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Abstract

Nano-based drug delivery systems present a promising approach to improve the efficacy
and safety of therapeutics by enabling targeted drug transport and controlled release. In
parallel, computational approaches—particularly Molecular Dynamics (MD) simulations
and Artificial Intelligence (AI)—have emerged as transformative tools to accelerate nanocar-
rier design and optimise their properties. MD simulations provide atomic-to-mesoscale
insights into nanoparticle interactions with biological membranes, elucidating how factors
such as surface charge density, ligand functionalisation and nanoparticle size affect cellular
uptake and stability. Complementing MD simulations, AI-driven models accelerate the
discovery of lipid-based nanoparticle formulations by analysing vast chemical datasets and
predicting optimal structures for gene delivery and vaccine development. By harnessing
these computational approaches, researchers can rapidly refine nanoparticle composition
to improve biocompatibility, reduce toxicity and achieve more precise drug targeting. This
review synthesises key advances in MD simulations and AI for two leading nanoparticle
platforms (gold and lipid nanoparticles) and highlights their role in enhancing therapeutic
performance. We evaluate how in silico models guide experimental validation, inform
rational design strategies and ultimately streamline the transition from bench to bedside.
Finally, we address key challenges such as data scarcity and complex in vivo dynamics
and propose future directions for integrating computational insights into next generation
nanodelivery systems.

Keywords: molecular dynamics; artificial intelligence; machine learning; gold nanoparti-
cles; lipid nanoparticles; nanomedicines

1. Introduction
The process of developing new therapeutic drugs is both costly and time-consuming,

often exceeding a decade, with research and development (R&D) costs ranging from USD
1 billion to over USD 2 billion per drug [1]. Despite these significant investments, the overall
success rate remains low. For instance, a recent analysis of nearly 4000 drug candidates
from the US, EU and Japan indicates that only approximately 12.8% of compounds entering
clinical trials eventually receive regulatory approval [2]. This low success rate, combined
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with prolonged development timelines, significantly delays access to life-saving therapies
for patients with unmet medical needs [3].

Compounding these challenges, traditional drug discovery heavily relies on animal
models for in vivo testing, a practice increasingly criticised for ethical concerns and its
limited ability to predict human response. These limitations have prompted the global
adoption of the 3Rs framework (Reduction, Refinement, Replacement) to minimise animal
use [4]. To address these challenges, computational approaches have emerged as solutions,
to accelerate drug development while reducing reliance on animal testing.

Nanomedicine, as defined by the European Medicines Agency (EMA) is “the applica-
tion of nanotechnology in view of making a medical diagnosis or treating or preventing
diseases” [5]. Nanotechnology broadly refers to the intentional design, characterisation and
production of materials, structures, devices and systems at the nanoscale (1–100 nm), al-
though some definitions extend beyond this range [6]. These nanomaterials possess unique
physicochemical properties that enable applications in diagnostics and therapeutics [7] and
as nano-based drug delivery systems (NDDSs). By engineering nanocarriers with tunable
size, shape and surface chemistry, researchers can improve tissue permeability, reduce
toxicity and enhance drug efficacy [8].

Among the diverse range of nanomaterials—including lipids, polymers, dendrimers
and metallic nanoparticles such as silver and gold (Figure 1) [9]—gold nanoparticles
(AuNPs) and lipid nanoparticles (LNPs) have garnered significant interest due to their
distinct advantages. AuNPs exhibit unique optical properties, chemical stability and
tunable surface chemistry [10], enabling their application in photothermal therapy, imaging
and drug delivery [11]. LNPs, on the other hand, have attracted considerable attention since
the FDA’s 1995 approval of Doxil® [12], the first nanodrug utilising PEGylated liposomal
doxorubicin for cancer therapy. This breakthrough was followed by the 2018 approval of
Onpattro® (Patisiran), the first RNA interference (RNAi) therapeutic targeting hereditary
transthyretin-mediated amyloidosis [13]. The versatility of LNPs was further exemplified
during the COVID-19 pandemic, where their ability to encapsulate nucleic acids was
pivotal in the development of mRNA vaccines, including Pfizer-BioNTech’s Comirnaty and
Moderna’s Spikevax®.

Despite these advances, the widespread clinical application of nanomedicine remains
limited [14]. A major challenge is the incomplete understanding of how nanomaterial
properties—such as size, shape and surface chemistry—translate to biological outcomes in
the human body [15]. In recent years, computational approaches have emerged as powerful
tools to tackle these challenges. MD simulations and Artificial Intelligence (AI) are among
the most promising computational techniques for modelling nanocarrier interactions in bi-
ological environments [16]. MD simulations offer a “computational microscope” to observe
atomic-level interactions and stability of nanocarriers in silico [17], while AI techniques can
mine larger datasets to identify patterns and optimise formulations rapidly [18].

This review is unique, as it highlights the recent integration of computer-aided devel-
opment, AI and nanomedicine in the design of nanodrugs—an emerging approach that is
transforming drug discovery and delivery. However, given that both nanomedicine and
computational simulations are relatively new fields, few comprehensive reviews effectively
integrate these domains. To address this gap, the present review focuses on MD simula-
tions in the design of AuNPs and LNPs for drug delivery, as well as on AI applications in
LNP design. We begin by discussing the foundational principles of MD simulations and
then critically evaluate how these computational techniques can be leveraged to enhance
NDDSs, comparing their respective strengths and limitations. Next, we examine the use
of AI in designing LNPs, highlighting how data-driven approaches can streamline and
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optimise formulation strategies. Finally, we discuss the current challenges that limit the
practical adoption of these tools and explore prospective directions for future research.

 

Figure 1. Schematic representation of various nanomaterials utilised in nano-based drug delivery
systems (Created in BioRender. Gobbo, O. (2025) https://BioRender.com/bx4wrz1 [19]).

2. Molecular Dynamics Simulations for the Development of Nano-Based
Drug Delivery
2.1. Fundamentals of Molecular Dynamics Simulations

MD simulations, first pioneered by Alder and Wainwright in 1957 [20], are computa-
tional techniques that model the behaviour of molecules and atoms by numerically solving
Newton’s equations of motion using predefined force fields [21]. MD simulations pro-
vide critical insights into nanoparticle stability, membrane interactions and drug loading
efficiency by capturing the atomic-scale behaviour of nanomaterials [22,23]. These sim-
ulations can be conducted at varying levels of resolution, each with distinct advantages
and limitations.

All-atom MD (AAMD) simulations explicitly represent each atom, offering highly
detailed molecular insights into molecular interactions and physiological processes [22].
However, due to their computational expense, AAMD simulations are typically restricted
to shorter timescales and smaller system sizes [22]. In contrast, coarse-grained MD (CGMD)
simulations reduce computational complexity by grouping clusters of atoms into simplified
representations known as “beads”, thereby enabling simulations of larger biomolecular
assemblies over longer timescales [24]. These clusters of atoms are given generalised physic-
ochemical character and joined together with “CG bonds”. How atoms are clustered and
transformed into these “beads” is determined by a mapping operation, M, where the con-
figuration, R, of the CG model is a function of the configuration, r, of an original atomistic
model. The cartesian coordinates, RI, of bead I are determined as a linear combination of
atomic Cartesian coordinates, ri, with constant, positive coefficients that often correspond
to, e.g., the centre of mass or geometry for the associated atomic group (Equation (1)) [25].

RI = MI(r) = ∑i cIiri, (1)

Different CGMD methods are defined by two components: (1) the mapping operator
and (2) defining the interactions between CG “beads” or sites. Different mapping operators
are often based upon the chemical understanding and needs of the researcher. In the case
of proteins, for example, atoms are often clustered by their associated amino acid group,
where one site is representative of that amino acid (Figure 2B). By positioning this site at the
α-carbon of the amino acid, this allows for detailed reconstruction of the protein backbone
and detection of secondary structures through Ramachandran maps [26,27]. Despite its
simplicity, this chemically informed method has been crucial to elucidating principles of
protein folding and interactions [28,29].

https://BioRender.com/bx4wrz1
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Figure 2. (A) Atomistic ball and stick rendering of the estrogen receptor α (PDB code: 3ERT) versus
(B) coarse grained visualisation of the protein (Created using NGLView (version 2.7.7) [26]). Colour
scheme in (A); grey: carbon, red: oxygen, yellow: sulphur; blue: nitrogen. In (B), the colours
correspond to different amino acids.

Different interactions between CG sites should capture the effects of different atomistic
details that have been eliminated from the CG model. While being highly efficient, CG
methods should retain “correct physics” for fundamental insight and accurate predictions.
Many ways of defining these interactions have been proposed. Foundational methods
often follow a “top-down” or “bottom-up” approach [25].

A “bottom-up” CG model is constructed based on the atomistic model for the same
system. For this, a statistical mechanics-based framework is often applied in which the
many-body potential of mean force (PMF) sits as the central quality. The many-body PMF,
W, is completely specified by the underlying atomistic model and the CG mapping and is
truly a potential that generates mean forces. Methods of approximating and utilising W are
covered in more detail by dedicated reviews [30].

A “top-down” model is generally constructed without the consideration of a more
detailed parent model. They often use real experimental observations, physicochemical
intuition and low-parameter phenomenological models. For example, chemically specific
top-down models often employ interaction potentials with simple functional forms that are
parametrised to reproduce thermodynamic properties, where sites correspond to 3–4 heavy
atoms. The popular Martini model extends this paradigm by providing transferable poten-
tials that describe the effects of hydrophobic, van der Waals and electrostatic interactions
between sites as a function of their polarity and charge [30].

All cases of CGMD simulations sacrifice some atomistic detail, yet remain highly
effective for studying large-scale nanoparticle behaviour, long-term stability and membrane
interactions (Figure 2). Additionally, when higher resolution is required, reverse mapping
techniques can reconstruct atomistic details from coarse-grained models [24].

A typical MD workflow includes selecting the starting structure, preparing the simula-
tion system, running the simulation on high-performance computing (HPC) resources and
analysing trajectories to extract molecular properties such as system stability and binding
energies. The most frequently used MD simulation software includes AMBER, CHARMM,
GROMACS and LAMMPS [31].

To highlight the complementary strengths of different modelling approaches, Table 1
provides a comparative summary of all-atom MD, CGMD and emerging specialised tools
such as DockSurf [32], with a focus on their resolution, advantages, limitations and typical
applications in nanodelivery research.
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Table 1. Comparative overview of MD, CGMD and DockSurf for modelling nano–bio interfaces.

Method Resolution/Scale Advantages Limitations

All-Atom MD Atomistic Detail (Å; ns–µs).

Explicit representation of every
atom.

Highly accurate molecular
interactions.

Secondary structure detection.

Computationally intensive.
Restricted to short timescale

and small systems.

CGMD Coarse-Grained (µs–ms).

Extends timescales and system
sizes.

Computationally efficient.
Transferable force fields

(e.g., Martini)

Sacrifices atomistic detail.
May oversimplify

orientation-dependent
binding and unfolding.

DockSurf Protein–Surface Docking.
Rapid exploration of protein

adsorption.
Unbiased by initial placement.

Limited to predefined
surfaces.

2.2. Molecular Dynamics Simulations for Designing Gold Nanoparticles
2.2.1. Simulations on Optimal Size and Surface Charge Density of AuNPs

Surface charge density (SCD) can significantly influence the interaction of AuNPs with
biological membranes, particularly their penetration, permeability and toxicity [33]. By
utilising CGMD simulations, Lin et al. [34] demonstrated that the interaction of AuNPs
with lipid membranes is highly dependent on SCD, influencing both cellular uptake and
cytotoxicity. Their simulations revealed that cationic AuNPs exhibit strong adhesion to
negatively charged membranes, facilitating penetration at moderate SCD levels of up to 50%
without causing immediate structural damage. However, beyond this threshold, significant
membrane disruption occurs, compromising membrane integrity and potentially leading
to cytotoxic effects.

Similarly, Quan et al. [35] explored the influence of SCD on asymmetric membranes,
which more closely resemble those found in mammalian cells. Their simulations revealed
that cationic AuNPs with an SCD of up to 70% exhibited enhanced penetration, facilitating
cellular uptake. However, beyond this threshold, increased charge density led to membrane
disruption, characterised by flip-flop and loss of membrane asymmetry, which could
compromise structural integrity and potentially hinder further uptake (Figure 3). Their
CGMD simulations further suggest that low-SCD AuNPs are better suited for drug delivery
systems due to their reduced cytotoxicity, whereas highly charged AuNPs, capable of
significant membrane disruption, may be advantageous for tumour-selective therapies.

Figure 3. Effect of AuNP surface charge density (SCD) on lipid bilayer penetration, based on CGMD
simulations. Higher SCD increases membrane interaction, leading to disruption beyond 70% SCD
(Created in BioRender. Gobbo, O. (2025) https://BioRender.com/tocgzot [19]).

With AuNPs typically ranging from 1 to 100 nm, determining the optimal size for
specific biomedical applications is crucial. Size directly influences the optical and physico-
chemical properties of AuNPs, affecting tissue permeability and the interactions with cell
membranes [36]. Gupta et al. [37] employed CGMD simulations to examine how AuNP size

https://BioRender.com/tocgzot
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influences penetration through the skin’s lipid bilayer. Their findings revealed that smaller
AuNPs penetrate the bilayer with minimal disruption, whereas larger AuNPs induced
membrane disruption and formed hydrophobic cavities. Notably, the study observed a
self-healing effect, where the bilayer reorganised and restored its structural integrity after
AuNP translocation. This suggests that AuNP-induced disruptions may be temporary,
potentially affecting membrane permeability and drug retention within tissues.

Furthermore, Gupta et al. [38] employed CGMD simulations to investigate the com-
bined effects of AuNP surface charge and size on skin permeability. Their findings revealed
that both cationic and anionic AuNPs predominantly remained adsorbed at the lipid bilayer
headgroup and did not penetrate. In contrast, neutral hydrophobic AuNPs penetrated the
bilayer within approximately 200 nanoseconds. Moreover, smaller neutral hydrophobic
AuNPs induced greater membrane disruption, whereas larger particles exhibited reduced
permeability. These MD simulations offer molecular-level insights to guide the design of
transdermal drug delivery systems.

2.2.2. Simulations on Stability of AuNPs

The small size and high surface energy of AuNPs make them prone to agglomeration in
solvents. To prevent agglomeration, an effective monolayer must be formed, making ligand
capping density a key factor in nanoparticle stability [39]. Researchers have employed
CGMD simulations and AAMD simulations to examine how nanoparticle size, capping
length and capping density influence monolayer formation and stability.

For instance, Colangelo et al. [40] explored the relationship between peptide struc-
ture and its arrangement on AuNPs using AAMD simulations and experimental tech-
niques such as FTIR spectroscopy. Their findings demonstrated that higher capping
densities resulted in compact and well-ordered monolayers, whereas lower capping den-
sities led to disordered peptide organisation. Additionally, longer peptides exhibited
greater structural organisation, forming extended β-sheet domains, particularly on larger
AuNPs. This research underscores the role of ligand density in monolayer stability and
nanoparticle functionalisation.

Nqayi et al. [41] investigated the effects of varying AuNP size, polyethylene glycol
(PEG) length and ligand density on nanoparticle stability using CGMD simulations. Their
findings indicate that smaller AuNPs have lower coordination numbers, leading to in-
creased reactivity and reduced stability. In contrast, larger AuNPs have higher coordination
numbers and lower surface energy, enhancing stability. The study also found that PEG
molecules with a chain length of n = 2 provide optimal stability, while longer chains do
not significantly enhance stability due to steric hindrance. Additionally, electron-donating
groups (–NH2, OH) enhance nanoparticle stability, whereas electron-withdrawing groups
(COOH) increase reactivity, leading to reduced stability. These findings emphasise the need
for precise optimisation of AuNP size and surface functionalisation to enhance stability for
drug delivery.

2.2.3. Interaction of AuNPs with Biological Membranes

Upon in vivo administration, nanoparticles interact with biological fluids, forming a
protein corona which influences their biological activity [42]. This adsorption process can
induce structural modifications in proteins, potentially causing denaturation, conforma-
tional changes and functional loss [43]. Gaining insights into the composition and dynamics
of protein coronas is essential for engineering nanoparticles with improved safety and
functionality in biomedical applications.

Sajib et al. [43] employed CGMD simulations and AAMD simulations to investigate
the formation and structural properties of the protein corona on bare AuNPs, a key factor
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influencing their interaction with biological membranes. Their findings revealed that
nanoparticle size plays a critical role in protein adsorption and orientation, directly affecting
AuNP-membrane interactions. Smaller AuNPs formed a stable, single-layer corona, while
larger AuNPs led to multilayered protein adsorption, driven by stronger protein–protein
interactions (Figure 4). Further analysis showed that adsorption onto AuNPs induced
structural changes in smaller proteins, with a loss of α-helices and an increase in disordered
conformation. While a well-formed protein corona can improve biocompatibility and
enhance drug delivery, excessive protein adsorption may trigger opsonisation, accelerating
nanoparticle clearance and reducing bioavailability. These findings emphasise the role of
MD simulations in predicting corona stability and guiding the design of AuNP-based drug
delivery systems. Notably, these results align with Zhang et al. [44], who also observed
that AuNPs induce structural changes in adsorbed proteins, with size-dependent effects
influencing aggregation behaviour.

   

Figure 4. Molecular simulations of protein corona formation on AuNPs and their interactions with
biological membranes. (Created using ChatGPT 4 and Adobe Photoshop 2025 Version 26.8 and
Adapted from Sajib et al. [43]).

Beyond computational studies, experimental validation is essential to confirm these
computational findings under physiological conditions. Using circular dichroism (CD)
spectroscopy and MD simulations, Kaumbekova et al. [45] investigated the conformational
stability of bovine serum albumin (BSA) upon AuNP interaction. Their results revealed
that 5 nm AuNPs alone caused minimal structural changes, but in the presence of NaCl,
a synergistic destabilisation effect led to partial α-helix loss. Further MD simulations
showed that smaller AuNPs induced greater conformational changes, consistent with
earlier computational predictions.

MD simulations can also provide valuable insights into the potential adverse effects of
inorganic nanoparticles arising from their interactions with biomolecules. Shao et al. [46]
employed AAMD simulations to investigate the allosteric effects of AuNP binding on
human serum albumin (HSA), a key transport protein in the bloodstream. Their findings
revealed that AuNP binding induced conformational changes in approximately 10% of
HSA residues, not only at the adsorption site but also at key ligand-binding regions such
as fatty acid, thyroxin and metal ion sites. These structural modifications may influence
HSA’s biological function, highlighting the need to consider allosteric effects in nanoparticle
design. This study demonstrates how MD simulation can aid in developing functionalised
AuNPs to reduce unintended protein interactions.

Tavanti et al. [47] used CGMD simulations to investigate how common blood proteins—
serum albumin, haemoglobin, complement C3 and α1-antiproteinase—interact with AuNPs
capped with hydrophobic ligands. Their simulations revealed that protein binding was
primarily driven by hydrophobic interactions between amino acid residues and the ligand,
leading to the formation of a stable protein corona. Despite strong adsorption, the secondary
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and tertiary structures of the bound proteins remained largely intact. These findings suggest
that hydrophobic capping ligands could be utilised in nanodelivery system design to help
maintain protein structural integrity and minimise unintended biological interactions.

Beyond traditional MD and CGMD simulations, recent advances have introduced spe-
cialised tools that directly address protein adsorption onto inorganic surfaces. One example
is DockSurf, a molecular modelling software developed to predict protein orientations and
adsorption modes on Au{111} surfaces [32].

Unlike standard MD, which is often sensitive to the initial placement of proteins,
DockSurf systematically rotates proteins through different orientations and evaluates
their stability using energy maps, quickly identifying the most favourable protein–surface
configurations. These predictions have been benchmarked against MD trajectories for
common serum proteins such as albumin, demonstrating their reliability in capturing
how proteins organise at the nanoparticle interface. Such interface-focused modelling is
particularly useful for nanodelivery applications, where the mode of protein attachment can
determine whether a nanoparticle circulates safely in the body, avoids premature clearance,
and successfully delivers its therapeutic payload.

Consistent with this, recent studies emphasise that engineering the nanoparticle-
protein interface through ligand design, e.g., by using polyethylene glycol or zwitterionic
coatings, can modulate corona formation, cellular uptake and therapeutic activity [48].

2.3. Molecular Dynamics Simulations for Designing Lipid Nanoparticles
2.3.1. Molecular Insights into Lipid Nanoparticles Interactions with Biological Membranes

Traditional liposomes have been investigated for nucleic acid delivery; however, their
low encapsulation efficiency and limited delivery success present significant challenges [49].
To overcome these limitations, cationic lipids were introduced due to their ability to
form electrostatic complexes with negatively charged nucleic acids, thereby enhancing
encapsulation efficiency and facilitating intracellular delivery [50].

Using CGMD simulations, Ou et al. [51] investigated how variations in core hydropho-
bicity and lipid coatings of cationic lipid nanoparticles (cLNPs) influence their membrane
specificity. Their findings revealed that highly unsaturated cationic lipid coatings signifi-
cantly enhanced the membrane-binding probability of cLNPs, particularly toward bacterial
cell membranes. This interaction followed a two-step mechanism: electrostatic adhesion,
followed by hydrophobic insertion, leading to membrane disruption and bacterial toxicity.
Interestingly, these cLNPs did not bind to red blood cell membranes, highlighting their se-
lective antibacterial activity (Figure 5). These insights provide a foundation for the rational
design of LNPs with improved bacterial targeting while minimising off-target effects.

 

Figure 5. (a) cLNPs bind via an initial electrostatic adsorption to the bilayer, following by lipid
exchange that drives hydrophobic locking. (b) The binding strength is tuned by the NP-Core
hydrophobicity and coating-lipid tail unsaturation. (c) This enables selective adhesion to bacterial-
like membranes over red blood cell models. (Created using ChatGPT 4 & Adobe Photoshop 2025
Version 26.8 and adapted from Ou et al. [51]).
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2.3.2. MD Simulation in Mucoadhesive Nanocarrier Design

Beyond bacterial targeting, MD simulations have also been instrumental in screen-
ing ligand–membrane interactions and optimising nanoparticle adhesion for ocular drug
delivery. This was demonstrated by Pai et al. [52], who used MD simulations to evaluate
the mucoadhesive properties of three ligands—chitosan oligosaccharide (COS), steary-
lamine (STA) and cetrimonium bromide (CTAB)—on Mucin-4 (MUC4), a glycoprotein
abundant in the ocular epithelium. Their results revealed that COS exhibited the highest
mucoadhesion, forming simultaneous multiple interactions, including hydrogen bonding,
ionic interactions and hydrophobic interactions. STA showed moderate binding, while
CTAB demonstrated minimal interaction with MUC4. These findings were validated
through in vitro and in vivo studies in rats. While MD simulations effectively predicted
ligand binding, the model did not account for physiological factors such as tear clearance,
which influence drug retention. Nevertheless, these findings highlight the potential of
computational approaches in guiding the rational design of mucoadhesive nanocarriers for
enhanced ocular drug delivery.

2.3.3. MD Simulations for Optimising Drug Permeability

MD simulations provide a bottom-up approach to designing drug delivery systems
by identifying molecular factors that contribute to poor bioavailability. By predicting
drug-membrane interactions, MD complements experimental findings and aids in selecting
optimal ligands to enhance permeability, stability and therapeutic efficacy. A key appli-
cation of MD simulations in drug delivery is its ability to identify molecular interactions
that hinder drug permeability, guiding strategies to improve drug transport. This was
exemplified by Li et al. [53], who employed MD simulations to investigate the transmem-
brane characteristics and low ocular bioavailability of the active drug tetrandrine (TET).
The simulations revealed that TET’s hydrophobic groups strongly interacted with the
POPC lipid membrane tails, while its two amine groups in the hydrophilic region hindered
its passage through the membrane centre. These findings, consistent with experimental
results, guided researchers toward functionalising TET-loaded LNPs with cationic ligands
to improve ocular permeability and bioavailability.

A similar study by Li et al. [54] utilised MD simulations to examine the interac-
tions of baicalein (BAI) with a simulated POPC membrane. The simulations revealed
that BAI exhibited strong hydrophilic interactions with the phosphate group of the mem-
brane, while its weak hydrophobic interactions with the lipid tails contributed to its low
ocular availability. These findings highlighted the barriers to membrane permeability,
which limit BAI’s effectiveness as an ocular drug. Although MD simulations did not
explicitly test BAI’s interactions with LNPs, they provided key insights into its poor trans-
membrane permeability, guiding the development of trimethyl chitosan coated LNPs to
enhance bioavailability.

2.3.4. Molecular Dynamics Simulations for Optimising Lipid Nanoparticles Assembly
and Stability

MD simulations can also be employed in assessing the self-assembly and stability of
LNPs, providing molecular-level insights into their structural organisation. Fernandez-
Luengo et al. [17] employed CGMD simulations using the MARTINI force field to investi-
gate the self-assembly and surfactant behaviour of LNPs composed of tripalmitin lipids
with Tween 20 as a stabilising agent. Their findings revealed that tripalmitin LNPs ex-
hibit high lipid mobility, with a liquid-like core rather than a rigid, well-ordered structure.
Additionally, the study assessed the role of Tween 20 in stabilising LNPs. The simula-
tions demonstrated that Tween 20 did not form a homogeneous monolayer around the
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LNP but instead assembled into uneven patches, leaving some regions of the nanoparti-
cle surface exposed. This irregular distribution of the surfactant could impact the steric
stabilisation of LNPs and their interactions with biological environments. These findings
highlight the ability of MD simulations to predict nanocarrier stability and optimise lipid–
surfactant compositions, reducing reliance on trial-and-error experimental approaches
in LNP formulation.

Long-term physical stability remains a major challenge in the development of LNPs,
especially those containing ionisable amino lipids. Gindy et al. [55] identified Ost-
wald ripening, a process in which smaller nanoparticles dissolve and redeposit onto
larger ones, as a key factor contributing to LNPs instability. Using CGMD simulations,
they investigated how different phospholipid compositions—1,2-dimyristoyl-sn-glycero-
3-phosphocholine (DMPC), Distearoylphosphatidylcholine (DSPC) and dilauroylphos-
phatidylcholine (DLPC)—affected nanoparticle stability. Their findings revealed that LNPs
formulated with DMPC exhibited more uniform molecular packing, which significantly
slowed down Ostwald ripening compared to LNPs containing DSPC and DLPC. These
computational predictions were further validated by experimental studies, which demon-
strated that DMPC-based LNPs maintained improved structural stability over extended
storage periods. This study highlights the critical role of MD simulations in predicting
optimal lipid compositions stabilising LNPs.

LNPs have become essential for delivering genetic materials, such as siRNA and
mRNA, in therapeutic and vaccine applications. However, their stability is highly depen-
dent on environmental factors, including the presence of ethanol, a common solvent used
during LNP formulation. Hardianto et al. [56] investigated the molecular effects of ethanol
using MD simulations. Their findings demonstrated that ethanol disrupted lipid packing,
increased solvent penetration and compromised the encapsulated genetic material. Root
mean square deviation (RMSD) analysis revealed progressive structural instability, while
solvent-accessible surface area (SASA) calculations showed enhanced siRNA exposure,
suggesting a reduction in protective lipid coverage. Additionally, hydrogen bond anal-
ysis indicated that ethanol formed interactions with siRNA, interfering with lipid-RNA
bonding networks and accelerated destabilisation. These results emphasise the need for
rapid ethanol removal during LNP production to preserve nanoparticle stability and ensure
effective drug delivery.

Paloncyová et al. [57] investigated the structural organisation and stability of RNA-
loaded LNPs across different pH condition using MD simulations. The LNP formulation
examined included ionisable lipids (ILs), cholesterol, DPPC and PEGylated lipids, closely
resembling those in mRNA vaccines such as Pfizer-BioNTech’s COVID-19 vaccine. The
simulations revealed that at low pH, ILs remained protonated, forming stable electrostatic
interactions with RNA and maintaining efficient encapsulation within the LNP core. How-
ever, as pH increased and ILs become deprotonated, these interactions weakened, leading
to RNA displacement and structural rearrangement of the LNP.

These findings suggest that optimising IL composition and charge behaviour could
enhance RNA stability and delivery efficiency. Importantly, atomistic MD simulations
verified these observations, reinforcing the predictive capability of computational methods
in guiding rational LNP design.

3. Artificial Intelligence and Machine Learning for Designing
Lipid Nanoparticles
3.1. Fundamentals of Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) comprises computational methods that simulate human
intelligence, allowing machines to perform tasks such as learning, reasoning and problem
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solving [58]. In nanomedicine, AI facilitates the analysis of complex datasets, aiding in
the design and optimisation of nanoparticles for drug delivery. AI algorithms can predict
nanoparticle behaviour in biological environments, improving targeting specificity and
reducing off-target effects [59].

Machine Learning (ML), a branch of AI, involves training algorithms on large datasets
to recognise patterns and make data-driven decision [60]. In nanodelivery systems, ML
models can optimise parameters such as nanoparticle size, surface chemistry and drug
release kinetics [59]. This predictive capability accelerates the development of nanoparticles
with desired properties, streamlining the drug delivery process (Figure 6).

 

Figure 6. Key AI components and techniques used for the design and optimisation of LNPs (Created
in BioRender. Gobbo, O. (2025) https://BioRender.com/gx3k1pf [19]).

A major turning point in machine learning was the emergence of deep learning,
which enables algorithms to automatically learn patterns from complex data. Unlike earlier
approaches that depended on manually engineered features, deep learning can extract infor-
mative representations directly from raw inputs such as images, text or molecular structures.
This breakthrough, highlighted in a review by LeCun et al. [61], transformed areas such
as image and speech recognition and opened new directions in fields including genomics
and drug discovery. These advances now underpin applications in nanomedicine, where
learning from high-dimensional biological datasets is essential for predicting nanoparticle
behaviour and drug release profiles, as well as patient-specific responses.

Traditionally, the development of designing LNPs relied on extensive trial and error,
consuming significant time and resources. However, AI-driven methods have transformed
this process by enabling rapid computational screening of vast lipid libraries, predicting
optimal nanoparticle formulations prior to laboratory testing. Building on these capabilities,
the next section of our review examines how AI-driven models optimise LNP design for
drug delivery, with a focus on mRNA vaccines and gene therapy applications. While

https://BioRender.com/gx3k1pf
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AuNPs have been studied for their tunable properties, the application of AI in their design
remains limited.

3.2. Current Applications of Artificial Intelligence to Design Lipid Nanoparticles
3.2.1. Applications of Artificial Intelligence to Design Lipid Nanoparticles for
mRNA Delivery

The design and formulation of nanomaterials have greatly benefited from AI, which
allows researchers to screen thousands of material combinations before laboratory for-
mulation [18]. LNPs have emerged as the leading non-viral delivery system of mRNA,
playing a pivotal role in gene therapy and vaccine development. A critical component of
LNPs, ionisable lipids, has traditionally been developed through experimental screening or
rational design-methods that are often labour-intensive and may overlook optimal lipid
structures. However, advances in AI, particularly deep learning, have revolutionised this
field by enabling the rapid and efficient design of ionisable lipids, subject to the availability
of good quality, relevant and large datasets.

The AI-Guided Ionisable Lipid Engineering (AGILE) platform developed by
Xu et al. [62] is a deep learning-powered approach, designed to accelerate the development
of ionisable lipids for mRNA delivery [18]. AGILE employs a graph neural network (GNN),
a machine learning model that processes molecular structures as graphs, to predict how
well different LNPs will deliver mRNA into cells. The system follows a two-phase learning
strategy: self-supervised pre-training on a virtual library of 60,000 lipids, followed by
supervised fine-tuning using data from 1200 experimentally synthesised lipids, ultimately
screening a 12,000-candidate lipid library (Figure 7). This approach enabled accurate pre-
dictions of mRNA transfection potency (mTP), identifying high-performance candidates
such as H9 and R6. H9 LNPs demonstrated a 7.8-fold increase in mRNA delivery to muscle
tissue with reduced off-target accumulation, while R6 LNPs exhibited a five-fold increase
in transfection efficiency compared to H9, highlighting AGILE’s ability to identify ionisable
lipids optimised for macrophage-targeted mRNA delivery. However, despite AGILE’s
ability to overcome data scarcity through pre-training and fine-tuning, it does not account
for data imbalance, which contributes to significant prediction errors [63].

 

Figure 7. AI-driven screening and optimisation of ionisable lipids for mRNA delivery. The process
involves self-supervised training on a virtual lipid library, fine-tuning with experimental data and
model-based candidate ranking for validation (Created in BioRender. Gobbo, O. (2025) https://
BioRender.com/g7h4ysc [19] and adapted from Xu et al. [62]).

https://BioRender.com/g7h4ysc
https://BioRender.com/g7h4ysc
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To address AGILE’s limitations, Wu et al. [63] developed TransLNP, a transformer-
based deep learning model designed to enhance the screening and selection of LNPs
for mRNA delivery, analysing the relationship between lipid molecular structure and
transfection efficiency. Given the challenge of imbalanced LNP datasets, they introduced
the BalMol block, which balances the data by adjusting how frequently different lipid
types are represented in the dataset, leading to more reliable predictions. By integrating
TransLNP with the BalMol block, they reduced the mean squared error (MSE) to 1.47 on
the AGILE dataset, significantly improving predictive accuracy. Their study confirms
that AI, particularly ML, can be effectively employed in LNP design, facilitating quicker
and more precise predictions for mRNA therapeutic applications, thereby advancing the
development of effective drug delivery systems.

While AGILE and TransLNP primarily focus on LNP screening and transfection
prediction, Bae et al. [64] used a Random Forest (RF) regression model to analyse 213 LNP
formulations, incorporating 314 molecular features to predict mRNA delivery efficiency.
Their study identified phenolic hydroxyl groups within ionisable lipids as a key factor in
enhancing mRNA encapsulation and expression. Additionally, they examined the impact
of carbon chain length, finding that longer chains led to unstable multi-compartmental
structures, ultimately reducing delivery efficiency. The RF model also demonstrated strong
predictive power, achieving a Pearson correlation coefficient of 0.845, indicating its ability
to accurately capture the relationship between molecular structure and mRNA expression.

3.2.2. Applications of Artificial Intelligence to Design Lipid Nanoparticles for
Gene Therapy

Despite the success of mRNA vaccines and hepatic RNA delivery, targeted LNPs
are needed to expand RNA-based therapies for genetic disease [65]. Lung-targeted gene
therapy remains challenging but holds promise for treating conditions such as cystic
fibrosis [66] and chronic obstructive pulmonary disease [67]. To address these challenges,
Witten et al. [57] developed Lipid Optimisation using Neural Networks (LiON), an AI-
driven framework designed to enhance ionisable LNP formulations for gene therapy. Using
directed message-passing neural networks (D-MPNNs), a subset of deep learning, LiON
analyses the structures of ionisable lipids and predicts their ability to deliver nucleic acids
efficiently. To train the model, the authors compiled a dataset comprising over 9000 LNP
activity measurements, including in vitro and in vivo studies.

LiON evaluated 1.6 million lipid structures in silico and successfully identified two
novel lipid structures, FO-32 and FO-35, which demonstrated highly efficient mRNA
delivery to the lungs, muscles and nasal tissue. FO-32 exhibited comparable efficiency to
leading nebulised mRNA delivery systems in the mouse lung, and both FO-32 and FO-35
efficiently delivered mRNA to ferret lungs.

4. Rational Engineering of Nanoparticle Interfaces and Implications for
Drug Delivery

The data reviewed in this work underscore that the performance of nano-based drug
delivery systems is strongly influenced by the rational engineering of their interfaces: the
dynamic region where a nanoparticle first encounters the biological milieu. This bio–nano
interface governs the earliest stages of interaction with cells, proteins and extracellular
components, ultimately dictating biodistribution, clearance rates and therapeutic outcomes.

MD simulations have been particularly valuable for dissecting these relationships at
atomic and mesoscale resolution. By systematically varying parameters such as surface
charge density, ligand orientation, PEGylation extent and hydrophobicity, MD studies
reveal how small adjustments can produce significant changes in membrane adhesion,
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penetration kinetics and protein corona composition [68]. For example, optimising AuNP
surface charge within a defined threshold range can enhance membrane binding and uptake
while minimising structural disruption and cytotoxicity [69]. Similarly, ligand length and
capping density have been shown to influence steric repulsion, corona evolution and the
likelihood of immune system recognition—factors that are directly relevant to circulation
half-life and tissue targeting.

From a biological perspective, these engineered interface features have direct and
measurable impacts on delivery performance [70]:

• Target tissue accumulation can be increased through receptor-specific ligand display
and by reducing non-specific adhesion.

• Intracellular trafficking can be modulated to favour endocytic pathways that improve
cytosolic delivery and endosomal escape.

• Drug release kinetics can be tailored via stimulus-responsive linkers that respond to
pH, enzymatic activity or redox gradients within pathological microenvironments
(e.g., acidic microenvironment around tumor cells).

• Immunogenicity and clearance can be reduced by controlling nanoparticle corona
formation through antifouling chemistries and optimised PEG architectures.

AI complements this mechanistic insight by identifying complex, non-linear relation-
ships between surface chemistry and biological performance that are often difficult to
predict empirically. ML models trained on physicochemical–biological datasets can forecast
how specific lipid blends or polymer architectures will influence both stability and thera-
peutic potency. When integrated with MD-derived mechanistic predictions, this approach
supports a closed-loop design–test–refine strategy, enabling rapid iteration towards optimal
interface designs without relying solely on trial and error [71].

The convergence of computational modelling and rational interface engineering there-
fore represents a powerful shift in nanomedicine development: from empirical formulation
towards predictive, hypothesis-driven optimisation. This approach not only accelerates
preclinical design but also improves the probability that in vitro gains will translate to
in vivo efficacy by anticipating protein corona dynamics, variable pH environments and
fluid shear stresses present in physiological systems. Ultimately, the deliberate design of
nanoparticle interfaces, guided by both MD simulations and AI-driven analytics, offers a
route to more predictable pharmacokinetics, enhanced therapeutic indices and reduced
translational failure rates, thereby facilitating the advancement of safer and more effective
patient-specific nanomedicines [72].

5. Conclusions
Computational methods, encompassing both MD simulations and AI are reshaping

nano-based drug delivery systems by optimising formulations and providing deeper
insights into nanoparticle–biological macromolecule interactions. However, computational
predictions must be validated under physiologically relevant conditions to ensure their
accuracy and applicability. Experimental studies, such as circular dichroism for protein
structural changes, cryo-TEM for nanoparticle morphology, dynamic light scattering for
stability, and in vitro/in vivo biodistribution assays, serve to confirm simulation-derived
hypotheses, identify unanticipated behaviours and refine computational models.

The integration of these approaches supports a closed-loop design framework:

• Simulation-led screening to identify promising formulations.
• Experimental validation to confirm physicochemical properties and biological activity.
• Feedback to models to update simulation parameters based on empirical data, improv-

ing predictive accuracy.
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This iterative cycle reduces reliance on trial-and-error experimentation, enhances the
likelihood that in vitro gains will translate in vivo, and accelerates the progression from
benchtop discovery to clinical application. We have added this integration framework to
the concluding analysis to emphasise that simulation and experimental validation are not
parallel alternatives but interdependent components of a unified NDDS design strategy.

MD simulations offer molecular-level precision, allowing researchers to predict how
variations in size, surface charge and ligand density influence the stability and functionality
of AuNPs and LNPs. Meanwhile, AI-driven algorithms complement these insights by
rapidly screening vast chemical libraries, identifying optimal nanocarrier compositions
and predicting drug delivery efficiency. Together, these computational approaches bridge
the gap between theoretical design and experimental validation, significantly accelerating
developing in nanomedicine.

By identifying formulations with enhanced biocompatibility and targeted delivery,
computational approaches streamline therapeutic development while reducing reliance on
labour-intensive trial-and-error experimentation. They also contribute to reducing reliance
on animal models, aligning with ethical guidelines to promote refinement and eventual
replacement of in vivo testing. Despite these advances, challenges remain, such as the
need for standardised, high-quality datasets and models that more accurately reflect the
complexity of human physiology. Addressing these gaps will be crucial for translating
computational predictions in clinically viable nanomedicine solutions, ultimately enabling
more precise and patient-specific therapies. As these technologies continue to evolve,
their integration holds immense potential to transform patient care through more effective,
targeted and personalised drug delivery systems.

6. Challenges and Future Directions
The integration of AI and MD simulations in designing nanodelivery systems presents

significant potential but also several challenges. MD simulations are computationally
intensive. Running large-scale simulations requires substantial processing power, often
necessitating high-performance computing resources and parallel computing with Graphics
Processing Units to improve efficiency. Without these resources, simulations are constrained
to shorter timescales and smaller system sizes, limiting their ability to capture biologically
relevant processes.

Additionally, the accuracy of MD simulations depends on the quality of force fields
used to model atomic interactions. Current force fields may not always capture the complex
behaviour of nanoparticles in biological environments, leading to discrepancies between
computational predictions and experimental outcomes. Refining these force fields is
important for improving the predictive accuracy of MD simulations and ensuring reli-
able results for drug delivery applications and more accurate modelling of nanoparticle-
biological interactions.

Beyond system-level considerations, there are also critical interface-specific challenges.
Protein and peptide adsorption onto nanoparticle surfaces is inherently dynamic, involving
conformational rearrangements and competitive exchange within the protein corona. These
processes occur on timescales that remain largely inaccessible to conventional MD or
CGMD simulations. While coarse-grained models extend accessible timescales, they can
oversimplify key details such as orientation-dependent binding or partial unfolding, both
of which strongly influence nanoparticle recognition and biological fate. Standard MD
is also constrained by its sensitivity to the initial placement of proteins, which may bias
adsorption outcomes and reduce reproducibility.

New approaches such as DockSurf mitigate this by systematically exploring orien-
tation landscapes to provide unbiased predictions of protein–surface geometries [32]. In
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parallel, experimental and computational studies have shown that ligand chemistry is
a dominant factor shaping corona composition and dynamics, with direct consequences
for cellular uptake, immune recognition, and therapeutic efficacy [48]. Collectively, these
limitations highlight the need for hybrid frameworks that integrate atomistic accuracy with
efficient sampling, and that are closely coupled with experimental validation, to capture
the full complexity of nano–bio interfaces.

AI-driven approaches also face several key challenges. One major limitation is the
availability and quality of data. AI models, particularly deep learning systems, require
large datasets to make accurate predictions. However, in nanomedicine, experimental data
remains scarce and often lacks standardisation. Another challenge is the interpretability
of AI-driven predictions. Many machine learning models, particularly deep learning
algorithms, function as “black boxes,” meaning that their decision-making processes are
difficult to understand [73]. This lack of transparency poses obstacles for clinical adoption,
as regulatory bodies and healthcare professionals require explainable models to ensure
patient safety and therapeutic reliability.

Another promising avenue is the integration of AI with physics-based simulations,
such as MD. Hybrid models that combine AI’s data-driven insights with the mecha-
nistic accuracy of MD simulations can improve nanoparticle design by offering a com-
prehensive understanding of their behaviour in biological environments [74]. Further-
more, the development of Explainable AI techniques (XAI) is essential to enhance trans-
parency in AI-driven predictions. By making AI models more interpretable, XAI can
increase trust among researchers, clinicians and regulatory authorities, facilitating their
adoption in nanomedicine [75].

Finally, personalised nanomedicine represents an exciting frontier. Leveraging AI to
design patient-specific nanocarriers could revolutionise treatment by considering genetic,
environmental and lifestyle factors. This personalised approach could enhance therapeutic
efficacy, minimise adverse effects and lead to more precise drug targeting [73].
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