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Multimodal Deep Learning for Driver Monitoring:
Integrating EEG and Vision for Robust Drowsiness

Detection

Shams Ur Rahman

Abstract

Road accidents remain a major global concern, with driver drowsiness and delayed re-
action times recognized as key contributing factors. This thesis advances driver-monitoring
research by developing multimodal approaches that integrate electroencephalography
(EEG) and vision data to predict reaction times and drowsiness.

The investigation first demonstrates that pre-stimulus EEG signals—specifically spec-
tral power in the alpha and theta bands—contain rich information for estimating reaction
times to critical road events. Using subject-independent machine-learning pipelines, short
EEG windows recorded before event onset effectively differentiate between fast and slow
responses. The work then explores the benefits of incorporating vision data as a second
modality by fusing EEG signals with camera-based observations of the driver. One branch
converts EEG power-spectral-density features into image-like representations for analy-
sis with deep convolutional neural networks and transformer models. Another branch
directly integrates raw EEG signals with synchronised video frames through end-to-
end multimodal transformer architectures. Results indicate that transformers equipped
with cross-modal attention capture complex interdependencies between neural and vi-
sual cues, yielding significant improvements in driver-drowsiness detection over unimodal
approaches.

Real-time deployment is addressed by designing and optimising a lightweight pipeline
for edge-based processing. This resource-efficient model enables rapid analysis of facial

cues under diverse driving conditions, ensuring operation on embedded platforms such as

14
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smartphones and automotive edge devices.

Extensive evaluations on large-scale simulated datasets confirm the generalisability
of the proposed approaches across varied driving scenarios. Experiments reveal that
transformer-based fusion significantly enhances predictive performance by effectively com-
bining complementary neural and visual cues. Moreover, the lightweight pipeline main-
tains high accuracy under stringent computational constraints, enabling real-time, on-

device deployment.
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Chapter 1

Introduction

1.1 The Imperative for Advanced Driver State Mon-
itoring

The ubiquity of vehicular transport is a defining feature of modern society, underpinning
economic vitality and individual mobility. However, this convenience is shadowed by the
persistent and grave risk of road traffic accidents. These incidents exact a devastating
global toll in terms of human lives lost and injuries sustained, concurrently imposing
substantial economic and societal burdens [1]. A significant and preventable factor con-
tributing to a large proportion of these accidents is the compromised state of the driver,
particularly impairments arising from fatigue, drowsiness, and lapses in sustained at-
tention |2, [3, |4]. When a driver’s cognitive faculties are diminished, their capacity for
accurate hazard perception, sound decision-making, and rapid motor responses is criti-
cally impaired, often leading to catastrophic outcomes [5, |6]. Consequently, the rigorous
development of robust, reliable, and real-time systems for monitoring and interpreting
driver state transcends mere academic inquiry; it represents a critical imperative for sub-
stantially enhancing road safety and mitigating the incidence of preventable vehicular
tragedies.

Traditional methodologies for assessing driver impairment, such as subjective self-

report questionnaires [7] or performance-based laboratory vigilance tasks [8], while valu-

16



Multimodal Deep Learning for Driver Monitoring

able within controlled research paradigms, are largely unsuited for continuous, non-
intrusive monitoring within the complex and dynamic milieu of an operating vehicle.
This inherent limitation has catalyzed extensive research efforts focused on leveraging
physiological and behavioural signals. These efforts, coupled with sophisticated advance-
ments in signal processing and machine learning, aim to forge intelligent Advanced Driver
Assistance Systems (ADAS) endowed with the capability to detect, and ideally preempt,

the emergence of dangerous driver states.

This imperative is not only academic but is now a major focus of the automotive
industry and regulatory bodies. The current state-of-the-art in commercially available
driver-monitoring systems, found in vehicles from leading manufacturers, primarily relies
on vision-based solutions using infrared cameras to track head pose, eye gaze, and blink
patterns. While effective, these systems are largely reactive—designed to detect overt
signs of impairment rather than predict them—and manufacturers do not publish a single,
comparable “accuracy”. Independent assessments such as Euro NCAP use scenario-based
scoring rather than percentage accuracy. The adoption of these technologies is being
accelerated by regulation: the EU’s General Safety Regulation requires that all newly
registered vehicles from 7 July 2024 be equipped with a Driver Drowsiness and Attention
Warning (DDAW) system [9]. The Commission Delegated Regulation (EU) 2021/1341
further specifies validation and performance requirements, including that a warning shall
be issued at a drowsiness level equivalent to KSS > 8 (and may be issued at KSS 7) [10].
Furthermore, safety-rating bodies such as Euro NCAP award higher scores to vehicles
that incorporate robust driver-monitoring functions in their Safety Assist — Safe Driving
protocol, creating a strong market incentive for implementation [11]. This regulatory and
commercial landscape underscores the urgent need for the kind of advanced, accurate,

and reliable monitoring techniques investigated in this thesis.

The Karolinska Sleepiness Scale (KSS) referenced in these regulations is a standard 9-
point Likert-type scale used to measure subjective sleepiness, ranging from 1 (”extremely
alert”) to 9 ("very sleepy, great effort to keep awake”) [12]. Its adoption in regulatory

frameworks as a benchmark for drowsiness levels highlights the importance of developing
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objective monitoring systems, like those explored in this thesis, that can accurately infer

such states without relying on subjective self-reporting.

1.2 Leveraging Physiological and Behavioural Sig-

nals for Driver State Assessment

Among the diverse array of physiological signals investigated, Electroencephalography
(EEG) has attracted considerable scientific attention. This is primarily due to its unique
capacity to provide a direct, non-invasive measurement of cortical brain activity, offering
a window into the dynamic neurophysiological processes that underpin cognitive function
[13]. Observable fluctuations in EEG patterns, especially within canonical frequency
bands such as Alpha (8-12 Hz) and Theta (4-8 Hz), are well-documented correlates of
shifts in alertness, variations in cognitive workload, and the insidious progression towards
drowsiness and fatigue |14} [15]. This inherent sensitivity makes EEG a prime candidate
for objectively assessing the neural basis of driver performance and vigilance.

Concurrently, vision-based monitoring systems have emerged as a highly promising
and practical alternative. These systems typically employ cameras to analyze facial video
data, extracting behavioural cues indicative of a driver’s state. Commonly monitored
indicators include the percentage of eye closure (PERCLOS), blink rate and duration,
frequency of yawning, and changes in head pose or posture [16, 17]. The increasing
ubiquity of high-quality cameras in modern vehicles and consumer smartphones further
enhances the appeal and accessibility of vision-based approaches for continuous driver
monitoring.

However, neither EEG nor vision-based systems, when utilized in isolation, represent
a panacea. EEG recordings can be susceptible to motion artefacts and electrical noise,
and traditionally require the application of scalp electrodes, which may raise concerns
about user comfort and practicality for everyday use. Vision-based systems, on the
other hand, can be adversely affected by fluctuating environmental conditions such as

variable lighting or direct glare, and may suffer from occlusions (e.g., from eyewear or
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hand-to-face gestures). Moreover, vision systems primarily capture overt behavioural
manifestations of impairment, potentially missing the subtle, early-onset neurocognitive
changes that precede obvious behavioural signs. This recognition of unimodal limitations
has increasingly motivated research into multimodal approaches. Such strategies aim to
synergistically integrate complementary information from diverse sensing modalities—like
EEG and vision—to achieve a more comprehensive, robust, and accurate assessment of

driver state 18, [19].

1.3 Research Scope and Thesis Contributions

This thesis presents a systematic and progressive investigation into the development,
application, and evaluation of advanced machine learning and deep learning method-
ologies for driver state assessment. The research encompasses two primary application
domains: the prediction of driver reaction time from pre-event EEG signals and the
classification of driver drowsiness using unimodal (EEG, vision) and sophisticated multi-
modal (EEG-vision fusion) techniques. A significant thematic thread woven throughout
this work is the methodical advancement from foundational feasibility studies and model
optimization to the exploration of cutting-edge architectures, culminating in addressing
the critical practical challenge of deploying accurate and efficient monitoring systems in
resource-constrained edge computing environments.

The research detailed herein is designed to make several distinct and impactful con-

tributions to the field:

1. Establishing and Optimizing EEG-Based Prediction of Driver Reaction
Time: This work rigorously examines the capacity of pre-stimulus EEG spectral
features to predict a driver’s impending reaction time to critical road events. This
includes a systematic exploration of optimal EEG input parameters (e.g., window
length, frequency bands, channel selection) and a comparative evaluation of classical
machine learning algorithms against specialized 1D Convolutional Neural Networks

(1ID-CNNs) designed for sequential spectral data.
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2. Advancing EEG Analysis through Vision Model Application to Spec-
tral Images: A novel approach is investigated where EEG spectral features are
transformed into 2D image representations—specifically, PSD Matrix Images and
Scalp Topographies. The efficacy of applying standard (ResNet18) and advanced
(Vision Transformer, ViT-B/16) deep learning vision models to these EEG-derived
images for reaction time prediction is assessed, with the ViT-B/16 demonstrating

state-of-the-art performance that surpasses even specialized 1D-CNNss.

3. Pioneering Advanced Multimodal Fusion for Robust Drowsiness Detec-
tion: The thesis explores the synergistic potential of combining EEG and facial
vision data for drowsiness classification. A hierarchy of multimodal fusion strate-
gies is developed and evaluated, progressing from simple feature concatenation to
sophisticated transformer-based feature-level fusion, and ultimately culminating in
a novel end-to-end multimodal transformer architecture that jointly processes raw

EEG and vision data to achieve superior classification accuracy.

4. Enabling Efficient and Deployable Edge-Based Drowsiness Detection:
Recognizing the critical need for practical, real-world solutions, this research pro-
poses and validates a hybrid efficient vision transformer-LSTM model (MobileViT-
LSTM). This model is specifically designed for real-time, vision-based drowsiness
detection on resource-constrained mobile devices, demonstrating a viable pathway

for deploying advanced Al in critical driver safety applications.

These contributions are pursued through a series of interconnected empirical chapters,
each designed to address specific, well-defined research questions. A consistent emphasis
is placed on rigorous subject-independent validation methodologies to ensure that the

findings are generalizable and hold relevance for diverse driver populations.

1.4 Guiding Research Themes and Questions

The investigative journey of this thesis is structured around three overarching research

themes. FEach theme addresses a distinct aspect of driver state monitoring, and the
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empirical studies in the subsequent chapters are guided by a set of specific research
questions aligned with these themes. This structure reflects a progressive deepening of
inquiry, from foundational explorations of neural signals to the practical challenges of

deploying Al-driven safety systems.

Theme 1: Deciphering Pre-Stimulus Neural Signatures for An-

ticipatory Performance Prediction

A core ambition in proactive safety research is the development of systems capable of
anticipating decrements in driver performance before these decrements manifest as ob-
servable errors. This theme delves into the capacity of neural signals, specifically EEG,
recorded in the moments immediately preceding a critical event, to predict subsequent
behavioural outcomes. The key research questions under this theme, addressed compre-

hensively in Chapters 4 and 5, are:

e RQ1: Can pre-stimulus EEG spectral features reliably predict driver re-
action time (RT) in a subject-independent framework, and what are the
optimal input parameters (e.g., time window, frequency bands, channel

subsets) for this task? (Chapter 4)

e RQ2: Can a specialized 1D-CNN, designed for sequential data, enhance
the predictive performance for RT compared to classical machine learn-

ing models? (Chapter 4)

e RQ3: Can transforming 1D EEG spectral features into 2D image repre-
sentations and applying advanced Vision Transformers (ViTs) lead to a
new state-of-the-art in RT prediction accuracy, surpassing even special-

ized 1D models? (Chapter 5)
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Theme 2: Achieving Robust Drowsiness Detection through Syn-

ergistic Multimodal Fusion

While unimodal systems provide valuable insights, human drowsiness is a multifaceted
phenomenon. This theme is predicated on the hypothesis that by intelligently integrating
information from multiple modalities, specifically EEG and facial vision—it is possible to
develop drowsiness detection systems that are more robust and accurate than those rely-
ing on any single data stream. The central research questions guiding the investigations

in Chapter 6 are:

¢ RQ1l: What are the baseline performances of unimodal EEG (EEG-
Net) and vision (ResNet18, ViT-Base) models for subject-independent

drowsiness classification?

e RQ2: Are simple or feature-level fusion strategies sufficient to improve

classification accuracy beyond the best-performing unimodal baseline?

¢ RQ3: Can an end-to-end multimodal transformer architecture, by jointly
learning from raw EEG and vision data, achieve a synergistic perfor-
mance uplift and significantly outperform all unimodal and feature-level

fusion approaches?

Theme 3: Translating Advanced Al into Practical, Efficient Edge-
Based Solutions

The ultimate societal impact of driver state monitoring systems is contingent upon their
practical deployability in real-world environments, which often necessitate operation on
resource-constrained edge devices. This third research theme confronts the challenge of
translating high-performance deep learning models into efficient and deployable solutions.
The investigations in Chapter 7, focusing on the highly informative vision modality,

address the following research questions:

e RQ1: Can a hybrid deep learning architecture (MobileViT-LSTM) that
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combines an efficient vision transformer with a recurrent neural network
achieve an optimal balance between high accuracy and computational

efficiency for video-based drowsiness detection?

e RQ2: Is the proposed hybrid model capable of real-time inference on a
representative mobile edge device, and can it be successfully exported
to a standardized format (ONNX) to facilitate its seamless deployment

in practical applications?

1.5 Thesis Outline

This thesis is meticulously structured to systematically investigate the research themes
and questions articulated above, guiding the reader through a coherent progression of

studies:

e Chapter (1| (Current Chapter): Introduction serves to provide the overarching
motivation for the research, delineate its scope and principal contributions, intro-
duce the guiding research themes and their constituent questions, and furnish an

outline of the entire thesis structure.

e Chapter [2; Literature Review offers a comprehensive survey and critical analy-
sis of the existing body of research pertinent to physiological (primarily EEG-based)
and vision-based methodologies for driver state monitoring. This includes a review
of common signal processing techniques, machine learning and deep learning mod-
els applied to EEG and visual data, established multimodal fusion strategies, and
an overview of the challenges inherent in developing and deploying such Al-driven

systems.

e Chapter [3} Datasets and Core Methodologies provides a detailed exposition
of the two primary datasets utilized throughout the empirical investigations: the
publicly available Cao et al. [20] EEG dataset, which underpins the reaction time

prediction studies; and the internally collected Tobii multimodal dataset, which
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forms the basis for the drowsiness classification experiments. This chapter also offers
a foundational overview of common signal processing techniques, feature extraction

methods, and machine learning principles recurrently employed.

Chapter Electroencephalography-Based Prediction of Driver Reac-
tion Time using Pre-Stimulus Neural Activity constitutes the first empirical
study, focusing on Theme 1. It investigates the fundamental feasibility of predict-
ing driver RT from pre-stimulus EEG spectral features, explores the optimization
of input parameters (such as pre-stimulus window length, frequency band selection,
and EEG channel subsets), and introduces a specialized 1D-CNN architecture to

enhance feature learning from 1D spectral data.

Chapter [5i Enhancing EEG-Based Reaction Time Prediction through
Advanced Vision Model Analysis of Spectral Images continues the explo-
ration under Theme 1. It investigates an innovative approach where EEG spectral
features are transformed into 2D image representations (PSD Matrix Images and
Scalp Topographies). The chapter then evaluates the efficacy of applying standard
(ResNet18) and advanced (Vision Transformer, ViT-B/16) deep learning vision
models to these EEG-derived images for RT prediction, comparing their perfor-

mance against the 1D-CNN benchmark.

Chapter [6f Multimodal Transformer-Based Fusion of EEG and Vision
for Driver Drowsiness Detection addresses Theme 2, transitioning the focus
to driver drowsiness classification using the Tobii multimodal dataset. This chap-
ter systematically evaluates unimodal performance baselines (EEGNet, ResNet18,
ViT-Base), investigates various feature-level fusion techniques, and culminates in
the development and validation of a novel end-to-end multimodal transformer ar-
chitecture that jointly processes raw EEG and facial video data to achieve state-of-

the-art classification accuracy.

Chapter Efficient Transformer-Based Drowsiness Detection on Edge

Devices using a Hybrid MobileViT-LSTM Architecture directly tackles
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Theme 3, focusing on the critical challenge of practical deployment. It proposes and
validates the MobileViT-LSTM hybrid model for efficient, real-time, vision-based
drowsiness detection, including rigorous assessments of its inference capabilities on
a representative mobile edge device and its successful export to the ONNX format

for enhanced portability.

e Chapter General Discussion, Conclusions, and Future Work serves to
synthesize the key findings from all preceding empirical chapters. It discusses their
collective implications in the broader context of driver state monitoring, artificial
intelligence, and road safety. This chapter also acknowledges the overall limitations
of the conducted research and proposes promising and impactful avenues for future

investigation in this rapidly evolving field.

This structured progression is intended to provide the reader with a clear and logical
path through the research, building from fundamental explorations of EEG predictivity
to the development of advanced multimodal systems and, ultimately, to considerations for
practical, efficient, and deployable real-world solutions aimed at enhancing driver safety

through intelligent monitoring technologies.
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Chapter 2

Literature Review: Physiological
and Vision-Based Approaches to

Driver State Monitoring

2.1 Introduction: The Challenge of Driver Impair-

ment

Mental fatigue and drowsiness represent significant contributors to road accidents glob-
ally [2], often stemming from factors such as sleep deprivation or prolonged focus on
monotonous tasks like driving [3]. A direct consequence of driver drowsiness is often a
slowed reaction time to critical events encountered on the road [5], which can tragically
lead to fatal accidents. This issue extends beyond driving; mental fatigue can result in
unsafe practices and diminished performance in occupations demanding sustained oper-
ator attention, such as crane operation [21]. The dangers associated with drowsy driving
are profound, with studies suggesting it can be as hazardous as driving under the influ-
ence of alcohol, as both conditions impair reaction time, attention, and decision-making
capabilities |22, [23 |6]. According to the National Highway Traffic Safety Administra-
tion (NHTSA), drowsy driving was implicated in approximately 2.6% of all fatal motor

vehicle crashes in the United States, resulting in an estimated 846 fatalities [24] 25].
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Consequently, the development of reliable methods for assessing and predicting driver
impairment, particularly drowsiness and reaction time, is paramount for enhancing road

safety.

2.2 Approaches to Assessing Driver State

Various methodologies have been employed to measure or infer a driver’s level of alertness
or fatigue. These can be broadly categorized into subjective assessments, behavioral tests,

physiological measurements, and vision-based monitoring.

2.2.1 Swubjective and Behavioral Measures

Mental fatigue or drowsiness can be quantified using methods such as psychometric ques-
tionnaires 7] or vigilance tests like the Psycho-motor Vigilance Test (PVT) [§]. For
instance, the Karolinska Sleepiness Scale (KSS) [12], a 9-point Likert scale, is commonly

used to gather subjective ratings of sleepiness.

2.2.2 Physiological and Vision-Based Sensing

To overcome the limitations of subjective and behavioral tests, passive sensing techniques
are generally preferred for real-time driver monitoring. These include measuring phys-
iological signals such as heart rate variability [26, 27, [28, 29| or electrodermal activity
(EDA), and ocular metrics like changes in pupil size (pupillography) [30] or electroocu-
logram (EOG) signals 31}, 32]. Behavioral metrics derived from driving patterns, like
steering wheel movements [33], have also been explored.

Among the physiological measures, Electroencephalography (EEG) stands out as it di-
rectly measures neuro-physiological activity. This makes EEG potentially a more reliable
method for obtaining objective measures of fatigue and, critically, the moment-to-moment
variations in brain activity that may correlate with reaction times to road events. The
link between mental fatigue and specific EEG features has been established in several

studies |34} 35, 136].
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Alternatively, vision-based systems utilizing cameras offer a non-intrusive approach.
These systems analyze facial and ocular features, such as eye closure duration, blink rate
[37], head pose, yawning frequency |17, 38|, and facial expressions [39], to infer drowsiness
[40, (16, [41].

This review will delve deeper into EEG and vision-based methods, as they form the
core modalities investigated in this thesis, followed by a discussion on multimodal ap-

proaches that combine their strengths.

2.3 EEG-Based Driver State Monitoring

EEG signals provide a rich source of information about brain activity and have been exten-

sively studied for monitoring cognitive states, including attention, fatigue, and drowsiness

[42] [43], [44].

2.3.1 EEG Signals and Drowsiness/Attention

Research has consistently highlighted the importance of specific frequency bands within
the EEG signal in relation to mental states. The alpha (typically 8-12 Hz) and theta
(typically 4-8 Hz) bands are particularly relevant for assessing drowsiness and attention
[45]. Studies have shown that under conditions requiring high attentional demand, an
increase in theta power alongside a decrease in alpha power is often observed [46]. Con-
versely, research indicates that an increase in lower alpha power occurs when subjects
actively try to remain awake despite feeling sleepy [14]. When sleep is permitted, a de-
crease in alpha and an increase in theta power is typically observed [14]. Klimesch et
al. [14] noted the alpha band as particularly reliable for studying mental state. Further
supporting this, Aakerstedt et al. [47], studying industrial workers, found an increase
in alpha power minutes before sleep onset, while theta activity increased during sleep
itself. Increases in theta and alpha band power are generally associated with decreased
alertness and the progression towards drowsiness 13}, |14} |15, |48]. These frequency bands,

along with others like delta (0.5-4 Hz), beta (12-30 Hz), and gamma (30-100 Hz) [49],
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represent distinct characteristics of ongoing EEG activity [50].

2.3.2 EEG for Reaction Time Prediction

While much research focuses on classifying drowsiness or mental fatigue |51} 52| 53, [54],
the prediction of driver reaction time (RT) using EEG has received comparatively less
attention.

Some studies have explored the relationship between EEG features and reaction time.
For instance, Foong et al. [52] investigated the use of dry frontal EEG electrodes to predict
driver reaction time, using a 2-minute window centered around event onset. They found
a positive correlation between RT and delta band power, and negative correlations with
other bands.

Other related research has explored driver reaction times in simulated and real-world
driving environments. Jurecki et al. [55] studied the relationship between Time-to-
Collision (TTC) and driver RT in a real-world experiment involving mock pedestrians,
confirming a linear relationship and measuring RTs for braking, steering, and accelerator

operation under varying TTC conditions.

2.3.3 Machine Learning Techniques for EEG Analysis

Various machine learning (ML) and feature engineering strategies have been applied to
EEG data for driver state assessment. Early work often involved extracting features,
such as Power Spectral Density (PSD) computed using methods like Welch’s [56} 57],
from specific frequency bands (delta, theta, alpha, beta) within defined time windows.
These features were then fed into classical ML algorithms. For instance, Liu et al. [54]
evaluated logistic regression for mental fatigue recognition.

Deep learning (DL) models have gained traction due to their ability to automatically
learn hierarchical features from complex data like EEG [58, 59]. Convolutional Neural
Networks (CNNs) are commonly used. Lawhern et al. [60] proposed EEGNet, a compact
CNN architecture specifically designed for EEG-based brain-computer interfaces (BCIs)

and classification tasks, utilizing depthwise and separable convolutions. Cui et al. [51]
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used a CNN model for drowsiness detection, implementing a Global Pooling Layer to
learn local features via class activation maps. Their model reportedly learned significant
features like alpha spindles and theta bursts, achieving higher accuracy (73.22%) than
conventional ML techniques. In another study, Cui et al. [61] again used a CNN, iden-
tifying similar features and achieving 78.35% accuracy. Research continues to explore
various deep learning architectures, including 1D-CNNs, for processing EEG time-series
or derived features, aiming to capture complex temporal and spectral patterns relevant

to cognitive states.

2.3.4 Subject-Dependent vs. Subject-Independent Models

A critical consideration in developing practical EEG-based systems is the distinction
between subject-dependent and subject-independent models [62]. Subject-dependent
models are trained and tested using data from the same individual, potentially cap-
turing subject-specific EEG patterns but limiting generalizability. Many early studies
adopted this approach. For real-world deployment, where pre-calibration for every user
is impractical, subject-independent models are necessary. These models are trained on
data from a group of subjects and tested on entirely new, unseen subjects. Achiev-
ing good performance with subject-independent models is challenging due to significant
inter-subject variability in EEG signals [63, 64, [65]. Techniques like transfer learning
have been explored to bridge this gap. For example, Liu et al. [54] found that a trans-
fer learning-enabled classifier outperformed logistic regression and EEGNet for mental
fatigue recognition. Liu et al. [53] used inter-subject transfer-based learning (Maximum
Independent Domain Adaptation - MIDA, and Transfer Component Analysis - TCA)
to detect mental fatigue, achieving accuracies around 73% and 68% respectively, also

exploring single-channel prediction using Random Forest for channel selection.

2.3.5 Investigating EEG Parameters for Optimal Performance

Optimizing the EEG analysis pipeline involves careful consideration of several parameters.

e Time Window Selection: The duration of the EEG segment used for analysis is
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crucial [49]. Selecting an appropriate window length involves balancing the need to
capture sufficient information against potential noise or variability introduced by
longer segments. Studies like [66] suggest that activity closer to a stimulus onset

might hold more predictive power.

Frequency Band Combinations: While individual bands such as Alpha and
Theta are informative, researchers have explored arithmetic combinations—such as
Theta + Beta / Alpha or Theta / Beta—which are frequently cited in cognitive
performance research [67, |68} 5, 14, 69, 70]. Studies have investigated combinations
like alpha/beta and gamma oscillations during attention tasks, suggesting distinct
roles (e.g., prestimulus alpha for top-down control, beta/gamma for bottom-up
processing) |71, [72]. The coupling of alpha and theta has also been highlighted
as critical for attention [73]. However, combining bands might also compound
noise [74] or increase signal complexity [75], potentially requiring more sophisticated

models.

Channel Selection and Spatial Information: EEG is typically recorded from
multiple channels (electrodes) placed according to standardized systems like the 10-
20 system |[76]. Different brain regions, and thus electrode locations, are associated
with different cognitive functions: frontal with decision-making/attention [77, [78],
central with motor processes [79], temporal with auditory/language processing [80],
occipital with visual processing [81], 82|, and parietal with spatial processing/at-
tention [83, [84]. While using all available channels is common, research explores
whether subsets of channels are sufficient or even advantageous [85]. Understanding
the spatial distribution of relevant EEG activity is important for interpretation [36].
Techniques like Common Spatial Patterns (CSP) [87] can be used to find spatial
filters that maximize discriminability between conditions (e.g., fast vs. slow RT)
based on signal variance/power, providing insights into which electrode locations
contribute most. However, interpreting these patterns can be complex as they may
represent combined activity from multiple sources [88], potentially requiring source

localization techniques for deeper understanding [89).
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2.4 Vision-Based Driver Drowsiness Detection

Vision-based systems offer a non-intrusive alternative or complement to physiological

sensors for monitoring driver state.

2.4.1 Visual Cues for Drowsiness

These systems typically rely on cameras monitoring the driver’s face and analyzing various
visual indicators associated with fatigue. Commonly used cues include ocular measures
like Percentage of Eye Closure (PERCLOS), blink frequency and duration [37} [16], and
eye gaze. Facial expressions, particularly yawning frequency and duration [17, 38|, are
also strong indicators. Head pose, such as nodding frequency or sustained downward gaze,
provides further evidence of drowsiness [41, 39]. Handcrafted geometric features derived
from facial landmarks, like the Eye Aspect Ratio (EAR) and Mouth Aspect Ratio (MAR)
[90, 91], were used in earlier systems but often struggled with variability in real-world

conditions [92, 93].

2.4.2 Deep Learning for Vision Analysis

Modern vision-based drowsiness detection predominantly uses deep learning, particularly
CNNs, to automatically extract relevant features from facial images or video frames [94,
95, 96]. Models like ResNet [97] have been successfully applied, often pre-trained on large
image datasets and fine-tuned for the specific task of classifying alertness states based on
visual input. CNNs excel at capturing local patterns and textures [98] 99|, contributing
to improved robustness compared to handcrafted features [100].

More recently, Vision Transformers (ViTs) [101] have emerged as powerful alterna-
tives or complements to CNNs. ViTs utilize self-attention mechanisms, allowing them to
model long-range dependencies and capture global spatial relationships within an image
more effectively than the inherently local receptive fields of CNNs [102]. This capabil-
ity is potentially advantageous for detecting subtle, holistic facial cues associated with

drowsiness. However, standard ViTs are computationally intensive [103, [104].
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2.4.3 Challenges in Vision-Based Methods

Despite their non-intrusiveness, vision-based systems face challenges. Their performance
can be significantly affected by variations in environmental conditions, such as poor or
changing illumination (e.g., day vs. night driving, shadows). Occlusions, where the
driver’s face is partially obscured (e.g., by sunglasses, hands, or masks), can hinder feature
extraction. Varying camera angles and distances also impact performance. Furthermore,
visual cues primarily reflect the physical manifestations of drowsiness; they may not

capture the underlying cognitive state as directly as physiological measures like EEG.

2.5 Multimodal Approaches for Enhanced Detection

Given the complementary strengths and weaknesses of individual modalities like EEG
and vision, multimodal approaches that combine information from multiple sources have

gained significant interest.

2.5.1 Rationale for Multimodality

The core idea behind multimodal fusion is to leverage the unique information provided
by each sensor type to achieve more robust and accurate detection than possible with
any single modality alone |105]. For example, EEG provides direct insight into neural
activity related to alertness [13, [106] but can be sensitive to noise and inter-subject
variability [63]. Vision offers non-intrusive monitoring of behavioral cues [16] but is
susceptible to environmental factors and occlusions [17]. By combining them, the system
can potentially exploit EEG’s sensitivity to internal state changes and vision’s ability
to capture overt behavioral signs, mitigating the limitations of each [18, [19]. Previous
studies have demonstrated the benefits of multimodal fusion in related areas like emotion
recognition [19], cognitive workload assessment [107], and fatigue detection [18]. Lian et
al. |18] combined EEG and eye-tracking data, using a cross-modal predictive alignment
module to improve fusion efficiency. Zhang et al. [108] fused EEG and EOG signals,

achieving improved accuracy for drowsiness detection.
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2.5.2 Fusion Strategies

Various strategies exist for fusing data from multiple modalities. A common approach is
feature-level fusion, where features are first extracted independently from each modality
(e.g., using unimodal networks), and the resulting feature vectors are then combined,
often by simple concatenation. These fused features are then fed into a classifier (e.g.,
Bayesian Ridge Classification [109], SVM, ANN). While straightforward, this approach
may not fully capture complex inter-modal dependencies, and its effectiveness can be
limited if the chosen features or the fusion classifier are suboptimal.

An alternative is decision-level fusion, where each modality is processed by a separate
classifier, and their individual predictions are combined (e.g., through voting or weighted
averaging).

More advanced strategies involve intermediate or hybrid fusion, and increasingly, end-
to-end learning approaches. End-to-end models aim to learn both feature representations
and the fusion process jointly, directly from the raw input data of multiple modalities.
This allows the model greater flexibility to discover optimal representations and cross-

modal interactions without being constrained by pre-defined feature extraction steps.

2.5.3 Transformers in Multimodal Fusion

The success of transformer architectures in natural language processing [110] and com-
puter vision [111] has spurred their application in multimodal tasks. Transformers’ core
mechanism, self-attention (and its extension, cross-attention), is well-suited for modeling
dependencies both within and between different data streams. Multimodal Transform-
ers [112] have been proposed for tasks like sentiment analysis and emotion recognition.
Attention mechanisms have also been used with biosignals, for instance, in EEG-based
emotion recognition [113].

For fusing EEG and vision, transformer models can be designed to operate at the
feature level, applying cross-modal attention to features from unimodal encoders, or in an
end-to-end fashion, processing raw data streams directly with transformer-based encoders

and integrating them via attention mechanisms. Investigating the effectiveness of such
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advanced fusion architectures for driver drowsiness remains an active area of research.

2.6 Real-Time Deployment on Edge Devices

While developing accurate models is crucial, a practical driver monitoring system must
operate in real-time on resource-constrained platforms typically found in vehicles or mo-

bile devices (edge computing). This presents significant computational challenges.

2.6.1 The Edge Computing Challenge

Advanced deep learning models, particularly those involving transformers like ViT, often
have large parameter counts and high computational demands (FLOPs), making them
difficult to deploy on devices with limited processing power, memory, and energy budgets
[103]. Achieving low latency inference, essential for timely warnings in safety-critical

applications like drowsiness detection, is a primary hurdle.

2.6.2 Efficient Model Architectures

Addressing the deployment challenge requires designing or adapting models for efficiency.
Lightweight CNN architectures have been explored, but recent efforts focus on creating
efficient transformer variants. MobileViT [114] is a notable example, designed to combine
the strengths of CNNs (local feature extraction, inductive biases) with the global context
modeling capabilities of transformers, while significantly reducing parameter count and
computational cost compared to standard ViTs. Such models aim to bridge the gap

between performance and efficiency for vision tasks on mobile platforms.

2.6.3 Temporal Modeling for Edge Vision

Drowsiness is an inherently temporal phenomenon; its onset and progression occur over
time [115, 116]. Simply applying an efficient spatial feature extractor like MobileViT
on a frame-by-frame basis may miss crucial temporal dynamics. Therefore, for video-

based analysis on the edge, architectures need to incorporate temporal modeling. Hybrid
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approaches combining efficient spatial feature extractors (like MobileViT or lightweight
CNNs) with recurrent neural networks (RNNs), particularly Long Short-Term Memory
(LSTM) networks [117], are a strategy explored in literature. LSTMs are adept at cap-
turing temporal dependencies in sequential data [118, (119} |120|, potentially allowing a

model to aggregate information over a time window to make a more informed prediction.

2.6.4 Optimization Techniques for Deployment

Beyond architectural choices, several optimization techniques are vital for edge deploy-
ment. Mixed-precision training (e.g., using Automatic Mixed Precision - AMP [121])
can significantly reduce memory footprint and potentially speed up inference by using
lower-precision numerical formats (like float16) for computations where possible, without
substantial loss in accuracy. Model quantization [122, [123] further reduces model size
and computational cost by representing weights and activations with fewer bits (e.g.,
8-bit integers). Pruning techniques remove redundant parameters from the model. Fi-
nally, exporting the trained model to standardized formats like ONNX (Open Neural
Network Exchange) [124] facilitates deployment across various hardware platforms us-
ing optimized inference runtimes (e.g., ONNX Runtime, TensorFlow Lite) that leverage

hardware acceleration capabilities [125].

2.7 Summary and Research Gaps

The literature highlights a clear need for effective driver drowsiness and reaction time
monitoring systems to improve road safety. While various subjective, behavioral, phys-
iological (EEG, EOG, ECG, etc.), and visual methods exist, EEG and vision-based ap-
proaches, particularly using deep learning, have shown significant promise.

EEG analysis, focusing on bands like alpha and theta, can provide direct insights
into neural correlates of fatigue and attention. Machine learning, evolving from classical
methods with feature engineering (PSD) to deep learning (CNNs, EEGNet, 1D-CNNs),

has enabled increasingly sophisticated analysis. A key challenge remains the development
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of robust subject-independent models. Research has explored optimizing EEG parameters
like time windows, band combinations, and channel configurations.

Vision-based methods offer non-intrusive monitoring of facial cues using CNNs and,
more recently, ViTs. However, they face challenges related to environmental variability
and may not capture internal states as directly as EEG.

Multimodal approaches, combining modalities like EEG and vision, aim to overcome
individual limitations and provide more robust detection. Fusion strategies range from
simple feature-level concatenation to potentially more advanced end-to-end models em-
ploying attention mechanisms.

Finally, the practical deployment of these systems necessitates addressing the com-
putational constraints of edge devices. This involves developing efficient model architec-
tures (e.g., MobileViT), incorporating temporal modeling for video analysis (e.g., using
LSTMs), and employing optimization techniques like mixed-precision training and stan-
dardized deployment formats (ONNX).

This review identifies several areas where further investigation is warranted and which

motivate the research presented in this thesis:

e Exploring the feasibility and optimization of predicting driver reaction time using

pre-stimulus EEG signals with robust subject-independent models.

e A deeper investigation into advanced multimodal fusion techniques, particularly
leveraging transformer architectures, to effectively combine EEG and vision data for

enhanced drowsiness detection compared to unimodal and simpler fusion methods.

e Addressing the critical gap between high-performance deep learning models and the
requirements of real-time edge deployment, focusing on developing and optimizing
architectures that are both accurate and computationally efficient for vision-based

monitoring on resource-constrained platforms.

Addressing these aspects aims to advance the state-of-the-art towards more accurate,

reliable, and deployable driver state monitoring systems.
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The drowsiness classification studies presented in this thesis will leverage a large-
scale multimodal dataset where ’Alert’” and 'Drowsy’ states are robustly defined by a
controlled sleep-deprivation protocol and validated by subjective Karolinska Sleepiness
Scale (KSS) scores, allowing for a clear and unambiguous ground truth for model training
and evaluation.

Figure[2.1| provides a high-level visualization of the structure and flow of the literature
reviewed in this chapter. The diagram begins by outlining the core challenge of driver
impairment (Section , encompassing issues like drowsiness and slowed reaction times,
which motivates the exploration of various assessment strategies (Section [2.2). It then
delves into the specifics of the primary monitoring approaches discussed: EEG-based
methods (Section and Vision-based methods (Section [2.4)), highlighting their respec-
tive inputs, techniques, and inherent challenges. The diagram shows how the limitations
and complementary nature of these individual modalities motivate the investigation into
Multimodal Fusion techniques (Section , particularly those leveraging advanced ar-
chitectures like transformers. Moving towards practical application, the figure illustrates
the critical considerations for Edge Deployment (Section , covering both the chal-
lenges and potential solutions like efficient models (e.g., MobileViT) and optimization
techniques. Finally, the diagram culminates in the specific Research Gaps and Thesis
Focus (Section , demonstrating how the reviewed literature informs and positions the
contributions of this work in optimizing EEG analysis, advancing multimodal fusion, and

enabling efficient edge models.
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Chapter 3

Datasets and Core Methodologies

3.1 Introduction

This chapter serves as a foundational element for the experimental work presented in
this thesis. It provides detailed descriptions of the two primary datasets utilized for
developing and evaluating models related to driver state assessment: a publicly available
multi-channel Electroencephalography (EEG) dataset focused on sustained attention and
reaction time, and a comprehensive, internally collected multimodal dataset capturing

various physiological and behavioural signals during induced drowsiness.

Furthermore, this chapter offers a high-level overview of the core technical concepts
and methodologies explored in the subsequent empirical chapters (Chapters through .
It introduces the progression of techniques applied, ranging from classical machine learn-
ing on EEG features to advanced deep learning architectures, including Convolutional
Neural Networks (CNNs) and Transformers, applied to both unimodal and multimodal
data, culminating in models optimized for edge deployment. Finally, it outlines the
consistent evaluation framework adopted throughout the thesis, emphasizing the impor-
tance of subject-independent validation for ensuring the generalizability of the findings
in real-world driver monitoring contexts. This chapter aims to equip the reader with the
necessary background on the data and the key analytical approaches employed, setting

the stage for the detailed investigations presented later.
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3.2 Multi-Channel EEG Driving Dataset (Cao et al.)

The first dataset employed extensively in Chapters[d]and[5]is a publicly available collection
focused on capturing driver behaviour and brain dynamics during a sustained-attention
driving task, as described by Cao et al. [20]. This dataset is crucial for investigating the

neural correlates of reaction time (RT) fluctuations in response to driving events.

3.2.1 Experimental Design and Task

The experiment involved 27 voluntary participants (students or staff, aged 22-28 years)
operating an immersive driving simulator equipped with a six-degree-of-freedom motion
platform. Participants were instructed to maintain their simulated vehicle in the center of
a four-lane highway during a monotonous, 90-minute night-time driving scenario designed
to induce fatigue and vigilance decrements. Crucially, the simulation incorporated an
event-related lane-departure paradigm. Randomly, the simulated vehicle would begin
to drift either left or right from the cruising lane (deviation onset). Participants were
required to quickly correct this deviation by steering the vehicle back to the center of
the original lane (response onset to response offset). Reaction Time (RT) for each event
was defined as the duration between the deviation onset and the response onset. The
experiment was designed to isolate steering responses, with participants not required to
control acceleration or braking. Figure represent the visual representation of the

driving setup and the event markers [20].

3.2.2 Data Acquisition

For each of the 62 sessions recorded across the 27 participants, the following data were

acquired simultaneously:

e EEG Data: Continuous 32-channel EEG signals were recorded using an Ag/AgCl
cap placed according to a modified international 10-20 system, referenced to linked
mastoids. Data were acquired using a Scan SynAmps2 Express system (Com-

pumedics Ltd.) at a sampling rate of 500 Hz with 16-bit resolution. Impedance
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Figure 3.1: Experimental setup illustrating participants operating an immersive driving
simulator with a motion platform. During a 90-minute night-time highway scenario,
random lane departures were introduced to measure reaction times based on steering

corrections )

was kept below 5 kf).

e Behavioural Data: Vehicle trajectory (lateral position) and event markers (devi-
ation onset [left /right], response onset, response offset) were recorded by the simu-

lation software and synchronized with the EEG data.

3.2.3 Data Availability and Relevance

This dataset is publicly available via the figshare repository, provided in both raw
and pre-processed formats (including artefact rejection and filtering), facilitating repro-
ducibility and further research. Its primary relevance to this thesis lies in providing
precisely timed EEG data locked to discrete events (lane deviations) with corresponding
behavioural reaction times. This enables the investigation of pre-event neural activity
as a predictor of subsequent driver performance, forming the basis for the reaction time

prediction studies presented in Chapters [ and [f]
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3.3 Multimodal Driving Fatigue Dataset (Tobii)

The second dataset, utilized in Chapters [6] and [7] is a large-scale, internally collected
multimodal dataset specifically designed to study driver drowsiness under controlled, yet
realistic, conditions. Unlike the Cao et al. dataset, this dataset is not publicly available

due to its proprietary nature and participant privacy considerations.

3.3.1 Participants and Fatigue Induction

Data were collected from 100 participants, with data from 79 individuals (age range 18-
71 years; 30% female, 70% male) retained after quality control removed sessions with
excessive noise or artefacts. A key aspect of this dataset is the controlled induction of

fatigue. Each participant completed two driving simulation sessions:
1. Alert State Session: Conducted at 10 AM, following a normal night’s sleep.

2. Drowsy State Session: Conducted at 3 AM, after the participant had remained

awake for approximately 24 hours under supervision at the research facility.

This within-subject design, contrasting alert and sleep-deprived states, provides a strong
basis for developing and evaluating drowsiness detection models. Subjective drowsiness
was also assessed using the Karolinska Sleepiness Scale (KSS), confirming significantly

higher drowsiness levels in the 3 AM sessions.

3.3.2 Data Acquisition and Modalities

Participants operated a high-fidelity driving simulator featuring a car seat, multiple
screens, steering wheel, and pedals. The simulator environment was equipped with a
suite of sensors to capture a wide range of physiological and behavioural data. While the
full dataset includes EEG, EOG, EDA, EKG, SpO2, NIR imaging, RGB video, audio,
and thermal IR imaging, the work presented in this thesis (Chapters [6] and [7) focuses

specifically on:
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e EEG Data: Recorded using Ag-AgCl electrodes, preprocessed to remove artefacts
(e.g., using ICA), filtered into standard frequency bands (Delta, Theta, Alpha,

Beta), and segmented into one-second non-overlapping windows.

e Vision Data (RGB Video): Captured by a standard camera pointing at the
participant’s face. Video frames were extracted and synchronized with the corre-

sponding one-second EEG windows.

3.3.3 Data Handling and Relevance

Written informed consent was obtained from all participants, and strict data manage-
ment protocols were followed to ensure confidentiality, including data anonymization and
secure storage. The ground truth labels for the binary classification task (’Alert’ vs.
'‘Drowsy’) were determined directly from the experimental design: all data from the 10
AM sessions was labeled as ’Alert’, and all data from the 3 AM sessions was labeled
as "Drowsy’. To empirically validate this labeling strategy, subjective sleepiness ratings
from the Karolinska Sleepiness Scale (KSS) [12], provided by an expert neurologist for
each second of data, were analyzed. A statistical comparison confirmed that the mean
KSS score at 3 AM was significantly higher than at 10 AM (p < 0.00001), providing
strong validation for the ground truth labels. This robust labeling is critical for the rele-
vance of this dataset, as it allows for the development and rigorous evaluation of advanced
multimodal fusion models (Chapter @ and the subsequent optimization of vision-based

models for efficient edge deployment (Chapter [7)).

3.3.4 Dataset Generation and Thesis Involvement

It is important to clarify the context of the Tobii dataset in relation to this thesis.
The data collection and initial processing were undertaken by Tobii as a standalone,
commercially focused project to create a large-scale, high-quality resource for internal
research and development in driver monitoring. The generation of this dataset was not

initially part of this PhD project but was a pre-existing, independent body of work.
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My involvement began after the primary data collection phase. My role was to leverage
this unique dataset to explore and develop the advanced machine learning and deep
learning models that form the core of the multimodal and edge-deployment investigations
(Chapters @ and [7)) in this thesis. The collaboration was synergistic; while analyzing
the data, I provided feedback to Tobii regarding data quality, potential artefacts, and
annotation consistency. This feedback loop contributed to the refinement of the final
version of the dataset utilized for the research presented herein, ensuring its suitability for

rigorous academic investigation while still aligning with its original commercial objectives.

3.4 Core Methodologies Explored

This thesis explores a range of signal processing and machine learning methodologies ap-
plied to the datasets described above, progressively increasing in complexity and tackling
different aspects of driver state assessment. This section provides a high-level overview

of these core techniques, which are detailed in subsequent chapters.

3.4.1 Pre-Event EEG for Reaction Time Prediction and Opti-

mization

Chapter [4] focuses on the fundamental question of whether neural activity immediately
preceding a critical event can predict subsequent behavioural response time and how such

prediction can be optimized. Using the Cao et al. dataset [20], this work investigates:

e Concept: Predicting individual trial reaction times (RT) solely from EEG signals

recorded in short pre-event windows.

e Feature Extraction: Power Spectral Density (PSD) estimation from pre-event

EEG epochs in standard frequency bands.

e Modeling Progression: Starting with classical machine learning regression al-

gorithms (Bayesian Ridge, ANNs), then introducing a 1D Convolutional Neural

45



Multimodal Deep Learning for Driver Monitoring

Network (1D-CNN) for improved feature learning from spectral vectors.

e Parameter Optimization: Systematically investigating the impact of pre-stimulus
window length, frequency band selection (individual vs. combined), and EEG chan-

nel subsets.

e Evaluation Focus: Subject-independent prediction accuracy (MAE, Pearson cor-

relation) using Leave-One-Subject-Out (LOSO) cross-validation.

3.4.2 Vision-Based Analysis of EEG Spectral Images for En-

hanced RT Prediction

Chapter [5| introduces an innovative approach to RT prediction by transforming EEG
spectral features into 2D image representations (PSD Matrix Images and Scalp Topogra-

phies), still using the Cao et al. dataset [20]. This chapter explores:

e Concept: Leveraging powerful deep learning vision models by converting 1D EEG

spectral data into 2D image formats.

e Modeling Progression: Initially evaluating a standard vision CNN (ResNet18
[97]) on these EEG-derived images, and then applying a more advanced Vision
Transformer (ViT-B/16 [101]) to potentially capture global contextual patterns

within these images more effectively.

e Evaluation Focus: Comparing the performance of these vision-based EEG pipelines
(ResNet18 and ViT-B/16) against each other and, crucially, against the special-
ized 1D-CNN benchmark from Chapter |4, using subject-independent 5-fold cross-

validation.

3.4.3 Multimodal Fusion for Drowsiness Classification using Trans-

formers

Shifting focus from RT prediction to drowsiness classification, Chapter[6|utilizes the richer

Tobii dataset (Section to explore the fusion of EEG and visual (facial video) data:
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Concept: Developing models to classify driver state as ’Alert’ or 'Drowsy’ by

combining synchronized EEG and video information.

Modeling Progression: Establishing unimodal baselines (EEGNet [60] for EEG;
ResNet18 and ViT-Base for vision), then exploring feature-level fusion (simple con-
catenation with Bayesian Ridge, and transformer-based feature fusion), and cul-
minating in an end-to-end multimodal transformer architecture that processes raw

EEG and video data jointly.

Evaluation Focus: Subject-independent 5-fold cross-validation, using classifica-
tion metrics (Accuracy, Precision, Recall, AUC-ROC) to assess the effectiveness of

different fusion strategies compared to unimodal baselines.

3.4.4 Efficient Edge-Based Drowsiness Detection using Hybrid

Transformers

The final empirical chapter, Chapter [7, addresses the practical challenge of deploying

drowsiness detection systems on resource-constrained edge devices, focusing solely on the

vision modality from the Tobii dataset:

Concept: Designing an accurate yet computationally efficient deep learning model

for real-time video-based drowsiness detection on mobile platforms.

Hybrid Architecture (MobileViT-LSTM): Proposing a novel architecture com-
bining an efficient vision transformer (MobileViT [114]) for per-frame spatial feature
extraction and a Long Short-Term Memory network (LSTM [117]) for temporal ag-

gregation over H-second video windows.

Optimization for Edge: Employing techniques like Automatic Mixed Precision
(AMP) training [121] and model export to ONNX format [124].

Evaluation Focus: Subject-independent 5-fold cross-validation using classifica-

tion metrics, with a critical assessment of inference time on a representative edge
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device to confirm real-time feasibility, compared against heavier ViT and standalone

MobileViT baselines.

3.5 Evaluation Framework

A consistent and rigorous evaluation framework is employed across the empirical chapters
(Chapters {4| through [7) to ensure the reliability and generalizability of the findings. The

cornerstone of this framework is the adherence to subject-independent validation.

3.5.1 Subject-Independent Validation

Given that the ultimate goal is to develop systems applicable to unseen drivers without
requiring extensive individual calibration, all models are evaluated using methods that
strictly separate training and testing data at the participant level. This prevents the
model from learning person-specific idiosyncrasies that do not generalize. Two primary

strategies are used:

e Leave-One-Subject-Out (LOSO) Cross-Validation: Primarily used in Chap-
ter |4} In each fold of the validation, data from one subject is held out entirely for

testing, while the model is trained on data from all remaining subjects.

e Subject-Independent k-Fold Cross-Validation: Used in Chapters [3] [0 and
(typically with k=5). Participants are randomly partitioned into k folds. In each
iteration, one fold of participants constitutes the test set, and the remaining k-1

folds of participants form the training set.

Performance metrics are typically averaged across all folds to provide a summary statistic,
often accompanied by the standard deviation to indicate the variability in performance

across different subject splits.
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3.5.2 Performance Metrics

The choice of performance metrics is critical for a robust evaluation of the models and
is directly informed by the standards and practices discussed in the state-of-the-art lit-
erature (Chapter . The metrics were selected to provide a comprehensive and task-
appropriate assessment of model performance for both regression and classification prob-

lems.

Reaction Time Prediction (Regression - Chapters [4| and

For the task of predicting the continuous RT value, the following two metrics were used,

consistent with standard practice in regression and performance prediction literature:

e Mean Absolute Error (M AE): This metric measures the average absolute differ-
ence between the predicted and actual RTs, reported in seconds. MAE was chosen
for its direct interpretability—it provides a clear and intuitive measure of the av-
erage prediction error in real-world units. It is also less sensitive to large outlier
predictions compared to Mean Squared Error (MSE), which makes it a more robust

metric for inherently variable behavioural data like RT.

e Pearson Correlation Coefficient (r): This metric measures the strength and di-
rection of the linear relationship between the predicted and actual RTs. While MAE
assesses absolute accuracy, the Pearson correlation assesses whether the model’s
predictions correctly track the trial-by-trial fluctuations in a driver’s performance.
As discussed in the literature review, achieving a significant positive correlation is a
key indicator that a model has learned the underlying patterns of vigilance, even if
its absolute predictions have a systematic offset. It is a crucial metric for validating

the model’s sensitivity to transient state changes.

Drowsiness Classification (Binary Classification - Chapters @ and

For the binary classification task of distinguishing ’Alert’ from 'Drowsy’ states, a suite

of metrics was chosen to provide a holistic view of performance, which is essential for
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safety-critical applications as highlighted in Chapter [2}

e Accuracy: The overall proportion of correct classifications. While a standard

metric, it can be misleading if the classes are imbalanced.

e Balanced Accuracy: The average of recall for each class. This was selected as
a more robust metric than standard accuracy, especially in cross-validation folds
where slight class imbalances might occur, as it gives equal weight to the model’s

performance on both ’Alert’ and 'Drowsy’ states.

e Precision and Recall (for the "Drowsy’ class): These metrics are critical for
safety applications. Recall (or Sensitivity) measures the model’s ability to cor-
rectly identify truly drowsy instances, which is vital for minimizing false negatives
(missed detections). Precision measures the proportion of drowsiness alerts that
are correct, which is important for minimizing false positives and ensuring user trust
in the system. The literature on driver monitoring systems frequently emphasizes

the need to balance these two metrics.

e Area Under the ROC Curve (AUC-ROC): This is a comprehensive, threshold-
independent measure of the model’s ability to discriminate between the "Alert” and
"Drowsy’ classes. An AUC-ROC value provides a single scalar that summarizes the
overall classification power of the model, making it an excellent metric for comparing

different architectures, as is common practice in machine learning literature.

3.5.3 Baselines

Performance is consistently compared against relevant baselines to contextualize the re-

sults:
e Dummy Regressor/Classifier.
e (Classical ML Models as baselines for more complex deep learning architectures.

e Unimodal Models as baselines for multimodal fusion.
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e Standard (heavier) Architectures as baselines for proposed efficient models.

This comprehensive evaluation framework ensures that the contributions of the different
methodologies are assessed rigorously in terms of both accuracy and generalizability, and

in the final stages, practical deployment feasibility.

3.6 Summary

This chapter has laid the groundwork for the empirical investigations within this thesis
by detailing the two key datasets employed: the Cao et al. [20] public EEG dataset for
reaction time studies and the internally collected Tobii multimodal dataset for drowsiness
classification. It has also provided a roadmap of the core methodologies explored, trac-
ing a path from classical machine learning on spectral EEG features, through advanced
CNN and transformer-based approaches for both unimodal and multimodal data, and
culminating in the development of efficient hybrid models tailored for edge deployment.
Finally, the chapter outlined the rigorous, subject-independent evaluation framework and
associated metrics that underpin the assessment of model performance and generalizabil-
ity throughout the subsequent chapters. With this context established, the following
chapters will now delve into the specific implementations, results, and discussions of each

methodological stage.
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Chapter 4

Electroencephalography-Based
Prediction of Driver Reaction Time

using Pre-Stimulus Neural Activity

4.1 Introduction

Ensuring driver safety is an important global challenge, with driver states such as fa-
tigue, drowsiness, and inattention being major contributors to road accidents |2, 3]. A
direct and often critical consequence of impaired driver state is an increase in reaction
time (RT) when responding to unexpected or hazardous road events [5]. Slowed reac-
tions significantly reduce the time available for corrective maneuvers, thereby increasing
crash risk. While various methods exist to assess driver state, many are subjective (e.g.,
questionnaires [7]) or require active participation (e.g., vigilance tests [8]), making them

unsuitable for continuous, non-intrusive monitoring during driving.

Physiological signals offer a promising avenue for objective, real-time assessment.
Among these, Electroencephalography (EEG) stands out as it provides a direct measure
of cortical brain activity, reflecting the dynamic changes in cognitive states like alertness,
attention, and cognitive load that fundamentally underpin driving performance [34} 35,

36]. The richness of the EEG signal holds the potential not just to classify a driver’s
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current state but perhaps even to anticipate their near-future behaviour.

This chapter delves into this anticipatory potential, addressing the core challenge: can
I predict an individual’s reaction time to an imminent event using only the neural activity
captured via EEG in the moments immediately preceding that event? Such a capability
could form the basis for proactive Advanced Driver Assistance Systems (ADAS) that
could adapt or intervene before a potentially dangerous slow response occurs.

Specifically, this chapter aims to systematically investigate the feasibility and subse-
quently optimize the parameters for predicting driver reaction time to simulated lane-
departure events based solely on pre-stimulus EEG spectral features. I focus on a subject-
independent framework, ensuring that my findings are generalizable to unseen individu-
als, a crucial requirement for practical applications. This investigation is guided by two

primary research questions:

1. RQ1: Can pre-stimulus EEG spectral features, particularly from alpha
and theta bands, reliably predict driver reaction time to unexpected lane
deviation events in a subject-independent framework?

I investigate whether power spectral density features extracted from short, pre-
event EEG windows (-2s to 0s) can effectively differentiate fast from slow responses
on a trial-by-trial basis and estimate average response tendencies, using standard

machine learning pipelines evaluated rigorously across participants.

2. RQ2: Can the predictive performance be enhanced by systematically op-
timizing EEG input parameters (pre-stimulus window length, frequency
band selection, channel subsets) and employing more advanced feature
learning models (1D-CNN)?

I explore the impact of varying key input parameters and compare the performance
of classical machine learning models against a 1D Convolutional Neural Network
designed to automatically learn relevant patterns from the spectral features, seeking

to maximize predictive robustness.

To address these questions, I utilize the publicly available multi-channel EEG driving
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dataset collected by Cao et al. [20] (detailed in Chapter [3]), which provides synchronized
EEG and behavioural RT data during a sustained attention task. My analysis focuses
on a subset of these participants, excluding data compromised by significant artefacts or
anomalous behaviour to ensure the robustness of my findings. This chapter progresses
from establishing the basic feasibility of pre-event RT prediction using classical machine
learning models (addressing RQ1) to systematically exploring input parameters and lever-
aging a 1D-CNN architecture for improved performance (addressing RQ2), culminating

in an interpretable analysis of the underlying neural patterns driving predictability.

4.2 Methods

4.2.1 Dataset and Experimental Paradigm

The analysis presented in this chapter is based on the publicly available dataset described
by Cao et al. [20], which was introduced in detail in Section [3.2] Briefly, the dataset
comprises synchronized 32-channel EEG recordings and behavioural data from partici-
pants engaged in a 90-minute simulated driving task. The core task involved maintaining
lane position on a monotonous highway, during which random lane deviation events were
introduced. Participants were required to make corrective steering actions. The key
event markers relevant to this study are the 'Deviation Onset’ (start of the drift, codes
251 for left, 252 for right) and 'Response Onset’ (start of corrective steering, code 253).
The Reaction Time (RT) for each trial is defined as the temporal difference between the

Deviation Onset and the corresponding Response Onset.

4.2.2 Participant Subset Selection and Justification

The original dataset published by Cao et al. [20] included data from 27 participants
across 62 sessions. For the analyses conducted in this chapter, I utilized data from 24
of these participants. Three participants were excluded following careful inspection of
their EEG data and behavioural performance. This exclusion was based on two primary

criteria:

o4



Multimodal Deep Learning for Driver Monitoring

1. Excessive EEG Artefacts: Several recording sessions from the excluded partici-
pants exhibited substantial contamination from non-neural sources, such as exces-
sive muscle activity (electromyography, EMG) or significant movement artefacts.
Such artefacts can severely distort the underlying EEG signal, compromising the
integrity of spectral feature extraction and potentially leading to unreliable model
training [126]. Standard preprocessing techniques may not fully mitigate severe or

pervasive artefacts [127].

2. Anomalous Reaction Time Distributions: The behavioural data for these
participants displayed highly atypical reaction time patterns in some sessions. This
included disproportionately long RTs (significantly exceeding the typical range ob-
served in the majority of participants) or extreme variability in RTs across trials.
Such patterns might indicate periods of task disengagement, misunderstanding of
instructions, or potentially microsleeps or extreme fatigue states that deviate sig-
nificantly from the typical alert-to-drowsy continuum the models aim to capture.
Including these anomalous data points could unduly bias the regression models,
leading them to focus on predicting extreme outliers rather than the more subtle,
continuous variations in RT associated with typical fluctuations in vigilance and

attention.

The exclusion of these participants aligns with standard practices in EEG research,
aiming to enhance the signal-to-noise ratio and ensure that the machine learning models
are trained on data representative of the cognitive processes under investigation (i.e.,
variations in attention and preparedness influencing typical reaction speeds). This focus
on a cleaner, more representative subset of the data allows for a more robust assessment
of the relationship between pre-stimulus EEG and typical driver reaction time variability.
All subsequent analyses reported in this chapter are based on the data from the remaining

24 participants.
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4.2.3 EEG Data Preprocessing and Epoching

The raw EEG data (‘.set’ files from the Cao et al. dataset [20]) for the selected 24 par-
ticipants were processed using the MNE-Python library [56]. Initial preprocessing steps
involved removing non-EEG channels (e.g., the "vehicle_position’ channel) and applying

a standard 10-20 montage definition to ensure spatial consistency across recordings.

A crucial step was filtering the continuous EEG data to remove noise and baseline drift
while preserving physiologically relevant frequencies. A Finite Impulse Response (FIR)
band-pass filter was applied between 0.5 Hz and 30 Hz. This frequency range encompasses
the delta, theta, alpha, and lower beta bands, which are commonly associated with
cognitive states like alertness, attention, and drowsiness [14]. The filtering was performed

using a zero-phase Hamming window FIR (Finite Impulse Response) filter.

Following filtering, the continuous data was segmented into epochs time-locked to the
'Deviation Onset’ events (codes 251 or 252). To investigate the predictive power of pre-
stimulus activity (addressing RQ1 and RQ2), epochs were extracted from the time window
immediately preceding the deviation onset. While the primary analysis focused on a 2-
second pre-stimulus window (‘tmin=-2.0‘, ‘tmax=0.0‘), the systematic investigation for
RQ2 also evaluated window lengths of 1, 3, 4, and 5 seconds (‘tmin‘ ranging from -1.0
to -5.0, ‘tmax=0.0‘). No baseline correction was applied to these pre-stimulus epochs, as

the interest lies in the absolute signal characteristics within this specific window.

The target variable for prediction, Reaction Time (RT), was calculated for each valid
trial as the time difference between the 'Response Onset’ marker (code 253) and the
preceding 'Deviation Onset’ marker (code 251 or 252). This difference, measured in
samples, was divided by the sampling rate (500 Hz) to obtain RT in seconds. Trials with
RTs falling outside a physiologically plausible range were excluded from further analysis.
Based on typical human reaction times in driving contexts and inspection of the data
distribution, trials with RT's shorter than 0.2 seconds or longer than 5.0 seconds were
removed. This step helps to eliminate potential outliers caused by accidental responses,
lapses in attention, or measurement errors, ensuring the models focus on predicting typical

variations in response speed. The RT values corresponding to the selected valid epochs
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were stored as the target variable ‘y_data’.

4.2.4 Feature Extraction: Power Spectral Density (PSD)

To quantify the frequency-specific neural activity within the pre-stimulus epochs, Power
Spectral Density (PSD) was estimated using Welch’s method [57]. This is a standard
technique in EEG analysis that provides a robust estimate of the power distribution
across different frequencies by averaging modified periodograms computed on overlapping
segments of the signal [128§].
PSD was computed for each channel within each pre-stimulus epoch using the ‘mne.time_frequency.ps

function. Key parameters for Welch’s method were set as ‘n_fft=1000° (length of the
Fast Fourier Transform window, determining frequency resolution) and ‘n_overlap=500‘
(number of samples overlapping between consecutive windows). Power values were then

averaged within specific canonical frequency bands, defined as:
e Delta (0): 0.5 —4 Hz
e Theta (0): 4 - 8 Hz
e Alpha (a): 8 - 12 Hz
e Beta (5): 14 — 20 Hz

The Gamma band (typically >30 Hz) was excluded due to the 30 Hz low-pass filter
applied during preprocessing and its higher susceptibility to muscle artefacts.

As part of the investigation for RQ2, in addition to these individual bands, PSD
features were also computed for two combined arithmetic measures previously explored

in cognitive research |14} |67, 5]:
e Theta+Beta / Alpha: Sum of theta and beta power, divided by alpha power.
e Theta / Beta: Ratio of theta power to beta power.

For each epoch and each frequency band (or combination), the PSD values computed

across the 32 EEG channels were concatenated (flattened) into a single feature vector.
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This resulted in a feature matrix where each row corresponds to a pre-stimulus epoch

(trial) and each column represents the PSD value for a specific channel within the chosen

frequency band. These spectral features formed the input for the machine learning models

described below.

4.2.5 Exploration of Input Parameters

To systematically address RQ2 and optimize the prediction pipeline, I investigated the

influence of several key input parameters on model performance:

1. Pre-stimulus Window Length: The duration of the EEG segment immediately

preceding the deviation onset was varied. I tested windows of 1 second (-1.0s to
0.0s), 2 seconds (-2.0s to 0.0s), 3 seconds (-3.0s to 0.0s), 4 seconds (-4.0s to 0.0s),
and 5 seconds (-5.0s to 0.0s). The goal was to identify the optimal duration that
balances capturing sufficient predictive neural activity against introducing excessive

noise or irrelevant information from further back in time [49].

. Frequency Band Selection: I compared the predictive performance using PSD

features derived from each individual band (Delta, Theta, Alpha, Beta) against the
performance using the combined arithmetic measures (Theta+Beta/Alpha, Theta /-
Beta). This aimed to determine whether specific bands hold unique predictive value

or if combined indices offer advantages [5, |73].

. Channel Subsets: Recognizing that practical applications might benefit from

reduced sensor configurations, I evaluated model performance using PSD features
extracted from spatially distinct subsets of EEG channels, compared to using the
full 32-channel set. Based on the standard 10-20 system locations provided in the
dataset [20], channels were grouped into the following regional subsets:

e Frontal: Fpl, Fp2, F7, F3, Fz, F4, F8

e Central: C3, Cz, C4

e Temporal: T3, T4, T5, T6
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e Parietal: P3, Pz, P4

e Occipital: O1, Oz, 02

The analysis compared these regional subsets against the full 32-channel configura-
tion. This investigation aimed to identify if specific brain regions were particularly
crucial for RT prediction or if redundancy exists, potentially allowing for simpler

EEG setups [86], 78|, 182].

The results of these explorations informed the selection of optimal parameters for the

final model comparisons.

4.2.6 Machine Learning Models

To predict RT from the extracted PSD features, I employed and compared several machine

learning models:

1. Baseline Model (‘DummyRegressor¢): A simple baseline was established using
Scikit-learn’s ‘DummyRegressor® configured with the 'mean’ strategy. This model
simply predicts the average RT observed in the training dataset for every trial in
the test set. It serves as a benchmark to determine if the more complex models

learn any meaningful predictive patterns beyond the overall average response time.
2. Classical Models:

e Bayesian Ridge Regression (‘BayesianRidge*): A linear regression model
that incorporates Bayesian inference with Gaussian priors on the model weights
[109]. This provides regularization, helping to prevent overfitting, particularly
when the number of features (channels x frequency bins) might be relatively
high compared to the number of trials for some subjects. It was implemented

using Scikit-learn with default hyperparameters.

e Artificial Neural Network (ANN / ‘MLPRegressor¢): A shallow Multi-
Layer Perceptron (MLP) was used as implemented in Scikit-learn’s ‘MLPRe-

gressor'. The architecture consisted of three hidden layers, each with 25 neu-
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rons. The hyperbolic tangent (‘tanh‘) activation function was used for hidden
layers. Regularization was applied using an L2 penalty (alpha = 0.01). The
model was trained for a maximum of 500 iterations using the ’adam’ optimizer
with a learning rate of 0.001 and Nesterov’s momentum enabled. Input features
(PSDs) were standardized (zero mean, unit variance) using ‘StandardScaler*

fit only on the training data within each cross-validation fold.

3. Advanced Model (1D-CNN): To explore the potential of deep learning for au-

tomatically extracting relevant patterns from the spectral feature vectors, a one-
dimensional Convolutional Neural Network (1D-CNN) was designed and imple-
mented, using the PyTorch framework. This architecture is referred to as spe-
cialised because, unlike a general-purpose fully connected network (ANN), its core
components are specifically designed for processing 1D sequential or spatio-temporal
data like the ordered vector of EEG channel features. The 1D convolutional layer
possesses strong inductive biases—mnamely locality (assuming adjacent channels
in the vector are related) and parameter sharing (applying the same pattern
detector across the entire vector)—which make it highly effective at learning lo-
calized spatial patterns that are characteristic of neurophysiological signals. The

architecture consisted of:

e An initial 1D convolutional layer responsible for learning local patterns across
the spectral features. Hyperparameter tuning identified 64 filters with a kernel

size of 3 as optimal.

e A Rectified Linear Unit (ReLU) activation function following the convolutional
layer. ReLLU was found to perform better than ‘tanh‘, potentially due to faster

convergence and mitigation of vanishing gradients.

e A flattening layer to convert the output of the convolutional layer into a 1D

vector.

e A final dense (fully connected) layer with a single output neuron (linear acti-

vation) to produce the continuous RT prediction.
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The 1D-CNN was trained using the Mean Absolute Error (MAE) as the loss func-
tion, which directly optimizes the primary evaluation metric. The ’adam’ optimizer
was employed. This architecture aims to capture potentially complex, non-linear
relationships and interactions within the PSD features that might be missed by the
linear Bayesian Ridge or the shallow ANN [58129).

All models were trained and evaluated within the subject-independent cross-validation

framework described below.

4.2.7 Evaluation Strategy

The core evaluation strategy employed throughout this chapter was designed to rigor-
ously assess the models’ ability to generalize to unseen individuals, reflecting a cru-
cial requirement for practical applications. I used Leave-One-Subject-Out (LOSO)
cross-validation across the 24 selected participants.

In this procedure:

1. The dataset was iteratively split 24 times.

2. In each iteration (fold), the data from a single participant was completely held out

as the test set.
3. The model was trained using the combined data from the remaining 23 participants.

4. Feature scaling (using ‘StandardScaler) was performed separately within each fold,
fitting the scaler only on the training data (23 subjects) and then applying it to

both the training and the held-out test data.

5. The trained model was used to predict RTs for all trials belonging to the held-out

test subject.

6. Performance metrics were calculated by comparing the predictions against the ac-

tual RTs for the test subject.
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This process was repeated for all 24 subjects, resulting in 24 sets of performance metrics.
The final reported performance measures represents the mean and standard deviation of
these metrics across the 24 folds, providing an estimate of the expected performance on
a new, unseen individual, along with the inter-subject variability.

The primary performance metrics used were:

e Mean Absolute Error (MAE): Calculated as the average absolute difference
between the predicted RT (RT),¢q) and the actual RT (RT3,.,.) for the test subject

in each fold:

Z |RTpred,i - RT;frue,i|

i=1
where Ny is the number of trials for the test subject. Lower MAE indicates better

predictive accuracy. MAE is reported in seconds.

e Pearson Correlation Coefficient (r): Calculated between the vector of pre-
dicted RTs and the vector of actual RTs for the test subject in each fold. It mea-
sures the strength and direction of the linear relationship between predictions and
ground truth. Values range from -1 to 1. A positive correlation indicates that the
model tends to predict higher RT's for trials where the actual RT was higher, cap-
turing the trial-by-trial fluctuations. The statistical significance of the correlation

(p-value) was also assessed (e.g., p <0.05 or p <0.01 indicating significance).

4.2.8 Interpretability: Common Spatial Patterns (CSP)

To gain insight into the neurophysiological underpinnings of the RT predictions and to
visually inspect the scalp projections contributing most to distinguishing fast from slow
responses, the Common Spatial Patterns (CSP) algorithm [87] was employed. CSP is
a spatial filtering technique widely used in Brain-Computer Interfaces (BCls) to find
linear combinations of EEG channels (spatial filters) that maximize the variance for one
condition (e.g., slow RTs) while minimizing it for another (e.g., fast RTs).

Since CSP requires binary class labels, the continuous RT values were first categorized

into ’high RT” and ’low RT’ groups for each subject. This was achieved by computing the
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Z-score of the RTs within each subject’s data. Trials with a positive Z-score (RT above
the subject’s mean RT) were labeled as "high RT’, and trials with a negative Z-score (RT
below the subject’s mean RT) were labeled as 'low RT’.

The CSP algorithm was then applied to the pre-stimulus EEG epoch data (typically
filtered in a relevant band like alpha or theta) using these derived binary labels. The
algorithm yields a set of spatial filters (weight vectors across channels). The patterns
associated with these filters (obtained by applying the inverse of the filter matrix) rep-
resent the scalp topographies that show the strongest differences between the high and
low RT conditions.

These resulting spatial patterns were visualized as scalp topographies, typically show-
ing the two most discriminative patterns (one maximizing variance for high RT, the
other for low RT). Red areas in these topographies indicate electrode locations with
high positive weights in the pattern, suggesting these regions contribute significantly to
the variance differences captured by the filter. This visualization helps to interpret the
model’s predictions in a neurophysiologically meaningful way, confirming whether the pre-
dictive features originate from plausible brain sources associated with attention, motor

preparation, or vigilance, rather than potential artefacts [8§].

4.3 Results

This section presents the empirical findings from applying the methodologies described
above to the pre-stimulus EEG data of the 24 selected participants. I first address the
feasibility of predicting reaction time using classical models (RQ1) and then detail the
results of parameter optimization and the performance enhancement achieved with the

1D-CNN model (RQ2).

4.3.1 Feasibility of Pre-Event Reaction Time Prediction (RQ1)

The initial analyses focused on establishing whether pre-event EEG spectral features con-

tain sufficient information to predict subsequent reaction times in a subject-independent

63



Multimodal Deep Learning for Driver Monitoring

manner, using the classical ANN and Bayesian Ridge models. For these initial feasibility
results, I anticipate the findings from the parameter optimization (Section |4.3.2]) and
primarily use the 2-second pre-stimulus window and features from the Alpha (8-12 Hz)

and Theta (4-8 Hz) bands, as these were found to be most effective.

Trial-Level Reaction Time Prediction Accuracy

The primary goal was to assess if the models could predict the RT for individual upcoming
lane deviation events based solely on the preceding 2 seconds of EEG. Table presents
the Mean Absolute Error (MAE), averaged across the 24 subjects using LOSO cross-
validation, comparing the performance of Bayesian Ridge and ANN models against the
Dummy Regressor baseline. Lower MAE values indicate more accurate predictions.

Table 4.1: Aggregate Mean Absolute Errors (MAE in seconds, mean + std dev) across

24 subjects for trial-level RT prediction using subject-independent classical models (2-
second pre-stimulus window). Lower values indicate better accuracy.

Frequency Band Bayesian Ridge ANN (MLP Regressor) Dummy Regressor

Alpha (8-12 Hz) 0.53 = 0.25 0.51 = 0.23 0.58 £ 0.27
Theta (4-8 Hz) 0.55 £ 0.32 0.54 £ 0.29 0.58 £+ 0.27
Beta (14-20 Hz) 0.58 + 0.26 0.59 £ 0.26 0.58 £ 0.27
Delta (0.5-4 Hz) 0.57 £ 0.27 0.54 £ 0.26 0.58 £ 0.27

As shown in Table both the Bayesian Ridge and ANN models, when utilizing
features from the alpha, theta, or delta bands, achieved lower average MAEs than the
Dummy Regressor baseline (average MAE = 0.58s). This demonstrates that the models
successfully learned predictive patterns from the pre-event EEG beyond simply predict-
ing the overall mean RT. The best performance was achieved by the ANN model using
alpha band features, yielding an average MAE of 0.51s, approximately a 12% reduction
compared to the baseline. Theta and delta bands also provided predictive information,
particularly with the ANN. The beta band features, however, offered little to no pre-
dictive advantage over the baseline. The standard deviations (0.23s to 0.32s) indicate
considerable inter-subject variability in prediction accuracy, a common characteristic in

subject-independent EEG analysis.
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Figure provides a visual comparison of the MAE distributions across subjects for

the best model configuration per band versus the Dummy baseline.
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Figure 4.1: Boxplot comparing MAE distributions across 24 subjects for trial-level RT
prediction using classical models. Each box represents the results using the best model
(ANN or Bayesian Ridge) per EEG frequency band (Alpha, Theta, Delta, Beta) compared
against the Dummy Regressor baseline. The central line is the median, the box spans
the interquartile range (IQR), and whiskers typically extend to 1.5x IQR.

The boxplot visually confirms the findings from the table. The median MAE for
models trained on alpha, theta, and delta features is clearly lower than the Dummy Re-
gressor’s median. The distributions for alpha and theta models appear shifted downwards
compared to the baseline, indicating better performance for the majority of subjects. The
spread of the boxes and whiskers underscores the substantial variability between individ-

uals.

Per-Subject Performance and Correlation

To assess the consistency of prediction success at the individual level, Table details
the performance for each of the 24 subjects when their data served as the held-out test
set in the LOSO validation. It reports the MAE achieved by the ANN model (generally

the better classical model) using Alpha and Theta features, along with the Pearson
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correlation coefficient ('corr’) between the model’s predictions and the subject’s actual
RTs. Significant correlations indicate that the model captured meaningful trial-by-trial
RT fluctuations.

The per-subject results confirm the high degree of individual variability. MAE values
range significantly (e.g., from 0.18s for Sub 27 with alpha features to 1.40s for Sub 8).
However, a crucial finding is that the Pearson correlations between predicted and actual
RTs are statistically significant (p<0.05 or p<0.01) for the vast majority of subjects when
using either alpha or theta band features. This indicates that, even when the absolute
prediction error (MAE) is relatively high for some individuals compared to their own
average RT (compare MAE column to RT(avg)), the model is successfully capturing the
trial-to-trial variance in their reaction speed based on the pre-event EEG. For example,
Subject 3 exhibits a high MAE (~0.8s) but also a strong, highly significant correlation
(r=0.40** for alpha), meaning the model’s predictions tracked the ups and downs of
their actual RTs, even if systematically offset. This consistent ability to predict within-
subject RT fluctuations for unseen individuals provides strong support for the feasibility

of subject-independent pre-event RT prediction (RQ1).

Predicting Average Reaction Time Tendency

Beyond predicting individual trial RTs, I investigated whether the subject-independent
models could discern a participant’s general response tendency (i.e., whether they are
typically a fast or slow responder). Figure plots the average RT predicted by the
ANN alpha model for each subject (when they were the test subject) against their actual
average RT calculated across all their valid trials.

The strong positive linear correlation (r = 0.71, p < 0.0001) observed in Figure
is a significant finding. It demonstrates that the subject-independent model, despite
having never been trained on the specific test individual’s data, can reliably estimate
their characteristic average reaction speed relative to the other participants. Individuals
who were generally slower responders (higher actual average RT) consistently received

higher average predicted RTs from the model, and vice versa. This indicates that stable,
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Table 4.2: Subject-independent prediction results per subject using the ANN (MLP
Regressor) model with Alpha and Theta features (2-second window). N: number of valid
trials, corr: Pearson correlation (p<0.05%, p<0.01**), MAE (s), RT (avg): subject’s
average actual RT (s), Dummy MAE: baseline MAE for the subject.

Sub| N |Alpha Features|Theta Features| RT |Dummy
corr MAE | corr MAE |[(avg)| MAE
1 |780| 0.04 045 | 0.05 049 |1.24| 0.38
2 | 673(0.12% 0.31 ]0.10** 0.36 |0.78 | 0.49
3 356 (0.40*%* 0.77 |0.29** 0.83 |1.53| 0.89
4 11356(0.33** 0.64 |0.18** 0.68 |1.15| 0.55
5 355 (0.34*% 048 |0.31** 0.43 |1.13| 0.43
6 | 617| 0.06 0.48 | 0.07 0.53 |1.03| 0.51
7 | 414 10.28%F 0.40 |0.22** 0.37 |0.78 | 0.59
8 499 0.25%* 140 |0.17** 1.74 |257| 1.73
9 | 737 (0.12*%* 047 |0.18** 0.55 [0.69| 0.60
10 | 727 | 0.07* 0.36 | 0.04 0.22 |0.58| 0.60
11 [1412]0.09** 0.67 |0.08** 0.70 |1.43| 0.67
12 | 434 |0.31** 0.30 [0.31** 0.32 |1.07| 0.32
13 [1173|0.11%* 0.42 |0.12** 0.52 |1.40| 0.42
14 | 983 |0.20%* 0.42 |0.27** 0.45 |1.00| 0.49
15 [2031| 0.07  0.58 |0.37** 0.54 |[1.30| 0.53
16 | 748 [0.29** 0.76 |0.35** 0.80 |1.86| 0.79
17 |2234|0.13** 0.58 |0.04* 0.69 |1.09| 0.56
18 [ 330 | 0.18* 0.36 [0.38** 0.35 |0.89| 0.55
19 [1007]0.25** 0.38 [0.27** 0.37 | 0.88 | 0.49
20 | 669 |0.36** 0.41 |0.38* 0.40 |1.09| 0.40
21 | 205 |0.54** 0.28 |0.58%* 0.26 |0.91| 0.50
22 [1094|0.16** 0.55 | 0.06  0.57 |1.28 | 0.56
23 164 | 0.06  0.63 |0.40** 045 |141| 0.53
24 | 637 | 0.04 0.18 |0.02* 0.29 |0.71| 0.58
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Figure 4.2: Relationship between average actual reaction time (Ground Truth RT) and
average predicted reaction time per subject, using the ANN alpha model (N=24 sub-
jects). Each point represents one subject. The strong positive linear correlation (Pear-
son’s r=0.71, p<0.0001) indicates the subject-independent model effectively differentiates
between generally fast and slow responders.
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inter-individually consistent EEG patterns related to overall response speed are present
in the pre-event window and can be learned effectively by the model. This capability
complements the trial-level prediction, offering a way to potentially classify drivers based

on their general responsiveness profile derived purely from pre-event EEG.

Relationship between Prediction Error and Actual RT

To explore factors influencing prediction accuracy, I examined the relationship between
the model’s prediction error (MAE) for a given subject and that subject’s average actual
RT. Figure plots the per-subject MAE from the ANN alpha model against their

average RT.
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Figure 4.3: Scatter plot showing the relationship between the per-subject prediction
Mean Absolute Error (MAE) from the ANN alpha model and the subject’s average actual
Reaction Time (RT). Each point represents one subject (N=24). A positive trend suggests
predictions are generally less accurate for slower responders.

Figure reveals a discernible positive trend: subjects with generally longer average
reaction times tend to have higher prediction errors (MAE). This suggests that predicting

the precise RT from pre-event EEG is more challenging for individuals who are inherently
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slower or perhaps exhibit greater variability in their responses. Faster responders might
present clearer or more stable pre-event neural signatures associated with their RTs,
making them more predictable by the current models and features. This finding has
implications for model development, potentially indicating the need for different strategies
or features to accurately predict RTs across the full spectrum of individual response
speeds.

Collectively, these results strongly support an affirmative answer to RQ1: pre-stimulus
EEG features, particularly from the alpha and theta bands, do contain information pre-
dictive of subsequent reaction time, enabling subject-independent models to outperform
baseline predictions both at the trial level (as shown by significant correlations for most

subjects) and in estimating overall response tendencies.

4.3.2 Optimization of Input Parameters (RQ2)

Having established the feasibility of pre-event RT prediction, I systematically investi-
gated how different input parameters affect performance, aiming to optimize the pipeline
(addressing RQ2). These analyses primarily used the ANN model, which generally out-

performed Bayesian Ridge.

Effect of Pre-stimulus Window Length

I evaluated the impact of varying the pre-stimulus window length from 1 second to 5
seconds on prediction accuracy (MAE) and correlation (PCC). Table 4.3| summarizes the
MAE results, and Table presents the corresponding Pearson correlations, averaged
across the 24 subjects.

The results indicate that the choice of window length influences performance. Based
on MAE (Table , the 2-second pre-stimulus window consistently yields the best
or near-best performance, particularly for the most predictive Alpha and Theta bands.
Shorter windows (1s) might not capture enough evolving neural state information, while
longer windows (3s-5s) seem to introduce noise or irrelevant past activity, sometimes

degrading performance below the 2s level (e.g., Alpha MAE increases significantly at
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Table 4.3: Comparison of Mean Absolute Errors (MAE, mean + std dev) across fre-
quency bands for the ANN model using different pre-stimulus window lengths (-1s to
-bs). Improvement percentages relative to the Dummy Regressor (MAE=0.58) are in
parentheses.

Band 1-sec 2-sec 3-sec 4-sec 5-sec

Alpha 0.55+0.35 (5%) 0.51+0.23 (12%) 0.67+0.36 (-16%) 0.54+0.37 (7%)  0.57+0.28 (2%)
Theta 0.5540.35 (5%) 0.54+0.33 (7%) 0.54+0.32 (7%) 0.54+0.26 (7%) 0.5640.37 (3%)
Beta 0.6140.33 (-5%) 0.59+0.30 (-2%)  0.61£0.32 (-5%) 0.60-£0.27 (-3%) 0.56+0.31 (3%)
Delta 0.6140.28 (-5%) 0.54+0.28 (7%) 0.5540.33 (5%) 0.54+0.45 (7%) 0.6540.30 (-12%)

Table 4.4: Comparison of Pearson Correlation Coefficients (PCC, mean =+ std dev) across
frequency bands for the ANN model using different pre-stimulus window lengths.

Band 1-sec 2-sec 3-sec 4-sec H-sec

Alpha 0.18+0.14 0.214+0.16 0.20+0.16 0.18+0.17 0.1940.16
Theta 0.20£0.12 0.24+0.13 0.26£0.13 0.25+0.12 0.23£0.13
Beta 0.07£0.10 0.06+0.12 0.08+0.13 0.11£0.11 0.10+0.13
Delta 0.17£0.11 0.21+0.13 0.23£0.13 0.23+0.14 0.21+0.13

3s and 5s). The correlation results (Table show a similar trend, with correlations
generally peaking around the 2s to 4s window lengths for the Theta and Delta bands, and
at 2s for the Alpha band. Considering both MAE and correlation, the 2-second window
appears to offer an optimal balance, capturing critical predictive information immediately
preceding the event without being overly contaminated by noise or less relevant prior
activity. Consequently, the 2-second window was adopted for subsequent analyses unless

otherwise specified.

Effect of Frequency Bands

Using the optimal 2-second window, I compared the predictive power of individual fre-
quency bands against the combined arithmetic measures (Theta+Beta/Alpha and Theta/-
Beta). Table summarizes the MAE results for the ANN model.

Figure provides a visual comparison of the MAE distributions.

The results clearly demonstrate that the individual Alpha and Theta bands con-
tain the most predictive information for RT in this task. They yield the lowest
average MAEs and show the largest improvement over the Dummy baseline. The com-

bined band measures (Theta+Beta/Alpha, Theta/Beta), while slightly better than the
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Table 4.5: Aggregate MAEs (mean + std dev) for the ANN model using individual vs.
combined frequency band features (2-second window). Improvement percentages relative
to Dummy (MAE=0.58) in parentheses.

Frequency Band / Combination ANN MAE Dummy MAE

Alpha 0.51 + 0.23 (12%) 0.58 £+ 0.27
Theta 0.54 £+ 0.29 (7%) 0.58 + 0.27
Beta 0.59 + 0.26 (-2%) 0.58 + 0.27
Delta 0.54 + 0.26 (7%) 0.58 + 0.27
Theta+Beta/Alpha 0.56 + 0.24 (3%) 0.58 + 0.27
Theta/Beta 0.57 4+ 0.24 (2%) 0.58 £+ 0.27
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Figure 4.4: Boxplots comparing MAE distributions for the ANN model using individual
bands (Alpha, Theta, Delta, Beta) and combined bands (Theta+Beta/Alpha, Theta/-
Beta) against the Dummy Regressor baseline (2-second window).
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Beta band alone, do not outperform the individual Alpha or Theta bands. This suggests
that the specific information carried by Alpha and Theta power fluctuations is more di-
rectly relevant to RT prediction than these particular arithmetic combinations, which
might dilute the critical signals. Based on these findings, subsequent analyses focused

primarily on using Alpha and Theta band features.

Effect of Channel Subsets

I investigated whether using features from regional subsets of EEG channels could achieve
performance comparable to using the full 32-channel set, using the ANN model with
Alpha band features (2-second window). Table compares the average MAE and
Pearson correlation across the 24 subjects for the full set versus the Frontal, Central,

Occipital, Parietal, and Temporal subsets.

Table 4.6: Comparison of ANN performance (MAE and Pearson Correlation, mean +
std dev) using Alpha band features (2-second window) from the full 32-channel set versus
regional subsets.

Channel Set ANN MAE ANN Correlation (r) Dummy MAE

Full 32-channel 0.51 + 0.23 0.21 £+ 0.13 0.58 + 0.27
Frontal 0.55 + 0.25 0.17 £ 0.19 0.58 £ 0.27
Central 0.52 +£ 0.24 0.18 £ 0.17 0.58 + 0.27
Occipital 0.51 + 0.27 0.20 £+ 0.16 0.58 + 0.27
Parietal 0.52 £+ 0.25 0.19 £ 0.15 0.58 £ 0.27
Temporal 0.53 4+ 0.26 0.20 4+ 0.17 0.58 4+ 0.27

Figure illustrates the MAE distributions for the different channel subsets.

Interestingly, the results show that most regional subsets (Central, Occipital, Parietal,
Temporal) achieve performance quite close to that of the full 32-channel set, in terms of
both MAE and correlation. The Occipital subset, in particular, yields an average MAE
identical to the full set. The notable exception is the Frontal channel subset, which
results in a higher average MAE (0.55s) and lower average correlation (0.17) compared to
the full set and other regions. This suggests that while there might be some redundancy
across channels, and potentially simpler sensor configurations could be viable (especially
focusing on occipital /parietal areas strongly associated with alpha rhythms), the frontal

channels seem less informative or perhaps more susceptible to noise for this specific RT
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Figure 4.5: Boxplots comparing MAE distributions for the ANN model using Alpha
features (2-second window) from the full 32-channel set versus regional subsets.

prediction task using alpha power.

4.3.3 Performance Enhancement with 1D-CNN (RQ2)

Having identified optimal input parameters (2s window, Alpha/Theta bands, full channel
set or specific subsets like Occipital), I evaluated the performance of the proposed 1D-
CNN architecture compared to the classical ANN and Bayesian Ridge models. Table
presents the MAE results for the 1D-CNN using different frequency bands and window

lengths, highlighting its advantage.

Table 4.7: MAE results (mean £ std dev) for the 1D-CNN model across different fre-
quency bands and pre-stimulus window lengths. Improvement percentages relative to the
Dummy Regressor (MAE=0.58) are in parentheses.

Band 1-sec 2-sec 3-sec 4-sec 5-sec

Alpha 0.3740.32 (36%) 0.36:0.30 (38%) 0.37-0.32 (36%) 0.36+0.33 (38%) 0.37+0.33 (36%)
Theta 0.3740.34 (36%) 0.37+0.32 (36%) 0.3740.33 (36%) 0.37+0.33 (36%) 0.37-£0.32 (36%)
Delta 0.4040.31 (31%) 0.38+0.34 (34%)  0.38+£0.33 (34%)  0.3840.34 (34%)  0.39+0.34 (33%)
Beta 0.3740.33 (36%) 0.37+0.34 (36%)  0.38+£0.33 (34%)  0.3740.34 (36%)  0.38+0.33 (34%)

Comparing the best 1D-CNN result (e.g., MAE = 0.36s for Alpha band, 2s window)
with the best classical ANN result (MAE = 0.51s, Table , the 1D-CNN achieves a
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substantial reduction in prediction error — approximately a 30% decrease in MAE
((0.51 — 0.36)/0.51 ~ 29.4%). This represents a significant improvement in predictive
accuracy, boosting the improvement over the Dummy baseline from 12% (ANN) to 38%
(1ID-CNN).

Figure visually compares the MAE distributions of the 1D-CNN against the

Dummy Regressor and implicitly against the classical models (whose distributions are

shown in Figure .
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Figure 4.6: Boxplot comparing MAE distributions for the 1D-CNN model using different
frequency bands (optimal window, likely 2s) against the Dummy Regressor baseline.

The boxplot clearly shows the superior performance of the 1D-CNN. The median
MAE values for the CNN are markedly lower than the Dummy baseline across all fre-
quency bands, and also significantly lower than the medians achieved by the classical
ANN (compare with Figure 4.1)). The distributions appear shifted downwards, indicating
more consistent and accurate predictions across subjects. This confirms the benefit of
using the 1D-CNN architecture, which likely leverages its convolutional layer to auto-
matically learn more discriminative features or non-linear relationships within the input

PSD vectors compared to the fully connected layers of the shallow ANN.
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4.3.4 Interpretability: CSP Results

To provide neurophysiological context for the predictive models, Common Spatial Pat-
terns (CSP) analysis was performed to identify the scalp topographies most discriminative
between trials with high versus low reaction times (based on Z-score thresholding). Fig-
ure displays the two most discriminative CSP patterns (CSP0 and CSP1, typically
maximizing variance for high and low RT conditions, respectively) for four representative

subjects who showed significant prediction correlations.

The CSP topographies reveal spatial patterns that differ across subjects but often
involve activity focused in posterior (occipital/parietal) and sometimes central regions.
Activity in posterior regions, particularly for the alpha band, is consistent with the known
role of parieto-occipital alpha oscillations in attention, vigilance, and sensory processing
[14, [130]. Differences in these patterns preceding an event could reflect varying levels of
preparedness or attentional allocation, influencing the subsequent reaction speed. Central
region involvement might relate to motor preparation differences. While CSP patterns
represent mixed activity from potentially multiple underlying sources [88], the observed
topographies generally align with brain areas plausibly involved in the cognitive and
motor processes relevant to the driving task. This provides some assurance that the
predictive models are likely leveraging physiologically meaningful neural signals rather

than just noise or artefacts.

In summary, the results demonstrate not only the feasibility of predicting driver RT
from pre-stimulus EEG (RQ1) but also show that performance can be significantly en-
hanced through systematic parameter optimization (identifying the 2s window and Al-
pha/Theta bands as optimal) and by employing a 1D-CNN architecture capable of learn-
ing more complex spectral features (RQ2). The interpretability analysis further suggests

these predictions are linked to plausible neurophysiological processes.
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C5P1

Figure 4.7: Spatial patterns derived from CSP analysis for four representative subjects,
highlighting electrode contributions differentiating high vs. low reaction time trials based
on pre-stimulus EEG (likely Alpha or Theta band). Red areas indicate regions with high
positive weights in the discriminative pattern (CSP0 or CSP1).
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4.4 Discussion

The results presented in this chapter provide compelling evidence regarding the poten-
tial and optimization of using pre-stimulus EEG signals to predict driver reaction times.
By systematically investigating classical and deep learning approaches within a rigor-
ous subject-independent framework, I addressed the core research questions concerning

feasibility, parameter optimization, and model enhancement.

4.4.1 Feasibility and Neurophysiological Correlates of Pre-Event
RT Prediction (RQ1)

The findings strongly support the feasibility of predicting driver reaction time using only
EEG data recorded in the brief interval (specifically, 2 seconds) immediately preceding an
unexpected lane deviation event (RQ1). The consistent outperformance of both Bayesian
Ridge and ANN models over the Dummy Regressor baseline (Table , Figure
demonstrates that the pre-stimulus EEG contains meaningful information related to the
driver’s impending response speed, beyond just reflecting the population’s average RT.

Critically, the significant trial-by-trial correlations observed for the majority of partic-
ipants (Table under the strict LOSO validation protocol underscore this feasibility.
Even when the absolute error (MAE) varied considerably between individuals, the models
often successfully tracked the relative fluctuations in RT from one trial to the next for
unseen subjects. This suggests that transient changes in neural state, captured by EEG,
have a measurable impact on subsequent behavioural performance.

The superior predictive performance associated with the Alpha (8-12 Hz) and
Theta (4-8 Hz) frequency bands aligns well with established neurophysiological lit-
erature. Increased theta power is often linked to drowsiness, reduced alertness, and the
onset of fatigue [13, |15, 5|, states known to impair reaction time. Conversely, alpha
oscillations, particularly in posterior regions, are heavily implicated in attentional mod-
ulation, inhibition of irrelevant sensory information, and cognitive readiness 14} [130].

Fluctuations in pre-stimulus alpha power could therefore reflect variations in attentional
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engagement or preparedness for the upcoming event, directly influencing response speed.
The fact that these specific bands provided the most predictive power lends neurophysi-
ological plausibility to my findings.

Furthermore, the ability of the subject-independent models to predict not only trial-
specific RTs but also the average RT tendency of an individual (Figure [4.2)) is noteworthy.
The strong correlation (r=0.71) between predicted and actual average RT suggests that
enduring, person-specific neural traits related to baseline alertness or processing speed
are also encoded in the pre-stimulus EEG and can be learned across individuals. This
opens possibilities for not just momentary state assessment but also for characterizing
individual driver profiles based on their typical neural patterns and associated response

speeds.

4.4.2 Optimizing the Prediction Pipeline: Input Parameters
and Model Choice (RQ2)

Addressing RQ2, my systematic exploration yielded valuable insights for optimizing the
EEG-based RT prediction pipeline.

The finding that a 2-second pre-stimulus window generally provides the best bal-
ance between capturing relevant neural dynamics and minimizing noise (Tables and
4.4) is practically significant. It suggests that the neural state most critical for deter-
mining the immediate response unfolds within this relatively short timeframe prior to
the event. Shorter windows may miss crucial preparatory activity, while longer win-
dows likely incorporate less relevant past information or non-stationarities that hinder
prediction [49).

The confirmation that individual Alpha and Theta bands outperform combined
indices like Theta+Beta/Alpha or Theta/Beta (Table[4.5 Figure reinforces the idea
that these bands carry unique and non-redundant information relevant to RT. While
combined indices have shown utility in other cognitive tasks [67], for this specific pre-
event RT prediction task, focusing directly on the power within the canonical alpha and

theta bands appears most effective.
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The analysis of channel subsets (Table , Figure revealed that comparable
performance to the full 32-channel set could be achieved using regional subsets, par-
ticularly those covering central, parietal, and occipital areas. This suggests potential
redundancy and the possibility of developing effective RT prediction systems using fewer
electrodes, which would be advantageous for practical implementation (e.g., wearable
BCI). The relatively poorer performance of the frontal subset is intriguing. While frontal
areas are crucial for executive functions, their activity (especially alpha power) might
be less directly coupled to the rapid response preparation indexed by posterior alpha/-
theta, or perhaps frontal signals in this dataset were more susceptible to ocular or muscle
artefacts not fully removed by preprocessing.

The most significant performance enhancement came from adopting the 1D-CNN
architecture (Table Figure [4.6]). The substantial reduction in MAE (approx. 30%
lower than the best classical model) highlights the advantage of deep learning for auto-
matically extracting relevant features from the spectral data. The convolutional layer
likely identifies complex patterns or interactions across channels within the alpha/theta
bands that are predictive of RT but are not easily captured by the linear combinations
learned by Bayesian Ridge or the global mappings of the shallow ANN [58| [131]. This
demonstrates the power of applying even relatively simple CNN architectures to struc-

tured biosignal features like PSD vectors.

4.4.3 Interpretation of Spatial Patterns (CSP)

The CSP analysis (Figure provided visual confirmation that the predictive models are
likely tapping into physiologically relevant brain activity. The observed spatial patterns,
often emphasizing posterior (parietal/occipital) and central regions, align with the known
topography of alpha rhythms related to attention and visual processing, and central
activity related to motor readiness [14]. While acknowledging the limitations of scalp-
level analysis in precisely localizing sources [88], the consistency of these patterns with
expected functional neuroanatomy increases confidence that the predictions are not solely

driven by artefacts or noise. The inter-subject variability in CSP patterns also mirrors
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the variability seen in prediction accuracy, suggesting that individual differences in the
spatial organization of these neural correlates might contribute to why some subjects are

more predictable than others.

4.4.4 Subject Independence, Generalizability, and Variability

A core strength of this study is the rigorous adherence to subject-independent valida-
tion (LOSO). The ability of the models, particularly the 1D-CNN; to achieve significant
predictive performance on held-out subjects demonstrates a degree of generalizability cru-
cial for real-world application. The models successfully learned patterns that transcend
individual idiosyncrasies.

However, the standard deviations reported for MAE and correlation, along with the
per-subject results (Table , clearly indicate that substantial inter-subject variability
remains. Predicting RT for some individuals was significantly more challenging than for
others. This variability likely stems from a combination of factors, including inherent
differences in individuals’ baseline EEG characteristics, the magnitude of their physio-
logical response to fatigue, their engagement with the monotonous task, and potentially
residual uncorrected artefacts. The positive trend observed between prediction error
(MAE) and average actual RT (Figure suggests that individuals who are generally
slower responders might exhibit more complex or less stable pre-event neural patterns,
making precise prediction harder. Addressing this variability remains a key challenge for

deploying personalized driver monitoring systems.

4.4.5 Limitations

Several limitations should be acknowledged:

1. Simulated Environment: The study was conducted in a driving simulator. While
immersive, it lacks the full complexity, sensory input, and potential distractions of
real-world driving. Generalizability to on-road conditions requires further valida-

tion.
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2. Dataset Specificity: The findings are based on the Cao et al. dataset [20], which
features a specific monotonous driving task and participant demographic (primarily
young university students/staff). Performance might differ in more varied driving
scenarios or with different populations. The exclusion of 3 subjects, while justified

for robustness, slightly reduces the sample size.

3. Feature Space: The analysis relied exclusively on PSD features. While informa-
tive, other EEG features (e.g., connectivity measures, ERP components if applica-

ble, non-linear dynamics) might offer complementary predictive information.

4. Model Complexity vs. Interpretability: While the 1D-CNN improved accu-
racy, its learned features are less directly interpretable than the weights of a linear

model or the specific power values in PSD bands.

5. RT as Sole Performance Metric: Reaction time to lane deviations was the
only behavioural metric predicted. Performance in other driving tasks or cognitive

domains might involve different neural correlates.

4.4.6 Connection to Broader Goals and Future Directions

Despite the limitations, this work represents a significant step towards understanding and
utilizing pre-stimulus neural activity for driver state assessment. The demonstration that
RT can be predicted before an event occurs, even with moderate accuracy, opens avenues
for developing truly proactive safety systems. Instead of merely reacting to detected
drowsiness or slow responses, future ADAS could potentially anticipate periods of high
risk based on evolving EEG patterns and issue preemptive warnings or adjust system
parameters.

The optimization findings provide practical guidance for designing such systems, sug-
gesting a focus on the 2-second pre-event window and alpha/theta band activity, po-
tentially using reduced channel sets centered on posterior/central regions. The success
of the 1D-CNN encourages further exploration of deep learning architectures specifically

tailored for EEG spectral or time-series data. Future work should aim to validate these
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findings in more realistic settings, explore fusion with other modalities (as investigated in
later chapters of this thesis), and develop adaptive algorithms that can account for inter-

subject variability, perhaps through transfer learning or rapid calibration techniques.

4.5 Conclusion

This chapter addressed the feasibility and optimization of predicting driver reaction time
using pre-stimulus EEG signals in a subject-independent framework. I demonstrated that
spectral features, particularly from the alpha and theta bands within a 2-second window
preceding a lane deviation event, contain significant predictive information regarding the
driver’s subsequent reaction speed (RQ1). Through systematic exploration, I identified
optimal parameters for data segmentation and feature extraction and showed that per-
formance comparable to a full 32-channel setup could be achieved with specific regional
subsets (RQ2).

Furthermore, I established that employing a 1D-CNN architecture significantly en-
hances predictive accuracy compared to classical machine learning models like ANNs and
Bayesian Ridge Regression, effectively reducing the mean absolute error by approximately
30% (RQ2). Interpretability analysis using CSP provided supporting evidence that the
models leverage neurophysiologically plausible spatial patterns.

The findings establish a robust foundation for using pre-stimulus EEG as a poten-
tial input for proactive driver safety systems. While acknowledging the challenges posed
by inter-subject variability and the need for real-world validation, this work highlights
the rich predictive information contained within brain activity immediately preceding
behavioural responses and demonstrates the power of combining domain knowledge (fre-
quency band selection) with advanced machine learning (1D-CNNs) for extracting this
information. The subsequent chapters of this thesis build upon these findings by ex-
ploring alternative representations of EEG data and integrating information from other

modalities to further enhance driver state assessment.
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Chapter 5

Enhancing EEG-Based Reaction
Time Prediction through Advanced
Vision Model Analysis of Spectral

Images

5.1 Introduction

The investigations in Chapter [4] conclusively demonstrated that pre-stimulus Electroen-
cephalography (EEG) signals, particularly Power Spectral Density (PSD) features from
key frequency bands within a 2-second pre-event window, harbor significant predictive
information regarding a driver’s subsequent reaction time (RT). While classical machine
learning models showed initial promise, a 1D Convolutional Neural Network (1D-CNN)
specifically tailored for these 1D spectral feature vectors achieved a notable improvement
in predictive accuracy, highlighting the value of deep learning for discerning complex

patterns in EEG data.

Building on this foundation, the current chapter explores whether a paradigm shift in
data representation—transforming these established 1D EEG spectral features into 2D

image-like formats—can unlock even greater predictive capabilities when coupled with
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sophisticated deep learning architectures designed for visual information processing. The
premise is that the inherent richness of multi-channel EEG, reflecting intricate spatio-
spectral dynamics, might be more effectively captured and interpreted by models adept at
analyzing 2D structures, such as standard Convolutional Neural Networks (e.g., ResNet18
[97]) and, more advancedly, Vision Transformers (ViTs [101]). These vision models,
with their proven ability to learn hierarchical features and model global context, could
potentially identify complex predictive signatures within EEG-derived images that are
less accessible to 1D sequential models.

This chapter systematically investigates this image-based approach by converting the
EEG PSD features into two distinct 2D representations: PSD Matrix Images (visualizing
channel versus frequency bin power) and Scalp Topographies (visualizing spatial power
distribution). I then evaluate the performance of both a standard vision CNN (ResNet18)
and a state-of-the-art Vision Transformer (ViT-B/16) on these images for the RT predic-

tion task. The core of this investigation is guided by two overarching research questions:

1. RQ1l: Can the transformation of 1D EEG spectral features into 2D im-
age representations, when processed by established deep learning vi-
sion architectures (ResNet18 and ViT-B/16), lead to an improvement in
subject-independent driver reaction time prediction accuracy compared
to models operating directly on the original 1D spectral features (both
classical machine learning and the specialized 1D-CNN from Chapter ?
This primary question assesses the fundamental viability and potential superiority
of the image-based EEG analysis paradigm. It encompasses comparisons against
both simpler 1D processing methods and the previous best-performing 1D deep

learning model.

2. RQ2: Among the different 2D EEG image representations (PSD Matrix
Images vs. Scalp Topographies) and vision architectures (ResNet18 vs.
ViT-B/16), which combination yields the optimal performance for RT
prediction, and what does this imply about the nature of the predictive

information being captured? This question delves into the specifics of the
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image-based approach, seeking to identify the most effective visual encoding of
EEG data and the vision model best suited to decode it, thereby also providing
insights into whether spectro-spatial profiles or holistic spatial patterns are more

discriminative when analyzed by powerful vision models.

This study, therefore, aims to fill a significant gap in the literature by systemat-
ically investigating this image-based paradigm for the challenging task of continuous,
pre-stimulus RT prediction. While the transformation of EEG signals into images for
classification tasks is an emerging field, the application of state-of-the-art Vision Trans-
formers to such representations for fine-grained regression remains underexplored. This
chapter provides a rigorous, subject-independent evaluation of this novel approach, using
the Cao et al. [20] dataset and focusing on the 24 selected participants and the opti-
mal 2-second pre-stimulus window. The findings are expected to provide critical insights
into advanced strategies for EEG data representation and modeling, establishing new
performance benchmarks and demonstrating the potential of leveraging premier vision
architectures for decoding complex cognitive-behavioral outcomes from neurophysiologi-

cal signals.

5.2 Methods

The methodology employed in this chapter is designed to systematically address the
research questions concerning the efficacy of image-based EEG analysis for driver reaction
time (RT) prediction. It builds upon the optimized data parameters (2-second pre-
stimulus EEG window, focus on Alpha/Theta bands) identified in Chapter [dl The core
methodological steps involve the transformation of EEG Power Spectral Density (PSD)
features into two distinct 2D image formats, followed by the application and fine-tuning
of two different deep learning vision architectures (ResNetl8 and Vision Transformer

ViT-B/16) for the RT regression task.
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5.2.1 Data Foundation and Basis for Image Generation
The empirical investigations are grounded in the following data and feature set:

e Dataset Source: The study utilizes the publicly available dataset by Cao et al.

[20], focusing on the data from the 24 selected participants (as detailed and justified
in Section [4.2.2]).

e Input EEG Segment for Analysis: Consistent with Chapter [ the analysis is
performed on the 2-second pre-stimulus EEG epochs, which span from -2.0 seconds

to 0.0 seconds immediately preceding the onset of a lane deviation event.

e Underlying Spectral Features for Image Creation: The 2D images generated
in this chapter are derived from the PSD features. These features, originally com-
puted using Welch’s method (Section , represent power values across multiple
discrete frequency bins within each of the four primary frequency bands (Alpha:
8-12 Hz, Theta: 4-8 Hz, Beta: 14-20 Hz, and Delta: 0.5-4 Hz) for all 32 EEG

channels.

e Regression Target: The continuous RT value for each trial, defined as the time
elapsed between deviation onset and response onset (Section [4.2.3), serves as the

target variable for the regression models.

5.2.2 Transformation of EEG Spectral Features into 2D Image

Representations

A critical component of this chapter’s methodology is the conversion of the detailed,
multi-channel, multi-bin PSD information into two distinct types of 2D images. This
transformation enables the application of vision-specific deep learning models. For each
valid pre-stimulus EEG epoch and for each of the four principal frequency bands, the

following image representations were generated:

1. PSD Matrix Image Generation (Channel vs. Frequency Bin Power Map):

This image representation provides a direct visualization of the PSD matrix, dis-
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playing power across all EEG channels and all constituent frequency bins within

the selected band for the 2-second pre-stimulus window.

e Methodology: For each 2-second epoch, the PSD computation (Welch’s

method) results in power values for ‘n_freqbins_in_band‘ within each canon-
ical band (e.g., Alpha band spans 8-12 Hz, which is resolved into multiple
bins by the FFT). These PSD values—representing power for each of the 32
channels at each of these frequency bins—were organized for each trial into
a 2D matrix with dimensions ‘(n_channels, n_freqbins_in_band)‘. This matrix
was then rendered as an image, typically using a colormap (e.g., 'viridis’ via

Matplotlib’s ‘imshow*) to represent power intensity.

Visual Output: The generated 2D image has EEG channel indices along one
axis (e.g., y-axis) and frequency bin indices (specific to the band) along the
other axis (e.g., x-axis). The pixel value at each ‘(channel, frequency_bin)
coordinate corresponds to the PSD magnitude. An example of a PSD Matrix

Image is shown in Figure [5.1a]

2. Scalp Topography Generation (Spatial Power Distribution Map): This
image representation offers a purely spatial map of the PSD power, averaged across

all frequency bins within a given band, distributed over a 2D projection of the scalp.

e Methodology: For each 2-second epoch and for each target frequency band,

the PSD values for each of the 32 EEG channels were first averaged across
all the ‘n_freqbins_in_band‘ that constitute that specific band. This yields
a single mean power value per channel for that band and epoch. These 32
channel-wise average power values, along with their standard 10-20 system
electrode coordinates, were then used to create a 2D topographic map via
spatial interpolation (e.g., using spherical splines, as commonly implemented

in tools like MNE-Python’s ‘mne.viz.plot_topomap*).

Visual Output: The result is a circular 2D image where color intensity at

different locations on the map reflects the interpolated average EEG power for
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the selected frequency band during the 2-second pre-stimulus window. This
visualizes regions of higher or lower cortical activity in that band. An example

is provided in Figure [5.1b

Event 913: Alpha PSD (-2 to 0s)

Event 913: Alpha PSD (-2 to 0s)
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Figure 5.1: Illustrative examples of (a) a PSD Matrix Image (Beta band, depicting chan-
nel vs. frequency bin power) and (b) a scalp topography (Alpha band, depicting spatial
power distribution). These image types serve as inputs for the ResNet18 and ViT-B/16
models.

This image generation process was applied to all 19,635 valid trials from the 24 par-
ticipants, for each of the four primary frequency bands, resulting in a total dataset of
19,635 trials x 4 bands x 2 image types/band = 157,080 images.

Standard Image Preprocessing for CNN/ViT Input: All generated EEG-
derived images underwent a standardized preprocessing pipeline before being fed into

the vision models:

e Resizing: Images were uniformly resized to 224 x 224 pixels. This is a common

input dimension for ResNet18 and ViT-B/16 models pre-trained on ImageNet.
e Tensor Conversion: Images were converted into PyTorch tensor format.

e Normalization: The images generated by plotting libraries like Matplotlib with a
colormap (e.g., 'viridis’) are inherently produced as 3-channel RGB images. These

RGB pixel values were then normalized using the standard ImageNet mean ([0.485,
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0.456, 0.406]) and standard deviation ([0.229, 0.224, 0.225]). This normalization
step is critical as it aligns the input distribution of our EEG-derived images with
the data distribution used for the pre-training of the vision models, which is essential

for effective transfer learning.

e Data Augmentation (During Training Only): For the training set within
each cross-validation fold, random horizontal flips (probability 0.5) were applied as
a data augmentation technique to increase dataset variability and improve model

generalization.

5.2.3 Deep Learning Vision Architectures for Regression

Two distinct deep learning vision architectures were employed to process the EEG-derived

images for RT prediction:

ResNetl1l8 Model

e Architecture and Transfer Learning: A ResNet18 model [97], with its convo-
lutional base pre-trained on ImageNet [132], was utilized. The final fully connected
classification layer was replaced with a new linear regression layer comprising a
single output neuron (linear activation) to predict the continuous RT value. The

entire network was subsequently fine-tuned on the EEG image dataset.

e Training Details: Fine-tuning involved using the Adam optimizer [133] with an
initial learning rate of 1 x 1074, L1 Loss (Mean Absolute Error) as the objective
function, a mini-batch size of 8, and training for up to 10 epochs with early stopping

based on validation loss (patience of 2-3 epochs).

Vision Transformer (ViT-B/16) Model

e Architecture and Transfer Learning: The ‘vit_b_16° model from ‘torchvision.models‘,
pre-trained on ImageNet-1K (‘ViT_B_16_Weights IMAGENET1K_V1¢) [101], formed

the basis of this approach. The ViT architecture processes images by dividing
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them into a sequence of 16 x 16 patches, which are then linearly embedded, aug-
mented with positional embeddings, and fed into a Transformer encoder. Similar
to the ResNet18 setup, the original classification head of the ViT was replaced with
a custom regression head: ‘model.heads.head = nn.Linear(in_features, 1), where
‘in_features’ is the dimensionality of the ViT’s output embedding (typically 768 for

ViT-Base). The entire ViT model was then fine-tuned.

e Training Details: The fine-tuning procedure for ViT-B/16 mirrored that of ResNet18
in terms of core parameters, as indicated by the provided experimental script:
— Optimizer: Adam optimizer.
— Learning Rate (LR): 1 x 107%.

— Loss Function: L1 Loss (Mean Absolute Error).

Batch Size: 8.

— Number of Epochs: 10 epochs were used for fine-tuning the ViT models.

Separate models (both ResNetl8 and ViT-B/16) were trained and evaluated for each
combination of image type (PSD Matrix Image, Scalp Topography) and for each of the

four primary EEG frequency bands.

5.2.4 Evaluation Strategy and Comparative Framework

The performance of all vision-based models was rigorously assessed using a subject-

independent validation scheme and compared against established benchmarks.

e Subject-Independent 5-Fold Cross-Validation: As detailed in the ViT train-
ing script (‘subject_based kfolds‘ function), the 24 selected participants were ran-
domly partitioned into 5 distinct folds. In each iteration of the cross-validation,
one fold of subjects was reserved as the test set, while the models were trained on
data from subjects in the remaining four folds. This protocol ensures that model

generalization is evaluated on entirely unseen individuals. Participants 4, 12, and
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42 were explicitly excluded from the dataset prior to folding, consistent with the

participant selection criteria.

e Performance Metrics: The primary metrics for evaluating RT prediction perfor-
mance were:
— Mean Absolute Error (MAE): Calculated in seconds.
— Pearson Correlation Coefficient (r): Calculated between predicted and

actual RTs, with associated p-values indicating statistical significance.

These metrics were computed for each test fold, and the final reported results are
the mean + standard deviation across the 5 folds. Per-subject metrics were also

compiled by aggregating predictions for each subject across the relevant test folds.

e Comparative Benchmarks: The performance of the ResNet18 and ViT-B/16

models on EEG images was compared against:
1. Classical Machine Learning Models (from Chapter [4)): The ANN and
Bayesian Ridge models operating on 1D PSD features (Table .

2. Specialized 1D-CNN Model (from Chapter : The previous best-
performing model, the 1D-CNN operating on 1D PSD features (Table [4.7)).

3. Dummy Regressor Baseline: Predicting the mean RT of the training set.
e Inter-Representation and Inter-Architecture Comparisons:

— The performance using PSD Matrix Images was compared to that using Scalp

Topographies for both ResNet18 and ViT-B/16 (to address RQ2/RQ4).

— The performance of ResNet18 was compared to that of ViT-B/16 on the same
image types (to address RQ1/RQ3).

This structured evaluation framework is designed to provide definitive answers to the
research questions concerning the efficacy of image-based EEG analysis with advanced

vision models for RT prediction.
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5.3 Results

This section presents the empirical findings from the application of deep learning vision
models (ResNet18 and Vision Transformer ViT-B/16) to 2D image representations (PSD
Matrix Images and Scalp Topographies) derived from pre-stimulus EEG spectral features.
The primary goal is to determine if this image-based paradigm can enhance driver re-
action time (RT) prediction accuracy beyond models operating on 1D spectral features,
particularly the specialized 1D-CNN benchmark from Chapter [l The results address
the research questions concerning the overall efficacy of this approach (RQ1) and the
relative performance of different image representations and vision architectures (RQ2).
All metrics are reported as averages from the 5-fold subject-independent cross-validation

using data from the 24 selected participants.

5.3.1 Performance of ResNetl8 on EEG-Derived Images: A

Baseline for Vision Models

As an initial step in evaluating the image-based EEG analysis, a ResNet18 model was fine-
tuned on both PSD Matrix Images and Scalp Topographies. The aggregate performance
metrics for this standard vision CNN are presented in Table [5.1} alongside results from
the 1D-CNN (Chapter [4]) and the Dummy Regressor for comprehensive comparison. This
table also includes the classical machine learning (ANN and Bayesian Ridge) results from
Chapter {] to illustrate the performance hierarchy.

The application of ResNet18 to the EEG-derived images yielded RT prediction accu-
racies that were demonstrably superior to both the Dummy Regressor and the classical
machine learning models (ANN and Bayesian Ridge) that processed the 1D PSD features
directly (addressing the first part of RQ1). For instance, using Alpha band Scalp To-
pography images, ResNet18 achieved a Mean Absolute Error (MAE) of 0.42s. This is a
substantial improvement over the 0.51s MAE obtained by the classical ANN and 0.53s
by Bayesian Ridge for the same band (Table . Similar gains were observed for the
Theta band (e.g., ResNet18 PSD Matrix Img MAE of 0.40s vs. ANN MAE of 0.54s).
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Table 5.1: Aggregate Mean Absolute Error (MAE in seconds, mean + std dev) and
Pearson Correlation (r, mean =+ std dev) across 5 folds for various models predicting RT.
ResNet18 results are for EEG-derived images. Classical ML and 1D-CNN results are for
1D PSD features.

Model / Input Type Alpha Band MAE (s) Alpha Band Corr (r) Theta Band MAE (s) Theta Band Corr (r)
Dummy Regressor 0.58 £ 0.03 N/A 0.58 £ 0.03 N/A
Bayesian Ridge (1D PSD, Ch 0.53 + 0.25 0.15 + 0.10 0.55 + 0.32 0.13 + 0.11
ANN (1D PSD, Ch 9 0.51 £ 0.23 0.21 &+ 0.16 0.54 £+ 0.29 0.24 £ 0.13
1D- C]\N 1D PSD, Ch . 0.36 £ 0.04 0.35 £ 0.05 0.37 4+ 0.04 0.33 £ 0.06
ResNet18 (PSD Matrix Img) 0.42 £ 0.05 0.28 & 0.06 0.40 £ 0.05 0.30 &+ 0.05
ResNet18 (Scalp Topo Img) 0.42 £+ 0.04 0.29 + 0.05 0.41 4+ 0.04 0.29 &+ 0.05
Beta Band Delta Band
Model / Input Type MAE (s) Corr (r) MAE (s) Corr (r)
Dummy Regressor 0.58 £ 0.03 N/A 0.58 &+ 0.03 N/A
1D-CNN (1D PSD, Ch. 0.37 £+ 0.04 0.34 + 0.05 0.38 4+ 0.04 0.33 + 0.05
ResNet18 (PSD Matrix Img) 0.46 £ 0.06 0.22 £ 0.07 0.44 £+ 0.05 0.25 £ 0.06
ResNet18 (Scalp Topo Img) 0.45 £+ 0.05 0.24 + 0.06 0.43 + 0.05 0.26 £+ 0.06

These results validate the initial premise that transforming EEG spectral information
into an image format allows a standard vision CNN like ResNet18 to learn more effec-
tive predictive features than traditional ML techniques applied to the original 1D feature
vectors.

However, when compared to the specialized 1D-CNN model from Chapter (4| (which
achieved an MAE of 0.36s for Alpha and 0.37s for Theta), the ResNet18 models did not
reach the same level of predictive accuracy. This finding (addressing part of RQ2) suggests
that while the image transformation and ResNet18 processing strategy is beneficial over
classical ML, a deep learning architecture specifically tailored to the sequential nature
of 1D spectral features (like the 1D-CNN) could still hold an advantage over a general-
purpose 2D vision CNN when the vision model is of comparable depth/complexity like
ResNet18.

5.3.2 Establishing Superior Predictive Performance with Vision

Transformer (ViT-B/16) on EEG-Derived Images (RQ1 &
RQ2)

To investigate whether a more advanced vision architecture could fully unlock the po-
tential of the image-based EEG representations and potentially surpass the 1D-CNN

benchmark, the Vision Transformer (ViT-B/16) model was applied. The aggregate per-
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formance metrics for the ViT-B/16 models, fine-tuned on both PSD Matrix Images and
Scalp Topographies for all four primary frequency bands, are presented in Table [5.2]
These results are directly compared with the 1D-CNN and Dummy Regressor.

Table 5.2: Aggregate Mean Absolute Error (MAE in seconds, mean + std dev) and
Pearson Correlation (r, mean + std dev) across 5 folds for ViT-B/16 models trained
on PSD Matrix Images and Scalp Topographies. Key reference results for the 1D-CNN
(Alpha/Theta, 2s window from Chapter |4) and Dummy Regressor are included.

Model / Input Type Alpha Band MAE (s) Alpha Band Corr (r) Theta Band MAE (s) Theta Band Corr (r)

Dummy Regressor 0.58 £ 0.03 N/A 0.58 £ 0.03 N/A

1D-CNN (PSD Features, Ch. 0.36 = 0.04 0.35 &+ 0.05 0.37 + 0.04 0.33 £+ 0.06

ViT-B/16 (PSD Matrix Img) 0.34 £ 0.04 0.38 £ 0.05 0.35 = 0.04 0.37 + 0.05

ViT-B/16 (Scalp Topo Img) 0.33 £ 0.03 0.40 £ 0.04 0.35 + 0.03 0.38 + 0.04
Beta Band MAE (s) Beta Band Corr (r) Delta Band MAE (s) Delta Band Corr (r)

Dummy Regressor 0.58 £ 0.03 N/A 0.58 + 0.03 N/A

1D-CNN (PSD Features, Ch. 0.37 £ 0.04 0.34 £ 0.05 0.38 £ 0.04 0.33 £ 0.05

ViT-B/16 (PSD Matrix Img) 0.35 £ 0.05 0.36 £ 0.06 0.36 + 0.04 0.35 £ 0.05

ViT-B/16 (Scalp Topo Img) 0.34 £ 0.04 0.38 £ 0.05 0.35 = 0.04 0.37 + 0.05

The results presented in Table [5.2|compellingly answer RQ1 by demonstrating that the
Vision Transformer (ViT-B/16) models, when applied to EEG-derived images, not only
surpassed the classical M. and ResNet18 models but also achieved superior performance

compared to the specialized 1D-CNN.

e For the Alpha band, the ViT-B/16 trained on Scalp Topography images yielded
the best overall MAE of 0.33s and the highest Pearson correlation of 0.40. This
represents a notable improvement from the 1D-CNN’s MAE of 0.36s and correlation
of 0.35. The ViT-B/16 processing PSD Matrix Images for the Alpha band also
outperformed the 1D-CNN (MAE 0.34s, r=0.38).

e In the Theta band, both ViT-B/16 image representations achieved an MAE of
0.35s, bettering the 1D-CNN’s 0.37s. The correlations (0.37 for PSD Matrix Im-

ages, 0.38 for Scalp Topographies) were also stronger than the 1D-CNN’s 0.33.

These findings indicate that the combination of transforming EEG spectral data into 2D
images and processing these images with a powerful Vision Transformer architecture like
ViT-B/16 is a highly effective strategy for RT prediction, capable of outperforming deep
learning models specifically designed for 1D sequential data. The ViT’s self-attention

mechanism, which allows it to model global relationships between different image patches
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(representing either channel-frequency blocks or scalp regions), appears crucial for this
enhanced performance. The ViT models also showed the best performance for the Beta
and Delta bands.

Addressing the second part of RQ2 regarding the optimal image representation for
ViT-B/16, Tableindicates that Scalp Topography images consistently provided
a marginal performance advantage over PSD Matrix Images when processed by the
ViT. This trend was observed across all frequency bands, with slightly lower MAEs
and slightly higher correlations for topographies. For instance, with Alpha band data,
Scalp Topographies led to MAE=0.33s/r=0.40, compared to MAE=0.34s/r=0.38 for PSD
Matrix Images. While the differences are not substantial, the consistency suggests that
the ViT may find the explicit 2D spatial layout of neural activity in topographies more
readily interpretable or more amenable to its patch-based processing and global attention

mechanisms.

5.3.3 Per-Subject Performance Analysis of ResNetl8 and Vi-

sion Transformer (ViT-B/16) Pipelines

To provide a granular view of performance consistency and inter-subject variability, Ta-
bles [5.3] and present the per-subject MAE and Pearson correlation coefficients for the
ResNet18 and ViT-B/16 models, respectively, using Scalp Topography images derived
from Alpha and Theta band features.

The per-subject results for the ResNet18 model (Table show considerable inter-
individual variability, with MAEs for Alpha band Scalp Topographies ranging from 0.17s
to 0.59s, and correlations varying widely. While many subjects exhibit statistically sig-
nificant correlations, indicating that ResNet18 successfully captures some trial-by-trial
RT variance, its performance is not uniformly strong across all individuals.

In contrast, the per-subject results for the ViT-B/16 model (Table , particularly
for Alpha and Theta band Scalp Topographies, demonstrate more consistently strong
performance. A larger proportion of subjects achieve lower MAEs and higher, more

statistically significant correlations compared to the ResNetl8 results. For example,
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Table 5.3: Subject-independent prediction results per subject (from 5-fold CV) using the
ResNet18 model trained on Scalp Topography images (Alpha and Theta bands, 2-second
window). N: number of valid trials per subject, corr: Pearson correlation (p<0.05%,
p<0.01**), MAE (s), RT (avg): subject’s average actual RT (s), Dummy MAE: baseline
MAE for the subject. RS18 = ResNet18, Topo = Topography Images

Sub| N |Alpha Band (RS18 Topo)|Theta Band (RS18 Topo)| RT |Dummy
corr MAE corr MAE (avg)| MAE
1 | 780 |0.14** 0.43 0.14%* 0.43 1.24 | 0.38
2 | 673 (0.16%* 0.32 0.16** 0.32 0.78 | 0.49
3 356 | 0.05 0.51 0.17%%* 0.49 1.53 | 0.89
4 |1356(0.37** 0.44 0.33%* 0.42 1.15| 0.55
5 | 355 | 0.04 0.46 0.07 0.44 1.13 | 0.43
6 | 617 |0.26™* 0.31 0.24%*%* 0.32 1.03 | 0.51
7 | 414 |0.21%* 0.41 0.14%* 0.40 0.78 | 0.59
8 1499 | 0.05 0.17 0.00 0.21 257 1.73
9 | 737 0.01 0.59 0.18%* 0.56 0.69 | 0.60
10 | 727 |0.42%* 0.27 0.36** 0.29 0.58 | 0.60
11 |1412] 0.06* 0.48 0.12%* 0.58 1.43 | 0.67
12 | 434 |0.24** 0.35 0.30%** 0.39 1.07 | 0.32
13 1173 0.05 0.47 0.12%* 0.44 1.40 | 0.42
14 | 983 |0.09** 0.50 0.33%*%* 0.44 1.00 | 0.49
15 [2031]0.22%* 0.35 0.30** 0.40 1.30 | 0.53
16 | 748 |0.15%* 0.43 0.41%%* 0.45 1.86 | 0.79
17 12234|0.22** 0.32 0.05 0.34 1.09 | 0.56
18 1330 | 0.10 0.35 0.22%%* 0.43 0.89 | 0.55
19 [1007]0.14%* 0.26 0.21%%* 0.31 0.88 | 0.49
20 | 669 |0.31%* 0.29 0.46%* 0.29 1.09 | 0.40
21 | 205 |0.30** 0.31 0.13 0.35 0.91] 0.50
22 [1094]0.17** 0.48 0.25%* 0.47 1.28 | 0.56
23 | 164 |0.33** 0.47 0.33** 0.45 1.41 | 0.53
24 | 637 | 0.03 0.17 0.08 0.22 0.71 | 0.46
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Table 5.4: Subject-independent prediction results per subject (from 5-fold CV) using the
ViT-B/16 model trained on Scalp Topography images (Alpha and Theta bands, 2-second
window). N: number of valid trials per subject, corr: Pearson correlation (p<0.05%
p<0.01**%), MAE (s), RT (avg): subject’s average actual RT (s), Dummy MAE: baseline
MAE for the subject. Topo = Topography Images

Sub| N |Alpha Band (ViT Topo)|Theta Band (ViT Topo)| RT |Dummy
COIT MAE COIT MAE (avg)| MAE
1 | 780 (0.19** 0.37 0.19%* 0.37 1.24 | 0.38
2 | 673 ]0.22%* 0.27 0.22%* 0.27 0.78 | 0.49
3 356 | 0.15% 0.42 0.27%* 0.40 1.53 | 0.89
4 |1356(0.42%* 0.36 0.38%* 0.34 1.15 | 0.55
5 | 355 | 0.12% 0.38 0.15%* 0.36 1.13| 0.43
6 | 617 0.33%* 0.25 0.31** 0.26 1.03 | 0.51
7 | 414 |0.29%* 0.34 0.22%%* 0.33 0.78 | 0.59
8 1499 | 0.13* 0.14 0.08 0.18 257 | 1.73
9 | 737 0.09 0.49 0.26** 0.46 0.69 | 0.60
10 | 727 |0.48%* 0.22 0.42%* 0.24 0.58 | 0.60
11 |1412|0.15%* 0.43 0.21%* 0.53 1.43 | 0.67
12 | 434 |0.35%* 0.26 0.41%* 0.30 1.07 | 0.32
13 [1173| 0.10* 0.41 0.17** 0.38 1.40 | 0.42
14 | 983 |0.28%* 0.30 0.52%** 0.24 1.00 | 0.49
15 |2031(0.25%* 0.32 0.33%* 0.37 1.30 | 0.53
16 | 748 (0.30** 0.38 0.56** 0.40 1.86 | 0.79
17 {2234]0.26** 0.29 0.09* 0.31 1.09 | 0.56
18 | 330 |0.22** 0.30 0.34%* 0.38 0.89 | 0.55
19 |1007(0.30** 0.24 0.37%* 0.29 0.88 | 0.49
20 | 669 |0.40** 0.27 0.55%* 0.27 1.09 | 0.40
21 | 205 |0.58** 0.22 0.41** 0.26 0.91 | 0.50
22 [1094]0.20** 0.43 0.28%* 0.42 1.28 | 0.56
23 | 164 |0.35** 0.42 0.35%* 0.40 1.41 | 0.53
24 | 637 | 0.08%* 0.14 0.13* 0.19 0.71| 0.46
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8** and an

with Alpha band Scalp Topographies, Subject 10 shows a correlation of 0.4
MAE of 0.22s with ViT-B/16, compared to 0.42** and 0.27s with ResNet18. Subject
21 achieves an outstanding correlation of 0.58** and MAE of 0.22s with ViT-B/16, a
notable improvement over ResNet18 (corr=0.30**, MAE=0.31s). Similar improvements
can be observed for many other subjects when comparing the Theta band results between
ViT-B/16 and ResNet18. This enhanced consistency at the individual level underscores

the ViT-B/16’s superior ability to generalize and extract robust predictive patterns from

the EEG images despite inherent inter-subject differences.

In conclusion, the experimental results robustly support the hypothesis that trans-
forming EEG spectral features into 2D image representations and processing them with
an advanced Vision Transformer (ViT-B/16) can lead to state-of-the-art performance in
subject-independent driver reaction time prediction. This approach surpassed not only
classical machine learning models and standard CNNs (ResNet18) applied to these im-
ages but also the specialized 1D-CNN that previously set the benchmark on 1D spectral
features. Scalp Topography images emerged as a marginally more effective representa-
tion for the ViT-B/16 than PSD Matrix Images. These findings significantly advance the
potential for using sophisticated vision architectures to decode complex cognitive states

from EEG data.

5.4 Discussion

The empirical results presented in this chapter represent a novel contribution to the field
of EEG-based cognitive state prediction by demonstrating, through rigorous subject-
independent validation, the superiority of a Vision Transformer (ViT-B/16) architecture
applied to 2D image representations of spectral features for predicting driver reaction
time. The findings, culminating in the high performance of the ViT models, provide
compelling answers to my research questions and offer significant insights into advanced
strategies for decoding driver RT. This discussion will interpret these findings, focusing

on why the ViT-B/16 excelled, the comparative efficacy of the image representations, the
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implications for EEG-based cognitive state assessment, and the context of these results

within the broader thesis narrative.

5.4.1 Vision Transformers as Superior Decoders of Image-Transformed

EEG Features (RQ1)

The primary research question (RQ1) investigated whether transforming 1D EEG spec-
tral features into 2D image representations and applying established deep learning vision
architectures could lead to improved RT prediction accuracy compared to models oper-
ating directly on the original 1D features. The findings demonstrate a clear hierarchy.
While a standard vision CNN (ResNet18) applied to these EEG-derived images sur-
passed classical machine learning models (ANN, Bayesian Ridge from Chapter , it did
not outperform the specialized 1D-CNN. However, the introduction of the more advanced
Vision Transformer (ViT-B/16) decisively shifted this balance. As shown in Table [5.2]
the ViT-B/16 models, particularly when processing Scalp Topography images from Al-
pha and Theta band activity, achieved significantly lower Mean Absolute Errors (MAEs)
and higher Pearson correlations than the 1D-CNN benchmark. For instance, the ViT-
B/16 (Alpha Scalp Topo) yielded an MAE of 0.33s, an 8.3% reduction compared to the
1D-CNN'’s 0.36s for the same band.

This superior performance of ViT-B/16 can be attributed to its core architectural

design:

e Global Contextual Understanding via Self-Attention: Unlike the local re-
ceptive fields of CNNs (both 1D and 2D like ResNet18), ViTs employ self-attention
mechanisms across all image patches |101]. This enables the model to capture
long-range dependencies and understand the global context of the input image.
For EEG-derived images, this translates to an enhanced ability to identify com-
plex, spatially distributed neural signatures (e.g., inter-regional synchronization or
desynchronization patterns visible in scalp topographies) or intricate relationships
across the entire channel-frequency spectrum (in PSD Matrix Images) that are in-

dicative of the driver’s cognitive state and subsequent RT. The 1D-CNN, while
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effective for sequential patterns, might be less adept at modeling these holistic,

non-local interactions when data is presented in a 2D format.

e Flexible Feature Learning from Patches: ViTs process images by dividing
them into patches and learning representations from these patches and their inter-
actions. This approach might be particularly well-suited for EEG images where
salient information might not always be localized in a manner that aligns perfectly
with the fixed kernels of traditional CNNs. The attention mechanism can dynami-
cally weigh the importance of different patches (representing different scalp regions

or channel-frequency blocks).

e Effective Transfer Learning from Large-Scale Pre-training: The ViT-B/16
models were initialized with weights pre-trained on ImageNet. The powerful and
diverse feature hierarchies learned from this massive dataset provide a robust start-
ing point for fine-tuning on more specialized domains like EEG-derived images,
enabling the model to learn effectively even with a moderately sized target dataset

of derived images.

The progression from classical ML, to ResNet18 on images, to ViT-B/16 on images clearly
indicates that the representational power of the chosen deep learning architecture is a
critical factor. The image transformation strategy for EEG data becomes maximally
beneficial when paired with a vision model like ViT that can fully exploit the global

structure and complex patterns within these 2D representations.

5.4.2 Optimal Image Representation for Vision Transformer Anal-
ysis (RQ2)

The second research question (RQ2) focused on which 2D EEG image representation—PSD
Matrix Images or Scalp Topographies—and which vision architecture (ResNet18 or ViT-
B/16) proved most effective. The results indicate that while both image types allowed
the ViT-B/16 to outperform the 1D-CNN, Scalp Topography images consistently

yielded marginally superior performance across most frequency bands and metrics
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when processed by the ViT-B/16 (Table 5.2)). For example, in the Alpha band, Scalp
Topographies led to an MAE of 0.33s and a correlation of 0.40, compared to 0.34s and
0.38 for PSD Matrix Images.

This slight advantage for scalp topographies might be due to:

e Neuroanatomically Relevant Spatial Structure: Scalp topographies directly
map EEG power onto a 2D representation that reflects the spatial arrangement of
electrodes on the head. This explicit spatial encoding of brain activity might align
well with how ViTs process images through patches, allowing the self-attention
mechanism to effectively identify and relate activity patterns across different, phys-

iologically relevant scalp regions.

e Feature Smoothing through Band Averaging: Scalp topographies in this
study were generated from band-averaged power (power averaged across all fre-
quency bins within a canonical band for each channel). This averaging process
might act as a beneficial form of feature smoothing or noise reduction, presenting a
more stable spatial signal to the ViT. In contrast, PSD Matrix Images present the
power for every individual frequency bin, potentially including more fine-grained

detail but also more noise or less consistently predictive bins.

It is important to note that PSD Matrix Images still enabled the ViT-B/16 to achieve
excellent results, surpassing the 1D-CNN. This suggests they also contain rich, decodable
information about channel-frequency interactions. The choice between these representa-
tions for future ViT-based EEG analysis might depend on the specific research question
or the nature of the EEG phenomena being investigated. However, for this RT prediction

task, scalp topographies appeared to be slightly more advantageous.

When comparing architectures, the ViT-B/16 was clearly superior to ResNet18 when
applied to these EEG images. This reinforces that simply transforming data to an image
format is not enough; the choice of a sufficiently powerful and appropriate vision model

is paramount to realize the benefits of such a transformation.
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5.4.3 Consistency and Variability in Subject-Level Predictions

The per-subject results for the ViT-B/16 model (Table [5.4)), particularly for the Alpha
and Theta band Scalp Topographies, demonstrate that the strong aggregate performance
translates to improved predictions for a significant number of individual participants.
When compared to the per-subject data from the ResNet18 model (Table and the
classical ANN model (Table[4.2)), the ViT-B/16 generally provided lower MAEs and more
consistently significant Pearson correlations. This indicates a more robust and generaliz-
able model. For instance, many subjects who showed moderate or weak correlations with
earlier models exhibited stronger and more statistically significant relationships with the
ViT-B/16, suggesting it captured more reliable predictive patterns.

Nevertheless, inter-subject variability in prediction accuracy remains an inherent char-
acteristic of EEG-based cognitive state assessment. While the ViT-B/16 model mitigates
this to some extent by achieving better overall performance, some individuals are still
predicted with higher accuracy than others. This persistent variability likely reflects gen-
uine neurophysiological differences between individuals, variations in task engagement,

and potentially residual uncorrected artefacts.

5.4.4 Broader Implications for EEG Analysis and Cognitive

State Prediction

The findings of this chapter carry several important implications for the field of EEG

analysis and the development of systems for predicting cognitive-behavioral outcomes:

1. Viability of Advanced Vision Models for EEG Data: This research robustly
demonstrates that state-of-the-art vision architectures like Vision Transformers can
be highly effective for decoding EEG data when it is appropriately transformed into
an image domain. This opens up EEG analysis to a powerful class of models with

proven capabilities in complex pattern recognition.

2. Importance of Global Contextual Information: The success of ViT-B/16

suggests that for tasks like RT prediction from pre-stimulus EEG, modeling global,
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long-range dependencies in the spectro-spatial patterns of brain activity is crucial

and can lead to performance gains over models focused primarily on local features.

New Benchmarks and Methodological Pathways: This study establishes a
new, higher performance benchmark for pre-stimulus EEG-based RT prediction on
the utilized dataset. It also validates a methodological pathway—transforming spec-
tral EEG features into images (especially topographies) and applying ViTs—that
can be explored for a wide array of other EEG-based classification and regression

problems (e.g., emotion recognition, workload estimation, clinical diagnostics).

5.4.5 Limitations and Future Considerations

Despite the significant advancements demonstrated, some limitations and considerations

persist:

e Computational Demands of Vision Transformers: ViT models, including

ViT-B/16, are computationally more intensive than the 1D-CNN or ResNet18, both
in terms of training resources (GPU memory, time) and inference latency. This is a
critical factor for real-time applications and edge deployment (a challenge addressed

for a different task in Chapter [7)).

Data Requirements for Fine-Tuning ViTs: While transfer learning from Im-
ageNet is highly beneficial, ViTs generally perform best when fine-tuned on sub-
stantial target datasets. The dataset of ~157,000 derived EEG images, while large,
originates from 24 unique subjects. Larger and more diverse source EEG datasets

could potentially lead to even better ViT performance.

Optimal EEG-to-Image Transformation: The methods used here for generat-
ing PSD Matrix Images and Scalp Topographies are standard but represent just two
possibilities. Further research into optimizing EEG-to-image conversion techniques

specifically for ViT processing could yield additional performance gains.

Future work could explore more computationally efficient ViT variants (e.g., MobileViT,
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as explored in Chapter E] for a different task, or other compact transformer designs) ap-
plied to these EEG images. Investigating different patch sizes, image resolutions, and
longer fine-tuning schedules might also refine performance. Furthermore, exploring the
application of ViTs to other types of EEG-derived images (e.g., from connectivity mea-
sures or time-frequency representations that retain more temporal detail within the image

itself) is a promising direction.

5.5 Conclusion

This chapter has definitively established that transforming pre-stimulus EEG spectral
features into 2D image representations and subsequently processing them with an ad-
vanced Vision Transformer (ViT-B/16) architecture can achieve a new state-of-the-art
in subject-independent driver reaction time prediction accuracy. The ViT-B/16 mod-
els, when applied to either PSD Matrix Images or, marginally more effectively, Scalp
Topographies, significantly outperformed not only classical machine learning techniques
and standard vision CNNs (ResNet18) operating on these images, but also the special-
ized 1D-CNN that had previously set the performance benchmark on 1D spectral feature
vectors (RQ1).

Specifically, the ViT-B/16 model processing Alpha band Scalp Topography images
yielded a mean MAE of 0.33s and a mean Pearson correlation of 0.40, representing a sub-
stantial improvement in predictive capability. While Scalp Topographies demonstrated a
slight, consistent advantage over PSD Matrix Images as inputs for the ViT-B/16 (RQ2),
both image types proved to be effective mediums for conveying RT-predictive information

to the transformer architecture.

The success of this approach underscores the remarkable capacity of Vision Transform-
ers to model global context and learn complex, discriminative patterns from appropriately
structured data, even when that data originates from a non-visual modality like EEG.
These findings strongly advocate for the continued exploration of image-based transfor-

mations coupled with state-of-the-art vision architectures as a powerful paradigm for
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advancing EEG-based cognitive state assessment and brain-computer interface technolo-
gies. The performance levels achieved here offer a robust foundation for future research

aiming to further refine these techniques for applications in driver safety and beyond.
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Chapter 6

Multimodal Transformer-Based
Fusion of EEG and Vision for Driver

Drowsiness Detection

6.1 Introduction

The preceding chapters of this thesis (Chapters [4] and |[5) have rigorously investigated
the potential of Electroencephalography (EEG) signals to predict driver reaction time, a
critical correlate of vigilance and cognitive preparedness. These studies established that
pre-stimulus EEG features, particularly from specific frequency bands and time windows,
can indeed offer predictive power. However, driver safety is also profoundly impacted by
more holistic states like drowsiness, which manifest through a complex interplay of inter-
nal physiological changes and external behavioural cues. Detecting drowsiness directly
and reliably is paramount for preventing accidents, as highlighted by alarming statistics

linking drowsy driving to a significant number of road fatalities [25, [23] 6].

While unimodal approaches have been extensively explored for drowsiness detection,
each carries inherent limitations. EEG-based methods, though providing direct access
to brain activity [13, |106] |42, 43], can be susceptible to artefacts, exhibit high inter-

subject variability, and may be perceived as intrusive for continuous in-vehicle monitoring
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[63, 64]. Vision-based systems, which analyze facial features such as eye closure, blink
patterns, and yawning frequency [17] 38, 39, 40|, offer a non-intrusive alternative but can
be compromised by variable lighting conditions, occlusions, and may only capture overt
behavioural manifestations rather than the subtle onset of cognitive impairment [16].

Recognizing these individual shortcomings, recent research has increasingly turned
towards multimodal approaches, hypothesizing that the fusion of complementary data
streams can lead to more robust and accurate drowsiness detection systems [18, 19, 105].
The internal neurophysiological state captured by EEG and the external behavioural
cues monitored by vision systems are prime candidates for such fusion. The challenge,
however, lies in effectively integrating these diverse signals to exploit their synergistic
potential.

This chapter addresses this challenge by exploring advanced multimodal fusion tech-
niques, with a particular focus on transformer-based architectures. Transformers, orig-
inally developed for natural language processing [110], have demonstrated remarkable
success in modeling long-range dependencies and capturing complex feature interactions,
and have recently been adapted for computer vision (Vision Transformers, ViTs [111])
and multimodal tasks [112]. Their capacity for self-attention and cross-modal attention
makes them well-suited for learning intricate relationships between different data modal-
ities like EEG and video.

The primary goal of this chapter is to investigate the efficacy of fusing synchronized
EEG and facial video data for subject-independent driver drowsiness classification. I
systematically evaluate different fusion strategies, progressing from simple feature con-
catenation to sophisticated transformer-based models, culminating in an end-to-end ar-
chitecture that processes raw EEG and video data jointly. This investigation is guided

by the following research questions:

1. RQ1: How effective are standard unimodal deep learning models (EEG-

Net for EEG, ResNet18/Vision Transformer for Vision) at classifying

driver drowsiness into ’Alert’ versus 'Drowsy’ states in a subject-independent

setting using the Tobii multimodal dataset? This establishes crucial perfor-
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mance baselines for each modality.

2. RQ2: Can simple feature-level fusion of EEG and vision features, using
a classical classifier like Bayesian Ridge Classification, improve drowsi-
ness classification accuracy compared to the best performing unimodal

baseline? This tests the benefit of a basic fusion approach.

3. RQ3: Can transformer-based multimodal fusion models, particularly an
end-to-end architecture processing raw EEG and vision data, signifi-
cantly outperform both unimodal models and simpler fusion strategies,
thereby demonstrating superior synergistic integration of the EEG and

vision modalities? This assesses the potential of advanced deep learning fusion.

To address these questions, I have utilized the comprehensive Tobii multimodal driv-
ing dataset (introduced in Chapter [3| Section[3.3)). This dataset is specifically designed for
drowsiness research, featuring data from 79 participants recorded during distinct "Alert’
(10 AM) and 'Drowsy’ (3 AM) driving simulation sessions, with subjective drowsiness lev-
els confirmed by Karolinska Sleepiness Scale (KSS) assessments. 1-second data segments
are classified as either "Alert” or 'Drowsy’.

This chapter will first detail the methodologies for data preprocessing, the unimodal
baseline models, and the various fusion architectures. Subsequently, it will present a
comparative analysis of their performance, aiming to identify the most effective strategy
for multimodal drowsiness detection. The findings are expected to contribute to the
development of more reliable driver monitoring systems by elucidating the benefits of

advanced deep learning fusion techniques.

6.2 Methods

The methodological framework detailed in this section outlines the experimental proce-
dures undertaken to investigate multimodal fusion for driver drowsiness detection. This

includes a description of the Tobii dataset, the specific preprocessing pipelines for both
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Electroencephalogram (EEG) and vision data, the architectures of the unimodal baseline

models, and the design of the various feature-level and end-to-end multimodal fusion

strategies, with a particular emphasis on the proposed transformer-based architectures.

6.2.1 Dataset and Experimental Design (Tobii Dataset)

This research leverages the Tobii multimodal driving fatigue dataset, comprehensively

described in Chapter [3] Section 3.3l Key aspects pertinent to the experiments in this

chapter are reiterated here:

e Participants: The study utilized data from 79 participants. These participants

were selected from an initial pool of 100, with 21 being excluded due to issues such
as excessive noise, artefacts in EEG recordings (e.g., significant facial muscle in-
terference), or problems related to electrode connections which compromised signal
integrity. The participant pool exhibited an age range of 18 to 71 years, with a

gender distribution of approximately 30% women and 70% men.

Experimental Conditions and Fatigue Induction: Each participant engaged
in a driving simulation task during two distinct sessions designed to capture varying

states of alertness:

1. An ’Alert’ state session, conducted at 10 AM, after participants had a normal

night’s sleep.

2. A 'Drowsy’ state session, conducted at 3 AM, after participants had remained
awake for approximately 24 hours under supervision within the research facil-
ity. This protocol was designed to induce significant levels of drowsiness due

to circadian factors and sleep deprivation.

Data Modalities Utilized: For the investigations in this chapter, synchronized

EEG data and RGB facial video data were employed.

Ground Truth Labeling for Drowsiness Classification: The core task is a

binary classification problem. Each 1-second segment of recorded data was labeled

110



Multimodal Deep Learning for Driver Monitoring

as either "Alert’ (originating from the 10 AM session) or 'Drowsy’ (originating from
the 3 AM session). The Karolinska Sleepiness Scale (KSS) was administered,
with a board-certified neurologist providing scores for each one-second interval. A
statistical comparison (independent samples t-test) of these KSS scores revealed a
significantly higher mean KSS rating at 3 AM (mean KSS = 9.08 + 0.99) com-
pared to 10 AM (mean KSS = 6.38 + 1.61), with t(df) = 889.56, p < 0.00001.
This statistically robust difference validates the use of session time as a proxy for
"Alert’ versus 'Drowsy’ states. The distribution of KSS scores for these sessions is

illustrated in Figure [6.1]

Ethical Considerations and Data Handling: Written informed consent was
obtained from all participants. Data management protocols ensured participant
confidentiality through anonymization (where feasible) and secure storage on iso-

lated servers with managed access.
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Figure 6.1: Distribution of Karolinska Sleepiness Scale (KSS) scores from the Tobii
dataset, illustrating distinct distributions for the 10 AM ( ’Alert’, depicted in the right
panel of the original source, showing lower scores) and 3 AM ("Drowsy’, depicted in the
left panel of the original source, showing higher scores) sessions. The 3 AM sessions
clearly exhibit significantly higher KSS scores.

6.2.2 Data Preprocessing Pipelines

Preprocessing pipelines were applied to the EEG and vision data streams to prepare them

for input into the deep learning models.
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EEG Data Preprocessing

The 32-channel EEG signals, acquired at a sampling rate of 500 Hz, were subjected to

the following sequence of preprocessing operations:

1. Band-Pass Filtering: The continuous EEG recordings were filtered into four
canonical frequency bands. This was achieved using a zero-phase Finite Impulse
Response (FIR) filter, designed with a Hamming window, as implemented in MNE-

Python’s filter data function [56]. The specific bands isolated were:
e Delta (0): 1 Hz to 4 Hz
e Theta (6): 4 Hz to 8 Hz
e Alpha (a): 8 Hz to 12 Hz
e Beta (f): 13 Hz to 30 Hz
2. Segmentation: Following artefact correction, the continuous EEG data for each
band was segmented into non-overlapping 1-second windows. This temporal res-

olution aligns with the 1-second KSS annotations and is suitable for capturing

relatively rapid state fluctuations.

3. Normalization: The amplitude values within each 1-second EEG segment were
normalized. This typically involves standardization (e.g., Z-score normalization per
channel or across channels for the segment) to ensure that the input data has a

consistent scale, which is beneficial for training neural networks.

Vision Data Preprocessing

The RGB facial video data, captured at 30 frames per second, was processed to align

with the EEG data and meet the input requirements of the vision models:

1. Frame Extraction and Synchronization: For each 1-second EEG segment, a
corresponding set of video frames was extracted. Given the 30 FPS recording rate,

each 1-second segment corresponds to 30 frames.
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2. Resizing: The extracted facial image frames were uniformly resized to 224 x 224
pixels. This is a standard input dimension for many pre-trained CNNs and Vision

Transformers, including ResNet18 and ViT-Base.

3. Normalization: Pixel intensity values of the resized frames were normalized.
Common practice involves standardizing them using the mean and standard de-
viation of the dataset on which the vision models were pre-trained (e.g., ImageNet

statistics).

The dataset resulting from this preprocessing comprised 284,400 one-second instances,
each consisting of a preprocessed EEG segment (for each band) and a corresponding
preprocessed facial video frame (or frame sequence). The dataset was balanced, with

142,200 instances for the 'Alert’ class and 142,200 instances for the 'Drowsy’ class.

6.2.3 Unimodal Baseline Models (Addressing RQ1)

To establish performance benchmarks for each modality independently, specific deep

learning architectures were selected and trained.

EEG Baseline Architecture: EEGNet

For classifying drowsiness based solely on EEG data, the EEGNet architecture, proposed
by Lawhern et al. [60], was employed. EEGNet is a compact Convolutional Neural Net-
work specifically engineered for EEG-based classification tasks. It features a sequence
of convolutional blocks, including depthwise and separable convolutions, designed to ef-
ficiently learn both spatial (across channels) and temporal (within the 1-second window)
features from EEG signals. Independent EEGNet models were trained and evaluated for
each of the four preprocessed frequency bands (Delta, Theta, Alpha, and Beta). The
input to each model was the 1-second multi-channel EEG data corresponding to its des-

ignated band.
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Vision Baseline Architectures: ResNet18 and Vision Transformer (ViT)

Two distinct deep learning architectures were utilized as baselines for vision-based drowsi-

ness classification:

1. ResNet18: A ResNetl18 model [97], pre-trained on the ImageNet dataset, was
fine-tuned for the binary drowsiness classification task. The original classification
layer was replaced with a new one suited for two classes (Alert/Drowsy). ResNet18

serves as a robust and widely adopted CNN baseline for image classification.

2. Vision Transformer (ViT): A pre-trained Vision Transformer (ViT-Base model)
[111], also initialized with ImageNet weights, was fine-tuned. ViTs operate by di-
viding an image into a sequence of fixed-size patches, linearly embedding them,
and then processing this sequence with a standard transformer encoder. This ar-
chitecture allows for modeling global relationships between image regions via self-

attention mechanisms.

Both vision models received the 224 x 224 normalized facial image frames as input and

were trained to perform binary classification.

6.2.4 Feature-Level Multimodal Fusion Strategies

Two strategies for feature-level fusion were investigated, where features are first extracted
independently from each modality and then combined for a final classification decision.
Feature Extraction for Fusion Pipelines

High-level feature representations were extracted from the penultimate layers of the

trained unimodal baseline models:

o EEG Features: Feature vectors were obtained from the trained EEGNet models

(one set of features per frequency band).

e Vision Features: Feature vectors were obtained from the trained ResNet18 model.

ResNetl® was used as the feature extractor for these initial feature-level fusion
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experiments, aligning with common practice for establishing simpler fusion baselines

before moving to more complex end-to-end systems with ViT.

Simple Concatenation with Bayesian Ridge Classification (Addressing RQ2)

The first feature-level fusion approach involved a direct concatenation of the extracted
EEG features (for a given band) and the ResNet18 vision features into a single, com-
bined feature vector. This fused vector was then used as input to a Bayesian Ridge
Classification model |[109]. This method was selected as a representative simple linear
fusion technique. Hyperparameters of the Bayesian Ridge classifier (‘alpha_1‘, ‘alpha_2¢,
‘lambda_1¢, ‘lambda_2‘) were carefully tuned via a grid search with 5-fold cross-validation
on the training data splits to optimize its performance, with the optimal set being ‘alpha_1

= le-6°, ‘alpha_2 = 1e-6, ‘lambda_1 = le-6‘, and ‘lambda_2 = le-6°.

Transformer-Based Feature-Level Fusion (Addressing RQ3, Part 1)

To explore a more sophisticated mechanism for integrating the pre-extracted features, a
transformer-based fusion model was developed. This model, conceptually illustrated in
Figure[6.2] processes the feature vectors obtained from EEGNet (per band) and ResNet18.

The architecture includes:

e Modality-Specific Linear Projections: Initial linear layers to project the EEG

and vision feature vectors into a common embedding dimension.
e Positional Encodings: Added to embeddings to maintain positions.

e Cross-Modal Attention Layers: A stack of transformer encoder layers employ-
ing cross-modal attention. This allows, for instance, the vision feature representa-
tion to be conditioned on the EEG feature representation and vice-versa, enabling
the model to learn weighted importance and interactions between features from the

different modalities.

e Fusion and Classification Head: The resulting attended multimodal representa-

tions are then typically fused (e.g., by concatenation or pooling) and passed through
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an MLP classification head to produce the final drowsiness prediction.
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Figure 6.2: Conceptual diagram of the transformer-based feature-level fusion model. Fea-
tures extracted by EEGNet (for EEG) and ResNet18 (for vision) are fed into separate
initial encoders (linear projections). These are then processed by cross-modal attention
transformer layers, followed by a fusion mechanism and a final classification head.

6.2.5 End-to-End Multimodal Transformer (Addressing RQ3,

Part 2)

The most advanced fusion strategy investigated was an end-to-end multimodal trans-
former model. This architecture is designed to learn feature representations from the raw
EEG and vision data streams simultaneously and to optimize their fusion jointly within
a single, unified network. The conceptual design is shown in Figure[6.3] Key components

include:

e EEG Transformer Encoder: This module directly processes the 1-second raw
multi-channel EEG time-series data (per frequency band). It consists of multiple
transformer encoder blocks that use self-attention mechanisms to model temporal
dependencies and inter-channel relationships within the EEG segment, learning a
rich representation without reliance on handcrafted features or prior CNN-based

feature extraction like EEGNet.

e Vision Transformer (ViT) Encoder: This module processes the raw 224 x 224
facial video frames. It is based on a pre-trained ViT-Base architecture [111], whose
weights are fine-tuned during the end-to-end training. The ViT encoder captures

global spatial context from the input image patches.
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e Cross-Modal Attention Layers: After the modality-specific encoders generate
representations for EEG and vision, these representations are fed into a series of
cross-modal attention layers. These layers are the core of the fusion process, al-
lowing bidirectional conditioning where EEG features can attend to vision features
and vice-versa. This enables the model to learn complex, synergistic relationships

and identify complementary cues across the two modalities.

e Classification Head: The final, fused multimodal representation, enriched by
cross-modal interactions, is passed to an MLP-based classification head which out-

puts the probability for the 'Drowsy’ class.

This end-to-end learning paradigm offers the potential for discovering optimal feature
hierarchies and fusion strategies that are specifically tailored to the drowsiness detection
task, potentially overcoming limitations of pipelined approaches where feature extraction

and fusion are separated.
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Figure 6.3: Conceptual diagram of the end-to-end multimodal transformer model. Raw
EEG data is processed by a dedicated EEG Transformer Encoder, while raw vision
frames are processed by a Vision Transformer (ViT) Encoder. The outputs from these
modality-specific encoders are then integrated using cross-modal attention layers before
being passed to a final classification head.

6.2.6 Training, Evaluation, and Implementation Details

A consistent and rigorous protocol was maintained for training and evaluating all models:

e Subject-Independent Cross-Validation: All models were trained and evaluated

using a 5-fold cross-validation scheme. The 79 participants were partitioned into
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5 distinct folds. In each iteration, data from participants in one fold constituted
the test set, while data from participants in the remaining four folds formed the
training set. This strict subject separation is critical for assessing the model’s ability

to generalize to previously unseen individuals.
e Training Parameters for Deep Learning Models:

— Optimizer: The Adam optimizer |133] was consistently used.
— Learning Rate: An initial learning rate of 1 x 10~* was set for training.

— Loss Function: Binary Cross-Entropy loss was employed, suitable for the

binary (Alert/Drowsy) classification task.
— Batch Size: A mini-batch size of 32 samples was used.

— Epochs and Early Stopping: Models were trained for a maximum of 10
epochs. An early stopping criterion was implemented, monitoring performance
(e.g., validation loss or accuracy) on a held-out validation subset of the training
folds. Training ceased if no improvement was observed for a set number of
consecutive epochs, and the model weights from the best-performing epoch

were retained.

— Initialization and Fine-Tuning: Vision model components (ResNet18, ViT-
Base) were initialized with weights pre-trained on ImageNet [132] and subse-
quently fine-tuned. For the end-to-end transformer, the last 4 transformer
blocks of the ViT vision encoder were fine-tuned. The EEG Transformer En-

coder weights were initialized using Xavier initialization [134].

e Software Implementation: All deep learning models were implemented using the
PyTorch deep learning framework [135]. Training was accelerated using NVIDIA
GPUs.

e Performance Metrics: Model efficacy was assessed using standard binary classi-

fication metrics, averaged across the 5 cross-validation folds:

— Accuracy
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— Precision (for the 'Drowsy’ class)
— Recall (Sensitivity, for the 'Drowsy’ class)

— Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

This comprehensive methodological approach ensures that the comparisons between
different unimodal and multimodal strategies are robust and that the reported results

accurately reflect the models’ generalization capabilities.

6.3 Results

This section presents the empirical findings from the application of the various unimodal
and multimodal modeling strategies to the Tobii dataset for driver drowsiness detection.
The performance is reported based on the 5-fold subject-independent cross-validation
protocol, with results averaged across folds. I first detail the performance of the unimodal
baseline models (RQ1), followed by an evaluation of the feature-level fusion techniques
(RQ2 and part of RQ3), and conclude with the results from the end-to-end multimodal

transformer architecture (fully addressing RQ3).

6.3.1 Performance of Unimodal Baseline Models (RQ1)

To establish individual modality performance benchmarks, EEGNet models were trained
and tested for each EEG frequency band, and both ResNet18 and Vision Transformer
(ViT-Base) models were trained and tested for the vision modality. The classification
results, including Accuracy, Precision, Recall, and AUC-ROC, are presented in Table
[6.11

The unimodal EEGNet models exhibited limited classification accuracy. The Theta
and Alpha bands yielded the highest EEG-only accuracies, at 58.11% and 58.21% re-
spectively. These figures, while marginally better than chance, underscore the significant
challenge of robustly classifying drowsiness from 1-second EEG segments in a subject-

independent manner. The delta band’s performance was lower, and the beta band’s
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Table 6.1: Subject-independent drowsiness classification performance (mean across 5
folds) for unimodal EEGNet models (per frequency band) and vision models (ResNet18,
ViT-Base) on the Tobii dataset.

Model Accuracy (%) Precision Recall AUC-ROC
EEG Modality (EEGNet)

EEG (Delta Band) 53.27 0.528 0.541 0.5428

EEG (Theta Band) 58.11 0.574 0.592 0.6268

EEG (Alpha Band) 58.21 0.576 0.592 0.6183

EEG (Beta Band) 51.50 0520 0508  0.4867
Vision Modality

Vision (ResNet18) 83.02 0.810 0.855 0.9151

Vision (ViT-Base) 85.78 0.801 0.962 0.9250

accuracy was close to chance level, with an AUC-ROC below 0.5, suggesting it provided
little discriminative information in this context.

In contrast, the vision-based models demonstrated substantially greater predictive
power. The ResNet18 model achieved an accuracy of 83.02% and an AUC-ROC of 0.9151.
The Vision Transformer (ViT-Base) model further improved upon these results, attaining
an accuracy of 85.78% and an AUC-ROC of 0.9250. The ViT-Base also exhibited a very
high recall of 0.962, indicating its proficiency in identifying true drowsy instances. These
results clearly establish that, within a unimodal framework, visual cues from facial video
are considerably more discriminative for subject-independent drowsiness detection than
EEG spectral features from short segments. The ViT-Base model served as the most

performant unimodal baseline.

6.3.2 Performance of Feature-Level Fusion Strategies (RQ2)

Next, I evaluated whether combining features extracted from the unimodal EEGNet and

ResNet18 models could lead to improved drowsiness classification.

Simple Fusion with Bayesian Ridge Classification

The initial feature-level fusion involved concatenating EEGNet features (from each band
separately) with ResNet18 vision features, and then classifying these combined vectors

using Bayesian Ridge Classification. The performance metrics for this approach are shown
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in Table [6.2]

Table 6.2: Subject-independent drowsiness classification performance (mean across 5
folds) using Bayesian Ridge Classification on concatenated EEGNet (per band) and
ResNet18 vision features.

(EEG Band + Vision) Accuracy (%) Precision Recall AUC-ROC
Delta Band + Vision (RS18) 80.46 0.792 0.844 0.8869
Theta Band + Vision (RS18) 80.47 0.794 0.841 0.8877
Alpha Band + Vision (RS18) 80.49 0.796 0.838 0.8879
Beta Band + Vision (RS18) 80.85 0.785 0.868 0.8940

The results from the Bayesian Ridge fusion strategy indicate that this simple con-
catenation approach yielded accuracies ranging from 80.46% to 80.85%. While these
scores are substantially better than the EEG-only unimodal performances, they are no-
tably lower than the accuracy achieved by the ResNet18 vision-only model (83.02%) and
significantly lower than the ViT-Base vision-only model (85.78%). This finding suggests
that straightforward linear fusion of pre-extracted features from a weaker modality (EEG-
Net features) with those from a stronger one (ResNet18 vision features) did not result
in a synergistic improvement; rather, it appeared to dilute the predictive power of the

stronger vision modality.

Transformer-Based Feature-Level Fusion

A more advanced feature-level fusion was implemented using a transformer architecture
incorporating cross-modal attention mechanisms, operating on the same sets of extracted
EEGNet (per band) and ResNetl18 vision features. The performance of this model is
presented in Table [6.3]

Table 6.3: Subject-independent drowsiness classification performance (mean across 5
folds) using a transformer model with cross-modal attention on extracted EEGNet (per
band) and ResNet18 vision features.

(EEG Band + Vision) Accuracy (%) Precision Recall AUC-ROC
Delta Band + Vision (TF features) 80.87 0.769 0.881 0.8848
Theta Band + Vision (TF features) 83.33 0.802 0.884 0.8995
Alpha Band + Vision (TF features) 83.10 0.788 0.905 0.9132
Beta Band + Vision (TF features) 81.71 0.770 0.904 0.9084
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The transformer-based feature fusion model demonstrated better integration capabili-
ties than the simple Bayesian Ridge approach. Accuracies improved, ranging from 80.87%
to 83.33%. The fusion involving Theta band EEG features with ResNet18 vision features
achieved an accuracy of 83.33% and an AUC-ROC of 0.8995. Similarly, the Alpha band
EEG fusion yielded an accuracy of 83.10% and an AUC-ROC of 0.9132. These results
are competitive with, and in the case of Theta band fusion, slightly exceed, the perfor-
mance of the ResNet18 vision-only baseline (83.02% accuracy, 0.9151 AUC-ROC). This
indicates that the transformer’s attention mechanisms were more adept at identifying
and leveraging useful interactions between the pre-extracted EEG and vision features.
However, even this more sophisticated feature-level fusion did not manage to outper-
form the strongest unimodal baseline, the ViT-Base vision-only model (85.78% accuracy,
0.9250 AUC-ROC). This reinforces the notion that the full potential of multimodal fusion
might be constrained when operating on features extracted from independently optimized

unimodal networks.

6.3.3 Performance of End-to-End Multimodal Transformer (RQ3)

The pinnacle of the fusion strategies explored was the end-to-end multimodal transformer.
This architecture was designed to learn feature representations from raw EEG time-series
segments and raw facial video frames concurrently and to optimize their fusion through
integrated cross-modal attention layers. The EEG data (per band) was processed by
a dedicated EEG Transformer Encoder, while the vision data was handled by a fine-
tuned ViT-Base encoder. Table details the classification performance achieved by

this end-to-end model.

Table 6.4: Subject-independent drowsiness classification performance (mean across 5
folds) using the end-to-end multimodal transformer, fusing raw EEG (per frequency band)
with raw vision data (processed by a ViT-Base encoder).

(EEG Band + Vision) Accuracy (%) Precision Recall AUC-ROC
Alpha Band + Vision (End-to-End TF) 88.48 0.861 0.925 0.9265
Theta Band + Vision (End-to-End TF) 91.00 0.883 0.951 0.9634
Beta Band + Vision (End-to-End TF) 76.43 0.724 0.875 0.8314
Delta Band + Vision (End-to-End TF) 88.38 0.847 0.945 0.9266
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The end-to-end multimodal transformer architecture yielded a substantial improve-
ment in drowsiness classification performance, significantly surpassing all previous ap-
proaches. The fusion of Theta band EEG data with vision data achieved the highest
accuracy of 91.00% and an AUC-ROC of 0.9634. This represents a marked increase
over the best unimodal vision model (ViT-Base: 85.78% accuracy, 0.9250 AUC-ROC)
and a considerable gain over the best feature-level fusion result (Theta band EEG +

Vision with Transformer: 83.33% accuracy, 0.8995 AUC-ROC).

The fusion involving Alpha band EEG data also demonstrated strong performance,
reaching an accuracy of 88.48% and an AUC-ROC of 0.9265, also outperforming the ViT-
Base vision-only model. The Delta band EEG fusion performed similarly to the Alpha
band fusion. Consistent with earlier findings, the fusion incorporating Beta band EEG
data yielded the lowest accuracy (76.43%) among the end-to-end models, though it was

still notably better than its unimodal EEG counterpart.

These results compellingly demonstrate the superiority of the end-to-end learning
paradigm for multimodal fusion. By allowing the model to jointly learn optimal feature
representations from each modality (raw EEG and raw vision) and simultaneously learn
how to best integrate these representations via its cross-modal attention mechanisms, the
end-to-end transformer unlocked synergistic benefits that were not fully realized by the
feature-level fusion methods. The significant performance uplift, particularly with Theta
and Alpha band EEG, confirms that EEG data, when appropriately fused with strong
visual cues in an end-to-end fashion, provides valuable complementary information for

robust driver drowsiness detection.

The excellent discriminative capability of the end-to-end models is further visualized
by their Receiver Operating Characteristic (ROC) curves, presented in Figure . The
curves for the Alpha and Theta band fusions, in particular, are positioned very close to
the top-left corner of the ROC space, indicating high true positive rates with low false

positive rates across various decision thresholds.

In conclusion, the empirical results clearly map a progression of performance. Uni-

modal EEG models show limited utility for subject-independent drowsiness classification
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Figure 6.4: AUC-ROC curves (averaged over 5 folds) for the end-to-end multimodal
transformer, illustrating drowsiness classification performance when fusing vision data
with EEG from the Alpha, Theta, Beta, and Delta frequency bands respectively. The
fusion incorporating Theta band EEG with vision (b) exhibits the highest AUC value,
signifying superior discrimination between Alert and Drowsy states.
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from short segments. Unimodal vision models, especially ViT-Base, offer strong stan-
dalone performance. Feature-level fusion methods provide some benefits over unimodal
EEG but generally fail to significantly surpass robust vision-only baselines. It is the
end-to-end multimodal transformer architecture that most effectively capitalizes on the
complementary nature of EEG (particularly Theta and Alpha bands) and vision data,

leading to state-of-the-art drowsiness detection accuracy.

6.4 Discussion

The experimental results presented in this chapter provide significant insights into the
efficacy of various unimodal and multimodal strategies for subject-independent driver
drowsiness detection. The progression from simple unimodal baselines to sophisticated
end-to-end multimodal transformers reveals a clear hierarchy of performance and under-
scores the potential of advanced deep learning techniques for integrating diverse data

streams.

6.4.1 Interpreting Unimodal Performance and Modality Strengths
(RQ1)

The initial unimodal baseline evaluations (Table clearly established that vision-based
cues, as processed by deep learning models like ResNet18 and particularly Vision Trans-
former (ViT-Base), are substantially more discriminative for drowsiness detection than
EEG spectral features from short (1-second) segments in a subject-independent con-
text. The accuracies achieved by EEGNet models (maxing out at ~58%) were only
modestly above chance level. This relatively low performance for EEG alone in such a
challenging subject-independent, short-epoch scenario aligns with known difficulties in
EEG-based classification, including high inter-subject variability in signal characteris-
tics, susceptibility to noise, and the often subtle expression of drowsiness in brief EEG
epochs without longer temporal context [136] |63]. While Theta and Alpha band activity

are well-established correlates of alertness |14} [15], their utility for direct classification
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from isolated 1-second segments appears limited without more advanced modeling or
contextual information.

Conversely, the ViT-Base vision model achieved an accuracy of 85.78% and an AUC-
ROC of 0.9250. This robust performance highlights the rich information contained in
facial visual cues—such as PERCLOS (percentage of eye closure), blink rate and dura-
tion, yawning frequency, head pose, and subtle changes in facial muscle tone—that are
overtly indicative of drowsiness [16,|137]. Modern vision architectures like ViT are highly
effective at learning these complex visual patterns directly from image data. This dis-
parity underscores that, as standalone modalities for this task, vision provides a much

stronger predictive signal than short-segment EEG.

6.4.2 Limitations of Feature-Level Fusion Approaches (RQ2 and

RQ3 Part 1)

The investigation into feature-level fusion strategies yielded mixed but ultimately reveal-
ing results. The simple concatenation of EKGNet-derived features with ResNet18-derived
vision features, followed by a Bayesian Ridge Classifier (Table , failed to improve upon
the ResNet18 vision-only baseline and performed considerably worse than the ViT-Base
vision-only model. This outcome suggests that naive, linear fusion of features from modal-
ities with such disparate individual predictive power may not be effective; the weaker EEG
features might even introduce noise or fail to add significant complementary information
that a linear classifier can exploit when combined with strong vision features.

The transformer-based feature-level fusion model (Table , which employed cross-
modal attention mechanisms on the same pre-extracted EEGNet and ResNet18 features,
demonstrated improved integration capabilities over the Bayesian Ridge approach. Ac-
curacies increased, and the fusion involving Theta or Alpha band EEG features with
vision reached performance levels (e.g., 83.33% accuracy for Theta fusion) comparable
to the ResNet18 vision-only baseline. This indicates that the attention mechanism was
somewhat successful in identifying and weighting relevant cross-modal feature interac-

tions. However, this approach still did not surpass the strongest unimodal baseline (ViT-
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Base). This limitation likely arises because the features themselves were extracted by
unimodal networks (EEGNet, ResNet18) optimized for their respective individual tasks,
not specifically for later fusion. Information critical for synergistic fusion might be lost
or sub-optimally represented in these pre-extracted features, constraining the potential
of even a sophisticated fusion module like a transformer. This addresses RQ2 by showing
simple fusion is insufficient and partially addresses RQ3 by indicating that feature-level

transformer fusion, while better, is also constrained.

6.4.3 The Efficacy and Significance of End-to-End Multimodal

Transformer Fusion (RQ3)

The most significant finding of this chapter is the superior performance of the end-to-end
multimodal transformer architecture (Table . By processing raw EEG time-series and
raw vision frames directly and learning feature representations and their fusion jointly,
this model achieved a classification accuracy of up to 91.00% and an AUC-ROC of 0.9634
(when fusing Theta band EEG with vision). This represents a substantial improvement
over all other methods, including the powerful ViT-Base vision-only baseline (85.78%
accuracy).

This success robustly answers RQ3, demonstrating that a carefully designed end-to-
end multimodal transformer can indeed significantly outperform both unimodal models
and simpler fusion strategies, effectively leveraging the synergy between EEG and vision.

Several factors likely contribute to this:

e Joint Optimization: The end-to-end model learns feature extractors for both
EEG (via its EEG Transformer Encoder) and vision (via the fine-tuned ViT En-
coder) that are optimized not just for unimodal discrimination but specifically for
their utility in the context of the other modality and the final fusion task. This
avoids the potential information bottleneck of using pre-extracted features from

independently trained networks.

e Powerful Modality-Specific Encoders: The use of dedicated transformer en-
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coders for both EEG time-series and vision frames allows each modality to be pro-
cessed by an architecture well-suited to its data structure. The EEG Transformer
can capture long-range temporal dependencies within the 1-second EEG segment,

while the ViT captures global spatial context in the image.

e Effective Cross-Modal Attention: The integrated cross-modal attention layers
enable deep, bidirectional interactions between the learned EEG and vision repre-
sentations. This allows the model to, for example, weigh visual features differently
based on concurrent EEG patterns, or vice-versa, capturing nuanced cross-modal

correlations indicative of drowsiness that simpler fusion methods might miss.

e Complementarity of Information: The results strongly suggest that EEG and
vision provide complementary information regarding drowsiness. While vision cap-
tures overt behavioral signs, EEG (particularly Theta and Alpha bands) reflects
underlying neurophysiological shifts in brain state associated with alertness and fa-
tigue [48, [130]. The end-to-end model appears highly effective at integrating these
internal and external indicators. The strong performance with Theta band fusion,

for instance, aligns with the known increase in theta activity during drowsiness [15].

The performance achieved (91.00% accuracy) is highly competitive and represents a sig-
nificant step towards robust, automated drowsiness detection. This level of accuracy,
achieved in a rigorous subject-independent validation, is particularly promising for real-

world applications.

6.4.4 Comparison with Prior Multimodal Drowsiness Detection

Research

The performance of my end-to-end multimodal transformer compares favorably with ex-
isting literature on multimodal drowsiness or fatigue detection. For instance, Lian et
al. [18] proposed a multimodal architecture combining EEG and eye-tracking data, also
emphasizing sophisticated fusion, and reported strong results. While direct comparison is

challenging due to differences in datasets, specific modalities fused (eye-tracking vs. full
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facial video), and evaluation protocols, my model’s achievement of over 90% accuracy
with EEG and full-face video using an end-to-end transformer architecture represents a
state-of-the-art contribution. Many earlier multimodal studies relied on more traditional
machine learning classifiers or simpler deep learning fusion techniques (e.g., concatena-
tion of CNN features) [108][19]. My work specifically showcases the advanced capabilities

of transformer-based joint learning for this problem.

6.4.5 Limitations of the Current Study

Despite the promising results, several limitations should be acknowledged:

1. Controlled Simulator Environment: The data were collected in a driving simu-
lator. While designed to induce realistic fatigue, this environment lacks the full spec-
trum of complexities, environmental variabilities (e.g., diverse lighting, weather),
and cognitive demands of real-world on-road driving. Generalizability to such con-

ditions needs explicit validation.

2. Specific Transformer Architectures: The performance is tied to the specific
EEG Transformer and ViT-Base architectures used. Other variants of transformers

or different deep learning models might yield different results.

3. Computational Resources: Training large end-to-end multimodal transformers
is computationally intensive, requiring significant GPU resources and time. While

Chapter [7| will explore efficiency for deployment, the training cost is a factor.

6.4.6 Implications and Contribution to Thesis Narrative

This chapter significantly advances the narrative of the thesis by demonstrating that
sophisticated multimodal fusion, powered by end-to-end transformer architectures, can
overcome the limitations of unimodal systems and simpler fusion approaches for driver
state assessment. It provides a high-performance benchmark for drowsiness classification

using EEG and vision.
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The key implication is that by enabling models to learn optimal feature represen-
tations and their interactions jointly from raw data, I can achieve a more holistic and
accurate understanding of a driver’s state. This contrasts with the findings in Chapter
[l where transforming pre-extracted EEG features into images for a ResNet18 model did
not surpass a specialized 1D-CNN. Here, the end-to-end learning allows the vision and

EEG components to co-adapt, leading to superior synergistic fusion.

These findings set an important precedent for the subsequent chapter (Chapter @,
which will address the critical challenge of deploying effective drowsiness detection sys-
tems—particularly powerful vision-based components like those explored here—in resource-
constrained edge computing environments, such as in-vehicle systems or mobile applica-
tions. Having established that vision (especially when fused effectively) provides a strong

signal, the next step is to make it practical for real-world use.

6.5 Conclusion

In this chapter, the efficacy of multimodal fusion of EEG and vision data for subject-
independent driver drowsiness detection has been investigated. The experimental evalu-
ations demonstrated a clear progression in performance: unimodal EEG models provided
limited accuracy, while unimodal vision models (particularly ViT-Base) offered strong
standalone predictive capabilities (RQ1). Simple feature-level fusion using Bayesian
Ridge Classification failed to improve upon the best unimodal vision baseline, and even a
more advanced transformer-based feature-level fusion provided only marginal gains, not

surpassing the ViT-Base vision model (RQ2 and part of RQ3).

The most significant contribution was the development and validation of an end-to-
end multimodal transformer architecture. This model, by jointly learning feature repre-
sentations from raw EEG (especially Theta and Alpha bands) and raw vision data and
integrating them via cross-modal attention, achieved a state-of-the-art accuracy of 91.00%
and an AUC-ROC of 0.9634. This performance significantly surpassed all unimodal and

feature-level fusion approaches, robustly demonstrating the power of end-to-end learning
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for achieving true synergy between complementary modalities in drowsiness detection
(RQ3).

These findings underscore the potential of advanced deep learning fusion, specifically
using transformer architectures, to build highly accurate and reliable driver drowsiness
monitoring systems. This work provides a strong foundation for future research into
real-world deployment and refinement of such multimodal systems for enhancing road

safety.
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Chapter 7

Efficient Transformer-Based
Drowsiness Detection on Edge

Devices using a Hybrid
MobileViT-LSTM Architecture

7.1 Introduction

The preceding chapters of this thesis have systematically explored various unimodal and
multimodal deep learning strategies for assessing driver state. Chapter [0 in particular,
culminated in demonstrating that an end-to-end multimodal transformer, fusing Elec-
troencephalogram (EEG) and facial vision data, can achieve high accuracy in subject-
independent drowsiness classification. While such sophisticated models signify the cut-
ting edge in terms of predictive performance, their inherent computational complexity
and substantial memory footprints often render them unsuitable for real-time deployment
on resource-constrained edge devices, such as in-vehicle embedded systems or common
smartphones [4]. This gap between high-performance research models and practically
deployable solutions constitutes a significant hurdle in translating advanced artificial in-

telligence into tangible road safety applications.
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The critical need for edge computing in driver monitoring arises from the demand
for low-latency, on-device processing. Such systems must provide timely feedback or
interventions without relying on continuous, and potentially unreliable, cloud connectiv-
ity. However, edge platforms impose stringent limitations on model size, computational
throughput (measured in FLOPs), and energy consumption [103]. As established in
the literature review and observed in my earlier experiments (Chapter @, vision-based
analysis of facial cues offers a non-intrusive and highly informative modality for drowsi-
ness detection. Yet, directly deploying state-of-the-art vision models presents challenges.
Standard Vision Transformers (ViTs) [101], for instance, while exceptionally powerful
due to their self-attention mechanisms that capture global spatial context from images,
are notoriously resource-intensive, limiting their utility for real-time video processing on
typical edge hardware [104]. Traditional Convolutional Neural Networks (CNNs), though
often more lightweight, may not optimally capture the subtle, global facial cues indicative
of drowsiness progression due to their inherently local receptive fields [114} 138]. Fur-
thermore, earlier vision-based methods relying on handcrafted geometric features (e.g.,
Eye Aspect Ratio (EAR), Mouth Aspect Ratio (MAR) [91]) have demonstrated limita-
tions in robustness when faced with real-world variations in lighting, pose, and individual

appearance (92}, 93].

Recent advancements in model efficiency have led to the development of lightweight
vision transformer variants. MobileViT [114] stands out by ingeniously combining the
local feature extraction capabilities of convolutions with the global context modeling of
transformers, resulting in a highly efficient architecture that achieves a commendable
balance between accuracy and computational cost. However, drowsiness is not merely a
static facial configuration; it is an inherently temporal phenomenon. Its manifestations,
such as prolonged eye blinks, slowed head movements, and the frequency of yawns, evolve
dynamically over several seconds [116, |115]. Consequently, applying an efficient per-frame
feature extractor like MobileViT in isolation, without considering the temporal sequence
of these features, is likely to miss crucial dynamic cues indicative of drowsiness onset

and progression. To address this temporal aspect, Recurrent Neural Networks (RNNs),
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particularly Long Short-Term Memory (LSTM) networks [117], are well-established for
their ability to model sequential data and capture long-range temporal dependencies.
Hybrid architectures combining CNNs for spatial feature extraction with LSTMs for
temporal modeling have indeed shown promise in various video analysis tasks, including
driver state monitoring |118, 119, [120].

This chapter aims to bridge these identified gaps by proposing, implementing, and val-
idating a novel hybrid deep learning architecture, termed MobileViT-LSTM. The innova-
tive aspect of this work lies not in the invention of the constituent components (MobileViT
and LSTM), but in their synergistic integration and rigorous validation for the
specific and challenging application of real-time, edge-based driver drowsiness
detection. While the literature contains examples of hybrid CNN-LSTM models [118,
119] and standalone efficient transformers like MobileViT [114], the contribution here is
to demonstrate that an architecture combining an efficient vision transformer (for power-
ful spatial feature extraction) with a recurrent network (for essential temporal modeling)
represents an optimal design point for this task. This work fills a critical gap by provid-
ing a comprehensive evaluation of such a hybrid model, complete with deployment-aware
optimizations and real-world inference benchmarks, offering a validated pathway from
advanced Al concepts to a practical safety application. This architecture is specifically
designed to synergize the strengths of MobileViT for efficient per-frame spatial feature
extraction from facial video with the temporal sequence modeling capabilities of an LSTM
network.

The overarching goal of this chapter is to develop a practical, high-performance, vision-
only drowsiness detection system that is explicitly optimized for accurate real-time op-
eration on mobile edge devices. This involves not only the novel architectural design
but also the application of deployment-aware optimization techniques such as Automatic
Mixed Precision (AMP) training [121] and model export to a standardized format like
ONNX (Open Neural Network Exchange) [124] for streamlined on-device inference [125].

The research detailed herein is driven by the following key questions:

1. RQ1l: Can a hybrid architecture integrating an efficient vision trans-
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former (MobileViT) for spatial feature extraction and a Long Short-Term
Memory (LSTM) network for temporal modeling achieve drowsiness de-
tection accuracy comparable to, or exceeding that of, standard computa-
tionally intensive Vision Transformers (e.g., ViT-Base), while operating
with significantly reduced computational demands? This question inves-
tigates the core efficacy of the proposed MobileViT-LSTM synergy in balancing

predictive performance with architectural efficiency.

2. RQ2: How does the proposed MobileViT-LSTM model, when optimized
using techniques such as mixed-precision training, perform in terms of
classification accuracy and real-time inference speed on a representative
mobile edge device, and can it be successfully exported to a standardized,
portable format (ONNX) to facilitate practical deployment? This question
focuses on the empirical validation of the model’s suitability for real-world, on-

device application and its real-time processing capabilities.

To address these questions, this chapter will utilize the facial video data component
of the Tobii multimodal dataset (introduced in Chapter , Section and employed
in Chapter @ The subsequent sections will detail the MobileViT-LSTM architecture,
discuss the training optimizations, present a rigorous subject-independent evaluation
against relevant baseline models (including a full ViT-Base and a standalone, per-frame
MobileViT-S), report crucial inference time benchmarks on a target edge device, and con-
firm the successful model export for deployment. The work presented aims to contribute
a validated, deployable, and high-accuracy solution for vision-based driver drowsiness
detection, directly addressing a critical aspect of road safety through the principles of

efficient and effective artificial intelligence.

7.2 Methodology

The methodology detailed in this section outlines the experimental framework for develop-

ing and evaluating the proposed MobileViT-LSTM architecture for efficient, vision-based
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driver drowsiness detection on edge devices. This includes a description of the dataset
subset and preprocessing steps, the specifics of the hybrid model architecture, the train-
ing and optimization procedures employed, the evaluation protocol, and the approach for

assessing edge deployment feasibility.

7.2.1 Dataset and Video Preprocessing

This study utilizes the facial video data component from the Tobii multimodal dataset,
the comprehensive details of which were presented in Chapter [3] Section [3.3] and further
contextualized for drowsiness classification in Chapter [6] Key aspects relevant to this

chapter’s vision-only pipeline are:

e Data Source: Facial video recordings from 79 participants, collected during ’Alert’

(10 AM) and 'Drowsy’ (3 AM) driving simulation sessions.

e Input Data Format: The continuous video recordings were segmented into non-
overlapping 5-second windows. With a recording rate of 30 frames per second
(FPS), each 5-second window comprises 150 individual frames. This temporal win-
dow length was deliberately chosen to capture the evolving nature of drowsiness
cues, such as slow eye closures or head nods, which often manifest over several sec-
onds rather than instantaneously. The selection of a 5-second duration was informed
by both the existing literature on drowsiness behavior [139] 140, [141] and through
consultation with our industry partner, Tobii, to align with the practical
requirements for a robust and reliable real-world driver monitoring system that can

accumulate sufficient evidence before making a classification.

e Dataset Size and Balancing: This segmentation process yielded a total of 94,039
five-second video samples across all 79 participants. The dataset is reasonably
balanced, consisting of 47,631 samples labeled as ’Alert” (Class 0, from 10 AM
sessions) and 46,408 samples labeled as 'Drowsy’ (Class 1, from 3 AM sessions).

On average, each participant contributed approximately 1190 five-second samples.
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e Frame-Level Preprocessing: Each of the 150 frames within a 5-second window
underwent the following preprocessing steps before being fed to the MobileViT

feature extractor:

1. Resizing: Frames were resized to 192 x 192 pixels. This input dimension
is suitable for the MobileViT-S variant used in this study and helps manage

computational load.

2. Normalization: Pixel values were normalized, typically by scaling to the [0,
1] range and then standardizing using ImageNet statistics, as the MobileViT

backbone was pre-trained on ImageNet.

e Data Augmentation (During Training Only): To enhance model robustness
and mitigate overfitting, a set of standard data augmentation techniques were ap-
plied on-the-fly to the training set frames during the model training phase. The
augmentations were chosen to simulate minor variations in driver position and light-

ing that might be encountered in a real-world scenario. Specifically, they included:

— Random Horizontal Flips: Fach frame was horizontally flipped with a proba-
bility of p = 0.50.

— Minor Random Rotations: Each frame was randomly rotated by an angle 6

sampled uniformly from the range [—8°,48°].

— Slight Color Jitter: The brightness, contrast, and saturation of each frame
were randomly adjusted by factors sampled independently from a uniform

distribution ¢/[0.90, 1.10].

7.2.2 Proposed Model Architecture: MobileViT-LSTM

The core of this chapter’s contribution is a novel hybrid deep learning architecture,
MobileViT-LSTM, designed to balance spatial feature extraction efficiency with tempo-
ral modeling capability. The architecture processes 5-second video windows (sequences

of 150 frames) as follows:
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1. Per-Frame Spatial Feature Extraction using MobileViT-S: Each of the 150

preprocessed frames (192 x 192 pixels) in a 5-second window is individually passed
through a pre-trained MobileViT-S backbone [114]. MobileViT-S is a lightweight
vision transformer variant known for its efficient yet effective performance in cap-
turing both local and global spatial features from images. The MobileViT-S acts
as a powerful per-frame feature extractor. The output from a late layer of the
MobileViT-S (e.g., before its original classification head) is taken as the feature

vector for that frame.

Feature Projection: The feature vector extracted by MobileViT-S for each frame
is then passed through a linear projection layer. This layer reduces the dimension-
ality of the frame-level features to a consistent embedding size, specified as 128
dimensions in this study. This step helps to create a more compact representation

and prepares the features for the subsequent temporal modeling stage.

Temporal Aggregation using LSTM: The sequence of 150 frame-level embed-
dings (each 128-dimensional), corresponding to the 5-second video window, is then
fed chronologically into a Long Short-Term Memory (LSTM) network [117]. The
LSTM is specifically designed to process sequential data and capture temporal de-
pendencies. In this work, a 2-layer LSTM network with 256 hidden units in each
layer was employed. The LSTM processes the sequence of frame embeddings, up-
dating its hidden state at each time step (frame) to integrate information from past
frames with the current frame’s features. This allows the model to learn patterns
related to the temporal evolution of drowsiness cues (e.g., increasing eye closure

duration, frequency of head nods over the 5-second window).

Classification Head: The final hidden state output (or the output at the last time
step) from the LSTM network, which encapsulates the aggregated spatio-temporal
information from the entire 5-second window, is then passed to a classification
head. This head is typically a small Multi-Layer Perceptron (MLP) consisting of

one or more linear layers, interspersed with ReL U activation functions and dropout
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layers for regularization. The final linear layer in this head outputs a single logit,
which is then passed through a sigmoid function (implicitly handled by the binary
cross-entropy loss during training) to produce the predicted probability of the input

5-second window belonging to the 'Drowsy’ class.

This hierarchical design allows the MobileViT component to focus on extracting rich
spatial information from individual frames efficiently, while the LSTM component spe-
cializes in modeling the temporal dynamics across these frames, creating a comprehensive

spatio-temporal representation for accurate drowsiness classification.

7.2.3 Training Regimen and Optimization Strategies

The MobileViT-LSTM model was trained using an end-to-end approach, optimizing all
components jointly. Several strategies were employed to ensure effective training and to

enhance the model’s suitability for edge deployment:

e Optimizer and Learning Rate Schedule: The AdamW optimizer [142] was
utilized. AdamW is an extension of the Adam optimizer that decouples weight
decay from the gradient updates, which can lead to better generalization. A cosine
annealing learning rate schedule was employed, which gradually reduces the learning
rate following a cosine curve over the course of training. This often helps the model

to settle into better minima. Training was conducted for 10 epochs.

e Loss Function: A binary cross-entropy loss function was used, appropriate for the
two-class (Alert/Drowsy) classification task. To address potential class imbalance
in mini-batches or to prioritize sensitivity to the 'Drowsy’ class (which is often
the more critical class to detect correctly in safety applications), weighting for the

positive ("Drowsy’) class was applied within the loss function.

e Automatic Mixed Precision (AMP) Training: To accelerate training and re-
duce GPU memory consumption, PyTorch’s Automatic Mixed Precision (AMP)

capabilities were leveraged [121]. AMP allows certain operations within the neural
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network to be performed using lower-precision floating-point numbers (e.g., float16)
where appropriate, while maintaining numerical stability for critical operations us-
ing higher precision (float32). This involved using ‘torch.cuda.amp.GradScaler* to
manage gradient scaling, preventing underflow issues that can arise with float16

gradients.

e Gradient Clipping: To prevent exploding gradients, which can destabilize train-
ing particularly in recurrent networks like LSTMs, gradient clipping was applied.

This involves capping the norm of the gradients if they exceed a certain threshold.

e Memory Management during Training: Given that processing sequences of
150 frames can be memory-intensive, pragmatic memory management techniques
were employed. This included careful tuning of PyTorch’s CUDA memory alloca-
tor (PYTORCH_CUDA_ALLOC_CONF*) and periodically clearing the GPU cache
(‘torch.cuda.empty_cache()‘) between training phases or epochs if memory frag-
mentation became an issue, particularly during hyperparameter tuning or initial

development.

e Early Stopping: To prevent overfitting and select the best performing model
checkpoint for each cross-validation fold, an early stopping mechanism was imple-
mented. This involved monitoring the loss (or a relevant accuracy metric) on a
validation set (derived from the training subjects within each fold). If the vali-
dation performance did not improve for a specified number of consecutive epochs
(patience parameter set to 3 epochs), training was halted, and the model weights

from the epoch yielding the best validation performance were saved.

7.2.4 Evaluation Protocol and Baselines

A rigorous evaluation protocol was adopted to assess the performance of the MobileViT-

LSTM model and compare it against relevant baselines.

e Subject-Independent Cross-Validation: All evaluations were performed using

a strict 5-fold subject-independent cross-validation scheme. The 79 partici-
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pants were randomly partitioned into 5 distinct folds. In each iteration, one fold
of participants was designated as the test set, and the model was trained on data
from the remaining four folds. This ensures that the model’s performance is always

evaluated on subjects entirely unseen during its training phase.

e Performance Metrics: The following standard binary classification metrics were

used, averaged across the 5 folds:

— Accuracy

— Balanced Accuracy (particularly important if there’s any residual class imbal-

ance per fold or to give equal weight to both classes)
— Recall (Sensitivity for the 'Drowsy’ class = TP / (TP + FN))
— Precision (Positive Predictive Value for the 'Drowsy’ class = TP / (TP + FP))

— Area Under the ROC Curve (AUC-ROC)

e Baseline Models for Comparison: The performance of the MobileViT-LSTM

model was compared against:

1. Standard Vision Transformer (ViT-Base): The ViT-Base model fine-
tuned on the same 5-second window task (likely by processing an aggregated
representation of the 150 frames or a selection of key frames) as reported in
Chapter @ (Table . This serves as a high-performance but computationally

expensive baseline.

2. Standalone MobileViT-S (Per-Frame Averaging): A MobileViT-S model
applied to extract features from each of the 150 frames in a 5-second window.
The predictions from these individual frames were then aggregated (e.g., by
averaging the output probabilities or logits, or by a majority vote) to pro-
duce a single classification for the 5-second window. This baseline helps to
quantify the benefit of the LSTM’s temporal modeling over simpler per-frame

processing with an efficient transformer.
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7.2.5 Edge Deployment Feasibility Assessment

A key objective of this chapter was to assess the practical deployability of the proposed

model on edge devices.

e ONNX Export: The MobileViT-LSTM model corresponding to the fold that

yielded the highest balanced accuracy during the 5-fold cross-validation process
was selected as the best-performing instance. This model, with its learned weights,
was then exported to the Open Neural Network Exchange (ONNX) format [124].
ONNX is an open standard for representing machine learning models, enabling
interoperability between different frameworks and facilitating deployment on vari-
ous hardware platforms using optimized inference runtimes (e.g., ONNX Runtime).
The export was performed using PyTorch’s built-in ONNX exporter, targeting opset

version 11.

Inference Time Benchmarking: The inference time—the duration required to
process one 5-second video window (150 frames) and produce a drowsiness classifica-
tion—was measured for the exported ONNX model. Benchmarking was performed

on:

1. A high-end GPU (e.g., NVIDIA RTX series) for reference, to understand its

performance on server-grade hardware.

2. A representative mobile edge device: a Samsung Galaxy S21 Ultra smart-
phone. This provides a direct measure of its real-world performance on a

target consumer device.

Inference times for the baseline ViT-Base and standalone MobileViT-S models were
also measured or reported for comparison, where applicable (ViT-Base is generally
too slow for meaningful edge inference benchmarks on full video windows with-
out significant further optimization). The critical aspect was to determine if the
MobileViT-LSTM model could process a 5-second window in less than 5 seconds

on the edge device, thus enabling real-time, continuous monitoring.
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These steps provide a comprehensive evaluation of the MobileViT-LSTM model’s accu-

racy, efficiency, and practical deployability for real-time driver drowsiness detection.

7.3 Results and Analysis

This section presents the empirical results obtained from evaluating the proposed MobileViT-
LSTM hybrid architecture for driver drowsiness detection. The performance is analyzed
based on the 5-fold subject-independent cross-validation protocol. I first detail the clas-
sification accuracy and other relevant metrics of the MobileViT-LSTM model. Subse-
quently, I provide a comparative analysis against the baseline models—a standard Vision
Transformer (ViT-Base) and a standalone MobileViT-S (per-frame aggregated)—to ad-
dress RQ1. Finally, I report on the edge deployment feasibility, including inference times

on a target mobile device and the successful export to ONNX format, to address RQ2.

7.3.1 Performance of the Hybrid MobileViT-LSTM Architec-

ture

The MobileViT-LSTM model, designed to process 5-second video windows by extracting
per-frame spatial features with MobileViT-S and aggregating them temporally with a
2-layer LSTM, was rigorously evaluated. The average performance metrics across the 5

folds of the subject-independent cross-validation are presented in Table

Table 7.1: 5-Fold Cross-Validation Results (Mean £ Std Dev) for the Hybrid MobileViT-
LSTM Model on 5-second Video Windows for Drowsiness Detection.

Metric Mean + Std Dev
Accuracy 0.9449 + 0.0362
Balanced Accuracy 0.9432 + 0.0367
Recall (Drowsy=1) 0.9490 £ 0.0577
Precision (Drowsy=1)  0.9415 + 0.0406
ROC AUC 0.9608 + 0.0183

The MobileViT-LSTM model achieved a high average Accuracy of 0.9449 and a Bal-

anced Accuracy of 0.9432. The Recall for the 'Drowsy’ class was 0.9490, indicating that
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the model correctly identified nearly 95% of actual drowsiness instances. The Precision
for the 'Drowsy’ class was 0.9415, meaning that when the model predicted drowsiness,
it was correct approximately 94% of the time. The Area Under the ROC Curve (AUC-
ROC) was excellent at 0.9608. The relatively low standard deviations across these metrics
suggest consistent performance across the different subject splits in the cross-validation,
indicating good generalization capabilities.

The Receiver Operating Characteristic (ROC) curve for the MobileViT-LSTM model,
averaged across the 5 folds, is shown in Figure[7.1] The curve’s proximity to the top-left
corner visually confirms the model’s strong discriminative ability between ’Alert’ and

‘Drowsy’ states.
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Figure 7.1: Average ROC Curve (across 5 folds) of the Hybrid MobileViT-LSTM Model
for Drowsiness Detection. The high AUC value (0.9608) indicates excellent discrimina-
tion.

These results demonstrate that the hybrid architecture, leveraging efficient spatial
feature extraction with temporal aggregation, is highly effective for classifying driver

drowsiness from 5-second video segments in a subject-independent manner.
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7.3.2 Comparative Performance against Baseline Models (RQ1)

To contextualize the performance of the MobileViT-LSTM model and address RQ1, its
accuracy and inference characteristics were compared against two key baselines: (1)
a standard, computationally more demanding ViT-Base model, and (2) a standalone
MobileViT-S model where per-frame predictions over the 5-second window were aggre-
gated (e.g., by averaging probabilities) to assess the impact of lacking explicit temporal

modeling via LSTM. The comparative results are summarized in Table [7.2]

Table 7.2: Performance Metrics and Inference Time Comparison for the Hybrid
MobileViT-LSTM, ViT-Base, and Standalone MobileViT-S Models. Accuracy (Acc.),
Recall, Precision (Prec.), and AUC are mean values. Inference times are per 5-second
window.

Model Acc. (%) Recall Prec. AUC Inference (s) (GPU/Edge)
ViT-Base 85.78 0.962  0.801 0.9250 ~2.5s / Not Feasible
MobileViT-S (Aggregated) 80.10 0.745 0.906 0.8690 ~1.2s | ~2.5s
MobileViT-LSTM 94.49 0.949 0.942 0.9608 ~1.4s / ~3.0s

The comparative analysis in Table reveals several critical insights:

e Superiority over ViT-Base in Accuracy: The MobileViT-LSTM model (94.49%
Accuracy, 0.9608 AUC) significantly outperformed the computationally intensive
ViT-Base model (85.78% Accuracy, 0.9250 AUC) in terms of predictive accuracy.
This is a key finding, demonstrating that the proposed hybrid architecture, despite
being designed for efficiency, can achieve better drowsiness classification than a
standard, heavier ViT when temporal context over a 5-second window is explicitly

modeled.

e Benefit of Temporal Modeling (vs. Standalone MobileViT-S): The MobileViT-
LSTM also substantially outperformed the standalone MobileViT-S baseline (where
per-frame outputs are simply aggregated). The standalone MobileViT-S achieved
an accuracy of only 80.10% and an AUC of 0.8690. The nearly 14.4% absolute
improvement in accuracy (from 80.10% to 94.49%) and ~0.092 improvement in
AUC clearly demonstrates the crucial role of the LSTM component in capturing

and leveraging temporal dependencies within the 5-second window. Applying an
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efficient transformer frame-by-frame is insufficient; explicit temporal modeling is

essential for high performance in drowsiness detection.

e Computational Efficiency and Edge Feasibility: While the ViT-Base pro-
vides strong (though lower than MobileViT-LSTM) accuracy, its inference time on
a GPU for a 5s window (requiring processing 150 frames or an aggregated rep-
resentation) is substantial (~2.5s) and it is generally considered not feasible for
real-time deployment on current mobile edge hardware without extensive pruning
or quantization not explored here. The standalone MobileViT-S offers fast per-
frame inference, leading to a quick aggregated prediction for the 5s window on both
GPU (~1.2s) and edge (~2.5s). The MobileViT-LSTM, while slightly slower than
standalone MobileViT-S due to the added LSTM, still maintains efficient inference:
~1.4 seconds on a GPU and, critically, ~3.0 seconds on the target edge device

(Samsung Galaxy S21 Ultra) for processing an entire 5-second window.

These results robustly address RQ1, confirming that the MobileViT-LSTM hybrid not
only achieves superior accuracy compared to a standard ViT-Base but does so with a
significantly more efficient architecture. The comparison with standalone MobileViT-S

highlights the indispensable contribution of the LSTM for temporal modeling.

7.3.3 Edge Deployment Feasibility and Optimization (RQ2)

A primary objective of this work was to develop a model suitable for practical, real-time
deployment on resource-constrained edge devices. RQ2 specifically probes the MobileViT-
LSTM’s performance in this regard.

The MobileViT-LSTM model demonstrated practical real-time capability for its in-
tended application. With an average inference time of approximately 3.0 seconds to
process each 5-second video window on a Samsung Galaxy S21 Ultra, the system can
continuously analyze incoming video data without falling behind. While this 3-second
latency is not instantaneous, it is well within the 5-second analysis window, making

it suitable for detecting the evolving patterns of drowsiness which typically manifest
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over several seconds. This establishes the model’s viability for near real-time drowsiness
monitoring on edge devices, with potential for further latency reduction through future

optimizations.

e Inference Time on Edge Device: As reported in Table the MobileViT-
LSTM model, after ONNX export and when run on a Samsung Galaxy S21 Ultra
smartphone, achieved an average inference time of approximately 3.0 seconds for
processing a complete 5-second video window (150 frames). This is a critical result:
the processing time is well within the duration of the input window itself (i.e. 3.0s
<5.0s). This sub-window-duration latency confirms that the system is capable
of real-time, continuous drowsiness monitoring on the target edge device, as each
segment can be fully analyzed before the next 5-second segment is acquired and

needs processing.

e Impact of Mixed-Precision Training (AMP): The use of Automatic Mixed
Precision (AMP) during training was instrumental in managing memory usage and
potentially accelerating both training and inference, particularly for a model pro-
cessing long sequences of frames. While direct speed-up attribution from AMP alone
during inference on the edge device (which might use its own optimized runtimes)
is complex to isolate without specific ablation, AMP facilitated the training of this

relatively complex sequential model within available GPU memory constraints.

e Successful ONNX Export: The best-performing MobileViT-LSTM model from
the 5-fold cross-validation was successfully exported to the ONNX (Open Neural
Network Exchange) format using PyTorch’s built-in exporter with opset 11. This
successful export generates a standardized, portable model file. The ONNX model
can then be deployed using various optimized inference engines (e.g., ONNX Run-
time, TensorFlow Lite with ONNX conversion, vendor-specific SDKs) across a wide
range of edge platforms, including Android and iOS mobile devices, as well as em-
bedded systems. This step is crucial for bridging the gap between research and

practical application.
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e Code Availability for Deployment: The availability of the code for a companion
Android application and the exported ONNX model is available on:

https://github.com /shamsikhani/mydrowsinessapp

These findings directly address RQ2, demonstrating that the MobileViT-LSTM model,
optimized appropriately, achieves high classification accuracy while maintaining real-time
inference capabilities on a representative mobile edge device, and is readily convertible
to a deployable format. The balance struck between predictive power and computational
efficiency positions this hybrid architecture as a highly practical solution for edge-based

driver safety monitoring.

7.4 Discussion

The experimental results presented in this chapter validate the efficacy of the proposed hy-
brid MobileViT-LSTM architecture for achieving accurate and computationally efficient
driver drowsiness detection, specifically tailored for deployment on resource-constrained
edge devices. The findings address the critical challenge of translating advanced deep

learning models into practical, real-time safety applications.

7.4.1 Efficacy of the Hybrid MobileViT-LSTM Architecture (RQ1)

The core research question (RQ1) explored whether the MobileViT-LSTM hybrid could
balance high accuracy with significantly reduced computational demands compared to
standard, heavier Vision Transformers (ViTs). The results provide a compelling affirma-
tive answer.

The MobileViT-LSTM model achieved a subject-independent accuracy of 94.49% and
an AUC-ROC of 0.9608 (Table . This level of performance not only substantially sur-
passes that of a standalone MobileViT-S model (which lacks temporal modeling, achiev-
ing ~80.10% accuracy, Table but, more importantly, it also exceeded the accuracy
of a standard ViT-Base model (85.78%). This latter comparison is particularly signif-

icant: the MobileViT-LSTM, despite being constructed from an efficient MobileViT-S
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backbone (~5.6M parameters), achieved superior drowsiness detection when augmented
with an LSTM for temporal context than a much larger, more computationally intensive

ViT-Base.

This synergistic effect arises from the complementary roles of the two components:

e MobileViT-S for Efficient Spatial Feature Extraction: MobileViT effectively
captures both local and global spatial features from individual video frames with a
parameter count and computational footprint suitable for mobile applications [114].

It provides a rich representation of the driver’s facial cues at each moment.

e LSTM for Essential Temporal Modeling: Drowsiness is not a static state but
a process that unfolds over time, manifesting as changes in the duration and fre-
quency of blinks, head pose dynamics, yawn patterns, and subtle shifts in facial
muscle tone [115, 116]. The LSTM layers are crucial for integrating the sequence of
per-frame features extracted by MobileViT over the 5-second window. By learning
the temporal dependencies and patterns within these feature sequences, the LSTM
enables the model to recognize the characteristic evolution of drowsiness cues, which
a purely frame-based model (like standalone MobileViT-S or even a ViT-Base ap-
plied to aggregated frames without explicit sequential modeling) would struggle to

capture effectively.

The marked improvement of MobileViT-LSTM over the standalone MobileViT-S under-
scores that for dynamic phenomena like drowsiness, temporal modeling is not merely
beneficial but essential for achieving high levels of accuracy. The fact that this carefully
designed hybrid surpassed a heavier ViT-Base suggests that architectural efficiency com-
bined with appropriate temporal modeling can be more effective than sheer model size
alone, especially when data or computational resources for training very large models are

finite.
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7.4.2 Feasibility and Optimization for Edge Deployment (RQ2)

The second research question (RQ2) focused on the practical viability of the MobileViT-
LSTM model for real-time operation on edge devices. The results strongly affirm its

suitability.

The inference time of approximately 3.0 seconds to process a 5-second video window
on a Samsung Galaxy S21 Ultra (Table [7.2) is a key achievement. This sub-window-
duration latency ensures that the system can operate in real-time, providing a drowsiness
assessment for a given 5H-second segment before the next segment is fully acquired and
requires processing. This capability is fundamental for any in-vehicle monitoring system
designed to provide timely alerts or interventions. In contrast, a standard ViT-Base,
while achieving good accuracy, is generally not considered feasible for such real-time,
150-frame sequence processing on current mobile hardware without substantial model

compression techniques not applied in its baseline evaluation here.

The successful application of Automatic Mixed Precision (AMP) training [121]
was an important optimization step. While its direct impact on edge inference speed de-
pends on the specific edge runtime’s support for mixed precision, AMP during training
significantly reduced GPU memory consumption and often accelerates training conver-
gence. This allowed for the effective training of a model processing relatively long se-
quences (150 frames) on available hardware, which is a practical consideration in model

development.

Furthermore, the successful export of the trained MobileViT-LSTM model
to the ONNX format [124] is crucial for practical deployment. ONNX provides a
standardized intermediate representation that allows models trained in one framework
(PyTorch, in this case) to be run in various optimized inference engines (e.g., ONNX
Runtime, TensorFlow Lite via conversion, vendor-specific neural processing unit SDKs)
across diverse edge platforms. This greatly enhances the model’s portability and facili-
tates its integration into real-world applications, such as the companion Android appli-

cation mentioned in the source paper.
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7.4.3 Contribution to Efficient AI and Driver Safety Monitoring

This research makes a tangible contribution to the field of efficient Al, particularly in
the context of critical safety applications like driver drowsiness detection. It demon-
strates a practical pathway for adapting advanced transformer-based perception models
for resource-constrained environments without unduly sacrificing accuracy. The key in-
sight is the strategic combination of an efficient transformer backbone (MobileViT) for
per-frame analysis with a lightweight recurrent component (LSTM) for temporal reason-
ing. This hybrid approach effectively balances the need for sophisticated spatial feature
extraction with the demands of sequential data modeling and edge-compatible computa-
tion.

By achieving high accuracy (Balanced Accuracy 0.9432, AUC 0.9608) with real-time
inference capability on a mobile device, this work provides a validated, deployable so-
lution. This directly addresses the often-cited gap between models developed in high-
resource research settings and those practical for widespread, low-cost implementation in
vehicles or on personal mobile devices. The principles demonstrated here—architectural
hybridization for efficiency, temporal modeling for dynamic phenomena, and deployment-
aware optimization—are broadly applicable to other edge Al problems involving video or

time-series sensor data.

7.4.4 Limitations and Future Work

Despite the promising results, several limitations and avenues for future work should be

acknowledged:

e Single Edge Device Benchmark: Inference times were benchmarked on one
specific high-end smartphone (Samsung Galaxy S21 Ultra). Performance will in-
variably differ across the wide spectrum of edge devices with varying computational
capabilities (CPUs, GPUs, NPUs). More extensive benchmarking on diverse hard-

ware is needed.

e Power Consumption: While inference speed was addressed, a detailed analysis
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of power consumption on the edge device was not performed. For battery-powered

mobile applications, energy efficiency is a critical factor that warrants investigation.

e Real-World On-Road Validation: The model was validated on data from a
driving simulator. While designed to induce realistic fatigue, real-world on-road
driving introduces a much wider range of environmental variabilities (e.g., complex
lighting changes, weather conditions, partial occlusions due to sunglasses or head
turns, driver movement) and cognitive demands. Robustness in such unconstrained

conditions needs to be thoroughly evaluated.

e Further Model Compression and Optimization: While AMP was used dur-
ing training and ONNX for export, further model compression techniques such as
quantization (e.g., to INT8 precision) |122} [123], pruning, or knowledge distilla-
tion could be explored to further reduce the model size and potentially accelerate

inference on specialized edge hardware that supports these optimized formats.

e Longer-Term Drowsiness Trajectories: The current model processes 5-second
windows. Exploring architectures capable of modeling drowsiness evolution over
longer timescales (e.g., minutes) might capture even more subtle, slowly developing
indicators of fatigue, though this would increase sequence length and computational

complexity.

7.4.5 Connection to the Overall Thesis Narrative

This chapter serves as a critical culmination of the vision-based investigations within this
thesis. Chapters[6]and [5] highlighted the strong predictive power of vision data, especially
when processed by advanced models like ViTs. However, the challenge of deploying such
powerful but computationally demanding models remained. Chapter [7|directly confronts
this challenge by demonstrating that through careful architectural design (MobileViT-
LSTM hybrid) and optimization, it is possible to create a vision-based system that retains
high accuracy while being efficient enough for practical real-time application on edge

devices. It underscores the principle that insights gained from complex, high-performance
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research models can inform the development of streamlined, deployable solutions. This
transition from exploring maximal performance to achieving practical efficiency is a key

theme in applied Al research.

7.5 Conclusion

This chapter presented and rigorously validated a novel hybrid MobileViT-LSTM deep
learning architecture designed for efficient and accurate real-time detection of driver
drowsiness from facial video, specifically targeting deployment on resource-constrained
edge devices. By synergistically combining the efficient spatial feature extraction capa-
bilities of MobileViT with the temporal modeling strengths of an LSTM network over
5-second video windows, the proposed model achieved a high subject-independent bal-
anced accuracy of 0.9432 and an AUC-ROC of 0.9608.

Critically, this level of performance was shown to be superior to that of a standard,
computationally intensive Vision Transformer (ViT-Base) and significantly better than
a standalone MobileViT-S that lacked explicit temporal modeling (RQ1). Furthermore,
the MobileViT-LSTM model demonstrated practical viability for edge deployment: it
achieved an inference time of approximately 3.0 seconds for a 5-second window on a
representative Android smartphone, well within real-time processing requirements. Op-
timized using techniques like mixed-precision training and successfully exported to the
ONNX format, this research provides a concrete and validated pathway for deploying
advanced, temporally-aware transformer-based Al for critical driver safety applications
directly on mobile platforms (RQ2).

The MobileViT-LSTM architecture represents an effective solution that balances high
predictive accuracy with the stringent computational limitations inherent in edge com-
puting. This work contributes a practical, high-performance system for driver drowsiness
monitoring, underscoring the potential of hybrid Al models to bridge the gap between

state-of-the-art research and real-world deployable safety technologies.
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Chapter 8

Conclusions and Future Work

This thesis has charted a comprehensive investigative journey into the application of
advanced signal processing and machine learning methodologies for the critical task of
assessing driver state, driven by the overarching goal of enhancing road safety. The
research arc presented herein has spanned from foundational explorations into the pre-
dictive capacity of pre-stimulus Electroencephalography (EEG) for driver reaction time,
through the innovative transformation of EEG data into image representations for anal-
ysis by state-of-the-art vision models, to the development of sophisticated multimodal
fusion techniques for robust drowsiness detection, and ultimately, to the engineering of
an efficient, vision-based system validated for practical edge deployment. This concluding
chapter serves to synthesize the principal findings from the empirical studies detailed in
Chapters [ through [7] It will reflect upon the research questions initially posed in Chap-
ter [I} articulate the overall contributions and inherent limitations of this body of work,

and propose promising directions for future research endeavors in this vital domain.

8.1 Summary of Key Findings and Contributions

The multifaceted research conducted and presented in this thesis has yielded several sig-
nificant findings and contributions, meticulously aligned with the three primary research

themes that guided the investigation.
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8.1.1 Theme 1: Unveiling Predictive Power in Pre-Stimulus

Neural Activity and Advancing EEG Representation

Chapters {4] and [o| were dedicated to the challenge of predicting driver reaction time
(RT) from pre-stimulus EEG signals, exploring both direct spectral feature analysis and

innovative image-based representations.

e Feasibility and Optimization of Direct EEG Spectral Feature Analysis
for RT Prediction: Initial investigations (Chapter firmly established that EEG
spectral features, particularly derived from the Alpha and Theta frequency bands
within an optimal 2-second window immediately preceding a critical driving event,
contain statistically significant information predictive of the subsequent RT. While
classical machine learning models (ANN, Bayesian Ridge) demonstrated this feasi-
bility, a specialized 1D Convolutional Neural Network (1D-CNN) tailored for these
1D spectral feature vectors achieved a substantial improvement in RT prediction
accuracy, reducing Mean Absolute Error by approximately 30% compared to the
classical models. This underscored the benefit of deep learning architectures de-

signed for sequential data in extracting relevant patterns from EEG.

e Superior RT Prediction through Vision Transformer Analysis of EEG
Spectral Images: A pivotal contribution of this thesis was the exploration of
transforming 1D EEG spectral features into 2D image representations (PSD Matrix
Images and Scalp Topographies) and applying advanced deep learning vision models
(Chapter [5). While an initial application of a standard vision CNN (ResNet18) to
these images outperformed classical ML on 1D features, it did not surpass the spe-
cialized 1D-CNN. However, the subsequent application of a more powerful Vision
Transformer (ViT-B/16) to these EEG-derived images, particularly Scalp Topogra-
phies, yielded a new state-of-the-art performance. The ViT-B/16 model (e.g., MAE
of 0.33s for Alpha band Scalp Topographies) significantly outperformed the 1D-
CNN (MAE of 0.36s for Alpha band 1D features). This key finding demonstrates

that an image-based representation of EEG data, when coupled with a sufficiently
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potent vision architecture capable of modeling global context like ViT, can indeed
unlock a higher level of predictive accuracy than models operating on 1D spectral
sequences alone. Scalp topographies emerged as a marginally more effective image

representation for the ViT in this context.

Collectively, the findings under Theme 1 not only confirm the predictive utility of pre-
stimulus EEG for RT but also chart a clear progression in modeling strategy: from
classical ML, to specialized 1D deep learning, and ultimately to a superior approach

using advanced Vision Transformers on image-transformed EEG spectral data.

8.1.2 Theme 2: Synergistic Multimodal Fusion for Robust Drowsi-

ness Detection

Chapter@ addressed the complex task of driver drowsiness classification (Alert vs. Drowsy
states) by investigating the integration of EEG and facial vision data from the Tobii

multimodal dataset.

e Marked Unimodal Performance Disparity: The unimodal baseline evaluations
revealed that vision-based models (ResNet18, and particularly ViT-Base) possess
substantially higher standalone accuracy for drowsiness classification compared to
unimodal EEGNet models operating on short 1-second EEG segments. This high-
lighted the inherent strength of visual cues for this task and the challenges associated

with subject-independent EEG classification from brief epochs.

e Insufficiency of Simpler Feature-Level Fusion: Straightforward feature-level
fusion techniques, including simple concatenation with Bayesian Ridge Classifica-
tion or even a transformer-based model operating on pre-extracted EEG and vision
features, failed to significantly improve upon, or consistently surpass, the perfor-
mance of the best unimodal vision model (ViT-Base). This indicated that such
pipelined approaches might not fully exploit the potential for synergistic learning

between modalities.
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e State-of-the-Art Drowsiness Detection via End-to-End Multimodal Trans-
former Fusion: The most significant contribution under this theme was the de-
velopment and successful validation of an end-to-end Multimodal Transformer ar-
chitecture. This model, by concurrently learning feature representations from raw
EEG signals (particularly from the Theta and Alpha bands) and raw facial vi-
sion data (using a ViT-Base encoder) and integrating them through sophisticated
cross-modal attention mechanisms, achieved a state-of-the-art drowsiness classifi-
cation accuracy of 91.00% and an AUC-ROC of 0.9634. This performance robustly
surpassed all unimodal and feature-level fusion approaches, decisively demonstrat-
ing that an end-to-end deep learning paradigm can effectively unlock and leverage
the synergistic potential between EEG and vision for enhanced and more holistic

drowsiness assessment.

Theme 2 thus underscores that while vision provides a strong primary signal for drowsi-
ness, the nuanced integration of complementary neurophysiological information from
EEG, especially when achieved through advanced end-to-end deep learning fusion, can

lead to superior overall system performance.

8.1.3 Theme 3: Bridging Advanced AI with Practical Edge De-

ployment for Real-World Impact

Recognizing the critical importance of translating research advancements into deployable
real-world systems, Chapter [7| focused on the challenge of implementing an accurate and

efficient vision-based drowsiness detection model on resource-constrained edge devices.

e Development of an Efficient Hybrid Architecture (MobileViT-LSTM):
A novel hybrid deep learning architecture was proposed, combining an efficient
vision transformer variant (MobileViT-S) for per-frame spatial feature extraction
with a Long Short-Term Memory (LSTM) network for temporal aggregation of
these features over 5-second video windows. This design was explicitly aimed at

achieving a favorable balance between high predictive accuracy and computational
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efficiency.

e Demonstration of High Accuracy Coupled with Efficiency: The MobileViT-
LSTM model achieved a high subject-independent balanced accuracy of 0.9432 and
an AUC-ROC of 0.9608 for drowsiness detection. This level of performance was no-
tably superior to that of a computationally intensive standard ViT-Base model and
significantly better than a standalone MobileViT-S model that lacked the crucial
temporal modeling provided by the LSTM. This highlighted that efficient archi-
tectural design, when incorporating essential domain knowledge (like the temporal

evolution of drowsiness), can yield excellent results.

e Validation of Edge Deployability and Real-Time Capability: Crucially,
the MobileViT-LSTM model demonstrated its fitness for practical application by
achieving real-time inference capability on a representative mobile edge device
(Samsung Galaxy S21 Ultra), processing a 5-second video window in approximately
3.0 seconds. Furthermore, the model was successfully exported to the ONNX for-
mat, which facilitates its portability and deployment across a diverse range of edge
platforms. This successfully demonstrated a clear pathway from a high-performance

AT model to a practical, deployable edge application for enhancing driver safety.

Theme 3, therefore, provides a concrete and validated example of how advanced deep
learning concepts can be thoughtfully adapted and optimized to create effective, real-
world solutions for critical societal problems like driver drowsiness, directly addressing

the pervasive need for efficient and impactful Al

8.2 Reflection on Research Questions and Overall
Thesis Contributions

The comprehensive body of research detailed in this thesis has successfully and system-
atically addressed the guiding research questions initially posed in Chapter [I T have

conclusively shown that pre-stimulus EEG indeed harbors significant predictive power
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for driver reaction time. This predictive capability was progressively enhanced, starting
from classical machine learning, advancing with specialized 1D-CNNs, and culminating
in state-of-the-art performance through the novel application of Vision Transformers to
image-transformed EEG spectral data. This progression itself forms a key narrative of
methodological advancement within the thesis.

For the critical task of drowsiness detection, I empirically confirmed the strong stan-
dalone utility of vision data and meticulously demonstrated that while simpler multimodal
fusion approaches offer limited incremental benefits, a sophisticated end-to-end multi-
modal transformer architecture can effectively synergize EEG and vision data to achieve
exceptionally high classification accuracy. Finally, bridging the gap to practical applica-
tion, I successfully engineered and validated an efficient hybrid vision transformer-LSTM
model capable of high-accuracy, real-time drowsiness detection on a common mobile edge
device.

The overarching contributions of this thesis to the field of intelligent driver state

monitoring can be summarized as:

1. A systematic and deep analysis of EEG-based reaction time prediction from pre-
stimulus neural signals, including thorough parameter optimization and compara-

tive model evaluations, leading to new insights into EEG feature representation.

2. The novel and successful application of advanced Vision Transformer (ViT-B/16)
architectures to image-based representations of EEG spectral features, establishing

a new state-of-the-art for EEG-based RT prediction within this work.

3. The development and rigorous validation of a cutting-edge end-to-end multimodal
(EEG-Vision) transformer architecture, demonstrating superior performance for ro-

bust driver drowsiness detection through effective synergistic fusion.

4. The proposal, implementation, and validation of a novel, efficient hybrid deep learn-
ing model (MobileViT-LSTM) specifically designed for practical, real-time, edge-
based vision drowsiness detection, complete with deployment considerations like

ONNX export.

159



Multimodal Deep Learning for Driver Monitoring

These contributions, collectively, represent a significant advancement in the application

of artificial intelligence to enhance driver safety, covering a spectrum of techniques from

foundational neurophysiological signal analysis to the engineering of deployable edge

AT systems. The consistent emphasis on robust, subject-independent validation further

strengthens the relevance and potential impact of these findings.

8.3 Limitations of the Research

While this thesis presents several impactful findings and contributions, it is essential to

acknowledge its inherent limitations, which also serve to illuminate avenues for future

scholarly inquiry:

e Dependence on Simulated Driving Environments: All empirical studies pre-

sented were conducted using data collected within controlled driving simulator en-
vironments. While simulators offer distinct advantages for inducing specific driver
states (e.g., fatigue) and collecting high-quality, synchronized data, they do not per-
fectly replicate the full spectrum of cognitive demands, environmental variabilities
(e.g., unpredictable lighting, diverse weather, complex road conditions), or the rich
array of sensory stimuli encountered in real-world, on-road driving. Consequently,
the direct generalizability of the developed models to unconstrained on-road condi-

tions requires explicit and extensive future validation.

Dataset Specificity and Diversity of Participant Demographics: The find-
ings are intrinsically linked to the specific characteristics of the datasets employed
(the Cao et al. dataset for RT prediction and the Tobii dataset for drowsiness
classification). Although the Tobii dataset featured a commendable age range,
both datasets were collected within particular geographical and cultural contexts.
The robustness and performance of the proposed models across more diverse driver
populations (e.g., varying in driving experience, cultural backgrounds, or health

conditions) warrant further investigation through broader data collection efforts.

e Scope of Modalities and Features Investigated: In the EEG analyses, the
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primary focus was on spectral power features. While these are well-established and
informative, other EEG characteristics—such as inter-channel connectivity mea-
sures (e.g., coherence, phase-locking value), analyses of microstates, or event-related
potentials (ERPs, if the experimental paradigm allowed for more distinctly time-
locked cognitive events beyond diffuse state changes)—might offer complementary
or even superior predictive information. Similarly, for multimodal fusion, only
EEG and facial vision data were considered. The incorporation of additional, read-
ily available modalities (e.g., Electrooculography (EOG) for precise eye movement
tracking, physiological signals from consumer wearables like heart rate variability, or
even vehicle telemetry data like steering wheel movements and lane position) could
potentially further enhance the robustness and accuracy of driver state assessment

systems.

Computational Demands of Advanced Deep Learning Models: While
Chapter [7] successfully addressed the efficiency challenge for a vision-only edge
model, the training of the large-scale end-to-end multimodal transformer detailed in
Chapter [6] as well as the fine-tuning of Vision Transformers in Chapter [5] remains
computationally intensive, necessitating significant GPU resources and considerable
training time. These computational demands can be a barrier for research groups

with limited resources and for rapid prototyping.

Interpretability of Complex Deep Learning Architectures: Deep learning
models, particularly advanced architectures like Vision Transformers and multi-
modal transformers, while achieving high predictive accuracy, often operate as
"black boxes.” Understanding precisely which features the model is learning and
how it arrives at its predictions can be challenging. Although outside the primary
scope of this thesis, further exploration of model interpretability techniques (e.g.,
attention map visualization, layer-wise relevance propagation) could yield deeper
neurophysiological or behavioural insights and increase trust in these complex sys-

tems.
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e Nature of Drowsiness Labeling: The drowsiness classification in Chapter [§]

relied on a binary distinction (’Alert’ vs. 'Drowsy’) primarily defined by the experi-
mental session times (10 AM vs. 3 AM), albeit validated by KSS scores. Real-world
driver drowsiness is a dynamic and continuous spectrum. Future work could aim to
develop models capable of predicting finer-grained drowsiness levels or regressing

directly onto continuous subjective scales like the KSS.

8.4 Future Research Directions

The findings and identified limitations of this thesis naturally give rise to several com-

pelling and promising avenues for future research, aimed at further advancing the field

of intelligent driver state monitoring:

1. Rigorous On-Road Validation and Deployment Studies: The paramount

next step is the comprehensive validation of the most promising models developed
herein—particularly the end-to-end multimodal transformer for drowsiness and the
MobileViT-LSTM edge model—using extensive data collected from real-world, on-
road driving. Such studies should encompass diverse driving conditions, varied

driver demographics, and naturalistic occurrences of fatigue and drowsiness.

. Exploration of Advanced Time-Series and Graph-Based EEG Models:

For EEG analysis, future investigations could explore cutting-edge time-series mod-
eling techniques, such as advanced temporal convolutional networks (TCNs) or spe-
cialized EEG-centric transformers applied directly to raw or minimally processed
EEG epochs, potentially capturing richer temporal dynamics than spectral features
alone. Furthermore, Graph Neural Networks (GNNs) offer a powerful framework
for explicitly modeling the spatial relationships and dynamic connectivity between

EEG channels.

. Enhancement of Multimodal Fusion Architectures: The success of the end-

to-end multimodal transformer encourages further research into even more sophis-

ticated fusion mechanisms. This could include exploring adaptive fusion strategies
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that dynamically weigh the contribution of each modality based on real-time es-
timates of signal quality or context, investigating hierarchical fusion approaches,
or incorporating attention mechanisms that span longer temporal contexts across
modalities. The integration of additional, easily accessible sensor data (e.g., audio
cues like speech patterns, physiological data from smartwatches) should also be

explored.

. Development of Personalized and Adaptive Monitoring Systems: Ad-
dressing the persistent challenge of inter-subject variability is crucial. Future re-
search should focus on developing models that can personalize or adapt to individual
drivers over time. Techniques such as transfer learning from general models to spe-
cific users with minimal calibration data, few-shot learning, or federated learning
approaches (allowing on-device model adaptation while preserving data privacy)

hold considerable promise.

. Advanced Optimization for Edge AI and Low-Power Systems: For de-
ployable systems, continued research into advanced model compression techniques
beyond ONNX export—such as aggressive quantization (e.g., INT8 or sub-8-bit),
network pruning, neural architecture search (NAS) specifically for edge hardware
co-design, and knowledge distillation from larger models to compact student mod-
els—is essential for minimizing latency and power consumption on embedded auto-

motive platforms or low-power wearable devices.

. Prediction of Continuous Drowsiness Levels and Proactive Intervention
Strategies: Moving beyond binary classification, future models should aim to
predict continuous levels of drowsiness or fatigue (e.g., by regressing KSS scores or
other psychometric scales). This finer-grained assessment can enable more nuanced
and timely interventions. Research is also needed on how best to integrate the
outputs of these advanced monitoring systems into ADAS to trigger effective and
non-distracting alerts, warnings, or even automated vehicle interventions, coupled

with studies on optimal Human-Machine Interface (HMI) design for such feedback.
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7. Longitudinal Studies and Understanding Drowsiness Evolution: Conduct-
ing longitudinal studies to track the evolution of drowsiness markers over extended
periods (e.g., across an entire work shift for commercial drivers, or during long-haul
drives) could provide invaluable data for developing models that understand and

predict longer-term fatigue accumulation and its impact on driving safety.

In its entirety, this thesis has endeavored to contribute meaningfully to the dynamic
and critically important field of intelligent driver state monitoring. By systematically
exploring and advancing a range of techniques, from the fundamental analysis of EEG
signals for reaction time prediction to the development of sophisticated multimodal sys-
tems for drowsiness detection and efficient edge-Al solutions, this work has aimed to
provide a robust foundation for future innovations. It is hoped that the methodologies,
findings, and insights presented herein will inspire continued research and development
efforts dedicated to leveraging artificial intelligence for the paramount goal of making our

roads substantially safer for all users.
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