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PREFACE 

Within these proceedings we present the papers submitted to the Early Algebra Topic Study 

Group (TSG 1.2) of the 15th International Congress of Mathematics Education (ICME) held in 

Sydney, Australia in July 2024.  

The papers presented at TSG 1.2 of ICME 15 represented a deep and broad understanding of 

early algebra and many interesting and novel findings were shared that prompted robust 

discussions. Established themes of early algebra, such as the equal sign and functional thinking 

were the focus of presentations, along with relatively less studied areas related to early algebra, 

such as cultural relevance and sustainability. 

In this preface we will summarise key themes and highlight trends in ideas and in research foci. 

We invite the reader, however, to access the individual papers for more detailed and specific 

discussions and findings relating to various elements of Early Algebra. 

Key themes 

Multiple representations 

Throughout the TSG sessions, the role of representations was foregrounded, including the 

following: 

Culturally relevant representations: A significant proportion of the research represented at 

ICME 15 TSG 1.2 highlighted the critical role of representations in children’s developing 

algebraic thinking. Gibbs’ research in New Zealand emphasises the inclusion of cultural 

relevance as a design focus of tasks for early algebra in ensuring that children feel connected 

to the content and empowered to succeed. 

Visualisation: Many studies highlighted the role played by visual representations. Moreno, for 

example, described how students used graphs as tools to think with when they reasoned about 

a functional relationship drawn from the real-world context of a fairground. 

Using digital tools: Panorkou and Provost demonstrated how participants in their study 

succeeded in reasoning multivariationally when manipulating digital representations of three 

simulations.  

Concrete: Wilkie and Hopkins’ study demonstrated how physical representations, vertical 

towers of blocks in this case, can support a robust relational understanding of equivalence that 

facilitates compensation approaches to subtraction. Ji’s study also aimed to explore the role of 

physical movement, using the concrete and digital pan balance, in children’s understanding of 

equivalence. 

Real-world: Real-world representations are shown in the research of Moreno and Adamuz-

Povedano et al. to support children in navigating the structure of functional relationships. 

Besides a focus on multiple representations, the contributions also touched upon several areas 

related to early algebra. These include the equal sign and equations, generalized arithmetic 

thinking, teacher education, communication of thinking, sustainability, and embodied 

cognition. 



 

The equal sign and equations 

Sun et al. focused on Chinese grade 5 students’ understanding of equal sign and found that the 

majority of the students showed a relational understanding of the equal sign. They hypothesized 

that exposure to simple nonconventional forms of equation (e.g., 5 = x - 2) and balance models 

might have helped students with the relational understanding of the equal sign. Similarly, Ji 

focused on how Chinese students conceptualized the equal sign and equations in a classroom 

activity using the pan-balance model. Ohta’s study included a focus on developing an 

assessment task about part-whole relationships for lower elementary grades in Japan. 

Generalized arithmetic 

Wilkie and Hopkins’ study focused on 9-11-year-old students’, Timothy’s in this paper, 

relational thinking about the compensation property of equality with subtraction tasks, using 

vertical towers of blocks.  

Functional thinking 

Similar to generalised arithmetic, research consistently highlighted the challenges of 

abstraction, and typical errors or misconceptions that stymied children’s functional thinking. 

Balancing such research, Lourdes Anglada et al. described very young children’s successful 

functional thinking as they move between physical and iconic representations using tables. 

Gibbs focused on 10 to 12 years old Māori and Pacific students’ development of functional 

thinking using culturally located tasks. Panorkou and Provost focused on sixth-grade students’ 

multivariational reasoning using digital simulations. Moreno described 10-11 years old 

students’ generalization of functional relationships using graphs of contextualized tasks. 

Adamuz-Povedano et al. similarly focused on 9-10 years old students’ generalization of 

functional relationships in interactive groups. 

Teacher education 

Pinto et al. presented research from their work with pre-service teachers in Chile using the 

framework of professional noticing of children’s mathematical thinking, where they 

acknowledged the need for more focus on teacher education. For example, their research 

highlighted the role played by pre-service teachers’ understandings in their decisions about 

how to respond to children’s thinking and is thus well placed to inform teacher education in 

the domain of early algebra. 

Communication of thinking 

Araya’s research, focusing on the case study of Daniel, a third-grade Haitian student, and a 

second-language learner, raised very important questions about how we assess children’s 

development of algebraic thinking, specifically functional thinking, and the implications of 

children’s capacity to communicate in the language of the classroom. 



Sustainability 

Fred et al. explored the connection between early algebra and sustainability issues through 

dilemmas that were aimed to be naturally embedded in algebraic wicked problems (AWPs). A 

team of pre-and in-service teachers and researchers met over ten sessions and developed such 

problems. Drawing from observations of enactment and group meetings centred around 

Algebraic Word Problems (AWPs), the researchers posited that dilemmas, coupled with the 

teacher's questions, were pivotal in enhancing algebraic thinking and integrating environmental 

topics in students' work. This suggests a promising approach to intertwining sustainability 

aspects with early algebra education by employing dilemmas in AWPs. 

Embodied cognition 

Ji’s study aims to explore the role of physical movement in children’s understanding of 

equivalence. Araya’s study focused on gesture as a form of communication, but also 

demonstrates a child, Daniel, enacting the structure of the pattern through his gestures.  

Areas for further investigation in future TSGs in this area: 

The overarching recommendation from presenters and attendees was for the need for more 

research on teachers and teacher education in the area of early algebra. Research presented at 

TSG 1.2 of ICME 15 was dominated by a focus on children’s thinking. All attendees 

acknowledged the centrality of such research but emphasised the need for evidence-informed 

interventions that could result in high-quality teacher in-service and pre-service education in 

early algebra. 

Over the final two days of ICME 15, the co-chairs gathered feedback and talking points from 

the attendees through the use of a padlet. Through the padlet, one attendee also emphasised the 

focus on cultural context and diversity as “... it is necessary to develop research beyond the 

typical mathematics classroom; the importance of cultural contexts and diversities that make 

the development of algebraic thinking in the algebra class a fairer and more equitable space.” 

CONCLUSION 

Having engaged with the papers presented in this proceeding, and the presentations made at 

ICME 15, we see great merit in drawing attention to the role of representations in 

communicating algebraic thinking. In referring to communicating, we are referring to both the 

representations used by the teacher to allow children to explore structure through resources that 

mediate the abstract and facilitate dynamic interactions, and also the means of communication 

that are available to the children. Central to investigation of these representations is the role of 

the cultural context of the children and the maximisation of accessibility and removal of 

barriers – are these contexts ‘real’ from the children’s perspective, do they resonate, do they 

make the children feel that this mathematics is for them or of relevance to their community? 

An intrinsic priority of early algebra is in downplaying the role of algebra as ‘gatekeeper’ and 

attention should therefore be paid on how representations may maximise accessibility. 

Also, the contributions were from several areas related to early algebra including equals sign 

and equations, generalized arithmetic, functional thinking, teacher education, communication 



of thinking, sustainability, and embodied cognition from various countries and cultures. This 

shows the promise of early algebra studies to help students and teachers of various backgrounds 

to develop algebraic thinking using multiple tools and in relation to many aspects. 
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FIVE-YEAR-OLDS EXPRESSING RELATIONSHIPS WHILE WORKING 

WITH A FUNCTION MACHINE: APPROACHES TO THE USE OF 

FUNCTION TABLES 

M. Lourdes Anglada1, Eder Pinto2, María C. Cañadas3 and Sandra Fuentes3 
1University Center María Inmaculada. Antequera, Spain; 2Universidad de O’Higgins, Chile; 

3University of Granada, Spain 

This study describes the work with 5-years-old children on a problem involving a function machine. 

Our objectives were: (a) to describe the written representations used by children to organize the 

relationships between covarying quantities; and (b) to compare the characteristics of these 

representations with conventional function tables. We focused on the third session of a Classroom 

Teaching Experiment (CTE) as that is where children represented the perceived relationship using an 

open format. Broadly speaking, results show that, whereas most of the children represented the 

relationships pictorially, they did not connect them with the elements involved in the function machine. 

However, seven children showed evidence of relationships between variables with different levels of 

sophistication. Some of them used tables with specific characteristics, which are detailed below. We 

conclude with some of the implications of introducing function tables at this age as a way to support 

algebraic thinking. 

In spite of the recognized importance of algebraic thinking on the international research agenda, there 

are more studies focusing on primary education (ages 6-12) and secondary education (ages 13-16) 

(Sibgatullin et al., 2022). The few studies which address algebraic topics in preschool (ages 3-6) look 

primarily at the work with patterns (Pincheira et al., 2022). Therefore, it is necessary to find out how 

children interact with different contents that promote algebraic thinking at these ages. 

This study looks at representations of algebraic ideas; one of the essential practices which Blanton et 

al. (2011) considered for the work on algebraic thinking in the classroom. From the various approaches 

to algebraic thinking, we focused on the functional approach, which implies “the construction, 

description, representation and reasoning with and about functions and the elements they are 

comprised of” (Cañadas & Molina, 2016, p. 212). When working with functions, children can represent 

the relationship between variables in different ways. Given the characteristics of the task proposed -

with paper and pencil-, children basically used pictorial and tabular representations. We were 

interested in addressing tabular representation as it has not been explored much at these levels. 

In this study, we set two research objectives: (a) to describe the written representations used by 5-year-

old children to organize the relationships between covarying quantities; and (b) to compare the 

characteristics of these representations with conventional tables. 

REPRESENTATIONS 

Among the representations used by children when working with problems involving functions, are: (a) 

natural-oral language; (b) natural-written language; (c) pictorial; (d) numerical; (e) tabular, and (f) 

algebraic notation (Carraher et al., 2008). Regarding tables, they can be considered graphic 

organizations where information is arranged on a double axis ordering and systematizing interrelated 
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data (Campbell-Kelly et al., 2003). Function tables are those which help represent the relationship 

between two covarying quantities. In a function table there are several distinct characteristics: (a) 

arrangement of values in rows and columns, following an order such that the independent variable 

values are on the right and the dependent variable ones on the left (Martí et al., 2010); (b) heading of 

the columns indicating which variable each one refers to (Brizuela et al., 2021), and (c) separation, 

with a line or another element, of the independent and dependent variable values (Estrella, 2014). 

Several authors have emphasized the importance of studying how children interact with tables as these 

are tools that support early development of functional thinking (Brizuela et al., 2021; Estrella, 2014). 

Prior research evidenced that children aged 5-6 used tables to solve problems involving linear 

functions (Anglada et al., in press; Brizuela et al., 2021). 

METHOD 

This study is part of a CTE implemented in a class of 24 children, aged five, in Spain. They had not 

previously worked on tasks involving relationships between variables or tables. This allowed us to 

observe how they spontaneously approached the building of tables. The CTE comprised four sessions; 

this paper focuses on the third one. We chose this session because there, after working with a function 

machine (Figure 1a) involving the function f(n)=n+2, they were given for the first time a blank sheet 

of paper to freely represent what they had done during the session. Students observed how the machine 

worked through several examples, and they had to discover the general rule. We used a table (Figure 

1b), representing the numbers with material inspired by the cards of Herbinière Lebert. 

 

Figure 1: Function machine (a) and manipulative table introduced (b) 

At the end of the session, we asked them to explain what we had done. For this, they were given a 

blank page and a marker. The goal was for them to represent the relationship between the variables. 

We analyzed the written productions of the children considering two analysis categories based on our 

conceptual framework. On the one hand, we considered the category representation of relationships 

between variables, distinguishing between: (a) evidence explaining the relationships between variables 

for only one particular case; (b) for various particular cases; or (c) no evidence of relationship; and on 

the other hand, the category characteristics of tables, identifying whether: (a) they followed the order 

of the variables; (b) they used headings; and (c) they separated the variables in any way. 

RESULTS 

Out of the 24 productions analyzed, we identified pictorial representations in 17 of them. Specifically, 

representations which illustrate diverse aspects not related to the function machine covered in this 
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session, nor did we see evidence of the relationships between the variables involved. In the remaining 

7 children, we did identify relationships between variables. These productions are shown in Figure 2. 

 

Figure 2: Children’s written productions 

Regarding the representation of relationships between variables, we identified evidence of a 

representation of the relationships between variables for a single particular case (see Figure 2, in (a), 

(b), (c) and (d)) in the answers of four children. For example, in “a”, they drew a stone going into the 

machine, they indicated the machine added 2 and they drew three stones coming out. In addition, the 

pairs of values represented are correct except for “b”, although we noticed the number of stones coming 

out is higher than the one going in. In three of these representations, “e”, “f” and “g”, we can see more 

than one pair of values. For example, in “f” the child represented pairs of values in rows: two stones 

went in and four came out; one went in and three came out; and five went in and seven came out. 

Looking at the characteristics of the conventional tables, we found that in the children’s productions, 

no child used anything equivalent to a heading. Except for “a”, they all kept the order of entering from 

the left and exiting from the right. They all somehow separated the quantities corresponding to each 

variable, except for “e”. In this case, they did leave space between the two cases represented, as well 

as distributing them in rows. In “f” and “g” they drew the divisions in columns and rows. In both cases, 

they built function tables that make sense and show their logic, adequately organizing and representing 

the relationship between the variables. They separated the values both vertically and horizontally and 

respected the order when placing values in columns. 

DISCUSSION AND CONCLUSIONS 

Regarding the first objective of the study, 7 of the 24 participating children evidenced representations 

which related variables, both for a particular case and for several. These results match those in the 

paper by Anglada et al. (in press), who conducted a similar study with another class of 24 children and 

a different task. 

 As for the second objective, the written productions of children highlighted the spontaneous manner 

in which they represented the relationship between the covarying quantities. The fact that none of them 

put a heading on the table columns differs from findings in other studies involving children of the same 

age group (e.g., Brizuela et al., 2021). This could be a result of the manipulative process when 
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interacting with the function machine and the table on an adhesive board where it was clear which 

order the variables had to be placed in. 

In line with Brizuela et al. (2021), the open format to build tables (we gave them a blank sheet of 

paper), has helped delve into how 5-years-old children relate covarying variables. This study 

contributes to the knowledge on the process for building function tables by children. We have shown 

a practical example of how to use function tables with manipulative material before moving on to 

paper representation. 
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GENERALISATION IN INTERACTIVE GROUPS. AN EXPERIENCE 

WITHIN A FUNCTIONAL CONTEXT IN EARLY ALGEBRA 

Natividad Adamuz-Povedano1, María D. Torres1, Elvira Fernández-Ahumada1 and Mercedes Cerero2 
1University of Cordoba, 2University of Granada 

In this study, we analyze the generalization process carried out by 9- and 10-year-old students working 

on two linear function tasks in interactive groups (IG). Among the findings, we observe that students 

show different structures for the same function and generalize in three different ways: algebraically, 

arithmetically and incipiently. In addition, we observed that the work with IG favors argumentation 

and explanation by the students, facilitating the attainment of generality. 

INTRODUCTION 

In the last twenty years, algebraic content has been promoted in the Primary Education stage, not only 

in the field of Mathematics Education research, but also in the curricula of various countries. This 

initiative is included in the so-called Early-Algebra current, with the aim of promoting the development 

of algebraic thinking from the first levels of schooling (Pincheira & Alsina, 2021). Algebraic thinking 

is concerned with ways of thinking that go beyond algebraic or alpha-numeric expressions (Kieran, 

2011). Its basic components are generalization, representation, justification and reasoning (Blanton et 

al., 2021). This translates into an organization of school algebra from different approaches, which can 

be grouped as follows: patterns, functions and generalized arithmetic. We focus here on the functional 

approach. This approach to early algebra addresses inter-variable relationships in functions for which 

the study of structures and their generalization is essential (Blanton, 2008). When we speak of 

generalization, we think of the ability to recognize generality beyond particular cases and their 

representation. Structures are the regularities in the inter-variable relationships present in a function 

and can be observed when working with both specific cases of functions and their generalization 

(Torres et al., 2021). From that perspective, generalizing consists in establishing the general structure 

between covarying quantities. 

In the scientific literature, there exist different works focused on the analysis of the basic components 

of functional thinking, although most of them are based on individual children's activities (Radford, 

2003). Therefore, we consider it necessary to go deeper into the analysis of these processes when 

students interact with each other. For this purpose, the activities designed were developed within 

interactive groups (IG). IGs are dialogical learning environments in which students of heterogeneous 

abilities participate, facilitated by an adult who does not necessarily have to be a teacher. The 

characteristic of IGs is that dialogic learning emerges as a result of egalitarian dialogue. Research tells 

us that the results obtained with the implementation of IG are beneficial both academically and socially 

(García-Carrión et al., 2020; Villardón-Gallego et al., 2018).The aim of this paper is to analyze the 

generalization process that emerges when children are confronted with a task focused on the functional 

approach within an IG. In the process of generalization, the following questions arise: Do the students 

see the structure of the function involved? Do they manage to generalize it? If so, how do they express 

the generalization? Do IGs foster functional thinking? 
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METHOD 

This qualitative, exploratory and descriptive study consisted of a classroom teaching experiment within 

the research-design paradigm (Bakker, 2019). Four sessions were conducted with IGs, consisting of 

3-4 children aged 9-10 years, and lasting 20 minutes. For each IG, a questionnaire was applied with 

questions starting from particular cases, followed by distant and/or indeterminate cases and leading to 

generalization. The context used in the questionnaire was a ball machine in which balls go in and out 

following two different functions: f(x)= x+2 and f(x)= 2x. The task statement was: "A mystery box 

has arrived at the school. It changes the number of balls you put inside. Your task is to find out what 

change the machine makes. Look at what the following machine does and answer the questions". 

Before moving on to the questionnaire, some particular cases were presented for the students to identify 

the structure involved between the variables of the task, see figure 1. 

 

Figure 1. Example of the particular cases given for the function f(x)= x+2 

The questions in this phase were of the following type: how many balls would come out if the machine 

input 10 balls? and if 100 balls come in? Explain your reasoning. After working with the particular 

cases, the adult volunteer asked the following question for the general case: What is the machine 

doing? In figure 2, an example of a task included in the questionnaire is presented where different 

particular cases and others referring to indeterminate quantities (some balls) appear.  

 

Figure 2. Example of a task from the questionnaire applied for f(x)= x+2 

Children's verbal responses in the IG were analyzed in terms of two components of functional thinking 

during the generalization process: a) structures evidenced and b) types of generalization. 

RESULTS AND DISCUSSION 

Two distinct phases can be distinguished within the IGs and in the generalization process carried out: 
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a) Phase 1. Students give their individual views on how the machine works. This is a preliminary phase 

in which students observe the first examples of particular close cases and express their first ideas. Here 

the students stay in a trial-and-error phase, experiment and count on their fingers to express a 

conclusion about what the machine does.  

b) Phase 2. This phase is where the interactions in the group take place and the work with different 

distant and/or indeterminate cases takes place. Once they have made their first conjectures, they check 

them on the basis of what the other members of the group say. We see this in the following excerpt, 

an example of working with the function f(x)= x+2: 

Volunteer (V):  ok, let's suppose that "¿" balls come in, how many would come out? 

E1:  can I put 8? 

V:  and if I tell you that it doesn't have to be 8, it can be any number, how do you do it? 

E8:  or it can be 5 or 10. 

V:  could you pass this relation (pointing to the paper, referring to "?+2"). 

E8:  I think so, what happens is that it could be 4 and come out 4+2. 

E10:  No, I don't think so. Because if you don't know what he has put in the machine and this 

("?+2") has come out, it would always be the same, so no. 

E1:  Yes, but "¿" is any value, I think it could be. 

With these differentiated phases, the structures evidenced by the students throughout the process 

towards generalization and the expressions they use to generalize within the IGs were analyzed. 

Structures evidenced during the generalisation process and expression of generalisation 

Different structures were evidenced for the function f(x)=x+2 when working with the particular cases. 

The structures identified were of three different forms (y=x+2, y=2x (incorrect for the context) and 

y=x+1+1), see table 1. For the function f(x)= 2x the structures evidenced were y=2x and y=x+x. Some 

of these structures were generalized throughout the process. Note that symbolic notation was used to 

represent the structures evidenced by the students although they expressed them in verbal 

representation. 

Table 1. Structures and generalizations identified. 

Function Structure Verbal representation of generalizations Type of generalization 

F(x)=x+2 y=x+2 The machine always produces two more balls Algebraic 

 y=2x  The machine is multiplying, 2 plus 2 is 4. From individual cases 

  y=x+1+1 The machine is adding. If I add 1 to 8, it would 

be 9 and if I add 1 to 9, it would be 10. 

From particular cases 

F(x)= 2x y =2x The machine produces more balls. It will 

multiply. 

Incipient 

 y=x+x 

 

You add 1 to 1 and you get 2, you add 2 to 2 

and you get 4 and so on... I've added it up. 

Adding the same number 

Algebraic 
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With respect to the structure y=2x, which was shown to be erroneous in the work with the function y= 

x+2, it happens that the two functions used in the study give the same output if the input to the machine 

were two balls. This is a fact to be taken into account in the data collection. 

As far as generalization is concerned, it occurs in different ways depending on the degree of 

sophistication of the answers. We find: a) algebraic generalizations supported by temporal deictic 

(always and so) which indicate the abstraction of the regularity and an awareness of the structure 

involved; b) incipient generalizations when the pupils describe the structure by mentioning only the 

arithmetical operation or express the relation without mentioning the variables and c) arithmetical 

generalizations sustained from examples of particular cases worked on. 

CONCLUSION 

It is concluded that in phase 1, the students do not take into account the interventions of the other 

members of the group; a trial-and-error phase takes place where individual reasoning takes place in 

which the first conjectures about the implicit structure are formulated. In other words, the first 

relationships become evident. In phase 2, some of the groups agree on their answers by means of 

explanations and arguments. In the interaction with the arguments, the students can corroborate or 

refute the previous conjectures (phase 1) they had obtained and can reach the generalization of the 

structure. The generalizations observed in the IGs have been algebraic, arithmetic and incipient. The 

methodological design and group work is encouraging ways of representing indeterminacy through 

the application of symbolic indeterminate terms (example: "¿+2", in symbolic form) and ways of 

arguing or explaining new relationships or regularities between two covariant quantities. 
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ALGEBRAIC THINKING AND LEARNER`S SECOND LANGUAGE 

STUDENTS: IMPORTANCE OF THE ANALYSIS OF GESTURES 

Paulina Araya 

Universidad de Chile/ Universidad Diego Portales 

Numerous studies have explored the significance of gestures in students' algebraic thinking. In this 

article, we propose that examining the gestural repertoire becomes particularly pertinent when 

scrutinizing the algebraic thinking of second language learners. To illustrate this perspective, we 

present the case of Daniel, a third-grade Haitian student enrolled in a Chilean school where a teaching 

experiment took place. Following the experiment, we administered a written assessment and conducted 

an interview to assess Daniel's algebraic thinking. By analyzing a semiotic repertoire inclusive of 

gestures, we discovered that Daniel demonstrated algebraic thinking, contrary to our initial inference 

drawn from the written test. These findings underscore the importance of considering the interplay of 

diverse semiotic resources when evaluating the mathematical development of second language 

learners. 

INTRODUCTION 

Gestures play a relevant role in communication and learning, as they often convey information not 

present in the speaker's discourse and can reveal implicit knowledge (Novack & Goldin-Meadow, 

2015). Likewise, from a multimodal perspective of cognition, gestures are an integral part of the set of 

semiotic resources that students mobilize when learning and communicating mathematical concepts 

(e.g., Arzarello, 2006; Radford, 2009; Ng, 2016). In this sense, gestures can be understood not only as 

a communicative element that allows ideas to be expressed, but also as a way of organizing thought in 

the problem-solving process (Kita, 2000). Specifically, in the development of algebraic thinking, 

gestures, in coordination with other semiotic means, are a key aspect in the early stages of forming 

concepts such as variability, before such concepts can be communicated in culturally more 

conventional formats, such as symbolic notation (Radford, 2009; 2018). 

On the other hand, literature specializing in second language acquisition has emphasized the 

importance of non-linguistic forms of communication. These students, who often possess a limited 

vocabulary, rely more heavily on gestures as a means of supporting discourse (Ng, 2016). 

Simultaneously, second language speakers employ gestures as a self-organized form of mediation; that 

is, gestures coordinate thought and expression in a second language (McCafferty, 2004). The challenge 

of learning mathematics while attempting to master a second language may contribute to explaining 

why second-language learners often achieve poor results in mathematics, particularly in the case of 

learning algebra (Morton & Riegle-Crumb, 2019). 

Despite the connection between these topics, the manner in which the use of gestures in algebraic 

thinking could contribute to understanding mathematical ideas in bilingual students has been sparsely 

investigated. In this research, we address this topic by analyzing the algebraic thinking of Daniel, a 

Haitian student enrolled in the third grade in Chile. Specifically, we examined his performance at the 

end of a 6-session intervention, during which students in his class learned to generalize patterns. We 

administered a written test to assess the students' learning outcomes. To better understand their ideas, 
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we conducted a filmed interview where they explained the meaning of their written responses. Daniel's 

case was particularly noteworthy, as unlike his Spanish-speaking peers, we observed significant 

differences between his performance in the interview and on the test. Considering this context, this 

study aimed to delve into these inconsistencies. To do so, we analyzed the test and the interview video 

to determine how written, spoken, and gestural registers contribute to identifying the algebraic thinking 

of a second-language learner student. 

Algebraic thinking 

According to Radford (2018) algebraic thinking is defined by three fundamental aspects: a) it relies on 

indeterminate quantities, b) these indeterminate quantities are manipulated in an analytical manner, 

meaning they are operated on as if they were known, and c) they are represented using various semiotic 

resources. These resources include alphanumeric language, but also less sophisticated ones like 

gestures. Radford (2018) termed the stage where students identify key aspects of the sequence and 

apply them to specific numeric terms as factual. During this stage students use semiotic resources such 

as rhythm and gestures to communicate variable and non-variable aspects of the sequence, which they 

perceive but are not fully able to verbalize. In the second stage, referred to as contextual, students can 

verbalize the generalization, explicitly referring to indeterminates quantities. It means, students can 

answer questions that require them to explain how they found the number of elements corresponding 

to any figure in the sequence. Finally, at the symbolic level, these resources are replaced by more 

sophisticated and precise semiotic systems like alphanumeric language.  

Therefore, an important aspect when analyzing students' algebraic thinking is to identify whether they 

are capable of working analytically with indeterminate quantities, taking into account the semiotic 

means they mobilize. In this study, we focus on the factual and contextual stage, considering the way 

of mobilizing bodies, including gestures and calculations, such as written or spoken natural language. 

METHODOLOGICAL DESIGN 

A single case study was conducted. In this study, we focused on Daniel, a third-grade student from 

Haiti enrolled within a Chilean school. Like many Haitian children in Chile, he attends a school serving 

a low-income population and received a low score on the State mathematics test (Gelber et al., 2021). 

Haitian Creole is spoken in his household, and both he and his family have limited proficiency in 

Spanish. Daniel's class participated in a six-week intervention. The goal of the intervention was to 

offer the opportunity to address various contextualized problems whose variables were related to linear 

functions. The students generalized the observed relationships, applying them to different terms in the 

sequence, and described these relationships in natural language and through variable notation. At the 

end of the intervention, a written test was administered based on the problem shown in Figure 1.  
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Figure 1: Problem used in the test 

The test comprised eight questions, including calculating the dependent variable for small and large 

quantities, organizing data in tables, and explaining the generalized rule using both natural and 

symbolic language. In this study, we focus solely on two of the questions:  

1. How many guests can sit if 204 tables are set?  

2. Describe how many guests can sit for any number of tables.  

Students answered all the items on the test individually and without assistance. Additionally, the day 

after the test, students were interviewed and filmed to delve deeper into the reasoning they employed 

when responding. The objective of these interviews was to establish whether the conclusions derived 

from the written responses aligned with the reasoning the students claimed to have had. To achieve 

this, we provided each student with their written test and asked them: How did you arrive at your 

answer? 

Two different analyses were conducted. The first analysis exclusively involved the test, relying solely 

on written records. The second analysis was performed by considering the interview video, employing 

a semiotic analysis of multimodal activity (Radford & Sabena, 2015). In this context, we took into 

account spoken and written language, diagrams or drawings, calculations, gestures, and any actions 

undertaken by the students when explaining their responses. We applied the same categories for both 

analyses. For question A, we observed whether the response suggested that the students had identified 

the correct structure of the task and can be applied to term 204. In other words, we assessed if the 

answer revealed the structure y=2x+2 (or an equivalent, such as y=x+x+2), regardless of whether they 

arrived at the correct answer, or if they identified part of the structure (e.g., y=2x). For question B, we 

examined whether the students described a generalized rule, it means, without referring to specific 

terms that would allow obtaining the quantity of guests for any number of tables.  

RESULTS 

Written responses analysis 

Upon reviewing Daniel's test, we found that he did not answer the first question correctly (Figure 2A). 

In his response, it can be inferred that he dismissed several calculations, for which he likely used 

operations like 204x2 and 204+2, ultimately arriving at the incorrect answer of 500. However, it is not 

clear which operations he performed to arrive at this result. From the above, we infer that Daniel did 

not apply the operational structure to a remote case. To address the second question (Figure 2B), he 

included only one numerical example, demonstrating some understanding of the operations. However, 

he did not describe the relationship between variables in general terms. 



Paulina Araya 

Page 12 

 

Figure 2: Daniel's answers to questions 1(A) and 2(B) 

Semiotic multimodal analysis 

During the interview, we asked him how he had arrived at his answer. In the following dialogue, he 

explained how he answered the first question: 

Daniel: I made a mistake, it was very difficult. I first wrote 406, and then 206, and then 408, but I 

was about to put another 400…and I can’t remember what number, but I then took it away 

and saw that it was 500 

Researcher:  Ok, but what did you do to obtain 500? 

Daniel:  (Thinking silently for 5 seconds) Ah! because like that under the table, and when I was left 

with 800, I added 2 and was left with 500. 

When Daniel said the last sentence (which doesn't make sense in Spanish), he moved his hand 

horizontally twice from left to right, indicating the row of tables (Figure 3A to 3D). When he said 

"two," he placed his hands on each side (Figure 3E). 

 

Figure 3: Daniel's gestures when he responds 

In this fragment, it can be seen that Daniel physically enacts the description of the key elements of the 

situation: he passes through the row of tables twice and indicates “two” with both his words and hands. 

Indeed, for any term in the sequence, the problem is solved by considering the number of tables twice 

and adding two. Daniel encounters difficulties both in performing the involved calculations and in 

verbalizing the procedures he performed. In fact, the first part of the structure (adding the rows twice) 

is expressed in his gestures rather than in his speech. That is to say, there is no observed coordination 

between speech and gestures in this part. Therefore, in this part of the interview, paying attention to 

his gestures is crucial to interpret that Daniel can identify the key elements of the situation. 

Subsequently, we asked to explain in more detail what he had added. He responded, “200 + 200, 400, 

and 4 + 4 + 2, is…well…it makes…more, and you added to the 400 to make 500”. When he said this 

sentence, Daniel leaned forward and hid his hands under the table. Here, Daniel has managed to explain 

his calculations better, using the Spanish language. Daniel added 200 + 200 (i.e., the hundreds of 

204+204), and then added only the units 4 plus 4, plus 2 from the sides. It is probably when he added 

2 to 8, instead of increasing the tens, he increased the hundred and reached 500. This, added to his 

previous gestures, confirmed our assumption that he had indeed identified the structure despite his 

errors in calculation. The calculations he performs for term 204, although arithmetically incorrect, 

show that he perceived the sequence and could apply it to any remote specific term. It is curious that 
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when articulating this sentence, he hid his hands. Possibly, the gestures previously made allowed him 

to organize his thoughts, so now he could articulate a spoken sentence without gesturing. 

Subsequently, we asked him how he had arrived at his answer for the second question. He pointed out 

that he thought it had to be solved by putting down symbols, so we posed the question to him again. 

Daniel responded: 

Daniel: Add to what is above and what is below and what is on the side. 

Researcher:  And how much is above, below, and on the side? 

Daniel:  The one above and the one below are the same, the one next to them are only ones. 

Researcher: And those numbers that are the same, what do they correspond to? To the number of guests 

or tables? 

Daniel: Of guests... of tables... because if there are 44 tables, there are 44 guests above and below 

too, but on the sides there are not 44, there is only 1. 

In this video fragment, he no longer moves his hands and expresses more clearly what he has managed 

to identify in the problem: the constant "on the sides there are not 44, there is only 1," and what changes 

"the one above and the one below are the same." It is evident that he understands the structure of the 

sequence and can apply it to any term. Even though he has not yet been able to express it in symbolic 

language, it can be inferred that Daniel shows factual algebraic thinking, as an understanding of 

variability can be perceived in the actions he performs. He is beginning to acquire the contextual level, 

as he has started to describe the relationships in a generalized manner, although he is still resorting to 

the use of specific numbers to exemplify them. 

Our conclusions drawn from the written exam and the broader semiotic repertoire, which included 

gestures and spoken language, were notably different. Only when considering gestures and spoken 

language could we truly understand what Daniel had learned throughout the intervention. 

DISCUSSION 

While the importance of gestures in the analysis of algebraic thinking has been widely discussed 

(Radford, 2009; 2018), how this manifests in students who do not possess language proficiency equal 

to their peers has been scarcely examined. The case presented in this research serves to illustrate that 

including gestures in the analysis of algebraic thinking is especially relevant when students have 

limited command of a central semiotic resource, such as language. Although Daniel could 

communicate and understand most ideas in Spanish, he was naturally less fluent than native speakers. 

While answering the first question, he made clear gestures that denoted an understanding of the 

structure of the sequence, although his verbal repertoire was incomprehensible. Therefore, the 

coordination between both registers in this part was less evident, unlike what has been observed in the 

case of native speakers, where the different semiotic means are usually coordinated (Radford, 2018). 

In a second attempt to explain his procedures, Daniel was able to better articulate a spoken explanation 

of his calculations. It is possible that the gestures previously made allowed him to organize his thoughts 

to perform the demanding task of expressing his ideas more clearly in Spanish. A finding that seems 

to be in tune with what is suggested by McCafferty (2004). Finally, in the second question, he seemed 

to better explain an answer for the indeterminate case, restricting the use of gestural communication. 

Surely Daniel's level of mastery of Spanish, although limited, allowed him to move from gestural to 

spoken register. This constriction of semiotic resources may be similar to what is described by Radford 

(2018) for first-language speakers. 
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In addition to facing linguistic difficulties, Daniel also had significant arithmetic challenges. These 

difficulties resulted in his poor performance on the test. This aligns with the observed low performance 

in mathematics and other disciplines of in the population of Haitian students in Chile (Gelber et al., 

2021). If we had solely relied on written responses, Daniel’s mastery of skills that can be considered 

tangential to algebraic thinking, like calculation and proficiency in Spanish, might initially have 

suggested a lack of competence in the test tasks. From an evaluative standpoint, differentiating the 

attribute being assessed, in this case, the ability to analytically approach a sequence, from other non-

central skills is an important aspect when assessing for pedagogical or academic purposes (AERA, 

APA & NCME, 2014). This provides students with the opportunity to demonstrate what they have 

learned more fairly and accurately. Considering a broad semiotic repertoire could benefit second-

language learners, providing them with the chance to showcase their algebraic knowledge. 

A limitation of this study was that, in order to delve into details, we focused solely on Daniel's 

performance in two of the questions comprising the final test. An analysis of how he approached the 

remaining questions on the test could help to understand his overall performance more 

comprehensively. Similarly, comprehending the way he mobilized various semiotic resources 

throughout the entire intervention could further characterize his learning process. Delving deeper into 

this topic, from a semiotic perspective, could contribute to understanding the development of learning 

in second-language learners. 

 Acknowledgments  

We thank ANID for funding the Fondecyt Postdoctoral project No. 3220465, the basal fund FB210005, 

the Millennium Nucleus for the Development of Early Mathematical Skills, MEMAT. 

References 

AERA, APA, & NCME (2014). Standards for educational & psychological testing. Washington, DC: 

American Educational Research Association.  

Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en 

Matemática Educativa RELIME, 9(1), 267-299. 

Gelber, D., Reyes, N. Á., Espinosa, M. J., Escribano, R., Miralles, J. F., & Castillo, C. (2021). Mitos y 

realidades sobre la inclusión de migrantes en aulas chilenas: el caso de la escritura. Education Policy 

Analysis Archives, 29, 74-74. 

Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language, culture and 

cognition 2. Language and gesture. Cambridge University Press. 

McCafferty, S. G. (2004). Space for cognition: Gesture and second language learning. International Journal of 

Applied Linguistics, 14(1), 148-165. 

Morton, K., & Riegle-Crumb, C. (2019). Who gets in? Examining inequality in eighth-grade algebra. Journal 

for Research in Mathematics Education, 50(5), 529-554. 

https://doi.org/10.5951/jresematheduc.50.5.0529 

Ng, OL. (2016). The interplay between language, gestures, dragging and diagrams in bilingual learners’ 

mathematical communications. Educational Studies in Mathematics 91, 307–326. 

https://doi.org/10.1007/s10649-015-9652-9 

Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: How our hands change our minds. 

Educational Psychology Review, 27, 405–412. https://doi.org/10.1007/s10648-015-9325-3 

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical 

meanings. Educational Studies in Mathematics, 70, 111-126. https://doi.org/10.1007/s10649-008-

9127-3 

https://doi.org/10.5951/jresematheduc.50.5.0529
https://doi.org/10.5951/jresematheduc.50.5.0529
https://doi.org/10.5951/jresematheduc.50.5.0529
https://doi.org/10.1007/s10649-015-9652-9


Proceedings from ICME 15, Topic Study Group 1.2: Teaching and learning of early algebra.  

2024 / Aisling Twohill, Işıl Işler Baykal, Jodie Miller, Eric Knuth, Alessandro Ribeiro (Editors) 

Page 15 

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), 

Teaching and learning algebraic thinking with 5- to 12-year-olds. ICME-13 Monographs. Springer 

Cham. https://doi.org/10.1007/978-3-319-68351-5_1 

https://doi.org/10.1007/978-3-319-68351-5_1


Jenny Fred, Hendrik Van Steenbrugge and Paola Valero  

Page 16 

CONNECTING EARLY ALGEBRA AND SUSTAINABILITY THROUGH 

DILEMMAS IN ALGEBRAIC WICKED PROBLEMS 

Jenny Fred, Hendrik Van Steenbrugge and Paola Valero  

Stockholm University, Sweden 

Early algebraic thinking can be connected in significant ways to sustainability issues through 

algebraic wicked problems (AWP). AWP are problems that mobilize children to think algebraically 

while experiencing dilemmas on values at stake in sustainability. Both algebraic thinking and 

sustainability issues become inseparably connected. From an ongoing analysis of 10 research group 

meetings over a school year in a group consisting of teachers, pre-service teachers, and researchers, 

and based on observed lessons, we explore such dilemmas as a central characteristic of AWP. This 

provides details into what may be important aspects in the further design of AWPs. 

INTRODUCTION 

As society gets more complex and even young children are confronted with the challenges of 

sustainability and climate change, it becomes necessary to make explicit connections between 

mathematics teaching and learning, such as the development of early algebraic thinking, and the ways 

in which such early algebra plays a role in preparing children to address current societal and 

environmental difficult situations. Barwell et al. (2022) highlight how the current sustainability crises 

— in environmental, social, and economic terms — do not get enough attention in mathematics 

education. Solares-Rojas et al. (2022, p. 204) argue that young generations need to “build tools, 

options, and paths to prepare /…/ to confront” these issues, and that educational strategies need to be 

developed to prepare pupils to face these issues. In this line of thinking, the concern of mathematics 

education for “the socio-ecological” (e.g., Coles, 2023) cannot be limited to the use of data concerning 

sustainability, climate change or real-world ‘environmental impact’ as a context in the teaching of 

mathematics (e.g., Boylan & Coles, 2018). Pupils also need to be challenged to go “behind the data”, 

and in reflective dialogue discuss possible underlying structures/values of the data (Barwell, 2013). 

The current predicaments of sustainability invite us to push the boundaries of the significance of 

mathematics education for new forms of critical citizenship. 

In our current research work, we particularize these challenges to early algebra. Our previous review 

of early-algebra research pointed to the dominance of studies that justify the need to develop early 

algebraic thinking in terms of their contribution to the logical and cognitive development of pupils 

(Fred et al., 2022). It also showed a lack of studies about early algebra in connection to cultural and 

societal issues such as sustainability. In an attempt to tackle such shortcoming, we have explored the 

possibilities of working toward early algebra teaching and learning that takes the challenges of 

sustainability as previously described (Fred et al., 2023a).  

For this purpose, Jenny Fred built a research team consisting of four grade 1-3 teachers, four pre- 

service teachers, and three researchers (the three authors of this paper). We collaborated (Fred et al., 

2023b) on the process of inventing, designing, planning, and reflecting on a new type of problem for 

early algebraic activity: Algebraic Wicked Problems (AWPs). The collaboration around the AWP took 
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place during one school year, during which 10 research group meetings were closely documented and 

studied. 

In our explorative work of creating both the notion of AWP and formulating concrete examples, we 

drew on Rittel and Webber’s (1973) idea of a wicked problem as a rhetorical, creative, and 

critical/emancipatory tool (e.g., Lönngren & van Poeck, 2021). Already in the early 1970s, the notion 

of wicked problem was used to refer to complex, multidimensional predicaments that are not easily 

solvable by simple policy intervention; indeed, wicked problems may not even be “solvable” at all 

(Rittel & Webber, 1973). The term was introduced to problematize what they called ‘tame problems’ 

in the natural sciences, in contrast to complex societal-technological-scientific problems, one of which 

can be the multi-layered, multilevel problem of sustainability and climate change in current times. 

Building on this idea, science educators for some time (e.g., Lundegård & Caiman, 2019) — and 

mathematics educators more recently (e.g., Steffensen et al., 2021) — have used the notion of wicked 

problems to create situations of teaching and learning that go beyond many of the ‘tame problems’ 

used in typical school word-problems. The usual problems that pupils meet when working with 

algebra, such as solving an equation without context or figuring out the general rule for a number 

pattern, can be characterized as tame problems. In a tame problem it is clear what the pupils should 

do, and it is also clear “whether or not the problems have been solved” (Rittel & Webber, 1973 p. 160). 

In contrast, wicked problems can never be definitely solved or, at most, are re-solved repeatedly 

because they involve multiple dimensions in connection, values mobilized, and viewpoints at stake. 

The explorative work in the research team consisted of taking on board the notion of wicked problem 

to reinvent algebraic problems for early school algebra. Furthermore, if the challenges of sustainability 

were not to be taken as a simple context of formulating tame school algebra problems, but as a 

possibility to connect algebraic thinking as a significant tool to explore the wickedness of 

sustainability, then pupils should be invited to integrate algebraic thinking and sustainability in their 

work with the AWPs. Algebraic thinking should work as a resource or a tool for concrete critical 

thinking and action (Skovsmose & Valero, 2008), as an analytical tool for exploring models of 

“reality”, and for creating an awareness of how those models only visualize certain aspects of a reality 

and leave other unnoticed (Cai & Knuth, 2011; Kieran, 2018). That is, the pupils should be invited to 

explore, interpret, and reason about functional relationships between quantities in given models of 

pupils’ “reality” (e.g., Coles & Ahn, 2022). 

How to make algebraic thinking and sustainability issues becoming simultaneously integrated in 

pupils’ reasoning is not an easy matter. In our try-outs of different formulations of AWPs with pupils, 

although the framing of an AWP consisted of these two aspects, the pupils did not necessarily connect 

them with one another. In our further work on that challenge, we have experienced how dilemmas can 

open a possibility to make the merging of algebra and sustainability happen. Dilemmas are built-in 

incompatible condition in a problem which requires pupils to analyze and reflect on quantitative data 

in a model of reality (Davydov, 2008). This paper explores dilemmas and their potentiality for 

connecting early algebraic thinking and sustainability simultaneously in pupils’ work with AWP, and 

for further designing AWPs. 
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METHODOLOGY 

We drew on multiple sources of data that all are related to the research team’s invention, design, 

planning, and reflection on AWPs.10 research team meetings that consisted of planning and reflecting 

on working with AWPs were recorded and transcribed; field notes of lesson observations (here we 

particularly report on grade 3 lesson for about 20 pupils). Transcribed research team meetings were 

marked to indicate whether the particular focus of the conversations were involving: aspects of algebra 

and algebraic thinking, aspects of teaching and learning, aspects of sustainability, or aspects of the 

purpose of education for critical citizenship. The data as a whole was then analyzed to understand the 

instances where the aspects of algebraic thinking and sustainability overlapped, and how they became 

integrated in the pupils’ work with AWPs as well as in the discussion in the research team. For this 

paper we have chosen to concentrate on two concrete examples to tease out how dilemmas emerged 

and turned out to be an important element in thinking what may characterize AWPs. 

In what follows, we introduce a situation of work with an AWP that was constructed in the research 

team. Then, we provide two descriptions of lesson fragments where pupils work on AWPs. One of the 

descriptions exemplifies how a dilemma emerges but does not connect algebraic thinking and 

sustainability; while the second description shows the opposite. The descriptions are structured to 

highlight: 1) the built-in incompatible condition emerging, 2) the setting in which it emerged, and 3) 

how algebraic thinking and sustainability related in the situation. Finally, we discuss some central 

dimensions of dilemmas that we have identified so far. Our data suggests that these dimensions may 

be helpful in further designing AWP where algebraic thinking and sustainability intertwine. 

EMERGING DILEMMAS 

The teacher starts the introduction of the situation by asking the pupils if they know what carbon 

footprint is. One pupil answers that it relates to environmental damage as for example waste, carbon 

dioxide and exhaust fumes. The pupil continues this explanation by stating that this kind of 

environmental damage is what causes the Antarctica to melt which, in the future, will make the worlds 

water level to rise. In this introduction, the pupils are also invited to a short discussion concerning what 

a budget is and how you cannot “buy” more than your budget. Finally, the pupils are asked to create a 

joint carbon footprint budget, in pairs, with things/toys they want for Christmas. The pupils are told 

that they can only choose things/toys from a given carbon footprint table. 

Example 1: How much Lego?  

The built-in incompatible condition in this example consists of a value conflict between Lego’s 

economic value and its carbon footprint value: Lego is expensive to buy but has a low carbon footprint 

value. 

In setting the scene the teacher introduces the idea of a carbon footprint budget that pupils have at their 

disposal. It consists of two orange Cuisenaire rods (C-rods) that the teacher shows to the class (Figure 

1). The teacher continues presenting the pupils with a carbon footprint table of different things/toys 

(Figure 2), and explains that the things/toys in the table have been given different values in terms of 

their carbon footprint, represented by different C-rods. When explaining the table, the teacher shows 
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the C-rod that represents the Lego’s carbon footprint value by showing one white C-rod to the class 

(Figure 3).  

 

 

Figure 1: The teacher 

showing the budget 

(reconstructed picture) 

 

Figure 3: The teacher 

showing the Lego’s carbon 

footprint (reconstructed 

picture) 

 

 

Figure 2: The carbon footprint table 

 

A value conflict emerges around the question if the C-rod represents the value of one Lego brick or a 

whole set of Lego bricks. 

Pupil 1:  What is one [emphasizes is and one] Lego? 

Teacher:  This is probably a box of Lego. Not just a piece but... What do you say? What do you think?  

Pupil 2:  One Lego bag? 

Teacher:  One Lego bag? And...  

Pupil 1:  I think it is one Lego set. 

Teacher:  Yes, one Lego set. But not the biggest. 

The exploration, interpreting and reasoning above concerns primarily the relationship of 

correspondence between the given value of one C-rod and the amount the Lego (one brick or a package 

of bricks). The discussion does not connect to any sustainability aspect. Instead, it seems that the 

potential sustainability issues that could be connected to the amount of Lego remain working as part 

of an unreflected context. The focus here is on quantities and their correspondence in value. 

Example 2: How come the cost of lol-dolls, Lego and scooters? 

The built-in incompatible condition in this second example is that, in the table (Figure 2) the value of 

a toy/thing is expressed in the currency of carbon footprint while pupils are familiar with currencies 
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for economic value. Also, the value in carbon footprint terms does not seem to align with the toy/thing’ 

economic value. That is, an “expensive” toy/thing in money is “cheap” in carbon footprint. 

In setting the scene, the teacher asks the question: “Does the table feel fair?” and simultaneously points 

at the carbon footprint table (Figure 2), that is displayed on the whiteboard in front of the pupils. A 

value conflict emerges when the pupils start, as a response to the teacher’s question, to explore, 

interpret, and reason about which characteristics of the objects are affecting the toys/things given 

values in the carbon footprint table. 

Pupil 4: That little lol-doll can’t be much more than Lego, can it?  

Pupil 5:  And then the scooter... Scooters are big... 

Pupil 6:  But you have a scooter for a really long time... And there are a lot of other things than just 

plastic. 

Pupil 6’s expression “you can have a scooter for really long time”, can be recognized as an awareness 

of durability of a toy that is important for sustainability. As part of the series of comments, it also 

provides an explanation for the corresponding relationship between the scooter’s and the lol doll’s 

carbon footprint value. We interpret such expression as a manifestation of simultaneous integration of 

algebraic thinking and sustainability issues emerging in the pupils’ conversation. Here, in the line of 

reasoning among pupils, pupil 6’s expression seems to point to a connection between the materials of 

the toy/things, their durability and their value in the currency of carbon footprint, to add to the 

relationships that other pupils are putting forward. 

EXPLORING CENTRAL DIMENSIONS OF DILEMMAS 

Our conceptualization of dilemmas in an AWP takes its departure in Davydov’s (2008) notion of 

contradiction. That is, the dilemma is seen as a built-in incompatible condition consisting of some kind 

of value conflict between two incompatible values. It is the value conflict that can invite pupils to 

explore, analyze and reflect on corresponding relationships between quantitative data in a model of 

reality. However, to invite the pupils to act on the value conflict, it is also important that it is pupil- 

oriented and sometimes it is necessary for the teacher to guide the pupils’ awareness to the value 

conflict by actions such as questions or statements. 

 

 

Figure 4: Central dimensions of dilemmas 
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In Example 1, the built-in incompatible condition consisted of a value conflict between the quantity of 

Lego bricks and their economic value and its carbon footprint value. The pupil-orientation was two- 

dimensional. The first dimension was how, in the experience of these Swedish pupils in age 7-9 often 

want Lego as a gift for Christmas or for their birthdays. In the context of these children, Lego is a 

toy/thing that they are familiar with and that they desire. The second dimension was the economic that 

Lego is expensive to buy, but it has a lower carbon footprint value with respect to other toys/things in 

the table. However, when the pupils were exploring, analyzing and reflecting on potential relationships 

of corresponding values they were only focusing on the Lego’s economic value and its size in terms 

of amounts of bricks — one brick or a set of bricks. In other words, the pupils’ reflections did not 

involve a consideration on sustainability. The conversation was left unchallenged. In this case, there 

could have been the opportunity for the teacher to ask questions or make statements that directed the 

pupil’s awareness also towards the Lego’s carbon footprint value and thereby to a consideration of 

sustainability. 

In Example 2, the built-in incompatible condition consisted of a value conflict between the lol-doll’s, 

the Lego’s and the scooter’s value in terms of carbon footprint and their economic value. This example 

also had a two-dimensional pupil-orientation. First, pupils aged 7-9 in Sweden often play with this 

kind of things/toys and they are also aware of their economic value. Second, the conflict between the 

economic and the carbon footprint value is present in, for example, the cheap economic value of lol- 

doll in contrast to its high carbon footprint value, or a scooter that is expensive to buy but has a low 

carbon footprint value. The value conflict in this example together with the teacher question “Does the 

table feel fair?” invited the pupils to explore, analyze and reflect on corresponding relationships 

between the things’/toys’ values in the table. The corresponding relationships that the pupils were 

establishing and reflecting on involved a consideration for sustainability concerning the durability of 

different materials to assign the things’/toys’ values. 

In our exploration of the situations that unfolded in the classroom, we recognized that there emerged 

dilemmas as pupils thought algebraically to establish connections between quantities, objects, and their 

economic and carbon footprint values. The dilemmas were related to the built-in incompatible 

condition as causing value conflicts, which made possible for algebraic thinking to unfold and connect 

significantly to sustainability. 

Our analysis of the situation allows to distinguish that the dilemma and the value conflict are connected 

through the incompatible conditions that are built in the carbon footprint table (Figure 2). The 

incompatible conditions concern how the values of the different things/toys in the table are 

incompatible within one another in terms of economic value. By using a table as a model of reality 

within a sustainability pupil-oriented context, containing value conflicts, algebraic thinking can 

become mobilized as an analytical resource or tool to explore, interpret, and reason about 

corresponding relationships between quantities in the given model (e.g., Coles & Ahn, 2022, see also 

Fred et al., 2023a, 2023b). Also, the use of C-rods to represent the values seemed to be work as 

schematics or psychological tools which allowed the pupils to argue and reason about indeterminate 

quantities analytically, by using a visible and concrete artefact. This has been already documented as 

an important aspect of promoting algebraic thinking (e.g., Dougherty, 2008). 
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CONCLUSION 

So far in our work, we have started the work of imagining and formulating other types of algebraic 

problems that invite children to connect in significant ways early algebra (grade 1-3) and sustainability. 

We have proposed the notion of AWP as we have invented, designed, planned, and reflected on the 

characteristics of situations that develop pupils’ algebraic thinking to “empower children’s critical 

reflection on current, socially relevant issues such as climate change [sustainability], and contribute to 

a democratic participation in communities of peers and in society” (Fred et al., 2023b, p. 2; see also 

Hauge & Barwell, 2017). We have found that this is not an easy task! In this paper we have suggested 

that dilemmas can be a way of working with this challenge. We have also visualized the 

multidimensional character of dilemmas by pointing at some central dimensions that we have 

identified so far. Thinking about how situations may be designed around built-in incompatible 

conditions is an initial guide to create new AWPs. In our further work with the notion of AWP we are 

interested in inducting new situations and doing more try-outs with pupils to deepen the understanding 

of dilemmas. 
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“IT MADE ME FEEL LIKE AN EXPERT”: DEVELOPING FUNCTIONAL 

THINKING THROUGH CULTURALLY LOCATED TASKS 

Bronwyn Gibbs 

Rangahau Mātauranga o Aotearoa: New Zealand Council for Educational Research 

Success in algebra plays a major role in equity and lifelong opportunities well beyond the mathematics 

classroom. High failure rates in algebra see many non-dominant students excluded from equitable 

higher education, career, and economic opportunities. This paper reports on a research project that 

explored how non-dominant students in New Zealand developed algebraic thinking through culturally 

located tasks. Student participants in the study were aged between 10 and 12 years and were of 

indigenous Māori and Pacific Nations ethnicities. Design-based research and qualitative methods of 

data collection and analysis were used in the study. Findings revealed that when Māori and Pacific 

students were given opportunities to draw on their cultures to make sense of functional relationships, 

they constructed increasingly sophisticated and abstract representations and generalisations of 

growing patterns, and both their mathematical and cultural identities were strengthened. The findings 

highlight that providing opportunities for non-dominant students to learn algebra in ways that they 

see as relevant to their cultures and communities is a powerful catalyst for promoting equity. 

Algebra is considered critical to students’ mathematical development and has been labelled as a 

gateway to academic and professional success (Knuth et al., 2016; Morton & Riegle-Crumb, 2019). 

However, for many non-dominant students, algebra is not a gateway to opportunity; it is a gatekeeper. 

Inequitable opportunities to succeed in learning algebra exclude many non-dominant students from 

economic, citizenship, higher education, and career opportunities - particularly those related to the 

twenty-first century STEM subjects of science, technology, and engineering (Knuth et al., 2016; 

Morton & Riegle-Crumb, 2019). 

Evidence from research studies highlights that young children are capable of sophisticated sense-

making of functional relationships and representing and generalising these relationships in diverse 

ways (Blanton et al., 2015). However, in contrast to the research, Māori and Pacific students are over-

represented among lower attainers and under-represented among higher attainers in national and 

international measures of mathematics achievement (e.g., Educational Research Unit and New Zealand 

Council for Educational Research, 2022). 

There appear to be few studies that have investigated young non-dominant students’ understanding of 

growing patterns, and little is known about Māori and Pacific students’ representations of growing 

patterns and how they move through the stages of mathematical generalisation. The purpose of this 

study was to explore how drawing on culturally located tasks supported 10–12-year-old Māori and 

Pacific students to develop algebraic understandings and make sense of functional relationships. In 

particular, the following research questions were addressed: 1) What representations do Māori and 

Pacific students use when engaging with contextual functional tasks? 2) How do Māori and Pacific 

students generalise culturally located tasks involving functions? 
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LITERATURE REVIEW 

Functional thinking entails generalising relationships between two or more varying quantities, 

representing and justifying these relationships in multiple ways, and reasoning with these generalised 

representations to understand and predict function behaviour (Blanton et al., 2015; Stephens et al., 

2017). Functional thinking provides an important entry point for developing algebraic understanding 

and is regarded by many mathematicians as a powerful, unifying strand because functional thinking is 

threaded through all of mathematics, is a crucial part of mathematical development, and leads to a 

deeper understanding of the structural form and generality of mathematics (Kaput, 2017). 

Research has found that young children are capable of deeper functional analysis than previously 

thought and that functional thinking begins at grades earlier than typically expected (Blanton & Kaput, 

2011). Several researchers (e.g., Blanton et al., 2015; Stephens et al., 2017) have developed learning 

trajectories specifically for functional thinking, describing the typical progression of student thinking 

when generalising functional relationships. Three types of functional thinking are evident from the 

learning trajectories: recursive (looking for a relationship in a single sequence of values and indicating 

how to obtain a number in a sequence given the previous number or numbers), covariational 

(understanding how two quantities are coordinated and vary in relation to each other), and 

correspondence thinking (understanding the correspondence between the two variables and identifying 

an explicit rule so that a variable can be calculated from any term). 

Researchers provide evidence that elementary school children can develop and use a variety of 

representational tools to help them reason with functions, describe recursive, covarying, and 

correspondence relationships, symbolise relationships, and express generalisations (Blanton et al., 

2015; Cañadas et al., 2016). Representation is a dynamic process, and students move through different 

phases in their choice of representation, showing various levels of complexity in the ways they 

represent the relationships between two terms in a growing pattern (Blanton et al., 2015; Stephens et 

al., 2017). Representations explored in the literature include t-charts or function tables (Blanton & 

Kaput, 2011), visual (Moss & McNab, 2011), natural language (Radford, 2018), and symbolic 

representations (Stephens et al., 2015). Each representation provides a different way for students to 

examine and compare relationships, and students learn about and deepen their understanding of 

functions by exploring connections across multiple representations (Blanton et al., 2015; Cañadas et 

al., 2016; Stephens et al., 2017). 

Mathematical tasks directly determine what learning opportunities are made available to students and 

are significant in establishing how students come to “view, develop, use, and make sense of 

mathematics” (Anthony & Walshaw, 2009, p. 13). Tasks embedded within cultural contexts provide 

important opportunities for non-dominant students to see themselves reflected in school mathematics 

and to recognise that the activities they engage in at home and in their communities involve 

mathematics, which is meaningful and valued (Hunter & Miller, 2022; Wager, 2012). 

In the New Zealand context, there is some evidence that drawing on the mathematics implicit in Māori 

and Pacific patterning provides a powerful means of developing culturally diverse students’ early 

algebraic reasoning and understanding of functional patterns. Hunter and Miller’s (2022) research 

concentrated on the use of culturally located patterns from Pacific cultures to develop young students’ 
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understanding of functional patterns and support generalisation. Their evidence showed that when 

mathematics was embedded in a cultural context, young, culturally diverse students were able to make 

a meaningful connection to mathematics, began to see covariation, developed their understanding of 

growing patterns, and articulated generalisations as they saw the structure of the pattern growing in 

multiple ways. Similarly, Miller and Warren’s (2012) study investigated the role of culture in young 

Indigenous Australian students’ mathematical generalisation of growing patterns. Results indicated 

that the type and context of the pattern impacted Indigenous students’ abilities to access the structure 

and relationship between the variables. Young Indigenous students were more successful in extending 

and generalising growing patterns that came from the natural environment than patterns represented 

by decontextualised geometric shapes. 

RESEARCH METHODS 

The current research was conducted with a group of twelve students from one Year Six to Eight class 

(10–12-year-olds) in a low socio-economic, high-poverty, urban school in New Zealand. The 

ethnicities of the twelve students were Māori (40%) and Pacific (60%). Māori are indigenous to New 

Zealand and are a heterogeneous population composed of diverse groups and cultural identities 

(Greaves et al., 2015). Pacific peoples are a multifaceted population who originate or identify in terms 

of ancestry or heritage from the Pacific nations of Samoa, Cook Islands, Tonga, Niue, Fiji, Tokelau, 

Tuvalu, and Kiribati (Samu, 2015). Māori and Pacific peoples are distinct ethnic and cultural groups 

but share some cultural commonalities due to their geographical proximity and historical connections. 

The current study drew on both qualitative case study and design-based research. Students engaged in 

an intervention of eight lessons focused on developing functional thinking. Tasks were designed to 

build on current student understandings and increase in complexity over a sequence of lessons. Each 

lesson began with the teacher launching the task with the whole group, followed by participants 

collaborating on the task in small groups. The teacher then facilitated a larger group discussion, 

connecting student approaches to key mathematical ideas. 

The mathematics in all the tasks was embedded in a cultural context relevant to the student’s 

backgrounds, with patterns drawn from Māori and Pacific cultures (see Table 1). 

 

Table 1: Cultural context, pattern, and function type of tasks used in the sequence of lessons 
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A range of data was collected and analyzed, including interviews, field notes, video-recorded 

classroom observations, and photographs of student work. Data was analyzed using thematic analysis 

to identify codes and generate themes to answer the research questions. 

FINDINGS 

Over the series of lessons, these Māori and Pacific students’ learning progress mirrored what has been 

reported in research literature in relation to the typical trajectory of dominant groups of students’ 

functional thinking (Blanton et al., 2015; Stephens et al., 2017). Shifts particularly occurred in how 

students i) used multiple representational forms to identify, communicate, and justify generalisations, 

and ii) expressed generalisations - from describing additive relationships using natural language to 

representing multiplicative relationships symbolically. The following sections of the paper describe 

the representations and generalisations these Māori and Pacific students used when engaging with 

culturally located tasks involving functions. 

Using t-charts to support functional thinking 

In the current study, the t-chart was the most commonly used representation to make sense of, explore, 

and generalise functional relationships across the series of tasks. In the early tasks, students created t-

charts by making two columns of data and recording corresponding entries for the independent and 

dependent variables. The t-charts supported students in organising data and more easily noticing 

patterns as they mathematically explored the task’s cultural contexts. All groups identified recursive 

patterns in the data by looking down the t-chart to find the additive difference between terms. 

As the study progressed, students shifted from looking additively within columns to considering the 

horizontal relationship between the dependent and independent variables across the t-chart. Students 

began to use t-charts to think about the multiplicative relationship between the variables, realising that 

they could multiply the pattern number instead of relying on the recursive relationship. As one student 

explained: “Instead of plus six, plus six, plus six, you can times the pattern number by six”. 

Subsequently, the t-chart became a tool for identifying functional rules. Students worked out they 

could “find out what we’re adding each time, multiply by that, then subtract something or add 

something”. For instance, Figure 1 shows how a group used a three-column t-chart to find the additive 

difference (+6), then formulate the rule: multiply the pattern number by the common difference of six 

and add three. 
 

Figure 1: Using a t-chart to find an explicit rule 

The final two tasks required students to use t-charts with an even greater degree of flexibility because 

the patterns were more complex quadratic relationships. The sequences were non-linear, so the strategy 

of looking for a common difference in order to formulate the multiplicative relationship between a 

number and its position could not be applied. The t-chart helped students identify an important property 
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of quadratic functions: the second differences are the differences that have the common value (see 

Figure 2). For instance, this pattern has a second difference of 2, so it will be connected to the sequence 

of square numbers. 
 

Figure 2: T-chart representing the quadratic pattern 

These findings align with international research (Blanton & Kaput, 2011; Stephens et al., 2015), 

showing that as students’ functional thinking developed, they transitioned from using the t-chart as an 

opaque object, a place to record numbers, to a transparent object, used to determine relationships in 

data, make explicit connections between variables, and derive function rules. 

Visual representations to support generalisation 

The visual representation of familiar cultural patterns was another effective means for non-dominant 

students to interpret and analyse functional relationships. Some students in the current study used 

drawing to explicitly identify the structure of the contextual patterns and make sense of the relationship 

between the variables. For example, Figure 3 shows how a group drew the eighth position to show the 

multiplicative structure of the growing ngatu pattern. 
 

Figure 3: Visual representation of the multiplicative structure of the growing ngatu pattern 

Engaging visually with the pattern gave students the opportunity to see its underpinning structure and 

connect the visual representation to multiplicative changes. As a result, this group was able to express a 

correspondence description of the relationship between the ngatu leaves and the pattern: “multiply the 

pattern by two, then multiply by four”, or “you can just multiply the pattern number by eight”. 

Students also used visual representations of patterns to explain and justify their generalisations. For 

example, in the larger group discussion of the titi pattern, one group justified the rule they constructed 

using constant differencing from the t-chart with the way they drew the structure of the pattern. When 

students were probed for an explanation of the rule, they could show how the pattern grew in relation 

to the position number, how parts of the pattern changed, and how parts stayed the same, based on the 

visual configuration. 

The ways these Māori and Pacific students used visual representations to develop pattern 

generalisation aligns with prior research (Moss & McNab, 2011), showing visual representations are a 
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powerful means to support students to bridge the gap between the concrete situations represented in 

tasks and the abstract mathematical structures underlying the growing patterns. 

Natural language to express generalisations 

Tasks in the current study provided students with opportunities to use natural language around familiar 

cultural contexts to express generalisations. All the tasks integrated Māori and Pacific languages, and 

students were encouraged to draw on their home languages as part of the mathematical discussions. 

Natural language was used by students in the first task to express factual reasoning as students attended 

to particular instances of the sāsā pattern. For example: “For the slaps, it adds on two. It goes plus two, 

plus two, plus two. It’s two, four, six, eight, ten”. Through natural language, these students indicated 

how to obtain the next number in the sequence given the previous number and expressed the recursive 

rule as an action within the pattern. 

A contextual, natural language generalisation in the second task illustrated a shift in student reasoning 

from recursive to covariational thinking. Students coordinated the relationship between the leaves and 

the pattern position. For instance: “every time you move to the next pattern, the leaves grow by eight, 

and the stem stays at four”. The language used revealed that the students’ algebraic thinking was 

becoming more general. 

In subsequent tasks, students conveyed correspondence thinking using more precise natural language. 

For example, in the tukutuku task, a group wrote: “if you times the rod with the crosses, then take away 

six that tells you how many crosses there are”. This natural language generalisation provided evidence 

that these students were aware of the correlation between the two variables and could explicitly state 

a rule which described a generalised relationship. 

Prior research (Blanton & Kaput, 2011; Cañadas et al., 2016; Moss & McNab, 2011; Radford, 2018) 

shows that as students’ functional reasoning develops, so does their capacity to generalise growing 

patterns in natural language. The use of natural language is considered by researchers to have an 

important role in developing algebraic thinking because it allows learners to make sense of and 

describe algebraic concepts using language they know. 

Symbolic representation of generalisations 

In the current study, students spontaneously began to express function rules using a mixture of natural 

language and symbols as they started to look for more efficient ways to represent the generalisation. 

Early on in the study, a group proposed using symbols as a shorthand to represent the variables. “We 

started to shorten it by just writing the first letter to L, which is the L for leaves, and the first letter for 

pattern, which is P. So 8L  P + 4”. 

As problems increased in complexity, students continued to experiment with expressing the rule using 

variable notation. The sixth task was the first time that a group used symbolic representation before a 

natural language generalisation. In the final two tasks, there was evidence that symbolic thinking was 

beginning to lead student thinking: “The first rule we came up with was P  2 – 1”. 
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Similar to the research (Radford, 2018; Stephens et al., 2015), the students had moved to a conceptual 

level of understanding where the natural language was receding into the background to make space for 

symbolic thinking and the more abstract signs of symbolic generalisations. 

Connections between multiple representations 

The use of multiple representations became common practice in both small group work and the larger 

group discussions. At the end of every lesson, the teacher ensured that all students were able to make 

sense of each other’s explanations, make connections between the representations, and access 

progressively more sophisticated levels of representing and generalising functional relationships. 

Students recognised that when they used multiple representations to solve a task, they could check 

their reasoning because they arrived at the same conclusion in different ways. Additionally, student 

observations confirmed that they were able to triangulate natural language, numerical and visual 

strategies to justify their reasoning to peers. Each representation provided an alternative way for 

students to examine the structure of the pattern and the relationships between variables and highlighted 

different aspects of functional thinking (see Figure 4). 

 

Figure 4: Multiple representations and generalisation of a growing ngatu pattern 

This aligns with prior research (Blanton et al., 2015; Cañadas et al., 2016; Stephens et al., 2017) 

showing that students’ flexibility with multiple representations promotes deeper mathematical 

insights, and students gain a more thorough understanding of functional relationships when they 

represent them in more than one way. 

Cultural and mathematical identities 

Data from the study revealed that the use of contextual tasks affirmed Māori and Pacific students’ 

cultural identities. When students were asked how it felt to work on tasks related to their cultures, 

students expressed the idea that contextual tasks normalised their cultures in the mathematics 

classroom.: “It feels the same; I just feel like I’m Māori”. Another student shared the feeling of 

belonging the contextual tasks engendered, stating: “It makes me feel welcomed. It makes me feel like 

I belong here”. 

Furthermore, when cultural contexts in the tasks were known and meaningful, students were positioned 

as experts and felt empowered as learners and doers of mathematics: 

We were solving a problem about a Samoan fala, and my parents are Samoan and so it made me feel like 

an expert. I never knew how to do algebra. I thought it was tricky as college problems, but the difficulty is 

alright, and it’s fun. When it involves our culture once you hear it’s something about your culture, you’re 



Proceedings from ICME 15, Topic Study Group 1.2: Teaching and learning of early algebra.  

2024 / Aisling Twohill, Işıl Işler Baykal, Jodie Miller, Eric Knuth, Alessandro Ribeiro (Editors) 

Page 31 

like the expert because you know about a lot of things, and you’re like, “oh yep, this is me, I know it”, and 

then you just like relax and have fun while you solve the problem. It gives you confidence. And it gets your 

brain working. 

Rather than perceiving mathematics at school as separate from their cultures, these students 

experienced strong cultural alignment with their Māori and Pacific identities and their mathematics 

class. These findings are consistent with previous national and international research (Hunter & Miller, 

2022; Wager, 2012), showing that contextual tasks promote positive cultural identities by valuing the 

cultural capital that non-dominant students bring to the mathematics classroom. 

CONCLUSION 

There was significant growth in these Māori and Pacific students’ conceptual understanding of growing 

patterns and in their ability to represent and generalise functional relationships in increasingly 

sophisticated and abstract ways. This contradicts non-dominant students’ performance on national and 

international measures of mathematics achievement. The use of culturally located tasks acted as a lever 

for equity by blurring the line between cultural knowledge and content knowledge and provided 

opportunities for non-dominant students to engage in high-level algebraic reasoning and functional 

thinking. To challenge the gatekeeping role of algebra, it is important that educators provide 

opportunities for non-dominant students to draw on cultural resources in order to engage in high-level 

functional thinking and recognise that students’ cultural knowledge and identities are assets that can 

propel them to success. 
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TEACHING AND LEARNING EARLY ALGEBRAIC EQUATIONS IN A 

CHINESE CLASSROOM: A DESIGN-BASED RESEARCH STUDY 

GROUNDED BY THE THEORY OF OBJECTIFICATION 

Yuan Ji 

University of Bristol 

The overwhelming presence of a procedural meaning of the equal sign and procedural understandings 

of equations reported in previous research calls for suitable interventions in teaching and learning 

algebraic equations. The aim of this research is to investigate the explicit features of interventions that 

address equation solving in Chinese early algebraic classrooms, and the emergence of procedural and 

relational understanding in children's learning process. In this study, a teaching-learning activity 

guided by the theory of objectification will be designed and implemented into Chinese elementary 

classroom, along with a Vygotskian multimodal semiotic analysis on the interactions between teacher 

and students. Note that his paper is a proposal of a future study along with some presentations of  the 

pilot data. 

INTRODUCTION 

Children need to understand the equal sign (=), which symbolizes an equivalence relation between 

numbers or physical quantities, especially in learning arithmetic and early algebra. Their understanding 

of the equal sign may affect their arithmetic as well as linear equation solving performances (Jones et 

al., 2012). The relational understanding refers to viewing the equal sign as a relational sign that shows 

the value of both sides of the symbol are the same and able to define equality. However, among most 

western students, especially in the United States, the equal sign is treated as an operational symbol for 

"working out the answers," rather than a symbol of an equality relation. As a result, even with less 

explicit attention to the equal sign in higher grades, this misconception may still exist in middle grades, 

hindering their arithmetic and algebraic competence in future studies (Kunth, 2006). Although in 

China, the understanding of equations was focused on at the start of the fifth grade (e.g., see Li, 2008), 

a recent study by Xie and Cai (2022) showed that grade five students still tend to use a procedural 

strategy in solving equations, leading to a lack of understanding of equal signs, unknowns, and 

equation solving.  

Previous studies have raised questions about what explicit activity should be considered as emergences 

of procedural or relational understanding of equal signs when interpreting and solving equations for 

Chinese students. Therefore, to investigate the emergence of equation understandings and suitable 

interventions, we have the following research questions: 

1. How can the emergence of early algebraic thinking be identified in relation to understanding and 

solving algebraic equations? 

2. What are the explicit features of instructional design that could support the development of early 

algebraic thinking concerning learning algebraic equations? 
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THEORETICAL FRAMEWORK 

The theory of objectification is a mathematics educational theory developed by Luis Radford, inspired 

by the dialectical materialism of Marx and Hegel and the works of Vygotsky and Davydov. The theory 

of objectification considers mathematics education as a “political, societal, historical, and cultural 

endeavor” (Radford, 2021). Rather than simply looking at how well students perform in solving 

equations or correlating their understanding of equations with equation-solving performances, Radford 

takes a different approach by adopting a Vygotskian perspective of concept formation, which is based 

on the theory of objectification (Radford, 2021). This approach focuses on observing “the progressive 

development of conscious awareness of concepts and thought processes through interactions with 

teachers and peers” (Vygotsky, 1987, p.185), rather than just assessing final outcomes. When it comes 

to teaching and learning algebraic equations, Radford places particular emphasis on understanding the 

cultural and historical forms of concepts, i.e., the equal sign and equations. He also explores the 

underlying concepts that are required to solve equations, which emerge through interactions between 

teachers and peers (Radford, 2022). In the context of school learning, these interactions are achieved 

by teaching-learning activities. Indeed, teaching and learning are inseparable in the theory of 

objectification, which involves both knowing and becoming situated culturally-historically (Radford, 

2021). Teaching-learning activity involves emotional, social, ethical, and intellectual factors and is a 

dynamic system formed by joint labour, which is the coordinated effort of individuals working toward 

a common goal. In this study, the teaching-learning activity involves both teachers and students 

working together to deal with algebraic equations. In this manner, teaching and learning are not two 

distinct activities but rather parts of the same process—the teaching-learning activity that relies on a 

cultural approach to solving equations. 

Epistemologically, rather than the constructivists' view of knowledge as a product built up by 

cognizing objects and suggesting students construct their own knowledge and develop their intellectual 

autonomy, the theory of objectification defines knowledge as a "system of archetypes of thinking, 

action, and reflection constituted culturally and historically out of material, embodied, and sensible 

collective labour" (Radford, 2021). To derive the knowledge, it has to be put in motion and 

materialized to become concrete and sensible through activities and reflection, and such a way is 

defined as knowing (that shifts from concrete to abstract). Knowing in the theory of objectification 

aligns with Hegelians' view that knowing is to grasp the essence of objects through putting actions on 

those objects rather than approaching it through building our knowledge since "there is an 

entanglement between object and subject, world and consciousness" (Radford, 2021), and they co-

produce and influence each other mutually.  

METHODOLOGY 

To design an intervention that is suitable for the Chinese classroom and investigate how students' 

learning process takes place in the intervention, an approach of design experiment (DE) would be 

suitable. For a general definition of DE, I would refer to Barab and Squire (2004), who describe it as 

"a series of approaches, with the intent of producing new theories, artifacts, and practices that account 

for and potentially impact learning and teaching in naturalistic settings."  The preliminary goal of DE 

is to formulate a conjectured local instruction theory that can be examined and refined in classroom 
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practice. From a research perspective, a theoretical intent need to be determined by setting an endpoint 

and a start point. The endpoint refers to clarifying mathematical learning goals that are determined by 

the cultural-historical context. The emphasis on establishing the most relevant goal guided by history 

and tradition is consonant with the theory of objectification, which requires that, prior to teaching-

learning activity, an object of activity and goals should be defined. In terms of this study, the object 

can be the encounter of students with cultural-historical ways of understanding equal signs, and the 

goal would be to solve equations with formal or informal symbolism by holding a relational 

understanding of equal signs. Note that the aim is not to accept the existing school curriculum as it is 

and try to improve it, but to scrutinize the goals from a disciplinary perspective to establish the most 

pertinent and useful goals (Gravemeijer and Cobb, 2006). For starting points of local instruction 

theory, a psychological approach can be considered as documentations of the effect of instruction 

theory, while written tests or classroom observations can be used before initiating the experiment.  

Implementation of design experiments involves a cyclic process of designing and testing instructional 

activities. In each cycle, the researcher conducts a preliminary thought experiment by envisioning how 

the proposed instructional experiments work in the classroom, and how students learn from 

anticipation (Gravemeijer and Cobb, 2006). In this study, data will be collected from a Chinese primary 

school, involving approximately 60 students. The classroom activity will be held in the form of a 

workshop for eight consecutive weeks, with 3-5 hours per week. The teaching-learning activity will 

be designed by the school mathematics teacher and the researcher through close collaboration. Since 

the learning process, or the process of materializing knowledge and instructions that support this 

materialization, will be the theoretical intent of this study, full classroom activities will be observed 

through video cameras. Two or more video cameras will be used to record both the teacher and 

students’ activities and group discussions. Transcribed videos, students’ written work, and field notes 

will be collected and used for data analysis. All data will be revised by both the researcher and 

schoolteacher during weekly research meetings. The purpose of revision is to make decisions about 

the validity of the conjectures that are embodied in the instructional activities. Here, I would associate 

this cycle of instructional activities with Simon’s (1995) Mathematical teaching cycle. This concept 

suggests that the teacher and researcher should begin by predicting the mental activities when students 

engage in the planned instructional activity and determine the extent to which the observed learning 

process aligns with the initial predictions. Based on observation and revision, the teacher can consider 

potential or revised follow-up activities to better support the students’ learning. 

During the enactment of instruction, the interpretation of both students’ learning and reasoning and 

means by which that learning is supported are key elements of design experiments which should be 

transferred into scientific interpretation through retrospective analysis (Gravemeijer & Cobb, 2006). 

The goal of retrospective analysis will depend on the theoretical intent of this study. Thus, I would 

conduct a multimodal semiotic analysis focusing on “talk, gesture, facial expression, body posture, 

drawing of symbols, manipulation of tools, pointing, pace, and gaze" (Nemirovsky et al., 2012) 

included in the data set of videos, field notes, and students’ written works. A semiotic approach was 

used by Radford and Sabena (2015) to explore the phenomenon of teaching and learning that is 

modified within a cultural-historical context.  To integrate semiotics into educational theory, Radford, 

and Sabena (2015) combined it with Leont’ev’s (1978) Hegelian phenomenological concerns and 
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Vygotskian’s cultural psychology and developed two methodological concepts related to the process 

of objectification in teaching-learning activity: semiotic nodes and semiotic contraction. Semiotic 

nodes refer to a joint activity in which various signs in the semiotic system are utilized together to 

achieve the objectification. This means that semiotic nodes represent mathematical interpretations and 

embodied action expressed by the teacher and students framed by cultural-historical forms of thinking 

and acting. Through identifying semiotic nodes, we can determine the mediation and materialization 

of knowledge, and where the objectification occurs. On the other hand, semiotic contraction refers to 

the reorganization and concentration of semiotic resources that happen as a result of students’ 

increased consciousness of cultural-historical mathematics meaning. Students tend to make choices on 

what they perform depending on relevance with their awareness of underlying mathematical structures. 

As a result, they will refine the gestures they produce. Apart from semiotic nodes and contraction, the 

researcher will also examine students’ written signs, oral descriptions, and embodied actions that relate 

to relational understanding of equal signs.  

Data Collection on pilot data 

In November of the previous year, I conducted a remote pilot study involving a collaborative teacher 

and five students at an educational institution in China. The instructional activities were devised by 

the researcher, and the collaborating teacher gave the tasks in the form of a workshop spanning a total 

of three hours, with one hour dedicated to each day. Throughout the implementation of the activities, 

the researcher observed that the collaborating teacher made modifications to the assigned tasks, leading 

to an incorporation of traditional Chinese education and the theory of objectification. The analysis will 

delve into both the adapted design by the collaborating teacher and the semiotic episodes within the 

classroom activities. This pilot study is considered the initial iteration of the upcoming study, 

contributing to the final result as a foundational component. 

In summary the objectives of the pilot study include: 1. Ensuring that students comprehend the 

properties of equations using the balance, emphasizing concepts such as the equilibrium maintained 

when the same weight is added or removed from both sides. Students are then guided to simplify the 

balance by isolating the unknown quantity from the known ones and calculating the weight of objects. 

2. students are tasked with observing equivalence relationships depicted by various balances and 

expressing them through both drawings and written descriptions, all while providing clear 

simplification steps.  

The activity was divided into three sections: opening discussion, working in small group, closing 

discussion. In opening discussion, the teacher introduced the concrete pan-balance model, asking 

students whether they are familiar with how the pan-balance work, the teacher started with measuring 

weight of objects in classroom i.e., a cup or a watch. She put weight on the other side of pan to 

gradually make them balanced, and she start asking: “What does it mean when it is not balanced? And 

how about when it is balanced?” 

For the material that constitute the main activity of teaching and learning algebraic equation, the 

concrete and iconic pan-balance scale is a specific manipulative to support students’ understanding of 

relational meaning of equal signs i.e. Hiebert and Carpenter (1992) proposed that by associating the 

fulcrum of the balance with the equal sign, the pan-balance scale could serve as a model for developing 
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a conceptual understanding of the equal sign, which means that the symbolic equal signs can be viewed 

as a denotation of quantitative sameness that aligns with the balancing model. This allows students to 

interpret arithmetic and algebraic problems in terms of quantitative symmetry or on the contrast, an 

unbalanced state, where there is a lack of symmetry between the two sides.  

Here I would demonstrate two episodes of the classroom activity: The first one is solving equations 

via concrete pan-balance and the second one via iconic pan-balance. In the first episode, the 

collaborating teacher demonstrated the equation 𝑥 + 100 = 200 on the pan-balance and ask students 

to solve the equation starting by isolating the unknown weight. 

Teacher:  This is 200 grams, the balance between them will happen soon…it is balanced now, the 

masses on both sides of my balance are equal, so my balance is in equilibrium on both sides. 

Now I want to isolate the known weight on the balance but retaining the balancing on both 

sides, how can I do this? 

Wang:  This is 200 (pointing the right side) …this is 100 and (pointing the left side) this is 200… 

(Then Wang started removing one 100 grams on the right) 

Teacher:  Now, if you remove 100 grams from the right side of the balance, how much should you 

remove from the left side to balance the scale? 

Wang:  100 grams. (Removing two 50 grams on the left) 

Teacher:  So, at this point, the masses on both sides of the balance are both 100 grams, and balance is 

restored. 

In the first line, the teacher asked students to “isolate” the unknown weight, is designed to draw 

students’ attention to the mathematical operations involved in simplifying the equation. “I want to 

isolate the unknown but retaining the balancing” have emphasized the equality should always hold 

when isolating the unknown. Also in Line 3, the teacher remind the Wang remove the weight on left 

side to retain the balance. When Wang starts isolating the unknown weight on left hand side in Line 2, 

the teacher named the operation by “removing”. According to Vygotsky (1993), naming something 

not only makes the named entities more explicit in communication, but also elevates the prominence 

of the named entity, in essence, a word renders the named object more distinct in both consciousness 

and thought. Moreover, in Line 3, the teacher draws the attention of students on keeping the balance 

on both sides, leads to a relational meaning of equal sign when the concrete model transfers into 

symbolic (𝑥 + 100 = 200). 

Next the teacher drew an iconic pan-balance on the board (see, figure 1), she asked: “We have a box 

of unknown apple and three apples on left side, and nine apples on the right side, each apple have the 

same weight, now I want to know how many apples in the box how can I know this?  

Teacher:  Think about the balance we played before, how to find the number of apples in the box? 

Li:  We need to put the box alone. 

Teacher:  Yes, put the box alone, and how can you do this? Remember we need to keep it balanced 

when you do that. 

Li:  (Came to the board and start crossing off the apples, but apple each from left to right) 

removing this and that… it is 6. 

Teacher:  Let’s check if he is correct, did he isolate the box successfully?  

Chen:  Yes, there is only “X” on the left. 

Teacher:  Is the balance model retaining its balance? How can you know that? 
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Chen:  He (Li) crossed off 1,2,3…apples on left (pointing at the left), and 3 apples on the right 

(drawing a circle around the cross-offed apples), so it should be balanced. 

Teacher:  That’s right, if you cross off the same number of apples on both sides, the balance will be 

retained. We can substitute X equals 6 into the equation, where? On the left side. So, it's X 

plus 3 equals 6 plus 3, which equals 9 on the right side. Therefore, the equation holds.  

 

Figure 1. The iconic pan-balance model drew on the board, the Chinese word on left top means 

“solving the equation”. 

As above, the main idea for tackling this task involves isolating the box by subtracting an equal number 

of apples from both sides of the balance scale. This demonstrates that the balance remains unaffected. 

The process continues by gradually removing weights until only the weight of the unknown object 

remains on one side. In Line 4, Li isolates the box by crossing three apples on one side simultaneously 

without individually crossing each apple on a side. Li has effectively employed embodied action, 

treating the removed apples as a unified whole, which can be identified as a step of semiotic contraction 

(Radford & Sabena, 2015), this may also be found in the gesture of “circling” performed by Chen in 

Line 8. The response from Li, providing the answer of 6, further demonstrates that he understands the 

isolating process does not change the balance condition, even if it is not directly observable from 

drawing. This indicates that Li has grasped the properties of balance, specifically the concept of the 

equal sign, understanding that removing the same quantity from both sides does not affect the equality. 

It is notable that after the teacher concluded the operations for solving equations, she provided various 

forms of equations involving addition and subtraction for students to practice in small groups. Then, 

the teacher wrote an expression in a general form, without specific numbers: “If we have 𝑎 = 𝑏, think 

about on a balance, with a weight of 𝑎 grams on the left and 𝑏 grams on the right, now I want to remove 

or add the same weight, namely 𝑐 grams on both sides, will it retain the balance? How can I exprees 

this in equation?” After peer discussion, she concludes the expression on the board: “If 𝑎 = 𝑏, then 

𝑎 ± 𝑐 = 𝑏 ± 𝑐”. Despite the teacher's inclination to use such an abstract form of expression, the 

researcher observed that the classroom activities followed a step-by-step progression, shifting from a 

concrete balance model to an abstract symbolic expression. Before the closing discussion, the teacher 

also introduced solving equations involving multiplication, including its algebraic form (𝑎 = 𝑏 →

𝑎 × 𝑐 = 𝑏 × 𝑐). 

DISCUSSION 

Based on the general considerations of designing teaching-learning activities proposed by Radford 

(2018), some features of the designed activity were identified: 1. Devising an Artifact: The tasks were 

presented by introducing an artifact—the pan-balance—at the beginning of the instruction; 2. The tasks 

were given in an order of increasing complexity, from solving equations on pan-balance towards 

symbolic expression, from equations involving both numbers and symbols towards symbols only, 
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referring to an increasing conceptual complexity; 3. The task were designed starting from a story 

problem that measuring weights or counting the quantity of apples, referring to a conceptual-contextual 

unity; 4. The teacher fostered collaboration among students through reflection and debate. For 

instance, in addition to small group discussions, the teacher encouraged students to justify the answers 

provided by their peers. This refers to the principle of fostering joint labor. 

Here I would emphasize three levels of conceptualization in the classroom activity since they are 

crucial in the whole instructed activity. The first level involves a concrete sensual experience (Radford, 

2021), at this level, students were able to visually perceive equality through concrete and sensory 

experiences via the pan-balance model. They observed that adding or removing weights could either 

alter or maintain the balance condition. The second level of conceptualization introduces theoretical 

reflection based on concrete objects, (Radford, 2021). In the classroom activity students manipulate 

the pan-balance by isolating the unknown weight both in concrete and iconic representation, opening 

up potential connections to the relational meaning equal signs through connecting the experience of 

the balancing condition and equality concepts. The third level of conceptualization emerges through 

the manipulation of mathematical symbols, enabling a transition from sensual experience to higher 

level of consciousness. In the classroom activity, the teacher encouraged students to represent the 

unknown weigh using their own expression (i.e., using "□" to represent unknowns or using arrows and 

crossing-off marks to represent subtraction), yet such experience was cut short when the teacher 

instructed them to substitute them into formal symbolism i.e., replacing the square "□" with the letter 

"𝑥" The researcher suggests that introducing such symbolic representation should occur after students 

have engaged in symbol manipulation through the drawing of the balance, progressing from 

"removing" to "crossing" and finally to "subtracting”.  

Drawing on the issues introduced by the teacher regarding the generalized form of the relational 

property of equal signs, I would like to further investigate how students comprehend the concept in 

algebraic symbolic form in future studies. In response to the question of whether this form of 

expression is necessary for students, according to Radford (2003), although natural language enriches 

expressions related to designated objects, it becomes insufficient when there is a lack of words to 

designate the object. At this point, algebraic symbolism proceeds with a remarkable reduction. 

However, a more gradual process in which students progressively grasp the use of algebraic symbolism 

is preferred. I propose that by increasing conceptual complexity, i.e., through suitable conceptual 

variations (see Gu et al., 2017), as suggested by Radford (2021), the transition from embodied language 

to oral language and finally to algebraic symbolism is a crucial indicator of concept formation. A more 

sophisticated introduction of algebraic symbolism is recommended. It is noteworthy that students in 

this pilot study have comprehended the generalized algebraic expression of the relational property of 

equal signs, encompassing both additive and multiplicative structures (𝑎 = 𝑏 → 𝑎 × 𝑐 = 𝑏 × 𝑐), 

Further investigation into students' awareness and understanding of these expressions is warranted. 
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GENERALIZATION PROCESSES OF 5TH GRADE ELEMENTARY 

SCHOOL STUDENTS USING GRAPHS 
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The literature recognizes the presence of algebraic structures in verbal and pictorial representations 

among elementary school students. The research objective is to describe the reasoning process 

employed by 5th-grade elementary school students (ages 10-11) when using graphical representations 

of functions to generalize. In this paper, we present the results of semi-structured interviews conducted 

with three of the children who participated in our study, wherein we presented them with 

contextualized generalization tasks involving functions. We give special attention to the structures 

observed during their work with function graphs and the process of reasoning they employ to reach 

generalizations. Our study leads us to the conclusion that engaging with the construction, reading, 

and interpretation of function graphs enables the participating students to identify structures within 

them. 

INTRODUCTION 

In the context of algebra, generalization is considered a fundamental concept, especially in the early 

years. This is because the introduction of algebraic thinking at a young age emphasizes the process of 

generalizing from the observation of regularities or patterns of behavior in a given mathematical 

situation (Radford, 2013). Among the various modes of algebraic thinking that address fundamental 

algebraic concepts in early grades, this research specifically focuses on functional thinking. Functional 

thinking centers on the relationship between two or more variables, encompassing various types of 

thinking that span from specific relationships to generalizations of these relationships (Kaput, 2008, p. 

143). One of the key aspects of functional thinking involves generalizing relations between co-varying 

quantities. Also, it involves expressing these functional relationships using different representations 

and utilizing these expressions to analyze the behavior of a function (Blanton et al., 2011). 

The reasoning process in this study focuses on the structures identified by students when they engage 

with generalization tasks involving linear functions. These tasks provide students with opportunities 

to explore and demonstrate their functional thinking. This aspect of their work has been recognized as 

a crucial area for further research (Stephens et al., 2017). We aim to address questions that remain 

unanswered in the existing literature, specifically regarding how young children generalize functional 

relationships between two quantities. More precisely, we seek to explore the types of relationships that 

children express and the levels of sophistication in their thinking about these relationships, which are 

still open questions (Blanton et al., 2015). 

This paper aims to describe the process of generalization used by 5th-grade primary education students 

(ages 10-11) when working with graphical representations of functions. 

THEORETICAL FRAMEWORK 

The abductive-deductive reasoning model by Torres et al. (2021), based on Rivera's model (2017), 

establishes three phases of the reasoning process developed by students in a functional context (Figure 
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1). The abduction phase occurs when a conjecture is formulated based on limited specific cases, and 

the initial structures are identified. During this phase, preliminary hypotheses are generated but remain 

unconfirmed until a variety of specific cases are available. This is the point at which students need to 

identify a relationship between variables because, at this age, they lack tools for clear quantity 

visualization, counting, or drawing. Rivera (2017) refers to this as the generation of a hypothesis that 

will be confirmed in the subsequent induction phase. It is here that we observe whether the conjectures 

can be confirmed. A conjecture is confirmed when a student demonstrates the same structure on more 

than two occasions while working with distant specific cases. In this way, the student indicates an 

awareness of the implied regularity. The structure corresponds to how the elements of regularity 

between variables are organized and the relationship that exists between those elements (Kieran, 1989). 

 

Figure 1. The abductive-deductive reasoning model by Torres et al. (2021), based on Rivera's model 

(2017). 

From this moment onwards, it becomes possible to generalize through unspecified cases or the general 

case, as a tendency in the relationship between variables has been observed (Abe, 2003). 

Generalization involves establishing general relationships between covarying quantities, expressing 

these relationships through various representations (such as verbal, symbolic, tabular, and graphical), 

and reasoning with these representations to analyze the behavior of the function (Blanton et al., 2011). 

METHODOLOGY 

This work is part of a design-based research (Confrey, 2005) conducted with 25 students in the 

classroom, along with semi-structured individual interviews (Flick, 2012) conducted with six of these 

students. The students attend a public school located in the southern region of Spain. The only exposure 

this group had to graphical representation and generalization in functional contexts was through 

previous common sessions. 

In this work, we analyze three interviews conducted by the researcher-interviewer. The task or stimulus 

focused on in this study is as follows: "You visit an amusement park where you have to pay 1 euro to 

get an entry card required for entry, and then, once inside, each ride costs you 3 euros." Students are 
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tasked with calculating the total expenses based on the number of rides. The selection of interviews in 

this study is intentional, as each interview corresponds to one of the phases of the abductive-inductive 

model. 

RESULTS 

In the following section, we provide examples of student responses at each stage of the abductive-

inductive model generalization process (Torres et al., 2021). 

Abduction Stage:  

This phase necessitates the formulation of conjectures through the exploration of potential structures 

while working with a limited number of specific and concrete cases. The representation of these 

structures holds significant importance during this stage since it serves as the medium through which 

initial conjectures are articulated. It is at this juncture that opportunities arise for their documentation. 

The abductive phase culminates with the acceptance of an a priori structure. 

The ensuing dialogue showcases how Diane developed multiple conjectures while investigating 

potential structures within specific and concrete cases. When the researcher-interviewer inputted initial 

data into the graph, the student encountered a contradiction between the expected outcome (a multiple 

of three) and the structure she had initially posited. The graphical representation facilitated her 

discovery and acceptance of the structure; however, it did not yet empower her to generalize it or 

extend the graph to accommodate any value of the independent variable. 

I:  I took two trips and paid seven euros, aha. (The researcher-interviewer requests the data 

represented by Diane in the graph of figure 2). 

D:  But since seven is not a multiple of three, it couldn't be... 

I:  No? 

D:  Because when you divide seven by three, you get two, with one remaining. 

I:  And what do you think that remaining one represents? 

D:  That one... let me think... it could be from the entry card. 

I:  All right, now let me present a different scenario. 

D:  (Continues to ponder as the researcher prepares a new scenario and...) But in the graph, I 

didn't account for the entry card. In the graph, I directly input... (picks up the graph again) 

Let me include the entry card. (Makes some modifications but realizes that the graph remains 

the same as before). I had it right. 

I:  So, you were correct, weren't you? 

D:  Yes 
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Figure 2. Initial Graph of Diane. Abduction Phase 

Diane has two conjectures for the hypothetical relationship between variables. One she initially 

represented in the graph (f(x) = 3x+1) and the other arises when asked by the researcher-interviewer 

(f(x) = 3x). As Rivera (2017) points out in his research, the student is generating a conjecture that is 

not yet definitive.  

The student represents well in the graph the functional relationship because she thinks in context. When 

she moves away from the context, she begins to doubt her generalization conjecture:  

D:  But since seven is not a multiple of three, it couldn't be...  

I:  No?  

D:  Because seven divided by three is two with one left over.  

And she returns to the functional relationship when the researcher-interviewer brings her back to the 

context:  

I:  And that one, what do you think it's from?  

D:  That one... would be... (thinks) from the entry card.  

The graph in Figure 3 shows the final result after the doubts expressed in the functional relationship. 

It can be seen that the initial conjecture remains although there are signs of her insecurity in the erased 

points. It is typical of this phase to represent only a small group of points with which she has tried to 

identify the possible initial relationship. 

 

 

Figure 3. Final Graph of Diane 

Induction Phase:  

Meli represents the situation of the amusement park in the graph of Figure 4. This graph does not 

contain structural elements as defined by Martí (2010). It lacks labels on the axes, nor does it have 

numbers on the axes (only the first three are shown), but she can construct the graph because she has 

identified the rate of change between the variables. 

I:  How are you plotting the points? 
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M:  I'm plotting it for each ticket because it costs 3 and I've already paid the euro for the ID card 

at the beginning... 

In the case of Meli, the context of the task plays a fundamental role in the graphical representation of 

the functional relationship. 

 

Figure 4. Grph of Meli. Induction Phase 

During this phase, Meli works with a broader range of specific cases. In the dialogue, he revises his 

conjectures, pinpointing an additional structure that wasn't apparent during the abductive phase. The 

distinctive aspect of this phase is the need to validate the viability of the structure expressed while 

working with numerous individual cases. 

M:  Looking at the graph... if this one is here (points to the point corresponding to x=2), here 

(moves up three units and one to the right, placing the correct point).  

I:  Okay, what if there were four?  

M:  (attempts to replicate the same action but realizes it doesn't align with the next point, the one 

previously placed for x=5, which resulted in y=16 - a clear mistake) No, because this is not 

three, but four.  

I:  Four? Let's check if this one isn't correct...  

M:  (Realizes the error, reaches for the eraser, and removes the incorrect point) That was my 

mistake...  

I:  You see, because what you're explaining to me is that they occur...  

M: in threes. 

In this presented dialogue, Meli identified a structure within the points she had graphed previously. 

Initially, she encountered contradictions between the arithmetic structure she used to plot the dots on 

the graph and the structure that the dots on the graph adhered to. 

Generalization Phase:  

It is at this juncture that we can generalize based on either the indeterminate cases or the general case, 

as a discernible pattern has been observed in the relationship between the variables (Abe, 2003).  

The following dialogue is an example of why we place Martín in this phase.  
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I: (The researcher-interviewer encourages Martín to construct a graph of the situation and 

explain what he is doing)  

A1:  And here I could mark it here (starts putting points on the graph, puts the first two based on 

the data from a previously constructed table), or I could also do... (and starts writing all the 

points following the trend shown in the graph) 

In the continuation of the previous episode, Martin generalizes the relationship between the variables 

and represents them on the graph by following the rate of change between them. 

I:  How are you constructing that?  

MA:  How? Well, I observe... First, I work with the initial two or three data points, and I ponder 

how it progresses. As I've come to realize that it advances by three units horizontally and 

one unit vertically, I continue to plot additional points in this manner (proceeding to add 

more points where there are no numerical values on the axes, aligning with the observed 

trend). 

The graph constructed by Martín is shown in Figure 5. Unlike Diane, who was in the abduction phase, 

Martín continues to represent points regardless of their number. He could have continued representing 

points because he is confident in knowing the pattern they follow on the graph. 

 

Figure 5. Graph of Martín. Generalization 

CONCLUSIONS  

The research literature identifies structures represented both algebraically and pictorially during the 

generalization process. The research results demonstrate that constructing, reading, and interpreting 

function graphs enable primary school student participants to discern structures within function graphs 

as well. These graphical structures empower students to position themselves within various phases of 

the abductive-inductive cycle to generalize the functional relationship and represent it on a function 

graph. 

The analyzed examples suggest that the phases of the abductive-inductive reasoning model (Rivera, 

2017; Torres et al., 2021) can be recognized in working with graphs. In the abduction phase, the graph 

contains few points, and different relationships between the variables are tested. Its construction 

employs the possible functional relationship to calculate the coordinates of each point. The context is 

taken into account to locate each point. 

In the induction phase, they test their possible relationship between variables with more points on the 

graph. They begin to identify common characteristics in the arrangement of points on the graph. 
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Generalization involves identifying the relationship between variables. They recognize the trend that 

the points follow and use it to build and extend the graph. They reason with the graphical representation 

and employ the structural elements of the graph for this purpose. 

The analyzed responses indicate that the context of the task allows students to construct the initial 

points of the graph, but once they generalize, the construction of the graph is carried out without 

considering the context. Instead, they use the regularities detected between the variables and the way 

they are reflected in the graph. 
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COMMON ERROR IN THE RELATIONSHIP BETWEEN PARTS AND 

WHOLE IN LOWER ELEMENTARY SCHOOL GRADES 

Naoki Ohta 

Fukuyama City University, Japan 

In this study, we created an evaluation task for algebraic thinking, focusing on the "relationship 

between parts and whole" with four components: commutativity, equivalence, covariance, and 

completeness. We conducted a cognitive survey on early elementary school students, revealing that 

their understanding of this relationship improved significantly from first to second grade. However, 

they struggled with understanding covariance and completeness, often giving "insufficient" or 

"unnecessary" answers due to difficulty comprehending structural relationships in instructional text. 

BACKGROUND AND PURPOSE OF RESEARCH 

Numerical development is linked to counting principles and strategies (Fuson, 1982; Gelman & 

Gallistel, 1978). Recently, a structural approach focuses on understanding numbers through parts and 

wholes, with demonstrated effectiveness (Björklund et al., 2018; Kullberg et al., 2020). However, clear 

assessment tasks for this relationship are limited, especially in lower elementary grades. This study 

aims to define the elements of the 'relationship between parts and wholes' through a literature review 

and create assessment tasks for use in lower elementary grades. 

Therefore, based on the organization of previous studies (Ekdahl et al., 2016; Falkner et al., 1999; 

Kullberg et al., 2020), we tentatively set four components regarding the "relationship between parts 

and whole": commutativity, equivalence, covariance, and completeness. 

This study has two goals: first, to define the elements of 'the relationship between parts and wholes' 

through a literature review and create assessment tasks; and, second, to use these tasks in lower 

elementary grades to understand the nature of incorrect responses. 

METHOD 

Survey Period and Participants 

This survey was conducted in November 2022. The participants in this survey were a total of 392 

students from two public elementary schools in H Prefecture, comprising 204 first-graders and 184 

second-graders. The response rates for each grade were 112 students (54.9%) for the first grade and 

132 students (71.7%) for the second grade. It should be noted that in both elementary schools, students 

had previously learned 'number composition and decomposition,' addition with carrying, and 

subtraction with borrowing. 

Survey Method 

In this survey, we distributed survey forms and solicited free responses. The response time was 

approximately 45 minutes, and after completion, we requested voluntary submissions. 
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Survey tasks 

In this survey, following previous research, we tentatively identified four components of understanding 

the "relationship between parts and the whole": commutativity, equivalence, covariance, and 

completeness. Each perspective had four corresponding questions, as detailed in Table 1 below. 

Components Instructional text and Numerical values 

Commutativity 

①This 4 candy can be divided into 3 pieces and 1 piece. 

Choose one similar way to divide the candy and circle it. 

(1) 1 and 3 (2) 2 and 2 (3) 0 and 4 (4) 2 and 3 (5) 2 and 1 (6) 4 and 0 

②5(2,3), ③ 7(2,5),④ 8(6,2) 

(The number on the left indicates the whole number, and the number in parentheses 

indicates the number of parts to be presented.) 

Equivalence 

①Choose three ways to make four pieces of chocolates in all. 

(1) 1 and 3 (2) 2 and 2 (3) 4 and 1 (4) 2 and 3 (5) 3 and 2 (6) 0 and 4 

② 5 (2,3)(4,1)(5,0), ③ 7(2,5)(4,3)(1,6)， ④ 8(2,6)(3,5)(1,7) 

Covariance 

①Divide 3 of the 4 cookies into round dishes and 1 into square dishes. How many 

cookies will be in a square dish if you move 1 from a round dish to a square dish? 

②5(3,2)[2], ③ 7(5,2)[1], ④ 9(3,6)[2 

(The number on the left is the whole number, the number in parentheses is the number 

of parts to be presented, and the number in [ ] is the number to be moved.) 

Completeness 

Divide the ball into two groups. Draw all the combinations of the numbers 

that fit in the boxes. 

① The 3 balls are □ and □. 

②４，③７，④８ 

Table 1: Instructional text and numerical values for each problem 

Analysis Method - Classification Method 

First, each task was categorized into correct and incorrect responses. Incorrect responses for each task 

were further classified as follows, including "no answer" (where no response was provided) and 

"unknown" (where the intention was unclear) in the classification of incorrect responses. 

Commutativity: The task was classified into "whole" and "one side." "Whole" is a response that lists 

various ways to divide it where the whole number is equal. "One side" is a response that selects a way 

to divide it where one side of the given parts is equal. 

Equivalence: The responses were categorized as "insufficient" and "unnecessary." "Insufficient" refers 

to a response in which only two or only one of the three correct answer choices was selected. However, 

unnecessary choices were not selected. "Unnecessary" indicates that the respondent selected the correct 

answer choice but also chose an unnecessary option. 

Covariance: "The "wrong target" and "inverse operation" were categorized. "Wrong target" is a 

response in which the target of the change in the number of two parts is incorrect. "Inverse operations" 

are those in which the answer is obtained by subtraction instead of addition. 
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Completeness: The task, similar to the equivalence task, was categorized into "insufficient" and 

"unnecessary." Additionally, responses that equated the commutative property and listed only one of 

them were classified as "commutative." 

RESULTS 

Regarding the understanding of the "relationship between parts and whole," Table 2 presents the 

correct and incorrect response rates for each grade and element. After scoring, a two-factor mixed-

design analysis of variance was conducted, considering the grade factor and element factor. As a result, 

the main effect of the grade factor (F(1, 242) = 8.08, p < .05, ηp2 = .032) and the main effect of the 

perspective factor (F(3, 726) = 109.92, p < .01, ηp2 = .312) were significant. Additionally, the 

interaction (F(3, 726) = 0.54, p = .62, ηp2 = .002) was not significant. Therefore, concerning the 

perspective factor, post hoc multiple comparisons were conducted using Tukey's HSD method, 

revealing significant differences among all elements. 

 

Table 2: " Parts and Whole task” correct and incorrect rates for each grade level. 

Next, as shown in Table 3, the results of error analysis are presented. In the commutativity task, over 

half of the responses were categorized as "whole." The next most common error was "no response," 

accounting for one-third of the errors. In the equivalence task, errors in selecting both correct choices 

were very few, while responses with only one selection or unnecessary choices together accounted for 

40% to 50% of the errors. Other responses were mostly "no response." In the covariance task, 

significant errors could not be discerned, and "unclear" responses constituted 50% to 60%. The most 

frequent error among errors was "wrong target," making up just under 20%. Additionally, in the first 

grade, "inverse operation" was observed in about 10% of cases. In the Completeness task, the most 

common error was "insufficient (1)," occurring in 40% to 60% of responses. Others included 

"insufficient" where some correct answers were missing and "no answer". 

DISCUSSIONS 

Based on error analysis, in the commutativity task, over half of the responses were categorized as 

"whole," likely because participants misinterpreted the instructional text's implied "similar ways of 

grouping." This corresponds to the concept of equivalence. In the equivalence task, very few errors 

occurred when selecting both correct choices, and it is assumed that when participants understood the 

concept of selecting multiple options, they mostly answered correctly. However, in cases where they 

did not grasp the concept of selecting multiple options, they likely chose only one. Furthermore, when 

they couldn't comprehend the concept of "making all the numbers the same," it often resulted in no 

response. In the covariance task, identifying errors was challenging, with "unknown" responses at 50-

60%, highlighting survey limitations and the need for qualitative investigations. In the completeness 

task, most responses involved selecting only one option, indicating a lack of understanding of the 

1st grade (n=112) 2nd grade (n=132)

Commutativity Equivalence Covariance Completeness Commutativity Equivalence Covariance Completeness

corrct 70.5% 77.7% 52.2% 13.6% 84.5% 86.9% 60.4% 15.9%

incorrect 29.5% 22.3% 47.8% 86.4% 15.5% 13.1% 39.6% 84.1%
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directive to "write down all combinations." Participants could decompose numbers but lacked 

structural understanding for other combinations. 

 

Table 3: Error analysis of each task. 

References 

Björklund, C., Kullberg, A. & Kempe, U. R. (2019). Structuring versus counting: critical ways of using fingers 

in subtraction, ZDM, 51, 13-24. 

Ekdahl, A. L. (2019). Teaching for the learning of additive part-whole relations, Jönköping University, Doctoral 

thesis, Dissertation Series, No.038, 1-121. 

Kullberg, A., Björklund, C., Brkovic, I, & Kempe, U, R. (2020). Effects of learning addition and subtraction in 

preschool by making the first ten numbers and their relations visible with finger patterns, Educational Studies 

in Mathematics, 103, 157-172.

1st grade (n=112) 2nd grade (n=132)

Average response incorrect rate Average response incorrect rate

Commutativity

Whole 18.5 56.1% 12.75 62.0%

One side 2.5 7.6% 0.5 2.4%

No answer 12 36.3% 7.25 35.6%

Unknown 0 0.0% 0 0.0%

Equivalence

Insufficient(2) 1.25 4.9% 0 0.0%

Insufficient(1) 5.5 22.1% 5.75 33.2%

Unnecesary 5.75 23.1% 3.75 21.5%

No answer 11.5 45.9% 6.5 37.9%

Unknown 1 4.0% 1.25 7.4%

Covariance

Wrong target 7.5 14.4% 9.75 18.7%

Inverse opreration 7.25 13.6% 2 3.8%

All-sum 1.5 2.7% 2 3.8%

No answer 11 20.5% 5.5 10.5%

Unknown 26.25 48.8% 33 63.2%

Completeness

Insufficient 16.25 15.8% 16.5 14.2%

Commutative 2.75 2.6% 1.75 1.5%

Insufficient(1) 39.75 42.0% 66.75 60.9%

Unnecesary 3.75 4.0% 3 2.7%

No answer 23.25 24.0% 13.25 11.9%

Unknown 11 11.6% 9.75 8.8%

* "Average responses" is the average number of responses for each category.

* "Incorrect rate" is the rate in each category per number of incorrect responses in each question.
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STUDENTS’ CONSTRUCTION AND REORGANIZATION OF MEANINGS 

ABOUT MULTIVARIATION 

Nicole Panorkou and Amanda Provost 

Montclair State University 

This paper describes how sixth-grade students reasoned multivariationally as they manipulated 

variables while interacting with digital simulations of clouds, the rock cycle, and a hot air balloon. 

We provide data to illustrate three different mental processes that students used to construct and 

reorganize their meanings of multivariation, namely bridging, transforming, and reforming. Our 

findings initiate a discussion on how multivariational reasoning can become accessible to a younger 

population of students. 

BACKGROUND 

Most real-world phenomena involve complex relationships of multiple variables changing 

simultaneously that people are expected to examine and understand. Despite this societal need, the 

mathematics teaching at school usually restricts students’ explorations to phenomena studying change 

in one (variation) or two variables (covariation) only. Likewise, extensive research in math education 

has focused on characterizing and supporting students’ variational and covariational reasoning (e.g., 

Carlson et al. 2002; Ellis, 2011; Thompson & Carlson, 2017), where the latter involves envisioning 

two quantities’ values varying simultaneously. Quantities are measurable conceptual attributes 

constructed by individuals as they conceive an object’s quality (Thompson, 1994).  

An exception to this lack of multivariation research is Jones’ (2018) work in undergraduate education 

who used the context of differential equations to characterize students’ forms of multivariational 

reasoning based on the relationship they constructed. Jones refers to independent multivariation as a 

situation where some quantities can be held constant while others vary, while in situations of dependent 

multivariation a change in any one quantity produces simultaneous changes in all other quantities. In 

nested multivariation the quantities are related in a function composition structure 𝑧(𝑦(𝑥)) where a 

change in x has a corresponding change in y, and that change in y then corresponds to a change in z. 

In our most recent work (Panorkou & Germia, 2023) as part of a project studying math and science 

interdisciplinary learning, we studied sixth-grade students’ multivariational reasoning and compared 

those to Jones’ (2018) characterizations with undergraduate students. Among other forms, we 

introduced partial dependent multivariational reasoning in which students reason about how an 

independent quantity influences the simultaneous change of two dependent quantities that are not 

related to each other, and integrated multivariational reasoning in which students merge more than 

one form of multivariational reasoning in their statements (such as using both independent and nested 

multivariational forms). That study illustrated the need to investigate how these different forms of 

reasoning are constructed and reorganized in order to understand how to best support students’ 

multivariational reasoning. Consequently, in the current study we examined how students construct 

meanings about relationships of multiple quantities and especially how they reorganize meanings from 
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earlier forms, such as covariation. Specifically, we investigated, how are students’ multivariational 

meanings constructed and reorganized from earlier forms of meanings?  

We characterized each meaning as a scheme of meanings and ways of thinking that builds on students’ 

prior meanings of quantities and incorporates more sophisticated meanings than before. By 

reorganization (Piaget, 2001), we refer to humble inferences we make about their reflections and 

projections of particular meanings about the quantities and their relationships to a higher conceptual 

level where these initial meanings become part of a more coherent whole. We aimed to understand 

how students’ meanings about varying quantities could be shaped and reorganized as students interact 

with our task design, simulations, and questioning. 

DESIGN AND METHODS 

In this paper, we present our analysis from two whole-class design experiments (Cobb et al., 2003) in 

two sixth-grade classrooms from the Northeast of the United States. In one classroom, students 

explored the phenomenon of weather by interacting with digital simulations focusing on the height of 

clouds and the hot air balloon. The second classroom explored the phenomenon of rock cycle by 

interacting with the Bob’s Life simulation. Students were asked to freely explore the simulations and 

then explain the relationships they notice.  

The “How high are those cumulus clouds???” Simulation 

The “How high are those cumulus clouds???” simulation (Whittaker, 2015) displays the changes in 

the altitude at which a cumulus cloud forms according to changes in the ground temperature and the 

dew point temperature. The user can drag the two sliders, one for the ground temperature (T) and the 

other for the dew point temperature (Td), to see the corresponding changes in the altitude at which the 

cloud forms (Figure 1a). For example, when the ground temperature changes from 12 ℃ to 24 ℃ while 

the dew point temperature remains set at 0 ℃, the altitude of the cloud changes from 1,600 m to 3,100 

m (Figure 1b). Similarly, when the dew point temperature changes from 0 ℃ to 8 ℃ while the ground 

temperature remains set at 12 ℃, the cloud’s altitude changes from 1,600 m to 500 m (Figure 1c). 

       

(a)                                      (b)                                      (c) 

Figure 1: The “How high are those cumulus clouds???” simulation 
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Bob’s Life Simulation 

We designed the Bob’s Life simulation to show one possible path of a rock named Bob traveling 

through the rock cycle. Bob starts at the top of a volcano as lava (Figure 2a). The student can change 

Bob’s depth in kilometers using the “up” button (decreasing the depth) and “down” button (increasing 

the depth). Changes in Bob’s depth result in changes in Bob’s color, form, environment, temperature, 

pressure, and the time since the volcano erupted. For instance, when Bob is 4 km below sea level (-4 

km), Bob is a sedimentary rock found in the earth’s upper crust at a temperature of 40 ℃ and a pressure 

of 4,000 kPa. But when Bob is 8 km below sea level (-8 km), Bob is a metamorphic rock found in the 

earth’s lower crust at a temperature of 215 ℃ and a pressure of 33,500 kPa (Figure 2b). 

 

(a)        (b) 

Figure 2: The Bob’s Life Simulation 

The Hot Air Balloon Simulation 

The Hot Air Balloon simulation shows the relationship between the size of the flame in the balloon, 

the temperature of the air inside the balloon, the density of that air, and the balloon’s altitude. The 

student can change the temperature of the air inside the balloon using the “turn flame up” and “turn 

flame down” buttons. Increasing the size of the flame also increases the temperature of the air inside 

the balloon, which decreases the density of that air, which increases the balloon’s altitude (Figure 3). 

 

          

Figure 3: The Hot Air Balloon simulation 
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DATA COLLECTION AND ANALYSIS 

Due to COVID-19 data were collected virtually on Google Meet. The design experiments sessions 

ranged from 15 to 30 minutes. In each class, we worked with pairs or small groups of students to create 

a small-scale version of a learning ecology in order to study it in depth and detail (Cobb et al., 2003). 

Both the whole class and small group interactions were video- and audio-recorded. At the end of the 

sessions, we conducted a retrospective analysis (Cobb et al., 2003) to identify student excerpts that 

exhibit variational, covariational, or multivariational reasoning as described in our framework. The 

data were independently coded by three researchers. Any coding disagreements were fully resolved 

after discussion. In this paper, we present the retrospective analysis (Cobb et al., 2003) of two pairs of 

students to discuss the constructions and reorganizations of their meanings in depth as they engaged 

with the two simulations. Anne and Violet worked with the weather simulations while Billie and Aidan 

worked with the rock cycle simulation.  

FINDINGS 

Here, we discuss the two pairs’ constructions and reorganizations of reasoning about quantities as they 

engaged with the three simulations. 

The “How high are those cumulus clouds???” - Anne and Violet 

When we asked students to explain what the simulation told them, Violet replied that it showed “what 

happened if the dew point gets lower, it [the cloud] rises.” She later added that “when you put the 

[ground] temperature higher, the altitude increases.” These observations show that Violet was making 

connections in pairs of quantities, specifically the dew point or the ground temperature with the cloud’s 

altitude, thus reasoning covariationally (Table 1). Anne engaged in a similar reorganization, stating 

that “if you move the [ground] temperature up, it [the cloud] goes high.” She later stated a similar 

description of the relationship between the dew point and the cloud’s altitude. Violet and Anne’s 

reasoning included considering the direction of change of these quantities.  

We next encouraged students to describe how the altitude would change if they changed the two 

temperatures, ground and dew point. In response, Violet stated that “when you put the [ground] 

temperature up, it changes the altitude, but when you put the dew point up, it [the altitude] gets lower.” 

We interpret Violet’s statement to show that she bridged the two covariational relationships to reason 

multivariationally about how changes in both the ground temperature and the dew point independently 

caused different changes in the cloud’s altitude at the same time. We then asked Anne to state this 

relationship in her own words. She reasoned: 

When you keep the ground level, like the dew point to zero, if you … make the number [ground 

temperature] go higher with the cloud, the numbers on this side of the cloud [altitude], they 

start to go up. And … if you move the [ground] temperature to a lower number … the 

numbers on the side of the cloud [altitude], they start to go down also. 

In this excerpt, Anne showed that she was reasoning multivariationally about all three quantities being 

related to each other. In contrast to Violet, however, Anne did not appear to envision all three quantities 

to be changing at the same time. Instead, she kept “the dew point to zero” to fix that quantity and then 

reasoned about changes in the other two quantities in that specific situation. This is an example of 

viewing a quantity, in this case dew point, as a parameter (Thompson & Carlson, 2017) which can 

change but does not do so within a given situation. 
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Reorganization Initial Relationship(s) New Relationship 

Bridging  

 

Violet 

 

  

Anne 

 

Table 1: Anne and Violet’s Forms of Reorganizations of Relationships in “How high are those 

cumulus clouds???” 

The Bob’s Life (Rock Cycle) - Billie and Aiden 

When we asked them to describe the relationship between Bob’s depth and temperature, Aiden 

observed that “Bob’s temperature goes higher when Bob’s depth goes lower.” Similarly, Billie stated 

that “every time the rock gets deeper, the numbers, the numbers get lower. And then the temperature 

gets higher.” We interpret these excerpts to show that Aiden and Billie reasoned about these quantities 

covariationally by envisioning the changes occurring in both as happening at the same time (Table 2). 

They also gave attention to the direction of change of these quantities, as evidenced by their use of 

words such as “higher” and “lower” in their statements. When asked a similar question about depth 

and pressure, Aiden exhibited the same reorganization of his reasoning again and replied, “While Bob 

gets more deep, the pressure goes higher. He gets more pressure.” 

Reorganization Initial Relationship(s) New Relationship 

Bridging  

  
Table 2: Billie & Aiden’s Forms of Reorganizations of Relationships in Bob’s Life 

To encourage students to merge the two relationships they had reasoned about, depth-temperature and 

depth-pressure, we then asked about the relationship between all three variables. Billie answered, “The 

temperature and pressure get higher, meanwhile, the depth gets lower.” Similarly, Aiden observed that 

“the deeper it gets, the more pressure and temperature it gets.” Like Anne and Violet, we interpret 

these statements to show that both students were able to bridge their covariational reasoning into a 

multivariational envisioning of all three quantities changing at the same time. In contrast to Anne and 
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Violet’s independent multivariational reasoning, Billie and Aiden exhibited partial dependent 

multivariational reasoning as they reasoned about how the depth (an independent quantity) influences 

the simultaneous change of temperature and pressure (dependent quantities) that are not related to each 

other. 

The Hot Air Balloon - Anne and Violet 

To reason multivariationally, Anne and Violet exhibited three forms of reorganizations of their earlier 

meanings. Table 3 provides an example of each form. 

Reorganization Initial Relationship(s) New Relationship 

Bridging          (Anne) 

  

Transforming  (Violet) 

 

 

 
 
 
Reforming 

 

 
 

 

 

 

Table 3: Anne and Violet’s Forms of Reorganizations of Relationships in Hot Air Balloon 

Bridging. After having some time to freely explore the simulation themselves, Anne was asked if she 

noticed a relationship between the variables. She responded, “Yeah, when I was turning the flame up, 

it [the balloon] would go up every time I would turn it,” showing that she reasoned covariationally 

about the size of the flame and the altitude of the balloon. The next day, Anne was asked about the 

relationship between the flame and the density of the air in the balloon. She explained, “Whenever you 

turn it down, the density becomes higher,” reasoning covariationally about the relationship between 

the flame and the density of the air in the balloon. When she was later asked what the relationship 

between the altitude and the density was, she described the relationship, “When you turn the flame up, 

the altitude gets higher [turned the flame up in the simulation] and then the density gets lower. And 

(Violet) 

(Anne) 
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then if you turn it down [turned the flame down], the altitude gets lower and the density gets higher.” 

We interpret Anne’s multivariational reasoning to be a result of bridging by merging the two 

covariational relationships to generate a more complex partial dependent multivariational relationship 

between the flame, altitude, and density of air in the balloon. 

Transforming. Similar to Anne, when asked what she was able to control in the simulation, Violet 

first reasoned covariationally about the flame and the altitude of the balloon stating, “What I control 

is the flame to turn on [turned the flame up] to make the balloon go higher and the flame to turn down 

[turned the flame down] to make it lower.” However, later when she was asked about the density of 

the air inside the balloon, Violet responded, “What happens is that when I go higher [turned the flame 

up], the density inside the balloon gets lower [used cursor to point to the density output], [turned the 

flame up more] but the temperature goes higher [pointed to the temperature output].” In contrast to 

Anne who bridged two covariational relationships, we interpret Violet’s construction of an integrated 

multivariation relationship as a result of transforming her initial covariational relationship into a 

multivariation relationship by adding the quantities of temperature and density. 

Reforming. As she continued to explore the simulation, Violet was asked about the relationship 

between temperature and density. Violet explained, “the hotter the air inside the balloon is, the more 

its density decreases.” Here Violet reasoned about the covariational relationship between temperature 

and density. When asked to further explain, Violet said, “Because when you turn up the flame, it gets 

hotter, the density decreases, and it makes the balloon fly up higher.” We interpret Violet’s reasoning 

to show that she modified her previous integrated multivariation relationship using the new 

covariational relationship by reforming the relationship into a nested multivariational relationship. 

Similarly, Anne also reorganized her reasoning to express different multivariational relationships after 

considering new covariational relationships. For example, she first reasoned that “for the temperature, 

when you turn it [the flame] down, it gets cooler. And then for the density, it decreases,” constructing 

a multivariational relationship in which a change in one variable caused changes in two others. Later, 

after she had constructed the covariational relationship between temperature and altitude, we again 

prompted Anne to reason about all of the quantities. She responded, “When I turn up the temperature, 

the density starts getting low and then altitude, it shows how like the balloon is going up.” Like Violet, 

we consider this excerpt to show that Anne had reformed her construction of the multivariational 

relationship into one in which changes in each of the quantities caused a change in the next in sequence. 

CONCLUDING REMARKS 

Our findings illustrate that students go through different mental processes, and thus different 

constructions and reorganizations as they construct meanings about multivariation. In this paper, we 

presented three different ways that students used to construct and reorganize meanings about the 

relationships of multiple quantities, namely bridging, transforming, and reforming (Tables 1-3). In all 

three simulations, we see examples of students engaging in a bridging form of reorganization in which 

they first constructed two covariational relationships and then merged these into a single 

multivariational relationship. However, in the Hot Air Balloon, we also see Violet engage in 

transforming her existing construction of a single covariational relationship into multivariation by 

reorganizing it to include the addition of new variables. In other words, she expanded her covariational 

relationship into a multivariational one. Also in the same simulation, both Violet and Anne engaged in 
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reforming their initial multivariational reasoning after considering more of the covariational pairs that 

the larger nested relationship in the simulation was constructed from. This may indicate that the nature 

of nested relationships has some effect on students’ progressions of multivariational reasoning. 

We also noticed that in the two simulations, Bob’s Life and the Hot Air Ballon, the four students 

constructed a multivariational relationship that matched the form of the underlying behavior of the 

simulation. However, in the “How high are those cumulus clouds???”, Violet constructed the same 

relationship as the simulation while Anne only expressed the relationship with one of the three 

quantities held constant as a parameter. We conjecture that this may have been because of the different 

number of independent (i.e., controllable) variables in these cases. While each of the other simulations 

includes one independent variable, the “How high are those cumulus clouds???” simulation has two. 

This difference results in the simulations modeling multivariational relationships of different forms. 

We thus believe that more research is needed on characterizing students’ constructions and 

reorganizations in different types of multivariational situations. Finally, we consider that the nature of 

our questioning may have also influenced how students reasoned, since we drew their attention to 

successively increasing numbers of varying quantities. It may be possible that if we began by 

questioning students about multiple quantities, then they might engage in different forms of reasoning 

than we have described here. 
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WHEN NOTICING CHILDREN’S ALGEBRAIC THINKING 
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aUniversidad de O’Higgins (Chile), bGrupo SM (Chile), cUniversity of Granada (Spain) 

In this study, we adopt the perspective of Professional Noticing of Children’s Mathematical Thinking 

to characterize the teacher knowledge of 21 prospective elementary teachers (PTs) when considering 

the algebraic thinking of their students. Specifically, our objective was to describe how PTs attend to, 

interpret, and decide about the strategies used by a 10-year-old child to solve the open equality 6 + 4 

=  + 5. The PTs participated in an early algebraic thinking content course and analyzed a video 

showing the solution strategies used by the child. The PTs had to reply to various prompts aimed at 

attending to the child’s strategies, interpreting his understanding, and deciding how to modify the task 

based on the boy’s understanding. We analyzed the PTs’ responses through a content analysis 

following a data-driven approach. The main results show evidence that PTs followed two approaches 

when attending to and interpreting the child’s strategies: a relational approach and an arithmetic one.  

Various scholars have highlighted the importance of delving into how teachers perceive mathematical 

thinking and the learning processes of their students (e.g., Chapman, 2017). Consideration of 

mathematical thinking allows teachers to make informed decisions by applying their professional 

knowledge, which can be addressed through Professional Noticing of Children’s Mathematical 

Thinking (Jacobs et al., 2010). The purpose of this specialized type of mathematics teacher noticing is 

to understand the characteristics of student thinking, interpret it and make evidence-based informed 

decisions. Specialized literature evidence that the expertise of noticing is learned and does not occur 

naturally during the teaching experience (e.g., Schack et al., 2013; Sherin et al., 2011). Therefore, it is 

important to address it during teacher training. This study focuses on algebraic thinking, a type of 

mathematical thinking. In spite of the growing body of research reporting on aspects of algebraic 

thinking in students aged 6-12, a more in-depth description is still needed on how PTs address learning 

when promoting algebraic thinking in children (Pincheira & Alsina, 2021). 

This paper focuses on describing how PTs become involved in specific aspects of algebraic thinking 

in elementary school children (aged 6-12). Specifically, the objective of the study was to describe how 

PTs attend to, interpret, and decide about the strategies used by a 10-year-old boy to solve the open 

equality 6 + 4 =  + 5. 

THEORETICAL PERSPECTIVES 

We focused on generalized arithmetic as an approach to algebraic thinking. From this perspective, the 

emphasis was on noticing regularities in arithmetic operations that can be generalized beyond specific 

numbers (Blanton et al., 2011). The equal sign takes on a key role, which can be addressed with a 

focus on a view: (a) arithmetic, involving the equal sign and immediately providing a result; or (b) 

relational, understood as a flexible approach to calculation where expressions are transformed using 

the fundamental properties (Carpenter et al., 2003; Knuth et al., 2006). 
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Professional Noticing of Children’s Mathematical Thinking is considered a way of analyzing how 

teachers (in training or practicing) “see and make sense of classrooms in different ways and how 

particular types of experiences can support the development of their abilities to notice in particular 

ways” (Jacobs et al., 2010, p. 192). In particular, the focus was on analyzing the evidence of the 

student’s mathematical thinking and making decisions at that moment. Concretely, this model 

considers a set of three interrelated skills: (a) attending to children’s strategies, (b) interpreting 

children’s understandings, and (c) deciding how to respond on the basis of children’s understandings. 

The study 

The study presented is qualitative and exploratory. It follows Design-Based Research addressed 

through a Video Club (Sherin & van Es, 2009) in the context of an early algebraic thinking content 

course. The Video Club was composed of eight sessions. In the first session, we introduced the 

algebraic thinking model proposed by Blanton et al. (2011) and presented the Video Club as a work 

methodology. We have focused on sessions 2 and 3, aimed at generalized arithmetic. In both sessions, 

we played the same video showing David’s strategies, a 10-year-old boy, to complete the open equality 

6 + 4 =  + 5. We chose this one of the boy’s answers as it addresses the solution with two strategies: 

one focusing on calculation (“I put ten, but realized it was a mistake because I added 6 plus 4”), and 

another relational one (“we were checking that numbers gave the same result, 6 plus 4, and 5 plus 5”). 

Twenty-one Chilean PTs who were halfway through their training participated. The PTs watched the 

same video twice in succession at the start of the second and third sessions. Between the two sessions, 

which were a week apart, they addressed conceptual elements involved in generalized arithmetic as an 

approach to algebraic thinking, present in the Chilean curriculum, and how relational thinking is 

developed and used in the mathematics classroom. They all had the video transcription and were asked 

to react, in writing, to a different prompt (taken from Jacobs et al., 2010) in each session, as shown in 

Table 1.  

Video Club 

Session  

Noticing 

skills 

Prompts 
 

2  Attending  (1) Describe in detail what David did when answering the open equality.  

3  Interpreting  (2) What can be said about David’s understanding?  

Deciding  (3) How would you change the task to encourage David not to focus on 

calculation? What would you say or do? 
 

Table 1: Prompts posed to PTs in each Video Club session 

We conducted a content analysis following a data-driven approach of the PTs answers to the three 

prompts (see Table 1). This analysis promotes the development of categories based on data to be able 

to delve into how PTs attend to, interpret, and decide based on David’s strategies.  

RESULTS 

We identified two approaches followed by PTs when attending to and interpreting David’s strategies: 

arithmetic (Ar), focused on describing and/or interpreting David’s calculations when filling in the 
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blank ( ), or (b) relational (Rel), focused on describing and/or interpreting how David established 

equivalence relations between the equality elements and the equal sign. Regarding the deciding skill, 

we identified three different approaches when indicating how they would change the task: (a) focus on 

the equal sign (Eq), (b) focus on the operation properties (Op), and (c) focus on the calculation (Ar). 

Some students did not answer (NA). The main results are shown in Table 2.  

 Noticing skills 

Attending  Interpreting  Deciding 

Approach Ar Rel NA  Ar Rel NA  Eq Op Ar NA 

Students 10 10 1  3 15 3  15 2 2 2 

Table 2: Approaches evidenced in PT answers 

In relation to attending, half of the PTs who described David’s strategies followed an arithmetic 

approach, and the other half used a relational one. An example of the arithmetic approach is seen in 

the answer by PT02: “He added 6+4. He realized he had made a mistake. He justified his mistake. He 

added 6+4 (…)”. In this example, the PT described the calculations conducted. On the other hand, an 

example of the relational approach can be found in the answer by PT06: “He wrote 10 since 6+4=10, 

but then he realized his mistake: a number which has to give the same result, 6+4=5+5. He was able 

to establish relations by understanding the meaning of the equal sign”. In this example, we note how 

PT06 focused their description on the relationships between numbers (“establish relationships by 

understanding the meaning of the equal sign”) while at the same time interpreting David’s strategy. 

We found that the PTs who followed the relational approach tended to interpret spontaneously, unlike 

those following the procedural approach, which only narrated the calculation conducted.  

Regarding the interpreting, most PTs followed a relational approach when interpreting and making 

sense of the strategy used by David. Another three PTs followed an arithmetic approach, and the 

remaining PTs did not answer. An example of an arithmetic approach when interpreting is that of PT10: 

“He understands the operations, as in both cases he can calculate quickly and sufficiently. What he 

cannot develop so well is relational thinking, as he only sees the equal sign as part of a rigid operation”. 

In this example, representative of this group of PTs, we found a more specialized language, including 

expressions such as “relational thinking” and “equal sign as part of a rigid operation”. 

With regard to the deciding based on David’s understanding, 15 PTs showed an approach focusing on 

the role of the equal sign in the mathematical task. Thus, for example, A12 pointed out: “Initially, I 

would tell him to look at what there is on the other side of the = sign, because if he can see there is 

another mathematical expression it means he does not have to solve, rather it is an equality or 

equivalence. The fact there is a = does not necessarily mean solving with calculations, but rather 

finding the relationship”. On the other hand, two PTs focused their decisions only on the properties of 

the operations, as PT17 did: “What I would do is help him focus on occupying the associative property”. 

Finally, two PTs decided to jointly consider a focus on the equal sign and the properties, and two other 

PTs did not answer this prompt. 
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DISCUSSION AND CONCLUSIONS 

With this study, we have identified how PTs attend, interpret, and decide about the strategies used by 

a 10-year-old boy to solve the open equality 6 + 4 =  + 5. Specifically, we identified approaches 

followed by PTs when interacting with the child’s reasoning. These findings allow highlighting three 

main contributions. First, several authors indicated it is necessary to characterize how teachers perceive 

the mathematical thinking of their students and to what extent they do it instead of focusing on the 

variety noticed (Jacobs et al., 2011). The approaches identified help obtain information on the PTs’ 

view of the development of algebraic thinking in elementary education. The approaches go beyond 

identifying what PTs attend, interpret, or decide; they enable evidencing how these skills interact with 

the characteristics of algebraic thinking. The second contribution is jointly addressing the three 

noticing skills (Jacobs et al., 2010). Currently, the literature focuses primarily on attention and 

interpretation and rarely on decisions (König et al., 2022). Third, regarding the relational and the 

arithmetic approaches found in the PTs’ answers when attending and interpreting, our results suggest 

that, while PTs had to describe in detail the children’s strategies, it is difficult to separate description 

from interpretation, as highlighted by various authors (Jacobs et al., 2010). Furthermore, the 

approaches to observation and interpretation differ from those identified in the decision-making 

process, suggesting that the decisions made by PTs may warrant careful attention and consideration. 
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Understanding the equal sign is a fundamental concept in early algebra. Recently, while there has 

been literature on Chinese students’ understanding of the equal sign, the developmental progression 

of this understanding remains under-researched. This study further explored Chinese primary school 

students’ understanding of the equal sign to contribute to addressing this gap. 237 grade 5 students 

were tested for their understanding of the equal sign. The results showed most students possessed a 

relational understanding, and a substantial number of them developed sophisticated structural 

thinking. This research also found that the exposure to simple equations was well mentioned by 

teachers as a key factor that supported students’ conception of the equal sign. 

BACKGROUND AND LITERATURE REVIEW 

Students’ misconception of the equal sign is widely reported in the literature: many students consider 

the equal sign as a symbol of displaying calculation results (i.e., an operational understanding) rather 

than indicating an equivalent relationship of both sides (i.e., a relational understanding) (Blanton et 

al., 2018). The relational understanding of the equal sign is a fundamental concept during students’ 

progression from arithmetic to algebra. The narrow conception of the equal sign causes students 

difficulties in algebra, such as equation representation and solving (Blanton et al., 2018). Recently, a 

growing body of literature has been exploring Chinese students’ understanding of the equal sign. For 

instance, Li et al. (2008) found that the majority of grade 6 students in China hold a robust relational 

understanding. Sun and Gu (2023) further investigated the pedagogical approach to introduce the equal 

sign in China. They identified a key contributor to students’ relational understanding: the equal sign is 

first introduced to students in a quantity comparison context before they begin learning arithmetic 

operations in kindergarten. This approach provides students with a foundation of a relational view 

towards the equal sign before they begin primary school (Sun & Gu, 2023). However, the Chinese 

students’ process of gaining a solid relational understanding is not without hiccups. As Sun et al. (2023) 

showed, by grade 3, only about half of the tested students held a robust relational understanding of the 

equal sign. They suggested that the extensive arithmetic drill in early primary grades contributed to 

students’ conceptions of the equal sign reverted to the operational view. Therefore, there is still space 

to explore Chinese students’ process of developing a relational understanding of the equal sign further. 

This study focuses on students who were at the start of grade 5. We first examined their relational 

understanding of the equal sign. We then tried to identify the possible factors that influenced students’ 

conceptions. By doing this, this study contributes to a body of literature on Chinese students’ learning 

continuum of development of relational understanding of the equal sign. 

METHODOLOGY  

237 grade 5 students, 110 boys and 127 girls, from S primary school in Changchun, Jilin Province, 

China, participated in this study. The context of the participating school and students is similar to those 
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in Sun et al. (2023) (e.g., similar SES and academic rankings). Students took a diagnostic test 

(elaborated below). Their responses will be coded against three categories of understanding of the 

equal sign suggested by Stephens et al. (2013). Six mathematics teachers were interviewed afterwards 

to seek their comments about the factors that contributed to or hindered students’ relational 

understanding of the equal sign. The study was conducted at a time when students just started grade 5. 

Instrument  

Mathematics Equivalence Assessment Instrument [MEA] is a well-established tool for measuring 

students’ understanding of the equal sign, and it can be used in cross-cultural contexts, including in 

China (Simsek et al., 2021). MEA comprises three types of problems: 1) structure evaluation, which 

requires students to determine whether a number sentence, such as 11=2+9, is true or false; 2) number 

sentence solving, which asks students to fill in the missing number in a number sentence, for example, 

18+46 = __+47; 3) students’ explanation of definition of the equal sign. Sun et al. (2023) adapted MEA 

to suit the context in China (e.g., change the numbers to better align with students’ grade levels) and 

applied it to measure the first three grades students’ understanding of the equal sign in China. This 

study used test items similar to those of Sun et al. (2023) since the contexts of the two research studies 

are similar. Students wrote the definition of the equal sign first. Then, students evaluated true/false for 

given number sentences. Finally, they were required to fill in the missing numbers in the number 

sentences. For number sentence evaluation and solving items, students were asked to write 

explanations about how they got answers. There were four types of number sentences for evaluation 

and solving, as shown in Table 1. 

 

Table 1: Example Test Items for Number Sentence Evaluation and Solving  

These four types of number sentences are canonical and non-canonical forms of number sentences 

which are widely used to test students’ understanding of equal sign (Sun et al., 2023). 

Coding process 

Students’ responses were coded based on three categories of understanding of the equal sign in 

Stephens et al. (2013). The first one is ‘operational’: students consider the equal sign as showing the 

results of the calculation carried out. The second one is ‘relational-computational’: students understand 

the equal sign as indicating equivalence of both sides, but they still need full calculations to 

demonstrate this equivalence. The third one is ‘relational-structural’, which means that students can 

apply relationships among quantities to show the equivalence with minimum calculations. Both the 
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second and third types can provide evidence that students possess relational understanding. In this 

study, for the definition of the equal sign, a response was coded as ‘operational’ if a student stated that 

the equal sign means “adding numbers”, “answers”, or “totals”; if a student expressed that equal sign 

meant equivalence of both side by using specific calculation examples, it was coded as ‘relational-

computational’; if a student explained equal sign meant equivalent quantities of both sides in general, 

it was coded as ‘relational-structural’. For number sentence solving, for example, when solving 

“7+3=__+4”, if a student filled in 10 or 14 for the missing number, it was coded as ‘operational’; if 

students calculated 7+3=10 and then 10–4=6 for the missing number, it was coded as relational-

computational; if a student recognised that 4 is 1 more than 3 and so the missing number should be 1 

less than 7 so it is 6, it was coded as ‘relational-structural’. The coding procedure for number sentence 

evaluation items was similar. 

RESULTS AND DISCUSSION  

 

Figure 1: Distribution of Students’ Responses to Test Items against Categories (%) 

Figure 1 shows the majority of students achieved either level of relational-computational or relational-

structural. Above 74% and 87% of responses fall into these two categories in the definition item and 

across all other test items, respectively. This result tends to indicate that by the start of grade 5, most 

students have developed a relational understanding of the equal sign. Furthermore, a significant 

amount of students have demonstrated a structural view towards the number sentence (e.g., 53.8% of 

responses used relational-structural thinking to solve the number sentence type “a + b = c + d”), which 

can be considered as an emergence of the early algebraic thinking (Stephens et al., 2013). Sun et al. 

(2023) documented that only nearly half of grade 3 participating students possessed an operational 

understanding of the equal sign. While the participant cohort in this study was different from Sun et 

al. (2023), considering that the research contexts (e.g., schools, students) of the two studies were 

similar, it could be argued that compared to grade 3 students in Sun et al. (2023), there is an 

enhancement in students’ conception of equal sign by the start of grade 5. For instance, regarding the 

definition of the equal sign item, in this study, 74% of grade 5 students provided the ‘relational’ 

explanation, compared to only 40.4% of grade 3 students in Sun et al. (2023). Six teachers were 

interviewed to suggest what they considered to promote students’ relational understanding of the equal 

sign. Almost all teachers mentioned the exposure to simple equations (e.g., x+1=2, 2=x–1) in grade 4 
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contributed to reinforcing students’ relational conception of the equal sign. Some teacher interview 

excerpts are shown below,  

Teacher A: When introducing equations, we used the balance model. Students visualised the similarity 

between the abstract equations and the concrete balance. So, they easily comprehend that 

the equal sign indicates an equivalent relationship of both sides, like the balance beam.  

Teacher B: These students have learnt the concept of equivalence and equal sign in kindergarten by 

comparing quantities. When they were learning simple equations and saw the balance model, 

the prior knowledge about the equal sign was reactivated and reinforced.  

Teachers considered that the resemblance between the balance (beam) and equation visually supports 

a conception that the equal sign refers to the equivalence of both sides. As mentioned by Teacher B, 

the exposure to simple equations with the balance model can visually ‘reactivate’ and ‘reinforce’ that 

students perceive the equal sign as an indicator of equivalence of both sides, given that students had 

built a foundation for relational understanding in the early years. This process was further elaborated 

by teachers, stating that when learning equations, students participated in a hands-on play with the 

balance, seeing the beam tilting if one side was heavier and observing it balancing again when they 

adjusted the weights to make both side’s weight equal. This dynamic process facilitated them to attend 

to the concurrent changes in both sides of the balance, hence pressing the conception of the equal sign 

that represents the equivalence of both sides. Teacher B further commented, “Students had learnt the 

equal sign in the context of comparing quantities at earlier ages, but this comparison was static. In 

contrast, the dynamic play of the balance model could reinforce the meaning of the equal sign more”. 

Furthermore, three teachers mentioned that when learning equations, compared to earlier grades, 

students were provided with more opportunities to experience non-conventional forms of arithmetic 

operations (e.g., 5=x–2), helping them depart from an operational mindset. Traditionally, students need 

to have a relational understanding of the equal sign first before they can understand the equation. In 

the case of this study, it appears that since students had been laid with a foundation of the relational 

conception in earlier years, the introduction to simple equations, with the assistance of the balance 

model, can help them consolidate the relational understanding of the equal sign in turn. 

CONCLUSION 

The findings of this study tend to suggest that by the start of grade 5, Chinese primary students have 

developed a robust relational understanding of the equal sign. One contributing factor could be 

students’ exposure to simple equations with the balance model in grade 4, which could strengthen their 

relational view towards the equal sign that had already emerged in kindergarten. This study is 

explorative, so further investigation is worth conducting to understand more details about how simple 

equations enhance students’ conception of the equal sign, possibly with some in-depth case studies.  
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DEVELOPING RELATIONAL THINKING WITH SUBTRACTION AS 

DIFFERENCE: THE CASE OF TIMOTHY 

Karina Joyce Wilkie & Sarah Hopkins 

Monash University, Melbourne 

A foundational goal of early algebraic thinking is the development of a relational view of equivalence. 

In this study we explored Year 3 & 4 (9-11-year-old) students’ responses in individual interviews to 

subtraction tasks designed to elicit their attention to the compensation property of equality. The context 

was comparing pairs of vertical towers of blocks. Video data were analyzed using the Student Noticing 

Framework for evidence of students’ relational thinking, using concrete, contextual, and symbolic 

representations of subtraction as difference. In this paper we share our case study of Timothy. We 

provide evidence that physical towers of blocks elicited Timothy’s attention to, and expression of, the 

subtraction-compensation property but highlight his initial difficulties in attending to the direction of 

comparison between matching minuends and subtrahends. His subtraction fluency with smaller 

numbers seemed to support him in experimenting with relational thinking, through being able to 

double-check his ideas with calculations. 

Giving children the opportunity to learn generalized arithmetic through seeing the structure and 

properties of equations is important early on in their mathematics learning (Kaput, 2008). Kaput (2008) 

argued that children need to learn to abstract structures and systems from computations and relations 

at the time they are learning arithmetic: to look for and describe patterns and to use properties to 

develop and justify a variety of strategies. Such an algebraic lens may support the development of 

computation fluency during primary school (Chesney et al., 2018), while also building the necessary 

algebraic thinking for future algebra learning in secondary school (Kindrat & Osana, 2018). Previous 

research has highlighted some of the difficulties that children experience in learning to think 

relationally, particularly using the subtraction-compensation property of equality (e.g., Cooper & 

Warren, 2011; Shumway, 2018). This property can be described as follows: what you add to (or 

subtract from) one operand must be added to (or subtracted from) the other operand for the difference 

to remain the same [if a – b = d, then (a + c) – (b + c) = d] (Russell et al., 2011). To date, representations 

used to help children attend to, and explain, the compensation properties of equality have found to be 

lacking.  

In this study we sought insights into middle-primary students’ attention to and expression of generality 

with the subtraction-compensation property of equality through using a hands-on tool: vertical towers 

of blocks. We explored the potential of towers of blocks to support children’s relational thinking with 

tasks based on a ‘comparison’ (rather than ‘take-away’) model of subtraction (Usiskin, 2007). With 

the comparison model, the quantity a – b, the ‘difference’, tells how much b is less than the quantity 

a. With the take-away model, a – b, the ‘remainder’, is the quantity left when quantity b is taken away 

from an original quantity a. We hypothesized that students’ documented difficulties with the 

subtraction-compensation property may be due, at least in part, to their limited experience of the 

comparison model of subtraction (i.e., viewing subtraction as difference) and integrating this 

knowledge with their understanding of the take-away model of subtraction. The take-away model of 
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subtraction has traditionally received considerably more attention in school mathematics than the 

comparison model (Selter et al., 2012). 

BACKGROUND 

Despite notable differing conceptualizations of early algebra, there is widespread consensus that early 

algebraic thinking involves (i) deliberate generalizing and expressing generality, and (ii) reasoning 

based on generalizations (often as a separate endeavour). Algebraic thinking does not necessarily 

require communicating generalizations using conventional alphanumeric symbolization. It can be also 

communicated semiotically, such as through speech, gestures, and written markings (Lins & Kaput, 

2004; Kieran, 2022; Radford, 2011). 

Kieran (2022) categorized and synthesized research activity around children’s early algebraic thinking 

related to generalized arithmetic and referred to the general dimension of ‘relational thinking’. 

Relational thinking involves “seeing and expressing structure and properties within numbers, 

operations, and expressions” (Kieran, 2022, p. 15). Consistent with this definition but more specific, 

we refer to relational thinking as thinking pertaining to properties of equality (Wilkie & Hopkins, 

2024). With subtraction, students’ relational thinking can be evidenced in their attention to and 

expression of the compensation property of equality—how increasing or decreasing both minuend and 

subtrahend in a subtraction expression by the same amount results in an equivalent expression (Russell 

et al., 2011). Relational thinking about equality is distinguished from operational thinking about 

equality, which is primarily computational in nature (e.g., 15 – 3 = 16 – 4 because both sides of the 

equation equal 12).  

Tools for developing relational thinking 

Children visualizing and learning to coordinate both spatial and numeric structures play an important 

role in early algebraic thinking (Radford, 2011). In generalized arithmetic, “it is the meaning of the 

operations, as represented visually in diagrams, manipulatives and so on, that forms the basis of 

justification of claims of generality” (Schifter et al., 2008, p. 443). 

In early algebra research, physical materials, and visual representations, such as pan balances have 

been used to helping children develop a relational interpretation of the equal sign (e.g., Stephens et al., 

2021). Australian researchers investigated the use of unnumbered paper strips and number lines for 

middle primary students to learn the compensation properties of equality but found that students 

became confused when moving from addition (termed ‘do the opposite’ strategy) to subtraction (‘do 

the same’ strategy). They surmised that the different strategy for the subtraction-compensation 

property as compared to the addition-compensation property (i.e., do the same versus do the opposite) 

was problematic for developing this type of relational thinking (Cooper & Warren, 2011). We think 

that a likely contributing factor to the students’ difficulty was that the comparison model of subtraction 

was not clearly represented for them.  

In this current study we investigated the affordances of, and difficulties with, the use of vertical towers 

of blocks for eliciting relational thinking with subtraction. We chose this tool since it provides 

opportunities for children to make sense of subtraction modelled as difference with a familiar real-life 

representation that combines continuous attributes (i.e., height) and discrete quantities (number of 
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blocks), in line with Lins and Kaput (2004) [citing Confrey (1991)], who suggested children work with 

discrete and continuous quantities in complementary ways. 

In school mathematics, teachers typically emphasize the take-away model of subtraction more than the 

comparison model (Selter et al., 2012; Usiskin, 2007) even though both are important for 

understanding the complementary properties of additive structures and underpin the variety of flexible 

strategies for subtraction, including indirect addition (Selter et al., 2012). In this study we developed a 

sequence of 15 tasks based on the comparison model of subtraction, involving concrete, numeric and 

symbolic representations, and increasing in difficulty according to the size of the minuend, subtrahend, 

and/or difference (single digit to three-digit numbers). This paper shares the case study of a Year 4 

student, Timothy (pseudonym), and addresses the following research question: How do students 

evidence relational thinking in the context of modelling subtraction as comparison with pairs of 

vertical towers of blocks? 

RESEARCH DESIGN 

In a qualitative collective case study, 22 9-11-year-old students’ interview responses to a sequence of 

subtraction tasks were analyzed in depth using the Student Noticing Framework (Lobato et al., 2013). 

This framework has been used in prior research on students’ algebraic thinking (e.g., Wilkie, 2022). 

The unit of case study analysis (Creswell, 2013) was each student, who were selected randomly to 

include a wide range of prior levels of understanding about subtraction. Semiotic data (verbalizations, 

constructions, written markings, and hand gestures) were collected from video recordings and written 

work samples.  

The 15 tasks were designed using theoretical perspectives and empirical findings from the literature 

on embodied visualization for algebraic thinking (e.g., Radford, 2011) and relational and structural 

thinking (e.g., Mason et al., 2009). Students were involved in physically constructing and drawing 

towers of blocks, comparing numeric pairs of towers with specified numbers of blocks (e.g., ‘10 blocks 

& 8 blocks’), and then assessing true/false equivalence questions with subtraction expressions and 

completing matching open questions for finding equivalent expressions. Carpenter and colleagues 

(2003) recommended true/false and open question formats for developing early algebraic thinking with 

generalized arithmetic. 

Initial tasks making and drawing towers were included to help students visualize subtraction as the 

difference between tower heights. We assumed that children of this age may not have developed this 

meaning for subtraction, given the predominance of the take-away model, but would likely have had 

some prior experience of comparing lengths and numbers of objects. Later tasks involving written 

numeric pairs of towers were intended to emphasize the comparison model of subtraction in a 

contextualized yet written representation. The remaining tasks involved conventional subtraction 

expressions and equations (e.g., ‘True or false’: 34 – 28 = 30 – 24 and ‘Fill in the numbers’: 34 – 28 = 

__ – __) but were still worded as the difference in tower heights. These tasks increased in the size of 

minuend and subtrahend, with the intent of providing repeated opportunities for students to express 

generality by using the subtraction-compensation property of equality. 
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THE CASE OF TIMOTHY: RELATIONAL THINKING WITH SUBTRACTION 

In the following three sub-sections, findings on how Timothy evidenced relational thinking with 

subtraction tasks are shared. 

Adjusting physical towers of blocks 

Timothy was first asked to make two towers of blocks with different heights (using joinable Unifix 

blocks). He made towers of two blocks and one block, standing them vertically in front of him. When 

asked about their difference in heights, he explained (and also wrote a sentence) that Tower 1 was one 

block taller than Tower 2. Timothy was then asked to make two towers with the same difference in 

heights, and he made towers of three blocks and two blocks, placing them in front of his original towers 

(corresponding with taller tower on the left). He gestured with his hands and explained: 

Tower 1 has been added one block, that would make a tower of three [gestured from original to new tower]. 

So I added one block, just like Tower 2 has, that’s been added one block [gestured again]. 

(Q2) 

Timothy, compared to some other student participants, built towers with minimal numbers of blocks 

and explained, “I am just going to start a bit easier”. He evidenced adjusting his original towers rather 

than calculating the difference. His response is suggestive of both attending to the subtraction-

compensation property through his gesturing and expressing it through explaining: “I added one block, 

just like Tower 2 has.” His very short towers hinted at his penchant for finding a quick way to answer, 

which was noticeable in his later task responses as well.  

Moving from ‘minusing’ to noticing movements 

In the next three interview tasks (Q3 - Q5), Timothy was asked to identify the pair of towers that did 

not belong in a list of four pairs. The tower heights were represented numerically as amounts of blocks 

(e.g., ‘10 blocks & 8 blocks’, ‘11 blocks & 9 blocks’ etc.) in the first two tasks, with each pair written 

underneath each other vertically. He circled the correct answers almost immediately, using both the 

language of difference and of take away (“minusing”): 

All of these three have a difference of two, except this one [points to ‘7 blocks & 4 blocks’], which is a 

difference of three. (Q3)  

These three are the same. This one is minusing 11 [points to ‘30 blocks & 19 blocks’], minus 10 [points to 

25 & 15], minus 10 [points to 20 & 10], minus 11 [points again to 30 & 19], minus 10 [points 

to 15 & 5] (Q4) 

His prompt and accurate responses indicated fluency with subtraction involving smaller numbers and 

being comfortable with both models of subtraction (comparison and take away) when working with 

numeric representations of pairs of towers.  

In Q5, the task representation changed to symbolic subtraction expressions. The interviewer (first 

author) explained that the task was still the same (to find the pair of towers that doesn’t belong) but 

the tower heights were written with the subtraction symbol, saying, “I’ve written the towers down this 

way with the subtraction symbol but it can still mean the difference between these two numbers.” 

Timothy used and explained an indirect addition strategy to solve 35 – 8 and then also described it in 

terms of “minusing”: 
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With this one [35 – 8] I’d go 8, 18, 28 and then 29, 30, … 35 [counts by ones on fingers], so adding 7 and 

20, 27. So this would be minusing 27 to get 8. (Q5) 

His use of language for both indirect addition and take away are suggestive of conceptual links between 

subtraction as difference and subtraction as take away, even with the shift to symbolic expressions. 

This was unlike some other participants, who initially used indirect addition with numeric 

representations, but then reverted to take away when presented with symbolic expressions. Timothy 

repeated the same indirect addition strategy for 34 – 9. He then recognized immediately that 30 – 3 

was 27, explained he wouldn’t need to work out the last one, and then correctly circled 34 – 9 as not 

belonging. As with the very short towers he made at the beginning of the interview, Timothy 

demonstrated an interest in answering a task with speed. This was supported by his computational 

fluency with smaller numbers. 

The remaining tasks in the interview (Q6 - Q15) involved pairs of tasks about the same subtraction 

expression: four true/false assessments and three open-ended equations. For the first pair of tasks 

relating to 20 – 16, Timothy evidenced consistent use of operational thinking by taking away four to 

both assess different expressions and to create equivalent expressions. For example, he said when 

assessing 20 – 16 = 22 – 14: 

This would not be [true], because you’d need to minus four from 20 to get 16 but if you minus four from 

22, you only get 18, not 14. So, it has to be false. (Q6) 

For creating equivalent expressions for 20 – 16, Timothy explained that he chose a number and then 

“minused four” (and he wrote 50 – 46 and also 47 – 43). 

With Q8 (see Figure 1) Timothy explained, “This time I’ll do something different because the numbers 

are quite close.” Rather than calculating and comparing the differences (evidencing operational 

thinking), as he had done before, he focused instead on the changes between minuends and 

subtrahends. This change in focus is suggestive of his attempting relational thinking. However, 

Timothy did not initially attend to the direction of the changes, only the magnitude. He reasoned,  

Since this has been added one [gestured from 33 to 34], and this has been added one [gestured from 28 to 

29], they should be the same. (Q8 Part 1) 

 

Figure 1: Timothy’s shift to noticing magnitude and direction of changes 

It is possible that because Part 1 of this question was worded as a statement (to re-emphasize the 

comparison model), the pairing of minuends and subtrahends may have been obscured for Timothy 

and he only noticed the change of ‘one’. Unlike some other participants, Timothy did not at this stage 

double-check his answer with operational thinking and pick up his error.  
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In Q8 Part 2, when the representation became a symbolic equation (34 – 28 = 30 – 24), Timothy 

reverted to calculating the differences on each side of the equation. He again calculated the differences 

with Part 3 (34 – 28 = 35 – 27) before the interviewer asked him if he could use the same type of 

thinking he used with Part 1 (the written statement). He replied, “Yes, you could” and then reflected: 

Since this has been moved up one [writes upward arrow with ‘:1’ above 35] but this has been moved down 

1 [writes downward arrow with ‘:1’ underneath 27] that would add on 2. (Q8 Part 3) 

His written markings, including arrows, evidenced relational thinking with attention to both magnitude 

and direction of the changes, with correct pairing of minuends and subtrahends. Yet for the remainder 

of Q8 and Q9, Timothy reverted to calculating the difference, suggestive of operational thinking. It is 

possible that with the size of the numbers involved in the tasks and his evident fluency with subtraction, 

it would be more efficient for him to do so. As with Timothy, some other participants were found to 

attend to magnitude only in their initial attempts at relational thinking, but unlike Timothy, they did so 

both with written sentences and symbolic equations. They shifted to focusing on magnitude and 

direction, usually after double-checking their answers with calculations (operational thinking) and self-

correcting. Another student evidenced relational thinking with physical towers of blocks but did not 

attend to magnitude with the written representations. 

Experimenting with relational thinking and negative numbers 

It was with Q10, when the subtrahend and minuend were (deliberately) two-digit numbers with a large 

difference, that Timothy chose to try relational thinking again. He explained (of the difference between 

92 and 38 versus 93 and 40):  

I’d straight away go false because you’ve added one here but you’ve added two here. I wouldn’t know the 

difference, but I’d know it’s false. I only need to answer the question. (Q10 part 1) 

Interestingly, unlike Q8 Part 1, Timothy now paid attention to both magnitude and direction with this 

written statement (see Figure 2). 

 

Figure 2: Timothy’s attention to direction and magnitude 

It is not clear why Timothy did not have trouble using relational thinking with this written statement, 

as he had earlier with Q8. It is possible that having worked with numerous symbolic equation tasks in-

between, he now interpreted it as intended—as an equation in written format. Unlike Q9, he evidenced 

choosing to attempt relational thinking again, possibly because it would be quicker to do so than use 

operational thinking to calculate both sides of the equations.  
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Surprisingly, with Q11, Timothy did not continue using relational thinking, even though it was the 

same pair of numbers as Q10 (92 – 38). Instead, to create his own equivalent expressions, he attempted 

indirect addition to calculate the difference. This time he counted by tens from 38 to 88 but subtracted 

4 from 88 rather than added 4 to 50 and ended up with 84 (incorrect; not 54). Consequently, he wrote 

84 – 0 for his first equivalent expression and asked if that was ok. The interviewer (rather than 

correcting the mistake yet noticing his use of zero) responded that he could even use negative numbers 

if he wanted to, like towers with underground levels. He reflected: 

I think about it as like trees and roots. I’m just going to go down [writes 83 – -1 and then 82 – -2]. Since I 

am minusing 1 every time [gestures to minuends], I have to minus one every time [gestures 

towards subtrahends]. (Q11) 

It was lovely to hear Timothy adapt the towers analogy with underground levels for negative numbers 

to his own analogy of trees with roots. Although his initial subtraction calculation was inaccurate for 

this question, Timothy evidenced attempting relational thinking with expressions involving negative 

numbers, which was intriguing. It was also suggestive of his making conceptual links to some prior 

knowledge. The remaining tasks in the interview involved 3-digit numbers and Timothy continued to 

evidence relational thinking in both assessing and in creating equivalent expressions efficiently.  

CONCLUSION 

Timothy’s case provided evidence of the potential of vertical towers as a tool for developing relational 

thinking with subtraction modelled as comparison. He attended to and expressed the subtraction-

compensation property of equality when adjusting physical towers of blocks to keep their difference 

in height constant. In the tasks involving written statements, Timothy initially evidenced only attending 

to the magnitude of changes to matching minuends and subtrahends, and not direction. Yet this was 

only temporary and may have been an inadvertent task design issue since writing equations in 

sentences may have obscured the direction of changes. His fluency with smaller numbers and flexible 

use of subtraction strategies appeared to support his connecting of both models of subtraction 

(comparison and take away) and his relational thinking. His penchant for finding a quick strategy led 

to his choosing operational thinking for tasks where it seemed more efficient than attempting relational 

thinking. The task design, in not requiring calculation of the actual difference and increasing in the 

sizes of the numbers involved, may have played a role in persuading him to attempt relational thinking. 

Timothy demonstrated searching for an efficient way to solve different problems and in doing so he 

demonstrated flexibility.  

There is more to understand about the process of students attending to and expressing generality when 

learning generalized arithmetic. This study contributes qualitative evidence that vertical towers of 

blocks are a useful representation for supporting children’s attention to the subtraction-compensation 

property, and the need for further research on task design and sequencing to encourage students to 

develop relational thinking.   
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