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Abstract
Cervical cancer remains a significant global health burden, particularly in low- and middle-income countries 
(LMICs) where access to early diagnostic tools is limited. In Ethiopia, cervical cancer diagnosis often relies on 
manual interpretation of biopsies, which can be time-consuming and subjective. This study aims to develop a 
multimodal machine learning model that integrates histopathological images and associated patient clinical 
records to improve cervical cancer risk prediction and biopsy detection. The dataset comprises 404 biopsy images 
and corresponding clinical records from 499 patients, collected at Jimma Medical Center. The preprocessing of 
histopathological images and clinical records involved image enhancement, data augmentation, imputation of 
missing values, and class balancing techniques. Subsequently, (I) a pre-trained convolutional neural network deep 
learning (VGG16) model was applied on the histopathological dataset, (II) a Random Forest classifier was trained 
on the patient clinical records, and (III) a late fusion strategy was employed to integrate the outputs of both 
classifiers for multimodal analysis. Recursive Feature Elimination was used to identify key predictive factors from 
the patient data, and the model’s performance was thoroughly validated using accuracy, AUC-ROC curves, and 
confusion matrices, ensuring reliability across all classes. As a result, convolutional neural networks and Random 
Forest classifiers achieved accuracies of 91% and 96%, respectively. The integrated multimodal model achieved 92% 
accuracy, demonstrating enhanced robustness and clinical relevance by combining complementary data sources. 
These findings suggest that multimodal approaches hold promise for improving cervical cancer diagnostics in 
resource-limited settings. Future work will focus on validating the model with diverse datasets and integrating it 
into clinical workflows to support healthcare providers in LMICs. 
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Introduction
Noncommunicable diseases (NCDs) are responsible for 
approximately 41 million deaths each year, accounting for 
74% of all global mortality [1]. Among these, cancers rep-
resent a major contributor, especially in low- and middle-
income countries (LMICs), where 77% of NCD-related 
deaths occur due to limited access to healthcare services 
and early detection tools. In Ethiopia, the NCD mortality 
rate is estimated at 554 per 10,000 individuals, with neo-
plasms, including breast, cervical, colorectal, and hema-
tological cancers, playing a major role in this burden.

Cervical cancer is the fourth most prevalent cancer 
among women globally and remains a leading cause of 
cancer-related deaths in low and middle-income coun-
tries (LMICs). According to the World Health Organiza-
tion (WHO), nearly 94% of cervical cancer deaths occur 
in resource-constrained settings [2]. The disease typically 
develops slowly over several years, progressing from pre-
cancerous cellular changes to malignant tumors. Key risk 
factors include persistent Human Papillomavirus (HPV) 
infection, smoking, early sexual debut, immunosup-
pression, and coexisting sexually transmitted infections 
(STIs). In Ethiopia, the incidence rate is estimated at 24.2 
per 100,000 women, with alarmingly low screening cov-
erage. For instance, Visual Inspection with Acetic Acid 
(VIA) screening revealed that 10.1% of women exhibit 
high-grade lesions, while 4.5% present low-grade lesions 
[4].

Although cervical cancer is treatable if detected early, 
primarily through surgery, chemotherapy, or radiation 
therapy [3], accurate and timely diagnosis in LMICs 
remains a challenge. Health systems often suffer from a 
lack of trained pathologists, limited diagnostic infrastruc-
ture, and an overreliance on subjective visual inspection 
of biopsy samples. At Jimma Medical Center (JMC), for 
example, cervical cancer accounts for approximately 45% 
of all cancer-related admissions. Yet, prediction and risk 
stratification remain inconsistent due to the fragmented 
nature of the data and the absence of clinical decision-
support tools.

In response to these limitations, artificial intelligence 
(AI) and computer-aided diagnostic (CAD) systems have 
emerged as powerful tools for early cancer detection and 
risk analysis [5–6]. Recent studies have applied machine 
learning (ML) and deep learning (DL) techniques, par-
ticularly convolutional neural networks (CNNs) such as 
InceptionV3, EfficientNet, and VGG19, for classifying 
cervical cancer images by dysplasia stage or cell type [7–
10]. A recent review also underscores the effectiveness 
of deep learning in improving diagnostic outcomes [11]. 
Furthermore, risk prediction of antiretroviral therapy 
(ART) duration and Human Immunodeficiency Virus 
(HIV) viral load using structured data achieved accura-
cies up to 90% [12]. Moreover, deep learning applied to 

histopathology images reported classification accuracies 
as high as 94.5% [13].

Despite progress in using ML and DL for cervical can-
cer diagnosis, most existing studies focus on a single 
data modality, either clinical records or histopathologi-
cal images, limiting diagnostic accuracy and real-world 
applicability. Moreover, few models are developed 
using real patient data from LMICs like Ethiopia, where 
resource constraints, fragmented data, and late-stage 
diagnosis are prevalent. As a result, there remains a criti-
cal gap in developing clinically relevant, interpretable, 
and integrated diagnostic tools that mirror actual medi-
cal workflows.

To address this gap, this study proposes a multi-
modal cervical cancer risk assessment and prediction 
framework that fuses structured patient history (clini-
cal records) with histopathological imaging, aiming to 
improve early diagnosis and support clinical decision-
making in LMICs.

The main contributions of this work are as follows:

1.	 Multimodal fusion: We propose a novel ensemble 
model that integrates structured clinical data and 
biopsy images to reflect real-world diagnostic 
practice in the LMIC context.

2.	 Robust preprocessing: We handle missing values, 
class imbalance, and feature selection using 
techniques such as mean imputation, Synthetic 
Minority Oversampling Technique (SMOTE), 
Tomek Links, and Recursive Feature Elimination 
(RFE).

3.	 Deep learning-based image analysis: We fine-
tune VGG16 and ResNet50 networks on curated 
histopathological images collected from LMIC 
settings to enhance diagnostic accuracy in resource-
limited environments and contribute to the broader 
scientific community.

4.	 Model interpretability: We identify clinically 
meaningful features (e.g., post-coital bleeding, 
sexually transmitted infection (STI) history) 
that contribute to model decisions, increasing 
transparency and clinical relevance.

5.	 Contextual relevance: We develop and evaluate the 
model using real-world data from Jimma Medical 
Center, demonstrating its potential for deployment 
in Ethiopian and other LMIC healthcare settings.

Moreover, this paper is organized into five sections. Sec-
tion 2 presents related work, identifying current gaps in 
unimodal cervical cancer diagnosis. Section 3 details the 
dataset, preprocessing pipeline, and model architecture. 
Section  4 reports the experimental setup, evaluation 
metrics, and results. Section 5 concludes with key find-
ings, limitations, and directions for future research.
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Related work
In recent years, there has been an increasing amount of 
literature on automated cervical cancer detection sys-
tems, focusing on advances in AI techniques and their 
applicability in LMICs. Researchers have demonstrated 
the effectiveness of DL models such as CNNs, includ-
ing VGG19, EfficientNet, and ResNet variants, achieving 
high accuracy (> 90%) in classifying cervical histopatho-
logical images by cancer subtype, dysplasia stage, or 
malignancy presence [7, 8, 9, 10, 13]. Additionally, clini-
cal risk prediction models using Random Forest (RF) ML 
have identified key predictors such as duration on anti-
retroviral therapy (ART), viral load, HIV clinical stage, 
tuberculosis preventive therapy (TPT), and family plan-
ning methods, attaining classification accuracies around 
90% in high-risk populations [12].

However, despite their promising results, most exist-
ing models are unimodal, focusing exclusively on either 
imaging or clinical data. This unimodality limits their 
ability to capture the multifactorial and complex nature 
of cervical cancer progression. Moreover, it often over-
simplifies clinical decision-making and may hinder gen-
eralizability, especially where patient data are frequently 
fragmented, incomplete, or inconsistent.

Recent advances in cancer subtype classification have 
applied optimization algorithms to multi-omics data, 
yielding promising results in handling high-dimensional 
and heterogeneous datasets. For instance, a Cat Swarm 
Optimization (CSO) based feature selection frame-
work combined with Support Vector Machines (SVM) 
achieved a promising result after optimal feature reduc-
tion [14]. Similarly, Quantum Cat Swarm Optimiza-
tion (QCSO) improves clustering and feature selection, 
resulting in enhanced accuracy and interpretability [15]. 
However, it remains underexplored for cervical can-
cer diagnosis in LMICs, which pose unique challenges 
related to infrastructure and data availability. Further-
more, a review highlights significant progress in inte-
grating multimodal datasets, yet al.so identifies ongoing 
challenges in data standardization, model transparency, 
and clinical translation [16]. These challenges highlight 
the importance of developing methods that balance com-
putational sophistication with real-world feasibility.

In response, several recent studies have explored mul-
timodal models combining clinical and imaging data for 
cervical cancer diagnosis. Ensemble frameworks that 
integrate clinical features with CNN-extracted image 
representations have demonstrated improved diagnostic 
accuracy and interpretable risk stratification [17]. Ming 
et al. [17] proposed a deep learning-based multimodal 
image analysis framework for cervical cancer detection 
using FDG-PET and CT imaging modalities. Specifically, 
their adaptive fusion strategy aligned structural (CT) and 
functional (PET) imaging features prior to detection, 

yielding an average improvement of 6.06% over single-
modality PET and 8.9% over other multimodal fusion 
techniques. Abinaya and Sivakumar [18] also proposed 
a 3D CNN combined with a Vision Transformer (ViT) 
for cervical cancer classification, achieving an accuracy 
of 98.6%. However, the model did not incorporate struc-
tured clinical features, limiting its applicability in real-
world LMIC settings where multimodal data integration 
is critical. Nonetheless, there remains a scarcity of frame-
works tailored to the realities of LMICs, where data are 
often noisy, incomplete, and heterogeneous.

In parallel, emerging research demonstrates the advan-
tages of interpretable models that combine feature engi-
neering and explainable AI tools such as SHAP (Shapley 
Additive Explanations). For instance, Double Conglom-
erate (D-CongNet) and Triple Conglomerate (T-Con-
gNet) achieve high accuracy in cardiovascular disease 
and breast cancer classification without relying on syn-
thetic oversampling [19]. Similarly, in diabetes mellitus 
prediction, SHAP-based feature selection has been used 
to enhance ensemble model performance and improve 
interpretability, despite limited and imbalanced datasets 
typical of LMIC contexts [20]. In all, it provides clinically 
meaningful explanations by identifying key feature inter-
actions that align with established medical knowledge. 
However, implementing AI diagnostic tools in LMICs 
encounters several barriers, including limited access to 
high-quality data, infrastructural constraints, and frag-
mented medical record systems [21]. Moreover, many DL 
models function as “black boxes,” limiting interpretabil-
ity and clinician trust. Enhancing transparency through 
explainable AI (XAI) techniques is essential for clinical 
adoption [22].

Limitations of unimodal models and the case for 
multimodal integration
Clinical diagnosis of cervical cancer inherently synthe-
sizes multiple information sources, including biopsy 
results, patient histories, and laboratory findings. Recog-
nizing this, recent research has emphasized the need for 
multimodal AI frameworks that integrate heterogeneous 
data sources such as electronic health records, patient 
card-sheets, imaging, and genomic data to better mimic 
real-world clinical workflows [23, 17]. For instance, Col-
poscopic Multimodal Temporal Convolutional Neural 
Network (CMT-CNN) [25] was proposed to fuse sequen-
tial cervigram images (acquired after saline, acetic acid, 
and Lugol’s iodine applications) with structured clinical 
variables (HPV test results and patient demographics) 
to detect cervical intraepithelial neoplasia. The same 
author in [26] employed a pretrained CNN (AlexNet) for 
cervical cancer classification. In both scenarios, a multi-
modal approach was demonstrated by combining cervi-
gram imaging with structured clinical variables, yielding 
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promising results. Nevertheless, multimodal integration 
introduces new challenges related to data preprocessing, 
harmonization of feature types, missing data handling, 
and maintaining model interpretability. Therefore, there 
is a need for developing a clinically grounded, interpre-
table, and efficient multimodal model to support per-
sonalized cervical cancer diagnosis in low-resource 
environments.

Research gaps and justification for the proposed approach
While existing multi-omics optimization-based clas-
sification methods and multimodal ensemble models 
have advanced cancer diagnosis, significant gaps remain. 
Optimization-based approaches have yet to be fully inte-
grated with clinical and imaging data fusion specifically 
for cervical cancer diagnosis in LMICs. Furthermore, 
many multimodal cervical cancer models rely heavily on 
data augmentation techniques, which may compromise 
model stability and interpretability. To address these 
gaps, we propose a multimodal ensemble framework 
that combines clinical data from patient card sheets with 
deep learning-based histopathological image analysis. By 
integrating Random Forest classifiers for clinical risk fac-
tors with CNN (VGG16 and ResNet50) models for image 
feature extraction and applying rigorous preprocessing 
(mean imputation, SMOTE, RFE), the framework aims to 
enhance diagnostic precision and emulate clinical work-
flows adapted for LMICs contexts. Furthermore, our 
approach emphasizes interpretability, clinical relevance, 
and robustness, building upon insights from recent 
advances in multi-omics optimization and augmenta-
tion-free explainable AI models.

Methods
As shown in the detailed proposed methodology in Fig. 1, 
we followed four major steps to design a multimodal 
cervical cancer risk assessment and prediction model: 
(I) Multimodal data acquisitions and collections, (II) 
Data processing, (III) Model building, and (IV) Model 
evaluation.

Step 1: data collection and acquisitions
A set of steps, including retrospective design, study site 
selection, purposive sampling, and ethical consider-
ations, were followed to capture histopathological images 
and collect patient card sheets.

Research design
A retrospective design was employed to collect and ana-
lyze the patient card-sheet records and histopathological 
images to examine the potential relationships between 
risk factors and cervical cancer outcomes. Data was col-
lected from hospital archives at Jimma Medical Cen-
ter (JMC) for patients who underwent cervical cancer 
screening between 2021 and 2023. The selection criteria 
included patients with complete medical records con-
taining demographic details, clinical history, and histo-
pathological findings.

Study site and populations
The study was conducted at JMC in Ethiopia, which 
is one of the centers for cervical cancer treatment next 
to Tikur Anbessa Specialized Hospital. JMC is a lead-
ing healthcare institution in Jimma, Oromia Region, 
Ethiopia. The center provides a comprehensive range 
of medical services, including outpatient care, surgi-
cal procedures, and maternal and child health services, 
while also playing a vital role in medical education and 
research in the region. The target population included all 
female patients who underwent cervical cancer screening 
at JMC between 2021 and 2023.

Sampling
Purposive sampling was employed to select relevant 
patient records. This sampling strategy ensured that 
the most informative cases were chosen, optimizing the 
accuracy of cervical cancer risk assessments. All records 
supplemented by the domain experts, including patient 
card sheets and microscopic images of biopsied tissue, 
were used. Given the study’s objective of examining the 
relationship between risk factors and cervical cancer 

Fig. 1  Proposed methodology
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outcomes, purposive sampling ensured that only records 
containing clinical and histopathological data were 
included.

The selection process was guided by domain experts 
(oncologists and pathologists) to ensure that the dataset 
contained complete patient histories, diagnostic reports, 
and microscopic images of biopsied tissue. The inclu-
sion criteria prioritized patients with detailed medical 
records, histopathological findings, and confirmed cer-
vical cancer diagnoses, while incomplete or ambiguous 
records were excluded. By using this approach, the study 
maximized the reliability of findings in assessing risk fac-
tors and cancer progression.

Ethical approval
Ethical clearance was obtained from the Jimma Insti-
tute of Technology, Research, and Ethical Review Board 
with reference no. RPD/JiT/183/15. Data confidentiality 
was strictly maintained by excluding personal identifiers 
and using histopathology biopsy images exclusively for 
research purposes.

Data collection
To collect the patient card sheets dataset, we used a 
paper-based pre-digital template sheet. We converted 
the paper-based data into an MS Excel CSV file for-
mat, whereas histopathological images were captured 
using a Samsung M13 smartphone mounted on a light 
microscope. As determined by domain experts, images 
were captured at varying magnification powers (4x, 
10x, and 40x) and saved in high-resolution PNG format 
(2686 × 2686 pixels) with an 8-bit RGB color model.

Step 2: data preprocessing
Patient card sheet preprocessing
The preprocessing of structured clinical records involved 
three main stages: handling missing data, addressing 
class imbalance, and feature selection.

Missing value imputation  To address incomplete entries 
in numerical variables, mean imputation was employed. 
The percentage of missing values ranged from 0.2% (e.g., 
virginal bleeding) to 2.4% (e.g., occupation), with features 
such as virginal discharge containing no missing values. 
Given the low overall proportion of missing data (< 5%), 
mean imputation was selected for its simplicity, com-
putational efficiency, and ability to preserve the central 
tendency of each variable without introducing signifi-
cant bias. This method has been recommended for data-
sets with minimal and randomly distributed missingness, 
where more complex imputation strategies may not yield 
substantial benefits [23].

Handling class imbalance with SMOTE and tomek 
links  To mitigate the effects of class imbalance in risk fac-
tor data, a hybrid resampling approach was adopted, com-
bining the Synthetic Minority Over-sampling Technique 
(SMOTE) with Tomek Links. SMOTE generates synthetic 
instances of the minority class by interpolating between 
existing minority samples and their nearest neighbors, 
thus increasing class representation and reducing model 
bias [23]. However, oversampling alone may introduce 
noisy or borderline examples. To counteract this, Tomek 
Links were applied post-SMOTE to remove ambiguous 
samples that are closest to the decision boundary, effec-
tively cleaning overlapping instances between classes. 
This sequential application of SMOTE followed by Tomek 
Links has been shown to enhance classifier performance 
by balancing the dataset while preserving class distinction 
[23].

Feature selection using recursive feature elimination 
(RFE)  To reduce dimensionality and retain the most pre-
dictive variables, Recursive Feature Elimination (RFE) 
was implemented with a Logistic Regression estimator. 
RFE iteratively removes features based on their contribu-
tion to model performance, resulting in a refined subset of 
attributes that optimally support classification tasks [24]. 
The most influential features identified included residen-
tial area, vaginal discharge, post-coital bleeding, irregular 
menstruation, age at menarche, STI: syphilis, and STI: 
HIV. These variables are clinically meaningful, with estab-
lished associations to cervical cancer risk through behav-
ioral, reproductive, and socioeconomic pathways.

Histopathological image preprocessing
Preprocessing of histopathological images involved color 
space transformation, contrast enhancement, data aug-
mentation, and class balancing.

Color space conversion and standardization  All images 
were converted from RGB to YCrCb color space to decou-
ple luminance (Y) from chrominance (Cr, Cb), enabling 
localized contrast enhancement while preserving struc-
tural and color information. This separation is particularly 
beneficial for histopathological imaging, where subtle tex-
ture differences in luminance are diagnostically relevant 
[17]. All images were uniformly resized to 224 × 224 pixels 
to align with the input dimensions of convolutional neural 
networks (CNNs) such as VGG16 and ResNet50, facilitat-
ing transfer learning and consistent model input [27].

Contrast enhancement via CLAHE  To enhance local 
contrast and reveal intricate tissue features, Contrast 
Limited Adaptive Histogram Equalization (CLAHE) was 
applied to the luminance channel. CLAHE was imple-
mented with an 8 × 8 tile grid and a clip limit of 2.0, strik-
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ing a balance between contrast amplification and noise 
suppression. This approach preserves essential diagnostic 
information in histological slides and improves the visual 
separability of tissue structures [28].

Data augmentation and class balancing  To increase 
dataset diversity and improve model generalization, 
extensive data augmentation was performed using Keras’s 
ImageDataGenerator. Transformations included random 
rotations, horizontal and vertical flips, shear deforma-
tions, and brightness adjustments [29]. This process sim-
ulates variability in real-world imaging conditions and 
combats overfitting, particularly in deep learning archi-
tectures.

In addition, SMOTE was applied to CNN-extracted 
image features to further address class imbalance at the 
feature level. This ensured that minority class represen-
tations were adequately amplified, contributing to more 
equitable model learning and performance [23].

Step 3: multimodal model building
A multimodal framework was developed to integrate 
histopathological image features with structured clinical 
data from patient card sheets, aiming to enhance diag-
nostic accuracy for cervical cancer. The overall system 
architecture is illustrated in Fig. 2.

Histopathological image-based classification
Pre-trained convolutional neural networks (CNNs), 
VGG16 and ResNet-50, were adopted and fine-tuned 
on the cervical cancer histopathological image dataset. 
These models were initially trained on ImageNet and 
adapted using transfer learning.

VGG16 architecture  VGG16 comprises 13 convolu-
tional layers utilizing 3 × 3 filters and 2 × 2 max-pooling 

layers, followed by three fully connected layers. It employs 
ReLU activation and softmax in the output layer [27]. For 
fine-tuning, the fully connected layers were replaced with 
two dense layers (512 and 128 units), followed by drop-
out (0.3) and a softmax classifier. Training was conducted 
for 30 epochs with a batch size of 16, using the Adam 
optimizer (learning rate = 0.001) and categorical cross-
entropy as the loss function.

ResNet-50 architecture  ResNet-50 integrates residual 
connections to address vanishing gradient issues in deep 
networks. It contains bottleneck residual blocks using 
1 × 1 and 3 × 3 convolutions, batch normalization, and 
identity mappings [30]. The final layers were fine-tuned 
to adapt to the domain-specific task of cervical cancer 
classification. A similar training protocol to VGG16 was 
followed.

Hyperparameter optimization  To achieve optimal 
model performance, hyperparameters such as learning 
rate, dropout rate, batch size, optimizer type, activation 
functions, and loss function were systematically tuned 
using a comprehensive grid search strategy. This approach 
enabled robust and efficient exploration of parameter 
configurations, improving training stability and predictive 
accuracy [31]. The detailed histopathological processing 
pipeline is illustrated in Fig. 3.

Patient card sheet classification
To analyze risk factors from structured clinical data, a 
Random Forest (RF) classifier was utilized. RF constructs 
an ensemble of decision trees, combining their outputs 
via majority voting or averaging to improve predic-
tive accuracy and reduce overfitting. Hyperparameters, 
including the number of estimators (200), maximum tree 
depth, and minimum samples per leaf, were optimized 

Fig. 2  Pipeline for multimodal processing model
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via grid search. RF was selected based on its proven per-
formance in medical informatics [32]. The processing 
architecture is shown in Fig. 4.

Fusion strategy for multimodal integration
A late fusion strategy was applied to combine outputs 
from the two classifiers. Specifically, class probability 
vectors from the image-based model Pimage(C) and card-
sheet model Pcard(C) were averaged: 

	
Pfinal (C) = Pimage (C) + Pcard (C)

2
� (1)

The class C with the highest average probability 
Pfinal (C)was selected as the final prediction. Late 

fusion was chosen over early fusion to preserve modality-
specific interpretability and accommodate heterogeneous 
data formats. This approach also allows independent 
optimization of each branch of the model.

Step 4: model evaluation
Evaluation metrics
To comprehensively assess model performance, standard 
classification metrics were employed:

 	• Accuracy:

	
TP + TN

TP + TN + FP + FN
� (2)

Fig. 4  Patient card-sheet classification architecture

 

Fig. 3  Histopathological processing pipeline
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 	• Precision:

	
TP

TP + FP
� (3)

 	• Recall (sensitivity):

	
TP

TP + FN
� (4)

 	• F1-score:

	
2 ∗ Precision + Recall

Precision + Recall
� (5)

 	• AUC-ROC: The Area Under the Receiver Operating 
Characteristic Curve was computed to quantify the 
trade-off between sensitivity and specificity across 
different thresholds.

Validation strategy
The dataset was randomly partitioned using an 80/20 
stratified train-test split to preserve class balance. All 
performance metrics were reported on the held-out test 
set. While k-fold cross-validation was not performed in 
this study, it will be considered in future work to ensure 
model robustness.

Ablation studies
Ablation studies were conducted to identify crucial com-
ponents of the model and various configurations of the 
dense layers to understand their impact on model perfor-
mance. These studies involved experimenting with differ-
ent dense layer configurations, such as 64, 128, 512, and 
1024 units, and examining the impact of removing dense 
layers entirely. The results of these experiments provided 
valuable insights into refining the model, helping to sim-
plify less impactful elements while focusing on compo-
nents that significantly improved performance.

Results
A total of 404 cervical histopathology images were col-
lected from two primary data sources (histopathological 
images and structured patient card-sheet data), covering 
four diagnostic categories squamous cell carcinoma (RF), 
adenocarcinoma, pre-cancer, and normal tissues. Addi-
tionally, structured records from 499 patients, containing 
demographic, behavioral, and clinical risk factors, were 
analyzed to support multimodal predictions.

Histopathology image enhancement and augmentation
Contrast Limited Adaptive Histogram Equalization 
(CLAHE) significantly improved visibility of nuclear and 
tissue architecture, benefiting subsequent classification 

tasks. Figure  5 presents the histopathology images, par-
ticularly in regions with subtle pathological features, 
after the enhancement. To address class imbalance and 
improve model generalization, the dataset was expanded 
through data augmentation, including 90° and 180° rota-
tions, flips, and brightness changes, as illustrated in 
Fig. 6. These transformations increased the image count 
to 2,024. SMOTE was then applied to balance each class, 
resulting in 1,238 samples per class, totaling 4,952. The 
classification system includes four classes: class 0 repre-
sents Squamous Cell Carcinoma (SCC), and class 1 cor-
responds to pre-cancerous conditions of cervical tissue.

Patient Card-Sheet data balancing and feature insights
A more balanced dataset was created using SMOTE 
(generated new synthetic samples for the underrepre-
sented classes) and Tomek Links (removed borderline 
samples from the majority class), resulting in 515 samples 
for squamous cell carcinoma, 363 for adenocarcinoma, 
and 315 samples for pre-cancer, as shown in Fig. 7.

Age-wise, the highest concentration of cervical cancer 
cases occurred in women in their 40s and 60s as shown in 
Fig. 8, with the calculated mean age being approximately 
50 years. The average age was computed using the arith-
metic mean: µ = Σx/N.

As Table 1 shows, in urban areas, there were 132 cases 
of squamous cell carcinoma (SCC) and 10 cases of ade-
nocarcinoma, with no cases of pre-cancer. Conversely, 
rural areas showed a greater prevalence, with 336 cases of 
squamous cell carcinoma, 18 cases of adenocarcinoma, 
and three cases of pre-cancer.

Parity, defined as the number of times a woman has 
given birth, was found to be a significant factor in the 
distribution of cervical cancer types. As Table 2. shows, 
among nulliparous women (those who have never given 
birth), there were only eight reported cases of squamous 
cell carcinoma and no cases of adenocarcinoma or pre-
cancer. In contrast, multiparous women (those who have 
given birth one or more times) had a markedly higher 
prevalence, with four hundred sixty-one cases of squa-
mous cell carcinoma, twenty-eight cases of adenocarci-
noma, and two cases of pre-cancer. Additionally, 96% of 
participants reported experiencing symptoms such as 
vaginal bleeding and discharge, with only a small number 
of cases lacking these symptoms.

Model training and evaluation
Baseline model
The baseline Random Forest model achieved 83% train-
ing accuracy and 65% test accuracy, establishing a refer-
ence point for comparison (Fig. 9).
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Image classification
VGG16 model
The fine-tuned VGG16 model recorded a best validation 
loss of 0.2792. It achieved 91% test accuracy, with preci-
sion, recall, and specificity values of 90.7%, 90.4%, and 
95.9%, respectively. The ROC-AUC score averaged 98.5% 
across classes (Figs. 10, 11 and 12). Figure 13 also pres-
ents the detailed results of the confusion matrix. showing 

classification results across cervical cancer classes. Class 
labels are defined as: 0 = SCC (Squamous Cell Carci-
noma), 1 = Adenocarcinoma, 2 = Pre-cancer, and 3 = Nor-
mal. The Y-axis represents the actual class, and the X-axis 
shows the predicted class. Color intensity indicates the 
number of samples classified into each category.

Fig. 6  Class visualization before and after data augmentation

 

Fig. 5  Sample histopathology images (subtle pathological features)
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ResNet50 model
ResNet50 achieved a slightly higher training accuracy 
(95.6%) but underperformed during testing with an 
accuracy of 89%. It recorded a validation loss of 0.4317 
at epoch 5. The model’s recall, precision, and AUC were 
86.7%, 85.9%, and 97.5%, respectively (Figs. 14, 15, 16 and 
17).

Ablation study
VGG16 emerged as the most effective model, achiev-
ing an accuracy of 0.91, outperforming the baseline and 
ResNet50 as illustrated in Table  3. Consequently, the 
model was developed based on the VGG16 convolutional 
Neural Network.

In our ablation studies on the VGG16 model, removing 
all dense layers caused both training and test accuracy to 

Table 1  Distributions of patient residential cross-cervical cancer
Class Resident Area

Urban Rural

Total Mean SD Total Mean SD
SCC 132 0.929 0.256 336 0.941 0.235
Adeno 10 0.070 0.256 18 0.050 0.218
Pre cancer 0 0 0 3 0.0084 0.092

Table 2  Distributions of parity across cervical cancer
Class Parity

Nulliparous Multiparous

Total Mean SD Total Mean SD
SCC 8 1 0 461 0.9391 0.0104
Adeno 0 0 0 28 0.0570 0.0105
Pre cancer 0 0 0 2 0.0041 0.0029

Fig. 8  Mean age of the women facing the risk of cervical cancer

 

Fig. 7  Patient card-sheet class distribution after resampling
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drop to 83%, highlighting the importance of dense layers 
in capturing complex features. Increasing the dense layer 
size to 1024 improved training accuracy to 96%, but test 
accuracy only rose slightly to 85%. Reducing the dense 
layer size further to 256 and 64 resulted in a training and 
testing accuracy of 92% and 86%, respectively. Moreover, 
we found an accuracy of 93% and 89% for 256 and 64 
units, respectively. Ultimately, a dense layer size of 512 

provided the best balance, achieving 91% test accuracy 
alongside strong generalization.

Patient card sheet prediction
Random forest
We found RF demonstrated an accuracy of 96% on the 
patient card sheet dataset. More information on the 
detailed results and report of the RF confusion matrix is 
shown in Fig. 18; Table 3. Overall, the average AUC for 
the classification model across all classes is approximately 

Fig. 11  Training and validation loss

 

Fig. 10  Training and validation accuracy

 

Fig. 9  ROC curve for multi-class classification of training and testing sets
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98%. Figure  19 shows further information on the ROC 
curve of RF.

Decision tree
The decision tree classifier was applied to model the risk 
factors and obtained an accuracy of 95%. More informa-
tion on the detailed results and report of the decision tree 
confusion matrix is shown in Fig. 20; Table 3. We found a 
96% average AUC for the classification model across all 
classes. Figure  21 illustrates the experimental result of 
the decision tree ROC curve in detail.

Multimodal model
The integrated multimodal model achieved an accu-
racy of 92%. The details of the experimentation and 

Fig. 15  ResNet50 model training and validation loss

 

Fig. 14  ResNet50 model training and validation accuracy 

 

Fig. 13  VGG16 confusion matrix

 

Fig. 12  Roc curves for VGG16
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classification report are shown in Table  3. The model 
performs particularly well for SCC and pre-cancer, with 
a precision of 94% and 96%, respectively, highlighting its 
strong precision and recall for these classes.

Discussion
This study developed and evaluated a multimodal cervi-
cal cancer detection model by integrating histopathologi-
cal images with patient card-sheet data. The multimodal 
approach leveraged deep learning for image analysis 
alongside classical machine learning techniques for tabu-
lar patient data, yielding a robust diagnostic tool tailored 
for low-resource settings such as Ethiopia.

The dataset consisted of 404 cervical biopsy images and 
499 patient records from Jimma Medical Center, reveal-
ing key epidemiological patterns. Women aged 40 to 60 
years exhibited a higher risk of cervical cancer, particu-
larly those reporting symptoms such as vaginal bleeding 
and discharge. Furthermore, women with a higher num-
ber of children were at an increased risk, particularly for 
squamous cell carcinoma, compared to those with fewer 
children. Another significant finding was the higher inci-
dence of cervical cancer among women residing in rural 
areas, highlighting potential disparities in healthcare 
access between urban and rural populations.

Four classification models were developed: VGG16 
and ResNet50 for image data, and Random Forest and 
Decision Tree for patient card-sheet data. Hyperparam-
eters were optimized via grid search, with the best per-
formance achieved using the Adam optimizer, a learning 
rate of 0.001, a batch size of 16, a dropout rate of 0.3, and 
20 epochs.

In the initial experiments, Random Forest was used as a 
baseline model, providing a benchmark for evaluating the 
performance of subsequent deep learning and ensemble 
methods. Among the models tested, the VGG16 model 
yielded the best performance with 96.2% accuracy on 
image data, while Random Forest achieved 96% accuracy 
on patient card-sheet data. The Random Forest model 
shows more consistent performance across different 
classes. It achieves higher precision for the Adeno class 
and slightly better recall for the SCC class. Additionally, 
the F1-scores, which balance both precision and recall, 
are higher for the Random Forest in both the SCC and 
Adenocarcinoma classes. Given that the Random Forest 

Fig. 17  ResNet50 confusion matrix

 

Fig. 16  ResNet50 ROC curve 
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model performs marginally better overall, it was chosen 
to develop the final model. ROC curves illustrated the 
strong classification capability of VGG16, with a 98% 
AUC. The AUC-ROC curve for Random Forest across 
all classes was approximately 98%. The validation curves, 
shown in Fig. 14, demonstrate successful model conver-
gence, with the highest validation accuracy achieved at 
epoch 20 and a low validation loss of 0.2792, indicating 
effective learning and generalization without overfitting.

In the ablation study on VGG16, we tested dense layer 
configurations with 64, 128, 512, and 1024 units, and 
analyzed the impact of removing dense layers. We found 
that removing layers led to decreased performance, both 
in training and test accuracy. The 512-unit configura-
tion provided the optimal balance, underscoring the 
importance of fine-tuning layer sizes to achieve the best 
performance.

The multimodal model achieved a test accuracy of 
92%. It performed especially well for squamous cell car-
cinoma and pre-cancer, achieving precision rates of 94% 
and 96%, respectively. While Adenocarcinoma and nor-
mal also demonstrated good performance, their preci-
sion was slightly lower compared to the squamous cell 
carcinoma and normal classes. This approach effectively 
integrated histopathology images with patient card-sheet 
data, resulting in a more reliable and adaptable model for 
cervical cancer detection.

Multimodal learning played a crucial role in overcom-
ing the limitations of single-modal models, which often 
struggle with complex and diverse datasets. By combin-
ing image and text data, our model became more adapt-
able, allowing for more accurate predictions of new 
data. Previous studies have highlighted the challenges of 
traditional biopsy methods for cervical cancer diagno-
sis in Ethiopia, prompting the exploration of automated 

Table 3  Model experimentation results and classification report
Model Category Classification Report

Precision Recall F1-score Support
VGG16 SCC 0.96 0.90 0.93 323

Adeno 0.85 0.89 0.87 95
Pre cancer 0.85 0.93 0.89 57
Normal 0.83 0.91 0.87 109
Accuracy - 0.91 584
Macro avg 0.88 0.91 0.89 584
Weighted avg 0.91 0.91 0.81 584

Resnet50 SCC 0.93 0.92 0.93 323
Adeno 0.84 0.84 0.84 95
Pre cancer 0.83 0.86 0.84 57
Normal 0.83 0.84 0.84 109
Accuracy 0.89 584
Macro avg 0.86 0.86 0.86 584
Weighted avg 0.89 0.89 0.89 584

Random forest SCC 0.96 0.95 0.96 116
Adeno 0.95 0.98 0.97 59
Pre cancer 0.96 0.96 0.96 71
Accuracy 0.96 246
Macro avg 0.96 0.96 0.96 246
Weighted avg 0.96 0.96 0.96 246

Decision Tree SCC 0.98 0.91 0.94 116
Adeno 0.89 0.98 94 59
Pre cancer 0.95 0.99 0.97 71
Accuracy 0.95 246
Macro avg 0.94 0.96 0.95 246
Weighted avg 0.95 0.95 0.95 246

Model (Vgg16 + Random Forest) SCC 0.94 0.95 0.94 323
Adeno 0.88 0.87 0.88 95
Pre cancer 0.96 0.93 0.95 57
Normal 0.87 0.84 0.86 109
Accuracy 0.92 584
Macro avg 0.91 0.90 0.91 584
Weighted avg 0.92 0.92 0.92 584
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diagnostic solutions. These solutions, particularly those 
combining multiple data sources, have the potential to 
revolutionize the diagnostic process by providing quicker, 
more accurate, and less invasive methods.

When compared to previous studies, such as Chen et 
al. [33]. and Ming et al. [17], our multimodal approach 
demonstrates comparable performance. Chen et al. 
introduced MultiFuseNet, achieving 87.4% accuracy in 
diagnosing cervical dysplasia with multimodal data. In 
contrast, our model outperformed this with higher classi-
fication accuracy, emphasizing the benefits of integrating 
histopathological images with patient card-sheet data.

Ming et al. focused on cervical cancer detection using 
FDG-PET/CT images and single-modal approaches. Our 
study extends this by incorporating both image and text 

data, providing a more comprehensive detection system. 
By combining visual and textual information, our model 
enhances the accuracy and robustness of cervical cancer 
detection, showcasing the effectiveness of multimodal 
data integration.

This multimodal approach addresses limitations of 
single-modal systems by improving adaptability and pre-
diction accuracy in diverse clinical contexts. Automated 
diagnostics like ours could mitigate delays and errors 
inherent in manual biopsy interpretation, particularly in 
resource-constrained environments. The model’s clini-
cal utility lies in its potential for earlier detection and 
streamlined decision-making, which are vital for reduc-
ing cervical cancer morbidity and mortality.

The proposed multimodal system offers a promis-
ing diagnostic aid for low- and middle-income coun-
tries (LMICs). By combining non-invasive clinical data 
with biopsy images, it supports faster and more accurate 
screening that is deployable on affordable platforms suit-
able for rural clinics. This can reduce reliance on spe-
cialized pathologists and improve equity in healthcare 
access.

Conclusion
This study presents a novel multimodal approach for 
cervical cancer detection by integrating histopathologi-
cal image analysis with patient card-sheet data. While 
the Random Forest model based on tabular patient data 
achieved the highest accuracy (96%), and the VGG16 
model trained on biopsy images reached 91%, the pro-
posed multimodal fusion model achieved a balanced 
accuracy of 92%. Despite this slightly lower accuracy, 
the multimodal model offers enhanced robustness and 

Fig. 19  ROC curve for RF model

 

Fig. 18  Confusion matrix for RF model
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generalizability by combining visual pathology with clini-
cal history, reflecting real-world diagnostic practice more 
closely. Theoretically, this study contributes to the grow-
ing body of research on multimodal learning for disease 
detection by demonstrating how the integration of het-
erogeneous data sources can support improved clinical 
inference, particularly in low-resource settings.

This research makes several key contributions. First, it 
introduces a multimodal diagnostic framework that inte-
grates both image and tabular data to enhance cervical 
cancer detection. Second, it identifies and ranks critical 
clinical risk factors such as residential area, vaginal dis-
charge, post-coital bleeding, irregular menstruation, age 
at menarche, STI: syphilis, and STI: HIV using machine 

learning based feature selection techniques. Third, it 
highlights geographic disparities in cervical cancer inci-
dence, offering actionable public health insights into 
rural–urban differences in healthcare access. Finally, the 
study conducts ablation studies and comparative analy-
ses, demonstrating the relative strengths of unimodal 
versus multimodal approaches in a clinical setting.

Despite its strengths, this study has several limita-
tions. The dataset size, particularly for histopathological 
images, was relatively small, which may limit the model’s 
generalizability to unseen populations. Moreover, the 
models were trained and validated using retrospective 
data, and prospective clinical evaluation is needed to 
confirm real-world utility. Additionally, while SMOTE 
and data augmentation techniques were employed to 
handle class imbalance, these synthetic techniques may 
not fully capture the diversity of real patient data.

To further enhance the effectiveness and applicability 
of multimodal cervical cancer detection models, future 
work should consider the following: (I) Dataset Expan-
sion and Cross-Regional Validation: Utilize larger, more 
diverse datasets from multiple healthcare settings and 
populations to improve generalizability and model fair-
ness, (II) Model Deployment and Accessibility: Explore 
lightweight architectures and mobile-based implementa-
tions to enable deployment in rural clinics or community 
health centers across LMICs, and (III) Clinical Integra-
tion and User Testing: Conduct usability studies and pilot 
deployments to assess model performance in real-time 
clinical workflows and gather feedback from healthcare 
professionals.

Fig. 21  ROC curve for the decision tree model

 

Fig. 20  Confusion matrix curve for the decision tree model
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