
EFFICIENT HARDWARE ARCHITECTURES FOR MPEG-4 CORE PROFILE

Daniel Larkin∗, Andrew Kinane, Valentin Muresan, Noel O’Connor

Centre for Digital Video Processing,
Dublin City University,

{larkind,kinanea,muresanv,oconnorn}@eeng.dcu.ie

ABSTRACT

Efficient hardware acceleration architectures are proposed for
the most demanding MPEG-4 core profile algorithms, namely; tex-
ture motion estimation (TME), binary motion estimation (BME)
and the shape adaptive discrete cosine transform (SA-DCT).The
proposed ME designs may also be used for H.264, since both ar-
chitectures can handle variable block sizes. Both ME architec-
tures employ early termination techniques that reduce latency and
save needless memory accesses and power consumption. They
also use a pixel subsampling technique to facilitate parallelism,
while balancing the computational load. The BME datapath also
saves operations by using Run Length Coded (RLC) pixel address-
ing. The SA-DCT module has a re-configuring multiplier-lessse-
rial datapath using adders and multiplexers only to improvearea
and power. The SA-DCT packing steps are done using a minimal
switching addressing scheme with guarded evaluation. All three
modules have been synthesised targeting the WildCard-II FPGA
benchmarking platform adopted by the MPEG-4 Part9 reference
hardware group.

1. INTRODUCTION

The ongoing global trend to shift multimedia applications from
desktop platforms (e.g. set-top boxes or PCs), to mobile platforms
(e.g. PDAs, smart-phones, or game boxes) has encountered sev-
eral technical hurdles: very demanding real-time applications, low
bandwidth mobile networks, and mobile devices hardware limita-
tions. The latter include low computational power, low memory
capacity, short battery life and strict miniaturisation requirements.
The solution to the conflict between short battery life and power-
hungry deep sub-micron technologies does not necessarily lie in
high-throughput fully-parallel architectures (e.g. systolic arrays).
Rather, power efficient hardware acceleration is being investigated
either within the behavioural domain by exploiting the nature of
the media processing operations to be accelerated (e.g. regular-
ity, redundancy) or in the the structural domain by employing dy-
namic power management (DPM) techniques. While the latter is a
more straightforward technique, the former implies innovation at
the algorithmic level and has the potential for much greater(10X
to 20X) power savings [1].

We propose three video processing architectures that offeran
appropriate trade off between area, speed and power consump-
tion. The target tools are texture motion estimation (TME),binary
motion estimation (BME) and the shape adaptive discrete cosine
transform (SA-DCT). The modules have been synthesised target-
ing the Annapolis WildCard-II FPGA prototyping platform (PCM-

∗The support of Enterprise Ireland is gratefully acknowledged

CIA card with a Xilinx Virtex-II XCV3000 FPGA) adopted by the
MPEG-4 Part9 reference hardware group. Benchmarking figures
are presented for this platform and full MPEG conformance testing
for each of the modules is currently being undertaken.

The rest of this paper is organized as follows. A brief overview
of ME & BME architectures is given in section 2. The general ME
architecture is presented in 2.1. The optimized PE for TME &
BME are presented in section 2.2 and 2.3. Section 3 discussesa
Shape Adaptive DCT architecture. Section 4 discusses MPEG-4
Part9 Integration, while section 5 draws conclusions on thework
presented.

2. MOTION ESTIMATION (ME)

The block-matching (BM) based approach of the ME algorithm
has been found to be the most amenable to hardware implemen-
tation offering the best performance/complexity tradeoff. Systolic
arrays (SA) are amongst the first architectural solutions proposed
for BM-based ME. They were designed to maximally exploit BM
operations’ regularity usually in a full search (FS) strategy. This
eliminated the significant control circuitry overhead [2].However,
they sacrifice area and power to achieve high throughput. SA im-
plementations can be classified as 1-D or 2-D approaches, with
global or local accumulation [3]. Clock rate, frame size, search
range, and block size are the parameters used to decide on the
number of processing elements (PEs) in the systolic structure [2].
Recently, some ME optimization approaches have been proposed
to tackle memory efficiency. This is achieved by a high degree
of on-chip memory content re-use, parallel pel informationaccess
and memory access interleaving [4].

2.1. PROPOSED GENERAL ME ARCHITECTURE

The proposed architecture comprises a low-cost power-efficient
fast exhaustive BM architecture for ME. ME’s high computational
requirements are addressed here by implementing in hardware an
early exit mechanism based on SAD cancellation. This achieves
redundant computation elimination by adapting the datapath re-
sources to the video input characteristics (i.e. motion level, object
size, object texture, etc.). Due to the fact that this approach is
based on re-mapping and partitioning the video content by means
of pixel subsampling (see fig. 1), only architectures with a22∗n

number of PEs can be implemented. For conciseness, only a 4xPE
architectural solution is discussed here. As it can be seen in fig.
2, the general 4xPE ME architecture proposed here consists of 4
parallel PEs and an update stage. While the PEs for texture ME
(TME) are based on de-accumulation operations (see subsection
2.2), the PEs for binary ME (BME) are based on XOR-based bit

249



counting operations between run length coded blocks (see subsec-
tion 2.3).

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

Macroblock
ORIGINAL FRAME MEMORY

Block

Block Block

Block

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 

PARTITIONED FRAME MEMORY

3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 

Block1
Block 2 Block 3 Block 4

4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 
4 4 4 4 4 4 4 4 

TO BM PEs

Fig. 1. Video Data Re-mapping and Partitioning

2.1.1. Update Stage

The early exit mechanism embedded in all PEs of the proposed
general ME architecture is based on SAD cancellation. This ap-
proach has been proposed in software, but has never been lever-
aged in a hardware implementation so far. It is basically an AND
function between the early exit condition to be met in all PEsdur-
ing the match at any time. For the undecided cases, when the early
exit condition was not met in all PEs by the end of the PE-level
SAD calculations, the update stage (US) is turned on to execute
in parallel with the next match’s operations (executed in PEs) the
verification of the current total (macroblock) SAD. The US takes
at most 11 cycles while the PE level BM takes 64 cycles (8x8).
Therefore, a pure sequential scheduling of the US operations is
implemented in the US hardware (see fig. 2) to run in parallel with
the PE operations. There are three possible US operation scenar-
ios in a block match. The most frequent one is when the US is
idle all the time during matches that are early exited. The second
and third one happen when the US is launched because the early
exit condition has not been met in all PEs by the end of the match.
Thus in the second scenario the US is cancelled after 5 steps be-
cause the total SAD value turns out to be worse than the current
minimum SAD and no PE-level SAD update is deemed necessary.
The third scenario happens after the aforementioned 5 stepswhen
the total calculated SAD turns out to be a new minimum. In this
case the total min SAD and PE-level min SAD values are updated.
Hence, corrections are also carried out within a single cycle inside
the PEs’ de-accumulators that have started the new match less than
11 cycle ago from previous PE-level min SAD values. Note that
if a new SAD-cancellation occurs during an US run and if a new
match has to be skipped, this early exit does not affect the US’s
operations. This is due to the fact that a match skip means that
the resulting total SAD value was getting larger than the current
minimum SAD (that can only be altered by a smaller total SAD
value).

BM PE 0 BM PE 1 BM PE 2 BM PE 3

PREV_DACC_REG0 PREV_DACC_REG3PREV_DACC_REG1 PREV_DACC_REG2

MUX

rb0 cb0 rb1 cb1 rb2 cb2 rb3 cb3

1's complement

MUX

DMUX

BSAD_REG0 BSAD_REG1 BSAD_REG2 BSAD_REG3

TOTAL_DACC_REG

TOTAL_MIN_SAD_REG
Cin

UPDATE
STAGE

Fig. 2. 4xPE Architecture = 4BM PEs + Update Stage

2.2. Texture Motion Estimation

To date, SAD-cancellation has been employed in software im-
plementations only where the current block match was cancelled
when it was obvious that the current SAD was greater than the
minimum SAD found so far. In order to implement this approach
in parallel hardware, a SAD-cancellation mechanism is needed
to encompass both the block (PE) and macroblock (US) levels.
The solution proposed is to employ block-level parallelismin the
SAD formula and then transform the equation from calculating an
absolute-value to calculating a relative-value (by de-accumulation)
to the current minimum SAD. That is, a 16x16 MB SAD calcula-
tion is carried out in four 8x8 BMs relatively to the current mini-
mum SAD and then updated at PE&US level if better. A detailed
description of the texture PE may be found in [5].

2.3. Binary Motion Estimation

BME finds numerous applications within video coding. It is an
integral element of MPEG-4 Binary Shape Coding, where it typ-
ically consumes over 90% of the overall resources required for
shape encoding. BME has also been proposed [6] as a way to re-
duce complexity for regular 8-bit Texture Motion estimation when
coupled with a suitable binarization filter. There are a number of
hardware implementations of BME. In the context of BME for
shape coding Chang et al [7] proposes a 1D systolic array hard-
ware architecture implementation coupled with a full search strat-
egy. It uses 16 SAD PE’s, where each PE calculates the SAD for
one candidate BAB search position. The PE architecture consists
of an XOR and Adder tree structure.

2.3.1. Optimized BME Architecture

In general, with binary valued pixels the SAD calculation reduces
to the following Bit Counting (BC) operation:

BC (Bcurr, Bref ) =

i=N
X

i=1

j=M
X

j=1

Bcurr (i, j) ⊗ Bref (i, j) (1)

WhereBcurr is the block under consideration in the current frame
andBref is the block at the current search location in the search
window. In previous BME research no attempts have been made
to optimize the SAD PE datapath, despite the fact there is a num-
ber of inherent redundancies which can be exploited. Similar to
the approach adopted in section 2.2, BC early termination can be
employed to cease processing when the minimum BC has been

250



exceeded. Furthermore equation (1) gives a zero intermediate re-
sult when bothBcurr(i,j) andBref(i,j) have the same value. This
results in unnecessary memory accesses and operations. To min-
imise this, we propose using run length encoding (RLE), thereby
accessing only relevant data. In order to use RLE the BC calcula-
tion must be reformulated to equation (2) (a full discussionof this
is presented in [8]).

BC = TOTref − TOTcurr + 2 ×
X

DIFFcurrrle
(2)

Equation (2) is beneficial from a low power hardware perspective
since

• TOTcurr is calculated only once per search.

• TOTref can be updated in 1 clock cycle.

• Incremental addition of DIFFcurr allows early termination.

• Irrelevant data is not accessed.

The run length codes are generated in parallel during the first match
when early termination is not possible. After the encoding the
logic can be powered down until the next current block is processed.
When there are fewer black pixels than white pixels in the current
MB it is preferable to use the inverse run length codes as thisfur-
ther exploits redundancies. The BC operation is reformulated [8]
to that of equation (3). This is also amendable for hardware imple-
mentation as it requires minimal extra logic.

SAD = TOTcurr −TOTref + 2×
X

DIFFcurrinvRLE
(3)

A detailed view of the BC Processing Element is shown in
Fig. 3 and discussed in [8]. It can been seen that there are two
early termination mechanisms and associated control logic.

Sign Change [Cancel BC]

prev_dacc_val

local_sad_val

Cin/Load
Control

load_prev_dacc_val

load_local_sad_val
load_totref_val

load_totcurr_val

decTOTref

TOTcur

Sign Change / TOTref
Underflow - Early Termination

0

TOTref

DIFFcRLE REF

Cin

DACC_REG

0 TOTref
UNDERFLOW

 LOGIC

PE CONTROL LOGIC

D
E

-A
C

C
U

M
U

L
A

T
O

R

Fig. 3. RL SAD PE

3. SHAPE ADAPTIVE DISCRETE COSINE TRANSFORM

An efficient architecture (Fig. 4) has been designed to compute the
SA-DCT, which offers a good trade-off between speed, area and
power [9]. All k coefficientsk = 0, 1, . . . , N − 1 are computed
serially for eachN -point 1D DCT by reconfiguring the datapath
based on{k, N}. This is achieved using even/odd decomposi-
tion (EOD), followed by adder-based distributed arithmetic using
a multiplexed weight generation module (MWGM) and a partial

E
V

E
N

O
D

D
D

E
C

O
M

P
.

M
U

L
T

IP
L

E
X

E
D

W
E

IG
H

T
G

E
N

E
R

A
T

IO
N

M
O

D
U

L
E

P
P

S
T

TRANSPOSE
RAM

DATAPATH
CONTROL

LOGIC

k_waddr[2:0]

va
lid

N
[2

:0
]

va
lid

N
[2

:0
]

A
D

D
R

E
S

S
IN

G
C

O
N

T
R

O
L

L
O

G
IC

k[
2:

0]

va
lid

current_N
[3:0]

data[8:0]

alpha[7:0]

valid

ev
en

 /o
dd

 

ev
en

 /o
dd

 

clear_NRAM

data[14:0]

final_horz

halt

F_k_i[14:0]

ve
rt

 /h
or

z 

valid[1:0]

logic_rdy

F
_k[11:0]

Variable N -Point 1D-DCT Datapath

SA-DCT

final_vert

TRAM interface Signals

final_data[1:0]

new
_data[1:0]

Fig. 4. SA-DCT Architecture.

product summation tree (PPST). The input buffer and TRAM ad-
dressing logic perform the SA-DCT packing stages without the
need for shift registers. The properties of the architecture include:

• Reconfiguring adder-only based distributed arithmetic data-
path to eliminate multipliers and exploit adder re-use.

• Efficient data addressing usingk and N to perform SA-
DCT packing with minimal switching.

• Local module clock gating based on thek andN to avoid
wasted power.

The dynamic nature of the SA-DCT processing steps pose signif-
icant VLSI implementation challenges, but this architecture ex-
ploits this by computing the coefficients serially and re-allocating
resources. The total adder count is 27, which compares favourably
with other SA-DCT specific approaches [10].

4. SYNTHESIS AND MPEG-4 PART9 INTEGRATION

4.1. Synthesis Results

The ME, BME and SA-DCT cores have been synthesised in iso-
lation targeting the Xilinx Virtex-II FPGA on the AnnapolisWild-
Card-II platform, with the results shown in Table 1. These results
may be used to accurately benchmark against other implementa-
tions submitted to the MPEG-4 Part9 group since the target plat-
form must be adhered to when submitting modules. It must be
noted that the results presented in Table 1 are not the absolute op-
timal achievable by design since the target technology is anFPGA.
For example with 90nm ASIC technology, the SA-DCT achieves
an operating frequency at 250MHz consuming 0.468mW [10].

4.2. Hardware / Software Integration

The SA-DCT module has been integrated with an adapted ver-
sion of the multiple IP-core hardware accelerated softwaresystem
framework developed by the University of Calgary [11]. The entire
system along with host software calls has been implemented on a
Windows 2000 laptop with the Annapolis WildCard-II PCMCIA
FPGA prototyping platform installed.

An efficient hardware module controller (HWMC) for the SA-
DCT core has been developed to interface between the core andthe
rest of the system. Its processing steps are summarised as follows:

1. Waits until activated by host software via interrupt con-
troller strobe. The host software also writes to 4 master
socket hardware registers to configure the SA-DCT core
with the following parameters:

251



Module Area Area Maximium Power Throughput Multipliers CLB Block
(Logic) (Local Memory) Frequency Slices RAMs
[Gates] [Gates] [MHz] [mW] [kB/s]

SA-DCT 26642 13330 62.9 70-80 256684 0 2630 (18%) 0
ME 10800 0 99 31.40 25-140 0 395 (1%) 0
BME 6913 16854 76.8 12.95 100-200 0 433 (3%) 0

Table 1. Xilinx Virtex-II XC2V3000 Synthesis Results

• Frame dimensions.

• Number of burst frames to be processed.

• SRAM read start address (texture and shape).

• SRAM write start address (SA-DCT coefficients).

2. Issues SRAM access request to memory arbiter.

3. When request granted, reads a set of 8x8 texture and alpha
blocks from the SRAM and transmits data to SA-DCT core.

4. Buffers resultant data from core and writes to SRAM.

5. Checks to see if all burst frames processed. If no more data,
go to step 1 and relinquish SRAM access request. Other-
wise repeat steps 3-5 until all data processed.

The SA-DCT has a variable load depending on the shape in-
formation and the SA-DCT core has been designed such that it
finishes processing smaller video object plane (VOP) blocksear-
lier. The SA-DCT HWMC has been designed with this in mind
so that the SA-DCT relinquishes control of the SRAM at the ear-
liest possible moment. At present HWMCs are being designed
for the ME and BME modules similar to that implemented for
the SA-DCT. They will have interleaved fast local memories that
will store the search windows as addressed by the ME and BME
cores. This is done to avoid power-consumptive off-chip memory
accesses and facilitate date re-use, which is particularlyimportant
for the ME/BME modules since they address a lot of data. When
complete all three modules will be integrated together withappro-
priate SRAM arbitration logic. It is envisaged that a sharedlocal
memory could be used for all three modules to avoid redundant
off-chip accesses.

A software API has been developed that configures the sys-
tem and simulates the SA-DCT, quantisation, inverse quantisation
and ISA-DCT steps of an MPEG-4 codec. The hardware module
computes the SA-DCT and the rest is computed in software on the
host computer to verify the core functionality. Full MPEG-4part
9 conformance testing requires the compilation of the entire ref-
erence software replacing the reference SA-DCT function with an
API call to the SA-DCT hardware accelerator. Future steps involve
developing a similar API for the ME and BME modules and full
conformance testing for all three modules with the MPEG group.

5. CONCLUSIONS

Efficient hardware acceleration architectures have been presented
for TME, BME and the SA-DCT video processing algorithms. All
three have been synthesised targeting the MPEG-4 Part9 reference
hardware integration framework with results outlined in section 4.
MPEG-4 core profile implementations are hampered by the lack
of robust video object segmentation systems. However, there is
significant ongoing research in the field of video feature extrac-
tion (MPEG-7), which may be leveraged in the future for crude
semantic object segmentation.

6. REFERENCES

[1] “Minimize IC power without sacrificing performance,” July
15 2004, [Online] http://www.eedesign.com/.

[2] S.C. Cheng et al., “Algorithms mapped to systolic-arrayim-
plementation,”IEEE Trans. Consumer Electron., vol. 39, no.
3, pp. 292 – 297, Aug. 1993.

[3] E. Chan et al., “Motion estimation architecture for video
compression,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 5, pp. 741 – 757, Oct. 1997.

[4] Y.K. Lai et al., “A data-interlacing architecture with two-
dimensional data-reuse for full-search block-matching algo-
rithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no.
2, pp. 124 – 127, Apr. 1998.

[5] Valentin Muresan and Noel O’Connor, “Updated Status and
documentation of the 4xPE Hardware Acceleration Module
for Motion Estimation, ISO/IEC JTC1/SC29/WG11 N6757,”
in 70th MPEG-4 Meeting Document Register, Palma de Mal-
lorca, Spain, Oct. 18-22, 2004.

[6] B.Natarajan, V. Bhaskaran, and K. Konstantinides, “Low
complexity block based motion estimation via one bit trans-
form,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 7, no. 4, pp. 702–706, August 1997.

[7] Hao-Chieh Chang, Yung-Chi Chang, Yi-Chu Wang, Wei-
Ming Chao, and Liang-Gee Chen, “VLSI Architecture De-
sign of MPEG-4 Shape Coding,”IEEE Trans. Circuits Syst.
Video Technol., vol. 12, no. 9, Sept. 2002.

[8] Daniel Larkin, Valentin Muresan, and Noel O’Connor, “Up-
dated Status and documentation of the Shape Coding Bi-
nary Motion Estimation Hardware Acceleration Module,” in
N6759 Contribution to AHG on MPEG-4 Part-9: Reference
Hardware ISO/IEC JTC1/SC29/WG11, Palma de Mallorca,
Spain, Oct. 18-22, 2004.

[9] Andrew Kinane, Valentin Muresan, and Noel O’Connor,
“Updated Status and Documentation on Hardware Accel-
eration Module for SA-DCT for MPEG-4 Part 2, ISO/IEC
JTC1/SC29/WG11 N6756,” in70th MPEG-4 Meeting Doc-
ument Register, Palma de Mallorca, Spain, Oct. 18-22, 2004.

[10] Andrew Kinane, Valentin Muresan, and Noel O’Connor,
“An Optimal Adder-Based Hardware Architecture for the
DCT/SA-DCT,” in Proc. SPIE Video Communications and
Image Processing (VCIP), July12–15.

[11] Tamer S. Mohamed and Wael Bedawy, “Multiple IP-
Core Hardware Accelerated Software System Framework for
MPEG-4 Part 9,” inISO/IEC JTC1/SC29/WG11 M10954
Contribution to AHG on MPEG-4 Part 9: Reference Hard-
ware, Redmond, USA, July 2004.

252


