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Abstract

Although audio-augmented reality (AAR) has known applications
in music, the use of wearables such as augmented reality (AR)
glasses for egocentric audio data capture for music has not been
investigated. Current egocentric datasets are mostly focused on
speech research, neglecting music’s unique demands for tasks such
as real-time optimisation or assistive listening. This paper intro-
duces EgoMusic, a multimodal dataset featuring synchronised ego-
centric audio-visual data captured with AR glasses during live per-
formances, alongside studio-quality audio references. We investi-
gate AR glasses’ utility for music and baseline artificial intelligence
(AI) approaches for hearing enhancement, positioning EgoMusic
as the first dataset that enables research for egocentric music AAR.
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Figure 1: Musicians during a data capture session for the
EgoMusic dataset.

1 Introduction

Audio Augmented Reality (AAR) blends computer-generated sounds
with a user’s real-world environment, enriching their perception [53].
This technology shows promise in diverse fields, including immer-
sive gaming [7, 30] and interactive education [53].

In music, AAR and visual Augmented Reality (AR) have seen
remarkable advances [46]. Research has focused on creating engag-
ing learning environments [27] using visual aids such as fingering
guides [13, 22] and 3D models [12, 52]. For live performances, AAR
has enabled interfaces for virtual sheet music [23] and for mixing
sound loops with spatial audio [31, 46]. Despite progress in AAR
for music, using wearables to capture rich, contextualised audio
for musical applications is relatively unexplored. Similar to ego-
centric computer vision [37] using wearable cameras, egocentric
audio holds potential. AR glasses are promising platforms for cap-
turing high-fidelity, egocentric audio-visual data due to ergonomics
and non-stigmatisation. For instance, AR glasses have been used
for speech enhancement [14, 15], audio-visual speaker localiza-
tion [55], and gaze anticipation [24]. The success of AR glasses and
wearables in speech-related applications naturally raises an inter-
esting question of how this technology can be applied or adapted
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for music. Research-focused AR glasses, distinct from consumer
devices, are now available. Meta’s Aria glasses [17], for example,
are used in machine perception research for everyday activities,
aiding development of models for assistive technology, robotics,
and human-computer interaction [20, 25, 29, 54].

However, AAR’s potential as a data acquisition tool for data-
driven music models remains largely unexplored, as existing ego-
centric audio-visual datasets are often not music-focused. This gap
allows investigation into using wearable devices such as smart
glasses to collect rich data for data-driven models in applications
such as real-time music optimisation and remixing.

To address this gap, we introduce EgoMusic: a novel, synchro-
nised egocentric audio-visual dataset from live music performances
using Aria glasses. Our primary goals are to investigate AR wear-
ables’ potential and limitations for music and explore Al/signal pro-
cessing baselines for hearing enhancement. The dataset includes
aligned, studio-quality reference stems, and this paper details a
replicable data collection procedure. EgoMusic is the first egocen-
tric dataset for personalised music enhancement with wearables,
serving as a valuable resource for advancing Al-driven, AR-powered
music experiences. The egocentric data acquisition methodology
presented in this paper promises broader impact across music AAR,
including areas such as improved audience accessibility, enhanced
music engagement (virtual instrument participation), advanced
music education, and novel remote performances.

The key contributions of this paper are: (i) a detailed outline of
the challenges of using wearable devices for real-time music opti-
misation; (ii) a novel egocentric dataset of live music performances
including multimodal sensor data such as 7-channel egocentric
audio, studio-quality audio references, RGB videos, eye camera
videos, magnetometers, and barometers; (iii) a thorough analysis of
the Aria glasses’ audio fidelity in music recording using objective
quality metrics and subjective listening test quality; (iv) an investi-
gation into music remixing using the Aria glasses, demonstrating
the potential for personalised music experiences.

2 Motivations and Related Work

Modifying surrounding soundscapes has driven developments from
noise-cancelling headphones to hearing aids and transparency
modes [48], which mostly offer passive noise control or ampli-
fication. In contrast, AAR dynamically manipulates the acoustic
environment in real-time, promising personalised music experi-
ences. Traditional music enhancement, typically in post-production,
improves pre-recorded audio via numerous signal processing and
data-driven techniques such as dynamic range compression, spa-
tialisation, reverberation, equalisation, bandwidth extension [26],
denoising [4], remixing [32, 51], and quality restoration [6, 21, 34].
However, adapting such studio-centric techniques to live music
wearable AAR is challenging.

Audio enhancement for live scenarios (not pre-recorded mu-
sic) often has wearable limitations. For instance, Tahmasebi et
al. [45] proposed real-time vocal remixing for cochlear implant
users, but reliance on virtualised acoustics [18] still limits it to
pre-recorded content or specialised hardware, unsuitable for wear-
ables in natural settings. Similarly, real-time classical music source
separation (MSS) using multichannel NMF [5] required extensive,
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non-wearable microphone arrays. Sensor-rich wearables like Meta’s
Aria glasses [17], capturing egocentric multichannel audio, video,
and motion data, offer new pathways. These enable datasets reflect-
ing the wearer’s perspective, promoting research into generalizable
data-driven AAR solutions beyond lab conditions or pre-recorded
stimuli. Such egocentric data is pivotal for advancing real-time
music enhancement on wearables in diverse, natural soundscapes.

Despite this potential, wearable AAR’s practical realisation, es-
pecially for music, faces significant challenges. Parallels with the
speech domain highlight common issues, but music presents unique,
unaddressed complexities that we outline at the end of this para-
graph. Wearable AAR has progressed significantly in speech, mainly
targeting source separation (e.g., the cocktail party problem) to en-
hance communication in noise [15, 19, 40, 43]. Several egocentric
speech-focused datasets exist with some limitations. Epic Kitchens
[11] lacks multichannel audio and noisy settings. COSINE [44] lacks
video/wearable data. EgoCom [28] has limited audio channels and
sync issues. Datasets like DiPCo [39], CHiME-5 [2], and CHiME-
6 [50] offer rich audio but miss egocentric video and wearable
configurations. EasyCom [15] is a significant step, with synchro-
nised multimodal data (audio, video, pose, head-tracking) from
AR glasses in realistic conversations, enabling research in speech
enhancement, diarization, beamforming, and speech recognition
while interacting with the physical world.

Beyond fundamental real-time wearable system challenges (e.g.,
low latency, data synchronisation, audio overlay - we observe that
the lack of speakers in the Aria glasses limits real-time output, but
not data acquisition/analysis), music AAR faces distinct challenges
from speech that need to be addressed when building an egocentric
dataset. These challenges are:

e Audio Fidelity vs. Speech Intelligibility: Unlike speech
enhancement targeting intelligibility, music AAR demands
high audio fidelity. This broader, subjective target (clarity,
timbral accuracy, spatial realism, dynamic range, perceived
quality) is harder to achieve and evaluate.

e Impact of Distance and Loudness: Music performance and
listening involve wide-ranging distances and sound levels,
affecting loudness for listeners. Performers risk microphone
clipping from loud sources due to music’s wider dynamic
range and higher peak levels than speech. Capturing high-
quality audio in these conditions with wearable microphones
is not trivial.

e Complexity of Music Source Separation and Remixing:
Unlike speech AAR separating a few speakers, music AAR
may need to separate many instruments/vocals in dense
mixes. Separated sources must retain high timbral fidelity to
achieve audio enhancement and personalisation after remix-
ing. MSS algorithm degradations can compromise the aug-
mented experience, so assessing MSS quality on wearable-
captured audio is essential. We observe that high-quality
source separation and remixing are key for accessibility for
hard-of-hearing listeners.

e Evaluation Metrics: Standard objective audio metrics may
not capture music AAR’s perceptual qualities. Effective eval-
uation needs metrics for spatial accuracy, dynamic range,
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timbral preservation, plus subjective assessments (e.g., im-
mersion, enjoyment) [16, 41].

e Hardware Configuration: Microphone array configuration
(number, type, placement) on wearables directly impacts
captured audio quality and spatial algorithm effectiveness
(e.g., beamforming, localisation). Understanding this impact
on music fidelity is key for hardware/algorithm design.

3 EgoMusic Dataset

As applying egocentric wearable capture to music is an unexplored
field, the data collection process and device evaluation must directly
address the challenges outlined in Section 2 (e.g., audio fidelity,
source complexity). To address the previously outlined lack of suit-
able data for wearable music AAR systems, we introduce EgoMusic,
a novel multimodal dataset!. It captures circa one hour of egocen-
tric live music performances over four sessions, simulating realistic
listening/performing scenarios at various distances. Our dataset
provides synchronised, egocentric multichannel audio-video of live
music with high-quality studio reference audio. EgoMusic features
data from Aria glasses [17] (worn by performers/audience), refer-
ence audio, and 360° video, facilitating research in real-time music
source separation, enhancement, spatial audio analysis, and multi-
modal machine learning for wearable AAR. The next sections detail
data collection, equipment, and spatial configuration.
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Figure 2: The spatial outline of the recording setup with
distances in centimetres.

3.1 Procedure and Participants

Ethical approval was obtained from the UCD Human Research
Ethics Committee, and all participants gave informed consent and
signed data release agreements. Based on pilot sessions, we re-
cruited one female vocalist and four instrumentalists (acoustic gui-
tar, piano, bass guitar, percussion). To capture a range of musical
complexities and listening perspectives, directly addressing the
challenges of source separation in dense mixes and the impact of
listener position, four distinct recording sessions were conducted:
e Session 1 (Audience): 3 songs performed by vocalist + 1
instrument (acoustic guitar or piano).
o Session 2 (Audience): 4 songs performed by vocalist + 2
instruments (acoustic guitar/piano + bass guitar).

Ihttps://doi.org/10.5281/zenodo.16753794
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o Session 3 (Audience): 4 songs performed by vocalist + 3 in-
struments (acoustic guitar/piano + bass guitar + percussion).
e Session 4 (Musician): 2 songs performed by vocalist + 1
instrument (acoustic guitar or piano), with glasses worn by
the performers.
The total duration of the recorded performances is 58 minutes and
20 seconds. A clap sound at the beginning of each session serves as
a synchronisation marker across all independent recording devices.
The provided data streams have been manually pre-synchronised
using the clap markers.

3.2 Collected Data

Data was captured by recording performances of copyright-free
music with multiple synchronised devices (see Table 1).

Wearable Aria Glasses. Four pairs of Aria glasses were used
within the same session and distributed between the audience and
musicians based on the session details. We used Aria’s Profile 0 (full
sensor suite), which include:

e Audio: 7-channel @ 48 kHz (5 front-facing mics, 1 near each
temple (see Fig 3). Provided tracks are downsampled to 44.1
kHz (matching reference audio).

e Video: RGB camera (2880x2880 resolution, with 1 frame rate
per second (fps) due to Profile 0 limits, FoV 110°x110°); two
monochrome SLAM cameras (640x480, 10 fps, FoV 150°x120°).

¢ IMU & Eye Tracking: IMU @ 1 kHz (left)/800 Hz (right);
Eye camera @ 320x240, 10 fps.

For audience sessions (1-3), three volunteers wore glasses at prede-
fined locations (Sec. 3.3); a fourth pair was static on a stand (baseline
without head motion).

mic4

Figure 3: The microphone locations and orientations on the
Aria glasses.

Reference Audio. To enable robust evaluation of audio fidelity
and provide ground truth for music source separation algorithms,
high-quality reference audio was captured for each sound source
independently. Condenser microphones were used for close-miking
the vocalist, piano, and percussion. The acoustic guitar and bass
guitar were recorded via direct input (DI). All reference signals
were routed through a Presonus 1812 audio interface and recorded
as separate, clean tracks at 44.1 kHz and 24-bit resolution in WAV
format. A stereo mix of these reference tracks is also provided for
each song.

Spatial Video. To acquire reference video streams, an Insta360
camera, positioned approximately 1.5 meters in front of the musi-
cians (see Figure 2), recorded 360-degree panoramic video footage
of the sessions in 4K resolution.
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Table 1: Overview of Recording Devices and Data Streams Included in the Dataset

Device / Sensor Target / Purpose

Key Specifications (Data in Dataset)

Egocentric Wearable System

Egocentric perspective capture

Profile 0 settings

7-Microphone Array

RGB Camera

SLAM Cameras (x2)

IMU (Accelerometer + Gyro)
Eye Tracking Cameras (x2)

Aria Glasses

7-channel spatial audio (44.1 kHz, 24-bit)

1 video stream (2880x2880 px, 1 fps, 110° Horiz. FoV)

2 B&W video streams (640x480 px, 10 fps, 150° Horiz. FoV)
Motion tracking: 1 kHz (L), 800 Hz (R)

Gaze tracking video (320x240 px, 10 fps)

Reference Audio Capture

Clean source recording

Multi-track via Presonus Studio 1810c (.wav, 44.1 kHz)

Microphones & DI Close Mic (Vocals)
Close Mic (Piano)
Close Mic (Percussion)
DI (Acoustic Guitar)

DI (Bass Guitar)

Condenser microphone
Condenser microphone
Condenser microphone
Clean instrument line signal
Clean instrument line signal

Panoramic Video Capture

Insta360 Camera 360° performance space video

4K wide-angle video

3.3 Spatial Outline

Recordings took place in a black box theatre with approximate
stage dimensions of 7m (L) x 5m (W) x 5m (H). Musicians were
positioned adjacent to each other on one side. The physical setup
was designed to reflect realistic scenarios and address challenges
associated with the impact of distance, loudness, and spatial per-
ception in music AAR (Section 2). Specifically, audience members
wearing Aria glasses were situated at varying distances and an-
gles, as depicted in Figure 2. The ’static’ Aria head was positioned
alongside the audience volunteers.

4 Experiments on the Dataset

To highlight the potential of the glasses to capture high-fidelity
live music, objective and subjective audio quality experiments were
conducted on sessions 1-3 of EgoMusic. Music source separation
was also explored to demonstrate its potential for personalised
music streaming. These experiments aim to answer the following
research questions: (RQ1) How does the distance of the Aria glasses
from the sound source impact the audio quality? (RQ2) How does
the number of microphones used in the Aria glasses impact the
audio quality? (RQ3) How well does music source separation work
on the Aria glasses recordings?

4.1 Audio Quality Objective Tests

VISQOL [8, 42] was used to evaluate the objective audio quality of
the recordings. It is used to predict the mean opinion score (MOS)
of an audio signal, i.e., the Aria recordings, compared against a
reference, i.e., the clean recordings.

To satisfy the input signal requirements, the reference stereo
recordings were resampled to 48 kHz, and converted into mono by
averaging the left and right channels. Five 10-second audio samples
were extracted from five equidistant points from start to finish of
each performance, and 0.5-second silence frames were appended at

the start and end of each sample. EBU R128 loudness normalisation
was employed on all audio samples [47]. In total, 55 audio samples
were acquired for each group, categorised according to location
(near, mid, far, and static) and number of microphones (one, three,
five, and seven).

For multi-microphone evaluation, the delay-and-sum beamform-
ing from SpeechBrain [35, 36] was employed. The microphone
combinations used were the following: (one) micl; (three) micI and
mic5-6; (five) micl and mic3—micé6; and (seven) micO—micé.

Table 2 and Fig. 4 shows the results of the objective tests. One-
way analysis of variance (ANOVA) revealed that the MOS was
significantly affected by the number of microphones and the loca-
tion of the glasses. In particular, employing beamforming on the
glasses, even for at least three microphones, significantly improved
the MOS. However, Tukey’s honestly significant difference test
(Tukey-HSD) revealed that increasing the number of microphones
from three to seven did not significantly improve the MOS.

Table 2: The average MOS and the p-value according to loca-
tion and number of microphones

Aria 1mic 3 mics 5mics 7 mics Pmic
near 2.82 3.19 3.28 3.28 < 0.01
mid 2.73 2.98 3.02 2.91 0.03
far 2.64 2.94 3.04 3.05 <0.01

static 2.79 3.10 3.12 3.17 <0.01

Ploc 034  0.04 004 <0.01

Meanwhile, MOS was significantly affected according to location
when beamforming was applied. Based on Tukey-HSD, the Aria-mid
recordings had the worst MOS. Also, the MOS was not significantly
affected when comparing the recordings from the human-worn
glasses and the static glasses.
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Figure 4: The VISQOL-based MOS on the Aria glasses record-
ings according to the number of microphones and location.

4.2 Audio Quality Subjective Tests

Subjective listening tests on the EgoMusic were also conducted
using a Multi-Stimulus Hidden Reference and Anchor (MUSHRA)
test [1] through a web-based platform called GoListen [3]. In this
test, participants were asked to grade on a 100-point scale the basic
audio quality of a set of audio signals against a labelled reference
signal. One trial contains: (1) a hidden reference signal identical to
the labelled reference signal, (2) a hidden anchor signal which is a
low-pass filtered reference signal with f. = 3.5 kHz, and (3) four
test signals to be evaluated. Two MUSHRA tests were conducted on
two separate days to evaluate the recordings based on the number
of microphones (MUSHRA-1) and location (MUSHRA-2).

For both MUSHRA tests, six trials corresponding to six distinct
song snippets were presented to the participants. The six songs
included two songs for each of sessions 1-3. These songs were
selected based on their MOS from VISQOL, such that there was a
large variation among the four test signals. For MUSHRA-1, the four
test signals corresponded to the number of microphones (one, three,
five, and seven) used for beamforming in Aria-near. For MUSHRA-
2, the four test signals corresponded to micl from the four Aria
glasses locations. The songs were presented in a randomized order
for all participants. Twelve and eleven participants were recruited
for MUSHRA-1 and MUSHRA-2, respectively. All participants rated
themselves as having normal hearing. Participant ratings were only
included when at least five out of six hidden reference signals were
scored at least 80, and at least five out of six hidden anchor signals
were scored less than 80. After post-screening, eight and seven
participant ratings were obtained, respectively.

The MUSHRA test results are shown in Fig. 5. It can be observed
that the subjective scores decrease with increasing distance from
the sound source, similar to the objective results. However, the
subjective scores decrease after applying beamforming, contrary to
the objective results.

One-way ANOVA revealed that the subjective scores were sig-
nificantly affected by beamforming (p = 0.01). Tukey-HSD further
revealed that the mono group had significantly better scores com-
pared to the 5-channel (p = 0.02) and 7-channel (p = 0.03) groups.
Meanwhile, the subjective scores were not significantly affected
by the location of the glasses (p = 0.08). To assess the agreement
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Figure 5: The MUSHRA results with 95% confidence intervals
on the Aria glasses recordings according to the number of
microphones and location.

between the objective and subjective results, the Pearson correla-
tion coefficient (R) was computed on the objective and subjective
scores. Based on 24 data points, MUSHRA-1 had R = —0.16 while
MUSHRA-2 had R = 0.71, signifying a strong linear relationship be-
tween the objective and subjective scores only when beamforming
was not applied.

These audio quality tests suggest that the perceived audio quality
captured by the Aria glasses is robust against its distance from the
sound source within a performance theatre room (RQ1). Meanwhile,
utilizing multiple microphones on the Aria glasses through a beam-
forming technique does not improve the perceived audio quality
(RQ2). Moreover, the objective metrics used do not align with the
subjective tests when beamforming was performed, signifying the
need to develop objective metrics tailored for music performance

capture through AAR.

4.3 Music Source Separation on the Data Set

A potential use case of AR glasses is to personalise the music listen-
ing experiences of individuals, especially for the hard-of-hearing
(HoH), through a demixing-remixing approach [9, 10]. Thus, music
source separation was employed on the Aria glasses recordings
to determine the glasses’ viability for personalised remixing. The
Hybrid Transformer Demucs (htdemucs) model was used to separate
the recordings into a vocals, drums, bass, and other stems [38].

Traditionally, music separation algorithms are benchmarked us-
ing the signal-to-distortion ratio (SDR) metric [49] on a standard
dataset MUSDB18-HQ [33]. SDR calculates the ratio (in dB) be-
tween the reference source and the distortion artefacts produced
in the separation. While the SDR can be computed for the clean
recordings, it cannot be computed for the Aria glasses recordings
since the reference sources for the latter were not obtained. Thus,
the objective audio quality was evaluated using VISQOL for the
estimated stems of the Aria glasses compared against the clean
reference stems.

Table 3 tabulates the SDR results after using htdemucs on the
test set of MUSDB18-HQ and the clean recordings of EgoMusic,
where a higher SDR value indicates better separation quality. It was
observed that htdemucs performs good stem separation on the 11
full-length songs of EgoMusic, except for the drums stem, since a
different percussion instrument was used for EgoMusic compared



MM °25, October 27-31, 2025, Dublin, Ireland

to the one used for training htdemucs. A two-stems evaluation
was also conducted wherein the drums, bass, and other stems were
mixed, yielding higher SDR results compared to the four-stems
evaluation. EgoMusic obtained higher SDR results compared to
the 50 full-length songs of MUSDB18-HQ because the latter had a
larger and more diverse collection of music.

Table 3: The mean SDR for the stems of the data set

4 stems 2 stems

vocals  drums bass other wvocals other

MUSDB 8.10 9.77 8.03 4.36 8.10 14.49
EgoMusic 10.52  -6.09 12.95 6.98 10.52  15.06

Table 4 tabulates the average predicted MOS of the estimated
stems of 55 audio samples. The estimated stems from the clean
recordings yielded a higher MOS than that from the Aria recordings,
which was expected. Furthermore, the estimated stems from the
Aria recordings, excluding percussion, had higher MOS compared
to their mixtures (see Table 2). Moreover, ANOVA revealed that the
MOS was significantly affected by the Aria glasses location only on
the vocals and other stems. Tukey-HSD revealed that the MOS of
the vocals stem on Aria-static was significantly higher compared
to Aria-near (p = 0.001) and Aria-far (p = 0.003). Meanwhile,
the MOS of the other stems in the four-stems and the two-stems
evaluation was significantly worse on Aria-mid compared to Aria-
near (p = 0.0002, p = 0.003), Aria-far (p = 0.0435, p = 0.012), and
Aria-static (p = 0.0379, p = 0.002).

These findings suggest that current MSS models provide satisfac-
tory objective audio quality on the estimated stems (RQ3). Moreover,
audio quality reduction with respect to distance becomes more pro-
nounced for higher frequencies, i.e. other vs bass, indicating audio
quality variation across the frequency spectrum. Subjective tests
are recommended for further validation of these results.

Table 4: The average MOS on the stems and the p-value ac-
cording to location.

4 stems 2 stems

vocals drums bass other  vocals other

clean 4.08 1.87 4.56 3.93 4.08 4.09
near 3.20 1.08 4.46 3.09 3.20 3.22
mid 3.33 1.26  4.47 2.52 3.33 2.79
far 3.21 1.09 4.46 2.88 3.21 3.17

static 3.40 1.08  4.48 2.89 3.40 3.23

Ploc < 0.01 042 077 <0.01 <001 <0.01

5 Conclusion

This paper introduces EgoMusic, a novel egocentric multimodal
dataset captured with Meta Aria glasses, addressing critical data
scarcity for wearable Audio Augmented Reality (AAR) in music.
Motivated by key challenges in audio fidelity, data capture, evalua-
tion, and music processing on wearables, EgoMusic provides rich,
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synchronised multimodal recordings (7-channel audio, video, IMU,
eye-tracking) with high-quality studio reference stems.

Our experimental findings aimed at understanding wearable ca-
pabilities for music processing and highlight several insights for
the research community. Although current AR wearables such as
the Aria glasses show fair audio quality (MUSHRA test) with ro-
bustness to listener distance (RQ1), achieving true musical fidelity
remains challenging. Our study showed a gap between objective au-
dio metrics (ViSQOL) and subjective human perception (MUSHRA),
especially concerning beamforming for music. This suggests the
need for a paradigm shift towards music-centric evaluation, pri-
oritising the development of new perceptually validated objective
measures for AAR music. Our results suggest that complex micro-
phone array processing on current wearables does not guarantee
superior perceived musical quality, calling for the investigation of
simpler hardware for AAR music processing (RQ2). The promising
source separation results using the htdemucs model confirmed the
potential for personalised audio experiences (RQ3). Clipping was
observed from the singing track of session 4 (musician perspective)
due to the short distance between the source and the glasses’ mics.
Clipping demonstrates a crucial limitation of current AR wearables
affecting musician-perspective processing.

Our findings and the EgoMusic dataset inform the community
about the significant challenges of personalising music with wear-
ables, representing a critical first step towards enabling impactful
real-world AAR applications. Building on these insights, the multi-
modal nature of the EgoMusic dataset unlocks different research
directions. It enables advancements in egocentric music process-
ing, with researchers developing music-centric beamforming, noise
reduction, and source localisation techniques benchmarked with
EgoMusic to improve perceived quality on wearables. The EgoMu-
sic rich data opens the exploration of multimodal music source
separation, e.g., using audio-visual streams, eye-tracking for user
attention, SLAM data for scene context, and IMU data for motion
compensation to create more robust systems. The proposed dataset
further supports the development of new perceptual metrics and
a deeper understanding of listener attention in music AAR using
contextual data such as eye gaze. Egocentric scene analysis also
becomes viable, using SLAM for performance insights. This paper
presents the first-ever music egocentric dataset for prototyping real-
world AAR applications, such as on-device personalised remixing
for hard-of-hearing listeners and context-aware music augmenta-
tion.
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