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ABSTRACT

As the growth of digital image collections continues so does
the need for efficient content based searching of images capa-
ble of providing quality results within a search time that is
acceptable to users who have grown used text search engine
performance. Some existing techniques, whilst being capa-
ble of providing relevant results to a user’s query will not
scale up to very large image collections, the order of which
will be in the millions. In this paper we propose a tech-
nique that uses text based IR methods for indexing MPEG-
7 visual features (from the MPEG-7 XM) to perform rapid
subset selection within large image collections. Our test col-
lection consists of 750,000 images crawled from the SPIRIT
collection (discussed in section 3) and a separate set of 1000
query images also from the SPIRIT collection. An initial
experiment is presented to measure the accuracy of the sub-
set generated for each query image by taking the top 100
results of the subset, and comparing those to the top 100
results derived from a complete ranking of the collection for
that query image. Ranking is performed via 1.2 Minkowsky
distance measures for both sets.

1. INTRODUCTION

Almost all work on practical implementations of image
retrieval have used either image metadata such as anchor
text, date, time or location, or have used low and mid-level
features such as colour and texture. In the case of metadata-
based image retrieval, large scale implementations such as
Google Images [2] can be realised, but in the case of image-
based image retrieval collection size is usually much more
limited.

In this paper we propose a methodology to use Content-
Based Image Retrieval (CBIR) on very large collection sizes.
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We propose a technique of applying text based IR techniques
to index MPEG-7 extracted features (using the MPEG-7
eXperimentation Model), to perform rapid subset selection
on large image collections. On this subset we then compute
similarity measures in order to obtain a ranking of images.
Using a naive approach of building an inverted index and
basing retrieval on this will yield poor discrimination among
images because the feature space in such image retrieval is
too densely compacted with images. Our approach increases
the feature space by increasing the number of terms by which
an image can be described.

In [12] Quack et al. they proposed an image retrieval sys-
tem for a set of up to three million images, based on visual
features and collateral text, by means of clustering features
and then utilising relevance feedback to improve precision.
We propose a method for searching large image collections
based on image-image similarity, without the need for clus-
tering or calculation of a similarity matrix. This is currently
the method employed in most current CBIR systems and as
we will discuss in section 3 and is also the major impediment
to the scaling up of these CBIR systems.

We begin the paper with a review of document (text) re-
trieval and image retrieval, contrasting their respective en-
vironments, following with related work. We then introduce
the SPIRIT image collection and describe our approach for
feature extraction. Following that we describe our subset se-
lection algorithm including the preprocessing and indexing
stages in section 5 and retrieval in section 6. A preliminary
experiment is included and we finish with issues, future work
and conclusions.

2. BACKGROUND

2.1 Document Retrieval

When searching collections of text documents we normally
index each document by the words or word stems which oc-
cur within the document. Sometimes we include positional
information about words, namely the ordinal position or off-
set within the document of each word and this is done to al-
low phrase or word adjacency searching. Document retrieval
is accomplished by matching the words or word stems from
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Because the vocabulary of words which can be used in
natural language text documents is so large, and because
documents themselves normally are not trivially small, at



least not as small as user queries, the virtual “space” in
which documents occur is not overly dense for distinguish-
ing documents from each other. For example, in our work
on text-based information retrieval we use the SPIRIT col-
lection of 94,552,870 web pages [8] crawled directly from the
internet in 2001, as described in section 3. As noted in [3]
the size of the vocabulary for a collection of text documents
follows Heaps law [6] and with an average document length
of 456 terms, the number of index terms should be approxi-
mately 73,600,000. Although this is a huge number of terms,
most of them correspond to numeric and mis-spellings and
have very low frequencies of occurrence, and the actual num-
ber of content-bearing terms, or dimensions in the feature
space, is much less.

During document retrieval, the issue of short queries, of
the order of 2 or 3 query terms creates problems, in that
while (longer) documents can be distinguished against each
other a short query does not offer as much potential for dis-
crimination between documents and so information retrieval
research has developed techniques including relevance feed-
back, pseudo-relevance feedback, latent semantic indexing,
and others. In addition, although there are semantic de-
pendencies between the words used to index documents, a
consequence of the dependencies between words in natural
language, for the most part we ignore these dependencies in
information retrieval and we treat the indexing terms as if
they were independent of each other.

2.2 Motivation for Large-scale Image Retrieval

If we now look at the characteristics for retrieval of im-
ages we find a very different environment. We are concerned
here with raw image matching, not with retrieval based on
meta-data such as anchortexts or descriptions [2] but with
retrieving an image from a collection based on the fact that
the image somehow matches or looks like another image.
Conventionally, image retrieval can be based on matching
low-level features such as colour, texture or edges, or mid to
high-level semantic features such as ‘indoor/outdoor’, ‘per-
son’, ‘vegetation’, ‘water’, etc. For low-level features, the
continuous spectrum of colours, textures and edge direc-
tions is normally quantised into a relatively small number
of bins, of the order of some dozens, each of which forms a
dimension in the feature space while each of the mid- and
high-level features also forms another individual dimension
in this space. So for example, if we quantise colour and
texture into 80 bins each, and we quantise edge directions
into 10 bins, and we have 10 mid-level semantic feature de-
tectors then we have a total of 80 + 80 + 10 + 10 = 180
dimensions in our feature space. Collectively the number of
dimensions in the “space” occupied by images is relatively
small, especially when contrasted with the number of fea-
tures in text document retrieval, and image retrieval also
generally ignores any dependencies that may exist between
such features.

Let us now examine one common set of circumstances for
image retrieval, namely retrieval from a collection of per-
sonal photos. In a related project we have collected nearly
10,000 personal photos of people’s travel, holidays, family
events, etc. [5]. These have been analysed using our imple-
mentation of the MPEG-7 eXperimentation Model (XM) [9]
as described in section 4. In addition, all our photos have
GPS location and local weather conditions information, and
we have implementations of mid-level feature detectors in-

cluding face(s), indoor/outdoor, buildings, etc. Using the
MPEG-7 XM we can use these low-level features to create a
multi-dimensional feature space in which each photo can be
placed. We have augmented the colour/texture/edge space
by up to 692 further category or feature values, the most
frequent of which is daylight (5867 times) and the least fre-
quent of which includes photo taken in misty weather, photo
taken in Schenley Heights Pittsburgh and many others, each
of which occurs only once. Because the number of photos is
only of the order of some thousands, the feature space is still
not overly dense and photos are distinct enough from each
other to allow acceptable levels of image retrieval. Further-
more there are no issues of ‘short’ queries as with document
retrieval since query images themselves are analysed using
exactly the same feature analysis as other images in the col-
lection and so have as many dimensions.

But what if the collection of images is more than several
thousands, but several millions of images? This certainly
would not be the case for an individual’s personal photo
collection but might be the case for the photos from a com-
munity of users, or from a commercial photo archive, or even
from the web. In such a scenario of a much larger collection
of images then the context for retrieval changes completely
as the feature space then becomes more densely populated
with images. Because the characteristics of the feature space
are so different to document retrieval, although the number
of images/documents may be comparable, we cannot re-use
techniques used in large-scale document retrieval in retrieval
from large numbers of images. As acknowledged by [7] cur-
rent image search systems rely on high-dimensional visual
features which are difficult to search efficiently, and resolving
this problem is the key to scaling up existing CBIR systems
to deal with realistic, web sized collection of images. In this
paper we examine some options open to us for addressing
this problem but before we do that in the next section we
shall give an outline of the collection of images we are work-
ing with, and then we shall give a summary of the low-level
features from the MPEG-7 XM that we are using.

2.3 Related Work

Related work resides in areas of image clustering, classi-
fication and text retrieval of image data. These approaches
are concerned with adding further discrimination into the
feature space at either a low or semantic level. Image clus-
tering and classification has been explored in many systems,
e.g. [13][15]. The major difference between our work and
these techniques is that for the most part the clusters or
classifications are created at indexing time. Our subset se-
lection occurs at retrieval time and the subset generated
is dependant on the low level features of the query image.
All subsets generated are dynamic, however as these are all
based on low-level features no semantic information could
be derived.

Other systems e.g. [14] have taken advantage of text re-
trieval research, and make use of such concepts as inverted
indexes, relevance feedback and ranking metrics incorporat-
ing frequency measures[16]. Our work takes advantage of
inverted index structures and term identification techniques
via variations on n-grams[16]. However we do not use any
text based ranking metrics or relevance feedback.

3. SPIRIT COLLECTION

As previously mentioned, the SPIRIT collection is a col-



lection of over 94.5 million web pages. From this large collec-
tion of web pages we have identified over 125 million unique
image URLs, of which we have crawled all available images
(over 50 million) and stored these images locally. It is with
indexing such a large collection of images that motivates
this research and the SPIRIT collection provides us with an
ideally large collection of readily available images.

Our previous work at generating similarity matrices for
image-image similarity calculations relied on the fact that
the collections we were working with were rather small, of
the order of about 33,000 images. With a collection of this
size it is feasible to store a whole N x N similarity matrix
on a single desktop computer. Traditional matrix reduc-
tion techniques that rely on removing large numbers of zero
values from a matrix will not be applicable in this case as
virtually all similarity values between images will be non-
zero. Alternatively, simply reducing the number of similar
images similar to each image in the top 1,000 or the top 100
will result in an incomplete matrix. Rather the approach
employed should attempt to minimise the effect of any ma-
trix reduction.

Were one to take the traditional approach, we estimate
that a triangular similarity matrix for the SPIRIT collection
of 50 million images would require 9 petabytes (9 million
gigabytes) of memory, or approximately 23,000 large hard
drives. In addition, the processing time required to generate
such a triangular matrix, assuming 50,000 similarity calcula-
tions a second (MPEG-7 XM on a fast workstation), would
require almost 800 years of (Pentium 4) processor time to
complete. Clearly this is not feasible and an alternative
technique is required, such as is outlined in this paper in or-
der to use the MPEG-7 XM to extract features from images
and provide retrieval facilities using these features.

4. FEATURE EXTRACTION

The extraction of features from our image collection was
performed by our feature extraction toolbox which we have
used as part of our participation in TRECVid. TRECVid
is an international exercise which benchmarks the effective-
ness of video retrieval systems. As part of TRECVid the
organisers run a shot boundary detection process on the
video collection, for each shot within a video they extract a
keyframe image which is representative of that shot. These
keyframes become the standard image reference set for the
video collection.

In order to support keyframe matching for our video shot
retrieval application as part of TRECVid in 2004 [4], we de-
veloped a tool which processed all keyframes from the collec-
tion using the feature descriptors described below. These de-
scriptors (based on the MPEG-7 XM) were developed within
the context of the aceToolbox, a toolbox of low-level audio-
visual analysis tools being developed as part of DCU’s par-
ticipation in the EU aceMedia project [1].

The following description of the toolbox and visual fea-
tures is referenced from our earlier TRECVid work [4]:

In this first version of the toolbox, colour feature grouping
is performed by Recursive Shortest Spanning Tree (RSST).
The original RSST algorithm is a relatively simple and fast
region-growing method. It starts from pixel level and iter-
atively merges regions (two regions per iteration) according
to the distance calculated using colour features and region
size. The process stops when the desired number of regions
are obtained. For our experiments we can process images

using any of the following four descriptors.

e An Edge Histogram Descriptor (EHD) is designed
to capture the spatial distribution of edges by divid-
ing the image into 4x4 subimages (16 non-overlapping
blocks) and edges are then categorized into 5 types (0,
45, 90, 135 and nondirectional) in each block. The
output is a 5 bin histogram for each block, giving a
total of 5x16 = 80 histogram bins.

e A Local Colour Descriptor (Colour Layout -
CLD) is a compact and resolution-invariant represen-
tation of colour in an image. The colour information
of an image is partitioned in 64 (8x8) blocks; second,
the representative colour of each block is determined
by using the average colour in each block.

e A Global Colour Descriptor (Scalable Colour
- SCD) measures colour distribution over an entire
image. It is defined in the hue-saturation-value (HSV)
colour space and produces a 256 bin colour histogram,
normalised, non-linearly mapped into a four-bit integer
value, and then encoded by a Haar transform to obtain
a 32 bin histogram.

e A Homogenous Texture Descriptor (HDT) de-
scribes directionality, coarseness, and regularity of pat-
terns in images. It is computed by first filtering the
image with a bank of orientation and scale sensitive
(Gabor) filters, and then computing the mean and
standard deviation of the filtered outputs in the fre-
quency domain. In this work we only use the mean
values to compute the similarity between the images.

More details on these descriptors can be found in [10].

The overall outcome of employing these features would
be to generate four separate triangular similarity matrices,
with the similarity being estimated by using L2 Minkowsky
distance. The TRECVid 2004 collection consisted of 33,367
images. However, scaling such a similarity matrix approach
up to the 50 million images from our SPIRIT collection will
not be possible (as outlined in section 3), and a new method-
ology is required, as proposed below.

5. INVERTED INDEX FEATURE REPRE-
SENTATION

5.1 INDEXING OVERVIEW

In our work we explored two approaches to creating our
inverted index representation, these being a frequency based
approach and a positional based approach. To illustrate
the fundamental differences between the two, let us take an
example colour structure document:

56 233 5 56 56 255 0 0 0 37 94

The above document consists of 7 unique terms. In a
frequency based index we record the occurrences of each
term in the document. For instance, term ‘0’ would have a
frequency of 3. Conversely for a positional based index we
are more interested in what position in the document does
the term occur. If we start counting our positions from 0,
we can say that the term ‘233’ appears at position ‘1’.

Regardless of the type of index to be created, there are
several steps that must be followed for the creation of an



inverted index. First there is a pre-processing step, which
processes the candidate images through the MPEG-7 XM,
then takes the resulting raw XML documents and converts
them into a format for rapid indexing, such as the previ-
ous example. The second phase is the actual indexing itself
which creates the inverted index file, and the lexicon which
specifies what terms exist in the index and if they do at what
location within the file. Finally there is retrieval which al-
lows us to query the index and obtain our subset.

5.2 PRE-PROCESSING

The first step involved in our indexing process is to extract
the features from the candidate images utilising the MPEG-
7 XM. For each feature extracted from the set of images, an
XML document is produced which contains for each image
the extracted feature output. An example entry for the edge
histogram feature for a single image would appear as:

<Descriptor xsi:type = "EdgeHistogramType">
<BinCounts>s 1 1 0 1 4 4 2 1 3 3 6
2 6 1 2 7...[till 80]
</BinCounts>

</Descriptor>

The meaning of these 80 values was described earlier in sec-
tion 4. However, given that each feature represents different
representations of an image, the corresponding outputs are
not overly similar. For instance the following examples are
extracts of outputs for Colour Structure, Colour Layout and
Homogenous Texture respectively:

<MultimediaContent xsi:type = "ImageType">
<Image>
<VisualDescriptor xsi:type =
"ColorStructureType" colorQuant = "1">
<Values>10 8 O 0 128 10 O O

255 166 [.. further elements]
</Values>
</VisualDescriptor>
</Image>

</MultimediaContent>

<Descriptor xsi:type = "ColorLayoutType">
<YDCCoeff>7</YDCCoeff>
<CbDCCoeff>24</CbDCCoeff>
<CrDCCoeff>36</CrDCCoeff>
<YACCoeff5>14 24 12 15 11 </YACCoeffb5>
<CbACCoeff2>18 12 </CbACCoeff2>
<CrACCoeff2>15 19 </CrACCoeff2>

</Descriptor>

<Descriptor xsi:type = "HomogeneousTextureType">
<Average>51</Average>
<StandardDeviation>52</StandardDeviation>
<Energy>159 161 169 200 152 147 145
[... further elements]</Energy>
</Descriptor>

At the end of this process we have one XML file per feature
for the collection. These XML documents now provide a
textual representation of the image content which we can
now exploit.

Our final phase in this step is to process each of the XML
files into a stripped down file, that contains one document

per line, and aggregates all the integer values for a document
to appear on that line. Once this is complete the data is
ready to be indexed.

5.3 INDEXING

This indexing phase is primarily concerned with, for each
document, taking it’s integer array of values, identifying the
terms within this array depending on the indexing strategy
(frequency or positional) and recording this information to
disk.

The first step in the creation of any inverted index is term
identification for the current document being processed. If
we look at data for the Colour Structure feature, we can
observe that the possible value for any term will be within
the range of 0-255, providing only 256 unique terms. For
Edge Histogram data this problem is even worse with the
possible value for a given term being within the range of
0-8 providing only 9 unique terms. This means that our
lexicon of unique terms will now be severely limited if we
take terms as being integer values delineated by white space.
To compare this to text, we would expect a similarly sized
text index to have a lexicon ranging into the hundreds of
thousands of unique terms. Therefore we need to create a
greater number of unique terms for text retrieval techniques
to be effective. Our approach is to create what we are calling
Term Grams (TGrams).

TGrams are similar to n-grams in that both are used to
analyse the text to identify new terms. While n-grams work
at the character level, TGrams work on the word or term
level. A TGram is a new term that is the concatenation of
adjacent terms to the current term being processed. The
number of terms that will be concatenated is determined by
the length of TGram we are trying to create. This is best
illustrated by an example. If we take a snippet of Colour
Structure data:

10 8 0 0 128 10 0 O 255 166

we can first extract our standard single terms, which would
provide an identical list as above. Next we create our 2 term
length TGrams, which would result in the following terms:

108, 8.0, 0.0, 0.128, 128.10, 100, 0.0, 0_255, 255.16

It should be noted that the TGram creation is overlapping,
and that we insert an underscore character between the con-
catenated terms. The reason for this is that it’s important
to differentiate between the integer value ‘108’ and the two
length TGram ‘10-8’. For our term identification process we
create TGrams of length 2 through to 6, meaning that for
our earlier example we would produce the following output:
Length 3:

10.8.0, 8.0.0, 0.0-128, 0.128_10, 128.10.0, 10.0.0,
0.0_255, 0.255_166

Length 4:

10.8.0.0, 8.0.0.128, 0.0-128_10, 0-128.10.0, 128.10.0.0,
10.0_0_255, 0.0_255_.166

Length 5:

10.8.0.0-128, 8.0.0_128_10, 0.0.128.10_0, 0.128.10.0.0,
128.10.0_.0_255, 10.0_0_255_166

Length 6:



10.8.0.0_128_10, 8.0.0.128.10_0, 0-0.128.10.0_0,
0.128.10.0_0_255, 128_.10_0_0_255_166

This process creates more complex and varied terms than
what we began with, and adds a degree of size to the lexicon
to aid with retrieval. However we can still generate another
increase in size if we take into account either positional or
frequency information depending on the index that we are
creating.

If we are creating a frequency based index, we take for
each document its unique terms and count the number of
occurrences of that term within the document. Taking our
initial example document, and examining the TGrams of
length 2 we created, we obtain the frequency data shown in
Table 1.

Table 1: Frequency Data

Term: | Frequency:
108 1
8.0 1
0-0 2
0-128 1

We record this data in our index for this document. However
we can also record this data as unique terms to store in our
lexicon to provide greater term differentiation again. To
store this data in the lexicon we create a new term that
is the aggregation of the TGram and the frequency data.
We use a hyphen to delineated between the two types of
data so that the term isn’t confused as being a TGram of
greater size (e.g. differentiate between the TGram 10.8_1
and the TGram 10.8-1 which occurs once). If we take the
above example we would then have created the following
new terms:

10.8-1, 8.0-1, 0.0-2, 0.128-1

A similar approach is taken with the positional index, ex-
cept that instead of recording the frequency of the term,
we record at what position it occurs within the document.
Again taking the earlier TGram of length 2, we would get
the data as shown in Table 2.

Table 2: Position Data

Term: | Position:
108 0
8.0 1
0.0 2
0.128 3

This would generate the following terms to be added to the
lexicon:

10.8-0, 8.0-1, 0.0-2, 0.128-3

6. RETRIEVAL

Like any IR system, retrieval is initiated by a query and
in this case the query is in the form of an image. The query

image is processed by the MPEG-7 XM and its features
extracted. This feature output is then processed through the
same TGram creation process as described in the previous
section. We can select the length of TGram’s to generate, so
that we can query with only 2 length terms, 3 length terms
etc. The specific TGram generation steps will depend on
what index is being queried (positional or frequency).

Once query TGrams are created, examining the index be-
gins. For each TGram we first check if it appears in the lex-
icon, if it does not then there are no documents that contain
that particular TGram, so we return nothing. Alternatively
if there is a lexicon entry we retrieve the all matching doc-
uments from the index and add these into our result area.

Given that TGrams incorporate either positional or fre-
quency information, the retrieval from the index will be
quite selective. For instance if our query TGram is fre-
quency based, then the TGram ‘10-8-1’ will only retrieve
from the index documents that contain a pair of integers
‘10 8’ that appears exactly once in the document. Similarly
for a positional based index the query TGram ‘10_8-1" will
only retrieve a pair of integers ‘10 8 where the pair start at
position ‘1’ within that document.

Once these iterations are complete we are left with our
subset of candidate documents which can be ranked using
whichever ranking scheme has been implemented. Again it
should be emphasized at this point that this system is not
designed to create a new ranking methodology, only a subset
selection process which prunes the amount of documents to
be ranked.

The final addition we have made to the retrieval system
is the capability for the index to be queried again with
TGrams of a smaller length if the initial query did not gen-
erate enough query documents. We refer to this mechanism
as a ‘stepped’ query, where the query will specify the ini-
tial length of TGram to query by, and if not enough docu-
ments are returned, to query the index again with a specified
TGram of a shorter length. The number of documents that
are required before the ‘step down’ is invoked is referred to
as the ‘stepping threshold’ and is currently set to 100. For
example, a query may specify that it wishes to query initially
with TGrams of length ‘6’, but if not enough documents are
returned to query again with TGrams of length ‘3’. The ini-
tial query would lookup the index using TGrams of length
‘6’. If 100 or less documents are returned the system will
re-initiate the query using TGrams of length ‘3.

Therefore our system’s main purpose is to utilise the in-
verted index structure to obtain a subset of candidate im-
ages from the collection which are most likely to be some-
what similar to the query image. At present we execute
an L2 similarity measure between images in this subset and
the query image to obtain our final ranked output for the
query. This last step could be replaced with any ranking
mechanism.

7. EXPERIMENT

To explore whether this technique of index creation and
retrieval would scale up we ran an experiment to test the
performance of our inverted index system versus that of a
complete similarity matrix to evaluate how effective the in-
verted index system is in identifying the subset of most likely
similar images. For this experiment the dataset used was
750,000 images from the SPIRIT collection, as discussed in
Section 3 and the query images are comprised from a sepa-



rate set of 1000 images, also from the SPIRIT collection.

The resulting similarity matrix that was produced was
therefore 750,000x1000 in size. For this experiment we con-
structed an index from the Edge Histogram and Scalable
Colour features. The similarity measure employed for gen-
erating the matrices and ranking of the subset is L2.

The experiment therefore is that for each query image
we query both the similarity matrix and the inverted index
for the top 100 results. Taking the results of the similarity
matrix as our ground truth (being a ranking of the entire
collection), we compare the results to the returned subset.
We measure the percentage of documents returned in the
top 100 from the subset to the matrix top 100 for that query
image, in other words we are calculating the precision, where
the matrix results are considered correct.

We also record the size of the subset that is returned
and express it as a percentage reduction of the overall set.
For example if a query returns a subset of 75,000 from the
750,000 set, then this subset would be expressed as being a
90% reduction of the initial set.

The purpose of the experiment is to determine how accu-
rate our inverted index system is in selecting an appropriate
subset for similarity ranking and in doing so eliminating the
problem of high-dimensionality as discussed in section 2.2.
As both systems utilise L2 ranking, the score of an image
appearing in either list will be identical, therefore we are
only evaluating to what extent the two sets overlap.

The following series of experiments was executed on 750,000
set of image data for Edge Histogram and Scalable Colour
data. Both frequency and positional indexes were created,
using TGrams of lengths 1 - 6. The queries that were
executed were using frequency and positional TGrams of
lengths 1 - 6, as well as ‘stepped’ queries of combinations of
5 and 2, 5 and 3, 6 and 2, and 6 and 3.

7.1 INDEX TIME AND LEXICON SIZE

The creation of the two indexes of 750,000 for both Colour
Structure and Edge Histogram, of both frequency and posi-
tional types took can be seen in Table 3

Table 3: Indexing Time

Feature: Time (min):
Colour Structure Frequency 216
Edge Histogram Frequency 218
Colour Structure Positional 220
Edge Histogram Positional 234

Figures 1 and 2 illustrate the rise in lexicon growth per
TGram used. We can observe from these graphs that as
the length of the TGram increases so to does the number of
unique terms that it generates. More generally we can see
that positional indexes contain more terms than frequency
indexes, and that Colour Structure generates more terms
than Edge Histogram. This is not unexpected given that the
raw terms for Edge Histogram have a range of 0-8 whereas
Colour Structure has a range of 0-255. What is surprising
though is the massive number of terms that long positional
TGrams generated as opposed to frequency based.

7.2 QUERY RUN RESULTS
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Figure 1: Edge Histogram Lexicon Growth

Colour Structure Lexicon Growth (Logarithmic)

100000000

10000000
1000000

100000

Unique Terms

10000
1000

100
@ Frequency TGram
W Positional

Figure 2: Colour Structure Lexicon Growth.

As mentioned earlier, the results we present are the per-
centage overlap our subset results have to that of a com-
plete L2 ranking of the entire collection, and the percent-
age to which we have returned a reduced subset size. For
both measures, the higher percentage indicates greater per-
formance.

The first results to be presented here are the results of
the queries to both Edge Histogram and Colour Structure
frequency based indexes as seen in Figures 4 and 3. These
results can be contrasted to those generated from the results
for positional indexes, as seen in Figures 6 and 5.
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Figure 3: Colour Structure Frequency

The first major observation to make is that for some par-
ticular reason, the Edge Histogram Frequency results (Fig-
ure 4) are at odds with the trends established by the other
indexes. Why this is the case isn’t immediately clear but
is assumed to be an artefact of the data, and may be be-
cause a frequency based index is not as selective in its subset
reduction techniques.

On the whole positional indices achieve a greater level
of performance than the frequency based indices, with the
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best level of trade-off occurring with TGrams of length 4.
In these cases we are achieving a 42%-51% overlap but with
a reduction of the set in the order of 82%-88% area. It
is interesting to note that despite the two different types of
data in Edge Histogram and Colour Structure, a comparable
level of performance can be achieved.

The retrieval times for these results are presented in Ta-
bles 4 and 5 (where retrieval time is measured as the aver-
age time in seconds to generate the TGrams from the query,
lookup the index and place the results into a set).

Table 4: Timings for frequency queries (seconds)
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Table 5: Timings for positional queries (seconds)

Positional 1 2 3 4 5 6

Edge Histogram | 23.74 495 1.74 096 0.71 0.61

Colour Structure | 9.03 3.69 1.87 0.99 0.67 0.54

Frequency 1 2 3 4 5 6

Edge Histogram | 0.87 12.12 14.68 4.43 1.26 0.65
Colour Structure | 3.14 0.72 0.39 0.25 0.15 0.10

In an attempt to improve our retrieval time further, we at-
tempted ‘stepped’ runs as described earlier. However based
on earlier experiments, we found that the stepping thresh-
old of 100 documents was not being reached for the Edge
Histogram index, therefore for the Edge Histogram experi-
ments, thresholds of 1000 and 5000 were used. The results
for these runs appears in Figures 7 and 8, with timing data
presented in Table 6.

This result turned out to be the most surprising as we were
able to achieve further significant performance increases. In

particular the combination of TGrams of length 5 and 2
yielded high overlap results between 47% and 53% yet still
achieved subset reduction in the order of 78% to 82%. What
is also observable is that depending on the search scenario,
different types of combinations may yield more suitable re-
sults. In particular if we are more interested in larger subset
reduction, then a combination of 6 and 3 length TGrams
would provide up to a 93% reduction in the set size whilst
still achieving a 35% overlap.

8. ISSUES,FUTUREWORKAND CONCLU-
SIONS

We believe that the approach to reducing the search space
for image retrieval described here has potential, as these re-
sults show that a fair degree of overlap can be achieved in a
reduced subset that can be retrieved in a timely manner. As
with any information retrieval task the effectiveness of the
system will be determined by what the user is attempting to
retrieve. A system that employs our aforementioned mecha-
nisms for rapid subset selection would be most applicable to
an ad hoc retrieval scenario where a user is looking for some
general answers that match their query, and would not care
about achieving 100% recall.

A major issue confronting this system is that by using a
text based approach, we will retrieve documents that only
match some part of the query document. However exist-
ing similarity techniques such as L2 will rank documents as
being very similar even if they do not share any terms in
common. In these instances our approach will fail as we re-
quire an overlap for the document to be retrieved. However
as noted earlier, depending on the retrieval task and the size
of the collection, the returned results may be adequate to
fullfill the users tasks.

It would be interesting to compare our results to that of
more contemporary ranking techniques (and fusion models)
such as [11] to see how this approach compares. To do this
though would require the current approach to be extended
to incorporate the other MPEG-7 features that we regularly
make use of, including Colour Layout and Homogenous Tex-
ture.
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The final major issue, also acknowledged in [12] is at this
stage there is no large scale image retrieval evaluation plat-
forms that can be utilised to provide feedback on system
performance.

Future work to be undertaken within this area is to deter-
mine if there is any advantage that can be achieved to aid
ranking of query’s results using this mechanism, and if in
doing so we can get an improvement in precision over cur-
rent ranking measures such as L2. However again as noted
earlier, this work would be difficult to undertake as no mech-
anism for the evaluation of results from a large scale image
search currently exists.
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