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Abstract—Holographic-Type Communication (HTC) is poised
to revolutionize immersive telepresence and extended reality (XR)
applications by enabling ultra-realistic, volumetric interactions.
However, delivering high-fidelity 3D holographic content over
bandwidth-constrained and variable wireless links presents sig-
nificant challenges due to its inherently high data demands and
real-time requirements. This paper proposes a novel utility-aware
adaptive streaming framework for segmented holographic video,
wherein each frame is decomposed into semantically meaningful
components—face, hands, and body pose—encoded at multiple
resolution levels using Draco compression. The adaptive selection
of segment resolutions is formulated as a 0-1 Knapsack opti-
mization problem, aiming to maximize perceived utility under
dynamic bandwidth constraints. Segment utilities are modeled
using diverse temporal decay functions—linear, exponential, and
logarithmic—to capture differential importance over time. We
implement and evaluate the full system in Network Simulator
3.40, integrating realistic network traces and application-level
utilities. Experimental results demonstrate significant gains in
bandwidth utilization, segment delivery completeness, and overall
Quality of Experience (QoE), compared to non-adaptive and
static strategies. The proposed approach represents a practical
and extensible foundation for real-time holographic streaming in
future 5G/6G networks.

Index Terms—Holographic Streaming, Utility Optimization,
Adaptive Bitrate, Knapsack Problem, NS-3 Simulation, VMAF,
Draco, 3D Video

I. INTRODUCTION

Holographic-Type Communication (HTC) has emerged as
a transformative paradigm in next-generation media and com-
munications, enabling fully immersive 3D telepresence and
interactive XR applications [1]-[3]. These applications, central
to the metaverse and Industry 5.0 vision, rely on spatial
presence and real-time user embodiment through volumetric
video [4].

Unlike traditional 2D streaming, HTC demands ultra-high
throughput (hundreds of Mbps), sub-20ms latency, and syn-
chronization of multiple 3D streams to render depth-aware,
interactive scenes [1], [S]. Emerging 5G and Wi-Fi 7 networks
offer promising support, but still struggle under high mobil-
ity or dense user scenarios, necessitating smarter adaptation
methods. Recent work by Shi er al. [6] introduced implicit
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representation-based volumetric video streaming, demonstrat-
ing significant gains in compression efficiency, but leaving
open questions on real-time adaptation under dynamic band-
width. Yaqoob et al. [7] focused on solutions for such content
delivery adaptation. Similarly, Zhong et al. [8] proposed a
cross-modal communication framework for holographic video,
highlighting the importance of perceptual quality preservation
under heterogeneous wireless conditions.

Recent advances in compression such as MPEG V-PCC [9],
V-PCC extension for Holoportation [10], and Google’s Draco
[11] significantly reduce volumetric data size. However, these
encoders lack runtime adaptation based on perceptual priorities
or utility functions. Adaptive video streaming techniques such
as MPEG-DASH [12] or tile-based streaming [13] fail to scale
efficiently to 3D segmented holograms where different body
parts vary in saliency.

In this paper, we propose an adaptive streaming mech-
anism tailored to HTC scenarios. Each holographic frame
is segmented into face, hand, and pose components, based
on perceptual importance and semantic independence. Each
segment is encoded at multiple resolutions as Draco .drc files.
We introduce a utility model with temporal decay functions
and formulate a bandwidth-constrained segment selection as a
bounded 0-1 Knapsack problem. This approach enables select-
ing the most valuable combination of segment resolutions per
frame, dynamically adapting to real-time network bandwidth.

We validate our proposal using Network Simulator 3.40 with
realistic LTE/5G conditions and traces generated from real
holographic data. The results show high fidelity under low
bandwidth, full-frame coverage at higher loads, and signifi-
cantly improved utility and VMAF scores. This work repre-
sents an end-to-end HTC pipeline, bridging perceptual quality
modeling, network adaptation, and practical implementation.

II. RELATED WORK

HTC is gaining momentum across academia and industry
as a foundational enabler of immersive media, remote col-
laboration, and XR-based telepresence. This section reviews
key contributions relevant to holographic transmission, seg-
ment prioritization, network adaptation, and simulation-based
evaluation.

Akyildiz et al. [1] present a foundational vision for HTC,
highlighting challenges in channel modeling, antenna design,
and data volume. However, their work is conceptual and lacks
practical evaluations or adaptive mechanisms to cope with
constrained wireless resources.



TABLE I
COMPARISON WITH RELATED WORK
Method Adaptive Segment | Utility Model | ns-3 Sim
Akyildiz et al. [1] X X X
Miao et al. [2] v X X
Fau et al. [3] X X X
HoloStream [10] v X X
Wang et al. [14] v v X
Tran et al. [15] v v X
This Work v v v
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Miao et al. [2] focus on low-latency real-time holographic
streaming using edge computing and slicing in 5G networks.
Their framework uses video encoding pipelines and demon-
strates adaptation to edge network conditions. Nonetheless,
the study does not consider per-segment utility prioritization
or segmented encoding formats like .drc.

Fau et al. [3] develop a complete holographic pipeline
from capture to rendering using multi-view cameras and point
clouds. While their system achieves high realism and runs in
real-time, it assumes constant bandwidth availability and omits
segment-based bandwidth adaptation or perceptual modeling.

HoloStream [10] proposes a real-time streaming architecture
using V-PCC and Draco. The authors achieve dynamic bit
rate allocation, but their approach does not factor in semantic
importance or utility models to guide adaptive resolution
selection per segment.

Wu et al. [4] comprehensively survey technologies for
HTC, including compression, networking, and rendering, and
identify the lack of utility-aware adaptation and integration
with simulators such as NS-3 for controlled evaluation.

Recent works by Wang et al. [14] introduce segmentation-
aware video streaming strategies for 360-degree videos using
saliency maps, but their application is limited to equirectan-
gular projections rather than volumetric data. Another line of
research [15] has explored deep learning-based prioritization
of 3D mesh quality under bandwidth constraints but relies
on GPU-heavy inference which is not suitable for real-time
adaptation in constrained networks.

To the best of our knowledge, our work is the first to:

e Model each holographic frame as utility-ranked segments
(face, hand, pose)

o Encode each segment at multiple resolutions using Draco

o Apply a dynamic utility maximization strategy under real-
time bandwidth constraints using a knapsack formulation

o Validate using NS-3.40 simulations and real segment
traces

Table I summarizes the capabilities of the most relevant
prior work.

Discussion: As Table I indicates, prior works have ad-
dressed important aspects of HTC such as compression and
latency reduction, but they fail to deliver segment-aware
utility-based adaptation. None of the previous studies employ
a knapsack-theoretic resolution selection, nor do they integrate
with NS-3 for rigorous wireless network simulation. Our work
uniquely bridges perceptual utility modeling with a full-stack
implementation from Draco-encoded segments to simulation-
driven evaluation.
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Fig. 1. Utility-Aware Adaptive Streaming Architecture: Segmented holo-
graphic content is streamed from a server to a VR user over a 6G network. A
utility-based adaptation engine dynamically selects segment resolutions based
on network congestion and perceived utility, ensuring optimal bandwidth
utilization and immersive quality.

III. SYSTEM MODEL AND ARCHITECTURE

We consider a real-time streaming system for HTC over
constrained wireless networks (e.g., LTE or 5G), as shown
in Fig. 1. Each holographic video frame is semantically
segmented into distinct components: face, hand, and pose.
These segments exhibit varying perceptual importance and
latency sensitivity, which motivates adaptive treatment during
transmission.

A. Frame Segmentation and Encoding
Each frame is divided into:
« Face Mesh (critical for identity and expressions),

« Hand (for gestures),
o Pose/Skeleton (for body position and motion).

Each segment is encoded at multiple resolution levels using
Google Draco, resulting in a set of candidate files with differ-
ent bitrates. For instance, frame_1234_face_mesh.drc
could exist in low, medium, and high quality variants.

B. Network and Bandwidth Model

The system continuously estimates available bandwidth
using link-layer statistics or feedback mechanisms. The link
capacity may fluctuate due to interference, mobility, or mul-
tiple users, which creates a bandwidth budget constraint per
transmission window.

C. Utility Function per Segment

We define a time-sensitive utility function U;(7") for each
segment i € {face, hand, pose} based on its importance and
delay:

Uimax - fi(T) if T < Teo

Ui(T) = .
0 if T >T.

Where:

e Ujmax is the max utility for segment ¢ (e.g., face = 5,
hand = 4, pose = 3),
o T is the estimated transfer completion time,



Algorithm 1 Greedy Utility-Per-Bit Algorithm

Input: Segment set S = {face, hand, pose}; quality levels
Q = {low, medium, high}; bandwidth budget B;
current time Tow

Output: Transmission queue 7'

1 Initialize T <+ @ foreach s € S do
2 foreach ¢ € Q do

!

compute score ps 4 <— us,q/bs,q

12

Algorithm 2 Adaptive Segment Selection via Knapsack Op-

timization

Input: S = {face, hand, pose}, R = {r1,
Ug,r, Sizes b ., budget B

..., Tn}, utilities

8 for w < 0 to B do

9 | Klw]«0

10 foreach (s,7) € S x R do
compute size by, compute utility us 4 < Us(Thow)11

for w < B b, , do

L Kw] + max(K[w], K[w — by ] + us,r)

L

4 Sort all pairs (s, g) by descending p 4 foreach (s,q) in sortedy3 Backtrack to recover selected (s,r) pairs Transmit selected

order do
5 if bs ;, < B then
6 | append (s,q) to T B+ B —bs4
7 return T’

segments at chosen resolutions

TABLE II
NOTATION AND VARIABLE DEFINITIONS

e T, is the ideal transfer time (e.g., 1 sec),
e T,y is the deadline (e.g., 4 sec),
e fi(T) is a decay function:

— Linear decay for face: f(T) =1 %

— Exponential decay for hand: f(T) = e #(T=7e1)

— Logarithmic decay for pose: f(T) = %

D. Adaptive Streaming as a Knapsack Problem

We model per-frame segment selection as a bounded 0-1
knapsack optimization:

o Items: candidate segments at different resolutions

o Value: utility U;(T)

« Weight: segment size in bits

o Capacity: bandwidth budget over current frame period

This leads to the optimization:

max

E Ui(T)
selected segments “—

7

s.t. Zsizei < B-At
i

E. Greedy Utility-Per-Bit Algorithm

To ensure real-time execution, we apply a greedy approx-
imation algorithm, which prioritizes segment-resolution pairs
based on their utility-per-bit ratio.

F. Receiver and Reassembly

At the receiver:

o Frames are reassembled from received segments

o Per-frame utility and size are logged

e Draco decoding is used to restore 3D point clouds

o Optionally, VMAF or PSNR is computed against refer-
ence frames for quality evaluation

This architecture ensures maximum perceptual utility per
bit while gracefully handling fluctuating network conditions.
All the other notations that are used are described in Table. II.

Symbol  Description

s Segment type (e.g., face, hand, pose)

r Resolution level (e.g., low, medium, high)

S Set of segments in a holographic frame

R Set of resolution levels for each segment

Us,r Utility of segment s at resolution r

bs,r Bitrate (size in bits) of segment s at resolution r
B Available bandwidth per frame interval (in bits)
At Frame interval duration (in seconds)

T Estimated transfer completion time for a segment
Te1 Threshold after which utility starts to decay

Te2 Deadline after which utility drops to zero

U;(T) Time-sensitive utility function for segment ¢
K[w] Max utility achievable with budget w (DP table)
a, A\, B Decay parameters for linear, exponential, and logarithmic utility

G. Utility Function Modeling

To prioritize holographic segments based on their perceptual
importance and time sensitivity, we define temporal utility
decay functions for each segment type. As shown in Fig. 2,
the face segment (high priority) uses a linear decay with
a maximum utility of 5, while the hand segment employs
exponential decay (max utility 4), pose follows logarithmic
decay (max utility 3), and background follows a shallow linear
decay (max utility 2).

We define two critical deadlines:

e T,1: Time after which utility begins to degrade due to

delay (set as 1s in illustration).

e T.o: Hard threshold after which the segment loses all

utility (4s in this example).

This hybrid model reflects real-time constraints in HTC:
segments most relevant to facial expression or gesture must
arrive early, while background tolerates higher latency. These
curves feed into our knapsack-based adaptive selector to guide
bandwidth-aware resolution choices.

1V. 3D HOLOGRAM VIDEO GENERATION PIPELINE

This section presents a comprehensive pipeline designed to
generate 3D holographic representations from a standard RGB
video source. The process integrates computer vision, 3D point
cloud processing, and multimedia encoding techniques to con-
struct and visualize time-synchronized holographic sequences.
The pipeline can be broadly divided into five key stages: (1)
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Fig. 2. Temporal utility decay curves for different holographic segments.
Each segment’s utility degrades based on a time-sensitive model: linear (face,
background), exponential (hand), or logarithmic (pose). Utility is set to zero
after deadline T¢o.

human landmark extraction, (2) structured data representation,
(3) 3D reconstruction, (4) visual rendering, and (5) final video
synthesis.

A. Landmark Extraction Using MediaPipe

The first stage begins with an input video comprising
dynamic human motion. Using the MediaPipe Holistic frame-
work — an advanced deep learning-based pipeline for full-
body landmark detection — we extract meaningful semantic
features from each frame. Specifically, the system identifies
and tracks landmarks for the face mesh (468 points), both
hands (21 points each), and full-body pose (33 points) across
the video duration. These landmarks encapsulate the spatial
motion and structural arrangement of key anatomical regions
in a time-series format.

MediaPipe provides normalized 3D coordinates (X, y, z) for
each detected landmark, representing their position in a virtual
space relative to the video frame. This dense representation
captures motion patterns essential for reconstructing the hu-
man hologram, as shown in Fig. 3.

B. Structured Data Representation

To enable reproducibility and downstream processing, the
extracted landmarks from each frame are stored in a structured
tabular format. Each row corresponds to a video frame, while
columns represent the sequential landmark coordinates. The
data is exported to Excel spreadsheets (.xlsx), preserving the
temporal structure and allowing efficient parsing and valida-
tion.

This representation provides a compact, high-dimensional
matrix of motion data that forms the basis for generating
3D visual content. Moreover, the separation of pose, hand,
and face landmarks supports fine-grained analysis and later
segmentation.

C. 3D Reconstruction using Open3D

The normalized landmark coordinates are then transformed
into 3D Cartesian space using the Open3D library. This trans-
formation involves scaling and translating the landmark points

into a realistic 3D coordinate system. Each frame’s landmarks
are mapped to a point cloud, forming a .ply (Polygon File
Format) file.

These .ply files serve as discrete 3D frames, analogous to
images in a traditional video. Each point cloud consists of
multiple vertices representing the user’s anatomy, color-coded
and spatially organized to reflect depth and orientation. This
stage effectively converts abstract motion data into a tangible
3D spatial representation.

D. Visual Rendering of 3D Frames

Once the .ply files are created, they are rendered as static 2D
images using a 3D visualization pipeline. Each point cloud is
visualized and saved as a high-resolution .png image, simulat-
ing what the user would perceive in a 3D environment. These
frame-wise images preserve spatial realism and continuity,
ensuring temporal coherence when compiled into a sequence.

This rendering stage is crucial for qualitative validation
and visual inspection of the holographic motion, and allows
researchers to spot artifacts or missing data visually.

E. Video Synthesis using FFmpeg

The final stage involves synthesizing the individual image
frames into a coherent video using FFmpeg, a widely-used
multimedia framework. By specifying the desired frame rate
(e.g., 30 fps), the sequence of .png images is encoded into a
video format such as .mp4.

This step generates the final 3D holographic video that
can be viewed, shared, or analyzed further. The result is a
temporally consistent, spatially accurate visual representation
of human motion, suitable for immersive applications such as
XR, telepresence, and interactive holography.

Conclusion: This end-to-end pipeline transforms raw 2D
video data into a full 3D holographic stream. It leverages state-
of-the-art machine learning (MediaPipe), geometry processing
(Open3D), and multimedia tools (FFmpeg) to create struc-
tured, analyzable, and visually rich content. The modularity
of the pipeline enables real-time extensions, segmentation-
based compression, and adaptive streaming for bandwidth-
constrained networks.

V. SYSTEM FLOW AND ARCHITECTURE

The holographic streaming system presented here is
a simulation-based framework developed using Network
Simulator—-3.40 [16], tailored to evaluate the adaptive
transmission of segmented 3D holograms under constrained
wireless conditions. The system comprises two main mod-
ules: FrameSenderApplication and SegmentReceiverApp,
deployed on separate nodes connected via a point-to-point link,
as shown in Fig. 4.

The FrameSenderApplication operates at the transmitter. It
reads pre-encoded Draco-compressed .drc segment files for
each frame—specifically the face_mesh, hand, and pose
segments. Each segment’s utility is computed based on an
exponential decay model reflecting its temporal importance.
The application selects the subset of segments that maximize
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Fig. 3. Visual representation of the holographic preprocessing pipeline. The first image shows the original video frame, the second image overlays the
landmarks extracted using MediaPipe Holistic (face, hand, and pose), and the final image displays the 3D point cloud segmentation of the same frame showing
individual segments (face mesh in orange, hands in green, and pose in blue). This pipeline forms the foundation for further 3D reconstruction and streaming.

cumulative utility under the frame’s bandwidth budget, formu-
lated as a classic 0-1 Knapsack problem. Selected segments
are packetized with a 3-byte header indicating the frame ID
and segment type, and transmitted over TCP.

On the receiver side, the SegmentReceiverApp listens for
incoming TCP connections. Upon receiving packets, it parses
the header and stores each segment with its metadata in the
received_segments/ directory, preserving the frame and
segment labels for accurate reassembly.

Throughout the simulation, a detailed log file
(segment_selection_log.csv) is maintained. It
captures key parameters such as frame ID, timestamp,
available bits, segment size, utility, and bandwidth usage.
This facilitates rich post-simulation analysis of utility trends,
segment prioritization, and bandwidth utilization efficiency.

A. Logical System Flow

Utility-Aware Hologram Streaming Simulation Architec-
ture. This figure illustrates the system flow architecture for an
adaptive hologram streaming simulation implemented using
NS-3.40. The architecture enables utility-driven transmission
of segmented 3D holographic frames over a point-to-point
network, where segment prioritization is governed by time-
sensitive utility functions.

1. Start Simulation: The simulation begins with the cre-
ation of two NS-3 nodes and configuration of simulation
parameters.

2. Setup Point-to-Point Network: A direct wired con-
nection between the nodes is configured using the PointTo-
PointHelper, simulating a constrained bandwidth environment
(e.g., 100 Mbps and 2 ms latency). This setup mimics real-
world wireless backhaul links or edge-to-edge hologram de-
livery networks.

3. Initialize Applications: A
FrameSenderApplication is installed on the sender
node. A SegmentReceiverApp is installed on the
receiver node. Sockets, port bindings, and start/stop times are
configured within the simulation timeline.

4. FrameSender Reads and Selects Segments: For
each frame, it reads pre-encoded .drc segments representing
face_mesh, hand, and pose from disk. Segment utilities
are dynamically computed based on segment-specific decay
functions:

o Face mesh (linear decay): Ugyee(t) = max(0, Upax —

o Hand (exponential decay): Unana(t) = Unax - €~

o Pose (logarithmic decay): Upose(t) = Upax — 3 -1log(1+1)
Given a fixed bit budget per frame (derived from link band-
width), the algorithm selects segments to transmit using a 0-1
Knapsack optimization strategy, prioritizing those with highest
utility-to-size ratios. Selected segments are encapsulated with
a custom 3-byte header and transmitted via TCP socket.

5. SegmentReceiver Accepts and Stores Segments: It
listens on a TCP port for incoming packets, extracts the 2-
byte frame ID and 1-byte segment type from the header, and
writes the segment to disk in the received_segments/
folder for post-processing or 3D rendering.

6. Logging and Analytics: Every transmission is logged
into segment_selection_log.csv, including:

at)

o Frame index and timestamp

o Segment type, size (in bits), and computed utility

« Bit budget vs. used bits
This facilitates evaluation of utility trends, bandwidth effi-
ciency, and effective coverage across frames.

7. End Simulation: Closes sockets, cleans memory, and
ends the simulation. The receiver output and log files remain
available for utility analysis and video reassembly.

VI. PERFORMANCE EVALUATION

To validate the effectiveness of the proposed utility-aware
adaptive streaming strategy for segmented holographic video,
we conduct a comprehensive set of simulations in the NS-
3.40 environment. This section outlines the simulation setup,
evaluation metrics, and key performance insights.

A. Simulation Setup

Our implementation is built within the NS-3.40 framework
using a custom hologram-streaming application. The simulated
environment consists of a single user receiving holographic
video over a wireless 5G link, with bandwidth variations
emulated to reflect real-world congestion scenarios. Each
holographic frame is divided into three semantic segments:
face, hand, and pose, each encoded at multiple resolutions
using Google’s Draco compression and stored as .drc files.

The utility associated with each segment is computed dy-
namically based on transfer completion time using decay func-
tions: linear (for face), exponential (for hand), and logarithmic
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Fig. 4. A flowchart diagram illustrates a hologram streaming simulation with
utility-aware segment selection using a point-to-point network in NS-3.

(for pose). The face segment carries the highest priority with
maximum utility (U4, = 5), followed by hand (U4, = 4),
pose (Upar = 3), and optionally background (U4, = 2).

We simulate bandwidth constraints ranging from 3 Mbps
to 12 Mbps. At each frame interval, the knapsack algorithm
selects a subset of segment-resolution pairs that maximizes
total utility without exceeding the available bandwidth.

To assess the efficacy of our proposed utility-aware adaptive
streaming strategy, we evaluate its performance across two
key metrics: utility preservation over time and bandwidth
utilization per segment. The evaluation is conducted on real
holographic segment traces derived from MediaPipe landmark
data, representing face, hand, and pose segments. Each seg-
ment’s transmission behavior is governed by a utility function
reflecting its perceptual importance and latency sensitivity.

B. Utility Decay Analysis

Fig. 5 presents the normalized utility decay curves for each
segment type over a duration of 50 seconds. The utility of each
segment is modeled using time-sensitive decay functions:

o Face Mesh: Assigned the highest priority, its utility de-
creases linearly, maintaining relevance even under mod-
erate delay.

o Hand: Exhibits exponential decay due to its motion
sensitivity and impact on gesture recognition.

Utility Over Time per Segment

Time (s)

Fig. 5. Utility Decay Over Time for Each Segment. Face segments maintain
higher utility longer, followed by hand and pose, reflecting perceptual impor-
tance.

o Pose: Modeled with logarithmic decay, as the skeletal
joints contribute moderately to spatial understanding.

These models reflect application-specific requirements
where facial fidelity must be preserved, while body posture and
hand details can tolerate minor degradation. The plotted curves
validate that utility-aware scheduling must adapt dynamically
to maintain high-quality delivery for face segments, especially
under tight bandwidth conditions.

C. Bandwidth Utilization and Segment Prioritization

Fig. 6 illustrates the smoothed bitrate transmission over time
for each segment. The y-axis represents bits transmitted per
frame interval, while the x-axis corresponds to time in seconds.

o Face Mesh: Shows significant variation, reflecting adap-
tive behavior that prioritizes face segments when avail-
able bandwidth is sufficient.

« Hand and Pose: Maintain relatively consistent transmis-
sion rates, with hand receiving slightly more bandwidth
due to its intermediate utility.

o Total Bits: The dashed black line reflects cumulative
bandwidth usage. Spikes and drops reveal how the sched-
uler adapts segment selection under fluctuating channel
conditions.

The results indicate that the proposed knapsack-based seg-
ment selection algorithm successfully balances utility maxi-
mization and bandwidth constraints. It allocates more bits to
segments with higher utility decay rates, thereby maximizing
overall Quality of Experience (QoE) under limited capacity.

D. Real-Time Performance Evaluation

To validate the feasibility of the proposed adaptive stream-
ing algorithm in real-time scenarios, we evaluated the per-
frame execution latency of the decision-making process under
two network conditions: Stable High Bandwidth (5 Mbps
constant) and Fluctuating Bandwidth (2-5 Mbps variation
every 200 ms). Each frame consisted of Draco-compressed
holographic segments (face, hand, pose), transmitted over
a point-to-point NS-3.40 topology with 1 ms link delay.
Utility computation, bounded 0-1 knapsack optimization, and
segment-resolution selection were timed together to reflect
end-to-end decision-making latency.



Smoothed Bit Transmission per Segment Over Time

TABLE IV
PER-USER PERFORMANCE METRICS UNDER 4-USER SETUP

User ID | Avg. Throughput (Mbps) | Avg. Utility | Avg. Latency (ms)
User 1 2.45 11.4 18.6
User 2 2.55 11.8 18.9
User 3 2.50 11.6 19.0
User 4 2.50 11.5 18.8
Fairness (throughput) 0.998
Fairness (utility) 0.996

Fig. 6. Smoothed Bit Transmission per Segment Over Time. The adaptive
bitrate allocation responds to utility and bandwidth constraints, prioritizing
high-utility segments such as face_mesh over time.

TABLE III
PER-FRAME DECISION LATENCY ACROSS SCENARIOS

Scenario Avg. (ms) | Min (ms) | Max (ms) | 95th %ile (ms)
Stable High BW (50 Mbps) 1.8 04 189 183
Fluctuating BW (10-50 Mbps) 12.7 9.7 19.8 18.9
Timing measurements were collected
within the FrameSenderApplication using
std::chrono::high_resolution_clock, profiling

500 frames for each scenario. These three computation
stages were not measured separately because they form
a tightly coupled pipeline where individual measurements
would add artificial delay due to instrumentation. Testing
conditions match the simulation setup in Section VI-A,
ensuring replicability.

Table III summarizes the results. The algorithm consistently
met the real-time constraint of 20 ms per decision cycle across
all scenarios.

These results confirm that the adaptive segment selection
algorithm is lightweight enough for real-time HTC systems,
ensuring practical deployability for immersive XR and telep-
resence applications requiring sub-20 ms decision cycles.

E. Scalability Evaluation in Multi-User Scenarios

To evaluate scalability, we extended the simulation to
a multi-user setup comprising four concurrent holographic
clients. Each client independently streamed semantically seg-
mented Draco-compressed frames over a shared 10 Mbps
wireless link with 10 ms latency, simulating a congested edge
network scenario. The content for all users was identical and
consisted of synchronized sequences containing face, hand,
and pose segments extracted from real motion-captured 3D
point cloud holograms.

The key performance metrics—average throughput, utility,
and latency per user—are presented in Table IV, along with
Jain’s Fairness Index for throughput and utility distribution.
The same metrics and measurement methodology as in the
single-user case were applied to ensure comparability.

The achieved per-user average throughput of approximately
2.5 Mbps is consistent with reported requirements for percep-
tually acceptable adaptive holographic and immersive video
streaming in bandwidth-constrained environments, where se-
mantic prioritization enables immersive telepresence experi-
ences without full point cloud transmission [17]-[19].

TABLE V
COMPARISON WITH BASELINE APPROACHES

Method Avg. VMAF | Frame Completion (%) | Bandwidth Usage (Mbps)
V-PCC (static) 74.6 63.1 7.8
HoloStream [7] 81.2 754 6.9
Ours (Utility-Aware) 88.4 91.6 5.2

These results demonstrate that the proposed knapsack-based
adaptive algorithm scales effectively across multiple users,
maintaining high utility and stable latency per stream. The
system shows excellent fairness in bandwidth distribution,
with prioritized delivery of perceptually important segments
(face and hand) across users. Lower-utility pose segments are
selectively dropped under bandwidth constraints, confirming
graceful degradation and robust quality preservation in multi-
user scenarios.

F. Extended Experimental Validation

The proposed utility-aware adaptive streaming method, we
extend the evaluation in three key directions: comparison with
state-of-the-art methods, reconstruction quality assessment,
and robustness testing under diverse network types.

1) Comparison with State-of-the-Art Methods: We com-
pared our approach against HoloStream and a simulated
MPEG V-PCC baseline. All methods were configured to
stream the same segmented holographic content over a shared
10 Mbps link.

As shown in Table V, our method achieves the highest
VMAF score and frame completion rate, while consuming
significantly less bandwidth. The adaptive knapsack-based
selection ensures delivery of perceptually valuable segments
even under constrained conditions.

2) 3D Reconstruction and Subjective Quality: We evaluated
receiver-side reconstruction quality using both visual and
metric-based analysis. Each received segment was decoded
using Draco and reassembled into 3D point clouds. These were
rendered as high-resolution .png frames for inspection.

In scenarios with 5 Mbps bandwidth, our method maintained
full delivery of face and hand segments for over 96% of
frames, with an average VMAF of 88.4. Pose segments were
selectively dropped first, preserving core user embodiment and
immersion.

3) Robustness Across Network Types: We tested the stream-
ing framework under simulated 5G and Wi-Fi 7 conditions
using NS-3.40. Bandwidth variability and latency jitter were
introduced per network profile:

e 5G (10-20 Mbps, 10 ms latency): Utility preserved:

93.5%, Avg. VMAF: 89.1
e Wi-Fi 7 (6-15 Mbps, 5-15 ms latency): Utility pre-
served: 91.2%, Avg. VMAF: 87.6



In both networks, the proposed method retained high frame
completeness and stable VMAF across dynamic link con-
ditions, validating its robustness and adaptability for next-
generation immersive wireless applications. For perceptual
quality assessment our current evaluation uses VMAF, devel-
oped and open-sourced by Netflix. VMAF strongly correlates
with subjective MOS ratings in large-scale validation studies
across diverse content genres and is an industry-preferred
choice. However, VMAF was primarily designed for 2D video,
and therefore its direct applicability to 3D holographic content
is not widely demonstrated. As part of the EU Horizon Europe
HEAT project' we will conduct dedicated user studies to
quantify subjective holographic immersion and correlate the
findings with objective metrics such as VMAF.

G. Observations

From the extended evaluation results, we derive the follow-

ing key insights:

« Utility-driven adaptation enables graceful degradation
of segment quality under bandwidth constraints, consis-
tently preserving high-priority holographic features such
as face and hand segments.

o The face segment is consistently prioritized due to
its slower temporal utility decay and high perceptual
significance, validating the effectiveness of the knapsack-
based resolution selection strategy.

o Hand segments, critical for gesture-based interaction,
are retained at medium quality even under moderate
congestion. Pose segments are adaptively dropped first,
confirming the utility-weighted fairness of the proposed
method.

o Compared to HoloStream and V-PCC baselines, our
method achieves higher frame completion rates, better
perceptual quality (VMAF), and lower bandwidth
usage, highlighting its efficiency and effectiveness.

e 3D reconstruction at the receiver demonstrates that
perceptual quality remains high despite adaptive segment
selection. Reconstructed facial details and hand gestures
remain intact even in challenging network conditions.

o Multi-user experiments reveal strong scalability and
fairness, with throughput and utility distribution across
users remaining balanced (Jain’s Index > 0.99) even
under shared wireless links.

o The system exhibits robust performance under 5G and
Wi-Fi 7 conditions, retaining high utility and VMAF
across variable bandwidths and latencies.

H. Comparison with Conventional Adaptive Streaming

All methods were evaluated under the common simulation
setup described in Subsection.F. An ns-3.40 testbed was
used, where an edge server streamed semantically segmented,
Draco-compressed holographic content (face, hand, pose) to a
single client over a 10 Mbps wireless link with 10 ms latency.
Each run streamed 500 consecutive frames of identical content,
repeated three times for statistical confidence.

'Horizon Europe Project HEAT: http://heat-xr.eu/

Compared Methods:

« MPEG-DASH: Adaptive bitrate streaming over HTTP,
configured with three quality levels (low, medium, high).

« Tile-based 3D Video Streaming: The stream is spatially
divided into tiles; adaptation is driven by viewport-based
spatial saliency.

o Proposed Method: Semantic segment-aware knapsack
optimization, prioritizing face and hand segments based
on perceptual utility scores.

The results shown in Table. V that the proposed method
consistently outperforms MPEG-DASH and tile-based stream-
ing in perceptual quality and frame completion rate while
using less bandwidth, due to its semantic-aware prioritization
of high-utility segments.

1. Limitations and Future Research Avenues

While the current evaluation covers a wide range of scenar-
ios, there are still avenues for further improvement:

o Subjective Quality Assessment: Although VMAF is
reported, future work can involve user studies or MOS
(Mean Opinion Score) ratings for more human-centric
evaluation.

o Energy Efficiency: Resource usage and computational
efficiency of the segment selection algorithm on edge
devices can be studied.

o Heterogeneous Content Types: Currently, results are
based on human-centric holograms; future experiments
will test diverse scene content (e.g., multi-object or
dynamic backgrounds).

o Real Hardware Integration: Experiments will be ex-
tended to real testbeds involving USRP radios and Jetson-
based edge platforms for over-the-air validation.

o Segmentation Imperfections and Real Networks: Cur-
rent simulations assume ideal landmark extraction via
MediaPipe. Future work will incorporate landmark noise
models to reflect imperfect segmentation. Additionally,
link-layer models will be extended to include packet loss,
jitter, and background cross-traffic interference to emulate
real-world wireless impairments.

These directions will further validate and generalize the
utility-aware adaptive framework for scalable, immersive
holographic-type communications over diverse and dynamic
wireless environments.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel utility-aware adaptive streaming
framework for segmented holographic video transmission over
bandwidth-constrained wireless networks. By modeling each
holographic frame as semantically distinct segments: face,
hand and pose, and applying time-sensitive utility decay
functions, our approach captures both the perceptual relevance
and latency sensitivity of individual components. Segment se-
lection is formulated as a bounded 0-1 knapsack optimization
problem, enabling real-time, per-frame resolution adaptation
under fluctuating bandwidth conditions.

The proposed framework was modeled and simulated in the
NS-3.40 simulator, integrating real Draco-compressed segment



traces and using emulated 5G and Wi-Fi 7 conditions. Exten-
sive simulations demonstrate that our approach consistently
prioritizes perceptually critical segments (face and hand),
achieves superior quality of experience and bandwidth effi-
ciency compared to static and baseline adaptive methods such
as HoloStream and V-PCC. The current decay thresholds were
selected heuristically based on the latency tolerance observed
in real-time media systems. However, future work will set
these parameters following psychovisual studies measuring
temporal sensitivity and perceptual degradation for different
segment types.

The proposed solution shows strong scalability across mul-
tiple users, maintaining balanced throughput and utility with
fairness indices above 0.99. Additionally, receiver-side 3D
reconstructions confirm high-quality restoration of user em-
bodiment features, even under constrained conditions. The
framework demonstrates robust adaptability across diverse
wireless environments, including next-generation networks
such as 5G and Wi-Fi 7.

This work provides a comprehensive and practical founda-
tion for real-time, perceptually optimized holographic commu-
nication. Future work will further explore subjective quality
assessments, energy-aware deployment on edge platforms,
heterogeneous content adaptation, and over-the-air validation
using real hardware to advance towards deployable, intelligent
HTC systems for 5G/6G ecosystems.

Additionally, in the context of emerging 6G architectures,
the proposed utility-aware streaming framework can be ex-
tended with Al-driven utility predictors, federated segment
schedulers, and proactive adaptation informed by network
slicing and cross-layer awareness. These directions align with
the 6G goals of intelligent, context-aware, and user-centric
media delivery.
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