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Abstract

In this paper we report on our work in realising an approachideo shot matching which in-
volves automatically segmenting video into abstract tmtieixded shapes in such a way that there is
temporal coherency. These shapes representing apprioximsat objects and background regions
can then be matched giving fine-grained shot-shot matcHing main contributions of the paper are
firstly the extension of our segmentation algorithm fod gtilages to spatial segmentation in video,
and secondly the introduction a measurement of temporareoley of the spatial segmentation.
This latter allows us to quantitatively demonstrate theaffeness of our approach on real video
data.

1 Introduction

Content-based access to video material is of huge imp@tascdhe issues of capture, compression,
storage, transmission and presentation are solved enougjlowv widespread, large-scale deployment
of digital video systems. These digital video systems aexlun applications as diverse as CCTV
and surveillance [4], to TiVo, SKY+ and home access to braad@V archives [9] and the content-
based applications we seek to develop include searchiagsbrg, summarisation and automatic linking
between related video clips.

There are several different ways in which video material lmamnalysed in order to support content
operations and the most straightforward, and widespread,Lise the spoken dialogue associated with a
video as a key for content-based access. This can be shovantasilarly useful in access to broadcast
TV news, as the TRECVid benchmarking exercise has illustrannually since 2001 [10]. However,
spoken dialogue access, whether based on closed capti@pe@ch recognition, is limited in that its
access is not based on an anlysis of the actual visual comtelgton what is spoken about. Thus it is
useful for topical rather than content-based retrieval.

Keyframe image matching is an approach to video retrievathith a single image from a video, a
keyframe, is used as a surrogate representation for are esfitit. Keyframes can be used as an input
for image-based retrieval using low-level features sucbodmur, texture and edge histograms and such
approaches are popular in the TRECVid community [10]. Forenaalvanced systems, objects appearing



in keyframes can be used to support object-object matchimgnveuch objects can be segmented from
their backgrounds. This is more fine-grained than keyframatching and there are a small number of
systems which can demonstrate this [8], [7].

While these approaches are useful for high-level retrigvay do have limitations if trying to do
exact shot matching, such as in the detection of shots wiaieé similar composition, colours, textures,
camera and object motions. This is useful in near-duplisht# detection or in automatically creating
links between very similar shots. If a shot contains objext/ar camera motion then these, and their
movements, are lost as a single keyframe cannot capture. tiregeneral there has not been much work
on matching an entire shot against another entire shot usgngl features, though the work on temporal
correlograms [6] is close.

To do full-scale shot-shot matching it make sense to ag¢gegeclump the visual features appearing
in a frame into regions, and keep those regions across thefaf a shot, and then to index a shot by
the regions and how they move during the shot. This would heévalgnt to decomposing a shot into
a series of moving and intertwining coloured “blobs”, a biela lava lamp which we use in homes for
decoration, and then matching shots based on the shapedgptraations and movements of these blobs.

In this paper we report on our work in realising this approtctideo shot matching which involves
automatically segmenting a video sequence into abstrésttwined shapes in such a way that there
is temporal coherency. The rest of paper is organised asafell In the next section we present our
approach to syntactic segmentation of single video framassd on our previous work on segmentation
of images and video keyframes. In section 3 we extend thisdeoy which we regard as a sequence
of adjacent and related images. This requires us to re-@ealyntactic segmentation to take account
of previous and succeeding frames in the segmentation, 8w aid visual “jitter”. We introduce a
measure of temporal coherency to quantify this and in sectiove report an evaluation of our video
segmentaiton on several video clips, presenting exampleésheir measures of temporal coherency. A
concluding section includes discussion of our future work.

2 Syntactic Segmentation of Still Images

We summarise here our approach to syntactic segmentatsingé video frames based on our previous
work on segmentation of images [1]. It consists of an extensif the Recursive Shortest Spanning
Tree (RSST) algorithm [5], improved by the use of syntactiatfires [2] leading to a more realistic
segmentation of real-world objects.

The original RSST algorithm is a relatively simple and fasgion-growing method. Regions are
considered as the nodes of a graph, and the branches betwe&wndes are the merging cost of two
adjacent regions. It starts from pixel level and iterativelerges regions (two regions per iteration)
connected by the least cost branches. The cost was origt@ihputed according to the average color
of the regions and their sizes. The process is designed povgten a desired number of regions are
obtained or a minimum link cost is reached.

Our modifications of the original algorithm include adajmato various region colour representations
used during region grouping and adding new stopping caitdihe main contribution of this work is the
introduction of a post-processing stage to avoid over-sggation. In this stage, regions are grouped into
bigger entities according to complex homogeneity critefilais homogeneity criteria takes into account
several syntactic visual features such as region compledntour jaggedness, geometric homogeneity
and inclusion. The segmentation process itself consistslist of ad-hoc rules that specify in which
condition regions must be merged or not. This approach wagprto be efficient in practice (see figure
1 for examples). As an input parameter we can limit the marimumber of segments/regions, and the
minimum number can also be fixed.



Figure 1: Example output of the arbitrary shape segmemtgtiocess. Top: original images. Bottom:
result of the segmentation.

3 Syntactic Segmentation of Video

The syntactic segmentation of still images is useful butmdggplied to frames in a video sequence there
is a lack of coherency across frames yielding a “flickerinfié& as segments appear and disappear. To
address this we have extended our segmentation algoritiideo as described below.

3.1 Algorithm for Video Segmentation

The general idea of the method for video region segmentagion discover if the regions for a given
frame are consistent with the regions in its neighboring¢pding and succeeding) frames. It thus
require two processes: a region matching measure and tamgisdecision.

Region matching is a difficult and widely studied (e.g [3]plplem in general. However we perform
the operation in a very particular case that allows us to nakestrong assumptions which simplify it.
Since we want to match regions in consecutive frames of avétiet, we assume that the regions don't
change too much in terms of size, appearance or positiomnagsas we restrict the process to a small
neighborhood for a given frame. This general assumptioakisrdown for the case of tracking over shot
bounds or other scenes where regions will disappear sucthas the camera is panning or when an
object disappears from the frame and one way to address thiklve to stop the tracking after some
period but we ignore this for the moment. We define four baol@#eria which are true if the difference
between two regions are below arbitrary thresholds. Lesiden two regionsRk; and R, belonging
to two different frames in a common neighborhood, and we wahnow if they represent the same
underlying object or background area which has been seguahémio a region. Firstly, if their relative
area sizes (number of pixels) have a difference less2h@nthey are considered to have a similar area.
Secondly, we check the RGB values of both regions and alloiffexehce of plus or minug0 in each
color component. Thirdly, we examine the actual pixels iche@gion and find out how many pixels are
common toR; and R,. If more than85% of the pixels are common we consider the location of both
region as similar. Lastly, we define the center of one regmtha intersection of two lines: the first
going from the leftmost point to the rightmost point of thgion and the other line from the upper point
to the bottom. We then compute the distance betweand R, as the Euclidean distance between their
centers and consider it is small if this value is less thani2élg Finally the two regions are considered
as similar when they have a similar size and color and at tessof the other features (whether a similar
location or a small distance). All the thresholds were drileed experimentally but the chosen values



are not very critical according to our tests.

We then must decide if a given regidhimust appear or not as part of the syntactic segmentation of
a given framej. Let us first examine the case of a particular regidthat is not found in framg. The
decision whether or not to ad@ to j will be decided by a majority vote: if the regidR is located in the
majority of frames of the neighborhood pthen the region is added to it. In order for our hypothesis to
hold, this neighborhood is ho more than seven frames, ahtgound;. This process is repeated twice,
first on the original segmented sequence and second on thersmgprocessed in the first pass giving
us the “second iteration” in the experiments reported lafdis second pass which uses the results of
the first pass, does seem to increase the robustness of durdnbut a third processing does not seem
necessary based on our evaluations.

Finally, each frame is cleaned of any noise or once-off seratlrs, by calculating the best RGB value
for each pixel in a frame by examining the same pixel in thenfg neighboring framg. As a result any
small discrepancies from frame to frame will be removed &medrésult will be a smoother output. For
a given framej and pixel coordinateér, y) the function will look at frameg — 3 to 7 + 3 and for each
frame note the RGB value of the pixel at positian y). Which ever RGB value is most common over
the six frames is the new RGB value for the pixel y) in j. Any once-off errors are easily handled in
this manner and we found it works to very good effect and alghait is an arbitrary choice, future work
will probably deal with several refinements of this incluglideveloping simpler methods to determine
the centre of gravity of regions. Future work could also exenusing other colour spaces such as HSV
or YIQ which might be better for addressing slight lightinganges or shadows emerging during a shot.

3.2 Measuring Temporal Coherency

In order to measure how much this algorithm contributes tcosentemporally coherent video segment
than treating frames independently, we have developed hatidbr actually computing a measure of
temporal coherency. At present there is no widely accepttderor measuring this and most work done
in this area has focused on object-based segmentationsfgreground/background) and not region-
based segmentations like the algorithm presented here.

Our approach is to track a particular region through a sexpjein see how coherent it is throughout
the entire sequence. In other words, for a particular rediod out what frames it does and doesn't
appear in and measure the lengths of the strings or “lifglin€his gives us an idea of how each region
behaves over the sequence and if we count the number of changee sequence i.e. when the result
changes fronpresent to absent or back again, we can use this count as a measure of tempbexecey.
As a measure of temporal coherency of an entire video cligameapply this principle to each individual
region that appears and the example in Table 1 illustratesviiiere a ‘1’ indicates a region is present in
a frame and a ‘0’ indicates it is not.

Given the lifelines of each region we can calculate the taalgmmherency of the sequence as the sum
of the number of changes per region divided by the numberaohéds in the sequence of each region.
normalised by the number of regions in the entire sequence:

Changes
Z num g
numFrames (1)

numRegions

This will return a value between 0 and 1 and in the case of tkeeidarable 1 the value df.,;, will be
0.168. The closer the result is to 0 the fewer changes andliglssring detected and hence the more
coherent the sequence will be. Realistically however a seggad sequence will probably never approach
a value of 1 unless it is hugely incoherent and is like whitis@&.0A value of close to 1 would only be the
case where the consecutive frames in a sequence had alysoaiténg in common. On the other hand a
video sequence will need to be almost absolutely still witkelmovement and no change or occlusion of
objects in order to have a value if 0. A low, non-zero valuer@bpbly correct for most video sequences.

Tcoh =



Table 1: Example of Calculating Temporal Coherency
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Having a more coherent segmentation will make the videoesszpimore appealing to a viewer and
it is an intuition that this in turn would lead to better vidpoocessing in applications like shot cut
detection. In particular, an application which would use ofi the frames segmented more coherently
as a representative keyframe for content-based retribealld perform better if the segmentation of the
frame is in the context of the whole shot and this provideguktfication for trying to remove flicker.

4 Evaluation

In our experiments we investigated different options rdupay the size of the comparison set for each
frame, i.e. the number of frames before and after which aed ts compare against the current frame.
The larger the comparison set is, the longer it takes for thgram to execute and the further we look
either side of frameé the more changes occur to the regions due to the naturalgasign of the sequence
and so regions may become less relevant to the fraamgway. This is especially the case for outdoor
sequences or sequences with a lot of shot changes. We foaihdsihg three frames behind and three
frames ahead was a good approach as its excution time wastateeand its results proved effective.

To evaluate our proposed methods for video segmentatidntesiporal coherency we used 4 well-
known test sequences, each of over 300 frames. A still imamge éach of these is shown in Figure 2.
A value for Temporal Coherencé(;) for each sequence was computed based on segmenting each
frame of each of the four sequences independtly of neiglfipdrames and this gives the values for
the “Independent frames” in Table 2. A coherent regionahssgation for the sequences was estimated
twice, firstly based on an estimation of frame coherencyregdrames in the original sequence only
(“first iteration”) and secondly based on an estimation afife coherency against frames newly gener-
ated in lieu of the original frames (“second iteration”). g katter approach uses the coherent sequence
generated in the first pass to improve again on the originfails dould in theory be run again and again



Figure 2: Sample frames from the test sequences (left td, igh to bottom), Foreman, Table Tennis,
Mother and Daughter, Coastguard.

Table 2: Evaluation of Region Segmentation on StandardsClip

Temporal Coherencd,)
Video Sequence | Independent frames First iteration | Second iteration
Foreman 0.145 0.097 0.098
Table Tennis 0.174 0.107 0.096
Mother and Daughter 0.126 0.083 0.074
Coastguard 0.136 0.087 0.087

to try to improve the sequence however we have found thatahe\of this this really depends on the
content of the segmented video sequence and in generaldvatidns of this smoothing seems to yield
good results. Théoreman sequence contains both indoor and outdoor characterik@étsr on in the se-
guence the shot pans down a street. The original segmeai@edrfrom this shot contain many regions
unique to only 1 frame and there is a lot of flicker. The cohesequence greatly reduces the number of
rogue regions and visually the flickering effect is greadlgiuced. Theable tennis sequence is an indoor
sequence with a zoom out shot and shot change. Again therftigkeffect is greatly reduced in certain
areas of the frame like the gray poster on the back wall fomgte. Themother and daughter sequence

is a very straightforward sequence — no shot changes or eameves. Our algorithm performs very
well on this sequence as the figures show. dastguard sequence is an outdoor sequence of a boat on
a river. The original sequence is extremely incoherent witiny regions appearing at random in each
frame. Our algorithm removes a lot of the flicker but also reesoa lot of detail from the sequence.

5 Conclusions and Future Work

The overall aim of the work reported here is to enable us tomdrained shot-shot matching which
incorporates camera and object motion, composition, cpfnd regions. This is important for applica-
tions like shot retrieval, automatic shot linking and ndaplicate detection and is at a level of granularity
which is above retrieval based on spoken dialogue, keyfraraiehing based on colour histograms, or



even based on segmented objects, but has all of these, pltestiporal aspect as well. In effect we want
to do shot matching in 3 dimensions. Our syntactic segmientat moving video into regions or blobs,
described in this paper is an enabler for this work and ibfed that we now need to index shots by some
representation of these temporal segments, and try to desibbmatching.

Before we can do this we have some further work which we neatbton the region-based seg-
mentation and that includes mapping or normalising thewslaised in the segmented output to some
reduced palette of colours instead of allowing any coloanfithe original video sequence to appear.
This will greatly improve the chances of shot matching if dueed colour space is used. Even more im-
portantly we need to re-develop our implementation to elate the redundant processing which makes
it presently so inefficient. Our current implementation waseloped with flexibility in mind, allowing
us to adjust parameters and other algorithm refinementsemeddut we are confident that an efficient
implementation can be re-engineered.

On the algorithm side, to improve the temporal coherencyunfresulting images, would require a
more robust method of tracking the dynamics of each regioténframe as it moves across frames
and addressing the real issues of measuring temporal cayeaeross a shot bound and in cases where
regions enter and leave the frame during a shot. Using MaRendom Field Models (MRF) [11] could
be one way of classifying the motion vectors for every regidrich would be based on information
gathered from previous frames. There would also be scopeperienent with such a technique by
processing the video in reverse order and maybe combinaggiimentation results from both directions
into one. MRF models can be further employed to define whethegion is dynamic or whether
it is simply part of an image’s background. By defining regias part of the foreground, we could
exclude irrelevant changes in partially covered backgiarjects that lead to unwanted redefinitions of
a region’s boundaries.

Finally, the Temporal Coherence measlifg f) itself has some limitations in measuring coherence.
To illustrate this we tested thg,,;, of a video sequence generated from a series of totally rarichages
and foundT,,;,= 0.1823. This was unexpected as in this case the consedtgives will be as inco-
herent as it can get yet the reason for the low value was beadubke number of different regions that
were calculated for the sequence. Our random sequence ai&fes produced 195 different regions,
compared to 18 in the mother and child sequence and in theufarfor 7., the sum of the number of
errors per region divided by the number of frames is then atised by the total number of regions -
hence the small result for the random sequence.

TheT,,, measure is therefore very much dependant of the length cfetheence and the number of
regions generated by the algorithm. For this reason thdwtbselues forT,,;, for one video sequence
cannot be compared .., values from different sequences and the appropriate apiolicof the mea-
sure is to compare the temporal coherence of different setgti@n algorithms on the same sequence.
Thus the values for., in Table 2 should be compared for segmentations within eaghence and not
across different sequences.
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