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Abstract—Maulti-sensory Extended Reality (mXR) applications
represent a cornerstone technology for immersive communi-
cations in the 6G and IMT-2030 frameworks, enabling syn-
chronized stimulation across multiple human sensory modalities
to create authentic immersive experiences. mXR applications
demand simultaneous satisfaction of stringent data rate, de-
lay, and reliability requirements across all sensory streams,
necessitating an unprecedented convergence of enhanced Mobile
Broadband (eMBB) and Ultra-Reliable Low-Latency Commu-
nications (URLLC) service paradigms. Existing 5G scheduling
schemes, designed to optimize either eMBB or URLLC services
independently and typically handling decoupled data streams,
do not address the cross-modal synchronization and joint opti-
mization challenges of mXR applications. This paper proposes
DREAM-X (Delay-Reliability Aware Scheduling for Multi-sensory
XR Applications), a unified scheduling framework specifically
designed for next generation (NextG) networks to support mXR
services. This framework includes a novel Multi-modal Delay
Tracking Queue architecture that organizes multi-sensory data
units based on transmission deadlines, enabling precise cross-
modal delay coordination. We formulate the scheduling problem
as a constrained optimization and develop a Model Predictive
Control (MPC) solution with rolling horizon optimization to
ensure computational tractability for real-time deployment. The
simulation results show that DREAM-X provides multi-fold gains
in the number of satisfied mXR users compared to conventional
and state-of-the-art XR scheduling approaches, while maintain-
ing strict delay and reliability constraints.

Index Terms—Multi-sensory Extended reality, Immersive
Communication, 6G, Delay-reliability aware scheduling.

I. INTRODUCTION

Imagine a future where individuals can reach across conti-
nents to feel the texture of ancient artifacts, inhale the aroma of
distant spices, witness breathtaking landscapes, or savor exotic
flavors, all while engaging in shared virtual environments.
This is the promise of multi-sensory Extended Reality (mXR).
While traditional XR applications have primarily concen-
trated on visual and auditory experiences, true telepresence
requires the simultaneous stimulation of all five human senses:
sight, sound, touch, smell, and taste. This shift from video-
based XR to fully multi-sensory XR represents a significant
paradigm change. It redefines immersive communications by
enabling cyber-physical presence, an essential foundation for
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the Metaverse and a core objective of the ITU-R IMT-2030
vision [1]-[4]. The impact spans diverse critical domains,
including students engaging in immersive education, engineers
operating industrial equipment remotely, surgeons performing
teleoperations with haptic feedback [2], [S]. These scenarios
are not speculative projections; they are concrete enablers of
the IMT-2030’s vision for immersive communications [3].

However, delivering authentic mXR experiences over 6G
and next generation (NextG) networks presents profound
challenges that exceed conventional 5G paradigms and ex-
pose its critical limitations. Unlike traditional applications
that primarily handle decoupled audiovisual streams, mXR
involves the concurrent orchestration of five heterogeneous
sensory modalities—visual, auditory, haptic, olfactory, and
gustatory—each with distinct and stringent quality-of-service
(QoS) requirements. According to the 3GPP TS 22.261 [6],
immersive video requires high throughput (1-100 Mbps), sub-
10 ms latency, and 99.9% reliability. Spatial audio demands
data rates ranging from 5 to 512 kbps, with latency below 10
ms and similar reliability to preserve auditory coherence. Hap-
tic feedback imposes even more stringent constraints, requiring
0.8-2 Mbps throughput, latency under 5 ms, and reliability
levels between 99.9% and 99.999%. Although not yet formally
specified by 3GPP, olfactory and gustatory streams—enabled
through environmental and taste simulation technologies—are
expected to require approximately 0.1 Mbps, latency below
100 ms, and tolerate packet loss rates up to 10~2 [5], repre-
senting more relaxed but still critical constraints for complete
sensory immersion.

Recognizing these demands, 3GPP has classified mXR
under tactile and multi-modal communication services [6],
incorporating explicit cross-modal synchronization constraints
to mitigate perceptual dissonance. This multi-sensory conver-
gence disrupts the foundational 5G service triangle, tradition-
ally composed of Enhanced Mobile Broadband (eMBB), Ultra-
Reliable Low-Latency Communications (URLLC) and Mas-
sive Machine-Type Communications (mMTC), by necessitat-
ing a new service paradigm. Volumetric video aligns with the
characteristics of eMBB, while haptic feedback exemplifies the
URLLC demands. Their simultaneous satisfaction is beyond
the scope of existing 5G service categories, prompting the
emergence of Mobile Broadband and Reliable Low-Latency
Communications (MBRLLC), a paradigm that encapsulates the
joint high-throughput, ultra-low-latency, and high-reliability
requirements identified in recent literature [7]. Ultimately, this
convergence highlights a significant gap and calls for novel
solutions in NextG networks.

Although enabling mXR in NextG requires advances across



multiple layers of the network stack and architectural re-
designs, one of the most pressing challenges lies in de-
veloping novel scheduling mechanisms. Such mechanisms
must satisfy stringent delay and reliability requirements across
all sensory modalities—what we term delay-reliability con-
straints—necessitating fundamentally new schedulers. Despite
extensive research on 5G scheduling strategies [8], [9], the
current approaches are not suitable for mXR applications.
Existing proposals primarily focus on optimizing for isolated
service categories, such as eMBB or URLLC, or address
objectives such as throughput maximization in visual XR
domains [10]-[15]. However, they fail to address the com-
pounded QoS demands required by multi-sensory streams.
To the best of our knowledge, no existing work proposes a
unified scheduler capable of concurrently handling all five
sensory modalities while jointly ensuring their delay-reliability
constraints. This work addresses this fundamental gap.

We introduce DREAM-X: Delay-Reliability Aware Schedul-
ing for Multisensory XR Applications, a holistic scheduling
framework specifically designed for the unique demands of
mXR in 6G and NextG networks. The key contributions of
this work are summarized as follows:

o Multi-modal Delay Tracking Architecture: A novel Multi-
modal Delay Tracking Queue (mDTQ) architecture is
proposed, which concurrently monitors Data Unit (DU)
deadlines across all five sensory modalities while main-
taining cross-modal synchronization, essential for immer-
sive communications.

o Joint Delay-Reliability Optimization: A unified optimiza-
tion problem is formulated employing this mDTQ frame-
work to maximize the number of mXR users satisfying
the QoS constraints across all five sensory modalities,
with its NP-hard complexity established.

o Tractable MPC Solution: To address the computational
intractability of the original optimization problem, the
formulation is mapped into a Model Predictive Control
(MPC) framework with a rolling horizon optimization,
leveraging domain-specific insights to reformulate the
problem and propose practical solutions suitable for real-
time deployment.

o Performance Evaluation: Extensive simulations are con-
ducted to analyze the impact of critical system parameters
on the proposed solutions, demonstrating superior perfor-
mance compared to state-of-the-art scheduling baselines.

o Standardization Insights: The implications of this work
for 6G standardization are discussed, highlighting the
changes required for the practical integration of multi-
sensory XR into NextG network specifications.

The remainder of this paper is organized as follows: Section
IT describes related work. Section III presents the DREAM-X
framework, including the multi-modal delay tracking mecha-
nism, optimization problem formulation, and the Model Pre-
dictive Control solution methodology. Section IV provides
a comprehensive performance evaluation through extensive
simulations with various system parameters and discusses the
standardization implications for 6G networks. Finally, Section
V concludes the paper.

II. RELATED WORKS

Scheduling in 5G networks has been extensively studied,
with extensive surveys [8], [9] categorizing approaches based
on delay sensitivity, QoS guarantees, and adaptability. Clas-
sical schemes such as Round-Robin (RR) allocate resources
uniformly but disregard channel dynamics, making them un-
suitable for delay-critical services. Channel-aware schedulers
like Maximum Rate (MR) and Proportional Fair (PF) balance
throughput and fairness, with advanced implementations like
GPU-accelerated PF scheduling [16] achieving microsecond-
level decisions. However, these foundational approaches are
not well suited for multi-sensory XR applications, that have
strict delay-reliability requirements.

Machine learning has emerged as a powerful tool for
enhancing scheduling adaptability. Reinforcement learning ap-
proaches such as DEMUX [17] enable dynamic allocation for
eMBB-URLLC coexistence, while supervised learning tech-
niques employ feedforward neural networks [18] for efficient
decision-making. Integration of Time-Sensitive Networking
(TSN) principles has spurred innovations like hierarchical
particle swarm optimization with Double Q-learning [10]
and meta-schedulers using cooperative learning across base
stations [11]. Zhang et al. [12] propose constrained, risk-
sensitive DRL frameworks for managing URLLC-induced
puncturing overhead. While these ML approaches effectively
address dual-service coexistence, they focus on traditional
eMBB-URLLC scenarios rather than the simultaneous high-
throughput and ultra-low-latency demands across five distinct
sensory modalities.

Research targeting XR scheduling remains limited and pri-
marily focuses on video-centric applications. Energy-efficient
strategies exploit Discontinuous Reception (DRX) mecha-
nisms [13], while theoretical efforts model XR scheduling as
periodic Markov Decision Processes [19], [20] approximated
via nonlinear knapsack formulations. Architectural approaches
include heuristic bin-covering schedulers that prioritize XR
PDU-sets based on delay budgets [14], Weighted Round-
Robin scheduling for inter-cell interference mitigation [21],
and frame-level integration schemes [15]. Al-driven service
provisioning techniques enhance QoE [22] but lack compre-
hensive delay-reliability scheduling strategies. These existing
XR schedulers assume simplified arrival processes, periodic
traffic patterns, or fixed packet sizes—conditions rarely met
in practice—and primarily address single-modality (video)
optimization. Our work eliminates these constraints by han-
dling realistic traffic conditions while jointly optimizing delay-
reliability across all five human sensory modalities.

Complementary research in traffic modeling and metaverse
architectures has explored empirical datasets for video XR of-
floading [23], temporal prediction of VR traffic bursts [24], and
semi-Markov models for metaverse resource allocation [25].
XR loopback control mechanisms [26] enable fine-grained
traffic shaping through adaptive packet sizes and frame rates.
Recent metaverse-focused work models streaming as mas-
sive ultra-reliable low-latency communications (mURLLC)
with Neyman-Pearson criterion-driven NFV/SDN architec-
tures [27], while blockchain-based collaborative VNF man-



agement schemes optimize end-to-end network slices [28].
Although these frameworks provide valuable traffic character-
ization and architectural insights, they focus on adaptability
and resource provisioning without addressing the underlying
scheduling policies required to enforce per-modality delay and
reliability constraints across heterogeneous sensory streams.
In summary, while prior work spans diverse scheduling
methodologies, ML-driven optimizations, and architectural
innovations in 5G networks, the literature lacks a unified
framework capable of managing the coupled delay-reliability
requirements of multi-sensory XR applications. Existing ap-
proaches either address traditional service categories (eMBB,
URLLC) independently, focus on single-modality XR opti-
mization, or provide architectural solutions without scheduling
mechanisms. This paper addresses this critical gap by intro-
ducing DREAM-X, a comprehensive delay-reliability-aware
scheduling solution specifically tailored for the unique charac-
teristics of multi-sensory XR applications in NextG networks.

III. DREAM-X: DELAY-RELIABILITY AWARE
SCHEDULING FOR MULTI-SENSORY XR APPLICATIONS

Current 5G networks handle multi-modal data streams as
independent QoS flows, where MAC schedulers apply schedul-
ing algorithms (e.g., Proportional Fair) based on individual
channel quality and QoS requirements (5QI values) without
awareness of the relationships between streams. Synchroniza-
tion relies entirely on higher-layer protocols using application-
level buffering and timestamp coordination [29], [30]. This
stream-agnostic approach proves fundamentally inadequate for
mXR applications, where tight temporal coupling between sen-
sory modalities requires stringent end-to-end synchronization.
Independent scheduling leads to differential delays that break
immersive experiences, and inefficient resource allocation.

We propose DREAM-X, a novel downlink scheduling frame-
work that maximizes mXR users satisfying delay-reliability re-
quirements across all sensory modalities simultaneously. Each
modality operates under specific delay bounds (D7) within
which corresponding Data Units (DUs)—a generic term used
for packets, frames, or Protocol Data Units (PDUs)—must be
successfully delivered. Since immersive experience depends
on joint delivery across all modalities, any single-modal vi-
olation significantly impairs overall experience. Each user-
modality pair requires a minimum percentage (e.g., 99%) of
DUs meeting delay constraints for acceptable QoE, creating
the core challenge of jointly satisfying these heterogeneous
delay-reliability constraints while efficiently utilizing network
bandwidth (Resource Blocks).

DREAM-X adopts 3GPP TS-22.261’s simultaneous strict
delivery strategy where all modalities individually satisfy delay
bounds (10ms for video/audio, 5ms for haptics), extending
it to include emerging olfactory and gustatory streams for
complete five-sense immersion [5], [6]. The framework imple-
ments two core components: (1) Multi-sensory Delay Tracking
Mechanism that continuously monitors DU delay status in real
time, providing precise time-to-deadline tracking across all
user-modality pairs, and (2) Delay-Reliability Aware Scheduler
that leverages these insights to prioritize DU transmission for
maximal delay-reliability satisfaction across the user base.

at the gNB

Figure 1. Protocol Stack and System Model with Multi-sensory XR Data.

A. System Model

We adopt the standard 5G protocol stack, as shown in
Figure 1. While our proposed scheduling framework addresses
the multi-sensory XR requirements expected in 6G and future
developments, we incorporate the 5G stack and architecture in
the system model because of its clearly defined and standard-
ized protocol layers and network architecture. Multi-sensory
Data Units (mDUs), generated at the application layer, traverse
through the 5G stack to reach the Medium Access Control
Queues (MACQs) at the gNB, with each XR user-modality
pair assigned a dedicated queue. These queues buffer mDUs
and track their associated Packet Data Convergence Protocol
(PDCP) Discard Timers (PDTs), which define their individual
delay bounds [31]. DREAM-X operates at the MAC layer and
incorporates the delay tracking mechanism and the downlink
scheduler. mXR users are assumed to be randomly located
within the gNB coverage area. This study focuses solely on
the downlink; end-to-end scheduling, including uplink will
be considered in future work. We further assume that each
XR user runs a single mXR application and is admitted to
an exclusive mXR-RAN slice, dedicated to only immersive
applications. Mixed-application scenarios are outside the scope
of this work and are reserved for future investigation.

B. Multi-modal Delay Tracking Mechanism

We introduce a novel multi-modal delay tracking mech-
anism that orchestrates heterogeneous delay requirements
across five distinct sensory modalities while preserving cross-
modal synchronization integrity. The mechanism employs two
foundational concepts: Multi-modal Delay Tracking Queues
(mDTQs) and Delay Tracking Granularity (DTG), enabling
fine-grained temporal management.

1) Architecture and Design Principles: The mechanism
utilizes a multi-modal virtual queue structure, denoted as
Q[i, m, k] that organizes Data Units (DUs) according to user
index ¢, modality type m € {visual, audio, haptic, olfactory,
gustatory }, and delay state k. Initially, DUs arrive at modality-
specific MAC queues before systematic reorganization into the
structured mDTQ framework, as illustrated in Figure 2. This
architecture enables independent delay tracking per modal-
ity while facilitating coordinated scheduling decisions across
multiple sensory streams. We synchronize the DTG with the
Transmission Time Interval (TTI) duration based on numerol-
ogy configuration. For instance, under numerology 1 with a



TTI duration of 0.5 ms, the DTG is set to t; = 0.5 ms, thereby
ensuring consistent granularity in delay management.

2) Modality-Aware Enqueueing and DU Positioning:
Upon DU arrival for user ¢ and modality m, the mecha-
nism determines the appropriate mDTQ position using k =

D
J ? Lmax

» . This assignment ensures that a DU
placed in position £ must be scheduled within k& scheduling
opportunities to avoid delay violations, with position & directly
reflecting the remaining delay budget in TTI units and enabling
urgency-based prioritization across modalities. To maintain
space efficiency, we limit mDTQ size to L., effectively
over-provisioning modalities with large delay bounds. For
instance, olfactory and gustatory streams with 1-second delay
bounds would theoretically require 2000 mDTQ positions at
numerology 1 (0.5ms TTI), but are instead constrained to L,ax
positions, forcing earlier scheduling than necessary. This trade-
off significantly reduces memory requirements with minimal
scheduler overhead, since these modalities generate small,
infrequent DUs containing only triggering information rather
than substantial content data like video or audio streams.

3) Temporal Evolution and Violation Detection: During
each scheduling opportunity, selected DUs are transmitted
while unscheduled DUs undergo systematic temporal shifting
to reflect their reduced delay budgets. Specifically, unsched-
uled DUs in position k migrate to position k — 1 according
to the shifting rule: Q[i, m, k — 1] < Q[i, m, k]. This process
continues iteratively, ensuring continuous reassignment based
on updated delay constraints. DUs that reach the position
Q[i, m, 0] no longer have scheduling opportunities available,
resulting in delay violations for the specific user-modality

combination, as shown in Figure 3. The mechanism maintains
Vmul

i,m

Aml.xl B
Vioul and AP represent cumulative violations and arrivals
for user ¢ and modality m, respectively.

4) Cross-Modal Violation Management: Since immersive
experience requires synchronized delivery across all modali-
ties, violation in any single modality constitutes a user-level
violation. When violations in any modality exceed the target
threshold (e.g., 0.1% for 99.9% reliability), the user is deemed
unsatisfied. This cross-modal violation management ensures
holistic optimization of multi-sensory applications rather than
independent modality scheduling.

min Q

violation tracking through the metric v;,, = where

C. Optimization Problem Formulation

We now describe how employing the multi-modal delay
tracking structure, we can formulate the scheduling optimiza-
tion problem.

1) Objective Function: The optimization objective seeks
to minimize the number of users failing to meet delay-
reliability requirements across any sensory modality. A user
is considered satisfied only when all associated modalities
meet their respective delay-reliability targets, reflecting the
interdependent nature of multi-modal XR experiences:

N
O : minimize E H

i=1 oe{v,a,h,0,9}

Ky (T) =2 piy (D

where 7 (T') represents the achieved delay reliability vio-
lation for user ¢ and modality o € {v, a, h,0, g} over duration
T, pg denotes the target violation threshold, and I{-} is the
indicator function. The product operator ensures that violation
of any single modality’s delay-reliability requirement results
in user dissatisfaction.

2) Video Modality Constraints: To illustrate the mathe-
matical formulation, we detail the constraints governing the
video modality queue dynamics. The video stream is subject to
four fundamental constraints that capture DU arrival, service,
temporal evolution, and violation detection:

Enqueuing Constraint: New video data units (DUs) enter
the delay tracking queue (DTQ) position corresponding to
their delay bound: C1 : Q "(t+1) =a¥(t)fF(t), Vi, t, where
QZK (t) represents the queue content at the maximum delay
position K = | DV /t4] for user 4, a?(t) € {0,1} indicates
video arrival occurrence, and f7(¢) denotes the DU size.

Queue Evolution Constraint: DTQ contents undergo tem-
poral progression with service depletion: C2 : Q] —b Yt +
1) = QY (t) — a;(O)x)"(t), Vi, t,j € TV, where J' =
{1,2,..., K7}, o(t) represents the achievable data rate per
resource block for user ¢ based on channel conditions, and
x]" (t) denotes the resource block allocation decision variable.

Violation Measurement Constraint: Delay violations are
quantified as the ratio of delay-violated video DUs to total

: — XL E(1H)>0
(T = ST ) , Vi, where

QY (t) represents delay-bound-violated video DUs.

video arrivals: C3

Service Feasibility Constraint: Amount of data served can-
not exceed available queue contents: C4 : ()l () <
ngv(t)vvﬁtvj S \7iv'

3) Multi-modal Extension: The same constraint structure
applies to all remaining sensory modalities: audio (a), haptic
(h), olfactory (o), and gustatory (g). Each modality maintains
separate DTQ positions K7 = |D°/t4] reflecting their
distinct delay bounds. We define J° = {1,2,..., K7} for
each modality o. Therefore the constraint sets considering rests
of the modalities become as follows:

4) Complete Constraint Set: Audio Modality Constraints:

C5: QNI (t+1)=al(t)f(t) Vi, t
C6: QI (t+ 1) = Qj’“( ) — () (t) Vi,t,j € T
) Zt:l ’L (t>
C8: «a;(t)xl(t) < QF(t) Vi, t,j € J*
Haptic Modality Constraints:
co: QI (t+1)=d @) Vit
C10: QI+ 1) = Qj’h( ) — (O (t) Vit je Tt
Zt:l z(t)
C12: ai(t)al"(t) < QI (t) Vi t,j € T
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Figure 2. Multi-modal delay tracking mechanism at the gNB MAC using virtual DTQs. mDUs from modality m are enqueued in XR user-specific MAC
queues (MXMQs) and mapped to appropriate DTQ positions based on their modal delay bounds (mDBs). Zoomed views highlight DTQ contents for two
users and one modality (e.g., video); the same process applies across all modalities.
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Figure 3. Multi-modal delay tracking via DTQ shifting. After each scheduling
opportunity, DUs are shifted; those reaching the final queue incur delay
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Olfactory Modality Constraints:

C13: QN (t+1)=a2(t)f(t) Vi, t
Cld: QI MP(t+1)=Qrt) — ai(t)xl(t) Vi t,jeT?
T 0,0
Cl5: 7)(T) = 2=t H(TQZ &) > 0) Vi
Z;:l ag(t)
C16: a;(H)z(t) < QI°(t) Vi, t,j € J?

Gustatory Modality Constraints:

17 QM (t+1)=al()f (1) Vi, t

C18: QI M(t+1)=QI () — as(t)al9(t) Vi t,jeT?
T 0,9

C20: a;(t)zl9(t) < QP(t) Vi t,j € J?

5) System-Wide Resource Constraints:
straint:

Capacity Con-

)< C, ¥t

DD ZW

1=1 o€{v,a,h,0,9} =1

Integer Decision Variable Constraints:

c22: 2'(t)e{0,1,...,C} Vi t,j € JYX
c23: 2)*(t)e{0,1,...,C} Vi, t,j € J*
c24: 2"(t)e{0,1,...,C} Vi t,j e Jp
€25: z7°(t) € {0,1,...,C} Vi, t,j € J?
C26: 279(t) € {0,1,...,C} Vi t,j e J?

Channel Parameter Constraint:
C27: «wy(t)>0, Vit

6) Complete Problem Formulation: The complete multi-
modal XR scheduling optimization problem is formulated as:

N
O minimizez H

i=1 ge{v,a,h,0,9}
Cl-C27

{7 (T) = i}

subject to:

This formulation maximizes the number of fully satisfied
users, in line with the 3GPP specifications and the stringent
demands of immersive XR, where delay-reliability targets
are minimum thresholds for usability. When resources are
limited, the scheduler prioritizes fully serving a subset of users
(achieving >99% delay-reliability across all modalities) rather
than partially serving all at degraded quality, which would
make the XR experience unacceptable for everyone.

D. A Discussion on Inter-modal Synchronization

Inter-modal synchronization is critical for multi-sensory
XR, as temporal misalignment across modalities significantly
degrades QoE. From a scheduling perspective, this can be
addressed in two main ways: (a) the anchor-based approach,
where one modality (e.g., video) serves as the anchor and
others (e.g., audio, haptics) are scheduled relative to it using
explicit inter-modal delay constraints (e.g., audio packets must
arrive within Apy of the corresponding video frames); and



(b) the joint scheduling approach, as adopted in DREAM-
X, where all modalities are jointly scheduled within their
respective delay budgets defined in 3GPP TS 22.261 [6].
Our objective function models an AND relationship across
modalities, such that a delay violation in any modality results
in user-level failure. This stricter formulation creates tight cou-
pling via joint optimization. A user is considered successfully
served only when all modalities meet their individual delay
constraints. Since the per-modal budgets encapsulate end-to-
end requirements, jointly satisfying them inherently preserves
inter-modal alignment, allowing the receiver’s upper layers
to synchronize modalities without QoE degradation. Further
discussion is provided in Section IV.

E. Problem Complexity and Practical Challenges

The optimization problem presents intrinsic complexities
that preclude standard solution methods, requiring tailored
approaches for practical implementation. The problem con-
stitutes a Nonlinear Integer Program driven by products of
indicator functions [[ I{y7(T) > pf} in theT obje(étive and
violation measurement constraints vJ (7) = %w’
introducing nonlinearity and NP-hardness with t&pénential
solution spaces that render exact solutions infeasible for realis-
tic user populations. Additionally, optimal allocation requires
complete foresight of future traffic arrivals and channel states
in dynamic wireless settings with inherently stochastic con-
ditions. Finally, practical solutions demand sub-millisecond
scheduling, impossible to achieve for the global optimal,
necessitating efficient strategies that balance performance with
runtime feasibility.

F. Model Predictive Control Framework and Problem Refor-
mulation

To address these fundamental challenges, we employ Model
Predictive Control (MPC) framework that transforms the
intractable infinite-horizon optimization into a sequence of
manageable finite-horizon subproblems solved in rolling hori-
zon manner. At each time slot ¢, the system formulates and
solves a finite-horizon optimization over prediction horizon
H, incorporating current DTQ state Q(¢) and predicted fu-
ture conditions {ag (t + 7), &;(t + 7)}2_,. The finite-horizon
optimization yields resource allocation decisions X;.;+p for
the entire horizon, but the system implements only the im-
mediate slot allocation X,. Following implementation, the
system updates all state variables—DTQ contents Q(t + 1),
violation statistics, and user satisfaction indicators—based on
latest system dynamics. This closed-loop feedback mechanism
ensures the MPC framework adapts to real network conditions
enabling robust performance under uncertainty.

The critical innovation enabling tractable finite-horizon so-
lutions lies in reformulating the complex nonlinear subproblem
by exploiting the structure of the DTQ and transforming
nonlinear delay constraints into computationally manageable
linear inequalities. This reformulation consists of three key
innovations as follows:

1) DTQ Structure and Demand Preprocessing: The multi-
modal DTQ structure provides the foundation for problem re-
formulation through its inherent encoding of temporal schedul-
ing flexibility. Each DTQ position j represents the number of
remaining scheduling opportunities before deadline expiration:
position 57 = 0 contains deadline-expired data (violations),
while position j > 1 contains data units with exactly j
remaining time slots for successful transmission. This structure
enables direct transformation from queue state to resource
demands. For each DTQ position j > 1 containing data bits
Q77 (t), we compute the required resource blocks as:

_ QLW ¢ i
d(t) = {[ o B CAORS

0 otherwise

where «;(t) represents the achievable data rate per resource
block (RB) for user 4 at time ¢, and the ceiling operation ||
ensures integer resource block allocation. This preprocessing
transforms the bit-level queue state into discrete resource
block requirements while preserving all temporal deadline
information.

2) Cumulative Deadline Constraint Innovation: The funda-
mental insight enabling linear reformulation lies in recognizing
that DTQ position j encodes cumulative scheduling flexibility:
data at position j can be served across any combination of the
next j time slots before deadline expiration. This flexibility
translates into cumulative deadline constraints that replace
the complex indicator functions of the original problem with
linear inequalities. For demand d}" representing data at DTQ
position j, the constraint becomes:

j—1
Y a7 >dly Vioj:d? >0
7=0

This formulation captures the essential insight: if user i is to
be satisfied (y; = 1), then the cumulative resource allocation
over time slots O through 7 — 1 must meet or exceed the
demand at position j. The constraint automatically handles the
temporal flexibility while maintaining deadline guarantees.

3) Historical Reliability Integration: To ensure continuity
in user satisfaction and maximize the overall number of
satisfied mXR users, we introduce historical reliability track-
ing through indicator z;(t) that maintains awareness of past
performance without requiring infinite memory:

at) = {1 if max v7 (1) < pf
0 otherwise

where v7 (t) = Z’:E’g represents the achieved violation rate
for user ¢ and modality o, computed over a sliding window of
length W. This mechanism addresses a critical challenge in
MPC-based scheduling: if each finite-horizon subproblem is
solved independently without historical context, the scheduler
may satisfy different sets of users across time slots, potentially
reducing the overall number of users who maintain satisfaction
throughout the evaluation period. The historical reliability in-
dicator z;(t) provides decision continuity by prioritizing users
who are already meeting their delay-reliability targets in case




of resource contention, ensuring that previously satisfied users
continue to receive adequate service. This approach maximizes
the cumulative number of satisfied mXR users by maintaining
consistency rather than repeatedly switching between different
user sets. The mechanism provides: (a) decision continuity
ensuring consistent user satisfaction across MPC iterations, (b)
bounded memory requirements preventing infinite state accu-
mulation, and (c) adaptive performance tracking responding to
changing conditions.

Complete Mathematical Reformulation: Integrating the
DTQ-based demand computation, cumulative deadline con-
straints, and historical reliability tracking, each reformulated
finite-horizon subproblem at time ¢ becomes:

N
o maximizez yi - (N + 2;) )

i=1

subject to: Zx:” >d oy, Viyo,j:d7 >0 (3)

N
Y > ap7<C vre{ol,...,H-1}
=1 o

“4)
yi<z Vi ®)
7€ Z+v Yi € {07 1} V@’DO’ (6)

The objective (2) achieves dual goals: primarily maximizing
satisfied users (coefficient N dominates), and secondarily
providing continuity preference for users already meeting
their reliability targets (coefficient z;) to maintain overall
system performance. Constraint (3) implements the cumulative
deadline flexibility, (4) enforces system capacity limits, (5)
ensures only historically reliable users can be targeted for
satisfaction in the current subproblem, and (6) ensures proper
variable domains.

This transformation makes the subproblems Mixed Integer
Linear Program (MILP) that can be solved with standard MILP
solvers with convergence guarantees.

G. Finite-Horizon Subproblem Solution Methods

The reformulated finite-horizon optimization, while struc-
turally linear, remains computationally challenging due to inte-
ger constraints and potentially large solution spaces. DREAM-
X addresses this through a comprehensive solution framework
providing both optimal and heuristic approaches for solving
each finite-horizon subproblem.

1) Optimal MILP Solution for Finite-Horizon Subproblems:
For scenarios requiring theoretical optimality, we employ
Mixed Integer Linear Programming using commercial solvers
to solve each finite-horizon subproblem optimally. We config-
ure the solver with appropriate time limits and optimality gaps
for real-time operation, providing global optimality guarantees
for each finite-horizon decision within specified bounds.

2) Delay-Reliability-Aware Earliest Deadline First (DRA-
EDF) Heuristic: For practical deployment requiring computa-
tional efficiency, we propose DRA-EDF, a greedy heuristic that

Algorithm 1 Delay-Reliability-Aware Earliest Deadline First
Heuristic
1: function DRA-EDF(D, C, H,z, D: RB Demand matrix from
prepossessing)

2: Phase 1: Delay-Reliability-Based User Partitioning

3: Uy «—{i:zi=1} UL «+ {i: 2 =0} > Partition by
reliability

4: Phase 2: Temporal Priority Ordering

5: for U € {Uy, Uy} do > Sort within each tier

6: ‘ Sort users in U by earliest deadline: min idd 7 =0 i

7 end for '

8 Usorted < U UUL > Combine with priority order

9: Phase 3: All-or-Nothing Resource Allocation

10: | X« oVXIMPH e ¢ 1H > Initialize

11: for i € Usorea do > Process users in priority order

12: ‘ total_demand « >~ _ dJ ’ > Total user demand

13: ‘ if total_demand < Z%{ L Crem [7] then > Admission
control

14: | | | ALLOCATEUSERDEMANDS(i, D, X, Crem) >
Algorithm 2

15: | end if

16: end for

17: return X

18: end function

captures the essential optimization principles of each finite-
horizon subproblem while maintaining polynomial complexity.
The algorithm operates through a three-phase strategy as
detailed in Algorithm 1.

The all-or-nothing allocation strategy ensures complete user
satisfaction rather than partial service, which is critical for
multi-modal XR applications where incomplete modality de-
livery severely degrades user experience. The detailed demand
allocation process is described in Algorithm 2.

Algorithm 2 RBs Allocation with Deadline Awareness

1: function ALLOCATEUSERDEMANDS('L,D X, Crem)

2: | Collect all demands: D; {(m J,d7 m) arm > 0}

3: Sort D; by deadline: (m,j,d) < (m },] d) if j <y >
Earliest deadline first

4: for (m,j,d) € D; do

> Process demands by deadline

5: remaining_demand <+ d
6: for r=0,...,7—1do > Allocate within deadline
window

7 if remaining_demand > 0 and Crem[7] > 0 then
8: allocation <— min(remaining_demand, Crem|[7])
9: X[¢, m, 7] + X][i, m, 7] + allocation

0: Crem|[T] = Crem|7] — allocation

1

remaining_demand < remaining_demand —

allocation

12: | end if

13: end for

14: if remaining_demand > O then > Cannot satisfy this
user

15: \ Rollback all allocations for user ¢ and return

16: end if

17: end for
18: end function

H. Integrated DREAM-X Framework

The complete DREAM-X solution integrates the following
modules:

1) DTQ Management and State Evolution: The DTQ man-
agement system handles mDU arrivals, temporal evolution,
and violation detection through integrated algorithms. Algo-



rithm 3 details the core DTQ operations including enqueueing
new arrivals and managing temporal evolution.

Algorithm 3 DTQ Enqueuing and Temporal Management

function ENQUEUEARRIVALS(Q, A, t)

for i € N,o € {v,a,h,0,g} do

if Aii,0] >0 then > New arrival for user 1, modality o
delay_bound < D° > Modality-specific delay bound
enqueue_pos < min(|delay_bound/tq ]|, Lmax —1) >

Calculate position

| | Qli,o,enqueue_pos]

At [Z, O']

7: | ‘end if

8: end for

9: end function

10: function TEMPORALEVOLUTION(Q, V)

11: | forie N,o € {v,a,h,0,g9} do

1:
2:
3:
4:
5

a

+  Qi,o,enqueue_pos] +

12: if Q[i,0,1] > 0 then > Data moving to violation bin
13: | Vi, a] «— Vi[i,o] +1 > Record violation
14: end if

15: for j =0,..., Lmax — 2 do > Shift DTQ positions
16: | Qli,o,j] + Q[i,0,j + 1] > Temporal advancement
17: end for

18: Qé, 0, Lmax — 1] < 0 > Clear arrival position

19: end for
20: return Q,V
21: end function

2) Demand Computation Preprocessing with Predictions:
The demand computation integrates current DTQ state with fu-
ture arrivals and channels predictions till horizon for enhanced
optimization as shown in Algorithm 4.

Algorithm 4 Integrated Demand Computation with Prediction
funCtlon COMPUTEDEMANDS(Q, t, H, use_prediction)

if H > 0 and use_prediction then > Predictive mode

‘ A, .+H  PredictArrivals(¢, H) > Generate predictions

Qex + ExtendDTQ(Q, Avirr, H) > Extend DTQ
else

> Use current DTQ only

D « oV xIMIxsize(Qex) > Initialize demand matrix
for i € N,o € {v,a,h,0,9},j=1,...,size(Qex) do
if Qex[?, 0, 4] > 0 then > Non-empty position

| rate «+ &;(t + max(0,j — Lumax)) > Predicted
channel rate
12: | D[i,o,j] + [Qexli,o, j]/rate]
13: end if
14: end for
15: return D
16: end function

: A
i; fung:?E%TEXN%E(%ESXHf>HH’ H)
19: Qexl[ ; ,0 Lmax] < Q
20: forr=1,...,H do

> RB demand

> Extended DTQ
> Copy current state
> Add predicted arrivals

21: for i € N,o € {v,a,h,0,g} do

22: if Afi,o,t+ 7] > 0 then

23: pos <~ min(Lmax +7 — 1, Lmax + H —1) >
Future position

24: | Qexli, 0, pos] < Qext[i, o, pos] + Ali, o, t + 7]

25: end if

26: end for

27: end for
28: return Qcx
29: end function

3) Solution Application and System Update: The solution
application converts optimization results into system actions
and updates state variables as described in Algorithm 5.

Algorithm 5 Solution Application and State Update

1: function APPLYALLOCATION(Q, X4, o)
2: forze/\f,ae{vahog}do

3: allocated_rbs + X:[i, o] > Current slot allocation
4: served_bits < allocated_rbs - a; (¢) > Convert to bits
5: remaining_service <— served_bits

6 for j =1,..., Lmax do > Serve from most urgent

positions

7: if Q[4,0,j] > 0 and remaining_service > 0 then
8: service <— min(Q[, o, j, remaining_service)
9: Q[i, 0, 5] < Qli, 0, j] — service
10: remaining_service <— remaining_service — service
11: end if

12: end for

13: end for

14: return Q

15: end function

16: function UPDATEDELAYRELIABILITYINDICATORS(V, A, )
17: for i € N do

18: max_violation_rate < 0

19: for o € {v,a,h,o,g} do

20: | if Afi,0] > 0 then > User has traffic for this
modality

21: violation_rate < Vi, o]/ Ali, o]

22: max_violation_rate —
max(max_violation_rate, violation_rate)

23: | end if

24: end for

25: z; + I{max_violation_rate < p;} > Update

delay-reliability status
26: end for

27: return z

28: end function

4) Main DREAM-X Control Loop: The complete DREAM-
X algorithm integrates all components into a unified MPC
framework as outlined in Algorithm 6.

Algorithm 6 DREAM-X Main Control Loop

Require: N, | M|, Lmax, H,C, T, pt > System parameters
Ensure: Resource allocation schedule X € ZV*IMIXT

1: Initialize Q + OV *IMIXLmax v QNXIMI 7 1N

2: fort=0,...,7—1do > Main scheduling loop

3: A, + Arrivals(t) > Traffic arrivals

4: ENQUEUEARRIVALS(Q, A, t) > Process arrivals
(Algorithm 3)

5. | D « ComputeDemands(Q, t, H, prediction_enabled) >
Algorithm 4

6: if optimal_solver_enabled then > Solution method selection

7: | Xittn < SolveOptimalMILP(D, C, H, z)

8: else

9: | Xi.t+n < DRA-EDF(D,C, H,z) > Algorithm 1

10: end if

11: X+ XtttH[: 1 0] > Extract current slot solution

12: Q + ApplyAllocation(Q, X¢, o) > Algorithm 5

13: Q,V < TemporalEvolution(Q, V) > Algorithm 3

14: z < UpdateDelayReliabilityIndicators(V, A, u) >
Algorithm 5

15: end for

16: return X > Complete allocation schedule

The integrated framework shows how DREAM-X trans-
forms the intractable multi-modal XR scheduling problem into
a practical real-time implementable solution.

1. Prediction Framework

DREAM-X employs a predictive framework that forecasts
future multi-modal DU arrivals and channel states, denoted



by At:tJrH and &y.qp, over a prediction horizon H (Al-
gorithm 7). The design prioritizes computational efficiency
over accuracy due to the stringent constraints of real-time
scheduling. While advanced machine learning models could
offer higher accuracy, their computational cost may exceed
TTI deadlines. Accordingly, lightweight statistical models
are adopted to balance efficiency with acceptable prediction
quality.

Each sensory modality exhibits distinct traffic character-
istics, enabling modality-specific statistical prediction: video
follows a truncated Gaussian distribution for DU sizes and
inter-arrival jitter; audio follows a CBR pattern with min-
imal variation; haptic traffic is periodic, with uniform size
variation and controlled jitter; and olfactory/gustatory traffic
follows sporadic Poisson processes with exponential inter-
arrival times [5], [6], [32]. The predictor uses this distributional
knowledge, and the distribution parameters are adapted via
exponential moving averages over sliding windows of length
W. For channel prediction, a persistence model is used:
Gt + 7) = au(t) for 7 € [1,H]. The MPC framework
provides inherent robustness to prediction errors. At each
time slot, the scheduler solves the optimization problem based
on the current states, then recalibrates using updated DTQ
states and refreshed predictions. This closed-loop feedback
prevents error accumulation despite imperfect forecasts. The
design yields two key advantages: first, the lightweight models
introduce negligible delay, ensuring responsiveness within
TTI deadlines and enabling practical real-time deployment;
second, integration with rolling horizon optimization creates a
predictor-scheduler co-design—where re-optimization at each
slot mitigates prediction errors and their accumulation, and
modestly accurate predictions enhance the MPC optimizer’s
decision quality.

Algorithm 7 Future Arrivals and Channels Prediction

function PREDICTTRAFFICARRIVALS(t, H, A1.¢)
for i € N,o € {v,a,h,0,g} do

Extract recent observations: Afa"™ < A; [t
if o = video then

1:
2:
3
4:
5: DU sizes: fl o TN(Mslze, Tize s Lfmln, fmaxD
6:
7
8

—W

Inter-arrivals: 7; 5 ~
else if ¢ = audio then

DU sizes: fi,» = picar + N0, Usmalb)

,Uftlmm U[]mcy Tmln7 Tmax

9: Inter-arrivals: 7; 5 = Thixed + N (0, Ojiger)

10: else if o = haptic then

11: DU sizes: fi,o = phapiic +U(—06,0)

12: Inter-arrivals: 7; o = Tperiodic + N (0, afmm)

13: else if o € {olfactory, gustatory} then .

14: ‘ Inter-arrivals: 7;,, ~ Exp(A), DU sizes: fi o ~
Exp(f1)

15: end if

16: Adapt all distribution parameters using sliding window
%%

17: | Generate predictions: A; [t +1: ¢+ H]

18: end for

19: Channel Prediction: &;(7) < au(t), V7 € [t 4 1,t + H]
20: return At:t+H7 dt:t+H

21: end function

J. Complexity Analysis

DREAM-X exhibits distinct complexity characteristics that
vary across its algorithmic components. The DTQ manage-

ment operations: enqueuing requires O(N - |M|), predictive
extension demands O(H - N -|M|), while demand computation
grows as O(N - (M| - (L + H)), where N represents users,
| M| denotes modalities, H indicates prediction horizon, and
L captures maximum delay tracking depth. The optimiza-
tion phase, however, presents different complexity profiles
depending on our chosen solution method. The optimal MILP
approach faces exponential complexity of O(2N . CNIMIH .
poly(N - |M|-L-H)) due to N binary satisfaction variables
and N -|M|- H integer resource allocation variables. Whereas,
our DRA-EDF heuristic achieves polynomial complexity of
O(Nlog N+N:|M|-L-H). Both solution application and tem-
poral evolution operations require O(N | M|- L) computations
for DTQ updates and violation tracking. When we consider the
overall DREAM-X complexity across 1" scheduling intervals,
the choice of optimization approach becomes crucial. Using
optimal MILP results in T - O(2N - CN'MI-H) complexity,
which limits practical deployment to small scenarios. Our
DRA-EDF heuristic, however, achieves T - O(N log N + N -
M| - L- H) complexity, making real-time operation feasible.

It is important to note that DREAM-X operates within the
existing 3GPP-standard architecture and requires no hardware
modifications. The DTQ framework is fully implementable
through software-based queue management, reorganizing DUs
according to their remaining delay budgets using basic array
operations and arithmetic. Since downlink scheduling is per-
formed at the gNB, which possesses sufficient computational
and memory resources, both the polynomial time complex-
ity of the DRA-EDF heuristic and the space complexity of
O(N - |M| - (L + H)) are operationally feasible. Moreover,
the prediction framework utilizes lightweight statistical models
suitable for real-time execution. This design ensures minimal
computational overhead, enabling the scalable deployment of
DREAM-X without hardware bottlenecks.

IV. PERFORMANCE EVALUATION
A. Simulation Framework and Baseline Algorithms

We developed a custom system-level simulation framework
in Python. The framework adheres to the standard 5G protocol
stack. Multi-modal XR traffic is generated based on 3GPP-
compliant models (Table I); abstracted PDCP and RLC layers
handle packet processing, where PDCP discard timers define
per-modality delay bounds. The MAC layer implements the
complete DREAM-X architecture, including DTQ mecha-
nisms. The physical layer adopts the 3GPP TR 38.901 channel
model and supports modulation schemes from QPSK to 256-
QAM based on MCS levels. Each resource block’s capacity
is determined by the number of subcarriers, OFDM symbols,
modulation order, and code rate corresponding to the selected
MCS index. The simulation runs 20 independent Monte Carlo
iterations with different seeds for statistical significance.

DREAM-X operates in four variants: DREAM-X with per-
fect knowledge of future arrivals and channels using the opti-
mal solver (DK-MIP), DREAM-X with predictions of arrivals
and channels using the optimal solver (DP-MIP), DREAM-
X with perfect knowledge using heuristic (DK-HEU), and
DREAM-X with predictions using heuristic (DP-HEU). We



employed the Pyomo framework with the Gurobi solver for
optimal solutions.

To establish performance baselines, we extend classical
scheduling algorithms to accommodate multi-modal XR traffic
while preserving their fundamental principles. We develop
a unified parameterized framework through a generalized

performance metric for user 4 and modality m: ®; ,,(a, §) =

instant \ o
Wy~ %, where w,,, represents modality-specific QoS

weights (égt to 1 for equal importance across all modalities),
Rinstant denotes instantaneous achievable data rate, R; ,,, cap-
tures time-averaged rates per user-modality combination, and
(cr, B) control algorithmic behavior. The scheduling decision
selects (user*, modality”) = argmaxien’ mem Pim(a, 5).

This framework instantiates three baselin%’sfvéﬁgdulers: Multi-
modal Proportional Fair (mPF) with (o« = 1, 8 = 1) balancing
throughput and fairness, Multi-modal Maximum Rate (mMR)
with (o = 1,8 = 0) for pure throughput maximization,
and Multi-modal Round Robin (mRR) with (o = 0, = 1),
ensuring systematic traversal regardless of channel conditions.
Additionally, we implement the XR-aware PDU-Set Heuristic
(PSH) [14], extending it to a multi-modal version (mPSH) by
applying its original priority computation across all sensory
modalities, thereby providing a more competitive, XR-specific
baseline for a fairer comparison.

B. Traffic Modeling and System Configuration

Each sensory modality exhibits distinct traffic models as de-
tailed in Table 1. Video-XR traffic follows truncated Gaussian
distributions, audio maintains near-constant bit rates (CBR)
with minimal variation, haptic data features periodic patterns
with uniform size variations, while olfactory and gustatory
modalities follow Poisson processes with exponential distribu-
tions reflecting their sporadic nature [5], [6], [32]. Although
olfactory and gustatory streams typically require 100 ms-1 s
delay bounds, they are constrained to 10 ms through the L, .x
over-provisioning for space efficiency, as described earlier.

C. Performance Metrics

We employ six key performance metrics for comprehensive
evaluation: Satisfied Users counts users meeting target delay-
reliability across all subscribed modalities, representing the
primary optimization objective. Raw Delay Reliability mea-
sures DU delivery success rates across all users, providing
baseline performance assessment. Effective Delay Reliability
computes delay-reliability exclusively for satisfied users, re-
vealing quality experienced by successful XR sessions. Expe-
rience Continuity quantifies the percentage of simulation time
users maintain uninterrupted satisfaction across all modalities,
capturing temporal stability crucial for immersive experiences.
Jain’s Fairness Index evaluates fairness in delay reliability,
mean delay, and jitter among satisfied users, with values
approaching unity indicating superior fairness. Delay Statistics
provide comprehensive DU delay analysis including mean,
variance, and percentile distributions for satisfied users, en-
abling detailed QoS characterization. Note that all scheduling
schemes listed in Table I are evaluated across all setups;
however, for clarity, only those schemes that support a non-
zero number of users are shown in the figures.

MULTI-SENSORY XR TRAFF]

Table 1
IC MODELS AND SYSTEM CONFIGURATION

Video Modality

Data Rate, Frame Rate,
Delay Bound

30-60 Mbps, 60-120 fps, 5-10 ms

DU Size Dist.

Truncated Gaussian:
Nr (1, (0.1054)%, [0.50, 1.50])

Inter-Arrival Time Dist.

00U~ N7(0, 4, [—4, 4]) ms

Frame Rate

Audio Modality

Data Rate, Frame Rate,
Delay Bound

0.256 Mbps, 50 fps, 5-10 ms

DU Size Dist.

CBR with minimal variation: g +

N(0,(0.022)?)

Inter-Arrival Time

Periodic

H

aptic Modality

Data Rate, Frame Rate,
Delay Bound

1 Mbps, 1000 fps, 2.5-5 ms

DU Size Dist.

Uniform variation: o +
U(—0.054,0.05)

Inter-Arrival Time Dist.

1+ N(0,0.04) ms

Olfactory/Gustatory Modalities

Data Rate, Frame Rate,
Delay Bound

0.1 Mbps, 2 fps (average), 100 ms

DU Size Dist.

Exponential: Exp(u) where @ = mean
DU size

Inter-Arrival Time Dist.

Poisson process with A = 2 Hz

5G NR System Configuration

Carrier Frequency

3.5 GHz (FRI)

Transmission Power

43 dBm (UMa), 24 dBm (InH)

Bandwidth

50-100 MHz

Numerology

0, 1, 2 (15, 30, 60 kHz SCS)

Channel Model

3GPP TR 38.901 UMa and InH

Deployment Area

500m radius (UMa), 50m radius (InH)

Antenna Heights

hps = 25m (UMa), 3m (InH); hyg
= 1.5m

UE Mobility

Stationary

UE Distribution

Uniform random within cell coverage

Modulation Schemes

QPSK - 256QAM

Channel Estimation

Perfect CSI at current slot

DREAM-X

Scheduler Parameters

DTQ Depth (L)

10 ms (truncated), 100 ms (full)

Delay-Reliability (p)

99-99.9%

Scheduling Schemes

mPF, mMR, mRR, mPSH
DREAM-X variants

(14],

D. Results and Discussions

DREAM-X’s performance is evaluated with various system

parameters against existi

ng baselines, as follows.

1) Impact of Input mXR Users: Figure 4 shows how various

scheduling schemes handle increasing user loads. We observe
that even with just 5 users, traditional schemes struggle sig-
nificantly—mMR satisfies only 1 user by greedily allocating
all resources to the user with the best channel condition,
while mPF and mRR fail entirely to support even a single
user. Even mPSH [14], designed for video-XR applications,
does not support a single mXR user (see the next subsection
for a detailed discussion). DREAM-X variants intelligently
distribute RBs based on actual requirements, satisfying nearly
all users with minimal differences between optimal (MIP)
and heuristic solvers. At 10 users, the performance gap
widens: traditional schemes maintain their poor performance,
while DREAM-X variants support approx 9.8-8.5 users. Here,
subtle differences emerge between DREAM-X variants: DK-
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Figure 4. Effect of input mXR users: video data rate vg,. = 30Mbps; video frame rate vy, = 60fps; V/A/O/G Delay Bound (DB) = 10ms; Haptic DB = Sms;
Target Delay-Reliability (p) = 99%; f. = 3.5 GHz; BW = 100MHz; Numerology p = 1; Environment = UMa.

MIP achieves the highest performance supporting almost 10
users, whereas DK-HEU supports slightly lesser, proving our
heuristic’s effectiveness. Prediction-based variants (DP-MIP,
DP-HEU) perform slightly lower due to prediction errors, but
the gap remains small because we re-optimize at each time slot
with updated information following the MPC based rolling-
horizon framework, preventing error accumulation. The same
performance patterns persist at 15-20 users, but satisfaction
plateaus around 10-12 users—revealing the network’s funda-
mental capacity limit.

Raw delay-reliability metrics, averaging across all users
(satisfied and unsatisfied), decrease with load and show
mPF/mRR outperforming mMR since they serve multiple
user-modality pairs rather than focusing on good channel
conditions. mPSH performs slightly better than traditional
schemes due to its specifically designed heuristic for XR appli-
cations. However, since mXR requires > 99% delay-reliability
across all modalities simultaneously, mMR’s focused approach
actually yields better user satisfaction than other scheme’s
scattered efforts. All DREAM-X variants achieve ~ 99.9%
effective delay-reliability and experience continuity for satis-
fied users, demonstrating scheme effectiveness.

2) Discussion on mPSH Scheduling: The previous sub-
section showed that mPSH, despite being state of the art,
fails to support even a single user under standard conditions,
underperforming even mMR. Here, we examine this behavior
under varying configurations. mPSH computes priority as
my,; = e*i /B, where oy ; denotes transmission progress
and f3, ; reflects normalized urgency. While temporally aware,
this approach contrasts with our mDTQ-based explicit delay
tracking, which proves critical under tight timing constraints.

Figure 5 systematically evaluates mPSH under four config-
urations. Under favorable conditions (5 users, 100 MHz band-
width, and relaxed delay bounds of 20 ms for V/A/O/G and
10 ms for H, which is double the standard), mPSH supports
approximately 4 users, compared to 5 supported by DREAM-
X variants (subplot a). However, performance degrades sharply
under resource constraints. At 50 MHz bandwidth (subplot b),
mPSH supports only one user, while DREAM-X maintains
support for approximately 4.5. Increasing the network load to
10 users at 100 MHz (subplot c) causes complete failure of
mPSH, whereas DREAM-X continues to support nearly all
users. Finally, under standard tight delay bounds (10/5 ms in
accordance with 3GPP specifications, subplot d), mPSH fails
entirely, while DREAM-X supports between 9 and 10 users.
These outcomes demonstrate the critical importance of explicit
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Figure 5. Comparative evaluation of mPSH with other schemes under varying
network conditions. (DKM : DK-MIP, DPM : DP-MIP, DKH : DK-HEU, DPH
: DP-HEU).

delay tracking for multi-modal XR scheduling.

This performance gap highlights two key limitations. First,
lacking real-time visibility into delay budgets, mPSH cannot
distinguish delay-critical data from data with temporal slack,
instead relying solely on completion ratios. Moreover, it does
not incorporate urgency into an optimization framework, un-
like DREAM-X. Second, under constrained resources (such
as limited system bandwidth), mPSH continues to allocate
resources across all users, resulting in widespread partial de-
livery and zero satisfaction. In contrast, DTQ enables explicit
delay tracking, which DREAM-X integrates into an optimized
solution. Its design supports strategic abandonment, focusing
resources on feasible users while sacrificing others, thereby
implementing implicit admission control that transforms un-
controlled degradation into managed capacity with guaranteed
QoS. These results underscore the need for explicit delay
tracking and targeted allocation for delay-reliable scheduling.

3) Delay Analysis: Figure 6 reveals the delay character-
istics under increasing network congestion (considering only
satisfied users). Under light loads (5 users), mMR achieves
low delays through opportunistic scheduling, but satisfies
very few users. Our DREAM-X variants maintain consistent
median delays around 5.5ms—higher than mMR but within
target requirements. As load increases to 10 users, DREAM-X
demonstrates remarkable stability with median delays between
5.5-6.5ms and 95th percentile delays below 7.5ms. Under
heavy loads, DREAM-X continues to deliver consistent per-
formance with median delays stabilizing around 6-7ms, while
95th percentile delays never exceed 9ms—ensuring delay-
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reliability essential for immersive experiences.

4) Inter-modal Synchronization: Beyond overall delay,
multisensory XR demands inter-modal synchronization across
all modalities. Figure 7 presents a per-modality delay analysis
for satisfied users, illustrating how DREAM-X accommodates
diverse temporal requirements and synchronization across five
sensory streams. Delivery of video data, the most bandwidth-
intensive modality, records median delays of 3-5 ms and
95th percentiles of 7-9 ms, well within the 10 ms bound;
these results reflect the success of scheduling large video-DUs
over multiple slots. Audio data exhibits tighter control, with
medians of 2-3 ms and 95th percentiles below 6 ms, aided
by small packet sizes that allow flexible scheduling. Haptic
traffic, constrained by the strictest bound of 5 ms due to tactile
feedback demands, achieves the lowest delays, with medians
of 0.5-1 ms and 95th percentiles below 3 ms, as DREAM-
X’s DTQ accurately prioritizes these packets. Transmission of
olfactory and gustatory modalities, governed by relaxed 10 ms
limits, exhibits medians of 2-6 ms and 95th percentiles near
9 ms, showing effective exploitation of their temporal slack to
prioritize the more constrained stream types.

The consistency across DREAM-X variants underscores the
framework’s robustness. These results offer key insights into
inter-modal alignment. Since our formulation enforces joint
scheduling with an AND relationship, requiring all modalities
to meet their delay bounds for a user to be satisfied, tight
delay control naturally ensures synchronization. For satisfied
users, all modal data arrives within narrow temporal windows
(0.5-6 ms medians), bounding inter-modal skew by differences
in delay distributions. For example, the worst-case audio-
video skew is approximately 3 ms (5 ms video median minus
2 ms audio median), well within the 30 ms psychophysical
threshold for AV sync. This demonstrates that our implicit syn-
chronization, achieved through joint optimization under strict
per-modality constraints, maintains the inter-modal alignment
essential for high-fidelity multisensory XR.
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5) Fairness Analysis: Figure 8 shows Jain’s Fairness Index
(JFI), computed over satisfied users only. We consider only
the satisfied users to correctly reflect the binary nature of
XR service, where users either meet the 99% delay-reliability
target or do not. Maximizing satisfied users under resource
constraints requires fully serving a feasible subset while ex-
cluding others, effectively implementing implicit admission
control. Including all users in the JFI calculation would
misrepresent the optimization objective. DREAM-X variants
exhibit high fairness across delay reliability, mean delay, and
jitter under all loads. In contrast, mMR shows high fairness
for reliability but poor fairness for delay and jitter due to
opportunistic scheduling and the absence of DTQ mechanisms.
It transmits under favorable channel conditions, resulting in
inconsistent delays even among the few satisfied users.

6) Impact of System Bandwidth: Figure 9 analyzes the
impact of available spectrum on performance. At 50 MHz,
schemes such as mPF, mRR, and mPSH fail completely, while
mMR supports only one user. DREAM-X variants remain
resilient, supporting about 5 users through efficient resource
optimization. Doubling the bandwidth to 100 MHz yields
minimal gains for existing approaches, but DREAM-X variants
fully exploit the additional spectrum. DK-MIP scales up to
12 users, while others reach 10 to 11. This highlights a
key insight: additional bandwidth alone offers limited benefit
without intelligent scheduling.

7) Impact of Data Rate: Figure 10 examines the impact of
video data rate. At 30 Mbps, DREAM-X variants support 10
to 12 users. Increasing the rate to 60 Mbps reveals a clear
capacity trade-off, with performance tapering to 7 to 8 users.
Higher rates consume more resource blocks per user, limiting
the number of concurrent sessions even for advanced sched-
ulers. While video is the most bandwidth-intensive modality,
similar trends are observed across all modalities.

8) Impact of Frame Rate: Figure 11 shows the impact of
video frame rate variations. At 60 fps, DREAM-X variants
face challenging conditions with DK-MIP supporting 6 users
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while other variants accommodate around 5-4 users. This is
because at 60 fps, video DUs arrive in larger, more bursty
manner that create scheduling bottlenecks. When multiple
users experience simultaneous bursts, the scheduler struggles
to serve large DUs within strict delay bounds. Conversely, 120
fps distributes the same total data rate across smaller, more
frequent DUs, creating a relative uniform traffic flows that are
easier to schedule. Our results highlight that traffic uniformity,
not just total load, critically determines performance.

9) Impact of Delay Bound Requirements: Figure 12 ex-
amines how delay bounds affect performance. When we
impose stricter delay bounds (5/2.5 ms for video/haptic),

EmMR EmMR  EDP-MIP EDP-HEU
W DK-MIP HDK-MIP lIDK-HEU

EDP-MIP 100

W DK-HEU

%
S

WDP-HEU

Satisfied mXR Users
£ (=)
=3 =3

Experience Continuity (%)
o
=3

=)

5/25 10/5 5/25 10/5
Delay Bound (V, A, O, G/ H) [ms] Delay Bound (V, A, O, G / H) [ms]

Figure 12. Effect of Delay Bound: N = 20, vg,. = 30Mbps, vy, = 60fps,
Delay-Reliability = 99%, f. = 3.5 GHz, FR1, BW = 100MHz, p = 1, UMa.
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even DREAM-X faces significant challenges, exposing the
fundamental difficulty of meeting sub-5ms latencies for com-
plex multi-sensory traffic. With relaxed delay bounds (10/5
ms), DREAM-X variants unlock substantial improvements.
Traditional schemes show minimal gains, with mMR still
capped at one user. This asymmetric response reveals that
DREAM-X can effectively exploit relaxed timing constraints,
while existing schemes remain limited.

10) Impact of Target Delay-Reliability: Figure 13 demon-
strates system performance under varying delay-reliability
targets. The results reveal minimal performance differences
between these stringent requirements—DREAM-X variants
support 11-12 users under 99% targets with slight degradation
to 10-11 users at 99.9%, while traditional schemes remain
ineffective regardless of the reliability threshold. All DREAM-
X variants maintain near-perfect continuity (~100%) under
both delay-reliability targets, confirming that satisfied users
receive consistently excellent service.

11) Impact of Prediction Horizon: Figure 14 reveals the
relationship between prediction depth and scheduling perfor-
mance. At zero horizon, DREAM-X operates purely on current
DTQ knowledge, supporting 9-10 users. While effective, this
myopic approach limits the scheduler’s ability to anticipate
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future conditions. When we extend the horizon to 5 time
slots, all DREAM-X variants reach peak capacity of 12-10
users, unlocking significant performance gains. This sweet
spot demonstrates how modest future visibility enables supe-
rior planning. However, further horizon extension to 10 and 20
slots yields diminishing returns, with performance plateauing
or slightly degrading due to accumulated prediction errors.

12) Impact of Numerology Configuration: Figure 15 ana-
lyzes the impact of numerology configuration on scheduling
performance. At numerology 0, DREAM-X variants support
approximately 4 users, whereas mPF, mRR, and mPSH fail to
support any users, and mMR accommodates only 0.3 users.
At numerology 1, DREAM-X achieves its peak capacity of
4.5-4.6 users, while mMR improves to 0.7 users. However, at
numerology 2, a critical divergence appears: mMR continues
its monotonic improvement, whereas DREAM-X exhibits a
slight capacity reduction to approximately 4-4.1 users.

This reduction arises from fundamental differences in
scheduling behavior. Traditional mMR consistently benefits
from increased numerology due to its opportunistic approach;
higher scheduling frequency, offering four times more oppor-
tunities at numerology 2 compared to numerology 0, enhances
its ability to exploit favorable channel conditions for a single,
greedily selected user. In contrast, DREAM-X’s advanced
multi-user, multi-modality optimization reaches its optimum at
numerology 1, where temporal and spectral granularity are best
balanced. The performance decline at numerology 2 results
from inherent trade-offs. Doubling the subcarrier spacing from
30 kHz to 60 kHz halves the number of available RBs
while doubling the scheduling frequency. For DREAM-X,
which allocates RBs across multiple user-modality pairs, this
reduction imposes substantial constraints. With fewer RBs,
the scheduler has reduced flexibility to assign RBs to user-
modality pairs, particularly given the heterogeneous channel
conditions and stringent delay requirements, along with the
inability to allocate fractional RBs. This limits the efficiency
of multi-user RB allocation, even under perfect delay tracking.
Although the increased scheduling frequency provides finer
temporal resolution, it does not compensate for the reduced
RB availability. Numerology 1 thus emerges as the optimal
point, providing adequate temporal responsiveness for sub-
10 ms delay bounds while preserving sufficient RB resources
for effective allocation across user-modality pairs. Experi-
ence continuity remains nearly perfect (~100%) across all
numerologies for DREAM-X, confirming consistent service
quality for satisfied users.
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These insights hold important implications for 6G stan-
dardization. While 5G determines numerology primarily based
on deployment scenarios and frequency range, future 6G
systems targeting immersive XR may benefit from incorpo-
rating scheduler complexity into numerology selection. In the
system configuration studied here, numerology 1 yields the
best performance by balancing temporal granularity with RB
availability. However, additional experimentation and field val-
idation across varied operational settings are required to refine
these conclusions. Addressing this systematically remains a
key direction for future work.

13) Impact of DTQ Truncation: Figure 16 quantifies the
performance impact of DTQ truncation, addressing concerns
about potential scheduling bias when olfactory and gustatory
modalities, which have longer delay bounds (e.g., 100 ms), are
artificially constrained to a truncated queue length (L. =
10 ms). Results reveal modest but measurable degradation:
full DTQ representation enables DK-MIP to support approx-
imately 12.5 users, compared to 11 users with truncation,
representing a reduction of 1 to 1.5 users across all DREAM-X
variants. This degradation arises from the truncation’s inability
to accurately capture the full delay distributions of long-bound
modalities, resulting in suboptimal decisions based on com-
pressed delay information. Importantly, experience continuity
remains nearly perfect (~100%) under both configurations,
confirming consistently high-quality service for satisfied users.
These findings demonstrate that while full DTQ representation
offers better performance, it comes at the cost of greater
complexity, whereas the truncated implementation provides a
practical, memory-efficient alternative with acceptable trade-
offs for resource-constrained deployments.

14) Performance in InH Setup: Figure 17 examines
scheduling performance across deployment environments,
comparing Urban Macrocell (UMa) and Indoor Hotspot (InH)
scenarios. The InH scenario reveals significant differences
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due to favorable indoor propagation characteristics. Traditional
mMR shows minimal improvement, supporting approximately
one user in UMa and barely 1.5 users in InH, failing to lever-
age the advantages of indoor channel conditions. mPF, mRR,
and mPSH do not support even a single mXR user in either
scenario. In stark contrast, DREAM-X variants demonstrate
substantial capacity gains in the InH environment, supporting
12-10 users in UMa versus 14-11 users in InH, reflecting
a 15-20% improvement. This enhancement is attributed to
reduced path loss and higher line-of-sight (LOS) probability
in indoor deployments, which enable more reliable high-
rate transmissions under identical bandwidth constraints. All
DREAM-X variants maintain near-perfect experience continu-
ity across both deployment scenarios, confirming consistently
high service quality for satisfied users regardless of the en-
vironment. These results demonstrate DREAM-X’s capability
to intelligently exploit scenario-specific channel characteristics
while preserving robust delay-reliability guarantees.

15) Guide to Uplink mXR Scheduling: This paper explic-
itly targets downlink scheduling; however, uplink and end-
to-end scheduling are equally critical. We now discuss the
implications for uplink scheduling and how the proposed
approach may extend to end-to-end scheduling, encompassing
both uplink and downlink. Figure 18 provides preliminary
insights through a simplified evaluation. We partition the end-
to-end air-interface delay budgets as follows: for audio and
video (25 ms total), 10 ms for downlink, 10 ms for uplink,
and 5 ms for Scheduling Request (SR) plus Buffer Status
Report (BSR)/Delay Status Report (DSR) signaling overhead;
for haptic traffic (15 ms total), 5 ms each for downlink and
uplink, and 5 ms for SR/BSR/DSR signaling.

Additionally, to reflect practical usage, we model asym-
metric traffic patterns. In the downlink, traffic is video-
heavy (30 Mbps video, 1 Mbps haptic), whereas in the
uplink, there is more haptic data (25 Mbps video, 5 Mbps
haptic). Results reveal a notable capacity asymmetry. Under
the original downlink-focused evaluation, DREAM-X variants
support 10 to 12 users. In the uplink scenario with more
haptic traffic, DREAM-X supports 13 to 14 users. Despite
similar aggregate data rates in both directions (approximately
30 to 31 Mbps), the uplink achieves higher capacity due to
reduced video traffic, which mitigates the bursty patterns that
typically challenge scheduling under tight delay constraints.
When multiple users experience simultaneous video bursts, the
scheduler struggles to deliver large DUs within strict bounds.
In contrast, haptic traffic exhibits a more uniform temporal
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profile, which facilitates more efficient scheduling. We empha-
size that these results provide directional insights but are not a
substitute for comprehensive uplink scheduling analysis. Rig-
orous evaluation incorporating full BSR/DSR modeling, SR-
induced stochastic delays, and coordinated uplink-downlink
scheduling mechanisms remains critical future work.

E. Standardization Implications

This section discusses standardization requirements for
guaranteeing multi-sensory XR KPIs in NextG networks,
building upon 3GPP Release 18’s PDU Set awareness frame-
work [33]. 3GPP introduced PDU Sets to address video-
XR requirements: application-layer frames are split into inter-
dependent PDUs, all of which must be delivered within tight
delay bounds to enable frame decoding. The standard defines
the PDU Set Delay Budget (PSDB) for delivery deadlines,
PDU Set Error Rate (PSER) for loss constraints, PDU Set Im-
portance (PSI) for content criticality, and PDU Set Integrated
Handling Indicator (PSIHI) for early discard signaling. In our
framework, a Data Unit (DU) is analogous to PDU Sets; the
delay bounds of the DUs correspond to PSDB, the target delay-
reliability maps correspond to PSER, and modality-specific
criticality relates to PSI.

Multi-Modal PDU-Set Extensions: The current standard
primarily targets video-XR with single-modality optimization.
Extending to multi-sensory XR requires additional parameters,
such as inter-modal synchronization parameters, to specify
temporal alignment requirements across modalities. For ex-
ample, inter-modal skew (Ap,, m,;): the maximum tolerable
temporal misalignment between corresponding PDU sets of
modalities m; and m;. Additionally, these parameters should
support dynamic cross-modal adjustment: for example, when
one modality violates its delay constraints, synchronized data
from other modalities become perceptually useless, neces-
sitating dynamic PSI reduction to avoid wasting resources.
Furthermore, SDAP [30] must be extended with enhanced
indicators that encode per-DU deadline information for each
modality. Current MAC logical channel prioritization cannot
differentiate packet criticality within QoS flows; new MAC
Control Elements (CE) [29] are needed for real-time, per-
modality delay budget signaling at the scheduler level.

Cross-Layer Control Signaling: Protocol layers must ex-
change mXR-specific requirements and performance feedback.
RRC requires new signaling to carry the mXR configuration
from the core network to the gNB, including per-modality
delay bounds and delay-reliability thresholds [29], [31]. Stan-
dardized feedback mechanisms are essential, whereby the



MAC layer scheduler reports QoS violations (such as delay
bound violations) to upper layers, enabling dynamic service
adaptation. Current standards provide limited support for such
fine-grained, multi-modal QoS signaling. 6G needs to stan-
dardize these capabilities to enable the cross-layer information
exchange necessary for transforming multi-sensory XR from
a conceptual vision into a deployable reality.

V. CONCLUSIONS AND FUTURE WORK

This work addressed a fundamental challenge in realizing
the IMT-2030 vision for immersive communication: enabling
seamless multi-sensory XR experiences in NextG networks.
DREAM-X, a comprehensive delay-reliability-aware downlink
scheduling framework that transforms the intractable challenge
of joint optimization across five human sensory modalities
into a practical real-time solution, was introduced. Our key
innovation, the Multi-modal Delay Tracking Queue architec-
ture combined with Model Predictive Control, enables linear
reformulation of complex nonlinear constraints, while bal-
ancing performance with computational tractability essential
for sub-millisecond scheduling decisions. Extensive evaluation
demonstrated a multi-fold performance improvement in terms
of the number of satisfied mXR users with more than 99%
delay-reliability, directly aligning with 6G KPIs. Additionally,
DREAM-X provides critical insights for 3GPP standardiza-
tion—from packet-level QoS differentiation to cross-layer sig-
naling mechanisms.

Future work will explore how this framework can be ex-
tended to uplink or joint uplink-downlink scheduling.
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