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ARTICLE INFO ABSTRACT

Keywords: With the increasing sustainability considerations throughout the world, there is an increasing interest in the
Dynamic programming effective management of perishable products both in the industry and the academia. There is a need to control
Pricing

the inventories, as well as the prices of perishable products in order to increase the profits while minimizing the
waste. In this study, we focus on a retailer who sells old and new perishable food products, enabling demand
shifts between products based on their prices and consumer behaviors. A bi-objective dynamic programming
model is developed to optimize the discounted price, sale price, and order quantity of perishable food products in
order to maximize the retailer’s profit and minimize food waste. We develop four static and dynamic pricing
policies commonly practiced and quantify the advantages of dynamic pricing and price differentiation between
old and new products in terms of both profit and waste. Our findings reveal that significant benefits can be
obtained when the order quantity and the old product’s sale price decisions are given in a dynamic manner by
considering the available inventory at hand. Additionally, this research analyzes the results of various weight
combinations for profit and waste in the objective function. The findings highlight the significance of waste and
sustainability concerns, underline the tradeoff between profit and waste and provide insights to companies to
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achieve improvements in their system results.

1. Introduction

Food waste is a major problem which includes environmental, eco-
nomic, social, and ethical implications (de los Mozos et al., 2020).
Reducing food waste has the potential to lower greenhouse gas (GHG)
emissions by up to 8 % of total global emissions, especially when
considering the deforestation linked to food production (Creutzig et al,
2022). In 2022, approximately 1.05 billion tons of food—equivalent to
19 percent of the food available to consumers—were wasted across the
retail, food service, and household sectors, averaging 132 kg per capita
annually (United Nations Environment Programme, 2024). Meanwhile,
in 2023, an estimated 713 to 757 million people, representing 8.9 to 9.4
percent of the global population, were undernourished (FAO et al.,
2024).

Perishable products play a significant role in food waste due to their
limited shelf life. These products can be characterized based on how
their quality is perceived by consumers as they age. Similar to Ferguson
and Koenigsberg (2007), our focus is on perishable products whose
perceived quality deteriorates over time, and thus old products are
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valued less by consumers compared to new ones, requiring retailers to
implement price differentiation strategies to sell both effectively. This is
particularly relevant for perishable food items like vegetables, fruits,
and dairy products, which deteriorate over time and eventually become
obsolete if not sold within a certain period (Kaya and Bayer, 2020). The
demand for perishable goods is strongly influenced by product fresh-
ness, which consumers often perceive through expiration dates (Li and
Teng, 2018). As willingness to pay decreases throughout the shelf life of
perishable food products, implementing discounting strategies for
products nearing their expiration date can be an effective approach
(Tsiros and Heilman, 2005). Therefore, it is crucial to understand how
product freshness (quality) impacts a firm’s operational and pricing
decisions to optimize inventory management and maximize profitability
(Ferguson and Koenigsberg, 2007). The study of Sen (2013) shows the
benefits of dynamic pricing applications on the profitability of perish-
able products by affecting demand. Jing and Chao (2021) emphasize the
importance of production planning and inventory management for
perishable products.

Retailers have a pivotal effect on food waste. Poor demand
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forecasting, inefficient management and excess stocks cause food waste
at the retailer level (Lemaire and Limbourg, 2019). It is estimated that in
the EU, 5 % (5 million tons) of total food waste originates from retail and
wholesale sectors (Stenmarck et al., 2016). Retailers have a strong
incentive to reduce food waste, as it results in financial losses and affects
their already narrow profit margins (Cicatiello et al.,2017). A study
conducted in Italy revealed that a large retail store wasted 70.6 tons of
food annually, valued at nearly €170,000, with the majority consisting
of bakery items and fresh produce (Cicatiello et al., 2017).

Beyond the financial implications, food waste has significant envi-
ronmental consequences, including greenhouse gas emissions from
decomposing organic waste in landfills. To address this issue, potential
measures include encouraging the sale of food products nearing their
expiration date, promoting imperfect food items, enhancing inventory
management practices, and facilitating food donations (Ficaite et al.,
2022). Effective inventory control in food supply chains is essential for
reducing waste, as it ensures operational efficiency (Pourmohammad-
Zia et al., 2021). If the inventory and pricing decisions are not made
properly, it causes a high amount of waste and decreases retailers’
profits. Effective ordering and pricing strategies for perishable products,
including determining optimal replenishment quantities and discount-
ing prices, are critical for maximizing profitability (Chew et al., 2014;
Fadda, 2024).

Pricing strategies are essential tools for managing perishable prod-
ucts and reducing waste. Constant pricing cannot effectively align de-
mand with the quality of the remaining inventory (Chen et al., 2018).
Many of the world’s largest retailers focus on reducing in-store food
waste, aiming to achieve Goal 12: Responsible Consumption and Pro-
duction, one of the 17 Sustainable Development Goals (SDGs) set by the
United Nations in 2015. Retailers such as Tesco, Kroger, and Walmart
sell products of different ages simultaneously. However, when these
products are sold at the same price, customers may prefer the newer
products over the older ones, leading to waste of the older inventory. By
decreasing the prices of older products, retailers can appeal to price-
sensitive customers and encourage their purchase, thereby reducing
waste. To address this, many supermarkets employ dynamic pricing
strategies to better match supply with demand and minimize spoilage of
perishable products that deteriorate over time (Chen et al., 2018).
Sanders (2024) also finds that encouraging grocery chains to adopt
dynamic pricing strategies could be a more effective approach for reg-
ulators aiming to reduce grocery-store waste.

For example, Tesco implemented a multi-stage Clearance Pricing
Optimisation system (Kolev et al., 2023). By systematically reducing
prices on items nearing expiry, Tesco achieved a 5 % reduction in fresh
food waste while simultaneously increasing revenue from reduced-to-
clear items (Kolev et al, 2023). Kroger (2024) has set goals of
achieving zero hunger and zero waste. To support these objectives, the
company employs various strategies, including offering price reductions
on perishable foods as their expiration dates approach, making them
more affordable and encouraging faster sales. Walmart (2025) reduced
operational food loss and waste by 21 % by the end of 2023 compared to
a 2016 baseline, while continuing its commitment to a 50 % reduction
by 2030. Through initiatives like “Imperfect but Good” in Chile and
Mexico, Walmart offers discounted prices on food nearing expiration or
with aesthetic imperfections to help reduce food waste.

In this study, we consider a retailer who sells old and new products
simultaneously, allowing a demand shift between these products
depending on their prices and consumer behaviors. The product under
consideration has a two-period lifetime. Products are considered “new”
when sold during the period they are produced. Unsold new products
deteriorate at the end of the period and transition to “old” in the
following period. Old products experience a reduction in perceived
quality, resulting in lower consumer valuations. At the end of the period,
unsold old products become obsolete and are wasted.

In the retail sector, stockout-based substitution is a common phe-
nomenon where customers substitute their preferred product with an

Computers and Operations Research 181 (2025) 107103

alternative when the preferred product is unavailable. Instead of leaving
the store and resulting in lost sales, customers may switch to a different
product that is of lower, equal, or even higher quality, as long as the
alternative is within their acceptable price range. Ignoring this substi-
tution behavior can lead to significant supply-demand mismatches and
adversely impact a retailer’s profitability (Transchel, 2017).

Different than most of the literature, we include these behaviors in
our model. For example, if consumers’ demand for the new (old)
products is higher than the available quantity at hand, the excess de-
mand shifts to old (new) products. Our study aims to determine when
old and new products should be sold together, and at what prices, and
when it would be optimal to sell only one type of these products. To
achieve this, we develop a bi-objective dynamic programming model to
find the optimal discounted price, sale price and order quantity of the
perishable food product to maximize the retailer’s profit and minimize
food waste. Furthermore, we aim to quantify the tradeoff between profit
and waste, offering insights not only for companies but also for policy-
makers. These findings can help governments design effective incentives
or penalties to address food waste in the retail sector.

The remainder of this paper is structured as follows: Section 2 pre-
sents a review of the relevant literature, highlighting key contributions
and positioning this study within the existing body of work. Section 3
defines the problem, outlines the assumptions underlying the model,
and provides the notations used throughout the paper. In Section 4, we
introduce the Infinite Horizon Average Cost Dynamic Programming
Model. Section 5 discusses the numerical results, including the main
findings, sensitivity analyses, and the no-demand-shift case. Finally,
Section 6 concludes the paper by summarizing the key insights and
suggesting potential directions for future research.

2. Literature Review

Our study investigates joint ordering and pricing decisions for a
perishable product with a bi-objective approach, aiming to maximize
profit and minimize waste. Accordingly, the literature review focuses on
three key areas: inventory control models for perishable products,
studies addressing the joint optimization of pricing and inventory de-
cisions for perishables, and the application of multi-objective methods in
similar contexts. Perishable products, as defined by Karaesmen et al.
(2011), are those that age over time and eventually outdate, requiring
strategic inventory and pricing decisions to mitigate waste and optimize
profitability. Several studies have explored dynamic inventory man-
agement and pricing strategies for perishable products. Key reviews
include Nahmias (1982), Karaesmen et al. (2011), and Bakker et al.
(2012), which focus on inventory control for perishables, and Elmagh-
raby and Keskinocak (2003), which address dynamic pricing in in-
ventory management.

Effective inventory control for perishable products is critical for
reducing waste and maximizing operational efficiency, making it a key
focus area for researchers. Parlar (1985) extends the classical news-
vendor problem by introducing a generalized model for perishable
products with a two-period lifetime. The study incorporates substitution
behavior by assuming that a fixed proportion of unmet demand for old
(new) products shifts to new (old) products. This model focuses on
determining the optimal ordering policy over an infinite horizon, ac-
counting for stochastic demand and the substitutability of products that
perish within two periods. Similarly, Deniz et al. (2010) develop a
discrete-time supply chain model for perishable goods with age-
differentiated demand. Their study evaluates the performance of heu-
ristic replenishment policies and substitution rules, providing insights
into the effectiveness of these strategies for managing perishable
inventory.

Minner and Transchel (2010) develop a periodic-review inventory
control method to determine dynamic order quantities for perishable
food products with limited shelf life, positive lead time, and FIFO/LIFO
issuing policies. Coelho and Laporte (2014) examine optimal joint
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replenishment and inventory decisions for perishable products, opti-
mizing delivery routes and inventory control using a branch-and-cut
algorithm. Gioia et al. (2023) adapt a discrete choice model to capture
consumer heterogeneity and tradeoffs between price and quality. They
use simulation-based optimization to develop ordering rules, aiming to
maximize long-term average profit under a lost sales assumption. Chen
et al. (2021) explore inventory control for perishables in a periodic-
review system with multiple demand classes and freshness re-
quirements. Using an adaptive approximation approach, they minimize
total discounted costs, achieving near-optimal performance and out-
performing existing heuristics.

While the reviewed studies offer valuable insights into inventory
control for perishables, our paper stands out by jointly addressing dy-
namic pricing and ordering decisions within a bi-objective framework
that balances profit maximization and waste minimization.

The following literature focuses on inventory control and pricing
strategies for perishable products, highlighting various approaches to
optimize profitability and manage product lifecycles effectively. Chin-
tapalli (2015) examines price discounting and inventory management
for perishable goods with a two-period lifetime under a periodic review
framework. Using a price-dependent linear demand function to maxi-
mize profit, the study, like our model, assumes that old and new prod-
ucts are sold simultaneously. Ferguson and Koenigsberg (2007) study a
firm’s inventory and pricing decisions for a perishable product in the
presence of new and old product competition. Chua et al. (2017)
investigate optimal discounting and periodic replenishment policies for
perishables over a finite horizon using dynamic programming. Fan et al.
(2020) develop a dynamic pricing model and a heuristic replenishment
policy for multi-batch perishable products, aiming to maximize retailer
profit. Duan et al. (2018) explore joint dynamic pricing, production, and
inventory decisions for perishables over a short selling season under
stochastic demand.

Kaya and Polat (2017), Kaya and Ghahroodi (2018), and Kaya and
Bayer (2020) examine inventory control and pricing for perishable
products. Unlike these studies, our paper introduces a bi-objective dy-
namic programming model that considers both profit maximization and
waste minimization, analyzing the tradeoffs between them in detail.
While Kaya and Polat (2017) use a deterministic approach, Kaya and
Ghahroodi (2018) and Kaya and Bayer (2020) explore periodically and
continuously reviewed systems, respectively. However, these studies do
not allow simultaneous sales of old and new products at different prices.
This paper extends their work by incorporating price differentiation for
old and new products and models consumer behavior based on price and
valuation. Additionally, it considers demand shifts when inventory is
insufficient. The paper presents four models with static and dynamic
pricing, comparing results to provide managerial insights into sustain-
ability, waste, and profit.

Similar to our work, Fadda et al. (2024) investigate joint discounting
and replenishment for perishable products using a linear discrete choice
model. They compare a range of policies that combine constant ordering
and base-stock approaches with simple discounting strategies, opti-
mizing their parameters through a simulation-based framework. Their
findings align with ours, highlighting the effectiveness of age-based
discounting in managing inventory and reducing waste. While Fadda
et al. (2024) focus on heuristic methods, our study adopts a bi-objective
dynamic programming model to explicitly address the trade-offs be-
tween profit and waste.

Studies addressing optimal pricing and/or ordering for perishable
products with lifetimes exceeding two periods often use heuristics or
approximation methods due to solution complexity. Li et al. (2009)
explore joint pricing and inventory control for two-period perishable
products, extending heuristics to longer shelf lives. Chew et al. (2009)
develop a discrete-time dynamic programming model for optimal pric-
ing and inventory in two-period lifetimes, introducing heuristics for
longer lifetimes. Chew et al. (2014) focus on multi-period perishables
with price-dependent demand, using stochastic dynamic programming
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and heuristics to maximize profit. Li et al. (2016) propose heuristics for
joint replenishment and clearance sales in multi-period lifetimes. Li
et al. (2022) examine LIFO-based transshipment policies for perishable
goods, deriving optimal strategies for up to three periods and heuristics
for longer lifetimes. While these studies provide valuable insights into
managing perishable inventory, they do not simultaneously address the
dual objectives of profit maximization and waste minimization within a
bi-objective framework, nor do they incorporate dynamic strategies that
explicitly account for demand shifts between products of different ages.

Several studies in the perishable products literature address waste
reduction while aiming to maximize profit. Sanders (2024) evaluates
dynamic pricing and organic waste landfill bans as solutions to grocery
food waste, using a structural econometric model. The study shows that
dynamic pricing reduces waste by 21 % while improving profits and
consumer surplus, whereas waste bans achieve only a 4 % reduction in
waste while decreasing both. The retailer’s decision-making is modeled
as a Markov decision process optimizing prices and inventories. Li et al.
(2012) explore joint pricing and inventory control for perishable food
products, aiming to maximize retailer profit while considering waste
costs. Chen et al. (2014) address joint pricing and inventory control for
perishable products, where the retailer decides order quantity and
pricing for products of different ages in a periodic-review system. They
incorporate waste costs and aim to optimize pricing, ordering, and
disposal policies to maximize total expected profit. Azadi et al. (2019)
propose a two-stage stochastic optimization model for supplier selec-
tion, replenishment scheduling for a periodic-review inventory system,
and pricing reductions, aiming to maximize profit and minimize waste
for perishables. Vahdani and Sazvar (2022) address an online retailer’s
coordinated dynamic pricing and inventory control under social
learning, using a case study from an Iranian online supermarket to
analyze the impact on profit and waste. Kayikci et al. (2022) propose a
real-time IoT sensor-driven dynamic pricing strategy to enhance profit
by reducing perishable food waste.

Some studies, like ours, adopt a bi-objective approach to perishable
inventory management. Abbasian et al. (2023) develop a bi-objective
model for a resilient and sustainable perishable food supply network,
integrating location, inventory, and routing decisions. Their approach
incorporates dynamic pricing to mitigate disruptions while minimizing
cost and CO;, emissions. They proposed a hybrid solution method to
solve the mixed-integer nonlinear problem. Pilati et al. (2024) propose a
bi-objective stochastic optimization model for inventory control
focusing on minimizing inventory logistics emissions and costs for
perishable products. Their study utilizes the Pareto-based optimization
approach as the basis for their multi-objective optimization method.
Where our study uses a weighted-sum method to balance profit maxi-
mization and waste minimization, explicitly modeling demand shifts
and price differentiation for old and new products. As detailed in the
Introduction section, minimizing food waste is crucial for both economic
efficiency and sustainability, as it reduces financial losses and mitigates
greenhouse gas emissions.

Adenso-Diaz et al. (2017), explore the impact of dynamic pricing on
revenue and waste reduction across various scenarios. They find that
dynamic pricing effectively reduces waste, though its impact on revenue
is highly scenario-dependent. Unlike Adenso-Diaz et al. (2017), who use
a parametric approach to assess trade-offs between revenue and waste
without directly optimizing the bi-objective function, our study employs
a weighted-sum bi-objective optimization to explicitly compute Pareto-
efficient solutions for profit and waste. However, unlike our study, these
papers assume that new and old products are not sold simultaneously.

Table 1 compares this study with key papers on dynamic program-
ming for pricing and/or ordering decisions in perishable product man-
agement. This study uniquely examines joint pricing and ordering
decisions, incorporates a bi-objective model, explicitly models demand
shifts, and addresses both profit maximization and waste minimization
under stochastic demand.

This study focuses on a retailer’s problem who sells both old and new
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Table 1
Comparison of dynamic programming approaches for pricing and/or inventory decisions in perishable product management.
Articles Infinite or Finite Price Ordering Demand Sell Different Aged Product Bi- Demand Shift
Horizon Discount Decision Function Simultaneously objective
This Paper infinite v v stochastic v v stockout-
based
Chintapalli (2015) infinite v v stochastic v
Chua et al. (2017) finite v v stochastic v
Chew et al. (2014) finite v v stochastic v price-based
Adenso-Diaz et al. finite v deterministic v
(2017)
Li et al. 2012 infinite v v stochastic
Chen et al. (2014) both v v stochastic v
Vahdani and Sazvar finite v stochastic
(2022)

perishable products simultaneously, considering that each product has a
two-period lifetime and allowing a demand shift between products of
different ages. Table 1 highlights that different from the literature, we do
not only focus on the profit of the company, but also consider the
generated amount of waste as a result of the decisions. We analyze the
tradeoff between the profit and the waste and quantify the changes in
profit to decrease the waste. The objective is to determine optimal sale
prices and order quantities that maximize the retailer’s profit while
minimizing food waste. The main contributions of this study to the
literature are as follows:

1. We develop four different pricing strategies and determine the
optimal dynamic pricing and ordering strategies for perishable
products under stochastic demand, considering both the profit and
waste as the retailer’s objectives.

2. We allow old and new products to be sold at the same time with
different prices and model the consumer purchase behavior between
old and new products, considering demand shift between them
depending on their prices.

3. We develop a bi-objective dynamic programming model using the
weighted-sum method to analyze the results for different combina-
tions of the weights for the profit and the waste.

4. We quantify the changes in profit as a result of the changes in the
importance of waste for the company.

5. We compare the results of four different static and dynamic pricing
policies commonly used in reality and quantify the benefits of dy-
namic pricing and price differentiation between old and new prod-
ucts, in terms of both profit and waste.

3. Problem Definition

In this study, similar to Chintapalli (2015), we consider that the
product has a two-period lifetime, which can be interpreted as two days,
two weeks, two months, or any comparable timeframe depending on the
specific product. From the day the product is produced until the end of
the first period (the first half of its lifetime), it is considered ‘new.’
Products in the second half of their lifetime are classified as ‘old’. Unsold
old products at the end of the period are considered obsolete and become
waste. To represent this, we define the binary parameter where i =
0 denotes new products and i = 1 denotes old products. We assume a
lead time of zero, meaning that ordered products are delivered imme-
diately with their full shelf life remaining. We develop a dynamic pricing
and ordering model for perishable food products and at every point in
time, the state of the system denotes the quantity of old products at
hand, which is represented as q;.

The objective of our models is to maximize the retailer’s total profit
and minimizing waste by jointly determining the optimal order quan-
tities and pricing strategies for new and old products. At the beginning of
each period, the retailer decides the order quantity of new products, qo,
and the pricing strategies for old and new products. At the end of each
period, the retailer carries the remaining new products to the next

period with the inventory holding cost, h, and unsold old products
become waste. Moreover, ¢ is the unit ordering cost per product.

It is important to differentiate perishable products based on their
age, as products of different ages can attract various market segments
(Chew et al., 2014). By implementing price differentiation based on
product age, businesses can boost their profitability (Chew et al., 2014)
and sustainability performance. Therefore, we develop four pricing and
ordering strategy models as given in Table 2. In Model 1, the price of the
old product (p1) and the price of the new product (po) are static and their
optimal values are determined by our model. The order quantity is dy-
namic in all models and their optimal values are found by using dynamic
programming. In Model 2, we consider that py is static and we use dy-
namic programming to find optimal dynamic values for p; and qo. Under
Model 3, we consider that the values of p; and pg are dynamic and the
same (no price differentiation), and we use dynamic programming to
find the optimal dynamic values of p and qp. In Model 4, all p;, po and qo
values are found dynamically.

For products of different ages, it is important to model the consumer
choice models (Chen at al 2014). Therefore, we use consumer utility-
based demand models, similar to Tirole (1988) and Transchel (2017).
We let v define the consumer’s valuation and 6; define the probability of
consumers to purchase product i. G(.) and g(.) are the cumulative dis-
tribution function and density function of v, respectively. 5 denotes the
rate of decrease in the valuation of the product when its age gets older.
Also, old product’s price, p1, is assumed to be always less than or equal to
the new product’s price, po. All notations are summarized in Table 3.

We let up =v—po and u; = v —p; denote the utility function of
consumers when they buy the new product and the old product,
respectively. A consumer buys the new product if and only if
uy > Oanduy > u;, and buys the old product if and only if u; > Oanduy <
u;. Note that a consumer prefers the new product over the old one if

Up > U=V —Po > 6V —Pp1>V > ?2:§;~

Proposition 1 states the possible situations for the consumer’s pur-
chasing decision depending on the sale prices and the consumer’s
valuation. These situations occur based on the different values of the
prices. Proposition 1 is derived by adjusting the notations from Trans-
chel (2017) to align with those used in this study. We establish a direct
correspondence between Proposition 1 in Transchel (2017) and our
Proposition 1. Readers interested in the detailed proof can refer to the
proof of Proposition 1 in Transchel (2017).

Proposition 1. The purchase probabilities of the consumers under the

Table 2
Four pricing and ordering strategy models.
Po P1 9o
Model 1 static static dynamic
Model 2 static dynamic dynamic
Model 3 dynamic (po = p1) dynamic (pp = p1) dynamic
Model 4 dynamic dynamic dynamic
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Table 3
Notations.
Parameters Definition
N Market size of the product
c Ordering cost per product
h Inventory holding cost
s Waste cost
aji Stockout-based substitution probability of consumer from type i
product to type j product
v Consumer’s valuation
G() Cumulative distribution function of consumer’s valuation
gC) Density function of consumer’s valuation
8 Rate of decrease in the valuation of the old product, 0 <5 < 1
o; Probability of a consumer to purchase product i, i = 0, 1
Oy Probability of a consumer purchasing nothing
u; Utility function of consumers when product i is purchased
State of the Definition
System
q1 Quantity of old product at hand
Decision Definition
variables
qo Order amount of new product
Po New product’s sale price
D1 Discounted price (Old product’s sale price)

given prices are as follows:

Po- P1
(1-9)

ifpy < M

Consumers will buy new products with the probability of 6,

0-pl
1-6(%2!)

Consumers will buy old products with the probability of .6;
6(%2) -eeh

Consumers will not buy anything with the probability of 6, = G(%)

.-PoP1
200 o
if 15 =Po 2

Consumers will buy new products with the probability of 6, =

1-G(py)
Consumers will not buy anything with the probability of .0, = G(p,)

i There will be no sales in all other cases.

For situation i, if the old product’s price is low enough compared to
the new product price (p; < dpo), consumers with a higher valuation of
the product prefer to buy the new product, while consumers who value
the product a little lower buy the old product, and consumers who value
the product lowest buy nothing. For situation ii, since the old product’s
price is too high (p; > 8po) none of the consumers will buy the old
product. High valuation consumers prefer to buy the new product while
low valuation consumers prefer not to buy anything.

Similar to Kaya (2010) and Transchel (2017), if the demand for the
new products exceeds the quantity of new products at hand, go, but
consumer’s net utility from the old product is positive then ap; of excess
demand consumers buy old products. Similarly, if the demand for the
old products exceeds the quantity of old products at hand, g;, but con-
sumer’s net utility from the new product is positive then a;o portion of
excess demand consumers for the old products buy new products.
Similar to Transchel (2017), we consider endogenous demand shift rates
(stockout-based substitution rates).

In our model, we let N denote the total market size for the product. D;
is the demand of product i, such that demand of the new product and the

Computers and Operations Research 181 (2025) 107103

old product are Dy and D;, respectively. N-Dy-D; of consumers buy
nothing and is represented as Dz (3_D;= N). Note that the demand
values D;, follow a multinomial distribution with parameters, N and ¢; :
Dy,D1,Dy Mult(N,89,6,,02). We denote the demand shift from the new
product to the old product as Dy; and from the old product to the new
product as Dy, both of which follow a binomial distribution as follows:
Do1 B((Do — qo)", @01), and Dyo B((D1 — q1) ", a10). Hence, the total de-
mand of new and old products are given as Dy + Djg, and D; +Dy1,
respectively.

Similarly, Proposition 2 corresponds to Proposition 2 in Transchel
(2017). By adjusting the notations in Transchel (2017) to match ours, we
derive the conditions for our Proposition 2. Readers seeking the detailed
proof are directed to the proof of Proposition 2 in Transchel (2017).

Proposition 2. The stockout-based substitution probabilities of consumers
from the new to the old products (ap1) and from the old to the new products
(a10) are given below depending on the distribution function of consumer
valuation G(.), and prices of old and new products:

Po-P1 3)

ifpy < 15

if@ < Po 4)

a10 =0

ii There will be no demand shift in all other cases.

For situation i, if the old product’s price is low enough compared to
the new product price (p; < 8po), the substitution probability from the
new product to the old product (ap1) is equal to 1, meaning all con-
sumers who cannot purchase the new product due to stockout will prefer
the old product. The substitution probability from the old product to the
new product (a10) depends on the distribution of consumer valuations
and is given by the specified formula. For situation ii, since the old
product’s price is too high (p; > 8po) and the initial demand for the old
product is zero, substitution probability from the old product to the new
product (a10) is equal to 0. However, if there is an excess demand for
new products substitution probability from the new product to the old
product is ag; .

4. Infinite horizon average cost dynamic programming Model

We consider a single product that is decoupled into two products by
age and develop a bi-objective dynamic programming model. We use the
weighted-sum method in order to maximize the average profit and
minimize the average waste. w is the weight factor for the profit function
where (1-w) is the weight factor for the waste. We develop an infinite
horizon average cost dynamic programming formulation. In the model,
we consider an infinite horizon case and the state of the system is
denoted by the number of old products at hand (q;). According to the
state of the system, the decisions of the order amount of the new
product, qo, the old product’s sale price, p;, and/or the new product’s
sale price, po are given. V(q;) denotes the relative value function for
state q; in the dynamic programming model. It represents the differen-
tial cost between a given state and a reference state.

We note that, even though we consider a system in which old and
new products are allowed to be sold at the same time, our model results
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will provide whether it is optimal to sell both types of products at the
same time at different prices, or to sell only one type of these products.
For example, if the optimal value of gq turns out to be 0 in the optimal
solution, it means that only old products are to be sold at that period,
and no new product is ordered. Similarly, if it turns out that p; = pg in
the optimal solution, it means that only new products will be sold due to
consumer choices, and old products can only be sold if the new ones are
depleted.

4.1. Model 1: Static po and p;, dynamic qg

In this section, we consider a model in which py and p; are static
variables which means that sale prices do not change based on the state
of the system (q;), while the optimal order quantities, qo, are dynami-
cally decided. We use exhaustive search to find the optimal pg and p;, by
running the dynamic programming model for the possible values of sale
prices and chose the optimal values which optimize our objective
function. In other words, the retailer decides the optimal sale prices in
advance and do not offer any discounts based on the old product in-
ventory, and at the beginning of each period decides the order quantity
in a dynamic manner, based on the quantity of the old product at hand,
qi.

A(po,p1) is the weighted-sum objective function of the problem for
given values of py and p;, where the Bellman’s equation for the dynamic
programming formulation of our problem to determine the optimal
order quantities is given below. For clarity, [ - 1" denotes the positive
part of the argument (i.e., max(0, -)), and E[ - ] represents the expected
value of the random variable within the brackets.

MaxA(po,p1)
Po-P1

s.t.

—cqo + pimin(D; + Do1,¢1)
Apo,p1) +V(q) = H}laXE |:
0

In the above equation, —cqy is the total ordering cost of the new
product. Since we do not allow backlogging, the amount of sales is the
minimum of the demand or the quantity at hand, which is denoted as
min(D; +Do1,q1) for the old product. In here, D; +Dy; represent the old
product’s total demand, D; is demand of old product and Dy; demon-
strates the demand shift from new product to old product.
pomin(Dg +Dio, qo) denotes the revenue from the sale of new products. If
the quantity of the new product exceeds its demand, then the excessive
quantity will be moved to the next period with the inventory holding
cost, h, which is represented in the model as h[qy — (Do -+ D10)]". The old
products which are not sold at the end of their lifetime, will be wasted
and [q; — (D1 +Do1)]" represents the waste quantity, and s denotes the
cost of this waste. The excessive quantity of the new product will be the

( —cqo +pimin(D; + D1, q1) >

w
Apo) +V(qn) = IPH%XE[ +pomin(Dg + D10, qo) — hgo — (Do + D1o)]"
1.90

—(1 = w)s[g1 — (D1 +Do1)]™ + V([go — (Do + D1o)] ")

v ( +p0min(D0 —+ D]O7 qo) — h[qo — (Do + Dlo)]v :| (5)
—(1 —w)s[g: — (D1 +Do1)]" + V([go — (Do +D1o)]")
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new state of the system, and it will be updated as [qo — (Do + D1o)]"-
Therefore, the future relative value function will be
V(g0 — (Do + D1o)] ")

Observe that the dynamic programming formulation stated above
aims to maximize the weighted function of the total profit and the
amount of waste. We also develop dynamic programming formulations
to determine the resulting values of average profit, Ap, and the average
waste, Ay, separately. We wuse the optimal decision variables

(Po",p1 andqo”) obtained by solving Eq. (5). The dynamic programming
models for the average profit and the average waste are given in Egs. (6)
and (7), respectively.

—cqo” + p1'min(Dy + Do1,q1) +po min(Do + Do, qo”)

Rt Vel@) =BT D + i)'+ Va(lgo — (Do + Do) )

(6)
v+ Vw(q1) = Elslgr — (D1 +Do1)]" + Vw([go" — (Do +D1o)]")] @)
Vp(q1) is the relative value function for profit and

—cqo” +p1 ' min(Dy +Do1, q1) +po ‘min(Dy +Dyo, qo ") denotes the profit for
the current period. Remaining quantity of the new product will be the
new state of the system in the next period, and it will be updated as
[g0" — (Do +Dyo)]". Therefore, future relative value function will be
V([go" — (Do +D1o)]").

Vw(q1) is relative value function for waste and [q; — (D; + Do1)]"
denotes the quantity of waste. The old products that are not sold during
the period will reach the end of their lifetime, and thus cannot be sold
anymore and will be wasted.

4.2. Model 2: Static po, dynamic p; and qo

In this model, we consider that py is a static variable which means it
does not change based on the state of the system, while p; and q¢ are

dynamically decided. Like Model 1, we use exhaustive search to find the
optimal pg by running the dynamic programming model for all possible
values of it and chose the optimal values which optimize our objective
function. In other words, the retailer sets a static pg for the new product
and decides p; and q at the beginning of each period by considering q;.

A(po) is the weighted-sum objective function of the problem for given
values of py, where the Bellman’s equation for the dynamic program-
ming formulation of our problem to determine the optimal order
quantities and old products’ sale prices is given below:

MaxA(po)
Po

s.t.

} ®
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Terms in Bellman’s Eq. (8) are similar to those in (5). Like Model 1,
we also develop dynamic programming formulations to determine the
resulting values of average profit, Ap, and the average waste, Ay, sepa-

rately. We use the optimal decision variables (py”, plkandqo*) obtained
by solving Eq. (8).

4.3. Model 3: Dynamic (po — p1) and qp

In Model 3, we assume that old and new products’ prices are equal
which means that there will be no discount for old products and the
retailer charges the same sale price for old and new products. The
retailer gives the decision of gy and the products price, p, dynamically at
the beginning of each period based on the state of the system, g;. In this
scenario, since p; = po = p Proposition 1 (ii) will occur and none of the
consumers prefer to buy old product. In other words, there will be no
demand for old product because consumers will not be willing to buy the
old product when its price is the same as new product. However, in this
scenario we let the demand shift between old and new products. Hence,
even though p; = pp = p the old product can still be sold because ag; may
be positive, as indicated by Proposition 2(ii), while a;o will be equal to 0.
A is the weighted-sum objective function of the problem and the Bell-
man’s for the dynamic programming formulation of our problem to
determine the optimal order quantities and sale price is given below:

Max4

s.t.

—cqo +pmin(D; + Do1,q1)
w
A+V(q) :HF}‘?XE +pmin(Do +D1o,q0) —h[qo — (Do +D1o)] "
.90

—(1=w)s[g1 — (D1 +Do1)]" + V([go — (Do +D10)] ")
9

Terms in Bellman’s Eq. (9) are similar to those in (5). Similar to
Model 1, we also develop dynamic programming formulations to
determine the resulting values of average profit, Ap, and the average
waste, Ay, separately. We use the optimal decision variables (p“andq,”)
obtained by solving Eq. (9).

4.4. Model 4: Dynamic p1, pp and qp

In Model 4, retailer decides the order amount of new product, qo, old
product’s sale price, p;, and new product’s sale price, p, based on the
state of the system, q;.

A is the weighted-sum objective function of the problem and the
Bellman’s for the dynamic programming formulation of our problem to
determine the optimal order quantities, and old and new products sale
price is given below:

Max4
s.t.
—cqo +pimin(D; +Do1,q1)
w
A+V(q1) :pﬁll)a); E { +pomin(Do +D10,q0) —h[go — (Do +D1o)] }
—(1=w)s[q1 — (D1 +Do1)]" + V([go — (Do +D1o)] ")
(10)

Terms in Bellman’s Eq. (10) are similar to those in (5).
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Similar to Model 1, we also develop dynamic programming formu-
lations to determine the resulting values of average profit, Ap, and the
average waste, Ay, separately. We use the optimal decision variables

(Po",p1 andqo”) obtained by solving Eq. (10).
5. Numerical Results

We provide detailed numerical results and managerial insights for
the analyzed problem in this section. For each model, we analyze the
optimal order amount and the price decisions which maximize the stated
objective function in the previous sections, and we compare the results
of the models. In our numerical studies we consider a bakery product
(bagel, donut, croissant or cake etc.), as an example which has a two-day
lifetime. In our base case, we use N = 10 which is a typical scenario for a
small to medium-sized bakery section in a grocery store since the de-
mand for a specific product is smaller. We let c = 0.2, h = 0.002,s =1
and § = 0.6. Please note that, unit measures for costs and prices are
product-dependent and can be scaled accordingly. We suppose that

consumer valuation follows the distribution G(v) = 1 —(V%)b whereb > 0

and with support of [0, ¥]. This is a commonly used distribution to model
the consumer preference; see, for example, Debo et al (2005), Pan and
Honhon (2012) and Transchel (2017). The uniform distribution
commonly utilized in market segmentation literature (Jerath et al.,
2010; Dong and Wu, 2019; Shen et al., 2022) is a special case of this
distribution, achieved by setting the b = 1 (Debo et al., 2005). We use
b =1, such that v follows a uniform distribution between [0, V] (we as-
sume v = 1 in our numerical analysis). To analyze the tradeoff between
the objective functions of profit and waste, we use varying weight pa-
rameters between 0 and 1, with 0.1 increments, w = (0, 0.1, 0.2, 0.3, 0.4,
0.5,0.6,0.7,0.8, 0.9, 1). Also, since v = 1, we let the possible sale prices
vary between 0 and 1, with 0.05 increments.

Numerical results are obtained by using 3.40 GHz Intel i7-13700KF
server with 32 GB 5200 MHz DDR5 RAM. To solve the problem and
find the optimal solutions, we use the relative value iteration algorithm
for our infinite horizon average cost dynamic programming model, as
explained in Bertsekas (2005). We use the Python programming lan-
guage to implement the algorithm and obtain our numerical results.

In all our formulations, at least one of the states (for example the
state q; = 0) is visited with positive probability at least once within the
first m stages for some integer m > 0, for all initial states and for all
policies. Thus, Assumption 7.4.1 in Bertsekas (2005) is satisfied and as
stated in Proposition 7.4.1 in Bertsekas (2005), the optimal average cost
A* is the same for all initial states and together with some vector V* in
our formulations, satisfies Bellman’s Egs. (5), (8)-(10) in our models.
Then, the relative value iteration algorithm for the average cost per
stage formulations, as explained in Bertsekas (2005, Chapter 7,
pg.430-432), provides the optimal solution. In this algorithm, we let
Vk(qq) = Jk(qy) —Jk(r) where r is the reference state (we use r = 0),
Jx(q,) is the optimal k-stage cost for k = 1,2,..., and can be calculated
through the recursion below for Model 1. We note that similar recursions
can be used for Models 2, 3 and 4.

w( —cqo +pimin(d; + Do, q1) )
Jia(q1) = WZ?XE +pomin(Do + D10, go) — higo — (Do + D1o)]"
—(1 = w)slgs — (D1 +Da1)]” +Jk([qo — (Do + Dro)] ")
(11)

We use the following variant of the relative value iteration algo-
rithm, which guarantees the convergence under Assumption 7.4.1, as
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Table 4
Optimal decisions of Model 1.
Po P =0 =1 q =2 q1=3 =4 @1 =5 g1 =6 G =7 ¢ =8 =9 q1 =10 profit waste

w=0 0.05 0.05 qo 0 0 0 0 0 0 0 0 0 0 0 0 0
w=01 055 035 g 4 1 0 0 0 0 0 0 0 0 0 1.085  0.011
w=0.2 0.55 0.35 qo 4 1 0 0 0 0 0 0 0 0 0 1.085 0.011
w=0.3 0.55 0.35 qo 4 2 1 0 0 0 0 0 0 0 0 1.144 0.029
w=04 055 035 g 4 2 1 0 0 0 0 0 0 0 0 1.144  0.029
w=0.5 0.55 0.35 qo 5 3 1 0 0 0 0 0 0 0 0 1.208 0.084
w=0.6 0.55 0.35 qo 5 3 2 1 0 0 0 0 0 0 0 1.248 0.129
w=0.7 0.55 0.35 qo 5 3 2 1 0 0 0 0 0 0 0 1.248 0.129
w=0.8 0.55 0.35 qo 5 4 3 2 1 0 0 0 0 0 0 1.299 0.265
w=0.9 0.55 0.35 qo 5 4 3 3 2 1 0 0 0 0 0 1.305 0.310
w = 0.6 0.4 qo 5 4 4 3 3 3 3 3 3 3 3 1.330 0.636

stated in Bertsekas (2005), for any scalar 7, 0 < 7 < 1. Similarly, the optimal order quantity, qo, lies between 0 and N. Thus, we

—cqo +pimin(D; +Do1,q1) —cqo +pimin(Dy +Do,,T)
w w
Vk+1 (ql) = (1 71)Vk(q1)+nzaxE +p0min(Do +D10,qo) —h[qo — (D() <‘rD]0)]Jr 7112CIXE +p0min(Do +D10,q0) —h[qo — (DO +D10)]Jr
0 0

—(1=w)slgr — (D1 +Do1)]" +7Vi([go — (Do +D10)] ")

We note that even the single-period price-setting Newsvendor model
is not necessarily quasi-concave in price and inventory decisions and
because of this issue, an analytical solution or the properties of the
optimal solutions could not be found in a structured analytical manner.
We analyze the optimal solutions using the results of the numerical
experiments where we solve the stochastic dynamic programming for-
mulations using the relative value iteration algorithm as explained
above. In this analysis, due to non-concavity issues, we employ a grid
search to determine the optimal values of the decision variables, which
inherently makes the results grid-dependent. However, similar discrete
optimization approaches are used in practice. For example, Kolev et al.
(2023) optimize price reductions by selecting from a set of predefined
reductions to reduce waste and maximize profit across all Tesco stores in
the UK. In our models, the prices, pyp and p; (p1 < po), range between
0 and 1, and we use 0.05 increments between 0 and 1 for possible prices.

—(]. —w)s[r— (Dl +D01)]+ +TVk([q0 — (Do +D10)]+)
(12)

use an exhaustive grid search for the optimal decision variables in these
ranges in the relative value iteration algorithm and overcome the non-
concavity issues in the model through this approach.

For each of the four models, in the algorithm Vi.1(q;) is calculated
for all (q1) values on the left-hand side of the above equations by using
the Vi(q;) on the right-hand side for all k =0, 1, 2, ... until all Vi(q;)
values converge to some vector V, which is explained in detail by
Bertsekas (2005), where Vy(q;) = Oand Vi(0) = 0.

5.1. Results of Model 1

Table 4 presents the optimal price and order quantity decisions
under the state of the system (quantity of old product) and the different
weight factors. CPU time to obtain all results that are given in Table 4 is
in total 4.1 h. We find that the optimal order quantity decreases
monotonically in the quantity of the old products at hand, and no new
product is ordered when there are two objectives w € (0,0.9] and ¢; is

Table 5
Optimal decisions of Model 2.
=0 q=1 =2 q¢=3 q=4 q@=5 qa=6 @=7 q@=8 @=9 ¢ =10 profit waste
w=0 Ppo = 0.05 P - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
qo 0 0 0 0 0 0 0 0 0 0 0
w=0.1 po = 0.6 D1 - 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 0.05 0.05 1.247 0.001
@0 5 4 3 3 2 2 1 1 1 0 0
w=0.2 Po = 0.6 P1 - 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 0.05 1.269 0.005
qo 5 4 3 3 2 2 1 1 1 0 0
w=0.3 po = 0.6 D1 - 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05 1.269 0.005
qo 5 4 3 3 2 2 1 1 1 0 0
w=0.4 po = 0.6 D1 — 0.25 0.25 0.25 0.2 0.15 0.15 0.1 0.05 0.05 0.05 1.283 0.014
qo 5 4 3 3 2 2 1 1 1 0 0
w=0.5 Po = 0.6 P - 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 1.297 0.025
qo 5 4 3 3 2 1 1 1 0 0 0
w=0.6 po=0.6 D1 - 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 1.301 0.031
qo 5 4 3 3 2 1 1 1 1 0 0
w=0.7 po=0.6 P1 - 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.1 1.319 0.065
qo 5 4 3 3 2 1 1 0 0 0 0
w=0.8 po = 0.6 P - 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.15 1.330 0.106
qo 5 4 3 3 2 2 1 0 0 0 0
w=0.9 Ppo = 0.6 P1 - 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 1.339 0.152
qo 5 4 4 3 2 2 1 1 1 0 0
w=1 po=0.6 P - 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
g0 5 4 4 3 3 2 2 2 2 2 2
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high enough, in order to be able to sell the old ones at hand and decrease
the waste. In those cases, only old products are sold in the system.
However, when w = 1 the only objective is maximizing the profit and
new products are ordered even for extreme values of ;. In this model,
the difference in the optimal new and old products’ sale prices is low
(Proposition 1 (ii)), and the company focuses on the sale of new products.
In this model, only new products are sold due to consumer choices, and
old products can only be sold if the new ones are depleted.

In addition, as we can see from Table 4, as w increases, the cost of
waste becomes less important, and the optimal prices tend to increase.
Table 4 indicates how average profit and average waste changes based
on w. As expected, profit and waste increases as w increases. In the
extreme case, when w = 0 (i.e. the objective is purely minimizing waste),
since profit is not in the objective function, the optimal solution is to
close the business in order to eliminate waste, and the model tends to
order nothing and waste is decreased to 0. In the other extreme, when w
= 1 (i.e. profit is the only term in the objective function), the company
can generate an average profit of 1.330 by generating an average waste
of 0.636. As the companies become more environmentally conscious (or
forced by the governments through incentive or penalty mechanisms),
and not only consider the profit, but also put some weight on the amount
of waste they generate, they can decrease their waste at the cost of some
decrease in their profits. It is observed that the waste can be decreased
by almost 87 %, from 0.636 to 0.084, without compromising from the
profit that much (profit decreases by around 9 % from 1.33 to 1.208),
when w is set to 0.5. Another choice of w = 0.7 leads to about 80 %
decrease in waste, as opposed to only 6 % decrease in profit. Depending
on the importance of waste, sustainability and the environmental con-
cerns, companies can choose a suitable level of w for themselves, and
improve their system results significantly as a whole.

5.2. Results of Model 2

In this section, a static price for the optimal pg is determined, while
optimal p; and qy is set in a dynamic manner and changes based on the
changing value of q;. Therefore, computational complexity grows and
CPU time to obtain all results that are given in Table 5 is in total 7.4 h
which is higher than Model 1. From Table 5, it can be observed that as q;
increases, both p; and q¢ decrease monotonically. This strategy helps
manage the inventory balance and minimize potential waste and
maximize profit by encouraging sales of old products before they expire.

Similar to Model 1, Table 5 indicates that in Model 2 the optimal

Computers and Operations Research 181 (2025) 107103

value for pg is consistent across all w values; however, it is higher, i.e.,
Po*=0.6. This can be explained as follows, when p; is dynamic, retailer
can set a higher py and then decide p; based on the quantity of the old
product at hand, g;. Hence, higher profit and lower waste can be ob-
tained. However, when p; is static, it cannot be adjusted based on q;;
therefore, in order to not cause waste, retailer sets lower py from the very
beginning. However, this causes lower profit.

From Table 5 we can observe that the decision of p; depends on q;.
When q; surpasses a threshold, the retailer employs a discount strategy
by setting p; according to p; < po + 8-1, resulting in zero initial demand
for the new product, in order to decrease waste as much as possible,
especially when w is smaller (i.e. waste is more important). However,
since demand shift is permitted, any excess demand from the old product
can be shifted to the new product. In Table 5 we observe a threshold
pricing policy. Let T denote the threshold level.

eIf g¢ € [0, T] then retailer charges moderate p;,
Do+ 6 —1 <pi < 8po, such that consumers can give the following
three decisions; whether to buy the old product, the new product or
leave the system without any purchase. Yellow highlighted cells in
Table 5 indicate this policy.

e If g1€(T, 10], retailer’s best strategy is to set too low p1, p1 < po +6 —
1 and none of the consumers will purchase new products. Grey
highlighted cells in Table 5 indicate this policy.

These thresholds are lower for the lower w values. Which means that
even though the retailer has more of the old products at hand, optimal p;
is higher when profit maximization is more important. Also, from
Table 5 it can be seen that the optimal order quantity, qo*, decreases
when w is lower. This is realistic because when the waste minimization
becomes more important retailer tends to decrease optimal gg to avoid
overstocking and focuses on selling old products at hand by decreasing
the optimal p;.

From Table 5, we can observe how average profit and average waste
change based on w. Similar to Model 1, as w increases waste and profit
both increase. For example, when we compare the results of w = 0.3 and
w = 0.5, it can be seen that average profit decreases moderately; how-
ever, average waste decreases dramatically. Therefore, a suitable choice
of w becomes critical for managers to balance the profit and waste of the
company.

Table 6
Optimal decisions of Model 3.
¢1=0 =1 G =2 ¢1=3 =4 G1=5 G =6 G=7 =8 G =9 =10 profit waste
w=0 P 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
qo 0 0 0 0 0 0 0 0 0 0 0
w=0.1 P 0.55 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 0.05 1.050 0.003
qo 4 2 0 0 0 0 0 0 0 0 0
w=0.2 P 0.55 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0.05 1.074 0.007
qo 4 2 1 0 0 0 0 0 0 0 0
w=0.3 P 0.6 0.4 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 1.105 0.018
qo 4 2 1 0 0 0 0 0 0 0 0
w=0.4 P 0.6 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 1.140 0.038
qo 4 3 1 0 0 0 0 0 0 0 0
w=0.5 P 0.6 0.4 0.35 0.3 0.25 0.25 0.2 0.15 0.1 0.05 0.05 1.150 0.047
qo 4 3 2 0 0 0 0 0 0 0 0
w=0.6 P 0.6 0.45 0.35 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 1.172 0.074
qo 4 3 2 0 0 0 0 0 0 0 0
w=0.7 P 0.6 0.45 0.4 0.35 0.3 0.25 0.25 0.2 0.15 0.1 0.1 1.203 0.129
qo 4 4 2 1 0 0 0 0 0 0 0
w=0.8 P 0.6 0.5 0.4 0.35 0.35 0.3 0.25 0.25 0.2 0.2 0.2 1.224 0.190
qo 4 4 3 1 0 0 0 0 0 0 0
w=0.9 P 0.55 0.5 0.45 0.4 0.35 0.3 0.3 0.25 0.25 0.25 0.25 1.256 0.395
qo 5 5 4 2 1 0 0 0 0 0 0
w=1 P 0.6 0.55 0.55 0.55 0.55 0.35 0.3 0.3 0.3 0.3 0.3 1.278 0.987
qo 5 5 5 5 5 0 0 0 0 0 0
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Table 7
Optimal decisions of Model 4.
¢@1=0 G@=1 G =2 G1=3 =4 G@=5 G1=6 G=7 @ =38 @ =9 ¢ =10 profit waste
Po 0.05 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0
w=0 P - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
q0 0 0 0 0 0 0 0 0 0 0 0
Po 0.55 0.6 0.55 0.6 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.259 0.002
w=0.1 P - 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 0.05 0.05
qo0 5 4 4 3 2 2 1 1 1 0 0
Po 0.55 0.6 0.55 0.6 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.261 0.002
w=0.2 P - 0.25 0.2 0.2 0.2 0.15 0.1 0.05 0.05 0.05 0.05
qo 5 4 4 3 2 2 1 1 1 0 0
Po 0.55 0.6 0.6 0.55 0.6 0.6 0.6 0.6 0.55 0.6 0.6 1.275 0.006
w=0.3 P - 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05
qo0 5 4 3 3 2 2 1 1 1 0 0
Po 0.55 0.6 0.6 0.55 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.275 0.006
w=0.4 P - 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05
90 5 4 3 3 2 2 1 1 1 0 0
Po 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.6 0.4 0.6 0.6 1.297 0.025
w=0.5 P - 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
90 5 4 3 3 2 1 1 1 0 0 0
Do 0.6 0.6 0.55 0.6 0.6 0.65 0.6 0.6 0.55 0.5 0.5 1.3138 0.0471
w=0.6 P - 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05
90 5 4 4 3 2 1 1 1 1 0 0
Do 0.6 0.6 0.55 0.6 0.6 0.55 0.6 0.55 0.4 0.45 0.45 1.314 0.0477
w=07 P - 0.3 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.1 0.1
9o 5 4 4 3 2 2 1 0 0 0 0
Po 0.6 0.6 0.6 0.55 0.6 0.6 0.6 0.55 0.55 0.4 0.4 1.324 0.078
w=0.8 P - 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.15
qo 5 4 4 3 2 2 1 1 1 0 0
Po 0.6 0.6 0.6 0.6 0.6 0.55 0.6 0.6 0.6 0.5 0.5 1.339 0.150
w=0.9 P - 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25
qo 5 4 4 3 2 2 1 1 1 0 0
Po 0.6 0.6 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.347 0.297
w=1 P - 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
q0 5 4 4 3 3 2 2 2 2 2 2
1
0.9
0.8
207
= 0.6
g{;u 0.5
§ 0.4 9
£ 03
0.2 {;
0.1
0 =——= PRI S
1.05 1.1 1.15 1.2 1.25 1.3 1.35
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—@— Model |  :--@--- Model 2 Model 3 Model 4

Fig. 1. Comparison of pareto frontiers of all models.

5.3. Results of Model 3

Table 6 represents the optimal price and order quantity decisions
under the state of the system (quantity of old product) and the different
weight factors. CPU time to obtain all results that are given in Table 6 is
in total 1.6 h.

Since py = p1 = p because of Proposition 1(ii), none of the consumers
would like to pay the same price to old products as new products and the
old product’s initial demand will be zero. However, since we allow the
demand shift, the old products can be sold when the new products are
depleted and their waste can only be prevented then. Because of this
reason, as observed in Table 6, a smaller number of new products are
ordered as the amount of old products at hand increases. Consistent with

10

the literature, we find that the optimal order quantity and the optimal
sale price decrease monotonically in the quantity of old products. In
addition, if the waste becomes more important (as w decreases), the
prices decrease more and a smaller number of new products are ordered.
Table 6 also shows that average profit and average waste increase as w
increases. When the results of w = 0.1 and w = 0.4 are compared,
average profit decreases by 8 %, while waste decreases by 93 %.
Therefore, a huge decrease in waste can be achieved by compromising
comparably a smaller amount in profit.

5.4. Results of Model 4

In this model, retailer offers a discount for the old products, and
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Fig. 2. Comparison of the weighted-sum objective functions of all models.

Table 8
Sensitivity results for Model 2 with w = 0.5.

A Ap Aw 4 Difference %

Base Case 0.6359 1.2966 0.0249 —

§=0.48 0.6238 1.2642 0.0165 1.892% |
§=0.72 0.6566 1.3279 0.0147 3.254 % 1
c=0.16 0.7216 1.4712 0.0280 13.481 % 1
c=0.24 0.5543 1.1271 0.0185 12.825 % |

h = 0.0016 0.6361 1.2970 0.0249 0.031 % 1

h = 0.0024 0.6357 1.2962 0.0249 0.031 % |

decide the sale prices of both the old and new products and the order
quantity based on the inventory of old products at hand. CPU time to
obtain all results that are given in Table 7 is in total 7.8 h.

Similar to Model 2, we observe the same threshold pricing policy as
stated in Section 5.2. These thresholds are lower for the lower w values.
Which means that when waste minimization is more important (w is
lower) the difference in the optimal new and old products’ sale prices
(po” —p1”) increases. Hence, old product’s demand increases and waste
can be prevented.

As we can see from Table 7, g0 monotonically decrease (to zero) with
q1, because when g; is high enough to meet the old product’s demand
retailer does not need to order new product and instead try to sell the
inventory. Hence, for the lower w values, retailer can prevent waste and
for the higher w values, can avoid paying h and c.

Different than previous models, in Model 4 both sale prices are dy-
namic which let retailers to adjust sale prices according to old product at
hand, q;, and gain more profit and cause less waste. As it can be seen in
Table 7, similar to previous models average profit and average waste

increase as w increases. We also can observe that average profit de-
creases moderately, whereas average waste decreases dramatically with
changing w. For example, when the results of w = 0.7 and w = 0.9 are
compared, average profit decrease by only about 2 %, while average
waste decreases by about 68 %. This again explains the substance of
determining the relative importance of the objective functions.

5.5. Comparison of all models

In this section, we compare the pareto frontiers of the models. Fig. 1
(starting from w = 0.1) demonstrates the comparison of pareto frontier
for four DS Models, where we can observe that Model 2 and Model 4
provide better Pareto solutions, mainly due to the dynamic and free
choice of p;, that is different than py. For all models, it is observed that
significant savings can be obtained in waste, with only a small decrease
in profit. Furthermore, our findings in Fig. 2 show that the optimum
weighted-sum objective value in Model 4 exceeds that of the other three
models. However, there is minor difference between the optimum
weighted-sum objective values of Model 4 and Model 2. From these
results, we can conclude that when there is demand shift between old
and new products, pricing old and new products differently in a dynamic
manner can provide significant savings for the retailer. Therefore, we
can conclude that the retailer optimizes both the average profit and
average waste when the sale prices and order quantity decisions are
given in a dynamic manner at the beginning of each period by consid-
ering the old product’s inventory.

5.6. Sensitivity analysis for Model 2

In this section, we analyze the results of our models for varying

Table 9
Sensitivity results of decision variables for Model 2 with w = 0.5.
Po 1=0 =1 =2 ¢1=3 =4 ¢1=5 q1=6 @ =7 =8 41 =9 q:1 =10
Base Case 0.6 D1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
qo 5 4 3 3 2 1 1 1 0 0 0
6 =0.48 0.6 P1 0.2 0.2 0.2 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05
qo 5 4 3 3 2 2 1 1 1 0 0
6=0.72 0.6 D1 0.25 0.35 0.35 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05
qo 5 4 3 3 2 2 1 1 1 0 0
c=0.16 0.6 P 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05
qo 5 5 4 3 3 2 2 1 1 0 0
c=0.24 0.6 D1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
qo 4 4 3 3 2 1 1 1 0 0 0
h =0.0016 0.6 P1 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
qo 5 4 3 3 2 1 1 1 0 0 0
h = 0.0024 0.6 P1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
qo 5 4 3 3 2 1 1 1 0 0 0
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Table 10
Optimal decisions of Model 2 when v ~ Triangular (0,1,0.5).
@=0 q=1 G=2 =3 q@=4 @=5 q¢=6 @=7 q¢=8 ¢=9 ¢=10  profit waste
w=0 po = 0.05 P1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
qo 0 0 0 0 0 0 0 0 0 0 0
w=0.1 Po=0.45 P1 0.15 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.1 0.1 1.2429 0.001
qo 6 6 5 4 4 3 2 2 0 0 0
w=0.2 po = 0.45 P1 0.15 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.1 1.2506 0.003
qo 6 6 5 4 4 3 2 2 1 0 0
w=0.3 Po=0.45 D1 0.15 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 0.1 1.2506 0.003
qo 6 6 5 4 4 3 2 1 1 0 0
w=0.4 po = 0.45 P 0.15 0.2 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 1.2526 0.004
qo 6 6 5 4 3 3 2 1 0 0 0
w=0.5 Ppo = 0.45 P1 0.15 0.2 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 1.2526 0.004
qo 6 6 5 4 3 3 2 1 0 0 0
w=0.6 Po=0.45 P1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 0.15 0.1 1.2538 0.005
qo 6 6 5 4 4 2 1 0 0 0 0
w=0.7 po = 0.45 D1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 0.15 1.2538 0.006
qo 6 6 5 4 4 3 2 1 0 0 0
w=0.8 Po = 0.45 1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 1.2538 0.006
qo 6 6 5 4 4 3 2 1 0 0 0
w=0.9 po = 0.45 D1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.2541 0.007
qo 6 6 5 5 4 3 2 2 1 0 0
w=1 Ppo = 0.45 P 0.15 0.35 0.35 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.2615 0.389
qo 7 6 5 5 4 3 3 2 2 2 2

parameter values in order to observe the effects of the parameters on the
system results. We provide the sensitivity results of only Model 2 for the
sake of brevity, but we note that the sensitivity results for the other
models are also similar to the results presented in this section. We
consider the retailer’s problem in which the importance of waste mini-
mization and profit maximizations are equal (w = 0.5). Table 8 shows
the sensitivity results and Table 9 represents the effects of parameters on
decision variables.

§ is the rate of decrease in the consumer’s valuation of the product
when its age gets older. If § is low (6§ = 0.48) then consumer’s valuation
for old product decreases and they will not be willing to purchase old
products and waste may occur. Therefore, retailer’s best strategy is to set
lower p; to increase the old product’s expected demand and order higher
quantity of new product. This strategy benefits the retailer to decrease
optimal average waste (dw) from 0.025 to 0.016; however, optimal
average profit (1p) also decreases. Therefore, weighted-sum objective
function (4) decreases by 1.892 %. However, when § is higher (§ = 0.72),
meaning that when decrease in the consumer’s old product valuation is
not so significant, retailer’s optimal strategy is setting higher p; and
ordering more new products for particular q; values. This strategy de-
creases Ay, 4p and increases the A by 3.254 %.

1.4
1.2

0.8
0.6
0.4
0.2

Weighted sum objective function

0 &

0.1 02 03 0.4

uniform distribution

Retailer’s optimal sale price decision is not affected by + 20 %
changes in ordering cost (c). However, when c is lower (¢ = 0.16), re-
tailer’s best strategy is to set lower pg (pg = 0.55), lower p; for particular
q1 values and order more new products. Hence, Ay decreases, ip in-
creases; therefore, weighted-sum objective function (A) increases by
13.481 %. For higher c values (¢ = 0.24), retailer order less new products
which decreases Ay but also 1p; therefore, A decreases by 12.825 %. +
20 % changes in inventory holding cost (h) does not affect the optimal
decisions and iw. However, it affects 1p directly; therefore, when h =
0.0024, 4 decreases by 0.031 % and when h = 0.0016, A increases by
0.031 %.

5.6.1. Triangular distribution for Model 2

In our numerical experiments, the utility function is assumed to be
uniformly distributed but the distribution of the valuations of consumers
might be expected to be more centered around the middle rather than
being uniform. Thus, in this section, we use a triangular distribution
with lower bound 0, upper bound 1, and most likely value 0.5, In other
words, we analyze the results of Model 2 when v Triangular(0,1,0.5)
and compare them with the previously stated results. Table 10 presents
the optimal price and order quantity decisions under the state of the

0.5

w
=triangular distribution

06 07 08 09 1

Fig. 3. Comparison of Weighted-Sum Objective Function Values of Model 2 for Uniform Distribution and Triangular distribution.
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Table 11

= 20.

Optimal decisions of Model 2 when N

=13 =14 ¢=15 ¢=16 ¢=17 ¢;=18 ¢=19 ¢=20 profit waste

=12

¢1=10 ¢1=11

=9

7 q1=8 ¢

Q1=

¢1=6

¢1=5

=4

2 =3 q

Q1=

¢1=1

01=0

0.05 p; 0.05 005 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.000 0.000

Po=

qo

0.05 0.05 0.05 0.05 0.05 2.756 0.001

0.05

0.15 0.15 0.1 0.1 0.1

0.2 0.2 0.2

0.2

0.25 025 0.25

0.25

0.3

P

Po=0.6

0.1

qo

0.05 0.05 0.05 0.05 0.05 2.7758  0.0059

0.05

0.15 0.15 0.1 0.1

025 025 025 0.2 0.2 0.2 0.2

0.25

0.3

0.3

P1

Po=0.6

0.2

qo

0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 2.7763  0.0061

0.15

0.2 0.2 0.2

0.2

0.3 0.25 0.25 025 0.25

0.3

) 41

Po= 0.6

w=0.3

qo

0.1 0.1 0.05 0.05 0.05 0.05 2.7956 0.0177

0.1

0.15

0.15

0.2 0.2 0.2

0.2

025 025 0.25

0.25

0.3 0.3

0.3

P1

Po=0.6

0.4

qo

0.05 0.05 0.05 2.7958 0.0178

0.05

0.15 0.1 0.1

0.15

025 025 025 025 0.2 0.2 0.2 0.2

0.25

0.3 0.3

0.3

D1

Po=0.6

w=0.5

qo

0.05 0.05 2.808 0.032

0.05

0.15 0.1 0.1

0.15

0.3 0.3 0.3 025 025 025 025 025 0.2 0.2 0.2 0.2

0.3

41

Po=0.6

0.6

qo

2.821 0.060

0.1

0.3 0.3 0.3 0.3 025 025 025 025 0.25 0.2 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1

0.3

1 41

Po=0.6

0.7

qo

0.3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2.824 0.070

0.3

0.3 0.3 0.3

0.3

P

Po=0.6

w=0.8

qo

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 2.825 0.077

P1

Po=0.6

0.9

qo

0.6 pr 035 035 035 035 03 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 2.843 0.457

Po=

w=1

qo
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system (quantity of old product) and the different weight factors.
Average waste and profit for different weight factors can also be seen
from the table.

From Table 10, similar to uniform distribution results, it can be
observed that as g; increases, both p; and gy decrease monotonically,
also po* is consistent across all w values. However, the value of py* is
lower compared to uniform distribution, i.e. po*=0.45 which is expected
since consumer’s valuation is highly located around 0.5. Similar to
uniform distribution, optimal p;* monotonically decreases with q;.
However, when retailer has two objectives, i.e. w € [0.1, 0.9], the
retailer always charges a moderate py, po + 5 — 1 < p1 < po, allowing
consumers to make one of three decisions: to buy the old product, the
new product, or to leave the system without making a purchase. Also,
behavior of qq is similar to uniform distribution; however, the value of qo
is higher for certain g; values under the triangular distribution. Since,
sale prices are lower compared to uniform distribution both the average
waste and average profit are also lower. However, as it can be seen from
Fig. 3, weighted-sum objective function is lower for all w values under
triangular distribution.

5.6.2. Results of Model 2 when N = 20

In this subsection we run our numerical analysis for Model 2 for a
larger size of the problem where N = 20, and thus the possible demand
values and the state space of the model, q;, ranges between 0 and 20.
Table 11 shows the optimal price and order quantity decisions under the
state of the system and the different weight factors. The main difference
between the cases when N = 10 and N = 20 arises in the run time of the
algorithm due to the increase in the size of the state space and the
possible demand values. Recall that the CPU time to obtain all results in
Table 5 is in total 7.4 h, whereas the CPU time to obtain all results in
Table 11 turns out to be around 140 h. Due to the curse of dimension-
ality, the run time of the algorithm increases exponentially. However,
we note that similar structural insights are obtained for Model 2 when N
= 20 compared with the case N = 10. For example, as q; increases, both
p1 and qo decrease monotonically, also po* is consistent across all w
values, i.e., po*=0.6. From Table 11 we also observe that decision of p;
depends on q; in a similar manner to N = 10 case. The same threshold
policy can also be observed: if q; € [0, T] then retailer charges moderate
P1, Po +6 — 1 < p; < &po, such that consumers can give the three de-
cisions (this policy highlighted as yellow in Table 11); if gq;(T, 201,
retailer’s best strategy is to set too low p1, p1 < po +8 — 1 and none of the
consumers will purchase new products (this policy highlighted as grey in
Table 11). The behavior of qo*, average profit and average waste based
on w is also similar to N = 10 case. For example, qo* decreases when w is
lower, and average waste and profit both increase with w. When the
results of w = 0.3 and w = 0.5 are compared, average profit decreases by
0.7 %, while waste decreases by 66 %. Thus, a significant reduction in
waste can be achieved by compromising a relatively smaller amount of
profit.

5.6.3. Results of Model 2 when s = 0.1

In our numerical experiments, we initially set s = 1 to represent not
only the direct monetary cost but also the broader implications of food
waste. These include the opportunity cost of unsold goods, and the
significant environmental impact associated with food waste disposal.
The latter is particularly relevant considering recent policy de-
velopments. As of 2023, nine U.S. states have enacted organic waste
bans for grocery retailers, also known as mandatory recycling programs
(Sanders, 2024). These regulations aim to reduce landfill waste, mitigate
methane emissions from decomposing organic waste, and encourage the
rescue of food suitable for consumption.

However, the cost of waste may be lower in some contexts, partic-
ularly when penalties are minimal or when there is a salvage value
associated with transforming the product for alternative use. To explore
this scenario, we reran our numerical analysis for Model 2 with s = 0.1.
Table 12 shows the optimal price and order quantity decisions under the
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Table 12
Optimal decisions of Model 2 when s = 0.1.
@1=0 @¢=1 ¢=2 ¢=3 q¢=4 ¢=5 =6 ¢=7 =8 =9 ¢=10 profit waste
w=0 po=005 p; - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
g0 O 0 0 0 0 0 0 0 0 0 0
w=01 po=0.6 T 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 1.297 0.025
@0 5 4 3 3 2 1 1 1 0 0 0
w=02 po=0.6 T 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.15 0.1 1.319 0.065
qp 5 4 3 3 2 1 1 0 0 0 0
w=03 po=0.6 T 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 1.330 0.106
@0 5 4 3 3 2 2 1 0 0 0 0
w=04 po=0.6 T 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25 1.3389  0.150
qG0 5 4 4 3 2 2 1 1 0 0 0
w=05 po=0.6 T 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 1.3392  0.152
g 5 4 4 3 2 2 1 1 1 1 1
w=0.6 po=0.6 T 0.3 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 1.340 0.162
qGp 5 4 4 3 3 2 2 1 1 1 1
w=07 po=0.6 T 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.345 0.253
g 5 4 4 3 3 2 2 2 2 2 2
w=08 py=0.6 ) T 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.345 0.253
Q@0 5 4 4 3 3 2 2 2 2 2 2
w=09 po=0.6 T 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
q@p 5 4 4 3 3 2 2 2 2 2 2
w=1 po = 0.6 T 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
g 5 4 4 3 3 2 2 2 2 2 2
1.4 Y
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Fig. 4. Comparison of Weighted-Sum Objective Function Values of Model 2 for s = 1 and s = 0.1.

state of the system and the different weight factors. Average waste and
profit for different weight factors can also be seen from the table. The
total CPU time required to obtain all results presented in Table 12 is
7.33 h. The average waste shown in Table 12 is calculated by multi-
plying the average waste cost by 10, as s = 0.1.

From Table 12, similar to the results for s = 1, it can be observed that
as q; increases, both p;* and qo* decrease monotonically. Additionally,

Ppo* remains consistent across all across all w values and is equal to 0.6,
identical to the results for s = 1 results. Although the behavior of p;* and
go* for s = 1 is similar, the optimal values of p;* and qo* are higher for
certain system states. This is expected, as the lower waste cost (s = 0.1)
allows the retailer greater flexibility in deciding order quantities and the
sale price of old products. The lower financial implications of waste
incentivize the retailer to explore higher price points and order

Table 13
Optimal decisions of NoDs Model 1.
Do D1 =0 @¢=1 @¢=2 =3 qa=4 =5 @=6 q@=7 @=8 @¢=9 ¢ =10 profit waste

w=0 0.05 0.05 qo 0 0 0 0 0 0 0 0 0 0 0 0 0
w=0.1 0.55 0.25 qo 2 2 2 2 2 2 2 2 2 2 2 0.607 0.010
w=0.2 0.5 0.5 qo 3 3 3 3 3 3 3 3 3 3 3 0.867 0.066
w=0.3 0.5 0.5 qo 3 3 3 3 3 3 3 3 3 3 3 0.867 0.066
w=0.4 0.55 0.55 qo 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w=0.5 0.55 0.55 qo 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w=0.6 0.55 0.55 qo 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w=0.7 0.55 0.55 qo 4 4 4 4 4 4 4 4 4 4 4 1.184 0.391
w=0.8 0.6 0.6 qo 4 4 4 4 4 4 4 4 4 4 4 1.238 0.602
w=0.9 0.6 0.6 qo 4 4 4 4 4 4 4 4 4 4 4 1.238 0.602
w=1 0.6 0.6 qo 5 5 5 5 5 5 5 5 5 5 5 1.256 1.235

14



M. Hasiloglu-Ciftciler and O. Kaya

quantities, as the economic risk of unsold inventory is reduced.

Similar to the results for s = 1 a threshold policy can be observed.
When q; € [0, T] then retailer charges moderate p;, such that
Do +6—1 <p; < po, enabling consumers to make three possible de-
cisions: buying new products, old products, or neither. This policy is
highlighted in yellow in Table 12. When q;€(T, 10], retailer’s optimal
strategy is to set too low pj, such that p; < pp+8— 1 and none of the
consumers will purchase new products. This policy is highlighted in grey
in Table 12. Notably, the thresholds for these policies are higher
compared to those observed for s = 1. This is because lower waste costs
allow the retailer to adopt higher p;.

When comparing waste and profit values for s = 1 and s = 0.1 it is
observed that, as expected, higher profits are achieved when s = 0.1.
However, this causes the increased waste. Additionally, as shown in
Fig. 4, the weighted-sum objective function is higher for s = 0.1 indi-
cating that the lower waste cost allows for greater flexibility in balancing
profit maximization and waste minimization. However, all these ana-
lyses demonstrate that similar structural insights can be obtained when
comparing the results for s = 1 with those for s = 0.1.

5.7. No demand shift (NoDS) models

In this section we discuss a special case in which there is no demand
shift between new and old products (ag; = @10 = 0).

5.7.1. NoDS Model 1: Static pp and p;, dynamic qo

In this case, Table 13 shows that even though qg is dynamic, retailer’s
best strategy is to order the same quantity as q; changes. At first, this
may seem counterintuitive because usually higher old inventory re-
quires fewer (sometimes no) new products. However, in this case, since
we do not allow demand shift, the amount of old inventory does not
affect the demand for the new ones, and only the prices affect the de-
mand. Since the prices are not dynamically changed based on the
amount of inventory at hand, for given fixed prices, the problem about
deciding the order quantity go reduces to a two-period Newsvendor
problem, in which unsold new products are not salvaged at the end of
the first period but have a second opportunity to be sold as old products
in the second period. The quantity of old products at hand does not affect
the order quantity of the new products. CPU time to obtain all results
that are given in Table 13 is in total 2.1 h.

Our numerical analysis reveals that when the cost of waste becomes
less important (higher w values), the retailer’s best strategy is to not
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apply discount and set the static prices po = p;. When waste minimiza-
tion is more important (w = 0.1) retailer can benefit from setting lower
pi1 than po. Hence, due to Proposition 1 (i) (po + 6 — 1 < p1 < 8po, ) con-
sumers will choose whether to buy old or new product or leave the
system based on their utilities, which can help retailer to gain profit and
minimize the waste. However, as w increases and waste becomes less
important, it is observed that p; is set equal to py, meaning that it is not
profitable to sell old products at a lower price, and the company focuses
only on selling the new products. In order to avoid cannibalization be-
tween the old and new products, the company prefers to only sell the
new products in this case. More new products are ordered, and higher
prices are charged. The demand for the old products will be zero and
they all be dumped.

5.7.2. NoDS Model 2: Static py, dynamic p; and qp

As it can be seen from Table 14, different than NoDs Model 1, since
the decision of p; is given dynamically based on the quantity of the old
products at hand (qy), retailer’s best strategy is to apply discount as q;
increases in order to prevent waste. The prices of old products tend to
decrease as q; increases, and as w decreases, since waste becomes more
important. The static price of the new products also tends to be lower for
lower w. In addition, the order quantity go monotonically decreases as q;
increases. Therefore, in Model 2 average profit is higher and average
waste is lower compared to Model 1, stating that dynamically adjusting
the prices of old products can benefit the company significantly. CPU
time to obtain all results that are given in Table 14 is in total 1.25 h.

5.7.3. NoDS Model 3: Dynamic (pp = p1) and qp

As shown in Table 15, since pg = p1 = p and since there is no demand
shift between old and new products, the demand for the old products
will be zero in this case. Thus, the quantity of the old products at hand
(q1) does not affect any of the decisions and the retailer’s best strategy is
to keep the prices and the order quantities constant, regardless of the
state of the system. CPU time to obtain all results that are given in
Table 15 is in total 0.059 h. The prices and the order quantities tend to
decrease as w decreases (i.e. waste becomes more important).

5.7.4. NoDS Model 4: Dynamic py, p; and qo

As we can see from Table 16, the retailer’s best strategy changes
based on the inventory of old products (q;) and w. Results show that
optimal prices are not always decreasing as ¢; increases, since qo
changes, too, where q is decreasing with respect to g;. Similar to other

Table 14
Optimal decisions of NoDS Model 2.
=0 @¢=1 q@=2 ¢=3 qa=4 q@=5 ¢=6 q@=7 =8 @=9 ¢ =10 profit waste
w=0 Ppo = 0.05 P - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
qo 0 0 0 0 0 0 0 0 0 0 0
w=0.1 po = 0.55 D1 — 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 0.05 0.05 1.066 0.004
qo 4 2 1 1 0 0 0 0 0 0 0
w=0.2 po = 0.55 P1 - 0.25 0.2 0.2 0.1 0.1 0.1 0.1 0.05 0.05 0.05 1.066 0.004
qo 4 2 1 1 0 0 0 0 0 0 0
w=0.3 po = 0.6 D1 - 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 1.110 0.017
qo 4 2 1 1 0 0 0 0 0 0 0
w=0.4 Ppo = 0.6 D1 — 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 1.110 0.017
qo 4 2 1 1 0 0 0 0 0 0 0
w=0.5 Ppo = 0.55 P - 0.3 0.25 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 1.174 0.069
qo 4 4 2 2 1 1 0 0 0 0 0
w=0.6 po = 0.55 D1 — 0.3 0.25 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 1.204 0.103
qo 5 4 2 2 1 1 0 0 0 0 0
w=0.7 po = 0.55 P1 - 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.1 1.210 0.115
qo 5 4 3 3 1 1 1 0 0 0 0
w=0.8 po = 0.55 P - 0.3 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 1.2578 0.250
qo 5 4 4 3 3 1 1 1 0 0 0
w=0.9 po = 0.55 P1 — 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 1.2582 0.252
qo 5 4 4 3 3 3 3 1 1 1 1
w=1 Ppo= 0.6 P - 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.285 0.699
qo 5 5 5 3 3 3 3 3 3 3 3
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Table 15
Optimal decisions of NoDS Model 3.
¢1=0 G=1 G =2 ¢@1=3 =4 G1=5 G =6 G=7 =8 Gt =9 =10 profit waste
w=0 P 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
qo 0 0 0 0 0 0 0 0 0 0 0
w=0.1 P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.594 0.012
qo 2 2 2 2 2 2 2 2 2 2 2
w=0.2 P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.867 0.066
qo 3 3 3 3 3 3 3 3 3 3 3
w=0.3 P 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.867 0.066
qo 3 3 3 3 3 3 3 3 3 3 3
w=0.4 P 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.981 0.125
qo 3 3 3 3 3 3 3 3 3 3 3
w=0.5 P 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.981 0.125
qo 3 3 3 3 3 3 3 3 3 3 3
w=0.6 P 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 1.184 0.391
I 4 4 4 4 4 4 4 4 4 4 4
w=0.7 P 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 1.184 0.391
o 4 4 4 4 4 4 4 4 4 4 4
w=0.8 P 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.238 0.602
I 4 4 4 4 4 4 4 4 4 4 4
w=0.9 P 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.238 0.602
o 4 4 4 4 4 4 4 4 4 4 4
w=1 P 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.256 1.235
qo 5 5 5 5 5 5 5 5 5 5 5
Table 16
Optimal decisions of NoDS Model 4.
¢1=0 G=1 Q=2 ¢@1=3 =4 ¢1=5 G =6 G =7 G1=8 G =9 =10 profit waste
Po 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0
w=0 P1 - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
qo 0 0 0 0 0 0 0 0 0 0 0
Po 0.55 0.55 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 0.5 1.074 0.004
w=0.1 P1 - 0.25 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 0.05
qo 4 2 0 0 0 0 0 0 0 0 0
Po 0.55 0.55 0.5 0.7 0.65 0.6 0.55 0.55 0.5 0.5 0.5 1.084 0.006
w=0.2 P1 - 0.25 0.2 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0.05
qo 4 2 2 0 0 0 0 0 0 0 0
Po 0.6 0.5 0.5 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 1.138 0.025
w=0.3 P1 — 0.25 0.2 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05
qo 4 3 2 0 0 0 0 0 0 0 0
Po 0.6 0.5 0.55 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 1.154 0.033
w=0.4 P1 - 0.25 0.25 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05
qo 4 3 2 0 0 0 0 0 0 0 0
Po 0.6 0.5 0.55 0.75 0.7 0.7 0.65 0.6 0.55 0.5 0.5 1.159 0.037
w=0.5 P1 - 0.25 0.25 0.3 0.25 0.25 0.2 0.15 0.1 0.05 0.05
qo 4 4 2 0 0 0 0 0 0 0 0
Po 0.6 0.55 0.6 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.5 1.219 0.105
w=0.6 j 2% - 0.3 0.3 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
qo 4 4 3 0 0 0 0 0 0 0 0
Po 0.6 0.55 0.6 0.55 0.75 0.7 0.7 0.65 0.6 0.55 0.55 1.229 0.123
w=0.7 j 2% - 0.3 0.3 0.25 0.3 0.25 0.25 0.2 0.15 0.1 0.1
qo 4 4 3 3 0 0 0 0 0 0 0
Po 0.55 0.55 0.6 0.6 0.8 0.75 0.7 0.7 0.65 0.65 0.6 1.245 0.175
w=0.8 P1 — 0.3 0.3 0.3 0.35 0.3 0.25 0.25 0.2 0.2 0.15
qo 5 4 3 3 0 0 0 0 0 0 0
Po 0.55 0.6 0.55 0.6 0.6 0.75 0.75 0.7 0.7 0.7 0.7 1.282 0.380
w=0.9 1 0.35 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25
qo 5 4 4 3 3 0 0 0 0 0 0
Po 0.6 0.6 0.55 0.65 0.6 0.6 0.6 0.75 0.75 0.75 0.75 1.290 0.559
w=1 P1 - 0.35 0.3 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3
qo 5 5 4 3 3 3 3 0 0 0 0

models average profit and average waste increase as w increases.
However, in this no demand shift model waste is much lower compared
to other NoDS models, because retailer’s sale prices decisions are given
dynamically based on q;. Hence, even though there is no demand shift
waste can be prevented, and profits can be improved significantly
through dynamic pricing. CPU time to obtain all results that are given in
Table 16 is in total 1.36 h.
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6. Conclusion

Perishable food products such as fruits, vegetables, and dairy prod-
ucts, deteriorate over time; therefore, their demand decreases gradually
which makes inventory management and pricing strategies important.
Approximately one-third of edible food is wasted at the retail and con-
sumer levels and it not only causes costs for businesses but also harms
the environment. For example, some of the world’s largest retailers i.e.
Tesco, Walmart, Kroger etc. focus to reduce in-store food waste, aiming
to achieve Sustainable Development Goals by offering price discounts on
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food that is close to its shelf life. Therefore, ordering and pricing stra-
tegies is critical not only for reducing waste but also for increasing
profits.

This study focuses on a retailer’s problem of selling old and new
perishable food products to strategic consumers. We develop a bi-
objective dynamic programming model to optimize the discounted
price, sale price, and order quantity of perishable food products in order
to maximize the retailer’s profit and minimize food waste.

We allow demand shifts between products based on their prices and
consumer behaviors. We model four static and dynamic pricing policies
commonly used in practice, and investigate the benefits of dynamic
pricing and price differentiation between old and new products in terms
of both profit and waste. In addition, we use weighted-sum method for
our bi-objective function and analyze the results for different combi-
nations of the weights for the profit and the waste. Hence, we obtain the
following findings:

e When the price difference between old and new products is high, the
consumers prefer to buy the old products or buy nothing, when the
difference is low they only buy the new products or nothing. How-
ever, in other conditions, they may buy the old products, new
products or nothing. In addition, since we allow demand shift, old
(new) product’s total demand also depends on new (old) product’s
demand and quantity at hand.

e We observe a threshold pricing policy, hence, decisions of sale prices
depend on the quantity of the old products at hand. We reveal that
these thresholds are lower for lower weight values, which shows that
even though the level of old products at hand is high, higher prices
are charged for the old products when profit maximization is more
important.

Order quantity, qo, decreases when waste minimization is more

important (lower w). It is because retailer tends to order less to avoid

overstocking and focuses on selling old products at hand by
decreasing the optimal price of the old products.

For our four different static and dynamic pricing strategies, we reveal

the importance of choosing suitable weights in order to find the

balance between minimizing waste and maximizing profit.

e After comparing four pricing strategies, we find that Model 2 and
Model 4 are the better strategies in order to maximize average profit
and minimize average waste. So, findings show that significant im-
provements can be obtained by dynamic decision making. Although
Models 2 and 4 may incur higher computational costs than the other
models in this study, they demonstrate superior performance in
terms of reducing waste and maximizing profit. Moreover, in many
practical settings, it is sufficient to solve these models only once (or
infrequently) as long as market conditions remain relatively stable.

The results of our study can also have some implications for the
governments and strategy builders, since it is observed that when
companies are forced to put more weight on their wastes, they need to
change their pricing and ordering decisions. Thus, incentive or penalty
mechanisms can be designed in this perspective in order to align the
decisions of the companies with the social objectives of the governments
in order to decrease waste. We note that a detailed analysis of the system
including incentive or penalty mechanisms can be an extension of this
study in the future. In addition, this research has some limitations which
also make various extensions possible for future studies. First, our model
considers that there is only one branch of the particular retailer; how-
ever, in real life, retailers may have more than one branch, which shares
the inventory based on their needs, aiming to maximize the centralized
profit. Second, we assume that the product has a two-period lifetime. As
an extension we may consider more than two-period of lifetime; how-
ever, it can be challenging to model and solve dynamically. Third, we
may consider more real-world related constraints such as varying
replenishment lead times, menu cost, and limited shelf space which
could affect the retailer’s optimal decisions. Finally, due to the curse of
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dimensionality, it is stated that determining the optimal inventory pol-
icy for perishable products is extremely complex even when the sale
prices are fixed (Nahmias, 1982; Chen et al. 2014). Thus, we can obtain
the optimal solutions for small and moderate sized problems in our study
and report the run times of the algorithms for each model for the pa-
rameters used in this study. For larger sized problems, novel solution
algorithms or heuristics that utilize different approaches such as
approximate dynamic programming formulations, deep learning or
reinforcement learning algorithms need to be developed. These issues
can be incorporated into future studies.
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