the masking mechanism adapting to the input. With fixed masking mechanisms,
MAESs are unable to exploit the expressivity of transformer-based encoders. In this
direction, other contemporary works have investigated different masking strategies
for images such as semantically guided masking [Li et al., 2022¢], uniform sampling
for pyramid-based vision transformer (ViT) [Li et al., 2022d] and utilizing mask
generators based on object priors [Chen et al., 2023] and learning easy-to-hard

masking through curriculum learning [Madan et al., 2024].

The challenging aspect of MVM is the extra time dimension and high spatiotem-
poral inductive biases from adjacent frames carrying highly redundant information.
This introduces potential information leakage as masked space-time patches can be
trivially inferred from spatiotemporal neighborhoods, enabling learning of short-

cuts and less generalizable representations during pre-training. Hence, a substantial
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amount of compute and memory resources are inefficiently utilized in the prediction
of uninformative tokens. On the contrary, such a high level of redundancy can be
exploited to aggressively mask space-time tokens with a high mask ratio without

compromising the prediction quality of the masked space-time patches.

Several approaches in MVM have utilized frame, tube, and patch-based mask-
ing [Feichtenhofer et al., 2022, Tong et al., 2022, Wang et al., 2023a], and there is
no single universal masking strategy that works for all datasets. VideoMAE [Tong
et al., 2022] achieves the best action classification results on Something-Something
v2 (SSv2) [Goyal et al., 2017] with random tube masking while STMAE [Feichten-
hofer et al., 2022] achieves its best performance on Kinetics-400 (K400) [Kay et al.,
2017] with random space-time patch masking. An explanation for this observation
is that not all space-time tokens carry meaningful information, and a fixed masking
strategy steers the model’s optimization towards a particular task. Thus, it is crucial
to incorporate adaptive computation in MAEs to dynamically select informative to-
kens based on the given input and the mask ratio. Previous works such as MGMAE
[Huang et al., 2023] proposed motion-guided masking by extracting the optical flow
from pre-trained models, and AdaMAE [Bandara et al., 2023] introduced a token

sampler module to select high-activity regions using REINFORCE [Williams, 1992].

In order to exploit unequal information density among patches, we introduce the
TATS module that learns a video-specific masking strategy from scratch to select
space-time patches based on their spatio-temporal motion and trajectory informa-
tion using Trajectory Attention (TA) [Patrick et al., 2021]. TATS does not rely on
any computationally expensive dense optical flow features or semantic cues obtained
from external pretrained models like RAFT [Teed and Deng, 2020], CLIP [Radford
et al., 2021], or DINOv2 [Oquab et al., 2023].

TATS can be interpreted as a policy agent that models a categorical distribu-
tion over the set of input space-time tokens by leveraging their trajectory informa-
tion and then sampling the most relevant tokens based on a predefined mask ratio.

However, since training MAE in conjunction with TATS is unstable due to the non-
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differentiability of the sampling operation, we additionally propose a unified training
recipe to train MAE and TATS modules simultaneously using the PPO [Schulman
et al., 2017] method used in reinforcement learning (RL). Our goal is to incorpo-
rate adaptivity into MAEs while preserving their representation quality in terms of
generalization and ensuring that the pre-training process remains memory efficient.

Overall, our main contributions in this chapter are:

e We propose a novel and generalizable TATS module that learns to adaptively
sample motion-centric tokens for MAE pre-training by modeling their motion
trajectories in videos. TATS can be seamlessly integrated into the MAE frame-
work and does not rely on auxiliary modalities like optical flow (RAFT [Teed
and Deng, 2020]) or external pre-trained models (DINOv2 [Oquab et al., 2023],

CLIP [Radford et al., 2021]) for motion priors or semantic cues.

e Additionally, we introduce a unified training recipe (Algorithm 1) that fa-
cilitates the joint optimization of both MAE and TATS from scratch using
PPO [Schulman et al., 2017] to ensure stable convergence during pre-training

even with aggressive masking.

e Finally, we conduct a comprehensive evaluation on four benchmark datasets
(K400, SSv2, UCF101, HMDB51) for action recognition to demonstrate the ef-
fectiveness, generalization, transferability, and efficiency of our work compared

to the state-of-the-art methods (Tables 5.1,5.2,5.9).

5.2 Related Work

5.2.1 SSL for video representation learning.

SSL has emerged as a promising alternative to the supervised paradigm for pre-
training deep models, enabling training on large-scale datasets with enhanced gener-
alization while eliminating the need for labeled annotations. SSL in video primarily

focuses on leveraging the temporal dimension for designing tasks such as tempo-
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ral ordering [Fernando et al., 2017, Lee et al., 2017, Misra et al., 2016, Wei et al.,
2018, Wang et al., 2019a|, future prediction [Vondrick et al., 2016, Mathieu et al.,
2016, Lotter et al., 2017, Vondrick et al., 2018, Diba et al., 2019], spatiotemporal
contrast [Feichtenhofer et al., 2021, Han et al., 2019, Qian et al., 2021b, Sun et al.,
2019], temporal coherence [Goroshin et al., 2015, Wiskott and Sejnowski, 2002]
and object motion [Agrawal et al., 2015, Pathak et al., 2017, Wang and Gupta,
2015, Wang et al., 2019c¢].

5.2.2 Masked Modeling.

Masked Language Modeling has been universally adopted in natural language under-
standing, leading to groundbreaking works such as BERT [Kenton and Toutanova,
2019]. Several researchers have adopted masked prediction for images/videos through
Masked Image Modeling (MIM)/MVM, respectively. MIM/MVM can be interpreted
as a generalized Denoising Autoencoder [Vincent et al., 2008b] where the masking
can be attributed to noise addition.

Generative Pre-training from pixels [Chen et al., 2020a] introduced the task
of masked pixel prediction. However, pixel-level prediction demands high com-
putational costs for pre-training and results in inferior performance compared to
ConvNets. The notion of dividing an image into visual tokens through patches, as
introduced in the ViT [Dosovitskiy et al., 2020], enabled the adoption of BERT-style
pre-training for visual tokens. BeiT [Bao et al., 2022] and PeCo[Dong et al., 2023]
are built upon using an offline tokenizer to learn discrete codebooks using VQ-VAE
[Van Den Oord et al., 2017] with the goal of reconstructing the original image from
randomly masked discrete tokens. iBOT [Zhou et al., 2022] and DALL-E [Ramesh
et al., 2021] proposed an online tokenizer based on teacher networks trained via
self-distillation. Maskfeat [Wei et al., 2022] introduced reconstruction of Histogram-
of-Oriented-Gradients features for masked-out regions. MAE [He et al., 2022a] and
SimMIM [Xie et al., 2022] claimed that directly reconstructing the RGB pixel values

performs equivalent to codebook-based methods. [Zhang et al., 2022] proposed a
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theoretical understanding of the masking mechanism.

MVM techniques have been employed for video pre-training by masking random
space-time patches as in STMAE [Feichtenhofer et al., 2022|, or by utilizing tube
masking with a high masking ratio, as in VideoMAE [Tong et al., 2022, Wang
et al., 2023a]. Other MVM approaches include BEVT [Wang et al., 2022b], Masked
Video Distillation [Wang et al., 2023b]. Our method is specifically designed for
videos but can be integrated into the MAE framework while maintaining the original

reconstruction target and MAE architecture without any modifications.

5.2.3 Masking Strategies in MIM /MVM.

Many studies have demonstrated that the performance of MAEs and their vari-
ants on downstream tasks relies heavily on the choice of masking strategy. In fact,
the masking strategy is one of the core design choices in MIM and MVM, and it
significantly governs the information that the network learns during pre-training.
SemMAE [Li et al., 2022¢] harnesses iBOT [Zhou et al., 2022] for semantic seg-
mentation and generates semantically aware masks for pre-training. ADIOS [Shi
et al., 2022] introduces a method to jointly learn a masking function and an image
encoder through an adversarial objective. AutoMAE [Chen et al., 2023] avails an
adversarially-trained mask generator based on Gumbel-softmax [Jang et al., 2016] for
MIM. CL-MAE [Madan et al., 2024] uses curriculum learning to generate adaptive
masks based on the desired level of complexity (i.e. easy to hard masks). Cluster
Masking [Wei et al., 2024] learns to apply random masking to clusters of image
patches, while R-MAE [Nguyen et al., 2024] focuses on masking pixels within a
specified region. [Li et al., 2022d] proposed a uniform masking strategy that enables
MAE pre-training for Pyramid-based ViTs with locality. AttnMask [Kakogeorgiou
et al., 2022] proposed a distillation-based MIM where masking of the student net-
work is guided by attention maps generated by the teacher network. [Xie et al., 2023]
introduced a method to mask the frequency domain representation of the images

using low /high pass filters while [Feng and Zhang, 2023] constructs a patch associa-

113



Understanding Videos by Learning Structured, Robust & Efficient Representations

tion graph using attention maps and addresses the unlabeled part partition problem
as a graph cut problem using the Expectation-Maximization algorithm [Banerjee
et al., 2005] to obtain semantics-based masks.

The masking strategy is a core design choice in MVM, which significantly impacts
the information that the network learns during pre-training. MGMAE [Huang et al.,
2023] and MGM [Fan et al., 2023] introduced motion-guided masking by exploit-
ing a pre-trained lightweight optical flow estimator RAFT [Teed and Deng, 2020)]
and motion vectors stored in the H.264 codec to select space-time patches with rich
motion information. EVEREST [Hwang et al., 2024] proposed redundancy robust
token selection and an information-intensive frame selection mechanism for pre-
training and fine-tuning. MME [Sun et al., 2023] modifies the pre-training objective
from the reconstruction of the appearance content to the reconstruction of the mo-
tion trajectory. AdaMAE [Bandara et al., 2023], the work most closely related to
ours, proposed an end-to-end trainable token sampling module that learns to sample
space-time patches from high-activity regions using REINFORCE [Williams, 1992].
Our approach draws inspiration from AdaMAE [Bandara et al., 2023], however
our TATS module selects space-time tokens based on their motion trajectories in
videos. Additionally, we propose a novel training recipe that jointly optimizes MAE
and TATS from scratch using PPO, ensuring stable convergence during pre-training,

even with aggressive masking.

5.3 Method

5.3.1 Overview of MVM

Here we briefly describe important components of a standard MVM method.

Tokenizer. Consider an input video V of size T' x C' x H x W, where T represents
the number of frames, C' denotes the input channels and H, W is the height and
width of a frame. A Tokenizer composed of 3D convolutional layer with kernel K of

size (t,C, h,w), stride S of size (¢, h,w) and d output channels is availed to tokenize
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Figure 5.1: A depicts our overall architecture with MAE (fs) and TATS (gp). B
illustrates the joint training (Algorithm 1) of fy and gy using PPO. Until epoch m,,
standard random space-time masking is applied. Afterward, every k steps, Phase
1 (ge frozen,fys unfrozen) stores old state of gy in memory buffer M, as episodes,
followed by Phase 2 (gg unfrozen, fy frozen), where gy is optimized via £,(6). The
optimization process then alternates between Phase 1 and Phase 2.

V into N number of tokens with dimension d indicated as X, where N = %

H
X

x W
w
Positional information is further embedded into the tokens using a fixed 3D periodic

positional encoding scheme outlined in [Vaswani et al., 2017].

Token Sampler. Based on a specific masking mechanism (tube [Tong et al., 2022],
adaptive [Bandara et al., 2023], random space-time [Feichtenhofer et al., 2022]), a
set of visible token indices I, are sampled from X for a given mask ratio p € (0,1)
while the remaining indices correspond to the masked Indices I,,. The choice of

masking mechanism is a pivotal design choice of MVM techniques.

Encoder-Decoder. The design of encoder-decoder is usually a variant of Video-
MAE [Tong et al., 2022]. The encoded representation F, is learned by feeding the
sampled visible tokens X, into a vision transformer-based encoder. The learned
representations for visible tokens F, are concatenated with a fixed learnable rep-
resentation f,, corresponding to the masked tokens. Subsequently, the positional

information is added for both representations in the same order. These combined
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tokens are then passed through a transformer-based decoder to estimate predic-
tions V. The entire network is trained by reconstruction loss computed between

ground-truth and predicted values for the masked tokens.

5.3.2 Trajectory-Aware Adaptive Token Sampler

We propose TATS module (gy) that can be easily integrated into the family of MAE
(fs) architectures, can be trained from scratch and learns to sample motion-centric
tokens without the use of any external pre-trained models to compute optical flow
such as RAFT [Teed and Deng, 2020] in MGMAE [Huang et al., 2023], motion
vectors in MGM [Fan et al., 2023] or having a motion-specific pre-training objective
in MME [Sun et al., 2023]. In particular, we avail of TA [Patrick et al., 2021], which
captures motion dynamics in a video by learning a probabilistic path of a token
between frames. By exclusively sampling motion-centric tokens, TATS facilitates
the encoder to learn more generic and expressive representations, which is crucial
for downstream tasks such as action recognition. The computational overhead of
TATS is minimal compared to MAE.

Trajectory Attention. In the TATS module, we apply TA [Patrick et al., 2021]
across space-time tokens, where a trajectory represents the probabilistic path of a
token in a video sequence determined by the motion between a pair of frames. A set
of query-key-value vectors q;, K, ves € R? is computed through linear projections
(W) for a given space-time token x4 (x5 € X) corresponding to space-time location
st (‘reference point’) in a video. For qg, a set of trajectory tokens y» € RY is
computed, encapsulating spatially pooled information weighted by the trajectory
probability. These trajectory tokens extend throughout the video sequence and can

be represented independently at different time steps ¢'.

~ exp<qst7 ks’t’)
stt! = P . 51
Yot ; Ve Zg eXp<qst7 k§t’> ( )

Here, exp denotes the exponential function, (.,.) represents dot product, and - in-

dicates element-wise multiplication. Next, trajectories are pooled across time to
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capture intra-frame relationships. The trajectory tokens y . are mapped to a new
set of query, key, and value representations, denoted as qs, Rstt/, Vi, Using the pro-
jection matrix W. Now G becomes the updated reference query for reference point
st. Qg is then utilized to aggregate information across the temporal dimension using

1D attention given by:

eXp st kstt/)
Yst = E Vst - (5.2)
Zt exp(Qst, kstt>

The trajectory information is encoded in yg. In practice, we employ an approxi-
mation of TA (Orthoformer [Patrick et al., 2021]), which has linear complexity in
space-time.

The TATS module (gy) has two branches, one of which processes the input tokens
X by passing them through a block of TA followed by a Linear layer, and a Softmax

activation to compute the probability scores mp(X) € RY for all tokens.

Z = TA(X); Z € RV (5.3)

79(X) = Softmax(Linear(Z)) € RY (5.4)

Following AdaMAE [Bandara et al., 2023], these probability scores are utilized to
define an N-dimensional categorical distribution over my(X), from which visible
token indices are sampled without replacement i.e. I, ~ Categorical(N,my(X)).
The masked token indices are the complement of visible token indices and are given
by I,, = I,. The number of sampled visible tokens N, = N x (1 — p) and p €
(0,1) is the predefined mask ratio. This branch can be interpreted as the actor-
network (or policy network), which outputs the probability of relevance for every
token. In other words, this output probability can be perceived as policy my(X)
representing the likelihood of a token being selected given its token representation
X. The second branch processes the mean representation of all the tokens (X))

and passes it through a feed-forward network consisting of two linear layers with a
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ReLU activation Linear(1568) — ReLU(Linear(784)) — 1. This can be interpreted
as the value network, which learns to predict the expected reward for the current
input tokens X, given a mean state X,,. We denote the output of the value network
as 1p(X,,). This value is used for computing the advantage A (X, I,,) as detailed in
the optimization section. Overall, the computation of TATS (gg) can be represented

as:

m0(X), o (X,) = go(X) (5.5)

The complete architecture is shown in Fig 5.1.

5.3.3 Optimization

TATS can be conceptualized as an agent interacting with its environment, repre-
sented by the MAE, with the objective of learning an optimal masking strategy that
removes redundant tokens while selecting only the most informative and motion-
centric ones for encoding, given a mask ratio p. The environment provides feedback
to TATS through a reward, which corresponds to the reconstruction error L [Ban-
dara et al., 2023].

The intuition for this reward is that tokens with low reconstruction errors are eas-
ier to reconstruct and thus contain redundant information, whereas motion-centric
tokens, which are more challenging to reconstruct, exhibit higher reconstruction
error. Consequently, TATS must be optimized to prioritize the selection of these
motion-centric tokens or tokens with higher reconstruction error. Our optimization
strategy is loosely inspired from the application of RL [Goldberg, 2023] in the con-
text of aligning large language model (LLM) outputs with human preferences. A
major challenge in this formulation is the simultaneous training of both the agent
(TATS) and the reward model (MAE), differing from conventional LLM approaches
where the reward model is typically pre-trained separately based on human-labeled
data. The joint optimization process incorporates two distinct losses, i.e. the recon-
struction loss and the sampling loss, as outlined below.

Reconstruction Loss: To optimize the MAE (characterized by f,), we compute
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the mean squared error loss L between the predicted and the normalized ground-

truth RGB values of the masked tokens as shown in the following equation:

1 ~ N
Lr(9) = 5 2 Vi = Vill. (5.6)
i€l
where V' denotes the predicted tokens from the decoder, \Y% represents the patch

normalized ground-truth RGB values corresponding to the masked tokens.

Sampling Loss. TATS (gy) is optimized using the sampling loss L£g(#) based on
PPO [Schulman et al., 2017]. To jointly train f, and gy from scratch, we propose
a unified training approach that alternates between optimizing fs and gg. Initially,
our objective is to train f, up to epoch m, using random space-time masking,
minimizing the reconstruction loss L. This ensures that the MAE learns the task
of reconstructing masked tokens, as the reconstruction error would be used as a

reward for sampling the most challenging space-time tokens.

Since gy is trained using PPO, which requires episodes recorded from a previous
state of gp. To facilitate this during Phase 1 (after m, epochs), for every k steps,
ge is kept frozen while I, ~ Categorical(N, 7y, (X)) and f, is optimized based on
Lr(¢). Simultaneously, the memory buffer M, is updated with recorded episodes
in the form of {X,my,,(Im|X), Lr(p).detach, g, (X,)}. Here, X represents the
tokens, mp,, ([;,|X) denotes the probability of sampling the masked indices, Lr(¢)
corresponds to the reconstruction error from fy, and ¥, (X,,) represents the output
of the value network. Using recorded rewards and value estimates, the advantage is

computed as Ay, (X, I,,) = Lr(¢) — g, (X,).

In Phase 2, f, is frozen while gy is unfrozen. Recorded episodes are then sampled
from M,, and the current state of gy is used for computing mp(X), ¥9(X,) = go(X)
and I, ~ Categorical(V, my(X)). Notably, Lr(¢) is detached from the computation
graph to prevent gradient propagation in MAE during this step. The overall PPO

objective used for training gy is defined by the following equation.
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JPFO(g) — E[CIJCLIP@ — ¢ (Vo(X,) — Lr(0))?

=+ CgH(X, 7T9)(.)

JOUP (9) = ]E[min (r(0) A, (X, 1),
(5.8)
clip (r(0),1 —e,1+¢) A, (X, I,))

where r(0) = % represents the importance sampling ratio, and € = 0.2 is the
clipping (clip) threshold. The term (vy(X,) — Lr(4))? serves as the objective for
training the value network, representing the error in value estimation. H(X, my)(.)
denotes the entropy term associated with the tokens X and policy 7y, promot-
ing sufficient exploration. The coefficients ¢, co, c3 balance JMF () (policy loss),
value loss, and entropy term, respectively, in the overall PPO objective. After com-
pleting Phase 2, f, is unfrozen, M, is reset, and the algorithm transitions back
to Phase 1. This alternating process continues, switching between Phase 1 and
Phase 2 iteratively throughout training. Since we want to minimize the sampling
loss hence Lg(0) = —JPPO(9). AdaMAE [Bandara et al., 2023] utilizes REIN-
FORCE [Williams, 1992] which has high variance, however using PPO [Schulman
et al., 2017] improves stability as it uses a clipped objective J°MF () preventing it

from making large updates, therefore balancing exploration and exploitation. Our

training recipe is illustrated in Algorithm 1.

5.4 Experimental Setup

Datasets. We validate our method on four common and publicly-accessible bench-
marks: SSv2 [Goyal et al., 2017], K400 [Kay et al., 2017], UCF101 [Soomro et al.,
2012] and HMDB51 [Kuehne et al., 2011].

Data Preprocessing. Our data processing pipeline closely follows AdaMAE [Ban-
dara et al., 2023] for pre-training. We extract 16 frames of dimension 224 x 224 from
the videos, using a temporal stride of 4 (K400) and 2 (HMDB51/UCF101/SSv2),

with the starting frame randomly selected [Feichtenhofer et al., 2022]. During pre-
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Algorithm 1 Unified Training Recipe for joint optimization of MAE and TATS.

Require: Video V, MAE network fs, TATS module gy, mask ratio p, memory buffer
My, epochs E, Train only MAE epochs m,, TATS update interval k, Total number
of tokens N.
1: Initialize MAE fy and TATS ge.
2: fore=1to F do
3: for step, batch in dataloader do

4: tokenize V into X with indices {I,Io,...,IxN}.
5: if e < m, then > Random Space-Time Masking Phase
6: I, ~ Random Distribution with p
7 optimize Lr = f4(X,) w.r.t. ¢.
8: else > TATS Training Phase
9: freeze gy, compute g, (X), Vo, (Xpu) = go(X).
10: I, ~ Categorical(N, my,_, (X)) with p ; I, = I,
11: optimize Lr(¢) = f3(Xy) w.r.t. ¢.
12: episode = {X, mg,,,(Im|X), Lr(¢).detach, 1y, (X,)}
13: Mp.update(episode)
14: if step mod k£ = 0 then > TATS Update
15: freeze fy, unfreeze gg.
16: for episode in M do
17: compute my(X), ¥p(Xyu) = go(X)
18: I, ~ Categorical(N, m9(X)) ; Iy = Ly
19: optimize Lg(0) = —JFFO(0) w.r.t. 6.
20: end for
21: unfreeze fy.
22: Mp.reset()
23: end if
24: end if
25: end for
26: end for
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training, we apply data augmentation techniques, including random resized cropping

in the spatial domain, random scaling within the range € [0.5, 1], and random hori-
zontal flipping [Feichtenhofer et al., 2022].

Implementation Details. We employ the ViT-Base model (~87M parameters) [Doso-
vitskiy et al., 2020] for our experiments. The input video has the dimension 16 x 3 x
224 x 224 while the patch size is 2 x 3 x 16 x 16 (tubelet length = 2), yielding a total

of 1568 tokens. Mask ratio p takes the value {0.85,0.90,0.95}. Our experiments
contain two types of settings:

1. Small Scale Pre-training. For K400 and SSV2, we construct a smaller
training data subset by sampling approximately 15% of the training set (equivalent
to validation set size), while maintaining a class distribution consistent with the
original dataset. Notably, the validation set remains unchanged from the original
dataset. The standard train/validation sets for UCF101 and HMDB51 are used.
The models have been pre-trained for 400 epochs with a batch size of 32 on 8 Nvidia
A100 GPUs.

2. Large Scale Pre-training is also conducted on the full SSv2, however due

to computational constraints, we only pretrain it for 400 epochs and p = 0.95 on 8
Nvidia A100 GPUs.
Evaluation on action recognition. To assess the effectiveness of the pre-trained
encoder, we conduct end-to-end fine-tuning for the action recognition task over 100
epochs with the evaluation metric being top-1 and top-5 accuracy. Most of our
experiments are conducted in a small-scale setting, while results for large-scale pre-
training and fine-tuning are explicitly reported.

The code for reproducing the results presented in this Chapter is available at

https://github.com/rayush7/adaptive_vidmae.

5.5 Results

We perform extensive quantitative and qualitative studies of our approach on the

given datasets and compare the performance against [Bandara et al., 2023] and [Tong
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Figure 5.2: Visualization of adaptive masks learned by TATS for p = 0.95. The
figure has four blocks: top-left (K400), top-right (SSv2), bottom-left (UCEF101),
and bottom-right (HMDB51). In each block, the first row shows video frames, the
second presents predictions/reconstructions, the third depicts sampling probabilities
for space-time tokens, and the fourth displays the learned adaptive binary masks.

et al., 2022] (baselines) respectively. For fair comparison with our method under

small-scale pre-training setup, these baselines were also pretrained (finetuned) for

400 (100) epochs on the same subset (K400/SSv2) using their public source code

and default configuration.

Fine-tuning Results. Table 5.1 presents the top-1 and top-5 accuracy obtained
after fine-tuning our method across different mask ratios, p = {0.85,0.90,0.95}.
Our approach consistently surpasses [Bandara et al., 2023, Tong et al., 2022] across
all benchmark datasets and mask ratios with the exception of top-5 accuracy on
HMDB51 with p = 0.85, which is marginally less than [Bandara et al., 2023]. No-
tably, even under an aggressive masking ratio (p = 0.95), our model demonstrates
superior performance compared to these baselines. These results highlight the ef-
fectiveness and generalization capability of the proposed TATS module and the
training strategy in terms of learning a better representation quality than learnt by

[Bandara et al., 2023, Tong et al., 2022].

Transferability. Table 5.2 presents the transfer performance of our model on the
action recognition task, pre-trained and fine-tuned across different datasets and

mask ratio combinations. Our approach achieves better results than [Bandara et al.,
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Table 5.1: Comparison of fine-tuning result of Our model against baselines ([Bandara
et al., 2023, Tong et al., 2022]) on action recognition task across benchmark datasets
and different p with top-1/top-5 accuracy as evaluation metric. () / @) : denotes
increase/decrease in performance)

Dataset Mask Ratio | VideoMAE [Tong et al., 2022] | AdaMAE [Bandara et al., 2023] Ours

p top-1 top-5 top-1 top-5 top-1 top-5
0.85 80.36 94.95 83.98 96.37 85.94 ) 96.98 (1)
UCF101 0.90 76.64 94.29 82.42 95.84 84.53 +) 96.37 (1)
0.95 65.86 89.14 80.83 95.26 81.75 +) 95.29 ()
0.85 40.82 71.61 41.28 73.37 41.60 ) 73.31 o)
HMDB51 0.90 36.39 69.73 39.13 72.33 41.28 +) 73.76 (1)
0.95 33.98 65.36 37.70 70.38 38.67 +) 72.01 (1)
0.85 42.26 68.28 38.97 64.68 43.24 ) 68.76 (1)
Kinetics-400 0.90 41.79 68.62 39.50 65.70 43.28 +) 68.85 (1)
0.95 39.73 66.15 39.42 65.14 41.70 +) 67.29 (1)
0.85 37.63 66.47 37.92 66.63 39.96 +) 68.10 ()
SSv2 0.90 37.85 66.86 38.10 66.29 40.79 +) 69.30 (1)
0.95 37.24 65.92 38.38 67.11 40.25 +) 68.73 (1)

2023, Tong et al., 2022] across most settings, providing further insight into the strong

transferability and generalization of our model.

Table 5.2: Comparison of transfer learning result of Our model against [Bandara
et al., 2023, Tong et al., 2022] on action recognition across benchmark datasets and
different p with top-1/top-5 accuracy as evaluation metric. () / <) / ) : denotes
increased /decreased /equivalent performance)

Dataset Mask Ratio | VideoMAE [Tong et al., 2022] | AdaMAE [Bandara et al., 2023] Ours
From — To P top-1 top-5 top-1 top-5 top-1 top-5
0.85 84.91 96.51 85.49 96.93 86.94 (+) 97.67 (1)
Kinetics-400 — UCF101 0.90 84.41 96.25 84.98 96.48 86.23 (+) 97.27 (1)
0.95 82.40 95.80 84.03 96.50 85.17 )  96.77 )
0.85 55.60 82.55 55.79 84.44 60.81 (+) 84.44 )
Kinetics-400 — HMDB51 0.90 56.71 83.07 56.45 82.49 60.42 (+) 83.59 (1)
0.95 53.26 79.75 54.10 81.25 58.14 ) 82.62 (1)
0.85 36.42 65.50 36.72 65.72 38.39 (1) 66.47 (1)
Kinetics-400 — SSv2 0.90 35.70 64.46 36.62 65.27 39.46 1) 67.25 1)
0.95 34.11 62.64 36.88 65.64 38.13 (+) 66.48 (1)
0.85 84.88 96.91 84.98 96.72 87.16 (+) 97.38 (1)
SSv2 — UCF101 0.90 83.88 96.75 84.64 97.06 86.81 (1) 97.51 (1)
0.95 82.53 95.90 84.38 96.21 85.14 1) 97.11 )
0.85 54.82 82.03 55.47 82.81 59.64 (+) 84.83 (1)
SSv2 — HMDB51 0.90 55.92 83.40 55.86 84.31 60.35 (v) 85.42 (1)
0.95 52.41 80.14 54.69 84.18 58.40 ) 83.59 1)

Qualitative Assessment. We conduct a qualitative analysis by visualizing the
learned adaptive binary masks learned by the TATS module across the benchmark
datasets and different p, as shown in Figure 5.2. We observe that TATS learns to
sample motion-centric tokens while also undergoing sufficient exploration enabling
better generalization. Additionally, we visualize the learned TA across all space-time
patches by averaging all heads, as depicted in Figure 5.3. It is quite evident that

our TATS module accurately models motion trajectories of the space-time tokens as
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Figure 5.3: Visualization of the TA learnt by TATS. The figure comprises four blocks
: K400, SSv2, UCE101, and HMDB51 in top to bottom order. In each block, the
first row shows video frames, the second depicts the trajectory attention on space-
time tokens averaged across different heads.

they evolve over time in the video, thereby enabling the sampling of motion-centric
space-time patches. This also validates the formulation of the £, and the training

recipe to jointly train MAE and TATS.

Table 5.3: Large Scale Pre-training and Finetuning Results. Comparison of fine-
tuning result of Our model against baselines ([Bandara et al., 2023, Tong et al., 2022]) on
action recognition task for full SSv2 and p = 0.95 with top-1/top-5 accuracy as evaluation
metric. (¢+): denotes increase in performance)

Method top-1 top-5
VideoMAE [Tong et al., 2022] ,—g5% 59.38 84.17
AdaMAE [Bandara et al., 2023] ,—g5%, 63.06 85.89
Ours—g5% 65.82 (+) 88.50(+)

Large Scale Pre-training Results. We conduct pre-training (400 epochs) and

finetuning (100 epochs) of our model on the full SSv2 [Goyal et al., 2017] dataset for
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p = 0.95 on 8 Nvidia A100 GPUs. In order to ensure fairness in comparison, we also
pre-train (400 epochs) and finetune (100 epochs) both baselines VideoMAE [Tong
et al., 2022] and AdaMAE [Bandara et al., 2023] on the full SSv2 for p = 0.95 with

the same GPU setup using their public source code and default configuration.

Table 5.3 presents the top-1 and top-5 accuracy obtained in this experiment. We
observe that our approach outperforms both the baselines under aggressive masking
setting even for large scale experiments. This highlights the effectiveness and gener-
alization capability of the proposed TATS module and the training strategy in terms
of learning a better feature quality than learnt by [Bandara et al., 2023, Tong et al.,
2022|. Due to the availability of limited computational resources, our experiments

in this setup are limited.

5.6 Additional Implementation Details

5.6.1 Hyper-parameter Setting

Pre-training. The hyperparameter configurations used during the pre-training
phase across all benchmark datasets are presented in Table 5.4. For (my,, k), hy-
perparameter tuning is conducted on the UCF101 and HMDB51 datasets (Ta-
ble 5.5), and the configuration that minimizes the reconstruction error is selected.
Similarly we also perform hyperparameter tuning for coefficients (c1,co,c3) in Ta-
ble 5.6 during pretraining on UCF101 and observe that (le-4, le-4, le-4) mini-
mizes the reconstruction error. Empirical observations indicate that the optimal
configuration for UCF101 also performs effectively on subset of K400 and SSv2

(small scale pre-training setup). It is to be noted that we use reconstruction loss

for tuning these hyper-parameters because behaviour of reconstruction loss during
pretraining is more interpretable in terms of convergence than the sampling loss.
Fine-tuning. The hyperparameter setting for end-to-end fine-tuning on the down-

stream task of action recognition across all benchmarks is summarized in Table 5.7.
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Table 5.4: Hyperparameter setting for pre-training across all benchmark datasets.

Configuration Value
Learning rate for gg - Ip 1.5e-6
Epochs to train f4 only - m, 10
Steps to train fy and record gy episodes - k 1
Softmax Temperature 1
Policy loss coefficient - ¢; le-4
Value loss coefficient - ¢o le-4
Entropy coefficient - c3 le-4
Optimizer AdamW
Optimizer betas 0.9, 0.95
Batch size 32
Base learning rate 1.5e-4
Learning rate schedule cosine decay
Warmup epochs 40
Augmentation MultiScaleCrop

Table 5.5: Hyperparameter (m,, k) tuning for pre-training, evaluated based on re-
construction error on UCF101 and HMDB51. Same configuration is adopted for
SSv2 and K400 as in UCF101.

(mo, k) | UCF101 HMDB51
(0, 1) 05211  0.8051
(1, 1) 0.5205  0.8195
(5, 1) 0.5304  0.8535
(10,1) | 05135  0.8278
(25,1) | 05269  0.8987
(100, 1) | 0.6662  0.9291
(50,5) | 0.7735  0.9772
(50, 10) | 0.8149  0.9776
(50, 25) | 0.9201 -

Table 5.6: Hyperparameter (cy, o, c3) tuning for pre-training, evaluated based on
reconstruction error on UCF101. Same configuration is adopted for SSv2, K400 and
HMDB51. (m,, k) are fixed as (10, 1)

(c1, c2, c3) UCF101
(le-4, 1le-3, 1e-3) | 0.5188
(le-4, 1e-3, le-4) | 0.5167
(le-4, le-d, le-3) | 0.5246
(le-3, le-4, le-d) | 0.8482
(le-4, le-4, 1le-4) | 0.5135
(le-5, le-4, le-4) | 0.5239
(le-3,1e-3,1e-4) | 0.5215
(1e-3, 1e-3, le-4) | 0.7869
(le-5, 1e-5, 1le-5) | 0.5173
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Table 5.7: Hyperparameter setting for end-to-end fine-tuning for all benchmark

datasets.
Configuration Value
Optimizer AdamW
Optimizer Betas {0.9, 0.999}
Batch size 8
Weight Decay He-2
Base Learning Rate le-3
Learning Rate Schedule cosine decay
Layer-wise learning rate decay 0.75
Warmup epochs )
RandAug 9,0.5
Label Smoothing 0.1
Mixup 0.8
DropPath 0.1
# Temporal Clips 5 (k400), 2 (ssv2/hmdb/ucf)
# Spatial Crops 3

Table 5.8: Encoder-Decoder architecture based on AdaMAE [Bandara et al., 2023].

TATS : Trajectory Aware Adaptive Token Sampler.

Attention

MHA : Multi-Head Self-

Stage

ViT-Base

Output shape

stride 4 x 1 x 1 for K400

Input Video

3 x 16 x 224 x 224

stride 2 x 1 x 1 for ssv2/ucf/hmdb

stride 2 x 16 x 16

Tokenization emb. dim 768 [568 x 768
kernel size 2 x 16 x 16
) TATS Masking o
_ 568
Masking mask ratio p [(1—p) x 1568] x 768
Encoder [MHA(768)] x 12 [(1—p) x 1568] x 768
e MHA(384) o

Projection concat masked tokens 1908 > 384
Decoder [MHA(384)] x 4 [(1—p) x 1568] x 384
Projector MLP(1536) 1568 x 1536
Reshaping from 1536 to 3 x 2 x 16 x 16 3 x 16 x 224 x 224

5.6.2 Encoder-Decoder Architecture

We adopt an asymmetric encoder-decoder architecture [Bandara et al., 2023] for

self-supervised pre-training and augment it with TATS module and only keep the

encoder during the fine-tuning. In particular, the design of the encoder-decoder is
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based on 16-frame vanilla ViT-Base architecure. Table 5.8 provides an overview of

the encoder-decoder architecture utilized in our framework.

5.7 Ablation Studies

We carry out an ablation study on UCF101 using models pre-trained with p = 0.95
for 400 epochs and fine-tuned on the action recognition task for 100 epochs. The
ablation results are illustrated in Table 5.9.

1. Effect of Trajectory Attention. In Table 5.9a, we analyze the effect of in-
tegrating TA within the TATS module compared to the Multi-Head Self-Attention
(MHA). Our findings indicate that TA achieves a top-1 accuracy of 81.75% while
utilizing 25.36 GB of memory, outperforming MHA. This highlights the efficiency of
TA in delivering superior performance with reduced memory consumption. Further-
more, our results also validate that TA effectively captures motion trajectories in a
self-supervised manner, without relying on any motion-specific learning objective.
2. Effect of Decoder Depth. Table 5.9b examines the impact of different decoder
depths, specifically the number (#) of transformer blocks in the decoder’s architec-
ture. Our findings show that the best performance is achieved with # Blocks = 1,
yielding a top-1 accuracy of 81.75%. This observation aligns with the results ob-
served in [Bandara et al., 2023, Tong et al., 2022].

3. Effect of Reconstruction Loss Function. In Table 5.9e, we examine the
effect of the reconstruction objective, specifically comparing L.L1 and MSE losses.
Following the standard approach introduced in VideoMAE [Tong et al., 2022], we
also explore computing these losses (L1/MSE) using both raw pixel values and
per-patch normalized pixels. Our results indicate that MSE loss with per-patch
normalization achieves the highest top-1 accuracy of 81.75%.

4. Effect of Number of Trajectory Attention Blocks. In Table 5.9d, we
investigate the effect of varying the # of TA blocks in TATS. Our results indicate
that the configuration with # TA Blocks = 1 yields the highest top-1 accuracy

of 81.75%. As we increase the # TA Blocks, the performance decreases while the
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blocks top-1  top-5 memory
1 81.46 95.07 16.54 GB

case ratio top-1 top-5  memory 2 80.83 95.02 19.48 GB
MHA 0.95 81.59 95.29 25.37 GB 4 81.75 95.29 25.36 GB
TA 0.95 81.75 95.42 25.36 GB 8 79.10 94.68 37.13 GB
(a) Effect of Trajectory Attention. (b) Different decoder depth. Our
Better performance is obtained with TA method performs best when # of decoder
with marginally less memory usage. blocks = 4.
method memory  top-1 case top-1  top-5
VideoMAE 20.94 GB  65.86 TA (# Blocks =1) 81.75 95.29 25.36 GB
AdaMAE 26.17 GB  80.83 TA (# Blocks =2) 65.17 88.59
Ours 25.36 GB 81.75 TA (# Blocks =3) 67.35 90.20
(c) Memory Usage. Our method (d) Number of TA blocks in TATS.
uses less memory (pretraining) than Our method performs best when # of TA

AdaMAE [Bandara et al., 2023] while blocks = 1.
achieving significantly higher performance
(finetuning) than VideoMAE [Tong et al.,

2022).
case top-1 top-b
L1 loss (w norm.) 81.51  95.58
L1 loss (w/o norm.) 81.41  95.02
MSE loss (w norm.) 81.75 95.29

MSE loss (w/o norm.)  81.61  95.14

(e) Reconstruction Loss function. The best result
is obtained by optimizing MSE loss with local patch
normalization.

Table 5.9: Ablation analysis is conducted on the UCF101 dataset using models pre-
trained with mask ratio p = 0.95 for 400 epochs and fine-tuned on action recognition
task for 100 epochs. The default choice of our method is highlighted in gray color.

memory usage increases.

5. Memory Usage. In Table 5.9¢c, we inspect the memory usage of our approach
in comparison to AdaMAE [Bandara et al., 2023] and VideoMAE [Tong et al.,
2022]. Our method demonstrates lower memory consumption (pretraining) and
better performance (finetuning) than AdaMAE [Bandara et al., 2023]. Although
VideoMAE [Tong et al., 2022] utilizes less memory (pretraining) than our approach,
our method significantly outperforms it in terms of top-1 accuracy (finetuning) on
UCF101, achieving 81.75% compared to only 65.86% by VideoMAE [Tong et al.,
2022).
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Figure 5.4: Sample visualizations of a Kinetics 400 video using adaptive sampling
with TATS at different mask ratios. Comparison shown with AdaMAE [Bandara
et al., 2023] masks.
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Figure 5.5: Sample visualizations of a SSv2 video using adaptive sampling with
TATS at different mask ratios. Comparisons are shown with AdaMAE [Bandara
et al., 2023] masks.

5.8 Mask Visualization

Here we show visualizations adaptive sampling learned by our TATS module across
benchmark dataset for different mask ratios p = {0.95,0.9,0.85} in Figure 5.4a,
5.4b, 5.4c, 5.5a, 5.5b, 5.5¢, 5.6a, 5.6b, 5.6¢, 5.7a, 5.7b, 5.7c.

In all of these Figures, first row represents input video frames, the second row
depicts the prediction/reconstruction, the third row shows the reconstruction error,
the fourth row represents the probability of sampling the space-time patch, fifth row
shows the adaptive masks learned by TATS. The last row depicts the binary masks

learned by AdaMAE [Bandara et al., 2023] for comparison.

5.9 Conclusions

This Chapter addresses the hypothesis Hz (Chapter 1) which presumes that incor-

porating adaptive computation strategies into the self-supervised training objective
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(a) p= 0.9 | ) () p 0.9 B (c) p=10.85

Figure 5.6: Sample visualizations of a UCF101 video using adaptive sampling with
TATS at different mask ratios. Comparisons are made with AdaMAE [Bandara
et al., 2023] masks.

I.llllt | W SRR R R
NIRRT

(a) p=0.95 | (b 9 | o (c) p=0.85

Figure 5.7: Sample visualizations of a HMDBb51 video using adaptive sampling with
TATS at different mask ratios. Compared against AdaMAE [Bandara et al., 2023]
masks.

enables learning of more transferable and generalizable video representations in a
more efficient manner compared to the static computation. In particular, the ob-
jective of this chapter is to evaluate Rs : How can we incorporate adaptive compu-
tation in a self-supervised pre-training objective such as MVM to dynamically select
informative space-time tokens based on the given input? and Rg : Are represen-
tations learnt through dynamic computation (adaptive masking) as transferable to
downstream tasks (action recognition) as the ones learnt with static computation
(random masking)?. The downstream task selected for this study is the task of

action recognition (Chapter 2,5).

To summarise, in this Chapter we propose a novel and generalizable TATS mod-
ule that enhances MAE pre-training for videos by adaptively selecting motion-centric
tokens based on their spatio-temporal motion trajectories. TATS can be integrated
into the MAE framework without requiring additional modalities like optical flow

(e.g., RAFT [Teed and Deng, 2020]) or external pre-trained models such as DI-
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NOv2 [Oquab et al., 2023] or CLIP [Radford et al., 2021] for motion priors or
semantic cues. We also introduce a unified training framework (Algorithm 1) that
enables the joint optimization of MAE and TATS from scratch using PPO [Schul-
man et al., 2017], enhancing stability during pre-training even under aggressive
masking (answering Rs). Finally, we perform an extensive quantitative, quali-
tative and ablation assessment (Tables 5.1,5.2,5.9) on benchmark datasets (K400,
SSv2, UCF101, HMDB51) for the downstream task of action recognition, showcas-
ing the effectiveness, generalization, transferability, and efficiency of our approach
compared to state-of-the-art methods (answering Rg).

However, there are few limitations with the work presented in this Chapter.
Our proposed TATS and training recipe does need to be empirically validated on
other downstream tasks and extended to other modalities. Furthermore, with the
recent resurgence in RL research due to its applications in LLMs, it is important
to reconsider strategies that integrate dynamic computation into masked modeling
approaches, optimizing them through RL algorithms. We plan to conduct future

studies around these topics.
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Chapter 6

Conclusion

In this chapter, we bring together all the key findings of our research to highlight our
contributions and discuss their significance. We review the research questions that
we set out in Chapter 1 and assess how well we have answered them. In this way,
we summarize the important insights from our work, discuss practical implications,
and suggest directions for future research. By doing so, we aim to provide a clear

and concise conclusion highlighting the value of this work.

6.1 Answers to Research Questions

R; : How can we leverage the power of SSL to capture spatio-temporal
diversities and relationships involved in videos?

In Chapter 3, we presented a self-supervised model that can be pre-trained for the
GEBD task (Figure 3.1). The GEBD task is an ideal problem for self-supervised
learning, given that the task aims to learn generic boundaries and is not biased
towards any predefined action categories from pre-trained state-of-the-art action
recognition models. In order to learn spatial diversity, fine-grained temporal co-
herence and long-range temporal dependencies we reformulated the SSL objective
at frame-level and clip-level to learn effective and structured video representations.
Through our extensive evaluation, we achieved comparable performance to self-

supervised state-of-the-art methods on the Kinetics-GEBD and TAPOS as shown
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in Table 3.2 and Table 3.3, respectively. This demonstrates that by designing rele-
vant self-supervised pretext tasks, it is indeed plausible to embed spatial diversity,
fine-grained temporal coherence, and long-range temporal dependencies into the

learned model.

R, : How can we develop an SSL framework for video understanding
that accounts for both appearance and motion features? Do we need
an explicit motion-specific training objective, or can this be implicitly

achieved?

In Chapter 3, we augmented our ResNet-50 encoder with a differentiable motion
learning MotionSqueeze module and observed that the augmented encoder can cap-
ture motion patterns (Table 3.4) on the fly despite being trained from scratch and
without any motion specific self-supervised objective. Furthermore, this augmented
encoder further complements the overall performance on the downstream GEBD
task as highlighted in Table 3.2 and Table 3.3. Additionally, the motion features
learnt are generic since the model is only pre-trained on Kinetics-GEBD but gen-
eralizes to the TAPOS dataset as well, as shown in Figure 3.3. This indicates that
augmenting the encoder with a motion learning module allows for the implicit learn-
ing of motion priors, even in a self-supervised setting and without a motion-specific
pretext task. Overall, this enables the learning of motion patterns in conjunction

with appearance features from the augmented encoder.

Rj : Is it possible to synthetically generate generic PAs by introducing
spatio-temporal distortions into normal data in order to detect real-world
anomalies effectively?, and importantly, can such PAs transfer across

multiple VAD datasets?

In Chapter 4, we presented a novel and generic spatio-temporal PAs generator
vital for VAD tasks without incorporating strong inductive biases. We achieve this
by adding perturbation in the frames of normal videos by inpainting a masked out
region using a pre-trained LDM and by distorting optical flow by applying mixup-

like augmentation (Figure 4.2a). The observations made in (Table 4.4, Table 4.3,
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Table 4.5) show that our PAs generalise and enable the detection of real-world
anomalies through PAs. Furthermore, extensive experiments also validate the trans-
ferability and interpretability aspects of our PAs across benchmark VAD datasets.
This implies that our synthetically generated spatio-temporal PAs facilitate real-

world anomaly detection and are also transferable across datasets.

R4 : How can we design a VAD pipeline that aggregates different anomaly
indicators to create a unified anomaly scoring mechanism that effectively

captures spatial, temporal, and semantic inconsistencies?

In Chapter 4, we introduced a simple unified VAD framework that learns three
types of anomaly indicators, i.e. reconstruction quality, temporal irregularity and
semantic inconsistency in an OCC setting (Figure 4.1). Extensive evaluation shows
that our framework, achieves comparable performance to other SOTA reconstruction
methods and PA generators with predefined assumptions across multiple datasets
(Table 4.4, 4.3) without any end-to-end finetuning or any post-processing. This

indicates the effectiveness and generalisation of our PAs and VAD pipeline.

Rs : How can we incorporate adaptive computation in a self-supervised
pre-training objective such as MVM to dynamically select informative

space-time tokens based on the given input?

In Chapter 5, we proposed a novel and generalizable TATS module that en-
hances MAE pre-training for videos by adaptively selecting motion-centric tokens
based on their spatio-temporal motion trajectories (Figure 5.1). TATS can be inte-
grated into the MAE framework without requiring additional modalities like optical
flow (e.g., RAFT [Teed and Deng, 2020]) or external pre-trained models such as
DINOv2 [Oquab et al., 2023] or CLIP [Radford et al., 2021] for motion priors or
semantic cues. We also introduced a unified training framework (Algorithm 1) that
enables the joint optimization of MAE and TATS from scratch using PPO [Schulman
et al., 2017], enhancing stability during pre-training even under aggressive masking,.
Additionally, we performed an extensive quantitative, qualitative and ablation as-

sessment (Tables 5.1,5.9) on benchmark datasets (K400, SSv2, UCF101, HMDB51)
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for the downstream task of action recognition, showcasing the effectiveness, general-
ization, transferability, and efficiency of our approach compared to state-of-the-art
methods. This implies that integrating adaptive computation into the masked video
modeling framework and jointly training for both the MAE and adaptive compu-
tation objectives enables the dynamic sampling of the most informative space-time
tokens based on the input.

Rg : Are representations learnt through dynamic computation (adaptive
masking) as transferable to downstream tasks (action recognition) as the
ones learnt with static computation (random masking)?

In Chapter 5, we compared the performance of our proposed method with the
random tube masking strategy (STMAE [Tong et al., 2022]), a predefined (static
computation) masking approach, on the downstream task of action recognition.
As shown in Table 5.2, our adaptive token sampling strategy clearly outperforms
static computation methods in transfer performance. This indicates that adaptive
computation strategies are more effective than static computation techniques in

harnessing the expressivity and capabilities of encoders.

6.2 Research Contributions

The per-chapter research contributions can be summarised as follows:

Chapter 3

1. We revisited and extended a simple self-supervised method VCLR [Kuang
et al., 2021] by modifying its pretext tasks by splitting them into frame-level
and clip-level to learn effective video representations (cVCLR). We further

augmented the encoder with a differentiable motion feature learning module

for GEBD.

2. We conducted exhaustive evaluation on the Kinetics-GEBD and TAPOS datasets
and showed that our approach achieves comparable performance to the self-

supervised state-of-the-art methods without using enhancements like model
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ensembles, pseudo-labeling or the need for other modality features (e.g. au-

dio).

3. We showed that the model can learn motion features under self-supervision

even without having any explicit motion-specific pretext task.

Chapter 4

1. We proposed a novel and generic spatio-temporal pseudo-anomaly generator
for VAD encompassing inpainting of a masked out region in frames using an

LDM and applying mixup augmentation to distort the optical flow.

2. We introduced a simple unified VAD framework that measures and aggregates
three different indicators of anomalous behaviour, namely reconstruction qual-

ity, temporal irregularity and semantic inconsistency in an OCC setting.

3. Extensive experiments on Ped2, Avenue, ShanghaiTech and UBnormal showed
that our method achieves comparable performance to other existing SOTA
PAs generation and reconstruction based methods under the OCC setting
(Table 4.4, 4.3) without any end-to-end finetuning or any post-processing. This
validates that our method is a generic video anomaly detector and our spatio-

temporal PAs generation process is transferable across multiple datasets.

Chapter 5

1. We proposed a novel and generalizable TATS module that learns to adaptively
sample motion-centric tokens for MAE pre-training by modeling their motion
trajectories in videos. TATS can be seamlessly integrated into the MAE frame-
work and does not rely on auxiliary modalities like optical flow (RAFT [Teed
and Deng, 2020]) or external pre-trained models (DINOv2 [Oquab et al., 2023],

CLIP [Radford et al., 2021]) for motion or semantic cues.

2. Additionally, we introduced a unified training recipe (Algorithm 1) that fa-

cilitates the joint optimization of both MAE and TATS from scratch using
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PPO [Schulman et al., 2017] to ensure stable convergence during pre-training

even with aggressive masking.

3. Finally, we conducted a comprehensive evaluation on four benchmark datasets
(K400, SSv2, UCF101, HMDB51) for action recognition to demonstrate the ef-
fectiveness, generalization, transferability, and efficiency of our work compared

to the state-of-the-art methods (Tables 5.1,5.2,5.9).

The code for reproducing the results presented in this thesis can be found at

https://github.com/rayush7?tab=repositories.

6.3 Perspectives for Future Work

Notwithstanding the advances made by the research reported in this thesis on the
topic of video understanding, there are exciting opportunities for future work. We

document some of these in the following.

e In Chapter 3, our approach does not avail of more powerful models, e.g. trans-
formers as in [Li et al., 2022a], or cascaded networks as in [Hong et al., 2021].
Additionally, since the MS module is directly applied on feature maps, it learns
global motion features. However, in GEBD, the boundaries are generic and
every type of motion may not indicate a boundary, hence a more fine-grained
motion module can boost the performance. Finally, due to computational con-
straints, our self-supervised model is only pre-trained on the Kinetics-GEBD
dataset; however, pre-training the model on Kinetics-400 could yield even bet-

ter performance on the downstream GEBD task.

e In Chapter 4, our model was not trained in an end-to-end fashion and does
not avail of more powerful architectures (vision transformers or 3D-ResNets)
due to limited computational resources, which might boost the performance.
It will also be interesting to make this setting adaptive by learning a policy

network to select which anomaly indicator among poor reconstruction quality,
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temporal irregularity, and semantic inconsistency contributes more towards the
detection of real-world anomalies. Also, the notion of generating latent space

PAs for VAD through LDMs or manifold mixup remains to be investigated.

e In Chapter 5, our proposed TATS module and training recipe needs to be em-
pirically validated on other downstream tasks and extended to other modali-
ties. Furthermore, with the recent resurgence in RL research due to its applica-
tions in LLMs, it is important to reconsider strategies that integrate dynamic
computation into masked modeling approaches, optimizing them through RL

algorithms. We plan to conduct future studies around these topics.

6.4 Closing Remarks

In this thesis, we addressed several underexplored aspects of video representation
learning: What makes a good video representation? What properties should a
video representation have? Specifically, we focused on learning structured, robust,
and efficient representations in a self-supervised setting. This thesis offers several
key insights. Firstly, a structured video representation can be learned by design-
ing video-specific self-supervised pretext tasks that capture fine-grained (temporally
granular) and global (temporally persistent) features while also leveraging motion
patterns. Secondly, video representations can be learned to be more resilient and
robust to spatio-temporal perturbations, such as lighting variations, background
noise, and clutter, while ensuring strong attentiveness to the relevant information
(action, motion patterns, human-object interaction) within the videos. Lastly, video
data contains a high degree of redundancy that must be filtered out while retain-
ing the essential information. Incorporating adaptive computation strategies into
self-supervised representation learning techniques, such as masked video modeling,
can enhance the learning of more transferable and generalizable features in an effi-
cient way. We hope this research can motivate further research in the direction of

representation learning for video understanding.
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