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Abstract—The increasing demand for uninterrupted connec-
tivity emphasises the pivotal role of Unmanned Aerial Vehicles
(UAVs) in facilitating real-time video streaming, despite the
challenges associated with highly dynamic air-to-ground commu-
nications. Deep Reinforcement Learning (DRL)-based solutions
(on-policy) are designed to optimize specific quality of experience
(QoE) objectives, such as video quality and smoothness when
networks fluctuate. However, they are vulnerable to different
hyperparameters and have poor sample efficiency. To overcome
this problem, we propose an improved off-policy soft actor-critic
(SAC) solution, named I-SAC, which provides an exceptional
exploration-exploitation trade-off for UAV-based aerial video
streaming. I-SAC trains a neural network by jointly considering
the video playback status, UAV flight metrics like altitude,
velocity, and acceleration, as well as prior network conditions
with the goal of maximizing the overall QoE. We design a
new QoE metric that considers video quality, video quality
oscillations, re-buffering, latency, and bandwidth utilization. We
evaluate I-SAC with extensive real-world bandwidth settings,
UAV flights, and multi-duration segment datasets. The trace-
driven simulation results demonstrate that I-SAC significantly
outperforms the closest on-policy and off-policy DRL-based
alternative solutions in terms of QoE. Specifically, I-SAC achieves
average QoE improvements of up to 54.32% under different
testing scenarios.

Index terms— Unmanned aerial vehicle, Deep reinforce-
ment learning, Adaptive bitrate streaming, Soft actor-
critic, End-user QoE.

I. INTRODUCTION

RECENTLY, unmanned aerial vehicles (UAVs) have
shown great potential in the next generation communi-

cation services due to the lower capital and operational cost,
spectral efficiency, improved coverage, ability to capture high-
resolution images/videos, and real-time seamless transmission
to the ground stations for detailed monitoring and analysis.
The UAV market is expected to reach USD 45.8 billion by
2025 [1], making them a popular host with little or no human
intervention for more practical applications such as real-time
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Fig. 1: UAV applications across a broad range of industries.
surveillance, emergency rescue, network coverage manage-
ment, traffic monitoring, delivery services, computation of-
floading and multimedia streaming [2], [3] (Fig. 1). Compared
with terrestrial base stations (BSs), cellular-connected UAVs
can support real-time multimedia streaming owing to their
flexible 3D mobility and improved wireless connectivity [4],
[5]. However, there are several research challenges in deliv-
ering high-resolution video content because of the variable
network capacity of air-to-ground communication channels
and mobility patterns [6], [7].

Deep Reinforcement Learning (DRL) models hold signifi-
cant promise in addressing the complex and dynamic nature
of UAV communication challenges. By using experience-
driven bitrate selection in time-varying contexts, DRL-based
approaches can adapt to current experiences and interact with
the environment in a manner that leads to improved user
quality of experience (QoE). Although recent studies have
demonstrated the effectiveness of DRL-based approaches in
enhancing QoE under traditional streaming architectures [8]–
[10], these techniques face unique and significant challenges
when applied to a UAV streaming environment.

Maintaining a clear line of sight between the ground station
and the UAV is critical for connection stability, but obstacles,
terrain, or distance can impede this line of sight, resulting in a
lower quality transmission [11]. Therefore, the unpredictable
nature of the UAVs’ location and altitude, as well as the vary-
ing weather conditions and network coverage, pose significant
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challenges for even well-trained agents in optimizing air-to-
ground communication [12], [13]. The existing DRL models
are inadequate in adapting to the exceedingly dynamic and
unpredictable communication systems that are characteristic
of UAV-based environments, resulting in undesirable conse-
quences. One such consequence is Headstrong Policy Opti-
mization, which is observed in on-policy training methods like
Advantage Actor-Critic [9], [14] and Asynchronous Advantage
Actor-Critic [8], [15], [16]. These methods have poor training
efficiency and are highly sensitive to hyperparameters, leading
to a higher number of samples required for each gradient step
update. Moreover, the existing models [8], [9], [17] that solely
rely on bandwidth conditions and video playback states can
result in unpredictable performance. Another adverse conse-
quence is the development of Sub-Optimal QoE. Existing QoE
models fail to capture all factors that influence user perception
and satisfaction within a UAV-based streaming scenario. QoE
is a multifaceted concept that depends on various factors such
as latency, bandwidth utilization, and playback smoothness,
among others, [14], [18], [19]. Additionally, different users
may react differently to streaming issues, with some users
being more sensitive to rebuffering, whereas others may be
more affected by low video quality. Therefore, to improve the
performance of UAV-based adaptive video transmission, an al-
gorithm must effectively model QoE, account for the dynamic
UAV-based communication environment, include flight infor-
mation (e.g., velocity, acceleration, and distance), and employ
robust and sample-efficient off-policy training methods.

Driven by the aforementioned challenges, this paper
presents a novel DRL-based Improved Soft Actor-Critic solu-
tion (I-SAC), for adapting real-time video transmission from
UAVs to ground stations in order to improve viewer QoE
levels. I-SAC is an improved variant of the off-policy soft
actor-critic (SAC) algorithm [20], which is trained by reusing
the past samples from an experience replay buffer to carry
out an optimal bitrate allocation. One of the key advantages
of the proposed I-SAC solution is its low-complexity and
sample-efficient design, which greatly reduces the number of
samples required for learning. Unlike other approaches that
rely on multiple independent agents, our model uses a single
learning agent, which reduces complexity and improves overall
performance. Additionally, I-SAC is able to quickly learn
by adapting to a wide range of flying situations to deliver
optimal performance for various QoE goals. The following is
a summary of the primary contributions of this work:

1) Inherent Sensor Data-Based Aerial Bitrate Adapta-
tion: A Markov Decision Process (MDP) is used to
model the problem at hand and a novel DRL model
based on the maximum entropy framework is intro-
duced to handle the inherent uncertainty and dynamic
nature of the UAV-based communication environment.
The sample-efficient design promotes exploration with
stabilized training and circumvents the model’s over-
commitment to any single action during the sequential
decision-making process. Unlike existing DRL-based
solutions, the I-SAC model is able to perform more
informed bitrate allocation decisions in continuous state

and action space by utilizing a performance-oriented
neural network architecture in order to process trans-
mitter (UAV), receiver (player), and network data.

2) Objective QoE Model for UAV Video Delivery: A
novel QoE metric is introduced that simultaneously con-
siders both end-to-end metrics (latency and bandwidth
utilization), as well as video streaming metrics (video
quality, positive and negative quality oscillations, and
playback rebuffering) within the context of adaptive
bitrate streaming. Current QoE models, such as Linear
QoE [21], Log QoE [22], HD QoE [13], and VMAF QoE
[23], often overlook the significance of essential factors
such as bandwidth utilization and latency. Consequently,
their effectiveness may be limited to certain scenarios
or QoE objectives. Furthermore, the behavior of these
models is highly sensitive to minor adjustments in the
weight coefficient. In contrast, the QoE model proposed
in I-SAC offers a more holistic and precise evaluation
of the viewer’s experience in a UAV-aided streaming
environment.

3) The Impact of I-SAC on Aerial Video Streaming —
Performance Analysis and Findings: I-SAC is mod-
elled using a Python-based simulator, set up to stream
segments of varying durations (i.e., 2s, 3s, and 4s) from
a flying UAV to a ground station, employing real-world
communication settings. Our comprehensive experimen-
tal results highlight the effectiveness and superiority
of I-SAC compared to other commonly used state-of-
the-art DRL solutions. The results illustrate that an
inherent sensor-data-oriented bitrate selection strategy is
the optimal approach for managing real-time streaming,
particularly in the context of experience-driven learning
in complex environments. I-SAC consistently exhibits
a reduction in convergence indeterminacy and stands
out because of its low-complexity and sample-efficient
design. These features highlight I-SAC as a compelling
solution for improving QoE by 18.04% to 54.32% in
UAV-based streaming applications.

This article is organized as follows: Section II reviews recent
research on UAV-centric adaptive video streaming. Section III
introduces the proposed system design, including the QoE
model and problem formulation. Section IV elaborates on the
I-SAC method and QoE optimization. Section V details the
experimental setup and performance comparison of several
streaming methods. Section VI concludes with future research
directions.

II. RELATED WORKS

This section provides a detailed overview of recent de-
velopments in the field of adaptive video streaming, which
can be broadly classified into two categories: i) UAV-Centric
Adaptive Video Streaming and ii) Learning-based Adaptive
Video Streaming.

A. Learning-based Adaptive Video Streaming

Learning-based frameworks are frequently utilized in
MPEG-DASH systems to improve QoE for users. These
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Fig. 2: The I-SAC system design with its major components.

frameworks utilize various reinforcement learning techniques
to optimize the video quality and bitrate selection in real-
time based on the user’s QoE. A collaborative optimization
approach for live transcoding and streaming in fog-enabled
vehicular networks was proposed by Fu et al. [24]. In a
live streaming model, a soft actor-critic DRL technique is
employed to optimize the video quality and reduce the latency
and quality changes by considering resource allocation for
fog-computing, vehicle scheduling, and bitrate adaption. Cui
et al. [25] proposed a DRL-based model to accelerate the
learning process of optimizing the video parameters, i.e.,
streaming quality and the target buffer level. Experimental
results reveal that the proposed solution can greatly improve
the video quality and buffer stability in comparison to other
approaches, i.e., Double DQN, MPC, and Buffer-based algo-
rithms. Ma et al. [26] proposed QAVA, an HTTP-based QoE-
aware bitrate aggregation solution based on DRL intelligence.
QAVA aggregates client requests and adjusts bitrates based
on client states, network circumstances, and content charac-
teristics by monitoring network states and the storage and
computational resources of a smart edge computing server.
For ABR algorithms, online learning is essential since the state
of the network is always altering. Meng et al. [27] proposed
Fastconv, a DRL-based approach to enhance the convergence
of adaptation algorithms. The proposed approach stabilizes
input data through a network adaptation technique and em-
ploys a multiplexed convolution kernel to streamline the neural
network design. Huang et al. [28] presented the Quality Aware
Rate Control (QARC) solution for optimizing perceptual levels
with reduced data and delay. QARC uses content facets for
dynamic bitrate adaptation and incorporates a video quality
prediction network (VQPN) to estimate future frame quality.
Subsequently, video quality reinforcement learning (VQRL)
models leverage VQPN outputs and network states to forecast
the ideal future bitrate.

B. UAV-Centric Adaptive Video Streaming

End-to-end video streaming over UAV communication net-
works is increasingly recognized for its potential in delivering
high-quality video streams in contexts like remote areas,
emergencies, and live events. However, realizing the full

potential of UAV-aided streaming poses significant challenges.
Burhanuddin et al. [10] employed Deep Q Network and Actor-
Critic techniques for low-latency video transmission in UAV-
to-UAV setups, focusing on optimizing base station coverage,
bitrate, and transmission rate. The authors utilized UAVs in
fire monitoring scenarios, with these UAVs sending video to
a high-altitude flying mobile base station (UAV-BS).

Zhan et al. [29] introduced a rotary-wing UAV that serves as
a mobile base station to stream Dynamic Adaptive Streaming
over HTTP (DASH) video content to multiple ground users.
The authors examined the integrated design of transmit power
and bandwidth allocation to each ground user, as well as UAV
trajectory planning to maximize the long-term QoE reward,
which takes into account the perceived quality levels, playout
buffer, and video transmission rate for all users. Chen et al.
[30] considered a similar problem in UAV relay networks
to serve multiple ground users. However, the proposed QoE
model is limited, as it only takes into account video bitrate and
freezing duration. Xiao et al. [14] proposed an SA-ABR solu-
tion that employs salient flying status information from UAVs
to generate adaptive bitrate decisions. SA-ABR was trained to
adapt to the unstable and highly dynamic UAV environment
using the on-policy advantage actor-critic [35] method. The
LSTM and CNN variants of SA-ABR outperformed Pensieve
[13] and MPC [36] designs in terms of achieving higher video
bitrates, lower quality fluctuations, and rebuffering penalties.
Introducing a flock of UAVs, or swarm drones, is becoming
more appealing due to the enormous potential in public safety,
distribution, and surveillance applications, and it is essential
for satisfying contemporary communication requirements.

Comsa et al. [31] proposed an actor-critic RL method for
streaming live ultra HD video to mobile users. However, their
approach did not optimize UAV parameters, focusing solely
on the video streaming aspect. Conversely, Wu et al. [32]
proposed a SAC solution for streaming scalable video coding
(SVC) chunks to ground mobile users. This solution jointly
optimizes UAV trajectory, video layer selection, and bandwidth
resource allocation. Yuan et al. [33] developed EasySwarm, an
open-source UAV swarming platform that forms a real-time
IoT network for reliable and secure information transmission
to the destination. Naveed et al. [34] proposed mobile UAVs
acting as fully automated and independent servers for real-time
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TABLE I: Comparative analysis of UAV-Assisted Adaptive Streaming Solutions

Works Performance Criteria Model/Techniques Streaming
Scenario

UAV Role or
Parameters

UAV
Transmission

Extended
QoE

Formulation

Extended
Segment
Duration

[10] Base station
coverage, bitrate Deep Q Network Live streaming UAV trajectory A2A, A2G No No

[29] Energy efficiency Successive convex
approximation MPEG-DASH UAV propulsion

energy A2G No No

[30] Transmission power,
Bandwidth allocation

Lyapunov
optimization

Multi-user
streaming Transmission power A2G No No

[14] QoE Optimization Actor-Critic MPEG-DASH Sensory data A2G No No

[31] PSNR, Throughput,
Packet loss rate Actor-Critic Live UHD Minimal A2G No No

[32] Bitrate, Delay,
Bitrate switching Soft Actor-Critic SVC UAV trajectory,

UAV energy A2V No No

[33] Reliability, Delay LoRa and MAC layer IOT traffic GPS, Speed, IP
address, Battery A2G No No

[34] PSNR, SSIM Fixed rules heuristic Live streaming Fixed,
Random flights A2G No No

This work QoE optimization Improved Soft
Actor-Critic MPEG-DASH UAV flight

information A2G Yes Yes

surveillance applications. The mobile UAVs leveraging cross-
layer protocols are responsible for content capturing, bitrate
computation, video conversion, and transmission over 4G LTE
networks to the remote user.

Table I illustrates a comparison of recently proposed UAV-
assisted adaptive streaming solutions. Deep Q Network-based
transmission rate optimization method [10] faces limitations in
continuous control problems common to Air-to-Air (A2A) and
Air-to-Ground (A2G) environments. Optimization problems
solved by successive convex approximation (SCA) [29] or
Lyapunov optimization [30] risk sub-optimal convergence due
to potential noise disturbances. On-policy actor-critic solutions
[14], [31] utilize temporal difference methods for single-step
value function updates, but may struggle to identify the best
actions within continuous state and action spaces common
in adaptive streaming scenarios. Prior efforts [32]–[34] do
not fully address the complexities of the UAV streaming
space, leading to sub-optimal performance. In contrast, this
work presents a novel approach that achieves stable and
sample-efficient exploration-exploitation procedures, resulting
in enhanced QoE within the UAV streaming space. This work
employs an extended QoE formulation and is tested under
extended segment durations (i.e., 2s, 3s, and 4s) to provide
a more robust adaptive streaming solution.

III. PROPOSED SYSTEM ARCHITECTURE

A. System Overview

Fig. 2 illustrates the proposed UAV-centric adaptive bitrate
streaming architecture. The multi-rotor UAV equipped with a
camera is responsible for capturing video while in flight and
transmitting the data in real-time over a a persistent cellular
network. In a surveillance scenario, UAV follows a naviga-
tion trajectory with orientation information V(𝑈𝑥 ,𝑈𝑦 ,𝑈𝑧) to
record and transmit the video during the full playback of 𝐾
segments. Fig. 3 displays the flight data of the UAV during a
flight that lasted approximately 800 seconds from [14]. Fig. 3a
shows the velocity, acceleration, and altitude values, while Fig.
3b represents the flight path of the UAV. The UAV velocity
spans from 0.0 m/s to 18.11 m/s, with an average velocity

of 5.14 m/s. The acceleration varies from 1.13 𝑚/𝑠2 to 28.76
𝑚/𝑠2, and the altitude ranges from 22.8 m to 83.2 m, with
an average altitude of 54.28 m. The average longitude and
latitude values for the UAV’s flight path are 114.4° and 30.51°,
respectively. These specifications pertain to a highly dynamic
transmission environment in order to establish a well-defined
UAV streaming setup.

The UAV captures sensory data using various built-in sensor
technologies, such as GPS and an inertial measurement unit
(IMU). The flying UAV transmits both high-quality DASH
video segments and sensory data over a cellular network.
For lightweight sensory data transmission, it employs the
Micro Air Vehicle Link (MAVLink) protocol, which can carry
sensor data, flight parameters, and other control commands.
At the client side in Fig. 2, the state modelling module is
employed in order to effectively model the state space in a
DRL framework. In this context, the past bandwidth samples,
UAV flight information, and playback information are passed
to the I-SAC agent. The UAV flight information, i.e., distance,
velocity, acceleration, etc., is essential data that can broadly
impact the future bandwidth estimation and ultimately the
adaptive bitrate selection. For instance, in [14], the researchers
found that the throughput drops to more than 50% when
increasing the height of the UAV from 20 m to 60 m from the
ground station while maintaining the same speed. Similarly,
by doubling the velocity of the UAV from 4 m/s to 8 m/s,
the throughput drops by about three times under the fixed
distance. The variations in the acceleration data also hurt
the available throughput. This highlights the importance of
incorporating UAV sensory information in the adaptive bitrate
selection process to ensure that the video quality is optimized
for the changing network conditions.

In a complex UAV environment, the bitrate selection prob-
lem is formulated as an optimization problem to maximize
the overall reward while taking into account the previous
bandwidth samples, UAV sensory information, and the play-
back information, such as the number of remaining segments,
current buffer level, bitrate of the last segment, prior reward,
and the last segment download time. The off-policy maximum
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(a) UAV Flight Information

(b) UAV Flight Path

Fig. 3: UAV flight information (velocity, acceleration, altitude)
and flight path for a flight duration of about 800s.

entropy I-SAC client with an encouraging exploration gener-
ates the appropriate bitrate decisions for each timestamp in an
adaptive fashion. Let 𝐽𝑞

𝑘
represents the 𝑞th selected bitrate for

the 𝑘th segment, where 𝑞𝜖 [1, 𝑄] and 𝑘𝜖 [1, 𝐾]. The segment
request is then sent through a segment scheduler module, and
upon receiving the segments, the client decodes and plays the
requested views.

B. QoE Model

Linear QoE models have been extensively employed to
evaluate the streaming performance of various adaptive bitrate
solutions [37]–[40]. These QoE models predominantly involve
objectives related to video quality, rebuffering, and quality
oscillations. Nonetheless, several other parameters, such as
latency, bandwidth utilization, and positive and negative qual-
ity variations, substantially influence the overall performance
assessment [41], [42].

• Video Quality: By mapping the bitrate of each segment,
the relevant perceived quality can be computed as:

f1𝑘 = Q(𝐽
𝑞

𝑘
) (1)

There are different methods to model the bitrate utility.
Following [21], we set Q(𝐽𝑞

𝑘
) = log(𝐽𝑞

𝑘
/𝐽1
𝑘
), which

demonstrates that the slight quality gain declines with
increasing bitrates.

• Quality Oscillations: The difference in quality levels
between two successive segments potentially reduces
the streaming performance in HTTP Adaptive Streaming
(HAS). As a result, the quality fluctuations should be
minimal [23]. Positive quality oscillations refer to the
situation where the video quality temporarily increases
above the target quality level. Positive quality oscillations
can improve the overall viewing experience, but can also
cause the buffer to fill up too quickly, and the video
may stall or buffering may occur. The positive quality
oscillation metric can be defined as follows:

f2𝑘 = [f
1
𝑘 − f1𝑘−1]+ (2)

Negative quality oscillations refer to the situation where
the video quality temporarily decreases below the target
quality level. This can happen for a variety of reasons,
such as when the user’s network conditions degrade or
when the video encoder is configured to under-deliver
quality. Negative quality oscillations can negatively im-
pact the overall viewing experience and lead to lower
perceived video quality. The negative quality oscillation
function is given as follows:

f3𝑘 = [f
1
𝑘 − f1𝑘−1]− (3)

Both positive and negative quality oscillations are un-
wanted effects and the adaptive client should be able to
smoothly play the highest quality content.

• Rebuffering: A user experiences playback interruptions
when the playback buffer is empty and is highly sensitive
to the video viewer. For instance, the authors in [43]
showed that a single rebuffering event leads to three
times higher risks of playback abandonment compared
to a single-quality oscillation event. When downloading
segment 𝑘 , rebuffering duration can be estimated as:

𝑓 4
𝑘 =

{
𝑡𝑘 − 𝑏𝑘 , if (𝑏𝑘 < 𝑡𝑘)
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

where 𝑡𝑘 and 𝑏𝑘 are the segment download time and the
buffer capacity for the 𝑘th interval.

• Latency: Latency is an important factor to consider in or-
der to assess the playback performance of adaptive bitrate
streaming algorithms. Ideally, the client should be able
to buffer the upcoming segments in advance before the
previous segments consume. When downloading segment
𝑘 , the latency can be measured as:

𝑓 5
𝑘 = 𝑡𝑘 =

𝜈 × 𝐽𝑞
𝑘

𝑥𝑘
(5)
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where 𝜈 is the segment duration and 𝑥𝑘 is the actual
recorded bandwidth.

• Bandwidth Utilization: Ideally, the adaptive client
should select the highest bitrates supported by the avail-
able bandwidth budget [44]. However, over- or under-
estimating the bandwidth leads to wrong quality seg-
ments, impacting the end-user expectation levels.
The bandwidth utilization function highly correlated with
the performance of adaptation algorithms is defined as
follows [45]:

𝑓 6
𝑘 =


𝐽
𝑞

𝑘

𝑥𝑘
, if (𝐽𝑞

𝑘
≤ 𝑥𝑘)(

1 − 𝐽
𝑞

𝑘

𝑥𝑘

)
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

This work considers a weighted combination of video
quality, bandwidth utilization, positive and negative quality
oscillations, and rebuffering functions to define an improved
QoE metric for adaptive video streaming as follows:

QoE𝑘 = 𝛽1 × f1𝑘 + 𝛽2 × f2𝑘 − 𝛽3 × f3𝑘 − 𝛽4 × f4𝑘 − 𝛽5 × f5𝑘 + 𝛽6 × f6𝑘
(7)

where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 are the weight coefficients repre-
senting the importance of video quality, positive and negative
quality oscillations, rebuffering, latency, and bandwidth uti-
lization, respectively. As users want to maximize 𝑓 1

𝑘
, 𝑓 2
𝑘

, and
𝑓 6
𝑘

, their contributions are positive in the novel QoE model. As
viewers want to minimize 𝑓 3

𝑘
, 𝑓 4

𝑘
, and 𝑓 5

𝑘
, their contributions

are negative in the model.

C. Problem Formulation

In a client-centric end-to-end HTTP adaptive streaming
architecture, the ultimate goal of the adaptive client is to
continuously access optimal bitrates during each adaptation
interval, thus maximising the aggregated QoE of all video seg-
ments. The optimization problem in our case can be expressed
mathematically as follows:

Problem P1:

arg 𝑚𝑎𝑥
∑︁

𝑘∈[1,𝐾 ]
𝑄𝑜𝐸𝑘 (8)

The flying status of the UAV, the client’s behaviors, and
the available network capacity are all difficult to anticipate
in advance, and as a result, it is challenging to maximize
the QoE using deterministic one-shot optimization techniques
[46]. Here, we take into account a DRL framework in which
an agent (i.e., the DASH client) learns via interaction with the
environment the optimum course of action (i.e., the best-fit
bitrate) to attain the anticipated reward (i.e., optimizing the
long-term QoE).

In the DRL paradigm, the agent takes future decisions
with little or no awareness of the environment with a trial-
and-error strategy to achieve a maximum reward. The MDP
procedure that represents an agent-environment interaction
can be described using a tuple, i.e., (S,A,P, 𝑟). S and A
represent the continuous state and action space, P is the state
transition probability, which represents the probability density
of the future state given the current state and action, and
𝑟 is the returned reward. In the context of adaptive bitrate

streaming in a UAV environment, the DRL-based adaptive
client receives a reward 𝑟𝑘 after executing an action 𝑎𝑘 ∈ A
with state 𝑠𝑘 ∈ S.

State: State records the most relevant observations of the
environment. We consider the maximum possible states to
better explore the environment. When downloading the 𝑘th
segment, the current state 𝑠𝑘 about the environment is passed
to the agent, which is defined as:

𝑠𝑘 = ( ®𝑦𝑘 , 𝑣𝑘 , 𝑎𝑘 , 𝑑𝑘 , 𝑏𝑘 , 𝐽𝑞𝑘−1, 𝑓𝑘−1, 𝑟𝑘−1, 𝑘̄) (9)

where ®𝑦𝑘 represents the bandwidth vector and 𝑣𝑘 , 𝑎𝑘 , 𝑑𝑘
represents UAV flight information, i.e., velocity, acceleration,
and distance from the ground station. 𝑏𝑘 is the occupied buffer
level to download segment 𝑘 , 𝐽𝑞

𝑘−1 is the bitrate of the last
segment, 𝑓𝑘−1 is the download time, 𝑟𝑘−1 is the previously
observed reward, and 𝑘̄ is the number of remaining segments.

Action: The agent acts to transform the environment, re-
sulting in a state transition from 𝑠𝑘−1 to 𝑠𝑘 . When (𝑘 − 1)th
segment is completely downloaded, the agent determines the
bitrate for the 𝑘th segment, i.e., 𝑎𝑘 = 𝐽

𝑞

𝑘
, based on the observed

state 𝑠𝑘 .
Reward: After the execution of each action, the environ-

ment returns instant feedback, i.e., QoE, to the agent, which
is defined as:

𝑟𝑘 = 𝑄𝑜𝐸𝑘 (10)

Concerning problem P1, the goal has been adjusted to dis-
cover an optimal bitrate selection strategy 𝜋∗ : S×A → [0, 1]
so that to maximize the expected long-term discounted QoE.

Consequently, the client-side optimal bitrate selection prob-
lem is remodeled as:

Problem P2:

𝑎𝑟𝑔 𝑚𝑎𝑥
𝜋𝜖

∏ E𝜋 [∑︁
𝑘𝜖 𝐾

𝛾𝑘𝑟𝑘] (11)

where
∏

is a collection of all potential policies and 𝛾𝜖 [0, 1]
is the discount factor. The goal of optimum representation
selection or maximizing anticipated reward may be converted
further to identify a policy that maximizes the maximum
entropy objective, i.e, H(𝜋(𝑎 |𝑠)) = − log 𝜋(𝑎 |𝑠) [47]. Entropy
maximization can improve exploratory abilities, speed up
learning, and discourage the policy from converging to a
problematic local optimum. Thus the overarching objective is
rewritten as:

𝜋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜋𝜖

∏ E𝜋 [∑︁
𝑘𝜖 𝐾

𝛾𝑘 (𝑟𝑘 − log 𝜋(𝑎𝑘 |𝑠𝑘)] (12)

We employ an improved off-policy method to solve the
above MDP problem.

IV. DESIGN OF I-SAC TO MEET QOE OBJECTIVES

This section presents the details of our proposed algo-
rithm that improves the adaptive video streaming experience
based on the SAC learning framework. We need accurate
measurements in order to use the network conditions and
bitrate choices more effectively. The I-SAC solution utilizes an
advanced neural network architecture, which is depicted in Fig.
4. This architecture employs a number of states to generate
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Fig. 4: The I-SAC model with two fully connected layers.
robust bitrate selection decisions. The bitrate selection process
takes into account metrics that are beneficial for both the
transmitter (UAV) and the receiver (Player) as per the feedback
received during an adaptive interval. The neural network ar-
chitecture of I-SAC comprises a convolutional neural network
(CNN) that is fed by the I-SAC learning agent with inputs
such as bandwidth, UAV flight data, and playback information
including buffer level, last received video bitrate, segment
download time, prior reward, and the number of remaining
segments. A focused and appropriate strategy is implemented
to extract the underlying features for each type of input. For
instance, a single 1D-CNN layer with a 1x3 kernel and 128
channels is utilized to extract network characteristics. This
is followed by two identical 1D-CNN layers used to extract
pertinent information from the UAV and the video-playing
client. The processed features are then flattened and combined
before passing into two fully connected (FC) layers. Finally,
the actor outputs the action probabilities for each bitrate. ReLU
(Rectified Linear Unit) is used as the active function for each
feature extraction layer. The architecture is designed such that
it considers both the UAV and the client-side information,
thus making the decision of bitrate selection more robust and
reliable.

A. I-SAC Training Mechanism

I-SAC is designed to optimize the long-term reward in
sequential decision-making tasks. The architecture consists
of two main components: the actor network and the critic
network. The actor network or policy improvement network is
responsible for generating actions based on the current state
of the environment. The critic network, also known as the
policy evaluation network, is responsible for evaluating the
quality of the actions generated by the actor network. The
overall training procedure of the I-SAC model is shown in
Fig. 5, where the actor network executes a specific action
and the critic network calculates the soft state-value 𝑉𝜙 (𝑠𝑘)
and soft Q-values 𝑄 𝜃𝑖 (𝑠𝑘 , 𝑎𝑘). In training, a replay buffer is
employed to store the fresh experiences at each timestamp,
i.e., M ← (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1) ∪ M. The use of a replay buffer
allows the model to learn from previously experienced data,
rather than only the current data. This can help to improve
the consistency of the training process and reduce the impact
of any data dispersion. The neural network provides the mean

Fig. 5: Training methodology of the proposed I-SAC model.

and covariance, which are then used to represent the policy as
a Gaussian distribution [20].

1) Critic Network: Critic network consisting of soft state-
value 𝑉𝜙 and soft Q-value 𝑄 𝜃𝑖 networks aims to approximate
the value functions. These networks are parameterized by 𝜙

and 𝜃. The soft Q-value network’s performance is determined
by the mean squared error (MSE), as shown below:

L𝑄 (𝜃) = E(𝑠𝑘 ,𝑎𝑘 )
[
1
2
(𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘) − 𝑄̂ 𝜃 (𝑠𝑘 , 𝑎𝑘))2

]
(13)

with

𝑄̂ 𝜃 (𝑠𝑘 , 𝑎𝑘) = 𝑟𝑘 + 𝛾 × E(𝑠𝑘+1 ) [𝑉̂𝜙̄ (𝑠𝑘+1)] (14)

𝑉̂𝜙̄ (𝑠𝑘+1) represents a weighted combination of the soft and
target values with parameters 𝜙 and 𝜙, and is given as:

𝑉̂𝜙̄ (𝑠𝑘+1) = 𝜌.𝑉𝜙 (𝑠𝑘) + (1 − 𝜌).𝑉𝜙̄ (𝑠𝑘+1) (15)

where 𝜌 is a coefficient to balance the relative importance
of 𝑉𝜙 and 𝑉𝜙̄ , which can be calculated by:

𝜌 =
exp (𝜇)

1 + exp (𝜇) (16)

where 𝜇 is the normalised difference between 𝑉𝜙 and 𝑉𝜙̄:

𝜇 =
|𝑉𝜙 (𝑠𝑘) −𝑉𝜙̄ (𝑠𝑘+1) |

max{𝑉𝜙 (𝑠𝑘), 𝑉𝜙̄ (𝑠𝑘+1)}
(17)

In the I-SAC model, the Q-value network is updated with
the soft Q value and the target value functions, which can
stabilize training. The gradient of 𝐿𝑄 (𝜃) with respect to 𝜃 is
used to update the soft Q-value network parameter:

∇𝜃L𝑄 (𝜃) = ∇𝜃𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘)
[
𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘) − 𝑟𝑘 − 𝛾 × 𝑉̂𝜙̄ (𝑠𝑘+1)

]
(18)

The target value network enables training stability and
shares a similar network structure as the value network. An
exponentially moving average is employed to compute the
parameter 𝜙 with smoothing factor 𝛿𝜖 (0, 1).

𝜙← 𝛿.𝜙 + (1 − 𝛿).𝜙 (19)
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On the other hand, the soft value network 𝑉𝜙 for value
estimation is trained to minimize the following MSE:

L𝑉 (𝜙) = E(𝑠𝑘 )
{

1
2
(𝑉𝜙 (𝑠𝑘)−E(𝑎𝑘 ) [𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘)−log 𝜋𝜔 (𝑎𝑘 |𝑠𝑘)]2

}
(20)

Correspondingly, the gradient of L𝑉 (𝜙) is calculated as

∇𝜙L𝑉 (𝜙) = ∇𝜙𝑉𝜙 (𝑠𝑘)
[
𝑉𝜙 (𝑠𝑘) −𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘) + log 𝜋𝜔 (𝑎𝑘 |𝑠𝑘)

]
(21)

2) Actor Network: During the learning process, the agent
accumulates experience through interaction with the environ-
ment. The actor approximates policy using a parameterized
neural network and decides and implements an action based
on the current state of the environment. The predicted soft
Q-value is used by the actor network to change its policy
𝑝𝑖𝑜𝑚𝑒𝑔𝑎(.|𝑠). The actor network seeks to minimize the fol-
lowing objective function for policy improvement:

L𝜋 (𝜔) = E(𝑠𝑘 ) [log 𝜋𝜔 (𝑎𝑘 |𝑠𝑘) −𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘)] (22)

The objective function in eq. (22) is re-parameterized using
a neural network transformation, i.e., 𝑎𝑘 = 𝜎𝜔 (𝜏; 𝑠𝑘), where
𝜏 is an input Gaussian noise vector [48].

L𝜋 (𝜔) = E(𝑠𝑘 ) [log 𝜋𝜔 (𝜎𝜔 (𝜏; 𝑠𝑘) |𝑠𝑘) −𝑄 𝜃 (𝑠𝑘 , 𝜎𝜔 (𝜏; 𝑠𝑘))]
(23)

The gradient of L𝜋 (𝜔) is given as:

∇𝜔L𝜋 (𝜔) = ∇𝜔 log 𝜋𝜔 (𝑎𝑘 |𝑠𝑘) +
[
∇𝑎𝑘 log 𝜋𝜔 (𝑎𝑘 |𝑠𝑘)

−∇𝑎𝑘𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘)
]
∇𝜔𝜎𝜔(𝜏𝑘 ; 𝑠𝑘)

(24)

A well-trained policy can eventually be implemented in real-
world networks, achieving low computational complexity and
real-time execution. Algorithm 1 presents the training proce-
dure for the proposed I-SAC algorithm. The process starts with
the initialization of the actor and critic networks, along with a
replay buffer (M) for storing the experience tuples. Within
each training step of a data trajectory, the actor examines
the current environment state (𝑠𝑘) and selects an action (𝑎𝑘)
based on the current policy. This chosen action influences
the environment, and the agent subsequently receives a re-
ward (𝑟𝑘) and updated observations (𝑠𝑘+1). These experiences
(𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1) are stored in the replay buffer. During each
update step, the agent randomly samples experiences from the
replay buffer and updates the parameters of the actor and
critic networks via backpropagation of the loss functions to
optimize the learning performance. Fig. 5 depicts the design
of the two Q-networks utilized in updating the actor and critic
network parameters, structured to prevent biases during the
policy improvement phase. The value network is specifically
employed to update the parameters of the critic network. The
network parameters are updated using the stochastic gradient
descent method, minimizing the loss functions. This process
is repeated for a specified number of iterations until the agent
is considered trained. The agent is then returned for use in
decision-making.

V. PERFORMANCE EVALUATION

This section introduces the proposed solution trace-driven
performance assessment in comparison to other on-policy and

Algorithm 1: Proposed Overall Training Procedure in
the I-SAC Agent
Input : 𝜃1, 𝜃2, 𝜙, 𝜔 ← Initial network parameters; 𝜙

← 𝜙; 𝜆𝜃 , 𝜆𝜙 , 𝜆𝜔 ← Learning rates of
network; T ← Training dataset; M ←
Replay memory.

1 Procedure TRAINING begin
2 for each data trajectory in T do
3 for each environment step do
4 Select action 𝑎𝑘 with policy 𝜋𝜔 (.|𝑠𝑘);
5 Perform action 𝑎𝑘 in the environment;
6 Observe next state 𝑠𝑘+1 and reward 𝑟𝑘 ;
7 Save transitions in replay memory M ←

M ∪ (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1);
8 end
9 for each update step do

10 Sample a random experience batch from
M;

11 Update 𝜃𝑖 ← 𝜃𝑖 - 𝜆𝜃 ∇𝜃L𝑄 (𝜃𝑖) for
𝑖𝜖{1, 2}, with ∇𝜃L𝑄 (𝜃𝑖) defined in eq.
(18);

12 Update 𝜙 ← 𝜙 - 𝜆𝜙 ∇𝜙L𝑉 (𝜙), (Eq. 21);
13 Update 𝜔 ← 𝜔 - 𝜆𝜔 ∇𝜔L𝜋 (𝜔), eq. (24);
14 Update 𝜙 ← 𝛿 . 𝜙 + (1 − 𝛿) . 𝜙;
15 end
16 end
17 end
18 end procedure

TABLE II: Hyperparameters employed in I-SAC

Parameter Value
Optimizer Adam [49]

Replay buffer size 106

Discount factor 0.99
Learning rate actor 3𝑥10−5

Learning rate critic 5𝑥10−3

𝛿 10−2

Training steps 8000
Update interval 41 segments

Hidden units FC1 128
Hidden units FC2 64

off-policy DRL-based adaptive streaming solutions. The ex-
perimental setup, datasets, comparative approaches, and QoE
assessment metrics are presented in detail. The experimental
findings and analysis for each of the streaming solutions are
then presented.

A. Experimental Setup

We developed a Python-based simulator using PyTorch
framework [50] to evaluate the performance of the proposed I-
SAC algorithm. The simulator was implemented on an Ubuntu
22.04 machine, equipped with a 64-bit Intel Core i7-7500U
CPU 2.7 GHz quad-core, and 16 GB memory. The actor and
critic networks in the I-SAC architecture are composed of
two fully connected layers, each with 128 and 64 neurons,
respectively. In the I-SAC training process, the actor and
critic learning rates are set to 3𝑥10−5 and 5𝑥10−3. The replay
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Fig. 6: Average bandwidth in each testing step of UAV and
Oboe network traces.

Fig. 7: Distribution of UAV velocity, acceleration, and distance
values.

buffer size, discount factor 𝛾, and smoothing coefficient are
set to 106, 0.99, and 0.01 respectively. The total number
of training steps was 8000 with 41 segments in each step.
The hyperparameters utilized for the training procedure are
listed in Table II. These values were chosen based on the
results reported in previous works [14], [20], [24]. The I-SAC
algorithm was trained using these hyperparameters, and the
performance was evaluated by comparing the results with the
state-of-the-art algorithms.

B. Experimental Dataset
We evaluated the performance of the proposed I-SAC algo-

rithm using extensive trace-driven simulations. We considered
three types of datasets, namely, bandwidth dataset, UAV
dataset, and video bitrates dataset. These datasets are described
below:

1) Bandwidth Dataset: We employed two bandwidth
datasets, namely, UAV dataset [14] and Oboe dataset
[51]. These datasets contain collected wireless and cel-
lular network traces. The UAV dataset consists of real-
world network traces collected by flying the UAV over
three urban experimental sites. We employed 4750 band-
width samples which range from 0 to 16.67 Mbps. The
training set contains the first 80% samples of the data,
and the testing set is comprised of the remaining 20%.
The 428 traces in the Oboe dataset were gathered across
500 video streaming sessions. The network throughput
ranges from 0 to 3 Mbps. To increase the evaluation
efficiency, we used 900 bandwidth samples from the
Oboe dataset. It is important to note that the UAV dataset
and Oboe dataset are representatives of real-world sce-
narios and provide a good evaluation of the performance

of the proposed I-SAC algorithm in different network
conditions. The normalization of the bandwidth samples
also allows us to evaluate the algorithm’s performance
in constrained streaming sessions, which is an important
aspect of practical applications. Fig. 6 shows the average
bandwidth samples employed for 18 testing steps from
both datasets.

2) UAV Dataset: We employed the UAV flying information
(i.e., velocity, acceleration, distance) from the UAV
dataset [14]. The data is preprocessed according to the
original settings. Fig. 7 provides a visual representation
of the distribution of UAV velocity, acceleration, and
distance values. The heatmap is color-coded to show
the frequency of these values, which are normalized as
0, 1, or 2 based on their respective ranges. For UAV
velocity, values below 8 m/s are marked as "0", values
between 8 m/s and 12 m/s are marked as "1", and values
over 12 m/s are marked as "2". The heatmap in Fig. 7
shows that the UAV velocity values are distributed over
a wide range, with the majority of values falling between
5 m/s and 15 m/s. For UAV acceleration, values above
18 𝑚/𝑠2 are marked as "1", while values below 18 m/𝑠2

are marked as "0". The majority of UAV acceleration
values fall below 18 m/𝑠2. Regarding UAV distance,
values exceeding 50 m are marked as "1", while the
other values are marked as "0". Fig. 7 indicates that the
majority of UAV distance values fall below 50 m.

3) Video Bitrates: We employed four video bitrates 0.396
Mbps (480x360), 1.033 Mbps (1280x720), 1.547 Mbps
(1280x720), and 2.484 Mbps (1920x1080) from the
DASH dataset1. The video is temporally divided into 2s
segment duration, and each streaming session consists
of 41 segments.

C. Comparative Solutions:

In order to assess the proposed solution’s performance,
I-SAC is compared to the following state-of-the-art ABR
algorithms.

1) A2C-LSTM: We used SA-ABR [14] solution in con-
junction with an underlying LSTM architecture and the
Advantage Actor Critic (A2C) approach to compare
the training performance. The neural network in A2C-
LSTM involves two LSTM layers each with 64 hidden
cells and two FC layers, each with 30 and 10 hidden
units.

2) A2C-CNN: The A2C-CNN architecture [14] replaces
the base LSTM structure with two 1-D convolutional
layers each with 64 neurons. The CNN output is com-
bined with other features and fed into three fully con-
nected layers with 128, 30, and 8 hidden units.

3) SAC-LSTM: The off-policy original SAC model [20] is
adopted to evaluate and analyze the fine-tuning methods
critically. The SAC-LSTM algorithm uses the same
network architecture and input states as employed in
A2C-LSTM. The hyperparameters employed in this ar-
chitecture are as follows: actor and critic learning rates

1http://www-itec.uni-klu.ac.at/ftp/data-sets/mmsys12/ BigBuckBunny/
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(a) Average QoE Vs. Weights (b) QoE Weight Coefficient

Fig. 8: Average QoE values with 100 random samples of QoE
weight coefficients.

are 2×10−5 and 10−2; 𝛿 is 10−2; experience replay buffer
is set to 106.

4) SAC-CNN: It is a combination of SAC-LSTM and A2C-
CNN, where the SAC-LSTM network architecture is
replaced with A2C-CNN settings.

D. QoE Coefficients

Our main objective is to propose a viable UAV ABR
solution that improves viewer QoE. The proposed QoE metric
uses weight parameters that can be realistically chosen to best
reflect various quality aspects. We normalized the values of the
individual components to reduce bias caused by the division
of data. The values of the functions 𝑓 1

𝑘
, 𝑓 2

𝑘
, 𝑓 4

𝑘
, and 𝑓 5

𝑘
are

in the range of 0 to 1, whereas the values of the functions 𝑓 3
𝑘

and 𝑓 6
𝑘

range between -1 and 0, and -1 and 1, respectively.
Following [52], approximately 27000 streaming samples

were collected to mitigate potential bias in the computation
of QoE weights. The samples were assessed by using 100
randomly applied QoE weight coefficients. The average QoE
outcomes for randomly weighted training samples are shown
in Figure 8a. The associated weight coefficients denoted by
𝛽𝑠 are shown in Fig. 8b. For each randomly weighted sample,
the sum of QoE weights was set to 1. A maximum average
QoE value of 0.159 was observed at sample index 86, and
the corresponding weight coefficient values at this index were
𝛽1 = 0.117, 𝛽2 = 0.224, 𝛽3 = 0.181, 𝛽4 = 0.202, 𝛽5 = 0.118,
and 𝛽6 = 0.154. Furthermore, a scenario was considered in
which all QoE components were deemed equally important by
video consumers. The average QoE value calculated with equal
weights was 0.165, which was higher than that achieved with
random weights, as shown in Fig. 8a. As a result, the proposed
QoE metric employs equal weights for all of its components,
i.e., 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 1/6.

E. Results and Analysis

This subsection presents comprehensive comparative eval-
uations and analyses of the proposed and alternative solu-
tions. We consider the overall QoE assessment, individual
components assessment, and segment duration assessment
to analyze the performance and streaming behavior of the
different streaming algorithms.

1) Overall QoE Assessment: Fig. 9 shows the benefits
of using the proposed I-SAC algorithm for adaptive bitrate
streaming in a UAV environment. The streaming performance

Fig. 9: Average QoE achieved by I-SAC and four other
comparative algorithms under UAV and Oboe network traces.

in terms of average QoE under Oboe and UAV bandwidth
traces achieved by I-SAC, SAC-CNN, SAC-LSTM, A2C-
CNN, and A2C-LSTM solutions is illustrated. Fig. 9 results
indicate that I-SAC can achieve optimal performance when
tested using dynamically changing UAV network traces. The
average reward value of I-SAC is 0.59, while the average
score of other SAC and A2C-based algorithms is 0.55, and
0.43, respectively. Similarly, I-SAC outperforms comparative
solutions for the Oboe traces and achieves on average a reward
of 0.71 compared to 0.66 and 0.55 for SAC-LSTM and A2C-
CNN solutions, respectively. I-SAC increases the QoE scores
by about 7.47%-7.96% (over SAC-CNN), 7.33%-7.6% (over
SAC-LSTM), 29.22%-39.38% (over A2C-CNN) and 11.17%-
34.18% (over A2C-LSTM) for UAV and Oboe bandwidth
settings, respectively. The higher performance of A2C-LSTM
over A2C-CNN is due to the higher mapped visual quality lev-
els; however, this could result in unwanted higher rebuffering
and latency penalties. The results reveal that I-SAC can deal
with variable networks and flying conditions in the context
of experience-driven adaptive streaming. In addition, it can be
seen from Fig. 9 that regardless of the network configurations,
I-SAC could successfully adapt to the new environment and
steadily obtains the best performance with the assistance of
both previous learning and fresh experience.

2) E2E and Playback Components Assessment: Next, we
will separately assess the performance against individual QoE
components, i.e. buffer, visual quality, quality oscillation,
rebuffering, latency, and bandwidth utilization. These results
are depicted in Fig. 10. According to Fig. 10a, we can observe
that I-SAC performs better than SAC and A2C solutions in
terms of buffer value. The main factor enabling I-SAC to
improve DRL agent training and performance is the effective
learning of new experiences to adapt to the different network
environments. The average buffer level of all solutions with
Oboe traces is higher than with the UAV traces. The reason
is that the average throughput of Oboe traces is 1.75 Mbps
compared to 1.31 Mbps of UAV traces. In general, I-SAC
results in 1.18-19.19% and 25.12-43.23% higher buffer levels
compared to LSTM and CNN versions of SAC and A2C agents
under Oboe and UAV testing datasets.

The I-SAC agent outputs actions corresponding to each
bitrate. The bitrates are mapped into visual quality levels (i.e.,
Q(𝐽𝑞

𝑘
) = log(𝐽𝑞

𝑘
/𝐽1
𝑘
)). Fig. 10b shows the average mapped

visual quality for five different ABR algorithms. The on-policy
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(a) Average buffer level (s) (b) Average mapped visual quality (c) Average quality oscillations

(d) Average rebuffering (s) (e) Average latency (s) (f) Average bandwidth utilization

Fig. 10: Average E2E and playback components assessment in I-SAC and four other comparative algorithms under UAV and
Oboe network traces.
A2C-LSTM achieves the highest mapped visual quality scores
compared to other methods over all the network settings.
However, the aggressive quality switch-up decisions lead to
underperformance in several other quality objectives defined
in our QoE model. In contrast, the I-SAC solution finds
an optimal trade-off between different quality objectives to
achieve the higher (6.83%-28.32%) learning goal (reward) and
results in acceptable visual quality. Fig. 10c illustrates that
I-SAC solution results in the lowest quality oscillations by
avoiding unwanted quality switches. On the other hand, A2C-
LSTM which switches to the highest visual quality leads to
the highest quality oscillations. Although, both the SAC and
A2C solutions were designed for UAV streaming environments
and they can be best trained by applying any combination of
QoE objectives. However, it is difficult for on-policy (A2C-
CNN, A2C-LSTM) and off-policy (SAC-CNN, SAC-LSTM)
to satisfy interruption-free streaming in a UAV streaming
environment. I-SAC solution on the other hand performs the
best and observes 0.18s and 0.11s average interruptions during
the streaming sessions (Fig. 10d). The underperformance of
A2C methods is due to the fact that the objective function
of A2C leads to higher bitrate utility; therefore, A2Cs are
unable to come up with workable solutions that can balance
the performance of bitrate and rebuffering objectives.

We compare the average values of the end-to-end latency
measured in terms of segment fetch time and observed that I-
SAC always results in the lowest latency values, independent
of the bandwidth traces (Fig. 10e). The average latency in I-
SAC is 1.78s which is less than the segment duration, i.e.,
2s. Whereas, the average latency in other solutions is greater
than the segment duration which leads to higher rebuffering.

Comparatively, I-SAC intelligently focuses on ensuring more
balanced segment availability by making better utilization of
the available network throughput. The experimental results
under UAV and Oboe network traces in Fig. 10f reflect that
I-SAC results in the highest bandwidth utilization compared
with the baseline algorithms. It is noteworthy that under 1.31
Mbps and 1.75 Mbps of UAV and Oboe traces, the average
bandwidth utilization in I-SAC implementation is always
positive and highest. The other solutions in particular A2C-
CNN and A2C-LSTM result in negative/over-estimation of the
bandwidth. Our experiments reveal the limitations of existing
solutions (i.e. A2C-CNN, A2C-LSTM, SAC-CNN, and SAC-
LSTM) in optimizing the overall QoE objective in UAV-based
streaming environments. The on-policy control strategies used
in A2C-CNN and A2C-LSTM result in suboptimal perfor-
mance on metrics such as quality oscillations, rebuffering,
latency, and bandwidth utilization, despite being adaptable to
distinct conditions with a lot of tuning. Similarly, the off-policy
LSTM and CNN versions also have limitations, with QoE
levels being irrelevant to optimal levels, particularly under low
bandwidth settings. These limitations highlight the difficulty
of achieving optimal QoE with existing solutions in UAV-
based streaming environments. However, our proposed I-SAC
solution, which employs a separate CNN layer for bandwidth,
UAV sensory, and playback features processing, achieves
better streaming performance, highlighting its effectiveness in
improving the QoE for UAV-based streaming.

3) Ablation Study: Impact of Segment Duration in UAV
Streaming: Segment duration is a crucial parameter in UAV
streaming that affects the playback experience for viewers
[53]. To evaluate the performance of our proposed I-SAC
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Fig. 11: Average QoE, rebuffering, latency, and bandwidth utilization values achieved by I-SAC and four other comparative
algorithms for segment durations of 3 and 4 seconds.

algorithm in the context of UAV streaming, we further divided
the video clip into 3s and 4s segment durations, chosen based
on the experimental findings of [54], [55]. Fig. 11 results
demonstrate the effectiveness of the proposed I-SAC algo-
rithm in improving the playback performance in a UAV-based
streaming environment. The QoE values in Fig. 11a are ob-
tained by comparing I-SAC against state-of-the-art DRL-based
solutions, including SAC-CNN, SAC-LSTM, A2C-CNN, and
A2C-LSTM, under both UAV and Oboe network traces and
with segment durations of 3s and 4s. It can be observed that
the QoE values for Oboe network traces are higher than for
UAV network traces due to the higher average bandwidth.

The proposed I-SAC solution consistently outperforms the
other methods in all tested scenarios. Specifically, I-SAC
demonstrates an average improvement of 20.21% for 3s-long
video segments and 33.74% for segments of 4s compared to
SAC-CNN and SAC-LSTM when the UAV traces are used,
respectively. Similar observations can be made for the Oboe
network traces, where I-SAC surpasses SAC-CNN and SAC-
LSTM by 15.83% (for 3s) and 23.81% (for 4s). In a similar
vein, I-SAC displays improvements ranging from 29.61% to
35.78% (for 3s) and 34.9% to 61.72% (for 4s) over the A2C-
LSTM and A2C-CNN solutions within Oboe traces. Note
that with an increase in segment duration, the overall QoE
decreases for all solutions. However, I-SAC results in almost
similar QoE levels for different segment durations.

Fig. 11b compares the performance of various solutions
in terms of rebuffering rate, a crucial streaming performance
indicator that represents the frequency of video playback dis-

ruptions due to buffering. A lower rebuffering rate corresponds
to an enhanced viewer’s QoE. Our proposed solution, I-SAC,
consistently exhibits superior performance by maintaining the
lowest rebuffering rates across all tested scenarios, indicating
its effective handling of playback interruptions. In contrast, the
other solutions, namely SAC-CNN, SAC-LSTM, A2C-CNN,
and A2C-LSTM, yield less favorable results, characterized by
significantly higher rebuffering rates. Among these, the A2C-
LSTM and A2C-CNN solutions specifically obtain the highest
rebuffering rates in most situations. Additionally, noteworthy
is that the rebuffering rate is influenced by video segment
duration. Particularly, a segment duration of 3s results in a
lower rebuffering rate than when segments of 4s are used,
implying a smoother playback experience.

Fig. 11c depicts the average latency values, illustrating a
notable correlation between longer segment durations and in-
creased communication delays. Within the UAV environment,
the I-SAC solution remarkably achieves latency values of 2.8s
for 3s and 3.8s for 4s segment duration. Similarly, within the
Oboe environment, the I-SAC exhibits superior performance,
obtaining latency values of 2.5s and 3.38s for 3s and 4s
segment durations, respectively. These latency metrics not only
highlight the effective functionality of the I-SAC, but also
underscore its capability to adapt to varying testing conditions.
In contrast, A2C-LSTM and A2C-CNN exhibit the highest
communication delays. The ultimate result is the provision of
an optimal streaming experience characterized by the lowest
latency values. Fig. 11d displays bandwidth utilization results.
Here, the I-SAC consistently demonstrates higher and more
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positive bandwidth utilization compared to the other solu-
tions under all testing datasets. This outcome reveals the I-
SAC’s superior performance in managing network resources
effectively to deliver an improved playback performance. An
important consideration in these analyses is the significant
impact of the chosen segment duration on the results obtained.
The segment duration influences how the video content is
fragmented and subsequently transmitted, which in turn affects
the overall video quality experienced by the end user.

In summary, I-SAC is a robust solution for improving
QoE during UAV-related streaming. I-SAC was trained of-
fline; however, its lightweight design allows for easy on-
line implementation and updates. The off-policy maximum
entropy characteristics in I-SAC make it less sensitive to
non-linear data variations and therefore it can adapt well
under changing environments (e.g., Oboe network traces),
or playback conditions (e.g., 2s, 3s, and 4s segment dura-
tion). With approximately 8000 training steps, taking less
than two hours, I-SAC consistently outperforms state-of-the-
art DRL-based solutions, achieving higher QoE values and
lower rebuffering rates across numerous tested scenarios and
segment durations. In general, compared to closely-related
works, I-SAC achieves up to 13.86%. 39.31%, and 72.58%
higher QoE under UAV traces, and up to 22.21%, 24.26%,
and 36.06% higher QoE under Oboe traces for 2s, 3s, and
4s segment durations, respectively. Our results also highlight
the importance of carefully selecting the segment duration
in a UAV network environment, as longer segment durations
can result in higher latency values and rebuffering rates.
I-SAC is capable of effectively adapting to varying flying
conditions, resulting in the lowest latency values and highest
bandwidth utilization. Our results demonstrate a promising
potential of I-SAC in enhancing the user experience in a UAV-
based streaming environment. By successfully addressing core
challenges and capitalizing on adaptive strategies, I-SAC sets a
new benchmark in QoE-focused solutions for UAV streaming.

VI. CONCLUSIONS AND FUTURE WORKS

This paper introduces I-SAC, an improved off-policy DRL
solution that allows the optimal adaptation of video content
based on sample-efficient exploration and maximum entropy
in a UAV-based streaming environment. The adaptive bitrate
allocation problem is expressed as an MDP and is addressed
by the I-SAC method, taking into account the dynamic char-
acteristics of network resources and UAV flight details. I-SAC
is a straightforward and theoretically sound solution which
improves QoE of UAV-based video streaming. I-SAC cap-
tures and processes environmental features, including network
bandwidth, UAV flying status, and playback information, via
convolution layers to maximize the long-term QoE reward,
which is based on numerous important E2E and playback
components. Extensive experimental outcomes based on real-
world datasets demonstrate that the I-SAC algorithm signifi-
cantly outperforms the closest on-policy and off-policy DRL-
based solutions in terms of superior learning efficiency and
QoE. Specifically, testing results show that I-SAC improves
the overall video streaming QoE by up to 18.04%, 31.79%,

and 54.32% for 2s, 3s, and 4s-long video segment durations,
respectively.

Future work will explore the integration of meta-learning
techniques with the joint optimization of computational re-
sources and bitrate adaptation in a mobile edge computing-
driven UAV streaming environment. It will also consider more
diverse performance testing including hardware-in-the-loop
experiments.
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