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A B S T R A C T

With the increasing sustainability considerations throughout the world, there is an increasing interest in the 
effective management of perishable products both in the industry and the academia. There is a need to control 
the inventories, as well as the prices of perishable products in order to increase the profits while minimizing the 
waste. In this study, we focus on a retailer who sells old and new perishable food products, enabling demand 
shifts between products based on their prices and consumer behaviors. A bi-objective dynamic programming 
model is developed to optimize the discounted price, sale price, and order quantity of perishable food products in 
order to maximize the retailer’s profit and minimize food waste. We develop four static and dynamic pricing 
policies commonly practiced and quantify the advantages of dynamic pricing and price differentiation between 
old and new products in terms of both profit and waste. Our findings reveal that significant benefits can be 
obtained when the order quantity and the old product’s sale price decisions are given in a dynamic manner by 
considering the available inventory at hand. Additionally, this research analyzes the results of various weight 
combinations for profit and waste in the objective function. The findings highlight the significance of waste and 
sustainability concerns, underline the tradeoff between profit and waste and provide insights to companies to 
achieve improvements in their system results.

1. Introduction

Food waste is a major problem which includes environmental, eco
nomic, social, and ethical implications (de los Mozos et al., 2020). 
Reducing food waste has the potential to lower greenhouse gas (GHG) 
emissions by up to 8 % of total global emissions, especially when 
considering the deforestation linked to food production (Creutzig et al, 
2022). In 2022, approximately 1.05 billion tons of food—equivalent to 
19 percent of the food available to consumers—were wasted across the 
retail, food service, and household sectors, averaging 132 kg per capita 
annually (United Nations Environment Programme, 2024). Meanwhile, 
in 2023, an estimated 713 to 757 million people, representing 8.9 to 9.4 
percent of the global population, were undernourished (FAO et al., 
2024).

Perishable products play a significant role in food waste due to their 
limited shelf life. These products can be characterized based on how 
their quality is perceived by consumers as they age. Similar to Ferguson 
and Koenigsberg (2007), our focus is on perishable products whose 
perceived quality deteriorates over time, and thus old products are 

valued less by consumers compared to new ones, requiring retailers to 
implement price differentiation strategies to sell both effectively. This is 
particularly relevant for perishable food items like vegetables, fruits, 
and dairy products, which deteriorate over time and eventually become 
obsolete if not sold within a certain period (Kaya and Bayer, 2020). The 
demand for perishable goods is strongly influenced by product fresh
ness, which consumers often perceive through expiration dates (Li and 
Teng, 2018). As willingness to pay decreases throughout the shelf life of 
perishable food products, implementing discounting strategies for 
products nearing their expiration date can be an effective approach 
(Tsiros and Heilman, 2005). Therefore, it is crucial to understand how 
product freshness (quality) impacts a firm’s operational and pricing 
decisions to optimize inventory management and maximize profitability 
(Ferguson and Koenigsberg, 2007). The study of Şen (2013) shows the 
benefits of dynamic pricing applications on the profitability of perish
able products by affecting demand. Jing and Chao (2021) emphasize the 
importance of production planning and inventory management for 
perishable products.

Retailers have a pivotal effect on food waste. Poor demand 
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forecasting, inefficient management and excess stocks cause food waste 
at the retailer level (Lemaire and Limbourg, 2019). It is estimated that in 
the EU, 5 % (5 million tons) of total food waste originates from retail and 
wholesale sectors (Stenmarck et al., 2016). Retailers have a strong 
incentive to reduce food waste, as it results in financial losses and affects 
their already narrow profit margins (Cicatiello et al.,2017). A study 
conducted in Italy revealed that a large retail store wasted 70.6 tons of 
food annually, valued at nearly €170,000, with the majority consisting 
of bakery items and fresh produce (Cicatiello et al., 2017).

Beyond the financial implications, food waste has significant envi
ronmental consequences, including greenhouse gas emissions from 
decomposing organic waste in landfills. To address this issue, potential 
measures include encouraging the sale of food products nearing their 
expiration date, promoting imperfect food items, enhancing inventory 
management practices, and facilitating food donations (Eičaitė et al., 
2022). Effective inventory control in food supply chains is essential for 
reducing waste, as it ensures operational efficiency (Pourmohammad- 
Zia et al., 2021). If the inventory and pricing decisions are not made 
properly, it causes a high amount of waste and decreases retailers’ 
profits. Effective ordering and pricing strategies for perishable products, 
including determining optimal replenishment quantities and discount
ing prices, are critical for maximizing profitability (Chew et al., 2014; 
Fadda, 2024).

Pricing strategies are essential tools for managing perishable prod
ucts and reducing waste. Constant pricing cannot effectively align de
mand with the quality of the remaining inventory (Chen et al., 2018). 
Many of the world’s largest retailers focus on reducing in-store food 
waste, aiming to achieve Goal 12: Responsible Consumption and Pro
duction, one of the 17 Sustainable Development Goals (SDGs) set by the 
United Nations in 2015. Retailers such as Tesco, Kroger, and Walmart 
sell products of different ages simultaneously. However, when these 
products are sold at the same price, customers may prefer the newer 
products over the older ones, leading to waste of the older inventory. By 
decreasing the prices of older products, retailers can appeal to price- 
sensitive customers and encourage their purchase, thereby reducing 
waste. To address this, many supermarkets employ dynamic pricing 
strategies to better match supply with demand and minimize spoilage of 
perishable products that deteriorate over time (Chen et al., 2018). 
Sanders (2024) also finds that encouraging grocery chains to adopt 
dynamic pricing strategies could be a more effective approach for reg
ulators aiming to reduce grocery-store waste.

For example, Tesco implemented a multi-stage Clearance Pricing 
Optimisation system (Kolev et al., 2023). By systematically reducing 
prices on items nearing expiry, Tesco achieved a 5 % reduction in fresh 
food waste while simultaneously increasing revenue from reduced-to- 
clear items (Kolev et al., 2023). Kroger (2024) has set goals of 
achieving zero hunger and zero waste. To support these objectives, the 
company employs various strategies, including offering price reductions 
on perishable foods as their expiration dates approach, making them 
more affordable and encouraging faster sales. Walmart (2025) reduced 
operational food loss and waste by 21 % by the end of 2023 compared to 
a 2016 baseline, while continuing its commitment to a 50 % reduction 
by 2030. Through initiatives like “Imperfect but Good” in Chile and 
Mexico, Walmart offers discounted prices on food nearing expiration or 
with aesthetic imperfections to help reduce food waste.

In this study, we consider a retailer who sells old and new products 
simultaneously, allowing a demand shift between these products 
depending on their prices and consumer behaviors. The product under 
consideration has a two-period lifetime. Products are considered “new” 
when sold during the period they are produced. Unsold new products 
deteriorate at the end of the period and transition to “old” in the 
following period. Old products experience a reduction in perceived 
quality, resulting in lower consumer valuations. At the end of the period, 
unsold old products become obsolete and are wasted.

In the retail sector, stockout-based substitution is a common phe
nomenon where customers substitute their preferred product with an 

alternative when the preferred product is unavailable. Instead of leaving 
the store and resulting in lost sales, customers may switch to a different 
product that is of lower, equal, or even higher quality, as long as the 
alternative is within their acceptable price range. Ignoring this substi
tution behavior can lead to significant supply–demand mismatches and 
adversely impact a retailer’s profitability (Transchel, 2017).

Different than most of the literature, we include these behaviors in 
our model. For example, if consumers’ demand for the new (old) 
products is higher than the available quantity at hand, the excess de
mand shifts to old (new) products. Our study aims to determine when 
old and new products should be sold together, and at what prices, and 
when it would be optimal to sell only one type of these products. To 
achieve this, we develop a bi-objective dynamic programming model to 
find the optimal discounted price, sale price and order quantity of the 
perishable food product to maximize the retailer’s profit and minimize 
food waste. Furthermore, we aim to quantify the tradeoff between profit 
and waste, offering insights not only for companies but also for policy
makers. These findings can help governments design effective incentives 
or penalties to address food waste in the retail sector.

The remainder of this paper is structured as follows: Section 2 pre
sents a review of the relevant literature, highlighting key contributions 
and positioning this study within the existing body of work. Section 3
defines the problem, outlines the assumptions underlying the model, 
and provides the notations used throughout the paper. In Section 4, we 
introduce the Infinite Horizon Average Cost Dynamic Programming 
Model. Section 5 discusses the numerical results, including the main 
findings, sensitivity analyses, and the no-demand-shift case. Finally, 
Section 6 concludes the paper by summarizing the key insights and 
suggesting potential directions for future research.

2. Literature Review

Our study investigates joint ordering and pricing decisions for a 
perishable product with a bi-objective approach, aiming to maximize 
profit and minimize waste. Accordingly, the literature review focuses on 
three key areas: inventory control models for perishable products, 
studies addressing the joint optimization of pricing and inventory de
cisions for perishables, and the application of multi-objective methods in 
similar contexts. Perishable products, as defined by Karaesmen et al. 
(2011), are those that age over time and eventually outdate, requiring 
strategic inventory and pricing decisions to mitigate waste and optimize 
profitability. Several studies have explored dynamic inventory man
agement and pricing strategies for perishable products. Key reviews 
include Nahmias (1982), Karaesmen et al. (2011), and Bakker et al. 
(2012), which focus on inventory control for perishables, and Elmagh
raby and Keskinocak (2003), which address dynamic pricing in in
ventory management.

Effective inventory control for perishable products is critical for 
reducing waste and maximizing operational efficiency, making it a key 
focus area for researchers. Parlar (1985) extends the classical news
vendor problem by introducing a generalized model for perishable 
products with a two-period lifetime. The study incorporates substitution 
behavior by assuming that a fixed proportion of unmet demand for old 
(new) products shifts to new (old) products. This model focuses on 
determining the optimal ordering policy over an infinite horizon, ac
counting for stochastic demand and the substitutability of products that 
perish within two periods. Similarly, Deniz et al. (2010) develop a 
discrete-time supply chain model for perishable goods with age- 
differentiated demand. Their study evaluates the performance of heu
ristic replenishment policies and substitution rules, providing insights 
into the effectiveness of these strategies for managing perishable 
inventory.

Minner and Transchel (2010) develop a periodic-review inventory 
control method to determine dynamic order quantities for perishable 
food products with limited shelf life, positive lead time, and FIFO/LIFO 
issuing policies. Coelho and Laporte (2014) examine optimal joint 
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replenishment and inventory decisions for perishable products, opti
mizing delivery routes and inventory control using a branch-and-cut 
algorithm. Gioia et al. (2023) adapt a discrete choice model to capture 
consumer heterogeneity and tradeoffs between price and quality. They 
use simulation-based optimization to develop ordering rules, aiming to 
maximize long-term average profit under a lost sales assumption. Chen 
et al. (2021) explore inventory control for perishables in a periodic- 
review system with multiple demand classes and freshness re
quirements. Using an adaptive approximation approach, they minimize 
total discounted costs, achieving near-optimal performance and out
performing existing heuristics.

While the reviewed studies offer valuable insights into inventory 
control for perishables, our paper stands out by jointly addressing dy
namic pricing and ordering decisions within a bi-objective framework 
that balances profit maximization and waste minimization.

The following literature focuses on inventory control and pricing 
strategies for perishable products, highlighting various approaches to 
optimize profitability and manage product lifecycles effectively. Chin
tapalli (2015) examines price discounting and inventory management 
for perishable goods with a two-period lifetime under a periodic review 
framework. Using a price-dependent linear demand function to maxi
mize profit, the study, like our model, assumes that old and new prod
ucts are sold simultaneously. Ferguson and Koenigsberg (2007) study a 
firm’s inventory and pricing decisions for a perishable product in the 
presence of new and old product competition. Chua et al. (2017)
investigate optimal discounting and periodic replenishment policies for 
perishables over a finite horizon using dynamic programming. Fan et al. 
(2020) develop a dynamic pricing model and a heuristic replenishment 
policy for multi-batch perishable products, aiming to maximize retailer 
profit. Duan et al. (2018) explore joint dynamic pricing, production, and 
inventory decisions for perishables over a short selling season under 
stochastic demand.

Kaya and Polat (2017), Kaya and Ghahroodi (2018), and Kaya and 
Bayer (2020) examine inventory control and pricing for perishable 
products. Unlike these studies, our paper introduces a bi-objective dy
namic programming model that considers both profit maximization and 
waste minimization, analyzing the tradeoffs between them in detail. 
While Kaya and Polat (2017) use a deterministic approach, Kaya and 
Ghahroodi (2018) and Kaya and Bayer (2020) explore periodically and 
continuously reviewed systems, respectively. However, these studies do 
not allow simultaneous sales of old and new products at different prices. 
This paper extends their work by incorporating price differentiation for 
old and new products and models consumer behavior based on price and 
valuation. Additionally, it considers demand shifts when inventory is 
insufficient. The paper presents four models with static and dynamic 
pricing, comparing results to provide managerial insights into sustain
ability, waste, and profit.

Similar to our work, Fadda et al. (2024) investigate joint discounting 
and replenishment for perishable products using a linear discrete choice 
model. They compare a range of policies that combine constant ordering 
and base-stock approaches with simple discounting strategies, opti
mizing their parameters through a simulation-based framework. Their 
findings align with ours, highlighting the effectiveness of age-based 
discounting in managing inventory and reducing waste. While Fadda 
et al. (2024) focus on heuristic methods, our study adopts a bi-objective 
dynamic programming model to explicitly address the trade-offs be
tween profit and waste.

Studies addressing optimal pricing and/or ordering for perishable 
products with lifetimes exceeding two periods often use heuristics or 
approximation methods due to solution complexity. Li et al. (2009)
explore joint pricing and inventory control for two-period perishable 
products, extending heuristics to longer shelf lives. Chew et al. (2009)
develop a discrete-time dynamic programming model for optimal pric
ing and inventory in two-period lifetimes, introducing heuristics for 
longer lifetimes. Chew et al. (2014) focus on multi-period perishables 
with price-dependent demand, using stochastic dynamic programming 

and heuristics to maximize profit. Li et al. (2016) propose heuristics for 
joint replenishment and clearance sales in multi-period lifetimes. Li 
et al. (2022) examine LIFO-based transshipment policies for perishable 
goods, deriving optimal strategies for up to three periods and heuristics 
for longer lifetimes. While these studies provide valuable insights into 
managing perishable inventory, they do not simultaneously address the 
dual objectives of profit maximization and waste minimization within a 
bi-objective framework, nor do they incorporate dynamic strategies that 
explicitly account for demand shifts between products of different ages.

Several studies in the perishable products literature address waste 
reduction while aiming to maximize profit. Sanders (2024) evaluates 
dynamic pricing and organic waste landfill bans as solutions to grocery 
food waste, using a structural econometric model. The study shows that 
dynamic pricing reduces waste by 21 % while improving profits and 
consumer surplus, whereas waste bans achieve only a 4 % reduction in 
waste while decreasing both. The retailer’s decision-making is modeled 
as a Markov decision process optimizing prices and inventories. Li et al. 
(2012) explore joint pricing and inventory control for perishable food 
products, aiming to maximize retailer profit while considering waste 
costs. Chen et al. (2014) address joint pricing and inventory control for 
perishable products, where the retailer decides order quantity and 
pricing for products of different ages in a periodic-review system. They 
incorporate waste costs and aim to optimize pricing, ordering, and 
disposal policies to maximize total expected profit. Azadi et al. (2019)
propose a two-stage stochastic optimization model for supplier selec
tion, replenishment scheduling for a periodic-review inventory system, 
and pricing reductions, aiming to maximize profit and minimize waste 
for perishables. Vahdani and Sazvar (2022) address an online retailer’s 
coordinated dynamic pricing and inventory control under social 
learning, using a case study from an Iranian online supermarket to 
analyze the impact on profit and waste. Kayikci et al. (2022) propose a 
real-time IoT sensor-driven dynamic pricing strategy to enhance profit 
by reducing perishable food waste.

Some studies, like ours, adopt a bi-objective approach to perishable 
inventory management. Abbasian et al. (2023) develop a bi-objective 
model for a resilient and sustainable perishable food supply network, 
integrating location, inventory, and routing decisions. Their approach 
incorporates dynamic pricing to mitigate disruptions while minimizing 
cost and CO2 emissions. They proposed a hybrid solution method to 
solve the mixed-integer nonlinear problem. Pilati et al. (2024) propose a 
bi-objective stochastic optimization model for inventory control 
focusing on minimizing inventory logistics emissions and costs for 
perishable products. Their study utilizes the Pareto-based optimization 
approach as the basis for their multi-objective optimization method. 
Where our study uses a weighted-sum method to balance profit maxi
mization and waste minimization, explicitly modeling demand shifts 
and price differentiation for old and new products. As detailed in the 
Introduction section, minimizing food waste is crucial for both economic 
efficiency and sustainability, as it reduces financial losses and mitigates 
greenhouse gas emissions.

Adenso-Díaz et al. (2017), explore the impact of dynamic pricing on 
revenue and waste reduction across various scenarios. They find that 
dynamic pricing effectively reduces waste, though its impact on revenue 
is highly scenario-dependent. Unlike Adenso-Díaz et al. (2017), who use 
a parametric approach to assess trade-offs between revenue and waste 
without directly optimizing the bi-objective function, our study employs 
a weighted-sum bi-objective optimization to explicitly compute Pareto- 
efficient solutions for profit and waste. However, unlike our study, these 
papers assume that new and old products are not sold simultaneously.

Table 1 compares this study with key papers on dynamic program
ming for pricing and/or ordering decisions in perishable product man
agement. This study uniquely examines joint pricing and ordering 
decisions, incorporates a bi-objective model, explicitly models demand 
shifts, and addresses both profit maximization and waste minimization 
under stochastic demand.

This study focuses on a retailer’s problem who sells both old and new 
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perishable products simultaneously, considering that each product has a 
two-period lifetime and allowing a demand shift between products of 
different ages. Table 1 highlights that different from the literature, we do 
not only focus on the profit of the company, but also consider the 
generated amount of waste as a result of the decisions. We analyze the 
tradeoff between the profit and the waste and quantify the changes in 
profit to decrease the waste. The objective is to determine optimal sale 
prices and order quantities that maximize the retailer’s profit while 
minimizing food waste. The main contributions of this study to the 
literature are as follows: 

1. We develop four different pricing strategies and determine the 
optimal dynamic pricing and ordering strategies for perishable 
products under stochastic demand, considering both the profit and 
waste as the retailer’s objectives.

2. We allow old and new products to be sold at the same time with 
different prices and model the consumer purchase behavior between 
old and new products, considering demand shift between them 
depending on their prices.

3. We develop a bi-objective dynamic programming model using the 
weighted-sum method to analyze the results for different combina
tions of the weights for the profit and the waste.

4. We quantify the changes in profit as a result of the changes in the 
importance of waste for the company.

5. We compare the results of four different static and dynamic pricing 
policies commonly used in reality and quantify the benefits of dy
namic pricing and price differentiation between old and new prod
ucts, in terms of both profit and waste.

3. Problem Definition

In this study, similar to Chintapalli (2015), we consider that the 
product has a two-period lifetime, which can be interpreted as two days, 
two weeks, two months, or any comparable timeframe depending on the 
specific product. From the day the product is produced until the end of 
the first period (the first half of its lifetime), it is considered ‘new.’ 
Products in the second half of their lifetime are classified as ‘old’. Unsold 
old products at the end of the period are considered obsolete and become 
waste. To represent this, we define the binary parameter where i =
0 denotes new products and i = 1 denotes old products. We assume a 
lead time of zero, meaning that ordered products are delivered imme
diately with their full shelf life remaining. We develop a dynamic pricing 
and ordering model for perishable food products and at every point in 
time, the state of the system denotes the quantity of old products at 
hand, which is represented as q1.

The objective of our models is to maximize the retailer’s total profit 
and minimizing waste by jointly determining the optimal order quan
tities and pricing strategies for new and old products. At the beginning of 
each period, the retailer decides the order quantity of new products, q0, 
and the pricing strategies for old and new products. At the end of each 
period, the retailer carries the remaining new products to the next 

period with the inventory holding cost, h, and unsold old products 
become waste. Moreover, c is the unit ordering cost per product.

It is important to differentiate perishable products based on their 
age, as products of different ages can attract various market segments 
(Chew et al., 2014). By implementing price differentiation based on 
product age, businesses can boost their profitability (Chew et al., 2014) 
and sustainability performance. Therefore, we develop four pricing and 
ordering strategy models as given in Table 2. In Model 1, the price of the 
old product (p1) and the price of the new product (p0) are static and their 
optimal values are determined by our model. The order quantity is dy
namic in all models and their optimal values are found by using dynamic 
programming. In Model 2, we consider that p0 is static and we use dy
namic programming to find optimal dynamic values for p1 and q0. Under 
Model 3, we consider that the values of p1 and p0 are dynamic and the 
same (no price differentiation), and we use dynamic programming to 
find the optimal dynamic values of p and q0. In Model 4, all p1, p0 and q0 
values are found dynamically.

For products of different ages, it is important to model the consumer 
choice models (Chen at al 2014). Therefore, we use consumer utility- 
based demand models, similar to Tirole (1988) and Transchel (2017). 
We let v define the consumer’s valuation and θi define the probability of 
consumers to purchase product i. G(.) and g(.) are the cumulative dis
tribution function and density function of v, respectively. δ denotes the 
rate of decrease in the valuation of the product when its age gets older. 
Also, old product’s price, p1, is assumed to be always less than or equal to 
the new product’s price, p0. All notations are summarized in Table 3.

We let u0 = v − p0 and u1 = δv − p1 denote the utility function of 
consumers when they buy the new product and the old product, 
respectively. A consumer buys the new product if and only if 
u0 ≥ 0andu0 ≥ u1, and buys the old product if and only if u1 ≥ 0andu0 ≤

u1. Note that a consumer prefers the new product over the old one if 
u0 ≥ u1⇒v − p0 ≥ δv − p1⇒v ≥

p0- p1
(1− δ) .

Proposition 1 states the possible situations for the consumer’s pur
chasing decision depending on the sale prices and the consumer’s 
valuation. These situations occur based on the different values of the 
prices. Proposition 1 is derived by adjusting the notations from Trans
chel (2017) to align with those used in this study. We establish a direct 
correspondence between Proposition 1 in Transchel (2017) and our 
Proposition 1. Readers interested in the detailed proof can refer to the 
proof of Proposition 1 in Transchel (2017). 

Proposition 1. The purchase probabilities of the consumers under the 

Table 1 
Comparison of dynamic programming approaches for pricing and/or inventory decisions in perishable product management.

Articles Infinite or Finite 
Horizon

Price 
Discount

Ordering 
Decision

Demand 
Function

Sell Different Aged Product 
Simultaneously

Bi- 
objective

Demand Shift

This Paper infinite ✓ ✓ stochastic ✓ ✓ stockout- 
based

Chintapalli (2015) infinite ✓ ✓ stochastic ✓ ​ ​
Chua et al. (2017) finite ✓ ✓ stochastic ✓ ​ ​
Chew et al. (2014) finite ✓ ✓ stochastic ✓ ​ price-based
Adenso-Díaz et al. 

(2017)
finite ✓ ​ deterministic ​ ✓ ​

Li et al. 2012 infinite ✓ ✓ stochastic ​ ​ ​
Chen et al. (2014) both ✓ ✓ stochastic ✓ ​ ​
Vahdani and Sazvar 

(2022)
finite ​ ✓ stochastic ​ ​ ​

Table 2 
Four pricing and ordering strategy models.

p0 p1 q0

Model 1 static static dynamic
Model 2 static dynamic dynamic
Model 3 dynamic (p0 = p1) dynamic (p0 = p1) dynamic
Model 4 dynamic dynamic dynamic
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given prices are as follows:

ifp0 <
p0- p1

(1 − δ)
(1) 

Consumers will buy new products with the probability of θ0 =

1 − G
(

p0-p1
1-δ

)

Consumers will buy old products with the probability of .θ1 =

G
(

p0-p1
1-δ

)

− G(p1
δ )

Consumers will not buy anything with the probability of θ2 = G(p1
δ )

if
p0-p1

1-δ
≤ p0 (2) 

Consumers will buy new products with the probability of θ0 =

1 − G(p0)

Consumers will not buy anything with the probability of .θ2 = G(p0)

i There will be no sales in all other cases.

For situation i, if the old product’s price is low enough compared to 
the new product price (p1 < δp0), consumers with a higher valuation of 
the product prefer to buy the new product, while consumers who value 
the product a little lower buy the old product, and consumers who value 
the product lowest buy nothing. For situation ii, since the old product’s 
price is too high (p1 ≥ δp0) none of the consumers will buy the old 
product. High valuation consumers prefer to buy the new product while 
low valuation consumers prefer not to buy anything.

Similar to Kaya (2010) and Transchel (2017), if the demand for the 
new products exceeds the quantity of new products at hand, q0, but 
consumer’s net utility from the old product is positive then α01 of excess 
demand consumers buy old products. Similarly, if the demand for the 
old products exceeds the quantity of old products at hand, q1, but con
sumer’s net utility from the new product is positive then α10 portion of 
excess demand consumers for the old products buy new products. 
Similar to Transchel (2017), we consider endogenous demand shift rates 
(stockout-based substitution rates).

In our model, we let N denote the total market size for the product. Di 
is the demand of product i, such that demand of the new product and the 

old product are D0 and D1, respectively. N-D0-D1 of consumers buy 
nothing and is represented as D2 (

∑
Di = N). Note that the demand 

values Di, follow a multinomial distribution with parameters, N and θi :

D0,D1,D2 Mult(N, θ0,θ1,θ2). We denote the demand shift from the new 
product to the old product as D01 and from the old product to the new 
product as D10, both of which follow a binomial distribution as follows: 
D01 B((D0 − q0)

+
,α01), and D10 B((D1 − q1)

+
,α10). Hence, the total de

mand of new and old products are given as D0 + D10, and D1 +D01,

respectively.
Similarly, Proposition 2 corresponds to Proposition 2 in Transchel 

(2017). By adjusting the notations in Transchel (2017) to match ours, we 
derive the conditions for our Proposition 2. Readers seeking the detailed 
proof are directed to the proof of Proposition 2 in Transchel (2017). 

Proposition 2. The stockout-based substitution probabilities of consumers 
from the new to the old products (α01) and from the old to the new products 
(α10) are given below depending on the distribution function of consumer 
valuation G(.), and prices of old and new products:

ifp0 <
p0-p1

1-δ
(3) 

α01 = 1 

α10 =
[
G
(p0-p1

1-δ

)
− G(p0)

]/[
G
(p0-p1

1-δ

)
− G

(p1

δ

) ]

if
p0-p1

1-δ
≤ p0 (4) 

α01 =
[
1 − G

(p1

δ

) ]/
[1 − G(p0) ]

α10 = 0 

ii There will be no demand shift in all other cases.

For situation i, if the old product’s price is low enough compared to 
the new product price (p1 < δp0), the substitution probability from the 
new product to the old product (α01) is equal to 1, meaning all con
sumers who cannot purchase the new product due to stockout will prefer 
the old product. The substitution probability from the old product to the 
new product (α10) depends on the distribution of consumer valuations 
and is given by the specified formula. For situation ii, since the old 
product’s price is too high (p1 ≥ δp0) and the initial demand for the old 
product is zero, substitution probability from the old product to the new 
product (α10) is equal to 0. However, if there is an excess demand for 
new products substitution probability from the new product to the old 
product is α01.

4. Infinite horizon average cost dynamic programming Model

We consider a single product that is decoupled into two products by 
age and develop a bi-objective dynamic programming model. We use the 
weighted-sum method in order to maximize the average profit and 
minimize the average waste. w is the weight factor for the profit function 
where (1-w) is the weight factor for the waste. We develop an infinite 
horizon average cost dynamic programming formulation. In the model, 
we consider an infinite horizon case and the state of the system is 
denoted by the number of old products at hand (q1). According to the 
state of the system, the decisions of the order amount of the new 
product, q0, the old product’s sale price, p1, and/or the new product’s 
sale price, p0 are given. V(q1) denotes the relative value function for 
state q1 in the dynamic programming model. It represents the differen
tial cost between a given state and a reference state.

We note that, even though we consider a system in which old and 
new products are allowed to be sold at the same time, our model results 

Table 3 
Notations.

Parameters Definition

N Market size of the product
c Ordering cost per product
h Inventory holding cost
s Waste cost
αii Stockout-based substitution probability of consumer from type i 

product to type j product
v Consumer’s valuation
G(.) Cumulative distribution function of consumer’s valuation
g(.) Density function of consumer’s valuation
δ Rate of decrease in the valuation of the old product, 0 ≤ δ < 1
θi Probability of a consumer to purchase product i, i = 0, 1
θ2 Probability of a consumer purchasing nothing
ui Utility function of consumers when product i is purchased

State of the 
System

Definition

q1 Quantity of old product at hand

Decision 
variables

Definition

q0 Order amount of new product
p0 New product’s sale price
p1 Discounted price (Old product’s sale price)
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will provide whether it is optimal to sell both types of products at the 
same time at different prices, or to sell only one type of these products. 
For example, if the optimal value of q0 turns out to be 0 in the optimal 
solution, it means that only old products are to be sold at that period, 
and no new product is ordered. Similarly, if it turns out that p1 = p0 in 
the optimal solution, it means that only new products will be sold due to 
consumer choices, and old products can only be sold if the new ones are 
depleted.

4.1. Model 1: Static p0 and p1, dynamic q0

In this section, we consider a model in which p0 and p1 are static 
variables which means that sale prices do not change based on the state 
of the system (q1), while the optimal order quantities, q0, are dynami
cally decided. We use exhaustive search to find the optimal p0 and p1, by 
running the dynamic programming model for the possible values of sale 
prices and chose the optimal values which optimize our objective 
function. In other words, the retailer decides the optimal sale prices in 
advance and do not offer any discounts based on the old product in
ventory, and at the beginning of each period decides the order quantity 
in a dynamic manner, based on the quantity of the old product at hand, 
q1.

λ(p0, p1) is the weighted-sum objective function of the problem for 
given values of p0 and p1, where the Bellman’s equation for the dynamic 
programming formulation of our problem to determine the optimal 
order quantities is given below. For clarity, [ ⋅ ]+ denotes the positive 
part of the argument (i.e., max(0, ⋅)), and E[ ⋅ ] represents the expected 
value of the random variable within the brackets. 

Max
p0 ,p1

λ(p0, p1)

s.t.  

In the above equation, − cq0 is the total ordering cost of the new 
product. Since we do not allow backlogging, the amount of sales is the 
minimum of the demand or the quantity at hand, which is denoted as 
min(D1 +D01, q1) for the old product. In here, D1 +D01 represent the old 
product’s total demand, D1 is demand of old product and D01 demon
strates the demand shift from new product to old product. 
p0min(D0 +D10, q0) denotes the revenue from the sale of new products. If 
the quantity of the new product exceeds its demand, then the excessive 
quantity will be moved to the next period with the inventory holding 
cost, h, which is represented in the model as h[q0 − (D0 + D10)]

+. The old 
products which are not sold at the end of their lifetime, will be wasted 
and [q1 − (D1 + D01)]

+ represents the waste quantity, and s denotes the 
cost of this waste. The excessive quantity of the new product will be the 

new state of the system, and it will be updated as [q0 − (D0 + D10)]
+. 

Therefore, the future relative value function will be 
V([q0 − (D0 + D10)]

+
).

Observe that the dynamic programming formulation stated above 
aims to maximize the weighted function of the total profit and the 
amount of waste. We also develop dynamic programming formulations 
to determine the resulting values of average profit, λP, and the average 
waste, λW, separately. We use the optimal decision variables 
(p0

*, p1
*andq0

*) obtained by solving Eq. (5). The dynamic programming 
models for the average profit and the average waste are given in Eqs. (6) 
and (7), respectively. 

λP +VP(q1) = E
[
− cq0

* + p1
*min(D1 + D01, q1) + p0

*min(D0 + D10, q0
*)

− h[q0
* − (D0 + D10)]

+
+ VP([q0

* − (D0 + D10)]
+
)

]

(6) 

λW +VW(q1) = E[s[q1 − (D1 + D01)]
+
+VW([q0

* − (D0 + D10)]
+
) ] (7) 

VP(q1) is the relative value function for profit and 
− cq0

* +p1
*min(D1 +D01, q1)+p0

*min(D0 +D10, q0
*) denotes the profit for 

the current period. Remaining quantity of the new product will be the 
new state of the system in the next period, and it will be updated as 
[q0

* − (D0 + D10)]
+. Therefore, future relative value function will be 

V([q0
* − (D0 + D10)]

+
).

VW(q1) is relative value function for waste and [q1 − (D1 + D01)]
+

denotes the quantity of waste. The old products that are not sold during 
the period will reach the end of their lifetime, and thus cannot be sold 
anymore and will be wasted.

4.2. Model 2: Static p0, dynamic p1 and q0

In this model, we consider that p0 is a static variable which means it 
does not change based on the state of the system, while p1 and q0 are 

dynamically decided. Like Model 1, we use exhaustive search to find the 
optimal p0 by running the dynamic programming model for all possible 
values of it and chose the optimal values which optimize our objective 
function. In other words, the retailer sets a static p0 for the new product 
and decides p1 and q0 at the beginning of each period by considering q1.

λ(p0) is the weighted-sum objective function of the problem for given 
values of p0, where the Bellman’s equation for the dynamic program
ming formulation of our problem to determine the optimal order 
quantities and old products’ sale prices is given below: 

Max
p0

λ(p0)

s.t.  

λ(p0, p1)+V(q1) = max
q0

E

⎡

⎣
w

(
− cq0 + p1min(D1 + D01, q1)

+p0min(D0 + D10, q0) − h[q0 − (D0 + D10)]
+

)

− (1 − w)s[q1 − (D1 + D01)]
+
+ V([q0 − (D0 + D10)]

+
)

⎤

⎦ (5) 

λ(p0) +V(q1) = max
p1 ,q0

E

⎡

⎣
w

(
− cq0 + p1min(D1 + D01, q1)

+p0min(D0 + D10, q0) − h[q0 − (D0 + D10)]
+

)

− (1 − w)s[q1 − (D1 + D01)]
+
+ V([q0 − (D0 + D10)]

+
)

⎤

⎦ (8) 
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Terms in Bellman’s Eq. (8) are similar to those in (5). Like Model 1, 
we also develop dynamic programming formulations to determine the 
resulting values of average profit, λP, and the average waste, λW, sepa
rately. We use the optimal decision variables (p0

*, p1
*andq0

*) obtained 
by solving Eq. (8).

4.3. Model 3: Dynamic (p0 = p1) and q0

In Model 3, we assume that old and new products’ prices are equal 
which means that there will be no discount for old products and the 
retailer charges the same sale price for old and new products. The 
retailer gives the decision of q0 and the products price, p, dynamically at 
the beginning of each period based on the state of the system, q1. In this 
scenario, since p1 = p0 = p Proposition 1 (ii) will occur and none of the 
consumers prefer to buy old product. In other words, there will be no 
demand for old product because consumers will not be willing to buy the 
old product when its price is the same as new product. However, in this 
scenario we let the demand shift between old and new products. Hence, 
even though p1 = p0 = p the old product can still be sold because α01 may 
be positive, as indicated by Proposition 2(ii), while α10 will be equal to 0. 
λ is the weighted-sum objective function of the problem and the Bell
man’s for the dynamic programming formulation of our problem to 
determine the optimal order quantities and sale price is given below: 

Maxλ 

s.t. 

λ+V(q1)=max
p,q0

E

⎡

⎣
w

(
− cq0 +pmin(D1 +D01,q1)

+pmin(D0 +D10,q0) − h[q0 − (D0 +D10)]
+

)

− (1 − w)s[q1 − (D1 +D01)]
+
+V([q0 − (D0 +D10)]

+
)

⎤

⎦

(9) 

Terms in Bellman’s Eq. (9) are similar to those in (5). Similar to 
Model 1, we also develop dynamic programming formulations to 
determine the resulting values of average profit, λP, and the average 
waste, λW, separately. We use the optimal decision variables (p*andq0

*)

obtained by solving Eq. (9).

4.4. Model 4: Dynamic p1, p0 and q0

In Model 4, retailer decides the order amount of new product, q0, old 
product’s sale price, p1, and new product’s sale price, p0, based on the 
state of the system, q1.

λ is the weighted-sum objective function of the problem and the 
Bellman’s for the dynamic programming formulation of our problem to 
determine the optimal order quantities, and old and new products sale 
price is given below: 

Maxλ 

s.t. 

λ+V(q1)= max
p0 ,p1 ,q0

E

⎡

⎣
w

(
− cq0 +p1min(D1 +D01,q1)

+p0min(D0 +D10,q0) − h[q0 − (D0 +D10)]
+

)

− (1 − w)s[q1 − (D1 +D01)]
+
+V([q0 − (D0 +D10)]

+
)

⎤

⎦

(10) 

Terms in Bellman’s Eq. (10) are similar to those in (5).

Similar to Model 1, we also develop dynamic programming formu
lations to determine the resulting values of average profit, λP, and the 
average waste, λW, separately. We use the optimal decision variables 
(p0

*, p1
*andq0

*) obtained by solving Eq. (10).

5. Numerical Results

We provide detailed numerical results and managerial insights for 
the analyzed problem in this section. For each model, we analyze the 
optimal order amount and the price decisions which maximize the stated 
objective function in the previous sections, and we compare the results 
of the models. In our numerical studies we consider a bakery product 
(bagel, donut, croissant or cake etc.), as an example which has a two-day 
lifetime. In our base case, we use N = 10 which is a typical scenario for a 
small to medium-sized bakery section in a grocery store since the de
mand for a specific product is smaller. We let c = 0.2, h = 0.002, s = 1 
and δ = 0.6. Please note that, unit measures for costs and prices are 
product-dependent and can be scaled accordingly. We suppose that 

consumer valuation follows the distribution G(v) = 1 −
(v− v)b

vb where b > 0 
and with support of [0, v]. This is a commonly used distribution to model 
the consumer preference; see, for example, Debo et al (2005), Pan and 
Honhon (2012) and Transchel (2017). The uniform distribution 
commonly utilized in market segmentation literature (Jerath et al., 
2010; Dong and Wu, 2019; Shen et al., 2022) is a special case of this 
distribution, achieved by setting the b = 1 (Debo et al., 2005). We use 
b = 1, such that v follows a uniform distribution between [0, v] (we as
sume v = 1 in our numerical analysis). To analyze the tradeoff between 
the objective functions of profit and waste, we use varying weight pa
rameters between 0 and 1, with 0.1 increments, w = (0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1). Also, since v = 1, we let the possible sale prices 
vary between 0 and 1, with 0.05 increments.

Numerical results are obtained by using 3.40 GHz Intel i7-13700KF 
server with 32 GB 5200 MHz DDR5 RAM. To solve the problem and 
find the optimal solutions, we use the relative value iteration algorithm 
for our infinite horizon average cost dynamic programming model, as 
explained in Bertsekas (2005). We use the Python programming lan
guage to implement the algorithm and obtain our numerical results.

In all our formulations, at least one of the states (for example the 
state q1 = 0) is visited with positive probability at least once within the 
first m stages for some integer m > 0, for all initial states and for all 
policies. Thus, Assumption 7.4.1 in Bertsekas (2005) is satisfied and as 
stated in Proposition 7.4.1 in Bertsekas (2005), the optimal average cost 
λ* is the same for all initial states and together with some vector V* in 
our formulations, satisfies Bellman’s Eqs. (5), (8)–(10) in our models. 
Then, the relative value iteration algorithm for the average cost per 
stage formulations, as explained in Bertsekas (2005, Chapter 7, 
pg.430–432), provides the optimal solution. In this algorithm, we let 
Vk(q1) = Jk(q1) − Jk(r) where r is the reference state (we use r = 0), 
Jk(q1) is the optimal k-stage cost for k = 1,2,…, and can be calculated 
through the recursion below for Model 1. We note that similar recursions 
can be used for Models 2, 3 and 4. 

Jk+1(q1) = max
q0

E

⎡

⎣
w

(
− cq0 + p1min(d1 + D01, q1)

+p0min(D0 + D10, q0) − h[q0 − (D0 + D10)]
+

)

− (1 − w)s[q1 − (D1 + D01)]
+
+ Jk([q0 − (D0 + D10)]

+
)

⎤

⎦

(11) 

We use the following variant of the relative value iteration algo
rithm, which guarantees the convergence under Assumption 7.4.1, as 
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stated in Bertsekas (2005), for any scalar τ, 0 < τ < 1.  

We note that even the single-period price-setting Newsvendor model 
is not necessarily quasi-concave in price and inventory decisions and 
because of this issue, an analytical solution or the properties of the 
optimal solutions could not be found in a structured analytical manner. 
We analyze the optimal solutions using the results of the numerical 
experiments where we solve the stochastic dynamic programming for
mulations using the relative value iteration algorithm as explained 
above. In this analysis, due to non-concavity issues, we employ a grid 
search to determine the optimal values of the decision variables, which 
inherently makes the results grid-dependent. However, similar discrete 
optimization approaches are used in practice. For example, Kolev et al. 
(2023) optimize price reductions by selecting from a set of predefined 
reductions to reduce waste and maximize profit across all Tesco stores in 
the UK. In our models, the prices, p0 and p1 (p1 ≤ p0), range between 
0 and 1, and we use 0.05 increments between 0 and 1 for possible prices. 

Similarly, the optimal order quantity, q0, lies between 0 and N. Thus, we 

use an exhaustive grid search for the optimal decision variables in these 
ranges in the relative value iteration algorithm and overcome the non- 
concavity issues in the model through this approach.

For each of the four models, in the algorithm Vk+1(q1) is calculated 
for all (q1) values on the left-hand side of the above equations by using 
the Vk(q1) on the right-hand side for all k = 0, 1, 2, ... until all Vk(q1)

values converge to some vector V, which is explained in detail by 
Bertsekas (2005), where V0(q1) = 0 and Vk(0) = 0.

5.1. Results of Model 1

Table 4 presents the optimal price and order quantity decisions 
under the state of the system (quantity of old product) and the different 
weight factors. CPU time to obtain all results that are given in Table 4 is 
in total 4.1 h. We find that the optimal order quantity decreases 
monotonically in the quantity of the old products at hand, and no new 
product is ordered when there are two objectives w ∈ (0, 0.9] and q1 is 

Table 4 
Optimal decisions of Model 1.

p0 p1 q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 0.05 0.05 q0 0 0 0 0 0 0 0 0 0 0 0 0 0
w = 0.1 0.55 0.35 q0 4 1 0 0 0 0 0 0 0 0 0 1.085 0.011
w = 0.2 0.55 0.35 q0 4 1 0 0 0 0 0 0 0 0 0 1.085 0.011
w = 0.3 0.55 0.35 q0 4 2 1 0 0 0 0 0 0 0 0 1.144 0.029
w = 0.4 0.55 0.35 q0 4 2 1 0 0 0 0 0 0 0 0 1.144 0.029
w = 0.5 0.55 0.35 q0 5 3 1 0 0 0 0 0 0 0 0 1.208 0.084
w = 0.6 0.55 0.35 q0 5 3 2 1 0 0 0 0 0 0 0 1.248 0.129
w = 0.7 0.55 0.35 q0 5 3 2 1 0 0 0 0 0 0 0 1.248 0.129
w = 0.8 0.55 0.35 q0 5 4 3 2 1 0 0 0 0 0 0 1.299 0.265
w = 0.9 0.55 0.35 q0 5 4 3 3 2 1 0 0 0 0 0 1.305 0.310
w = 1 0.6 0.4 q0 5 4 4 3 3 3 3 3 3 3 3 1.330 0.636

Table 5 
Optimal decisions of Model 2.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 p0 = 0.05 p1 − 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0

w = 0.1 p0 = 0.6 p1 − 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 0.05 0.05 1.247 0.001
q0 5 4 3 3 2 2 1 1 1 0 0

w = 0.2 p0 = 0.6 p1 − 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 0.05 1.269 0.005
q0 5 4 3 3 2 2 1 1 1 0 0

w = 0.3 p0 = 0.6 p1 − 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05 1.269 0.005
q0 5 4 3 3 2 2 1 1 1 0 0

w = 0.4 p0 = 0.6 p1 − 0.25 0.25 0.25 0.2 0.15 0.15 0.1 0.05 0.05 0.05 1.283 0.014
q0 5 4 3 3 2 2 1 1 1 0 0

w = 0.5 p0 = 0.6 p1 − 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 1.297 0.025
q0 5 4 3 3 2 1 1 1 0 0 0

w = 0.6 p0 = 0.6 p1 − 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 1.301 0.031
q0 5 4 3 3 2 1 1 1 1 0 0

w = 0.7 p0 = 0.6 p1 − 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.1 1.319 0.065
q0 5 4 3 3 2 1 1 0 0 0 0

w = 0.8 p0 = 0.6 p1 − 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.15 1.330 0.106
q0 5 4 3 3 2 2 1 0 0 0 0

w = 0.9 p0 = 0.6 p1 − 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 1.339 0.152
q0 5 4 4 3 2 2 1 1 1 0 0

w = 1 p0 = 0.6 p1 − 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
q0 5 4 4 3 3 2 2 2 2 2 2

Vk+1(q1)= (1 − τ)Vk(q1)+max
q0

E

⎡

⎣
w

(
− cq0 +p1min(D1 +D01,q1)

+p0min(D0 +D10,q0) − h[q0 − (D0 +D10) ]
+

)

− (1 − w)s[q1 − (D1 +D01) ]
+
+ τVk([q0 − (D0 +D10) ]

+
)

⎤

⎦ − max
q0

E

⎡

⎣
w

(
− cq0 +p1min(D1 +D01,r)

+p0min(D0 +D10,q0) − h[q0 − (D0 +D10)]
+

)

− (1 − w)s[r − (D1 +D01)]
+
+ τVk([q0 − (D0 +D10)]

+
)

⎤

⎦

(12) 
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high enough, in order to be able to sell the old ones at hand and decrease 
the waste. In those cases, only old products are sold in the system. 
However, when w = 1 the only objective is maximizing the profit and 
new products are ordered even for extreme values of q1. In this model, 
the difference in the optimal new and old products’ sale prices is low 
(Proposition 1 (ii)), and the company focuses on the sale of new products. 
In this model, only new products are sold due to consumer choices, and 
old products can only be sold if the new ones are depleted.

In addition, as we can see from Table 4, as w increases, the cost of 
waste becomes less important, and the optimal prices tend to increase. 
Table 4 indicates how average profit and average waste changes based 
on w. As expected, profit and waste increases as w increases. In the 
extreme case, when w = 0 (i.e. the objective is purely minimizing waste), 
since profit is not in the objective function, the optimal solution is to 
close the business in order to eliminate waste, and the model tends to 
order nothing and waste is decreased to 0. In the other extreme, when w 
= 1 (i.e. profit is the only term in the objective function), the company 
can generate an average profit of 1.330 by generating an average waste 
of 0.636. As the companies become more environmentally conscious (or 
forced by the governments through incentive or penalty mechanisms), 
and not only consider the profit, but also put some weight on the amount 
of waste they generate, they can decrease their waste at the cost of some 
decrease in their profits. It is observed that the waste can be decreased 
by almost 87 %, from 0.636 to 0.084, without compromising from the 
profit that much (profit decreases by around 9 % from 1.33 to 1.208), 
when w is set to 0.5. Another choice of w = 0.7 leads to about 80 % 
decrease in waste, as opposed to only 6 % decrease in profit. Depending 
on the importance of waste, sustainability and the environmental con
cerns, companies can choose a suitable level of w for themselves, and 
improve their system results significantly as a whole.

5.2. Results of Model 2

In this section, a static price for the optimal p0 is determined, while 
optimal p1 and q0 is set in a dynamic manner and changes based on the 
changing value of q1. Therefore, computational complexity grows and 
CPU time to obtain all results that are given in Table 5 is in total 7.4 h 
which is higher than Model 1. From Table 5, it can be observed that as q1 
increases, both p1 and q0 decrease monotonically. This strategy helps 
manage the inventory balance and minimize potential waste and 
maximize profit by encouraging sales of old products before they expire.

Similar to Model 1, Table 5 indicates that in Model 2 the optimal 

value for p0 is consistent across all w values; however, it is higher, i.e., 
p0*=0.6. This can be explained as follows, when p1 is dynamic, retailer 
can set a higher p0 and then decide p1 based on the quantity of the old 
product at hand, q1. Hence, higher profit and lower waste can be ob
tained. However, when p1 is static, it cannot be adjusted based on q1; 
therefore, in order to not cause waste, retailer sets lower p0 from the very 
beginning. However, this causes lower profit.

From Table 5 we can observe that the decision of p1 depends on q1. 
When q1 surpasses a threshold, the retailer employs a discount strategy 
by setting p1 according to p1 < p0 + δ-1, resulting in zero initial demand 
for the new product, in order to decrease waste as much as possible, 
especially when w is smaller (i.e. waste is more important). However, 
since demand shift is permitted, any excess demand from the old product 
can be shifted to the new product. In Table 5 we observe a threshold 
pricing policy. Let T denote the threshold level. 

• If q1 ∈ [0, T] then retailer charges moderate p1, 
p0 + δ − 1 ≤ p1 < δp0, such that consumers can give the following 
three decisions; whether to buy the old product, the new product or 
leave the system without any purchase. Yellow highlighted cells in 
Table 5 indicate this policy.

• If q1∈(T, 10], retailer’s best strategy is to set too low p1, p1 < p0 +δ −
1 and none of the consumers will purchase new products. Grey 
highlighted cells in Table 5 indicate this policy.

These thresholds are lower for the lower w values. Which means that 
even though the retailer has more of the old products at hand, optimal p1 
is higher when profit maximization is more important. Also, from 
Table 5 it can be seen that the optimal order quantity, q0*, decreases 
when w is lower. This is realistic because when the waste minimization 
becomes more important retailer tends to decrease optimal q0 to avoid 
overstocking and focuses on selling old products at hand by decreasing 
the optimal p1.

From Table 5, we can observe how average profit and average waste 
change based on w. Similar to Model 1, as w increases waste and profit 
both increase. For example, when we compare the results of w = 0.3 and 
w = 0.5, it can be seen that average profit decreases moderately; how
ever, average waste decreases dramatically. Therefore, a suitable choice 
of w becomes critical for managers to balance the profit and waste of the 
company.

Table 6 
Optimal decisions of Model 3.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 p 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0

w = 0.1 p 0.55 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 0.05 1.050 0.003
q0 4 2 0 0 0 0 0 0 0 0 0

w = 0.2 p 0.55 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0.05 1.074 0.007
q0 4 2 1 0 0 0 0 0 0 0 0

w = 0.3 p 0.6 0.4 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 1.105 0.018
q0 4 2 1 0 0 0 0 0 0 0 0

w = 0.4 p 0.6 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 1.140 0.038
q0 4 3 1 0 0 0 0 0 0 0 0

w = 0.5 p 0.6 0.4 0.35 0.3 0.25 0.25 0.2 0.15 0.1 0.05 0.05 1.150 0.047
q0 4 3 2 0 0 0 0 0 0 0 0

w = 0.6 p 0.6 0.45 0.35 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.05 1.172 0.074
q0 4 3 2 0 0 0 0 0 0 0 0

w = 0.7 p 0.6 0.45 0.4 0.35 0.3 0.25 0.25 0.2 0.15 0.1 0.1 1.203 0.129
q0 4 4 2 1 0 0 0 0 0 0 0

w = 0.8 p 0.6 0.5 0.4 0.35 0.35 0.3 0.25 0.25 0.2 0.2 0.2 1.224 0.190
q0 4 4 3 1 0 0 0 0 0 0 0

w = 0.9 p 0.55 0.5 0.45 0.4 0.35 0.3 0.3 0.25 0.25 0.25 0.25 1.256 0.395
q0 5 5 4 2 1 0 0 0 0 0 0

w = 1 p 0.6 0.55 0.55 0.55 0.55 0.35 0.3 0.3 0.3 0.3 0.3 1.278 0.987
q0 5 5 5 5 5 0 0 0 0 0 0
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5.3. Results of Model 3

Table 6 represents the optimal price and order quantity decisions 
under the state of the system (quantity of old product) and the different 
weight factors. CPU time to obtain all results that are given in Table 6 is 
in total 1.6 h.

Since p0 = p1 = p because of Proposition 1(ii), none of the consumers 
would like to pay the same price to old products as new products and the 
old product’s initial demand will be zero. However, since we allow the 
demand shift, the old products can be sold when the new products are 
depleted and their waste can only be prevented then. Because of this 
reason, as observed in Table 6, a smaller number of new products are 
ordered as the amount of old products at hand increases. Consistent with 

the literature, we find that the optimal order quantity and the optimal 
sale price decrease monotonically in the quantity of old products. In 
addition, if the waste becomes more important (as w decreases), the 
prices decrease more and a smaller number of new products are ordered. 
Table 6 also shows that average profit and average waste increase as w 
increases. When the results of w = 0.1 and w = 0.4 are compared, 
average profit decreases by 8 %, while waste decreases by 93 %. 
Therefore, a huge decrease in waste can be achieved by compromising 
comparably a smaller amount in profit.

5.4. Results of Model 4

In this model, retailer offers a discount for the old products, and 

Table 7 
Optimal decisions of Model 4.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

​ p0 0.05 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0
w = 0 p1 − 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
​ q0 0 0 0 0 0 0 0 0 0 0 0
​ p0 0.55 0.6 0.55 0.6 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.259 0.002
w = 0.1 p1 − 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05 0.05 0.05
​ q0 5 4 4 3 2 2 1 1 1 0 0
​ p0 0.55 0.6 0.55 0.6 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.261 0.002
w = 0.2 p1 − 0.25 0.2 0.2 0.2 0.15 0.1 0.05 0.05 0.05 0.05
​ q0 5 4 4 3 2 2 1 1 1 0 0
​ p0 0.55 0.6 0.6 0.55 0.6 0.6 0.6 0.6 0.55 0.6 0.6 1.275 0.006
w = 0.3 p1 − 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05
​ q0 5 4 3 3 2 2 1 1 1 0 0
​ p0 0.55 0.6 0.6 0.55 0.6 0.6 0.65 0.6 0.55 0.6 0.6 1.275 0.006
w = 0.4 p1 − 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 0.05
​ q0 5 4 3 3 2 2 1 1 1 0 0
​ p0 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.6 0.4 0.6 0.6 1.297 0.025
w = 0.5 p1 − 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
​ q0 5 4 3 3 2 1 1 1 0 0 0
​ p0 0.6 0.6 0.55 0.6 0.6 0.65 0.6 0.6 0.55 0.5 0.5 1.3138 0.0471
w = 0.6 p1 − 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05
​ q0 5 4 4 3 2 1 1 1 1 0 0
​ p0 0.6 0.6 0.55 0.6 0.6 0.55 0.6 0.55 0.4 0.45 0.45 1.314 0.0477
w = 0.7 p1 − 0.3 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.1 0.1
​ q0 5 4 4 3 2 2 1 0 0 0 0
​ p0 0.6 0.6 0.6 0.55 0.6 0.6 0.6 0.55 0.55 0.4 0.4 1.324 0.078
w = 0.8 p1 − 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.15
​ q0 5 4 4 3 2 2 1 1 1 0 0
​ p0 0.6 0.6 0.6 0.6 0.6 0.55 0.6 0.6 0.6 0.5 0.5 1.339 0.150
w = 0.9 p1 − 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25
​ q0 5 4 4 3 2 2 1 1 1 0 0
​ p0 0.6 0.6 0.55 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.347 0.297
w = 1 p1 − 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
​ q0 5 4 4 3 3 2 2 2 2 2 2

Fig. 1. Comparison of pareto frontiers of all models.

M. Hasiloglu-Ciftciler and O. Kaya                                                                                                                                                                                                         Computers and Operations Research 181 (2025) 107103 

10 



decide the sale prices of both the old and new products and the order 
quantity based on the inventory of old products at hand. CPU time to 
obtain all results that are given in Table 7 is in total 7.8 h.

Similar to Model 2, we observe the same threshold pricing policy as 
stated in Section 5.2. These thresholds are lower for the lower w values. 
Which means that when waste minimization is more important (w is 
lower) the difference in the optimal new and old products’ sale prices 
(p0

* − p1
*) increases. Hence, old product’s demand increases and waste 

can be prevented.
As we can see from Table 7, q0 monotonically decrease (to zero) with 

q1, because when q1 is high enough to meet the old product’s demand 
retailer does not need to order new product and instead try to sell the 
inventory. Hence, for the lower w values, retailer can prevent waste and 
for the higher w values, can avoid paying h and c.

Different than previous models, in Model 4 both sale prices are dy
namic which let retailers to adjust sale prices according to old product at 
hand, q1, and gain more profit and cause less waste. As it can be seen in 
Table 7, similar to previous models average profit and average waste 

increase as w increases. We also can observe that average profit de
creases moderately, whereas average waste decreases dramatically with 
changing w. For example, when the results of w = 0.7 and w = 0.9 are 
compared, average profit decrease by only about 2 %, while average 
waste decreases by about 68 %. This again explains the substance of 
determining the relative importance of the objective functions.

5.5. Comparison of all models

In this section, we compare the pareto frontiers of the models. Fig. 1
(starting from w = 0.1) demonstrates the comparison of pareto frontier 
for four DS Models, where we can observe that Model 2 and Model 4 
provide better Pareto solutions, mainly due to the dynamic and free 
choice of p1, that is different than p0. For all models, it is observed that 
significant savings can be obtained in waste, with only a small decrease 
in profit. Furthermore, our findings in Fig. 2 show that the optimum 
weighted-sum objective value in Model 4 exceeds that of the other three 
models. However, there is minor difference between the optimum 
weighted-sum objective values of Model 4 and Model 2. From these 
results, we can conclude that when there is demand shift between old 
and new products, pricing old and new products differently in a dynamic 
manner can provide significant savings for the retailer. Therefore, we 
can conclude that the retailer optimizes both the average profit and 
average waste when the sale prices and order quantity decisions are 
given in a dynamic manner at the beginning of each period by consid
ering the old product’s inventory.

5.6. Sensitivity analysis for Model 2

In this section, we analyze the results of our models for varying 

Fig. 2. Comparison of the weighted-sum objective functions of all models.

Table 8 
Sensitivity results for Model 2 with w = 0.5.

λ λP λW λ Difference %

Base Case 0.6359 1.2966 0.0249 −

δ ¼ 0.48 0.6238 1.2642 0.0165 1.892 % ↓
δ ¼ 0.72 0.6566 1.3279 0.0147 3.254 % ↑
c ¼ 0.16 0.7216 1.4712 0.0280 13.481 % ↑
c ¼ 0.24 0.5543 1.1271 0.0185 12.825 % ↓
h ¼ 0.0016 0.6361 1.2970 0.0249 0.031 % ↑
h ¼ 0.0024 0.6357 1.2962 0.0249 0.031 % ↓

Table 9 
Sensitivity results of decision variables for Model 2 with w = 0.5.

p0 q1 ¼ 0 q1 ¼ 1 q1 ¼ 2 q1 ¼ 3 q1 ¼ 4 q1 ¼ 5 q1 ¼ 6 q1 ¼ 7 q1 ¼ 8 q1 ¼ 9 q1 ¼ 10

Base Case 0.6 p1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
q0 5 4 3 3 2 1 1 1 0 0 0

δ ¼ 0.48 0.6 p1 0.2 0.2 0.2 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05
q0 5 4 3 3 2 2 1 1 1 0 0

δ ¼ 0.72 0.6 p1 0.25 0.35 0.35 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0.05
q0 5 4 3 3 2 2 1 1 1 0 0

c ¼ 0.16 0.6 p1 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05
q0 5 5 4 3 3 2 2 1 1 0 0

c ¼ 0.24 0.6 p1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
q0 4 4 3 3 2 1 1 1 0 0 0

h ¼ 0.0016 0.6 p1 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
q0 5 4 3 3 2 1 1 1 0 0 0

h ¼ 0.0024 0.6 p1 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.1 0.05 0.05
q0 5 4 3 3 2 1 1 1 0 0 0
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parameter values in order to observe the effects of the parameters on the 
system results. We provide the sensitivity results of only Model 2 for the 
sake of brevity, but we note that the sensitivity results for the other 
models are also similar to the results presented in this section. We 
consider the retailer’s problem in which the importance of waste mini
mization and profit maximizations are equal (w = 0.5). Table 8 shows 
the sensitivity results and Table 9 represents the effects of parameters on 
decision variables.

δ is the rate of decrease in the consumer’s valuation of the product 
when its age gets older. If δ is low (δ = 0.48) then consumer’s valuation 
for old product decreases and they will not be willing to purchase old 
products and waste may occur. Therefore, retailer’s best strategy is to set 
lower p1 to increase the old product’s expected demand and order higher 
quantity of new product. This strategy benefits the retailer to decrease 
optimal average waste (λW) from 0.025 to 0.016; however, optimal 
average profit (λP) also decreases. Therefore, weighted-sum objective 
function (λ) decreases by 1.892 %. However, when δ is higher (δ = 0.72), 
meaning that when decrease in the consumer’s old product valuation is 
not so significant, retailer’s optimal strategy is setting higher p1 and 
ordering more new products for particular q1 values. This strategy de
creases λW, λP and increases the λ by 3.254 %.

Retailer’s optimal sale price decision is not affected by + 20 % 
changes in ordering cost (c). However, when c is lower (c = 0.16), re
tailer’s best strategy is to set lower p0 (p0 = 0.55), lower p1 for particular 
q1 values and order more new products. Hence, λW decreases, λP in
creases; therefore, weighted-sum objective function (λ) increases by 
13.481 %. For higher c values (c = 0.24), retailer order less new products 
which decreases λW but also λP; therefore, λ decreases by 12.825 %. ±
20 % changes in inventory holding cost (h) does not affect the optimal 
decisions and λW. However, it affects λP directly; therefore, when h =
0.0024, λ decreases by 0.031 % and when h = 0.0016, λ increases by 
0.031 %.

5.6.1. Triangular distribution for Model 2
In our numerical experiments, the utility function is assumed to be 

uniformly distributed but the distribution of the valuations of consumers 
might be expected to be more centered around the middle rather than 
being uniform. Thus, in this section, we use a triangular distribution 
with lower bound 0, upper bound 1, and most likely value 0.5, In other 
words, we analyze the results of Model 2 when v Triangular(0, 1,0.5)
and compare them with the previously stated results. Table 10 presents 
the optimal price and order quantity decisions under the state of the 

Table 10 
Optimal decisions of Model 2 when v ~ Triangular (0,1,0.5).

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 p0 = 0.05 p1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0

w = 0.1 p0 = 0.45 p1 0.15 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.1 0.1 1.2429 0.001
q0 6 6 5 4 4 3 2 2 0 0 0

w = 0.2 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.1 1.2506 0.003
q0 6 6 5 4 4 3 2 2 1 0 0

w = 0.3 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 0.1 1.2506 0.003
q0 6 6 5 4 4 3 2 1 1 0 0

w = 0.4 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 1.2526 0.004
q0 6 6 5 4 3 3 2 1 0 0 0

w = 0.5 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.2 0.15 0.15 0.15 0.15 0.1 0.1 1.2526 0.004
q0 6 6 5 4 3 3 2 1 0 0 0

w = 0.6 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 0.15 0.1 1.2538 0.005
q0 6 6 5 4 4 2 1 0 0 0 0

w = 0.7 p0 = 0.45 p1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 0.15 1.2538 0.006
q0 6 6 5 4 4 3 2 1 0 0 0

w = 0.8 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.15 1.2538 0.006
q0 6 6 5 4 4 3 2 1 0 0 0

w = 0.9 p0 = 0.45 p1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.2541 0.007
q0 6 6 5 5 4 3 2 2 1 0 0

w = 1 p0 = 0.45 p1 0.15 0.35 0.35 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.2615 0.389
q0 7 6 5 5 4 3 3 2 2 2 2

Fig. 3. Comparison of Weighted-Sum Objective Function Values of Model 2 for Uniform Distribution and Triangular distribution.
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system (quantity of old product) and the different weight factors. 
Average waste and profit for different weight factors can also be seen 
from the table.

From Table 10, similar to uniform distribution results, it can be 
observed that as q1 increases, both p1 and q0 decrease monotonically, 
also p0* is consistent across all w values. However, the value of p0* is 
lower compared to uniform distribution, i.e. p0*=0.45 which is expected 
since consumer’s valuation is highly located around 0.5. Similar to 
uniform distribution, optimal p1* monotonically decreases with q1. 
However, when retailer has two objectives, i.e. w ∈ [0.1, 0.9], the 
retailer always charges a moderate p1, p0 + δ − 1 < p1 < δp0, allowing 
consumers to make one of three decisions: to buy the old product, the 
new product, or to leave the system without making a purchase. Also, 
behavior of q0 is similar to uniform distribution; however, the value of q0 
is higher for certain q1 values under the triangular distribution. Since, 
sale prices are lower compared to uniform distribution both the average 
waste and average profit are also lower. However, as it can be seen from 
Fig. 3, weighted-sum objective function is lower for all w values under 
triangular distribution.

5.6.2. Results of Model 2 when N = 20
In this subsection we run our numerical analysis for Model 2 for a 

larger size of the problem where N = 20, and thus the possible demand 
values and the state space of the model, q1, ranges between 0 and 20. 
Table 11 shows the optimal price and order quantity decisions under the 
state of the system and the different weight factors. The main difference 
between the cases when N = 10 and N = 20 arises in the run time of the 
algorithm due to the increase in the size of the state space and the 
possible demand values. Recall that the CPU time to obtain all results in 
Table 5 is in total 7.4 h, whereas the CPU time to obtain all results in 
Table 11 turns out to be around 140 h. Due to the curse of dimension
ality, the run time of the algorithm increases exponentially. However, 
we note that similar structural insights are obtained for Model 2 when N 
= 20 compared with the case N = 10. For example, as q1 increases, both 
p1 and q0 decrease monotonically, also p0* is consistent across all w 
values, i.e., p0*=0.6. From Table 11 we also observe that decision of p1 
depends on q1 in a similar manner to N = 10 case. The same threshold 
policy can also be observed: if q1 ∈ [0, T] then retailer charges moderate 
p1, p0 + δ − 1 ≤ p1 < δp0, such that consumers can give the three de
cisions (this policy highlighted as yellow in Table 11); if q1∈(T, 20], 
retailer’s best strategy is to set too low p1, p1 < p0 +δ − 1 and none of the 
consumers will purchase new products (this policy highlighted as grey in 
Table 11). The behavior of q0*, average profit and average waste based 
on w is also similar to N = 10 case. For example, q0* decreases when w is 
lower, and average waste and profit both increase with w. When the 
results of w = 0.3 and w = 0.5 are compared, average profit decreases by 
0.7 %, while waste decreases by 66 %. Thus, a significant reduction in 
waste can be achieved by compromising a relatively smaller amount of 
profit.

5.6.3. Results of Model 2 when s = 0.1
In our numerical experiments, we initially set s = 1 to represent not 

only the direct monetary cost but also the broader implications of food 
waste. These include the opportunity cost of unsold goods, and the 
significant environmental impact associated with food waste disposal. 
The latter is particularly relevant considering recent policy de
velopments. As of 2023, nine U.S. states have enacted organic waste 
bans for grocery retailers, also known as mandatory recycling programs 
(Sanders, 2024). These regulations aim to reduce landfill waste, mitigate 
methane emissions from decomposing organic waste, and encourage the 
rescue of food suitable for consumption.

However, the cost of waste may be lower in some contexts, partic
ularly when penalties are minimal or when there is a salvage value 
associated with transforming the product for alternative use. To explore 
this scenario, we reran our numerical analysis for Model 2 with s = 0.1. 
Table 12 shows the optimal price and order quantity decisions under the Ta
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state of the system and the different weight factors. Average waste and 
profit for different weight factors can also be seen from the table. The 
total CPU time required to obtain all results presented in Table 12 is 
7.33 h. The average waste shown in Table 12 is calculated by multi
plying the average waste cost by 10, as s = 0.1.

From Table 12, similar to the results for s = 1, it can be observed that 
as q1 increases, both p1* and q0* decrease monotonically. Additionally, 

p0* remains consistent across all across all w values and is equal to 0.6, 
identical to the results for s = 1 results. Although the behavior of p1* and 
q0* for s = 1 is similar, the optimal values of p1* and q0* are higher for 
certain system states. This is expected, as the lower waste cost (s = 0.1) 
allows the retailer greater flexibility in deciding order quantities and the 
sale price of old products. The lower financial implications of waste 
incentivize the retailer to explore higher price points and order 

Table 12 
Optimal decisions of Model 2 when s = 0.1.

q1 ¼ 0 q1 ¼ 1 q1 ¼ 2 q1 ¼ 3 q1 ¼ 4 q1 ¼ 5 q1 ¼ 6 q1 ¼ 7 q1 ¼ 8 q1 ¼ 9 q1 ¼ 10 profit waste

w = 0 p0 = 0.05 p1 − 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0

w = 0.1 p0 = 0.6 p1 − 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.05 0.05 1.297 0.025
q0 5 4 3 3 2 1 1 1 0 0 0

w = 0.2 p0 = 0.6 p1 − 0.3 0.3 0.25 0.25 0.25 0.2 0.2 0.15 0.15 0.1 1.319 0.065
q0 5 4 3 3 2 1 1 0 0 0 0

w = 0.3 p0 = 0.6 p1 − 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 1.330 0.106
q0 5 4 3 3 2 2 1 0 0 0 0

w = 0.4 p0 = 0.6 p1 − 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25 1.3389 0.150
q0 5 4 4 3 2 2 1 1 0 0 0

w = 0.5 p0 = 0.6 p1 − 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 0.25 1.3392 0.152
q0 5 4 4 3 2 2 1 1 1 1 1

w = 0.6 p0 = 0.6 p1 − 0.3 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25 1.340 0.162
q0 5 4 4 3 3 2 2 1 1 1 1

w = 0.7 p0 = 0.6 p1 − 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.345 0.253
q0 5 4 4 3 3 2 2 2 2 2 2

w = 0.8 p0 = 0.6 p1 − 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.345 0.253
q0 5 4 4 3 3 2 2 2 2 2 2

w = 0.9 p0 = 0.6 p1 − 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
q0 5 4 4 3 3 2 2 2 2 2 2

w = 1 p0 = 0.6 p1 − 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.347 0.405
q0 5 4 4 3 3 2 2 2 2 2 2

Fig. 4. Comparison of Weighted-Sum Objective Function Values of Model 2 for s = 1 and s = 0.1.

Table 13 
Optimal decisions of NoDs Model 1.

p0 p1 q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 0.05 0.05 q0 0 0 0 0 0 0 0 0 0 0 0 0 0
w = 0.1 0.55 0.25 q0 2 2 2 2 2 2 2 2 2 2 2 0.607 0.010
w = 0.2 0.5 0.5 q0 3 3 3 3 3 3 3 3 3 3 3 0.867 0.066
w = 0.3 0.5 0.5 q0 3 3 3 3 3 3 3 3 3 3 3 0.867 0.066
w = 0.4 0.55 0.55 q0 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w = 0.5 0.55 0.55 q0 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w = 0.6 0.55 0.55 q0 3 3 3 3 3 3 3 3 3 3 3 0.981 0.125
w = 0.7 0.55 0.55 q0 4 4 4 4 4 4 4 4 4 4 4 1.184 0.391
w = 0.8 0.6 0.6 q0 4 4 4 4 4 4 4 4 4 4 4 1.238 0.602
w = 0.9 0.6 0.6 q0 4 4 4 4 4 4 4 4 4 4 4 1.238 0.602
w = 1 0.6 0.6 q0 5 5 5 5 5 5 5 5 5 5 5 1.256 1.235
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quantities, as the economic risk of unsold inventory is reduced.
Similar to the results for s = 1 a threshold policy can be observed. 

When q1 ∈ [0, T] then retailer charges moderate p1, such that 
p0 + δ − 1 ≤ p1 < δp0, enabling consumers to make three possible de
cisions: buying new products, old products, or neither. This policy is 
highlighted in yellow in Table 12. When q1∈(T, 10], retailer’s optimal 
strategy is to set too low p1, such that p1 < p0 +δ − 1 and none of the 
consumers will purchase new products. This policy is highlighted in grey 
in Table 12. Notably, the thresholds for these policies are higher 
compared to those observed for s = 1. This is because lower waste costs 
allow the retailer to adopt higher p1.

When comparing waste and profit values for s = 1 and s = 0.1 it is 
observed that, as expected, higher profits are achieved when s = 0.1. 
However, this causes the increased waste. Additionally, as shown in 
Fig. 4, the weighted-sum objective function is higher for s = 0.1 indi
cating that the lower waste cost allows for greater flexibility in balancing 
profit maximization and waste minimization. However, all these ana
lyses demonstrate that similar structural insights can be obtained when 
comparing the results for s = 1 with those for s = 0.1.

5.7. No demand shift (NoDS) models

In this section we discuss a special case in which there is no demand 
shift between new and old products (α01 = α10 = 0).

5.7.1. NoDS Model 1: Static p0 and p1, dynamic q0
In this case, Table 13 shows that even though q0 is dynamic, retailer’s 

best strategy is to order the same quantity as q1 changes. At first, this 
may seem counterintuitive because usually higher old inventory re
quires fewer (sometimes no) new products. However, in this case, since 
we do not allow demand shift, the amount of old inventory does not 
affect the demand for the new ones, and only the prices affect the de
mand. Since the prices are not dynamically changed based on the 
amount of inventory at hand, for given fixed prices, the problem about 
deciding the order quantity q0 reduces to a two-period Newsvendor 
problem, in which unsold new products are not salvaged at the end of 
the first period but have a second opportunity to be sold as old products 
in the second period. The quantity of old products at hand does not affect 
the order quantity of the new products. CPU time to obtain all results 
that are given in Table 13 is in total 2.1 h.

Our numerical analysis reveals that when the cost of waste becomes 
less important (higher w values), the retailer’s best strategy is to not 

apply discount and set the static prices p0 = p1. When waste minimiza
tion is more important (w = 0.1) retailer can benefit from setting lower 
p1 than p0. Hence, due to Proposition 1 (i) (p0 + δ − 1 < p1 < δp0, ) con
sumers will choose whether to buy old or new product or leave the 
system based on their utilities, which can help retailer to gain profit and 
minimize the waste. However, as w increases and waste becomes less 
important, it is observed that p1 is set equal to p0, meaning that it is not 
profitable to sell old products at a lower price, and the company focuses 
only on selling the new products. In order to avoid cannibalization be
tween the old and new products, the company prefers to only sell the 
new products in this case. More new products are ordered, and higher 
prices are charged. The demand for the old products will be zero and 
they all be dumped.

5.7.2. NoDS Model 2: Static p0, dynamic p1 and q0
As it can be seen from Table 14, different than NoDs Model 1, since 

the decision of p1 is given dynamically based on the quantity of the old 
products at hand (q1), retailer’s best strategy is to apply discount as q1 
increases in order to prevent waste. The prices of old products tend to 
decrease as q1 increases, and as w decreases, since waste becomes more 
important. The static price of the new products also tends to be lower for 
lower w. In addition, the order quantity q0 monotonically decreases as q1 
increases. Therefore, in Model 2 average profit is higher and average 
waste is lower compared to Model 1, stating that dynamically adjusting 
the prices of old products can benefit the company significantly. CPU 
time to obtain all results that are given in Table 14 is in total 1.25 h.

5.7.3. NoDS Model 3: Dynamic (p0 = p1) and q0
As shown in Table 15, since p0 = p1 = p and since there is no demand 

shift between old and new products, the demand for the old products 
will be zero in this case. Thus, the quantity of the old products at hand 
(q1) does not affect any of the decisions and the retailer’s best strategy is 
to keep the prices and the order quantities constant, regardless of the 
state of the system. CPU time to obtain all results that are given in 
Table 15 is in total 0.059 h. The prices and the order quantities tend to 
decrease as w decreases (i.e. waste becomes more important).

5.7.4. NoDS Model 4: Dynamic p0, p1 and q0
As we can see from Table 16, the retailer’s best strategy changes 

based on the inventory of old products (q1) and w. Results show that 
optimal prices are not always decreasing as q1 increases, since q0 
changes, too, where q0 is decreasing with respect to q1. Similar to other 

Table 14 
Optimal decisions of NoDS Model 2.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 p0 = 0.05 p1 − 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0

w = 0.1 p0 = 0.55 p1 − 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 0.05 0.05 1.066 0.004
q0 4 2 1 1 0 0 0 0 0 0 0

w = 0.2 p0 = 0.55 p1 − 0.25 0.2 0.2 0.1 0.1 0.1 0.1 0.05 0.05 0.05 1.066 0.004
q0 4 2 1 1 0 0 0 0 0 0 0

w = 0.3 p0 = 0.6 p1 − 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 1.110 0.017
q0 4 2 1 1 0 0 0 0 0 0 0

w = 0.4 p0 = 0.6 p1 − 0.3 0.25 0.25 0.2 0.2 0.15 0.1 0.05 0.05 0.05 1.110 0.017
q0 4 2 1 1 0 0 0 0 0 0 0

w = 0.5 p0 = 0.55 p1 − 0.3 0.25 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 1.174 0.069
q0 4 4 2 2 1 1 0 0 0 0 0

w = 0.6 p0 = 0.55 p1 − 0.3 0.25 0.25 0.2 0.2 0.1 0.1 0.1 0.05 0.05 1.204 0.103
q0 5 4 2 2 1 1 0 0 0 0 0

w = 0.7 p0 = 0.55 p1 − 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 0.1 1.210 0.115
q0 5 4 3 3 1 1 1 0 0 0 0

w = 0.8 p0 = 0.55 p1 − 0.3 0.3 0.25 0.25 0.2 0.2 0.2 0.1 0.1 0.1 1.2578 0.250
q0 5 4 4 3 3 1 1 1 0 0 0

w = 0.9 p0 = 0.55 p1 − 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 1.2582 0.252
q0 5 4 4 3 3 3 3 1 1 1 1

w = 1 p0 = 0.6 p1 − 0.35 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.285 0.699
q0 5 5 5 3 3 3 3 3 3 3 3
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models average profit and average waste increase as w increases. 
However, in this no demand shift model waste is much lower compared 
to other NoDS models, because retailer’s sale prices decisions are given 
dynamically based on q1. Hence, even though there is no demand shift 
waste can be prevented, and profits can be improved significantly 
through dynamic pricing. CPU time to obtain all results that are given in 
Table 16 is in total 1.36 h.

6. Conclusion

Perishable food products such as fruits, vegetables, and dairy prod
ucts, deteriorate over time; therefore, their demand decreases gradually 
which makes inventory management and pricing strategies important. 
Approximately one-third of edible food is wasted at the retail and con
sumer levels and it not only causes costs for businesses but also harms 
the environment. For example, some of the world’s largest retailers i.e. 
Tesco, Walmart, Kroger etc. focus to reduce in-store food waste, aiming 
to achieve Sustainable Development Goals by offering price discounts on 

Table 15 
Optimal decisions of NoDS Model 3.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

w = 0 p 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0
q0 0 0 0 0 0 0 0 0 0 0 0 ​ ​

w = 0.1 p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.594 0.012
q0 2 2 2 2 2 2 2 2 2 2 2 ​ ​

w = 0.2 p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.867 0.066
q0 3 3 3 3 3 3 3 3 3 3 3 ​ ​

w = 0.3 p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.867 0.066
q0 3 3 3 3 3 3 3 3 3 3 3 ​ ​

w = 0.4 p 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.981 0.125
q0 3 3 3 3 3 3 3 3 3 3 3 ​ ​

w = 0.5 p 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.981 0.125
q0 3 3 3 3 3 3 3 3 3 3 3 ​ ​

w = 0.6 p 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 1.184 0.391
q0 4 4 4 4 4 4 4 4 4 4 4 ​ ​

w = 0.7 p 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 1.184 0.391
q0 4 4 4 4 4 4 4 4 4 4 4 ​ ​

w = 0.8 p 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.238 0.602
q0 4 4 4 4 4 4 4 4 4 4 4 ​ ​

w = 0.9 p 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.238 0.602
q0 4 4 4 4 4 4 4 4 4 4 4 ​ ​

w = 1 p 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.256 1.235
q0 5 5 5 5 5 5 5 5 5 5 5 ​ ​

Table 16 
Optimal decisions of NoDS Model 4.

q1 = 0 q1 = 1 q1 = 2 q1 = 3 q1 = 4 q1 = 5 q1 = 6 q1 = 7 q1 = 8 q1 = 9 q1 = 10 profit waste

​ p0 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0
w = 0 p1 − 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
​ q0 0 0 0 0 0 0 0 0 0 0 0
​ p0 0.55 0.55 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 0.5 1.074 0.004
w = 0.1 p1 − 0.25 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05 0.05
​ q0 4 2 0 0 0 0 0 0 0 0 0
​ p0 0.55 0.55 0.5 0.7 0.65 0.6 0.55 0.55 0.5 0.5 0.5 1.084 0.006
w = 0.2 p1 − 0.25 0.2 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0.05
​ q0 4 2 2 0 0 0 0 0 0 0 0
​ p0 0.6 0.5 0.5 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 1.138 0.025
w = 0.3 p1 − 0.25 0.2 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05
​ q0 4 3 2 0 0 0 0 0 0 0 0
​ p0 0.6 0.5 0.55 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 1.154 0.033
w = 0.4 p1 − 0.25 0.25 0.3 0.25 0.2 0.15 0.1 0.05 0.05 0.05
​ q0 4 3 2 0 0 0 0 0 0 0 0
​ p0 0.6 0.5 0.55 0.75 0.7 0.7 0.65 0.6 0.55 0.5 0.5 1.159 0.037
w = 0.5 p1 − 0.25 0.25 0.3 0.25 0.25 0.2 0.15 0.1 0.05 0.05
​ q0 4 4 2 0 0 0 0 0 0 0 0
​ p0 0.6 0.55 0.6 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.5 1.219 0.105
w = 0.6 p1 − 0.3 0.3 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
​ q0 4 4 3 0 0 0 0 0 0 0 0
​ p0 0.6 0.55 0.6 0.55 0.75 0.7 0.7 0.65 0.6 0.55 0.55 1.229 0.123
w = 0.7 p1 − 0.3 0.3 0.25 0.3 0.25 0.25 0.2 0.15 0.1 0.1
​ q0 4 4 3 3 0 0 0 0 0 0 0
​ p0 0.55 0.55 0.6 0.6 0.8 0.75 0.7 0.7 0.65 0.65 0.6 1.245 0.175
w = 0.8 p1 − 0.3 0.3 0.3 0.35 0.3 0.25 0.25 0.2 0.2 0.15
​ q0 5 4 3 3 0 0 0 0 0 0 0
​ p0 0.55 0.6 0.55 0.6 0.6 0.75 0.75 0.7 0.7 0.7 0.7 1.282 0.380
w = 0.9 p1 − 0.35 0.3 0.3 0.3 0.3 0.3 0.25 0.25 0.25 0.25
​ q0 5 4 4 3 3 0 0 0 0 0 0
​ p0 0.6 0.6 0.55 0.65 0.6 0.6 0.6 0.75 0.75 0.75 0.75 1.290 0.559
w = 1 p1 − 0.35 0.3 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3
​ q0 5 5 4 3 3 3 3 0 0 0 0
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food that is close to its shelf life. Therefore, ordering and pricing stra
tegies is critical not only for reducing waste but also for increasing 
profits.

This study focuses on a retailer’s problem of selling old and new 
perishable food products to strategic consumers. We develop a bi- 
objective dynamic programming model to optimize the discounted 
price, sale price, and order quantity of perishable food products in order 
to maximize the retailer’s profit and minimize food waste.

We allow demand shifts between products based on their prices and 
consumer behaviors. We model four static and dynamic pricing policies 
commonly used in practice, and investigate the benefits of dynamic 
pricing and price differentiation between old and new products in terms 
of both profit and waste. In addition, we use weighted-sum method for 
our bi-objective function and analyze the results for different combi
nations of the weights for the profit and the waste. Hence, we obtain the 
following findings: 

• When the price difference between old and new products is high, the 
consumers prefer to buy the old products or buy nothing, when the 
difference is low they only buy the new products or nothing. How
ever, in other conditions, they may buy the old products, new 
products or nothing. In addition, since we allow demand shift, old 
(new) product’s total demand also depends on new (old) product’s 
demand and quantity at hand.

• We observe a threshold pricing policy, hence, decisions of sale prices 
depend on the quantity of the old products at hand. We reveal that 
these thresholds are lower for lower weight values, which shows that 
even though the level of old products at hand is high, higher prices 
are charged for the old products when profit maximization is more 
important.

• Order quantity, q0, decreases when waste minimization is more 
important (lower w). It is because retailer tends to order less to avoid 
overstocking and focuses on selling old products at hand by 
decreasing the optimal price of the old products.

• For our four different static and dynamic pricing strategies, we reveal 
the importance of choosing suitable weights in order to find the 
balance between minimizing waste and maximizing profit.

• After comparing four pricing strategies, we find that Model 2 and 
Model 4 are the better strategies in order to maximize average profit 
and minimize average waste. So, findings show that significant im
provements can be obtained by dynamic decision making. Although 
Models 2 and 4 may incur higher computational costs than the other 
models in this study, they demonstrate superior performance in 
terms of reducing waste and maximizing profit. Moreover, in many 
practical settings, it is sufficient to solve these models only once (or 
infrequently) as long as market conditions remain relatively stable.

The results of our study can also have some implications for the 
governments and strategy builders, since it is observed that when 
companies are forced to put more weight on their wastes, they need to 
change their pricing and ordering decisions. Thus, incentive or penalty 
mechanisms can be designed in this perspective in order to align the 
decisions of the companies with the social objectives of the governments 
in order to decrease waste. We note that a detailed analysis of the system 
including incentive or penalty mechanisms can be an extension of this 
study in the future. In addition, this research has some limitations which 
also make various extensions possible for future studies. First, our model 
considers that there is only one branch of the particular retailer; how
ever, in real life, retailers may have more than one branch, which shares 
the inventory based on their needs, aiming to maximize the centralized 
profit. Second, we assume that the product has a two-period lifetime. As 
an extension we may consider more than two-period of lifetime; how
ever, it can be challenging to model and solve dynamically. Third, we 
may consider more real-world related constraints such as varying 
replenishment lead times, menu cost, and limited shelf space which 
could affect the retailer’s optimal decisions. Finally, due to the curse of 

dimensionality, it is stated that determining the optimal inventory pol
icy for perishable products is extremely complex even when the sale 
prices are fixed (Nahmias, 1982; Chen et al. 2014). Thus, we can obtain 
the optimal solutions for small and moderate sized problems in our study 
and report the run times of the algorithms for each model for the pa
rameters used in this study. For larger sized problems, novel solution 
algorithms or heuristics that utilize different approaches such as 
approximate dynamic programming formulations, deep learning or 
reinforcement learning algorithms need to be developed. These issues 
can be incorporated into future studies.
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