
Top Subset Retrieval on Large Collections Using Sorted
Indices

Paul Ferguson, Alan F. Smeaton, Cathal Gurrin and Peter Wilkins
Centre for Digital Video Processing, Dublin City University, Ireland.

{pferguson, asmeaton, cgurrin and pwilkins}@computing.dcu.ie

ABSTRACT
In this poster we describe alternative inverted index struc-
tures that reduce the time required to process queries, pro-
duce a higher query throughput and still return high qual-
ity results to the end user. We give results based upon the
TREC Terabyte dataset showing improvements that these
indices give in terms of effectiveness and efficiency.

Categories and Subject Descriptors: H.3.3 Informa-
tion Storage, Information Search and Retrieval
General Terms: Performance, Experimentation
Keywords: Sorted Inverted Index, Large-Scale Retrieval

1. INTRODUCTION
The task of developing a fast and effective search engine

to deal with many billions of web pages is very difficult.
While indexing billions of web pages is beyond the needs
of most organisations, indexing large test collections (such
as the TREC GOV2 collection of over 25,000,000 pages)
is often necessary. In this poster we examine alternative
indexing techniques to make this possible with even very
limited resources.

In our previous work [2], we presented a search engine
architecture for an efficient Terabyte search engine. We dis-
tributed GOV2 across four leaf search engines and used an
aggregate engine to combine search results. In an effort to
produce an even more cost-effective means to search the col-
lection we indexed the entire collection on a single Pentium
4, 2.6GHz machine, with 1.5GB of RAM. However when
reducing the cost of indexing a collection by reducing the
number of machines used, problems with index structures
become more acute. It was with this in mind that we exam-
ined alternative index structures.

2. TOP-SUBSET RETRIEVAL
The main challenge as we see it, is not in the indexing

of the collection on a single machine but in performing re-
trieval. This can be seen when using the TREC Terabyte

Copyright is held by the author/owner.
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
ACM 1-59593-034-5/05/0008.

topics titles from 2004 as queries, after removing stopwords
there remains an average of over a million documents asso-
ciated with each term, and with an average of 3.1 terms per
topic that amounts to over 3 million similarity calculations
per query. In queries with more popular terms there are
over 12 million similarity calculations. Working on a stan-
dard desktop machine, this is difficult to achieve efficiently.

A possible solution to this is to choose to process only
a certain number of documents associated with each term.
As described in [2] one of the index structures supported
by our search engine is similar to a conventional inverted
index. Fundamentally, for each term in a collection-wide
lexicon, there is an object that contains the list of docu-
ments where that term occurs, and it’s corresponding term
frequency (TF). This structure allows easy sorting of docu-
ments associated with each term, which provides a mecha-
nism to allow the retrieval of only a top subset of documents
associated with each term and still attain relatively high ac-
curacy, with only a fraction of overall memory requirements.

If the documents are sorted naively we cannot attempt to
take only a top subset of documents for each term and hope
to find a large portion of relevant documents. By re-ranking
documents in the postings lists in descending order based on
their term frequency, similar to Persin et al in [3] and first
introduced in [4], the most influential documents for each
term are processed first and so processing only a limited
number of documents for each term can produce high qual-
ity results with only a fraction of the computational costs.
Persin also describes methods to compress this type of in-
verted index and presents means by which their frequency
sorted indices can be stored in less space than the conven-
tional document-order inverted index.

In addition to this term frequency sorted index we also
created an alternative index structure: we sorted the index
by the normalised TF (NTF = TF/document length(dlt))
to rank based on the term’s overall influence on that doc-
ument rather than purely on the number of occurrences of
the term. It would seem intuitive to think that this in-
dex, sorted based on the NTF would perform better than
one sorted based on TFs. However we found the opposite
to be the case, as was the case for Anh et al in [1]. This
poor performance in comparison with TF sorting may be
explained by the high ranking of small documents in the
inverted index which would not be normalised greatly due
to their small length. In order to promote important doc-
uments with not just overly long TFs (as in the case of
TF sorting) and not overly short documents (as can be the
case in NTF sorting), we devised the following alternative



method of sorting, (calculated based on divergence from the
average document length) which would penalise both long
and short documents, and then combine this with their TF
to give an overall ranking as to the importance for each doc-
ument associated with each term.

Weighttf = log(BiDistavg + e)× log(TF + e) (1)

BiDistavg =

(
dlt

avgdl
if dlt ≤ avgdl

1− dl−avgdl
maxdl−avgdl

otherwise
(2)

where e is the base of natural logarithms, avgdl is the average
and maxdl is the maximum document length.

This sorting scheme works as follows: BiDistavg is a mea-
sure of the distance of the document length from the aver-
age document length, and becomes smaller the further the
document length deviates from the average. When this is
combined with the TF to calculate Weighttf , it gives a good
measure of the term’s overall influence on the document. A
variant on this is to combine the NTF: with the BiDisavg

measure to produce a new weighting (Weightntf ):

Weightntf = log(BiDistavg + e)× log(NTF + e) (3)

An alternative method of sorting is to combine the NTF with
a measure (Distavg), which only penalises short documents,
as the longer documents would have been penalised enough
already by being divided by their large dlt:

SWeightntf = log(Distavg + e)× log(NTF + e) (4)

Distavg =


dlt

avgdl
if dlt < avgdl

1 otherwise
(5)

3. EXPERIMENTS AND RESULTS
We conducted our experiments using the TREC Terabyte

2004 data, and running automatic queries from the title field
of the topics. We present performance details using different
forms of sorted indices and show how utilising only the top
subset of each of these indices can effect system performance
as measured in terms of MAP and Precision at 10. Overall

Table 1: Index Names and Descriptions
Index Name Description
DocSorted Sorted by document number

NTFSorted Sorted by the NTF

TFSorted Sorted by TF

WeightTFSorted Sorted using Weighttf (1)

WeightNTFSorted Sorted using Weightntf (3)

SWeightNTFSorted Sorted using SWeightntf (4)

the WeightTFSorted index performed best in terms of Preci-
sion at 10(P@10) and Mean Average Precision(MAP). The
WeightNTFSorted and SWeightNTFSorted indices achieved
a clear and consistent improvement over all other index for-
mats in terms of P@10, however with WeightNTFSorted this
gain is at the expense of MAP in which it performs poorly.

It is interesting to note that for TFSorted, WeightTF-
Sorted and SWeightNTFSorted there is a degradation in
P@10 the more documents that are evaluated. While Weight-
edNTF managed to maintain a regular level of consistency.

Perhaps the best improvement to be seen from these new
indices is clear increase in precision at 10 (P@10) that the

Figure 1: Precision at 10 Comparisons.

Figure 2: Mean Average Precision Comparisons.

WeightedNTF and SWeightNTF indices gives. At only 100,000
documents processed they give P@10 values of 0.4673 and
0.4612 respectively, which none of the other indices can
achieve, even after processing as much as 700,000 documents
for each term. These type of indices could clearly be useful
in a web search engine(or similar) where the typical user
wants a fast response time with high precision results at the
top of the ranked list and generally will not browse past the
top 10-20 results.

4. CONCLUSIONS
We have presented additional techniques for sorting in-

verted indices which give substantial improvements over con-
ventional document sorted indices, and moderate improve-
ments over TF sorted indices. These experiments have been
carried out on a single machine, but we have achieved sim-
ilar improvements using a distributed search engine archi-
tecture, allowing these approaches to scale up to work with
larger collections.
Acknowledgement: This work was supported by Science
Foundation Ireland, under grant number 03/IN.3/I361.

5. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space

ranking with effective early termination. SIGIR, 2001.

[2] P. Ferguson, C. Gurrin, P. Wilkins, and A. F. Smeaton.
F́ısréal: A low cost terabyte search engine. In
Proceeding of European Conference in IR, March 2005.

[3] M. Persin, J. Zobel, and Ron-Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes. ”J.
American Society of Information Science”, 47, 1996.

[4] A. F. Smeaton and C. J. van Rijsbergen. The nearest
neighbour problem in information retrieval: an
algorithm using upperbounds. In Proc. of ACM SIGIR
conference on Information storage and retrieval, 1981.


