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Abstract

Micromobility offers a sustainable alternative to traditional transportation but
lacks clear safety regulations. Existing sensor-based solutions for micromobil-
ity safety are often imprecise, expensive, or resource-intensive, making them
unsuitable for constrained environments. Al-based lane detection techniques
hold potential, but most rely on image segmentation, which is computationally
demanding. A significant challenge is the absence of dedicated image datasets for
micromobility, as current datasets primarily focus on autonomous driving and do
not capture the unique perspectives of micromobility vehicles. To address this, we
introduce the Micromobility Lane Recognition Dataset (MLRD), which enables
real-time lane identification to regulate rider behavior. Using MLRD, we evaluate
the effect of channel and spatial attention mechanisms on compact convolutional
neural networks (CNNs). Our findings show that combining channel and spa-
tial attention improves CNN performance by enabling better focus on important
features. MobileNet V2, with integrated attention mechanisms, achieved the high-
est precision and F1 scores, while MobileNet V3 maintained strong performance
with fewer parameters. To meet the growing demand for micromobility, we also
present MLRDv2, an improved dataset featuring more diverse scenarios. Testing
on MobileNet V2 and V3 Large models showed a 4% performance boost compared
to results from MLRD V1, demonstrating the dataset’s effectiveness.



Keywords: Micromobility, Lane Recognition, MobileNet, Attention Mechanisms

1 Introduction

Micromobility offers a transformative and innovative solution to reduce the reliance on
private vehicles for short-distance travel by utilizing personal mobility devices such as
e-bikes and e-scooters. This approach provides a sustainable, flexible, and cost-efficient
alternative to traditional carbon-powered transportation. As micromobility gains
increasing popularity globally, the need to develop and implement effective regulations
for the safe use of e-scooters and e-bikes has become increasingly important.

According to a recent report by the Insurance Institute for Highway Safety
(ITHS) [1], 60% of e-scooter accidents occur on sidewalks, prompting cities to mandate
operators to have robust safety technologies as a prerequisite for micromobility licens-
ing. Ensuring the safe and widespread use of micromobility solutions requires not only
regulatory frameworks but also advanced technological supports, such as highly accu-
rate, real-time lane recognition systems. Existing GPS and sensor technologies struggle
to provide the necessary precision or adapt to the diverse road structures encountered
by micromobility vehicles [2]. While LASER and LiDAR sensors offer potentially more
accurate solutions, they are computationally expensive and challenging to deploy in the
constrained environments where micromobility vehicles operate [3]. Computer Vision
based techniques using image inputs present a promising alternative but currently
perform optimally only in controlled environments (e.g., high light exposure, stable
camera perspective) and require high-spec computational and memory resources.

To address the gap between current challenges and the needs of micromobil-
ity, we focus on the state-of-the-art deep-learning-based lane recognition techniques.
Most existing techniques for lane recognition in autonomous driving rely on semantic
segmentation [4], which is not well-suited for the constrained environments of micro-
mobility. Segmentation models are typically large, requiring substantial memory and
computational power for fast inference. However, micromobility vehicles, being more
affordable and limited in physical space and power capacity, have significantly lower
computational resources, making such models impractical for deployment.

Considering the resource limitations and the specific challenges of micromobility
safety, we propose a lane recognition strategy that utilizes channel and spatial atten-
tion mechanisms in Convolutional Neural Networks (CNNs). This approach is designed
to accurately detect the lane in which a micromobility rider is traveling in real-time,
enabling the system to provide timely alerts as necessary.

Attention mechanisms in CNN enable the model to focus on the most relevant
input features in an image, playing a crucial role in enhancing both performance and
efficiency [5, 6]. The two commonly used types of attention mechanisms, spatial and
channel attention, capture pixel-level pairwise relationships and channel dependencies,
respectively [7]. The goal of incorporating these attention algorithms is to optimize



the performance of compact CNN models, particularly in resource-constrained envi-
ronments, by adding a minimal number of trainable parameters while maintaining
computational efficiency.

One of the key challenges in developing lane recognition solutions for micromobility
is the absence of specialized, labelled datasets containing images from a first-person
or rider’s perspective. Previous research on urban footpaths used crowd-sourcing to
create a dataset specifically for urban mobility analysis, emphasizing the shortcomings
of existing large datasets. Existing datasets primarily consist of images of footpaths
and bike lanes captured from cameras mounted on cars that are not fully representative
of the micromobility perspective [8].

To overcome these challenges, we developed the Micromobility Lane Recognition
Dataset (MLRD), a novel multi-label image classification dataset specifically designed
for micromobility safety applications, particularly for real-time lane recognition from
the rider’s first-person perspective. This dataset provides crucial information about
whether the rider is traveling on a road, bike lane, or sidewalk.

In this work, we expand on our initial efforts by introducing Micromobility Lane
Recognition Dataset Version 2 (MLRDv2), an enhanced version of the original dataset.
This improvement was achieved by curating and filtering MLRD Version 1, while also
broadening its scope with additional frames from cities in Europe and the UK. The
expanded dataset consists of frames from more complex and realistic scenes, such
as cloudy, rainy weather, and nighttime conditions, making it more comprehensive
for training and testing lane recognition image classification models. Details of the
proposed dataset can be found in Section 7. As shown in Fig. 1, while the overall devel-
opment pipeline includes model optimization and deployment on resourceconstrained
platforms, this study focuses specifically on the dataset and model design stages.

This research serves as an initial investigation into the question: What impact
does adding computationally cheap operations such as channel and spatial attention
have on the performance of compact CNN image classification models in constrained
environments with low-resolution input images? Given these limitations, accurate lane
classification for micromobility requires the model to effectively capture both channel-
wise dependencies and spatial relationships within the image feature maps. Based
on this understanding, we selected Squeeze-and-Excitation [9] to integrate channel
based attention, and Coordinate Attention [10], which provides a more comprehensive
approach, incorporating both channel and spatial attention.

In this study, we conducted a series of experiments to evaluate the effect of
integrating attention mechanisms into compact CNN models for image classifica-
tion. Specifically, the MobileNetV3 [11] model, integrated with with both channel
and spatial attention (Coordinate Attention), exhibited remarkably stable perfor-
mance metrics, achieving results nearly on par with the baseline model despite
having fewer parameters. The MobileNetV2 [12] variant with the channel-based atten-
tion (Squeeze-and-Excitation) showed a modest improvement in overall precision,
while MobileNetV2 integrated with the Coordinate Attention demonstrated a notable
increase in precision and a slight improvement in overall performance.

However, the MobileNetV2 model with the Coordinate Attention exhibited a
noticeable decline in the recall metric for the ‘road’ class, and the standard



MobileNetV3 model with Squeeze-and-Excitation attention showed a deterioration in
overall performance. This pattern indicates that while attention mechanisms can help
reduce false positives, they may also introduce the risk of overfitting, negatively affect-
ing the models’ overall performance. These results suggest that simply integrating
channel and spatial attention mechanisms into compact base models does not consis-
tently enhance performance. This underscores the need for more extensive research,
particularly across diverse use cases, to better understand and optimize the integration
of attention mechanisms in compact CNN architectures.
The contributions of this paper are as follows:

1. Proposing a lightweight lane recognition solution for micromobility vehicle and rider
safety using compact multi-label image classification model that can identify road
lane types in real-time when deployed on low-spec microcontrollers.

2. Addressing the limitations of existing image datasets for micromobility safety appli-
cations, this work highlights their target use-cases and underscores the lack of image
classification datasets specifically dedicated to lane recognition for micromobility
vehicle and rider safety.

3. Evaluating compact MobileNet models, both with and without channel and spatial
attention on Micromobility Lane Recognition Dataset Version 1 (MLRD).

4. Introducing Micromobility Lane Recognition Dataset Version 2 (MLRDv2), a
multi-label image classification dataset for real-time lane recognition for micromo-
bility vehicle and rider safety, featuring more curated frames and increased variety
compared to the previous version.

The paper is organized as follows: Section 2 provides a review of existing datasets
focused on micromobility safety and lane recognition methods using attention mech-
anisms. Section 3 outlines the technical specifications of the models and algorithms
used. In Section 4, we present the details of the Micromobility Lane Recognition
Dataset (MLRD). The experimental methodology and implementation specifics are
described in Section 5. Section 6 discusses the experimental results obtained on
MLRD. We introduce and present experimental results on the new extended version
of MLRD, referred to as MLRDv2, in Section 7. Finally, Section 8 offers conclusions
and explores potential future work. Our code and dataset are publicly accessible at:
https://github.com/Luna-Scooters/Compact- Attention-based-CNNs-on-MLRD

2 Related work on Micromobility safety
2.1 Datasets

Image datasets for micromobility safety primarily focus on capturing real-time scenes
encountered by users, often by mounting cameras on e-scooters or e-bikes. Datasets
such as PolyMMV [13] emphasize detecting objects like bicycles, e-scooters, and
skateboards, addressing real-world challenges such as occlusions and motion blur. In
contrast, the ScooterDet [14, 15] dataset is designed specifically to detect other e-
scooter riders and pedestrians. The primary goal of both datasets is to detect moving
objects in real-time and provide timely warnings to users to prevent potential col-
lisions. Meanwhile, the Outdoor Hazard dataset [16] and Road Pothole Detection


https://github.com/Luna-Scooters/Compact-Attention-based-CNNs-on-MLRD

datasets [17, 18] are focused on detecting stationary and hazardous objects, includ-
ing potholes, bumps, fences, walls, and traffic cones. These datasets are crucial for
enhancing the safety of micromobility riders and vehicles.

In addition to visual datasets, there has been work in micromobility safety appli-
cations using multi-sensor data. For instance, the Dataset for multimodal transport
analytics of smartphone users — Collecty [19] offers a detailed breakdown of raw data
based on users, transport modes, and multimodal routes. During data collection, sen-
sor data from accelerometers, magnetometers, and gyroscopes embedded in mobile
devices were recorded. This dataset provides valuable insights into e-scooter usage
patterns and behaviours that may contribute to accidents or unsafe conditions.

Finally there are private datasets like the Real-Time Vibration Sensor dataset [20]
that collect vibration data using six-axis sensors mounted on e-scooters during driving
sessions. This dataset is employed to classify driving states—safe, slightly anxious,
and very anxious—using deep learning models. All these datasets provide valuable
resources for developing Al solutions aimed at enhancing micromobility vehicle and
rider safety. However, there remains a significant gap in the availability of datasets
specifically dedicated to lane recognition in the context of micromobility safety.

2.1.1 Lane Recognition for Micromobility

Previous studies on lane recognition have begun utilizing attention mechanisms to
enhance the accuracy of lane detection, segmentation, and classification. However,
these approaches primarily focus on footage captured from cars and aim to detect the
type and location (relative or absolute) of lanes in conventional road driving scenarios.
Here, we specifically review methodologies that have incorporated attention mecha-
nisms for lane recognition, and based on the strong outcomes observed in traditional
automotive scenarios, we evaluate their suitability for low-resource micromobility
applications.

Zhang et al. [21] introduced a real-time lane recognition system that leverages
the Convolutional Block Attention Module (CBAM) [22], which applies both channel
and spatial attention mechanisms. Their Convolutional Neural Network (CNN) archi-
tecture consists of an encoder for extracting lane-specific features, a binary decoder
for lane classification, and an additional decoder to predict feature maps represent-
ing individual lane instances. The integration of CBAM allows the encoder to capture
detailed information from the targeted regions more effectively. This approach creates
a synergy between features extracted by the convolutional layers and those obtained
through the attention mechanism, enhancing the model’s ability to capture contextual
information. This contextual knowledge is then combined with upsampled features
in the decoders to recover any lost details. The binary decoder classifies pixels as
either lane or non-lane, while the second decoder distinguishes between distinct lane
instances. The system was tested on the TuSimple [23] and Caltech Lanes [24] datasets
to evaluate its performance.

Building on the use of attention mechanisms in encoder-decoder-based image
segmentation models, Li et al. [25] introduced the Lane-DeepLab model, aimed at
improving high-definition map generation for autonomous driving. Their architecture
incorporates a novel attention module within the Atrous Spatial Pyramid Pooling



(ASPP) module of the encoder, which enhances feature extraction, along with a
Semantic Embedding Branch (SEB) that fuses high- and low-level semantic informa-
tion for richer feature acquisition. By combining attention mechanisms with contextual
semantics, the system effectively integrates relevant information to improve the accu-
racy of lane line detection. This approach enables the model to adapt to and accurately
interpret complex and dynamically changing road conditions. The Lane-DeepLab
model’s performance was evaluated on the TuSimple [23] and CULane [26] datasets,
demonstrating its effectiveness.

Focusing on spatial features, particularly the positions of various road segments, a
robust lane detection method was developed using a novel self-attention module called
Expanded Self Attention (ESA), optimized specifically for lane detection [27]. This
method improves segmentation-based lane detection by extracting global contextual
information. The ESA module is divided into Horizontal (HESA) and Vertical (VESA)
components, which predict occluded lane positions by assessing lane confidence in
both directions. Designed to address challenges such as occlusion and difficult lighting
conditions, this approach was evaluated on three popular datasets: TuSimple [23],
CULane [26], and BDD100K [28].

Considering the memory constraints of low-spec platforms, Yao et al. [29] proposed
an efficient lane detection method using a lightweight, attention-based deep neu-
ral network. The architecture features two branches: the Global Context Embedding
(GCE) branch, which captures overall lane information, and the Explicit Boundary
Regression (EBR) branch, which integrates a Spatial Attention Mechanism (SAM) for
precise boundary detection. Additionally, the network incorporates a Channel Atten-
tion Mechanism (CAM) to prioritize channels containing target objects. Notably, the
model achieved a high processing speed of 259 frames per second (FPS) on an NVIDIA
GTX 2070 GPU with an input image resolution of 640x360. Demonstrating efficiency,
the model required only 1.57M parameters and was tested on the CULane dataset [26].
The approach was thoroughly evaluated on both the TuSimple [23] and CULane [26]
datasets, resulting in the accuracy of 95.11% and 68.8% respectively.

Finally, while high-performing models can be compressed or pruned for
deployment, recent techniques such as self-distillation [30] and channel prun-
ing [31]—although designed for lightweight CNN-based lane detection [32]-often still
produce models that are too large for stringent, low-spec, resource-constrained edge
platforms. While attention mechanisms improve the performance of standard models
with only a minor increase in parameters, leading to a slight rise in memory usage,
existing research has not thoroughly explored their impact on compact CNN models.
This is especially important for models operating under strict memory and inference
speed constraints, as seen in low-spec edge platforms. Overcoming this gap is neces-
sary to maximize the performance of the compact CNN models with the addition of
minimal amount of trainable parameters.
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Fig. 1: A schematic representation of the workflow for developing and deploying
a neural network model, illustrating the stages of data collection, model training,
optimization, and final deployment on a target platform [36].

3 Models for Lane Recognition
3.1 MobileNets

MobileNets, a class of models designed for mobile and embedded vision tasks, have
transformed image classification by striking a balance between model accuracy and
computational efficiency [33]. Their architecture utilizes depthwise separable convolu-
tions, which drastically lower the amount of computations while maintaining efficient
feature extraction. With MobileNetV2 [12], the introduction of inverted residuals
and linear bottlenecks further streamlined the CNNs, improving the flow of infor-
mation and gradients during training. This advancement highlights the potential of
lightweight, high-performance CNN models in resource-limited environments.
MobileNetV3 [11] introduced further refinements by leveraging automated Neural
Architecture Search (NAS) algorithms [34], resulting in a more hardware-optimized
design. This version, known for its enhanced speed and efficiency, is well-suited for
real-time image classification tasks and facilitates the integration of Al in mobile and
embedded systems. Additionally, the use of the Hard Swish activation function, along
with an integrated channel attention mechanism, further improved performance over
MobileNetV2 by boosting both efficiency and accuracy. A key feature of MobileNets
is its architectural versatility, which allows for the seamless incorporation of indi-
vidual algorithms, such as attention mechanisms, into the base model, increasing its
functionality and adaptability across various computational settings [35].

3.2 Channel and Spatial Attention mechanisms

The primary goal of attention mechanisms in computer vision is to mimic the way
human visual cognition focuses on key patterns within an image. In this research, the
impact of attention mechanisms on multi-label classification tasks was assessed using
two popular soft visual attention methods: Squeeze-and-Excitation (SE) [9] and Coor-
dinate Attention (CA) [10]. Although various other attention techniques exist, such
as Spatial Group-wise Enhanced Network (SGE-Net) [37], Shuffle-Attention Network



(SA-Net) [7], and Efficient Channel Attention (ECA-Net) [38], SE and CA were cho-
sen for their roles as a baseline and state-of-the-art methods, respectively, and for their
proven effectiveness in convolutional neural networks [39].

3.2.1 Squeeze-and-Excitation (Channel-based Attention)

The “squeeze” phase in the SE [9] network, generates global descriptors for each chan-
nel by pooling spatial information. This information is then utilized in the “excitation”
phase to encode channel-wise dependencies and recalibrate channel-wise features. This
process enhances the network’s ability to represent features more effectively [9, 39).
A key feature of the Squeeze-and-Excitation mechanism is the global average pool-
ing, which aggregates spatial information across all channels. A unique aspect of
the Squeeze-and-Excitation mechanism is the use of global average pooling, which
consolidates spatial information across all channels.

e lsEe)) o

o is the sigmoid activation function.

¢ is the ReLLU activation function.

Wi and Wy are the weights of two fully connected layers.

X,; denotes the input feature map value at spatial location (4, j).
H x W are the spatial dimensions of the input feature map.

where:

3.2.2 Coordinate Attention

The Squeeze-and-Excitation (SE) block [9] acquires global spatial information through
global pooling and models inter-channel relationships but neglects the important fac-
tor of positional information. Coordinate Attention (CA) [10] overcomes this limitation
by integrating positional information into channel attention, enabling the network
to effectively focus on important large areas while using minimal computational
resources.

The Coordinate Attention mechanism operates in two main phases: coordinate
information embedding and coordinate attention generation. First, two different sizes
of pooling kernels are used to process each channel, encoding information along both
the horizontal and vertical axes. The outputs from these pooling layers are then con-
catenated and passed through a shared 1x1 convolutional transformation. Afterward,
the CA mechanism splits the resulting tensor into two separate tensors. These tensors
are then transformed into attention vectors aligned with the horizontal and vertical
dimensions of the input X, each preserving the same number of channels.

The CA block expands its capabilities by incorporating spatial information encod-
ing unlike traditional channel attention, which focuses mainly on recalibrating channel
significance. By applying attention across both horizontal and vertical planes, CA
effectively captures the positional information of target features. What sets Coordi-
nate Attention apart from SE is its dual-axis attention mechanism — horizontal g (i)



and vertical g¥(j) attention weights — that encodes spatial information along both
axes (Eq. 2).

ye(i, ) = xe(i, §) x gl(i) x g2 (). (2)
where:

® y.(i, ) is the output of the Coordinate Attention block for the ¢/ channel at position
(i.5).

® 2.(i,j) represents the input feature map for the ¢! channel at position (i, 5).

® g"(i) and g*(j) are the attention weights for the horizontal and vertical directions,
respectively, at position (3, j).

4 Micromobility Lane Recognition Dataset (MLRD)

The first version of the Micromobility Lane Recognition Dataset (MLRD) is an novel
multi-label classification dataset created specifically for lane recognition in micromo-
bility safety contexts, addressing the challenges outlined in Section 1. This section
outlines the key features of the dataset and describes the methodology used to
approach lane recognition as a multi-label classification problem. Section 7 describes
enhancements made to MLRD in light of the experimental outcomes discussed in
Section 6.

The dataset consists of colour images primarily categorized into three specific
classes: road, sidewalk, and bike lane. Fig. 2 and Fig. 3 show representative sample
images from the dataset. These classes have been selected to meet the unique needs
of micromobility vehicles, like e-scooters, ensuring efficient and safe navigation within
urban settings.

(a) Road (b) Bike lane (c) Sidewalk

Fig. 2: Example images from MLRD captured with the e-scooter camera [36].

The primary motivation for developing this custom dataset is the insufficiency
of existing open-source datasets for autonomous driving, such as KITTI [40],
Cityscapes [41], DET [42], TuSimple [23], LLAMAS [43], CurveLanes [44], and
nuScenes [45], in meeting the specific requirements of micromobility applications.
While these datasets have significantly contributed to advancements in computer
vision and autonomous driving research, they lack adequate representations of side-
walk and bike lane classes. The images in these datasets, typically captured from a car’s



(a) Clearly visible bike lane (b) Poorly visible bike lane

Fig. 3: Contrast between a clearly delineated bike lane and a low-visibility lane.

first-person perspective, limit their relevance to micromobility scenarios that involve
different perspectives and varying positions of e-bikes or e-scooters on the roads.

The images in the MLRD dataset are captured using a camera module mounted
on e-scooters, capturing streets and their surroundings. These images, taken at a reso-
lution of 640x480 (VGA), are sourced from several major cities across Europe and the
United States, resulting in a dataset of 30,244 images. MLRD offers a comprehensive
and diverse collection of road scenes by combining images from both online sources
and the proprietary camera module, focusing specifically on roads, sidewalks, and
bike lanes. Figure 4 shows the per-city distribution of images, illustrating geographic
diversity and the relative sampling across regions.

This targeted approach is designed to facilitate the development of more accurate
and efficient models for lane detection and classification, ultimately contributing to
safer and more intelligent urban mobility solutions. Additionally, the privacy of indi-
viduals and vehicle licence plates was ensured by blurring out faces and licence plates
in the images. The MLRD dataset has been made publicly available.
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Fig. 4: Per-city distribution of MLRD dataset images illustrating broad geographic
diversity across European and U.S. urban environments.

Due to the diverse structures of roads and sidewalks, as well as the varying positions
of these segments (whether adjacent or separated), precise annotation of frames was a
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Fig. 5: An illustration of the integration of channel and channel plus spatial atten-
tion blocks in the inverted residual block (a) present in MobileNetV2 [12] and
MobileNetV3 [11] architectures, as utilized in our experiments [36].

challenging task. Particularly, the bike lanes are very different in different cities. For
example, Figure 3a shows some examples from Dublin City where there are clear bike
lane markings with borders and distinct colouring; however, there are many scenarios,
as illustrated in Figure 3b, where the bike lanes are subtly distinct and contain very
little visual information to distinguish that class from the road or sidewalk. Therefore,
priority in labelling was given to the road and bike lane classes. Images that clearly
display a road or bike lane were labelled as 1 for that class and 0 for the other. In
cases where the bike lane is part of the road segment, the image is annotated as
both road and bike lane. Conversely, if an image clearly depicts a sidewalk or lacks
clear road or bike lane areas, it is annotated with 0 for both the road and bike lane
labels. The MLRD dataset includes a total of 16,759 samples labelled as “road”, 5,218
samples as“bike lane”, and 12,510 samples for the indirect class “sidewalk”, where
both the “road” and “bike lane” labels are set to zero. Although the dataset is slightly
imbalanced, this issue was addressed using an appropriate loss function, as discussed
in Section 5.

5 Experimental Methodology

This section details the methodology, model deployment, and implementation specifics
of the comparative analysis conducted. The experiments evaluated the impact of
channel and spatial attention on the compact MobileNets (with the width multiplier
a = 0.1) for classification by comparing the performance of five different variants:
Standard MobileNetV2 [12], MobileNetV2 with channel attention, MobileNetV2 with
channel and spatial attention, Standard MobileNetV3 [11] with channel attention, and
MobileNetV3 with channel and spatial attention on the MLRD dataset.
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5.1 Experimental setup and hyper-parameter details

Experiments were performed using the TensorFlow framework, with the Weights and
Biases MLOps tool employed to track all metrics during training. The training was
conducted on an NVIDIA GEFORCE RTX 4090 GPU, with an input image resolution
of 224 x 224 and a batch size of 32. The Adam optimizer was initialized with a learning
rate (LR) of 0.001. The “ReduceLROnPlateau” learning rate scheduler was configured
to monitor validation loss, and “ModelCheckpoint” was implemented to save the best
model based on the lowest validation loss. The minimum learning rate was set to 1e-6,
with a reduction factor of 0.1 and a patience parameter of 10 epochs. All models were
trained from scratch on the MLRD without using any pre-trained weights. Minimal
image augmentations, such as horizontal flips and brightness adjustments within the
range of 0.2-0.5, were applied during training, while augmentations like vertical flips
or rotations were avoided to maintain the integrity of the first-person micromobility
rider perspective in the images. To address the class imbalance in MLRD and achieve
the multi-label classification objective, the Binary Focal Cross entropy (BFCE) loss
function [46] was utilized, with a weight balancing factor (a) of 0.25 and a focusing
parameter () of 2.0. All models were trained for 80 epochs.

5.2 Network architecture

In this study, it was empirically determined that approximately 100K trainable param-
eters, combined with an input image resolution of 224x224, enabled the successful
deployment of the model on the target platform. A detailed description of the technical
specifications for the deployment platform is provided in Section 5.3.

The MobileNetV2 [12] and MobileNetV3 [11] based model architectures, including
the baseline used in this research, were derived from the official Keras implementation.
In accordance with the official guidelines for Squeeze-and-Excitation (SE)[9] and Coor-
dinate Attention (CA)[10], the SE blocks were strategically positioned immediately
after the depthwise convolution layers within the bottleneck modules of the MobileNet
architectures, as illustrated in Figure 5. This placement allowed the SE blocks to
recalibrate the features extracted by depthwise separable convolutions before their pro-
jection through pointwise convolutions (1x1 convolutions) into a higher-dimensional
space.

The width multiplier parameter, which controls the number of channels in the
bottleneck layers, was fixed at 0.1 for all the MobileNet model variants in this research.
This adjustment did not change the network’s depth. The channel reduction ratio for
the squeeze operation in the SE block was set to 16, while for the channel attention
phase in CA, it was established at 32.

To meet the memory constraints of the target hardware platform, particularly for
MobileNetV3, the channels in the bottleneck blocks were modified while maintain-
ing the original ratio and preserving the integrity of the original model architecture.
Specifically, the number of output channels was halved, and the expansion factor in
each bottleneck block was reduced to one-fourth of their original values. The expan-
sion factor, which is used to increase the number of channels in the input feature

12
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Fig. 6: A comparative Grad-CAM visualizations illustrating distinct behavioral pat-
terns of different MobileNet model variants on the MLRD dataset [36].

map before applying a depthwise separable convolution, allows the network to cap-
ture more complex features in a higher-dimensional space while maintaining overall
computational efficiency.

Additionally, the neuron count in the final Fully Connected layer was reduced from
1280 to 320 to align the model with the computational limitations of the deployment
platform.

5.3 Deployment on the target platform

The platform chosen for our project is the STM32H743VI, a compact microcontroller
unit measuring 1.40 in x 1.75 in. This unit features a 32-bit Arm Cortex-M7 processor
running at 480 MHz, with 1 MB of static RAM and 2 MB of flash memory. In addition
to its small size, the unit consumes less than 150 mA, making it well-suited for the
limited power requirements of micromobility vehicles. As illustrated in Figure 1, the
final step in our process involves converting the models to TFLite format for deploy-
ment on the target platform. However, the float32 compact models mentioned earlier
exceeded the required size limits, preventing successful deployment. To address this,
the model size was reduced by converting the weights and activations from float32 to
int8 precision, using Post-Training Quantization [47].

Due to these constraints, only the compact MobileNetV2 model (baseline) could be
deployed, as the platform’s firmware did not support certain tensor operations found
in the MobileNetV3 architecture at the time the experiments were conducted. The
deployed compact MobileNetV2 model had the model size of 250 KB and exhibited
an inference latency corresponding to approximately 10-12 FPS. In future, as more
operations are supported for this MCU, it will be possible to compile and run these
models directly on the platform. Therefore, our conclusions are based on experiments
carried out on a local desktop machine, with the expectation that there may be slight



differences in behaviour when deployed on the actual platform, primarily due to the
quantization process used to compress the model.

6 Results and Discussions

Table 1 presents the performance metrics for the standard large MobileNetV2 (MNV?2)
and MobileNetV3 (MNV3) base models on the MLRD dataset. These models, having
a much larger number of parameters compared to the compact versions shown in
Table 2, exhibit a notable difference in performance. The main goal of incorporating
attention mechanisms into the compact models is to reduce this performance gap while
maintaining model efficiency and avoiding a significant increase in computational cost.

Table 1: Classification results between standard (Large) MobileNets on MLRD [36].

Precision Recall F1 Score Weighted Trainable
Road Bike Road Bike Road Bike Avg Fl param.
lane lane lane
MobileNetV2 0.96 0.97 0.90 0.86 0.93 0.92 0.93 2.26M
MobileNetV3 0.95 0.94 0.92 0.87 0.94 0.91 0.93 2.99M

Large

Table 2: Classification results between Attention-Based and Non-Attention-Based
compact versions (compact) of MobileNets on MLRD [36]. Bold values indicate
significance, showing the highest overall scores for MobileNetV2 + CA and parameter-
efficient competitive performance for MobileNetV3 + CA.

Models (compact) Precision Recall F1 Score Weighted  Trainable
Road Bike lane  Road Bike lane  Road Bike lane Avg Fl param.

MobileNetV2 (Baseline) 0.86 0.86 0.89 0.80 0.88 0.83 0.86 95.87TK

MobileNetV2 + SE 0.87 11%  0.88 12%  0.89 0.79 [11%  0.88 0.83 0.87 11% 106.79K

MobileNetV2 + CA 0.94 8% 0.9317% 083 16% 0.79 [1% 0.88 0.85 12% 0.87 1%  124.21K

MobileNetV3 (SE) 0.8313% 0.7719%  0.74 [15% 0.84 4%  0.78 |10% 0.80 3%  0.79 [7% 109.82K

MobileNetV3 + CA 0.83 13% 0.86 0.85 14% 0.81 11% 0.84 |4% 0.83 0.84 2% 88.74K

In the comparative analysis of MobileNetV2 and MobileNetV3 architectures, inte-
grated with Squeeze-and-Excitation (SE) and Coordinate Attention (CA) mechanisms
respectively, the experimental results underscore the importance of channel and spa-
tial information for lane recognition applications. These findings are particularly
significant given the challenges of working with relatively low-resolution images in
a resource-constrained environments, where capturing maximum features with mini-
mal computational load is essential. The MNV2 model, integrated with Coordinate
Attention, showed notable improvements in precision for both road and bike lane clas-
sification, achieving an approximately 8% increase in precision and a 1% improvement
in the average F1 score compared to the baseline model. This boost in precision is
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vital for reducing false positives, which is critical for the reliability and robustness of
micromobility safety systems.

However, this configuration also resulted in the highest trainable parameter count,
adding approximately 29K parameters, which translates to about 100KB of additional
memory usage, reflecting a 29.55% increase from the baseline. While this setup may
offer optimal performance, its applicability in low-resource environments is limited
due to the increased computational overhead. A decline in the recall metric, particu-
larly for the “road” class, was observed for this model, indicating potential overfitting.
This suggests that the model may have become overly specialized in identifying cer-
tain features, likely those associated with the “bike lane” class, at the expense of its
generalization capabilities. This underscores the importance of finding the right bal-
ance between model complexity and its ability to perform consistently across a variety
of real-world conditions.

On the contrary, the MNV2 model, integrated with Squeeze-and-Excitation atten-
tion (channel attention), added approximately 11K parameters but led to only a very
slight improvement in precision for both classes, along with a marginal increase in
the overall F1 score. Nevertheless, this improvement still highlights the effectiveness
of channel-based attention mechanisms, such as Squeeze-and-Excitation, in enhancing
model performance, as the recall metric remained almost unchanged for both classes
compared to the baseline. However, its ability to fully capture the spatial complexities
necessary for tasks like lane recognition remains limited compared to MobileNetV2
with Coordinate Attention.

For MNV3-based models, the variant with Coordinate Attention demonstrated
consistently strong performance across all metrics while maintaining a smaller param-
eter footprint compared to the MNV2 model, making it more suitable for low-spec
microcontrollers. Notably, the standard MNV3 model with SE attention was outper-
formed by the model integrated with Coordinate Attention, likely due to SE attention’s
limitations in capturing the spatial complexities essential for accurate lane detection.

The integration of Coordinate Attention to the MNV2 architecture improved
performance over both the baseline and channel attention-based variants. This
improvement is largely attributed to its dual emphasis on spatial and channel-wise
feature interdependencies. Such an approach is critical for distinguishing visually sim-
ilar classes, like roads and bike lanes, where spatial positioning plays a key role. The
limited effectiveness of SE attention in these image classification experiments can be
considered as a result of its focus on channel-wise feature recalibration, which lacks the
spatial sensitivity required for tasks that demand a deeper understanding of positional
context.

The impact of these models extends beyond micromobility safety, holding con-
siderable potential for autonomous driving solutions, where accurate and efficient
lane recognition is essential. Deploying these compact yet powerful models on
low-spec microcontrollers opens up a promising avenue for creating cost-efficient,
high-performance autonomous navigation and driving safety systems, providing a
resource-efficient alternative to more computationally demanding segmentation mod-
els. This strategy enables the development of accurate and economically feasible
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safety systems, particularly suited to environments requiring fast inference and low
computational overhead.

Figure 6 shows a Grad-CAM [48] analysis of all the compact model variants exe-
cuted on a few sample images from the MLRD. This visualization highlights the unique
behaviour of each model. However, no consistent pattern emerges regarding the local-
isation of the complex differentiating features of the classes of interest to determine
the final predictions.

7 Micromobility Lane Recognition Dataset V2
(MLRDv?2)

A limitation of the first version of MLRD was the lack of variety of environment condi-
tions and riding scenarios. MLRDv2 comprises 29,486 colour images captured from a
first-person perspective by mounting a mini camera on the front stem of an e-scooter.
This extension of the original MLRD features a broader range of curated frames that
add diversity and complexity. Table 3 shows the distribution of samples across envi-
ronmental conditions (daytime, nighttime, rainy, and rainy nighttime), highlighting
the intentional inclusion of challenging and realistic scenarios.

Table 3: Environmental condition distribution in MLRDv2. Each row lists the number
of dataset samples and their share of the dataset.

Condition Dataset samples  Overall %
Day time 24,979 63.49
Night time 8,050 20.46
Rainy 5,043 12.82
Rainy & night 1,271 3.23

The images in MLRDv2 are categorized into key classes such as “road” and “bike
lane”, where micromobility vehicles are permitted to operate, and an indirect “side-
walk” class, where riding is prohibited. The labelling guidelines adhered to in MLRDv2
are consistent with those used in the original MLRD, as detailed in Section 4.

Fig. 7: MLRDv2 example images captured in rainy weather.

A significant enhancement in MLRDv?2 is the inclusion of more naturalistic scenes,
particularly those captured under challenging conditions such as rainy weather, night-
time, and the especially complex scenario of rainy nights. Figure 2 contrasts this with
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Table 4: Classification results between standard (Large) and compact MobileNets on
MLRDv2.

Precision Recall F1 Score Weighted Trainable
Models Avg F1 param
Road Bike lane Road Bike lane Road Bike lane ’
MNV2 0.98 0.97 0.99 0.94 0.98 0.96 0.98 2.226M
MNV3Small 0.98 0.96 0.98 0.93 0.98 0.94 0.97 1.51M
MNV3Large 0.98 0.96 0.98 0.93 0.98 0.94 0.97 4.2M
CompMNV2  0.87 0.70 0.87 0.53 0.87 0.60 0.82 0.88M
CompMNV3  0.81 0.52 0.77 0.46 0.79 0.49 0.74 1.11M

samples from the original MLRD, which predominantly features images taken in clear
weather during daylight hours. For a model to be practically useful, it must perform
well under less ideal conditions, such as when rain causes water droplets to obscure the
camera lens. Figure 7 illustrates some of these challenging rainy scenes from MLRDv2.

Fig. 8 MLRDv2 example images captured at night time.

Nighttime scenes are notoriously difficult due to low visibility and minimal light
exposure. Figure 8 showcases examples from MLRDv2 that depict these nighttime
challenges. Furthermore, recognizing that both rain and nighttime conditions can
simultaneously impact visibility, MLRDv2 also includes images captured during rainy
nights, offering a more comprehensive training set for real-world applications. The
example images captured at rainy nights can be seen in Figure 9

Fig. 9: MLRDv2 example images captured in rainy weather at night time.

MLRDv2 offers a more varied and realistic set of scenes compared to its pre-
decessor, making it a valuable resource for developing robust safety solutions for
micromobility.
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7.1 Dataset Validation

This section describes the implementation details for assessing the MLRDv2 dataset.
Five variants of the MobileNet model were used , including three standard MobileNet
versions and two compact models. Specifically, the models used were MobileNet V2
(MNV2), MobileNet V3 Small (MNV3Small), and MobileNet V3 Large (MNV3Large),
all with a width multiplier of 1.0, as well as compact versions of MNV2 and
MNV3Small with width multipliers of 0.1 and 0.25, respectively to maintain the total
trainable parameters as mentioned in Section 5.2. All experiments were conducted
using the PyTorch framework. The standard MobileNet models were initialized with
pretrained ImageNet weights, while the compact models were trained from scratch,
as the pretrained ImageNet weights are not available for width multipliers of 0.1 and
0.25 for MobileNetV2 and MobileNetV3. All models were trained for 100 epochs with
a batch size of 64 and a learning rate of le-4. For data augmentation, all images were
resized to 224x224 pixels, normalized using the ImageNet mean and standard devia-
tion values, and 50% of the images were flipped horizontally. The dataset was split
into 70% for training, with 15% each allocated for validation and testing. We utilized
the Adam optimizer with default momentum and weight decay settings, and binary
cross-entropy loss as the loss function.

7.2 Results and Discussions

Table 4 presents the performance metrics on the MLRDv2 test set for both the stan-
dard and compact models trained on MLRDv2. The first three rows display the
precision, recall, and F1 scores for the standard MobileNet models. These models
demonstrate consistently high performance metrics on the test set, indicating that
they successfully learned the relevant features from the MLRDv2 dataset.

8 Conclusions and Future Work

Cities worldwide are advancing toward eco-friendly urban transportation systems,
such as e-scooters and e-bikes, to promote sustainable mobility and reduce traffic,
noise, and pollution. Understanding the behavior of e-mobility users is essential for
effective regulation and governance. However, current GPS and LIDAR systems have
limitations, highlighting the need for computer vision-based solutions. A significant
challenge is the lack of dedicated image datasets for micromobility safety, as exist-
ing datasets for autonomous driving differ substantially in perspective and operating
environments. Most available datasets focus on objects like pedestrians, vehicles, and
obstacles, leaving a notable gap in lane recognition data. To address this, we developed
a novel lane recognition multi-label image classification dataset specifically designed
for micromobility applications.

Our experiments with MLRD have shown that integrating attention mechanisms
into compact CNN models, such as MobileNetV2 and MobileNetV3, can improve
precision and overall performance, but not without challenges. For instance, the
MobileNetV3 model with both channel and spatial attention demonstrated impressive
performance, closely matching that of the baseline model while using significantly fewer
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parameters. Conversely, the MobileNetV2 model with channel and spatial attention
improved precision but experienced a decline in recall for the “road” class. Similarly,
the MobileNetV3 model with channel attention showed an overall performance drop
compared to the baseline, suggesting potential overfitting. These results indicate that
while attention mechanisms can boost model accuracy, their integration into com-
pact models must be carefully managed to balance the benefits against the risks of
overfitting and increased complexity.

To further improve the dataset, we recognized the growing demand in micromobil-
ity and the need for a robust dataset. As a result, we added more realistic frames from
various outdoor infrastructures, adverse weather conditions, and nighttime environ-
ments with low visibility, making the dataset more comprehensive and representative
of real-world scenarios. This enhanced version, MLRDv2, proved more challenging
and thorough. Standard MobileNet models continued to perform well, while com-
pact models—especially MobileNetV3 with channel attention—displayed trends of
overfitting.

In conclusion, our dataset, MLRDv2, serves as a valuable resource for assessing
the effectiveness of MobileNet models with channel and spatial attention mechanisms
in improving lane recognition accuracy. These attention mechanisms show promise
for compact models in micromobility, particularly with MobileNetV2 variants that
achieved higher F1 scores with minimal increases in parameter count. However, the
challenges of model compression and deployment in micromobility environments can
sometimes diminish the potential improvements. Moving forward, we aim to conduct a
more comprehensive comparison across various model architectures and deploy these
models on low-spec target platforms to assess real-world performance. Additionally,
we plan to explore more efficient model optimization techniques, such as structured
weight pruning and quantization-aware training, to enhance both performance and
hardware compatibility.
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