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Abstract

Cervical cancer remains a significant global health burden, particularly in low- and middle-income countries
(LMICs) where access to early diagnostic tools is limited. In Ethiopia, cervical cancer diagnosis often relies on
manual interpretation of biopsies, which can be time-consuming and subjective. This study aims to develop a
multimodal machine learning model that integrates histopathological images and associated patient clinical
records to improve cervical cancer risk prediction and biopsy detection. The dataset comprises 404 biopsy images
and corresponding clinical records from 499 patients, collected at Jimma Medical Center. The preprocessing of
histopathological images and clinical records involved image enhancement, data augmentation, imputation of
missing values, and class balancing techniques. Subsequently, (I) a pre-trained convolutional neural network deep
learning (VGG16) model was applied on the histopathological dataset, (Il) a Random Forest classifier was trained
on the patient clinical records, and (lll) a late fusion strategy was employed to integrate the outputs of both
classifiers for multimodal analysis. Recursive Feature Elimination was used to identify key predictive factors from
the patient data, and the model's performance was thoroughly validated using accuracy, AUC-ROC curves, and
confusion matrices, ensuring reliability across all classes. As a result, convolutional neural networks and Random
Forest classifiers achieved accuracies of 91% and 96%, respectively. The integrated multimodal model achieved 92%
accuracy, demonstrating enhanced robustness and clinical relevance by combining complementary data sources.
These findings suggest that multimodal approaches hold promise for improving cervical cancer diagnostics in
resource-limited settings. Future work will focus on validating the model with diverse datasets and integrating it
into clinical workflows to support healthcare providers in LMICs.
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Introduction

Noncommunicable diseases (NCDs) are responsible for
approximately 41 million deaths each year, accounting for
74% of all global mortality [1]. Among these, cancers rep-
resent a major contributor, especially in low- and middle-
income countries (LMICs), where 77% of NCD-related
deaths occur due to limited access to healthcare services
and early detection tools. In Ethiopia, the NCD mortality
rate is estimated at 554 per 10,000 individuals, with neo-
plasms, including breast, cervical, colorectal, and hema-
tological cancers, playing a major role in this burden.

Cervical cancer is the fourth most prevalent cancer
among women globally and remains a leading cause of
cancer-related deaths in low and middle-income coun-
tries (LMICs). According to the World Health Organiza-
tion (WHO), nearly 94% of cervical cancer deaths occur
in resource-constrained settings [2]. The disease typically
develops slowly over several years, progressing from pre-
cancerous cellular changes to malignant tumors. Key risk
factors include persistent Human Papillomavirus (HPV)
infection, smoking, early sexual debut, immunosup-
pression, and coexisting sexually transmitted infections
(STIs). In Ethiopia, the incidence rate is estimated at 24.2
per 100,000 women, with alarmingly low screening cov-
erage. For instance, Visual Inspection with Acetic Acid
(VIA) screening revealed that 10.1% of women exhibit
high-grade lesions, while 4.5% present low-grade lesions
[4].

Although cervical cancer is treatable if detected early,
primarily through surgery, chemotherapy, or radiation
therapy [3], accurate and timely diagnosis in LMICs
remains a challenge. Health systems often suffer from a
lack of trained pathologists, limited diagnostic infrastruc-
ture, and an overreliance on subjective visual inspection
of biopsy samples. At Jimma Medical Center (JMC), for
example, cervical cancer accounts for approximately 45%
of all cancer-related admissions. Yet, prediction and risk
stratification remain inconsistent due to the fragmented
nature of the data and the absence of clinical decision-
support tools.

In response to these limitations, artificial intelligence
(AI) and computer-aided diagnostic (CAD) systems have
emerged as powerful tools for early cancer detection and
risk analysis [5—6]. Recent studies have applied machine
learning (ML) and deep learning (DL) techniques, par-
ticularly convolutional neural networks (CNNs) such as
InceptionV3, EfficientNet, and VGG19, for classifying
cervical cancer images by dysplasia stage or cell type [7—
10]. A recent review also underscores the effectiveness
of deep learning in improving diagnostic outcomes [11].
Furthermore, risk prediction of antiretroviral therapy
(ART) duration and Human Immunodeficiency Virus
(HIV) viral load using structured data achieved accura-
cies up to 90% [12]. Moreover, deep learning applied to
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histopathology images reported classification accuracies
as high as 94.5% [13].

Despite progress in using ML and DL for cervical can-
cer diagnosis, most existing studies focus on a single
data modality, either clinical records or histopathologi-
cal images, limiting diagnostic accuracy and real-world
applicability. Moreover, few models are developed
using real patient data from LMICs like Ethiopia, where
resource constraints, fragmented data, and late-stage
diagnosis are prevalent. As a result, there remains a criti-
cal gap in developing clinically relevant, interpretable,
and integrated diagnostic tools that mirror actual medi-
cal workflows.

To address this gap, this study proposes a multi-
modal cervical cancer risk assessment and prediction
framework that fuses structured patient history (clini-
cal records) with histopathological imaging, aiming to
improve early diagnosis and support clinical decision-
making in LMICs.

The main contributions of this work are as follows:

1. Multimodal fusion: We propose a novel ensemble
model that integrates structured clinical data and
biopsy images to reflect real-world diagnostic
practice in the LMIC context.

2. Robust preprocessing: We handle missing values,
class imbalance, and feature selection using
techniques such as mean imputation, Synthetic
Minority Oversampling Technique (SMOTE),
Tomek Links, and Recursive Feature Elimination
(REE).

3. Deep learning-based image analysis: We fine-
tune VGG16 and ResNet50 networks on curated
histopathological images collected from LMIC
settings to enhance diagnostic accuracy in resource-
limited environments and contribute to the broader
scientific community.

4. Model interpretability: We identify clinically
meaningful features (e.g., post-coital bleeding,
sexually transmitted infection (STI) history)
that contribute to model decisions, increasing
transparency and clinical relevance.

5. Contextual relevance: We develop and evaluate the
model using real-world data from Jimma Medical
Center, demonstrating its potential for deployment
in Ethiopian and other LMIC healthcare settings.

Moreover, this paper is organized into five sections. Sec-
tion 2 presents related work, identifying current gaps in
unimodal cervical cancer diagnosis. Section 3 details the
dataset, preprocessing pipeline, and model architecture.
Section 4 reports the experimental setup, evaluation
metrics, and results. Section 5 concludes with key find-
ings, limitations, and directions for future research.
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Related work

In recent years, there has been an increasing amount of
literature on automated cervical cancer detection sys-
tems, focusing on advances in Al techniques and their
applicability in LMICs. Researchers have demonstrated
the effectiveness of DL models such as CNNs, includ-
ing VGG19, EfficientNet, and ResNet variants, achieving
high accuracy (>90%) in classifying cervical histopatho-
logical images by cancer subtype, dysplasia stage, or
malignancy presence [7, 8, 9, 10, 13]. Additionally, clini-
cal risk prediction models using Random Forest (RF) ML
have identified key predictors such as duration on anti-
retroviral therapy (ART), viral load, HIV clinical stage,
tuberculosis preventive therapy (TPT), and family plan-
ning methods, attaining classification accuracies around
90% in high-risk populations [12].

However, despite their promising results, most exist-
ing models are unimodal, focusing exclusively on either
imaging or clinical data. This unimodality limits their
ability to capture the multifactorial and complex nature
of cervical cancer progression. Moreover, it often over-
simplifies clinical decision-making and may hinder gen-
eralizability, especially where patient data are frequently
fragmented, incomplete, or inconsistent.

Recent advances in cancer subtype classification have
applied optimization algorithms to multi-omics data,
yielding promising results in handling high-dimensional
and heterogeneous datasets. For instance, a Cat Swarm
Optimization (CSO) based feature selection frame-
work combined with Support Vector Machines (SVM)
achieved a promising result after optimal feature reduc-
tion [14]. Similarly, Quantum Cat Swarm Optimiza-
tion (QCSO) improves clustering and feature selection,
resulting in enhanced accuracy and interpretability [15].
However, it remains underexplored for cervical can-
cer diagnosis in LMICs, which pose unique challenges
related to infrastructure and data availability. Further-
more, a review highlights significant progress in inte-
grating multimodal datasets, yet al.so identifies ongoing
challenges in data standardization, model transparency,
and clinical translation [16]. These challenges highlight
the importance of developing methods that balance com-
putational sophistication with real-world feasibility.

In response, several recent studies have explored mul-
timodal models combining clinical and imaging data for
cervical cancer diagnosis. Ensemble frameworks that
integrate clinical features with CNN-extracted image
representations have demonstrated improved diagnostic
accuracy and interpretable risk stratification [17]. Ming
et al. [17] proposed a deep learning-based multimodal
image analysis framework for cervical cancer detection
using FDG-PET and CT imaging modalities. Specifically,
their adaptive fusion strategy aligned structural (CT) and
functional (PET) imaging features prior to detection,
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yielding an average improvement of 6.06% over single-
modality PET and 8.9% over other multimodal fusion
techniques. Abinaya and Sivakumar [18] also proposed
a 3D CNN combined with a Vision Transformer (ViT)
for cervical cancer classification, achieving an accuracy
of 98.6%. However, the model did not incorporate struc-
tured clinical features, limiting its applicability in real-
world LMIC settings where multimodal data integration
is critical. Nonetheless, there remains a scarcity of frame-
works tailored to the realities of LMICs, where data are
often noisy, incomplete, and heterogeneous.

In parallel, emerging research demonstrates the advan-
tages of interpretable models that combine feature engi-
neering and explainable Al tools such as SHAP (Shapley
Additive Explanations). For instance, Double Conglom-
erate (D-CongNet) and Triple Conglomerate (T-Con-
gNet) achieve high accuracy in cardiovascular disease
and breast cancer classification without relying on syn-
thetic oversampling [19]. Similarly, in diabetes mellitus
prediction, SHAP-based feature selection has been used
to enhance ensemble model performance and improve
interpretability, despite limited and imbalanced datasets
typical of LMIC contexts [20]. In all, it provides clinically
meaningful explanations by identifying key feature inter-
actions that align with established medical knowledge.
However, implementing Al diagnostic tools in LMICs
encounters several barriers, including limited access to
high-quality data, infrastructural constraints, and frag-
mented medical record systems [21]. Moreover, many DL
models function as “black boxes,” limiting interpretabil-
ity and clinician trust. Enhancing transparency through
explainable AI (XAI) techniques is essential for clinical
adoption [22].

Limitations of unimodal models and the case for
multimodal integration

Clinical diagnosis of cervical cancer inherently synthe-
sizes multiple information sources, including biopsy
results, patient histories, and laboratory findings. Recog-
nizing this, recent research has emphasized the need for
multimodal AI frameworks that integrate heterogeneous
data sources such as electronic health records, patient
card-sheets, imaging, and genomic data to better mimic
real-world clinical workflows [23, 17]. For instance, Col-
poscopic Multimodal Temporal Convolutional Neural
Network (CMT-CNN) [25] was proposed to fuse sequen-
tial cervigram images (acquired after saline, acetic acid,
and Lugol’s iodine applications) with structured clinical
variables (HPV test results and patient demographics)
to detect cervical intraepithelial neoplasia. The same
author in [26] employed a pretrained CNN (AlexNet) for
cervical cancer classification. In both scenarios, a multi-
modal approach was demonstrated by combining cervi-
gram imaging with structured clinical variables, yielding
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promising results. Nevertheless, multimodal integration
introduces new challenges related to data preprocessing,
harmonization of feature types, missing data handling,
and maintaining model interpretability. Therefore, there
is a need for developing a clinically grounded, interpre-
table, and efficient multimodal model to support per-
sonalized cervical cancer diagnosis in low-resource
environments.

Research gaps and justification for the proposed approach
While existing multi-omics optimization-based clas-
sification methods and multimodal ensemble models
have advanced cancer diagnosis, significant gaps remain.
Optimization-based approaches have yet to be fully inte-
grated with clinical and imaging data fusion specifically
for cervical cancer diagnosis in LMICs. Furthermore,
many multimodal cervical cancer models rely heavily on
data augmentation techniques, which may compromise
model stability and interpretability. To address these
gaps, we propose a multimodal ensemble framework
that combines clinical data from patient card sheets with
deep learning-based histopathological image analysis. By
integrating Random Forest classifiers for clinical risk fac-
tors with CNN (VGG16 and ResNet50) models for image
feature extraction and applying rigorous preprocessing
(mean imputation, SMOTE, RFE), the framework aims to
enhance diagnostic precision and emulate clinical work-
flows adapted for LMICs contexts. Furthermore, our
approach emphasizes interpretability, clinical relevance,
and robustness, building upon insights from recent
advances in multi-omics optimization and augmenta-
tion-free explainable AI models.

Methods

As shown in the detailed proposed methodology in Fig. 1,
we followed four major steps to design a multimodal
cervical cancer risk assessment and prediction model:
(I) Multimodal data acquisitions and collections, (II)
Data processing, (III) Model building, and (IV) Model
evaluation.
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Step 1: data collection and acquisitions

A set of steps, including retrospective design, study site
selection, purposive sampling, and ethical consider-
ations, were followed to capture histopathological images
and collect patient card sheets.

Research design

A retrospective design was employed to collect and ana-
lyze the patient card-sheet records and histopathological
images to examine the potential relationships between
risk factors and cervical cancer outcomes. Data was col-
lected from hospital archives at Jimma Medical Cen-
ter (JMC) for patients who underwent cervical cancer
screening between 2021 and 2023. The selection criteria
included patients with complete medical records con-
taining demographic details, clinical history, and histo-
pathological findings.

Study site and populations

The study was conducted at JMC in Ethiopia, which
is one of the centers for cervical cancer treatment next
to Tikur Anbessa Specialized Hospital. JMC is a lead-
ing healthcare institution in Jimma, Oromia Region,
Ethiopia. The center provides a comprehensive range
of medical services, including outpatient care, surgi-
cal procedures, and maternal and child health services,
while also playing a vital role in medical education and
research in the region. The target population included all
female patients who underwent cervical cancer screening
at JMC between 2021 and 2023.

Sampling

Purposive sampling was employed to select relevant
patient records. This sampling strategy ensured that
the most informative cases were chosen, optimizing the
accuracy of cervical cancer risk assessments. All records
supplemented by the domain experts, including patient
card sheets and microscopic images of biopsied tissue,
were used. Given the study’s objective of examining the
relationship between risk factors and cervical cancer

Proposed Methodology

Pre- processing

Fig. 1 Proposed methodology

Model Evualuation
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outcomes, purposive sampling ensured that only records
containing clinical and histopathological data were
included.

The selection process was guided by domain experts
(oncologists and pathologists) to ensure that the dataset
contained complete patient histories, diagnostic reports,
and microscopic images of biopsied tissue. The inclu-
sion criteria prioritized patients with detailed medical
records, histopathological findings, and confirmed cer-
vical cancer diagnoses, while incomplete or ambiguous
records were excluded. By using this approach, the study
maximized the reliability of findings in assessing risk fac-
tors and cancer progression.

Ethical approval

Ethical clearance was obtained from the Jimma Insti-
tute of Technology, Research, and Ethical Review Board
with reference no. RPD/JiT/183/15. Data confidentiality
was strictly maintained by excluding personal identifiers
and using histopathology biopsy images exclusively for
research purposes.

Data collection

To collect the patient card sheets dataset, we used a
paper-based pre-digital template sheet. We converted
the paper-based data into an MS Excel CSV file for-
mat, whereas histopathological images were captured
using a Samsung M13 smartphone mounted on a light
microscope. As determined by domain experts, images
were captured at varying magnification powers (4x,
10x, and 40x) and saved in high-resolution PNG format
(2686 x 2686 pixels) with an 8-bit RGB color model.

Step 2: data preprocessing

Patient card sheet preprocessing

The preprocessing of structured clinical records involved
three main stages: handling missing data, addressing
class imbalance, and feature selection.

Missing value imputation To address incomplete entries
in numerical variables, mean imputation was employed.
The percentage of missing values ranged from 0.2% (e.g.,
virginal bleeding) to 2.4% (e.g., occupation), with features
such as virginal discharge containing no missing values.
Given the low overall proportion of missing data (<5%),
mean imputation was selected for its simplicity, com-
putational efficiency, and ability to preserve the central
tendency of each variable without introducing signifi-
cant bias. This method has been recommended for data-
sets with minimal and randomly distributed missingness,
where more complex imputation strategies may not yield
substantial benefits [23].
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Handling class imbalance with SMOTE and tomek
links To mitigate the effects of class imbalance in risk fac-
tor data, a hybrid resampling approach was adopted, com-
bining the Synthetic Minority Over-sampling Technique
(SMOTE) with Tomek Links. SMOTE generates synthetic
instances of the minority class by interpolating between
existing minority samples and their nearest neighbors,
thus increasing class representation and reducing model
bias [23]. However, oversampling alone may introduce
noisy or borderline examples. To counteract this, Tomek
Links were applied post-SMOTE to remove ambiguous
samples that are closest to the decision boundary, effec-
tively cleaning overlapping instances between classes.
This sequential application of SMOTE followed by Tomek
Links has been shown to enhance classifier performance
by balancing the dataset while preserving class distinction
[23].

Feature selection using recursive feature elimination
(RFE) To reduce dimensionality and retain the most pre-
dictive variables, Recursive Feature Elimination (RFE)
was implemented with a Logistic Regression estimator.
REFE iteratively removes features based on their contribu-
tion to model performance, resulting in a refined subset of
attributes that optimally support classification tasks [24].
The most influential features identified included residen-
tial area, vaginal discharge, post-coital bleeding, irregular
menstruation, age at menarche, STI: syphilis, and STI:
HIV. These variables are clinically meaningful, with estab-
lished associations to cervical cancer risk through behav-
ioral, reproductive, and socioeconomic pathways.

Histopathological image preprocessing

Preprocessing of histopathological images involved color
space transformation, contrast enhancement, data aug-
mentation, and class balancing.

Color space conversion and standardization Allimages
were converted from RGB to YCrCb color space to decou-
ple luminance (Y) from chrominance (Cr, Cb), enabling
localized contrast enhancement while preserving struc-
tural and color information. This separation is particularly
beneficial for histopathological imaging, where subtle tex-
ture differences in luminance are diagnostically relevant
[17]. All images were uniformly resized to 224 x 224 pixels
to align with the input dimensions of convolutional neural
networks (CNNs) such as VGG16 and ResNet50, facilitat-
ing transfer learning and consistent model input [27].

Contrast enhancement via CLAHE To enhance local
contrast and reveal intricate tissue features, Contrast
Limited Adaptive Histogram Equalization (CLAHE) was
applied to the luminance channel. CLAHE was imple-
mented with an 8 x 8 tile grid and a clip limit of 2.0, strik-
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ing a balance between contrast amplification and noise
suppression. This approach preserves essential diagnostic
information in histological slides and improves the visual
separability of tissue structures [28].

Data augmentation and class balancing To increase
dataset diversity and improve model generalization,
extensive data augmentation was performed using Keras’s
ImageDataGenerator. Transformations included random
rotations, horizontal and vertical flips, shear deforma-
tions, and brightness adjustments [29]. This process sim-
ulates variability in real-world imaging conditions and
combats overfitting, particularly in deep learning archi-
tectures.

In addition, SMOTE was applied to CNN-extracted
image features to further address class imbalance at the
feature level. This ensured that minority class represen-
tations were adequately amplified, contributing to more
equitable model learning and performance [23].

Step 3: multimodal model building
A multimodal framework was developed to integrate
histopathological image features with structured clinical
data from patient card sheets, aiming to enhance diag-
nostic accuracy for cervical cancer. The overall system
architecture is illustrated in Fig. 2.

Histopathological image-based classification

Pre-trained convolutional neural networks (CNNs),
VGG16 and ResNet-50, were adopted and fine-tuned
on the cervical cancer histopathological image dataset.
These models were initially trained on ImageNet and
adapted using transfer learning.

VGG16 architecture VGG16 comprises 13 convolu-
tional layers utilizing 3 x 3 filters and 2 x 2 max-pooling
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layers, followed by three fully connected layers. It employs
ReLU activation and softmax in the output layer [27]. For
fine-tuning, the fully connected layers were replaced with
two dense layers (512 and 128 units), followed by drop-
out (0.3) and a softmax classifier. Training was conducted
for 30 epochs with a batch size of 16, using the Adam
optimizer (learning rate=0.001) and categorical cross-
entropy as the loss function.

ResNet-50 architecture ResNet-50 integrates residual
connections to address vanishing gradient issues in deep
networks. It contains bottleneck residual blocks using
1x1 and 3x3 convolutions, batch normalization, and
identity mappings [30]. The final layers were fine-tuned
to adapt to the domain-specific task of cervical cancer
classification. A similar training protocol to VGG16 was
followed.

Hyperparameter optimization To achieve optimal
model performance, hyperparameters such as learning
rate, dropout rate, batch size, optimizer type, activation
functions, and loss function were systematically tuned
using a comprehensive grid search strategy. This approach
enabled robust and efficient exploration of parameter
configurations, improving training stability and predictive
accuracy [31]. The detailed histopathological processing
pipeline is illustrated in Fig. 3.

Patient card sheet classification

To analyze risk factors from structured clinical data, a
Random Forest (RF) classifier was utilized. RF constructs
an ensemble of decision trees, combining their outputs
via majority voting or averaging to improve predic-
tive accuracy and reduce overfitting. Hyperparameters,
including the number of estimators (200), maximum tree
depth, and minimum samples per leaf, were optimized
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via grid search. RF was selected based on its proven per-
formance in medical informatics [32]. The processing
architecture is shown in Fig. 4.

Fusion strategy for multimodal integration

A late fusion strategy was applied to combine outputs
from the two classifiers. Specifically, class probability
vectors from the image-based model P;,,,.(C) and card-
sheet model P, 4(C) were averaged:

Pimage (O) + Pcard (C)

5 1)

Pfinal (C) =

The class C with the highest average probability
Ppina (C)was selected as the final prediction. Late
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fusion was chosen over early fusion to preserve modality-
specific interpretability and accommodate heterogeneous
data formats. This approach also allows independent
optimization of each branch of the model.

Step 4: model evaluation

Evaluation metrics

To comprehensively assess model performance, standard
classification metrics were employed:

+ Accuracy:

TP+TN
TP+TN+FP+FN

(2)
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+ Precision:

TP 3)
TP+ FP
+ Recall (sensitivity):
TP
—_— 4
TP+ FN )
+ Fl-score:
2 % Precision + Recall
(5)

Precision + Recall

+ AUC-ROC: The Area Under the Receiver Operating
Characteristic Curve was computed to quantify the
trade-off between sensitivity and specificity across
different thresholds.

Validation strategy

The dataset was randomly partitioned using an 80/20
stratified train-test split to preserve class balance. All
performance metrics were reported on the held-out test
set. While k-fold cross-validation was not performed in
this study, it will be considered in future work to ensure
model robustness.

Ablation studies

Ablation studies were conducted to identify crucial com-
ponents of the model and various configurations of the
dense layers to understand their impact on model perfor-
mance. These studies involved experimenting with differ-
ent dense layer configurations, such as 64, 128, 512, and
1024 units, and examining the impact of removing dense
layers entirely. The results of these experiments provided
valuable insights into refining the model, helping to sim-
plify less impactful elements while focusing on compo-
nents that significantly improved performance.

Results

A total of 404 cervical histopathology images were col-
lected from two primary data sources (histopathological
images and structured patient card-sheet data), covering
four diagnostic categories squamous cell carcinoma (RF),
adenocarcinoma, pre-cancer, and normal tissues. Addi-
tionally, structured records from 499 patients, containing
demographic, behavioral, and clinical risk factors, were
analyzed to support multimodal predictions.

Histopathology image enhancement and augmentation

Contrast Limited Adaptive Histogram Equalization
(CLAHE) significantly improved visibility of nuclear and
tissue architecture, benefiting subsequent classification
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tasks. Figure 5 presents the histopathology images, par-
ticularly in regions with subtle pathological features,
after the enhancement. To address class imbalance and
improve model generalization, the dataset was expanded
through data augmentation, including 90° and 180° rota-
tions, flips, and brightness changes, as illustrated in
Fig. 6. These transformations increased the image count
to 2,024. SMOTE was then applied to balance each class,
resulting in 1,238 samples per class, totaling 4,952. The
classification system includes four classes: class O repre-
sents Squamous Cell Carcinoma (SCC), and class 1 cor-
responds to pre-cancerous conditions of cervical tissue.

Patient Card-Sheet data balancing and feature insights

A more balanced dataset was created using SMOTE
(generated new synthetic samples for the underrepre-
sented classes) and Tomek Links (removed borderline
samples from the majority class), resulting in 515 samples
for squamous cell carcinoma, 363 for adenocarcinoma,
and 315 samples for pre-cancer, as shown in Fig. 7.

Age-wise, the highest concentration of cervical cancer
cases occurred in women in their 40s and 60s as shown in
Fig. 8, with the calculated mean age being approximately
50 years. The average age was computed using the arith-
metic mean: p=Xx/N.

As Table 1 shows, in urban areas, there were 132 cases
of squamous cell carcinoma (SCC) and 10 cases of ade-
nocarcinoma, with no cases of pre-cancer. Conversely,
rural areas showed a greater prevalence, with 336 cases of
squamous cell carcinoma, 18 cases of adenocarcinoma,
and three cases of pre-cancer.

Parity, defined as the number of times a woman has
given birth, was found to be a significant factor in the
distribution of cervical cancer types. As Table 2. shows,
among nulliparous women (those who have never given
birth), there were only eight reported cases of squamous
cell carcinoma and no cases of adenocarcinoma or pre-
cancer. In contrast, multiparous women (those who have
given birth one or more times) had a markedly higher
prevalence, with four hundred sixty-one cases of squa-
mous cell carcinoma, twenty-eight cases of adenocarci-
noma, and two cases of pre-cancer. Additionally, 96% of
participants reported experiencing symptoms such as
vaginal bleeding and discharge, with only a small number
of cases lacking these symptoms.

Model training and evaluation

Baseline model

The baseline Random Forest model achieved 83% train-
ing accuracy and 65% test accuracy, establishing a refer-
ence point for comparison (Fig. 9).
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Fig.5 Sample histopathology images (subtle pathological features)
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Image classification

VGG16 model

The fine-tuned VGG16 model recorded a best validation
loss of 0.2792. It achieved 91% test accuracy, with preci-
sion, recall, and specificity values of 90.7%, 90.4%, and
95.9%, respectively. The ROC-AUC score averaged 98.5%
across classes (Figs. 10, 11 and 12). Figure 13 also pres-
ents the detailed results of the confusion matrix. showing

Classes

classification results across cervical cancer classes. Class
labels are defined as: 0=SCC (Squamous Cell Carci-
noma), 1=Adenocarcinoma, 2 = Pre-cancer, and 3 = Nor-
mal. The Y-axis represents the actual class, and the X-axis
shows the predicted class. Color intensity indicates the
number of samples classified into each category.
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Class Distrubtion After Resampling

Number of Sample

1
Class Labels

Fig. 7 Patient card-sheet class distribution after resampling

Table 1 Distributions of patient residential cross-cervical cancer
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ResNet50 model

ResNet50 achieved a slightly higher training accuracy
(95.6%) but underperformed during testing with an
accuracy of 89%. It recorded a validation loss of 0.4317
at epoch 5. The model’s recall, precision, and AUC were
86.7%, 85.9%, and 97.5%, respectively (Figs. 14, 15, 16 and
17).

Ablation study
VGG16 emerged as the most effective model, achiev-
ing an accuracy of 0.91, outperforming the baseline and
ResNet50 as illustrated in Table 3. Consequently, the
model was developed based on the VGG16 convolutional
Neural Network.

In our ablation studies on the VGG16 model, removing
all dense layers caused both training and test accuracy to

Class Resident Area

Urban Rural

Total Mean Total Mean sD
SCC 132 0.929 0.256 336 0.941 0.235
Adeno 10 0.070 0.256 18 0.050 0218
Pre cancer 0 0 3 0.0084 0.092
Table 2 Distributions of parity across cervical cancer
Class Parity

Nulliparous Multiparous

Total Mean SD Total Mean SD
SCC 8 1 461 0.9391 0.0104
Adeno 0 0 28 0.0570 0.0105
Pre cancer 0 0 2 0.0041 0.0029

Mean age of the women facing the risk of cervical cancer
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Fig. 8 Mean age of the women facing the risk of cervical cancer
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ROC Curve for Multi-Class Classification (Training Set)
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Fig. 9 ROC curve for multi-class classification of training and testing sets
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Fig. 10 Training and validation accuracy

drop to 83%, highlighting the importance of dense layers
in capturing complex features. Increasing the dense layer
size to 1024 improved training accuracy to 96%, but test
accuracy only rose slightly to 85%. Reducing the dense
layer size further to 256 and 64 resulted in a training and
testing accuracy of 92% and 86%, respectively. Moreover,
we found an accuracy of 93% and 89% for 256 and 64
units, respectively. Ultimately, a dense layer size of 512

(2025) 25:322
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ROC Curve for Multi-Class Classification (Test Set)
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Fig. 11 Training and validation loss

provided the best balance, achieving 91% test accuracy
alongside strong generalization.

Patient card sheet prediction

Random forest

We found RF demonstrated an accuracy of 96% on the
patient card sheet dataset. More information on the
detailed results and report of the RF confusion matrix is
shown in Fig. 18; Table 3. Overall, the average AUC for
the classification model across all classes is approximately
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Receiver Operating Characteristic (ROC) Curve
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Fig. 12 Roc curves for VGG16

98%. Figure 19 shows further information on the ROC
curve of RE.

Decision tree

The decision tree classifier was applied to model the risk
factors and obtained an accuracy of 95%. More informa-
tion on the detailed results and report of the decision tree
confusion matrix is shown in Fig. 20; Table 3. We found a
96% average AUC for the classification model across all
classes. Figure 21 illustrates the experimental result of
the decision tree ROC curve in detail.

Multimodal model
The integrated multimodal model achieved an accu-
racy of 92%. The details of the experimentation and
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Training and validation accuracy
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Receiver Operating Characteristic (ROC) Curve
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Fig. 16 ResNet50 ROC curve

classification report are shown in Table 3. The model
performs particularly well for SCC and pre-cancer, with
a precision of 94% and 96%, respectively, highlighting its
strong precision and recall for these classes.

Discussion

This study developed and evaluated a multimodal cervi-
cal cancer detection model by integrating histopathologi-
cal images with patient card-sheet data. The multimodal
approach leveraged deep learning for image analysis
alongside classical machine learning techniques for tabu-
lar patient data, yielding a robust diagnostic tool tailored
for low-resource settings such as Ethiopia.

(2025) 25:322
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The dataset consisted of 404 cervical biopsy images and
499 patient records from Jimma Medical Center, reveal-
ing key epidemiological patterns. Women aged 40 to 60
years exhibited a higher risk of cervical cancer, particu-
larly those reporting symptoms such as vaginal bleeding
and discharge. Furthermore, women with a higher num-
ber of children were at an increased risk, particularly for
squamous cell carcinoma, compared to those with fewer
children. Another significant finding was the higher inci-
dence of cervical cancer among women residing in rural
areas, highlighting potential disparities in healthcare
access between urban and rural populations.

Four classification models were developed: VGG16
and ResNet50 for image data, and Random Forest and
Decision Tree for patient card-sheet data. Hyperparam-
eters were optimized via grid search, with the best per-
formance achieved using the Adam optimizer, a learning
rate of 0.001, a batch size of 16, a dropout rate of 0.3, and
20 epochs.

In the initial experiments, Random Forest was used as a
baseline model, providing a benchmark for evaluating the
performance of subsequent deep learning and ensemble
methods. Among the models tested, the VGG16 model
yielded the best performance with 96.2% accuracy on
image data, while Random Forest achieved 96% accuracy
on patient card-sheet data. The Random Forest model
shows more consistent performance across different
classes. It achieves higher precision for the Adeno class
and slightly better recall for the SCC class. Additionally,
the Fl-scores, which balance both precision and recall,
are higher for the Random Forest in both the SCC and
Adenocarcinoma classes. Given that the Random Forest

Confusion Matrix
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- 7 80
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£

~ - 6 0
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Fig. 17 ResNet50 confusion matrix
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Table 3 Model experimentation results and classification report
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Model Category Classification Report
Precision Recall F1-score Support
VGG16 SCC 0.96 0.90 093 323
Adeno 0.85 0.89 0.87 95
Pre cancer 0.85 0.93 0.89 57
Normal 0.83 0.91 0.87 109
Accuracy - 0.91 584
Macro avg 0.88 091 0.89 584
Weighted avg 091 0.91 0.81 584
Resnet50 SCC 093 0.92 093 323
Adeno 0.84 0.84 0.84 95
Pre cancer 0.83 0.86 0.84 57
Normal 0.83 0.84 0.84 109
Accuracy 0.89 584
Macro avg 0.86 0.86 0.86 584
Weighted avg 0.89 0.89 0.89 584
Random forest SCC 0.96 0.95 0.96 116
Adeno 0.95 0.98 097 59
Pre cancer 0.96 0.96 0.96 71
Accuracy 0.96 246
Macro avg 0.96 0.96 0.96 246
Weighted avg 0.96 0.96 0.96 246
Decision Tree SCC 0.98 091 0.94 116
Adeno 0.89 0.98 94 59
Pre cancer 0.95 0.99 0.97 71
Accuracy 0.95 246
Macro avg 0.94 0.96 0.95 246
Weighted avg 0.95 0.95 0.95 246
Model (Vgg16+Random Forest) SCC 0.94 0.95 0.94 323
Adeno 0.88 0.87 0.88 95
Pre cancer 0.96 0.93 0.95 57
Normal 0.87 0.84 0.86 109
Accuracy 0.92 584
Macro avg 091 0.90 091 584
Weighted avg 092 0.92 092 584

model performs marginally better overall, it was chosen
to develop the final model. ROC curves illustrated the
strong classification capability of VGG16, with a 98%
AUC. The AUC-ROC curve for Random Forest across
all classes was approximately 98%. The validation curves,
shown in Fig. 14, demonstrate successful model conver-
gence, with the highest validation accuracy achieved at
epoch 20 and a low validation loss of 0.2792, indicating
effective learning and generalization without overfitting.

In the ablation study on VGG16, we tested dense layer
configurations with 64, 128, 512, and 1024 units, and
analyzed the impact of removing dense layers. We found
that removing layers led to decreased performance, both
in training and test accuracy. The 512-unit configura-
tion provided the optimal balance, underscoring the
importance of fine-tuning layer sizes to achieve the best
performance.

The multimodal model achieved a test accuracy of
92%. It performed especially well for squamous cell car-
cinoma and pre-cancer, achieving precision rates of 94%
and 96%, respectively. While Adenocarcinoma and nor-
mal also demonstrated good performance, their preci-
sion was slightly lower compared to the squamous cell
carcinoma and normal classes. This approach effectively
integrated histopathology images with patient card-sheet
data, resulting in a more reliable and adaptable model for
cervical cancer detection.

Multimodal learning played a crucial role in overcom-
ing the limitations of single-modal models, which often
struggle with complex and diverse datasets. By combin-
ing image and text data, our model became more adapt-
able, allowing for more accurate predictions of new
data. Previous studies have highlighted the challenges of
traditional biopsy methods for cervical cancer diagno-
sis in Ethiopia, prompting the exploration of automated
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Confusion Matrix for RandomForestClassifier
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Fig. 18 Confusion matrix for RF model
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Fig. 19 ROC curve for RF model

diagnostic solutions. These solutions, particularly those
combining multiple data sources, have the potential to
revolutionize the diagnostic process by providing quicker,
more accurate, and less invasive methods.

When compared to previous studies, such as Chen et
al. [33]. and Ming et al. [17], our multimodal approach
demonstrates comparable performance. Chen et al
introduced MultiFuseNet, achieving 87.4% accuracy in
diagnosing cervical dysplasia with multimodal data. In
contrast, our model outperformed this with higher classi-
fication accuracy, emphasizing the benefits of integrating
histopathological images with patient card-sheet data.

Ming et al. focused on cervical cancer detection using
FDG-PET/CT images and single-modal approaches. Our
study extends this by incorporating both image and text

1 2
Predicted

data, providing a more comprehensive detection system.
By combining visual and textual information, our model
enhances the accuracy and robustness of cervical cancer
detection, showcasing the effectiveness of multimodal
data integration.

This multimodal approach addresses limitations of
single-modal systems by improving adaptability and pre-
diction accuracy in diverse clinical contexts. Automated
diagnostics like ours could mitigate delays and errors
inherent in manual biopsy interpretation, particularly in
resource-constrained environments. The model’s clini-
cal utility lies in its potential for earlier detection and
streamlined decision-making, which are vital for reduc-
ing cervical cancer morbidity and mortality.

The proposed multimodal system offers a promis-
ing diagnostic aid for low- and middle-income coun-
tries (LMICs). By combining non-invasive clinical data
with biopsy images, it supports faster and more accurate
screening that is deployable on affordable platforms suit-
able for rural clinics. This can reduce reliance on spe-
cialized pathologists and improve equity in healthcare
access.

Conclusion

This study presents a novel multimodal approach for
cervical cancer detection by integrating histopathologi-
cal image analysis with patient card-sheet data. While
the Random Forest model based on tabular patient data
achieved the highest accuracy (96%), and the VGG16
model trained on biopsy images reached 91%, the pro-
posed multimodal fusion model achieved a balanced
accuracy of 92%. Despite this slightly lower accuracy,
the multimodal model offers enhanced robustness and
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Confusion Matrix for DecisionTreeClassifier
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Fig. 20 Confusion matrix curve for the decision tree model
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Fig. 21 ROC curve for the decision tree model

generalizability by combining visual pathology with clini-
cal history, reflecting real-world diagnostic practice more
closely. Theoretically, this study contributes to the grow-
ing body of research on multimodal learning for disease
detection by demonstrating how the integration of het-
erogeneous data sources can support improved clinical
inference, particularly in low-resource settings.

This research makes several key contributions. First, it
introduces a multimodal diagnostic framework that inte-
grates both image and tabular data to enhance cervical
cancer detection. Second, it identifies and ranks critical
clinical risk factors such as residential area, vaginal dis-
charge, post-coital bleeding, irregular menstruation, age
at menarche, STI: syphilis, and STI: HIV using machine

1

Predicted

learning based feature selection techniques. Third, it
highlights geographic disparities in cervical cancer inci-
dence, offering actionable public health insights into
rural-urban differences in healthcare access. Finally, the
study conducts ablation studies and comparative analy-
ses, demonstrating the relative strengths of unimodal
versus multimodal approaches in a clinical setting.

Despite its strengths, this study has several limita-
tions. The dataset size, particularly for histopathological
images, was relatively small, which may limit the model’s
generalizability to unseen populations. Moreover, the
models were trained and validated using retrospective
data, and prospective clinical evaluation is needed to
confirm real-world utility. Additionally, while SMOTE
and data augmentation techniques were employed to
handle class imbalance, these synthetic techniques may
not fully capture the diversity of real patient data.

To further enhance the effectiveness and applicability
of multimodal cervical cancer detection models, future
work should consider the following: (I) Dataset Expan-
sion and Cross-Regional Validation: Utilize larger, more
diverse datasets from multiple healthcare settings and
populations to improve generalizability and model fair-
ness, (II) Model Deployment and Accessibility: Explore
lightweight architectures and mobile-based implementa-
tions to enable deployment in rural clinics or community
health centers across LMICs, and (III) Clinical Integra-
tion and User Testing: Conduct usability studies and pilot
deployments to assess model performance in real-time
clinical workflows and gather feedback from healthcare
professionals.
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