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Abstract 

A new synthetic procedure for the efficient preparation of dinuclear ruthenium(II) 

polypyridyl complexes is reported. The compounds synthesized are 

[(bpy)2Ru(BPBT)Ru(bpy)2](PF6)2 and [(bpy)2Ru(BPZBT)Ru(bpy)2](PF6)2. (bpy = 2,2’-

bipyridine; H2BPBT = 5,5’-bis(pyridin-2-yl)-3,3’-bis(1,2,4-triazole); H2BPZBT = 5,5’-

bis(pyrazin-2-yl)-3,3’-bis(1,2,4-triazole). Electrochemical experiments show that the two 

dinuclear systems investigated exhibit pH switchable intercomponent interactions. 
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1. Introduction 

The investigation of multinuclear metal complexes has gained a central place in 

the search for supramolecular structures as potential building blocks for photochemically 

and electrochemically driven molecular devices. Several different approaches have been 

taken and many multinuclear compounds containing two or more metal centres have been 

reported. [1] However, it is now clear that in order to be able to produce more efficient 

supramolecular devices, based on multinuclear, luminescent and redox active complexes, 

larger assemblies will be required. [2] 

Most of the reported synthetic procedures, including the so-called “complexes as 

ligands/complexes as metals” strategy used to build up the larger assemblies reported up  

to  now [3] are based on a stepwise metal  coordination of multidentate ligands and 

iterative protection/deprotection methods  Such synthetic approaches require a 

considerable amount of time and effort both in the development of synthetic and 

separation techniques.  For example, recently a series of ruthenium bis(bpy) complexes 

(bpy = 2,2’-bipyridyl), based on the ligand 5,5’-bis(pyridin-2-yl)-3,3’-bis(1,2,4-triazole) 

(H2BPBT, see Figure 1) were reported. [4] In this study it was observed that during the 

synthesis of complexes containing H2BPBT, mixtures of mononuclear, dinuclear and 

trinuclear compounds were obtained. Our earlier work on pyridine-triazoles has shown 

that for these ligands coordination can occur through either the N2 or the N4 atom of the 

triazole ring yielding complexes with different physical properties in addition  

deprotonation of the triazole rings also  has to be considered. [5]  These observations 

clearly indicate that obtaining pure well defined products with multidentate ligands is 

often far from straightforward. 
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Figure 1 Ligand structures 

 

 In this contribution, we wish to report a new method for the synthesis of 

unambiguously defined multinuclear complexes based upon Ni(0) catalysed homo-

coupling reactions of suitable mononuclear precursors. The method has been employed to 

investigate the previously reported  dinuclear metal complexes containing H2BPBT and a 

new pyrazine analogue containing 5,5’-bis(pyrazin-2-yl)-3,3’-bis(1.2.4-triazole) 

(H2BPZBT, see Figure 1) has also been  prepared. The compounds synthesized have the 

molecular formulae  [(bpy)2Ru(BPBT)Ru(bpy)2](PF6)2 and [(bpy)2Ru(BPZBT)Ru(bpy)2] 

(PF6)2 respectively. To the best of our knowledge, this is the first example of a Ni(0)-

catalysed homo-coupling reaction applied to ruthenium polypyridyl complexes.[6]  The 

electronic interactions between  the two  redox active metal  centres in the dinuclear 

compounds obtained have also been  studied and are found to be strongly pH dependent. 

 

2. Results and Discussion. 

The synthetic pathway used is outlined in scheme 1. The brominated triazoles 2a and 2b 

were obtained adapting conditions previously reported for the bromination of triazoles 

[7], while the coupling reaction involving complexes 3a and 3b was carried out using 

standard conditions similar to those reported for the coupling of heteroaromatic 

compounds.[8] NMR and HPLC analysis of 3a and 3b clearly indicate that only one 

isomer, N2 bound, is obtained in both cases.  4a and 4b are obtained as the sole product 

of the respective coupling reaction and they can be precipitated by the addition of diethyl 

ether.  Analytical pure samples can be obtained by re-crystallisation from a water/acetone 
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mixture.[9]  None of the steps of this synthesis require the use of chromatography for 

purification purposes and no mixture of counter ions was obtained as reported in the 

earlier study on the H2BPT compound. [4]  In addition, in the compounds obtained the 

triazole rings are clearly deprotonated and coordinated to the N2 atom of the triazole ring.  

Detailed synthetic procedures and a detailed characterization of the compounds will be 

reported elsewhere.  

Scheme 1 

 It should be noted that the assembly of kinetically inert metal compounds (such as 

Ru(II) and Os(II) complexes) via classical Pd(0) or Ni(0) catalysed coupling reactions is a 

relatively new approach to the fabrication of multicomponent molecular systems. For 

instance, palladium catalysed hetero-coupling reactions such as the Heck, [10] the Suzuki 

[11]and the Stille reaction [12] have recently been successfully applied for this purpose. 

The homo-coupling reaction reported here represents a simplified route to the synthesis of 

symmetric multinuclear complexes, since it involves the use of only one substrate (i.e. the 

bromide derivative) as the starting material.[13] 

The interest in multinuclear metal  complexes  arises from the possibility of 

electronic interactions between  the metal centres.[1]  Such interaction allows 

intercomponent processes such as photoinduced energy and electron transfer to  occur. To 

obtain information about the electronic interactions in the compounds, electrochemical 

studies were carried out. In acetonitrile solution, both 4a and 4b undergo two successive, 

reversible one-electron oxidation processes that can be attributed to the sequential 

oxidation of the two ruthenium centres. E1/2 values of + 0.80 V and + 0.98 V vs SCE and 

of + 0.92 V and + 1.09 V vs SCE were found for complexes 4a and 4b, 
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respectively.[14,15] The extent of electronic coupling between the two metal centres can 

be estimated from the relationship:  

69.25/E
c eK ∆=  

where Kc is the comproportionation  constant and ∆E is the difference (in mV) 

between the first and the second oxidation potential [16]. Kc values of 1100 and 750 were 

found for 4a and 4b, respectively, indicating that in both complexes the bridging ligand 

mediates noticeable electronic interactions between the two redox centres.   

Interestingly, protonation of the triazolate rings of the bridge has dramatic 

consequences on the electronic coupling between the two metal subunits.  Upon addition 

of triflic acid [17], complex 4b exhibited only one reversible oxidation process, with E1/2 

at +1.13 V.  The comparison of the area of the differential voltammetry peaks associated 

to the metal based oxidation processes in both protonated and non protonated 4b suggests 

that the protonated species undergoes a two-electron oxidation.  This process has been 

assigned to the simultaneous oxidation of the two metal centres. In the absence of 

electrochemical evidence for electronic interaction, only an upper limit of 20 can be given 

for the Kc value. For 4a two one-electron processes were still observed after protonation 

of the bridge, with E1/2 at +1.06 V and +1.17 V, figures that correspond to a Kc value of 

70. 

The above experimental data clearly show that the electronic interaction between 

the metal sites in both 4a and 4b is significantly reduced upon protonation of the bridge. 

This behaviour can be explained by considering that metal-metal interaction in such 

dinuclear Ru(II) complexes mainly occurs via superexchange-assisted interaction based 

on a hole-transfer mechanism [5c, 15, 18, 19]. Under this condition, the extent of the 
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interaction depends on the energy-gap between the higher-energy dπ metal orbitals 

(metal-based HOMO) and the lower-energy, filled, σ  bridging ligands orbitals (bridge-

based HOMO). The σ bridging ligand orbitals are stabilized upon protonation, so that the 

energy gap between relevant orbitals increases, leading to decreased superexchange-

assisted electronic interactions.  Therefore 4a and 4b exhibit pH control of metal-metal  

interaction.  This result resembles that reported in somewhat similar tetranuclear 

ruthenium complexes containing protonable imidazole containing ligands. [20] 

 

3. Conclusions 

In conclusion, we have illustrated the efficiency of the Ni(0)-catalized coupling as 

a novel route for obtaining multinuclear metal complexes with made-to-order properties. 

The results obtained are promising for the efficient and unambiguous preparation of 

larger multicomponent ruthenium(II) complexes, including  assemblies featuring  pH 

switchable electrochemically driven molecular devices 
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Figure 1   Ligand structures 
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Captions for Supplementary Material 

 

S1: Electrochemistry of complex 4b in acetonitrile before (a) and after addition of two 

equivalents of triflic acid (b). Ferrocene was used as internal standard. 

S2: 1HNMR spectra of complex 3a, 400 MHz, DMSO. 

S3: 1HNMR spectra of complex 3b, 400 MHz, DMSO. 

S4: 1HNMR spectra of complex 4a, 400 MHz, DMSO. 

S5: 1HNMR spectra of complex 4b, 400 MHz, DMSO. 

Justification for Publication. 

In the search for molecular devices capable of carrying out particular functions driven by 

either photonic or electrochemical stimuli, there is a continuing interest in the synthesis of 

multinuclear supramolecular compounds. Particular interest is paid in these studies to the 

design of antenna systems and molecular switches.  In this contribution we wish to report 

a new molecular switch. In the dinuclear compounds reported the electronic coupling 

between the two metal centres can be modulated by pH and the magnitude of the 

interaction can be read by electrochemical means.   

In the synthesis of such compounds the complexity of both the bridging ligands 

and the presence of various metal centres has lead to increasing difficulties in obtaining 

pure complexes.  Often various coordination isomers are obtained and sometimes the 

presence of protonation equilibria complicates a definite assignment of the materials 

obtained.  In this contribution we also report an alternative approach to assemble 

mononuclear components into well defined dinuclear systems based on a Ni(0) based 

coupling reaction.  An approach that leads to very pure compounds and avoids the 

formation of side products. In a more general way it is an interesting example of how 

general organic chemistry techniques can be used effectively in the preparation of 

inorganic coordination complexes. So far there are not many examples of other similar 
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reactions.  We therefore feel that publication of our results as a Chem. Commun. is 

justified.   
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