
Dublin City University at the TREC 2005

Terabyte Track

Paul Ferguson, Cathal Gurrin, Alan F. Smeaton and Peter Wilkins
Centre for Digital Video Processing & Adaptive Information Cluster

Dublin City University, Glasnevin, Dublin 9, Ireland
{pferguson, cgurrin, asmeaton, pwilkins}@computing.dcu.ie

Abstract

For the 2005 Terabyte track in TREC Dublin City University participated in all three tasks:
Adhoc, Efficiency and Named Page Finding. Our runs for TREC in all tasks were primarily
focussed on the application of “Top Subset Retrieval” to the Terabyte Track. This retrieval
utilises different types of sorted inverted indices so that less documents are processed in order to
reduce query times, and is done so in a way that minimises loss of effectiveness in terms of query
precision. We also compare a distributed version of our F́ısréal search system [1][2] against the
same system deployed on a single machine.

1 Introduction

As in the 2004 Terabyte Track the experiments were run on the GOV2 collection. This is a
collection of over 25 million documents crawled from the .gov site in early 2004.

The 2005 Terabyte track consisted of three task:

1. Adhoc: The aim of this task was to investigate the performance of systems on a static
set of documents with a set of previously unseen topics. For this task NIST provided the
participants with 50 new topics to search for relevant documents on. Participants and asked
to return a ranked set of the 10,000 most relevant documents for each of these topics.

2. Efficiency: The aim of the efficiency task was to provide a means for comparing efficiency
and scalability issues in IR systems. For this task participants were given 50,000 topics that
had been mined from the search logs of an operation search engine. For each of these topics
the participants executed all topics and reported the top 20 results for each, along with the
total query processing time for the full set.

3. Named Page Finding: For the named-page finding task participants were given a set of
252 topics, each of which specified a document by name. The goal of the task was to return
this page as close to the number 1 rank as possible. For each of the topics the participants
were asked to return their top 1000 results.

In this paper section 2 will outline the search engine setup that was used to run our exper-
iments. This will describe the different types of indices that we used as well as the two system
architectures that we employed. Section 3 will describe our experiments for each of the tasks:
Adhoc, Efficiency and Named page finding. Finally in section 4 we will draw conclusions from
our experiments.

2 F́ısréal Search Engine Setup

Our runs for TREC 2205 in all tasks were mainly focussed on the experimentation with different
types of sorted inverted indices that allow only a subset of documents associated with each term in



the query to be evaluated and still retain effective search results, while at the same time processing
the query much quicker (as the number of documents being considered for each term is reduced).
This process of “top subset retrieval” has been explained in greater detail in [3]. This type of
retrieval requires an index that sorts the document IDs and their corresponding term frequency
for each term so that the most important documents are towards the top of the list for each term.
For these experiments we utilised three different types of sorted indices to evaluate this process.
These types of indices are described in detail in the sections 2.1.1, 2.1.2 and 2.1.3.

Another element that we wished to investigate in our experiments was whether we could
utilise the text within certain HTML markup elements in the document, that when combined
with standard text results could give us an improvement over the standard text only. For this we
constructed separate indices for certain tags as described in section 2.1.4. We provided runs in
both the adhoc and named page finding tasks to investigate this.

For these experiments (and most specifically for the efficiency task) we also wanted to compare
our previously used distributed system architecture [1][2] and compare its performance with the
same system running on a single machine. An outline of both these architectures: distributed
and single machine, is given in section 2.2.1 and 2.2.2 respectfully.

2.1 Inverted Index Types

We created different inverted index files for terms occurring in documents and sorted the entries
(document IDs and their corresponding term frequency) in different ways as described below.

2.1.1 BM25 Sorting

This BM25 index consists of a sorted list of Document IDs for each term by using the Okapi BM25
value [5]. This should provide an inverted index that for each term has a sorted list of document
IDs and their associated term frequency, with the most influential documents for a given term at
the top of this list. This type of index acts as a baseline index to compare the performance of our
other indices against, as it uses a standard form of document ranking, in the postings list or in
the final retrieval.

2.1.2 WeightedTF Sorting

The WeightedTF index is sorted using a metric known as weightedTF sorting, which was intro-
duced in [3] and is defined as follows:

Weighttf = log(BiDistavg + e)× log(TF + e) (1)

where e is the base of natural logarithms and BiDistavg is a measure of the distance of each
document from the average document length, calculated as:

BiDistavg =

{
dlt

avgdl
if dlt ≤ avgdl

1− dl−avgdl
maxdl−avgdl

otherwise
(2)

where avgdl is the average and maxdl is the maximum document length in the collection.
This sorting scheme works as follows: BiDistavg is a measure of the distance of the document

length from the average document length, and is smaller the further the document length deviates
from the average. When this is combined with the normalised TF to calculate Weighttf , it gives
a good measure of the term’s overall influence on the document. Again for each term in the
inverted index the document IDs and their associated term frequencies are sorted based on this
measure so that the more important documents are towards the top of the list. This provides a
mechanism to process only a subset of these documents for each term in the query.

2.1.3 Document ID Sorting

As described by Najork & Wiener in [4] a breadth-first crawl (as used to crawl the GOV2 col-
lection) the higher quality pages are discovered early in the crawl. Assuming this to be true we
could factor this into a metric to sort documents by. The GOV2 collection is organised into 274



Figure 1: Distributed Search Architecture.

separate directories (000 - 273) which reflect the order in which the documents were crawled i.e.
the documents in the lower number directories were crawled first. The GOV2 document IDs are
of the form “GX000-01-0000000” where in this case the “GX000” part of the ID represents that
this came from the 000 directory (and so was found early in the crawl). When creating the index
we sorted the document IDs and their associated term frequencies for each term based on the
following metric:

DIDweight =
1

log (α + e)
× log (tf + e) (3)

where α represents the number of the directory that the document came from, e is the base of
the natural log and tf is the term frequency of the document for that particular term.

This essentially gives all the documents from the same directory the same weighting, but
gives an increased weighting to the folders with lower numbers (i.e. those that are crawled first)
and penalises those that are crawled later. This is then combined with the normalised term
frequency(tf ) of the term in the document to reflect the term’s influence in the document, as well
as the quality of the document.

2.1.4 Tag indices

It is believed that certain HTML tags contain text that is more representative of the content of
the document than other text in the document. For example, text in the title tag would generally
be more reflective of the content of the document than the body text of the document, and should
therefore be given more weighting in retrieval. In order to infer this extra weighting in addition to
the sorted indices that have been described we also created separate indices for the text contained
in the following HTML tags: Bold, Italic, Title, Underline, Meta. We considered other tags to
be included however based on our experiments on the TREC Terabyte 2004 Adhoc task we used
this final set of tags.

2.2 Search Engine Architecture

2.2.1 Distributed

Using a distributed architecture we distributed the GOV2 collection evenly across four machines,
each being a Pentium 4, 2.6GHz with 1GB of RAM. The queries were handled by an aggregate
machine which broadcast the queries to each of the four search machines (or “leaf servers”), who
processed the query and send back their results to the aggregate machine. The aggregate then
merged these results and produced the final output.

The interaction between each of the machines and a “user” machine can be seen from Figure
1.



2.2.2 Single Machine

In contrast to the distributed set up described previously we felt it would be an interesting
comparison to search the collection using a single machine. For this we used a Pentium 4, 2.6GHz
with 2GB of RAM. The entire collection was indexed on this machine and queries were run locally
on this machine.

3 Terabyte Experiments

3.1 Adhoc Task

For this task we submitted four automatic runs (processed with no human intervention), using
only the title text for each topic. All of these TREC runs used the distributed architecture (as in
section 2.2.1). Our first run (DCU05ABM25) used a BM25 sorted index (as described in section
2.1.1). Our second run (DCU05ADID) uses a Document ID sorted index (section 2.1.3). Our
third run (DCU05AWTF) uses a WeightedTF sorted index (section 2.1.2).

All the above runs achieved the same average query time of 2.4 seconds. Each of these runs
processed a maximium of 100,000 documents for each term in the query using the approach of
“top subset retrieval” described previously.

For our final adhoc run (DCU05ACOMBO) we aimed to combine the results from multi-
ple inverted indices outlined in section 2.1.4, with the results of our baseline text results (i.e.
DCU05BM25). It was hoped that we could combine the results from these multiple HTML tags
in order to give an increase in performance. We combined these different results together using
weighted fusion, in which we gave each of the results from the separate tag indices specific weights
according to their importance. These weights for each set of results were chosen based on training
runs using the Terabyte 2004 Adhoc topics and query relevance judgments. Although with an
average query time of 19.4 seconds this run took much longer than the previous runs, we were
more concerned with achieving an improvement over the baseline DCU05BM52 run. As can be
seen from Table 1 this run achieved a slight increase over the baseline in terms of MAP and
BPREF. We also present a Precision-Recall graph, showing the precision-recall tradeoffs of all
our runs for the adhoc task in Figure 2.

Table 1: Adhoc Runs and Performance
Run Name MAP BPREF P10
DCU05ABM25 0.2887 0.3098 0.588
DCU05ADID 0.2886 0.3154 0.594
DCU05AWTF 0.3021 0.3267 0.592
DCU05ACOMBO 0.2916 0.3191 0.578

3.2 Efficiency Task

For the efficiency task we had two runs (DCU05DISTDID & DCU05DISTWTF) that used the
distributed search system where the first run accessed a document ID sorted index (section 2.1.3)
while the latter used a WeightedTF sorted index (section 2.1.2). Each of these runs processed a
“top subset” of at most 50,000 documents for each term in the query. Then, as a comparison to
the distributed setup, our other runs (DCU05WTF & DCU05WTFQ) were both run on a single
machine and both used a WeightedTF sorted index. DCU05WTF processed a subset of at most
50,000 documents for each term in the query, while DCU05WTFQ only processed a maximium
of 20,000 documents per term, in order to provide a faster throughput of queries.

As the top 20 results for each topic were to be returned to NIST for evaluation we present the
results for precision at 20 (P20), as well as the query time for each run in Table 2.



Adhoc Precision-Recall Graph

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n DCU05ABM25

DCU05ACOMBO

DCU05ADID

DCU05AWTF

Figure 2: Precision Recall Graph for Adhoc Runs.

Table 2: Efficiency Runs and Performance
Run Name P20 Query Time(seconds)
DCU05DISTDID 0.5210 0.97
DCU05DISTWTF 0.5290 0.97
DCU05WTF 0.4880 0.87
DCU05WTFQ 0.4660 0.35

3.3 Named Page Finding Task

For this task we used a similar approach to the adhoc task to investigate if the method of ”top
subset retrieval” is conducive to the task of finding a specific document.

As with the adhoc task three of our runs (DCU05NPBM25, DCU05NPDID & DCU05NPWTF)
were conducted using our distributed architecture (section 2.2.1), each of which accessed a different
sorted index: DCU05NPBM25 used the BM25 sorted index, DCU05NPDID used the Document
ID sorted index and DCU05NPWTF used the WeightedTF sorted index. Also, akin to our adhoc
task, we submitted a run that combined the results of our baseline run (DCU05NPBM25) with
the results from multiple indices (as described in section 2.1.4), using weights trained on the adhoc
topics from 2004.

The performance figures for these runs can be seen in Table 3

Table 3: Named Page Finding Runs and Performance
Run Name Recip. Rank Num. in Top 10
DCU05NPBM25 0.32 115 (45.6%)
DCU05NPDID 0.256 98 (38.9%)
DCU05NPWTF 0.254 96 (38.1%)
DCU05NPCOMBO 0.287 100 (39.7%)

4 Conclusions

Our chief objective in these experiments was to further evaluate the effectiveness of the approach
of “top subset retrieval” in the Terabyte Track in TREC 2005. In the adhoc task our experiments
were quite effective as all runs performed better in terms of MAP, P10 and Bpref than the average



of the results from all participants, while our combination run which merged results from multiple
tags gained an increase in performance over our baseline run.

The efficiency task provided us an ideal opportunity to evaluate and contrast the performance
of a distributed version of our system using five machines against a similar system on a single
machine. The runs DCU05DISTWTF and DCU05WTF provide a direct comparison between the
two types of systems. Although the distributed system achieves a higher precision at 20(P20)
of 0.529 as opposed to 0.488 on the single machine, the single machine provides a faster query
throughput of 0.87 seconds, as opposed to 0.97 seconds. Our “quick” run DCU05WTFQ also
achieved satisfactory results: The difference between this run and the DCU05WTF was that the
former accessed a maximum top subset of 20,000 documents per term, as opposed to 50,000,
in order to process queries faster. It achieved this goal with reduction in query time from 0.87
seconds to 0.35 seconds with a relatively small drop off of 0.022 in P20.

With our participation the named page finding task we aimed to investigate if the process of
“top subset retrieval” was suitable for returning a specific page. Our performance figures for this
task (in term of reciprocal rank) lie slightly below that of the average figures achieved by other
groups. The explanation for this would be in large part be due to the use of a rather small top sub-
set of 100,000 documents for each term. This would mean that if the relevant document was not
ranked in the top 100,000 documents for any of the terms of the query then it would not be scored
for retrieval. This could easily be remedied by choosing to process a larger subset of documents
for each term, however this would also adversely affect the query time (depending on the size of
the subset chosen). Also the fact that our combination run for this task (DCU05NPCOMBO)
performed below that of the baseline of (DCU05NPBM25) may have been due to the fact that
the weights chosen to merge the results from different tag indices were trained on the 2004 ad-
hoc topics. As both the tasks and the two types of queries vary i.e. the topics for adhoc are
often quite vague and are generally relevant to several documents, in contrast to the much more
concise queries for the named page finding task that are relevant to only one page. There is
most likely gains to be made by experimenting with the way in which these sources of informa-
tion are merged, as well as possibly incorporating other sources of information such as anchor text.

Acknowledgement: This work was supported by Science Foundation Ireland, under grant

number 03/IN.3/I361.

References

[1] S. Blott, O. Boydell, F. Camous, P. Ferguson, G. Gaughan, C. Gurrin, N. Murphy,
N. OConnor, A. F. Smeaton, B. Smyth, and P. Wilkins. Experiments in Terabyte
Searching, Genomic Retrieval and Novelty Detectionn for TREC-2004. Proc. Thir-
teenth Text Retrieval Conference (TREC-13), November 2004.

[2] P. Ferguson, C. Gurrin, P. Wilkins, and A. F. Smeaton. F́ısréal: A Low Cost Terabyte
Search Engine. In Proceedings of European Conference in IR, March 2005.

[3] P. Ferguson, A. F. Smeaton, C. Gurrin, and P. Wilkins. Top Subset Retrieval on
Large Collections using Sorted Indices. In SIGIR ’05: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 599–600, 2005.

[4] M. Najork and J. L. Wiener. Breadth-First Crawling Yields High-Quality Pages. In
Proceedings of the 10th International World Wide Web Conference, pages 114–118,
Hong Kong, May 2001. Elsevier Science.

[5] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SIGIR ’94: Proceedings of the 17th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 232–241, New York, NY, USA, 1994. Springer-Verlag New York, Inc.


