Detector adaptation by maximising agreement between independent data sources
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Abstract

Traditional methods for creating classifiers have two
main disadvantages. Firstly, it is time consuming to ac-
quire, or manually annotate, the training collection. Sec-
ondly, the data on which the classifier is trained may be
over-generalised or too specific. This paper presents our
investigations into overcoming both of these drawbacks si-
multaneously, by providing example applications where two
data sources train each other. This removes both the need
for supervised annotation or feedback, and allows rapid
adaptation of the classifier to different data. Two applica-
tions are presented: one using thermal infrared and visual
imagery to robustly learn changing skin models, and an-
other using changes in saturation and luminance to learn
shadow appearance parameters.

1. Introduction

In traditional machine-learning, classifiers and detectors
are created by training them on ground-truthed data. The
creation of ground-truth is time-consuming, usually involv-
ing manual annotation of each example. A further difficulty
lies in the amount of ground-truth used for training. If the
training data contains only a small number of examples, the
classifier will be very specific and will not generalise well to
other unseen data. If the training data is extensive and con-
tains a large number of examples, the classifier may perform
well on a broad variety of data, but will not be optimal for
specific datasets. While there is no optimal classifier for all
datasets, in this paper we show that in some cases it is pos-
sible to use two sources of information, and the redundant
information they share, to dynamically create a classifier on
new data automatically without any user annotation.

1.1. Related work

In the absense of appropriate training data, two indepen-
dent sources of information could be used to, in a sense,
train each other, by providing feedback on an appropriate
configuration for optimal detection. Intuitively, two inde-
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pendent detectors, with their parameters selected by max-
imising agreement, will agree on detections that are cor-
rect, and false positives will be excluded since they are un-
correlated and including them would decrease agreement.
Agreement between sources has often been measured using
mutual information.

Kruppa and Schiele’s approach is a good example [3].
Here, detector configurations that correspond to peaks of
the agreement function are selected and used to fuse de-
tector outputs in a hierarchical framework. In the face-
detection application demonstrating their method, a simple
ellipse-based shape detector is used to fuse the outputs of a
template-based and colour-based face detector.

Sharma and Davis [8] use a mutual information approach
to choose the contour segments in the visual modality in
such a way as to maximise an agreement measure between
these contours and the detected contours in the correspond-
ing thermal image. Results on segmenting people from
the background are quantitatively evaluated using manually
segmented ground truth and their method is shown to out-
perform either visual or infrared analysis alone.

In our previous work [5], we adaptively computed
thresholds for foreground detection for multi-spectral video
frames so as to maximise the mutual information between
the foreground maps of visual and thermal infrared images.
A dynamic programming algorithm was described to effi-
ciently investigate the search-space of all possible pairs of
thresholds.

In this paper, we further this work by adapting the dy-
namic programming algorithm to cater for bounded ranges,
instead of simple thresholds. Additionally, we generalise
the notion of agreement between binary signals, of which
mutual information is a special case. Encouraging results
are shown on shadow pixel and skin pixel detection without
the use of training data or user-specified parameters.

This paper is organised as follows: Firstly, we give a sim-
ple illustrative example of shadow pixel detection and show
how maximising agreement between complementary data
sources provides good detection parameters. Next our algo-
rithm for dynamic bounding that efficiently searches the pa-
rameter space to maximise agreement is presented. We then



describe our system for adaptive skin detection, using ther-
mal infrared and visual images, which does not need pre-
annotated training data or user-selected thresholds. We give
details of a number of experimental trials, demonstrating the
benefits of our technique and the importance of adapting de-
tectors to the data. Finally, we present our conclusions and
some directions for future work.

2. Illustrative example

Before describing our contribution, we first describe an
example application where two data sources could poten-
tially assist each other in determining appropriate parame-
ters for object or event detection. Here, the target applica-
tion is shadow pixel detection.

Shadow detection is a useful component in background
modelling algorithms, as it eliminates foreground pixel er-
rors caused by colour changes due to shadows cast by mov-
ing objects. Shadow pixels can be modelled as a bounded
decrease in brightness:

I3 <V;<ly (1)

where V; is the relative change in luminance of pixel 7
compared to the background pixel, and is given by V; =
V;/V.E & The selection of appropriate bounds can be done
empirically, or can be trained on pre-annotated data. How-
ever, if we make the assumption that shadows also cause a
decrease in the pixel’s colour saturation [6], we then have
a second source of data that can assist in our parameter se-
lection. This assumption may not be true in general, but is
a useful means of illustrating the approach. We model the
shadow-pixel in saturation space as a bounded range given
by

I <8 <ly (2)

where S; is the relative change in saturation, and is given by
S; =S /SEC. Given an image containing a cast shadow,
applying equation (1) to the luminance change image pro-
duces a binary image. A binary image is similarly obtained
by applying equation (2) to the associated saturation change
image. If the parameters {l,ls,13,l4} are selected cor-
rectly, we expect there to be a strong agreement between
the two binary masks. We propose to dynamically set these
parameters so that they maximise agreement. To measure
agreement between binary images from different modali-
ties, we previously used mutual information as an agree-
ment measure [5]. This measure returns high values when
there is significant agreement and avoids the trivial case of
complete agreement which could be achieved by setting the
parameters to classify every pixel as shadow. We now dis-
cuss two possible agreement measures: mutual information
and Kendall’s tau (7).

Since we are dealing only with binary images, a 4-value
co-occurrence histogram is all that is needed to compute

agreement. Given 2 binary images, X and Y, with N pixels
each, we let u and v be binary-valued variables, with C,, ,,
equal to the number of pixels whose classification is u in
image X and v in image Y. The mutual information, pxy,
between the pair of binary images, X and Y, is computed
as follows:

Cu v
pxy (u,v) = N 3
px(u) = pxy(u,0) + pxy(u,1) 4
py (v) = pxy(0,v) + pxy(1,v) (5)

Hxy = Z Z pXY(U,U)logprYM (6)

ue{0,1} ve{0,1} x (w)py (v)

As well as mutual information, another measure that has
been frequently used to determine correlation between sig-
nals is Kendall’s 7 [2]. This measure can be computed using
the same histogram counts:

S— pXY(Ov O)pXY(la 1) - pXY(O; 1)pXY(170)
VPx(0)py (0)px (1)py (1) .

Alternative agreement measures, other than the two given
here, are also possible and are all functions of the four val-
ues of C, ,. Regardless of the choice of agreement mea-
sure, maximising this measure requires finding the opti-
mum parameters in high-dimensional space, 4-dimensions
in the case of shadow detection. As with most complex
high-dimensional problems, finding a global maximum can-
not be guaranteed. However, the Simplex algorithm [4] or
some other gradient ascent method could be used to find
a good local maximum. We propose instead to use a dy-
namic programming-based solution, similar to that used in
[5], to optimise two of the parameters at a time, iterating be-
tween data sources until we converge on a solution. In the
next section, our dynamic bounding algorithm is explained
in detail.

(N

3. Dynamic bounding algorithm

In order to choose the optimum pair of bounds that will
maximise the agreement between the bounded image and
the binary source, a brute-force search could be employed.
Trying all pairs of thresholds from a discrete set of K ele-
ments has complexity in the order of O(N K?), where N is
the number of pixels in the image. The dynamic program-
ming algorithm described here is of order O(K? + N) and
evaluates all possible pairs of bounds in a discrete set.

The input to the algorithm is a discrete set of thresholds,
A= {a1,as,...,ax}, a binary signal, X, and a real-valued
signal, Y, of the same size as X. The goal is to select
bounds for signal Y, such that when a binary signal, Y*,
is created using these bounds, its agreement with signal X
is maximised. The output is a mapping array, C, (%, 7),



Input: Threshold list Aand signals X and Y
with X = {z1,22, ...z}, Y = {y1,vy2, ..., yr}
Initialise count maps to zero: Ci (%, %) = 0
co = #{k; z = 0} // count zeros in binary signal
c1 = #{k; xzr, = 1} // count ones in binary signal
For all data points (&, Yx)
Find largest a; € A such that ai < Yk
Find smallest a; € A such that yx, < a;
Crpo(1,1) ++
if (a; and a; exist)
Cay0(1,5) — —
Copo(i+1,5+1)++
end
Co,0 = integrallmage(Co o) // integrate markers
Ch,0 = integralImage(Ch o) // integrate markers
Co,1 =co—Cohpo
Cii=c—Cip

Figure 1. Pseudocode for algorithm in section 3

which gives the number of binary pairings of x5, = p and
Y7 = g when the bounds selected are a; and a;, with 7 < j.
These counts can then be normalised and used in equation
(6) or (7) to create an agreement surface, providing the
agreement score for all possible bounding parameter selec-
tions. The bounds a; and a; that give the maximum agree-
ment can then be selected. The pseudocode for the algo-
rithm is given in figure 1. The integrallmage() function
refers to the standard dynamic programming method that
efficiently replaces each pixel with the sum of all pixels in
the rectangle whose opposite corners are this pixel and the
pixelin (1,1) [11].

4. Shadow detection

(b) bounded S (c) bounded V. (d) shadow

Figure 2. Shadow parameter selection using Kendall’s 7

(a) image

Figure 2 shows the results of shadow detection on two
images, with Kendall’s 7 used as the agreement measure.
We used data from the Terrascope dataset [1]. For our
experiments, we used a median background image, and
256 equally spaced thresholds between 1/255 and 1. The
four parameters are selected so as to maximise the agree-
ment between the binary images obtained by bounding
the saturation and luminance images, as in equations (1)

and (2). For all tests, the initial parameters were set at
{0.3,0.97,0.3,0.97}, though other reasonable initialisa-
tions produced similar results. Parameters {l;, [} were op-
timised first, and then {l3,14}. This continued until conver-
gence.

Image 1 (Gupta) converges in 7 iterations to

{0.3686,0.9294, 0.3889,0.9500} with 7 = 0.3680.
Image 2 (Crasto) converges in 5 iterations to
{0.4549,0.9333,0.5725,0.9490} with 7 = 0.3088.

Using either Kendall’s 7 or mutual information as the
agreement measure provides good results for images in this
dataset. Additionally, our method is much more efficient
than a Simplex search, which required over 150 iterations.

Overall, shadow detection using this method did not per-
form well on other data we investigated, such as the ground-
truthed shadow data provided by [6]. Our assumption that
saturation decreases is often not true as many backgrounds
do not have strong colour content. Additionally, the two
sources (luminance and saturation) cannot really be consid-
ered independent, as they come from the same sensor. In
scenarios where the assumption is true, the method might be
improved by first removing ‘true foreground pixels’; such
as those whose hue has changed significantly. We next de-
scribe a more practical application of our method, using
thermo-visual information for adaptive skin detection.

5. SKkin pixel detection

()
Figure 3. Examples of (a) visible and (b) infrared input images

Figure 3 shows a colour image and its corresponding
thermal infrared image. Skin pixels lie in a particular sub-
space in both the thermal and visible domains. Similar to
our shadow detection example, we use simple bounds to
model skin in both the colour and infrared domains, and
can exploit the shared information between the modalities
to compute the parameters for both these subspaces. In
the visible domain, we select a certain bounded subspace
of the HSV space to indicate a possible skin pixel. Us-
ing {l1,l2,13,14,15,ls} as the boundaries of the subspace,
a pixel ¢ belongs to this subspace if its colour components



in HSV space, (H;, S;, V;) conform to:

L <H; <l 3
I3<85, <1y )]
Is <V; <ls. (10)

Since the hue component can be considered circular, we set
H; — (H; + 128) mod 256, so that red, the dominant hue
in skin pixels, is in the centre of the band. In the thermal
infrared images, we use a similar model for the appearance
of skin pixels, with pixel /; being a potential skin pixel if

lz <L <ls Y

where {l7,ls} are the thermal brightness boundaries.
Therefore, the parameters for our models are fully repre-
sented by L = {ijs, L]R} = {{117 lo, .., ZG}, {l7, lg}}

In figure 4, examples of the use of these mod-
els are shown in relation to figure 3. Setting
L = {{78,159,60, 255, 3,139}, {67,137} } maximises the
Kendall’s 7 agreement measure. Pixels within the hue, sat-
uration and value boundaries are shown in figure 4(a)-(c).
Figure 4(e) combines (a)-(c), showing pixels that are within
all the colour boundaries, and are considered possible skin
pixels. Figure 4(d) shows infrared pixels that fall within
the thermal boundary, and are therefore considered possible
skin pixels.

Ideally, if there are skin regions present in the scene, and
there are not many skin-like distractors present in visible or
infrared, then there should be a high level of agreement be-
tween the binary images in figure 4(d) and (e). By selecting
pixels that appear as skin in both modalities (binary AND
fusion), figure 4(f) is produced.

(c) Bounded V.

Ve

(f) Likely skin pixels.

(a) Bounded H.

(b) Bounded S.

(d) Bounded IR.

(e) Bounded HSV.

Figure 4. Examples of bounded (a) hue, (b) saturation, (c) value,
(d) infrared and (e) HSV. Binary AND fusion of (d) and (e) pro-
duce the skin pixels in (f).

5.1. System overview

The input to our system is a colour image, the cor-
responding thermal infrared image and an initialisation

method. The initialisation method provides a binary im-
age either from the colour or thermal image. The other
modality’s bounds will be optimised to maximise agree-
ment. Bounds are then alternatively optimised iteratively
until convergence.

Figure 6 shows the two initialisation methods used in this
work. The first method applies a dynamic threshold to the
IR image using Rosin’s method [7]. The second method
uses predefined colour bounds to provide the initial binary
image. In our tests, we set M = 255/5, which sets quite a
broad range, so almost all skin-like pixels will be included.
After initialisation, the system will iteratively optimise all
the parameters until it converges, as illustrated in figure 5.
The flag variable indicates whether the IR bounds should
be optimised first. When we are optimising pairs of colour
bounds, such as hue bounds {l1, [}, some pixels may al-
ready be excluded since they are outside the other colour
bounds. We cater for this by excluding these pixels from
processing and adding them on to the appropriate counts at
the end (either to Cy g or C} ). The final outputs are (i)
the set of 8 parameters, L, (ii) 2 binary maps (one for each
modality) and (iii) an agreement value score. While mu-
tual information performs well, its value does not change if
one of the binary images is inverted. This is not a desirable
property, therefore we chose Kendall’s 7 as the agreement
measure.

Rosi Set IR
IR Image p osin Param: ITERATE
| Dynamic F—T =T (L, flag=0)
Thresholding Lo=255 ’
o=

(a)

Set H Params: Set S Params: Set V Params:

y=12sm [N =M :> Is=M |:> ITERATE
Iy=128+M 14 1y=255 Ig =255 (L, flag=1)

(b)
Figure 6. Initialisation Methods: (a) Infrared-based and (b)
Colour-based initialisation

6. Experimental Results
6.1. Initialisation evaluation

In order to compare the initialisation methods of figure
6, we ran our algorithm on 6,697 images from 7 thermo-
visual video sequences. We investigated which method
would cause convergence to the highest agreement value.
The results are given in table 1. Both methods converged
in a similar number of iterations on average, as shown in
columns 3 and 5. Neither method showed superiority, with
both methods having roughly equal performance on aver-
age, and converging to the same parameters about one-third
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Figure 5. Iteration function
Frame | Method 1 Method 2 Both AND OR VIS IR | REG
Seq | count | Iter. % Iter. % % Precision | 0.976 | 0.605 | 0.641 | 0.776 | 0.849
A 235 | 342 | 14.89 | 3.91 16.60 | 68.51 Recall | 0.516 | 0.878 | 0.664 | 0.731 | 0.838
B 406 | 3.63 | 19.46 | 4.43 3.20 77.34 Fy | 0.675 | 0.717 | 0.652 | 0.753 | 0.843
C 615 | 4.05 | 9.27 | 416 | 79.67 | 11.06
D | 2984 | 433 | 83.88 | 3.86 | 16.09 0.03 Table 2. Binary fusion methods evaluation.
E 306 | 3.39 | 0.00 | 3.61 | 100.00 | 0.00
F 997 | 4.10 | 47.14 | 4.09 | 29.19 | 23.67 . . . .
Gl 1154 | 391 | 2478 | 410 | 12.65 | 62.57 fusion ac(jhlteve§ hll)%h reclall. U;mg IR onlg perfcc)lr.rr;s vx;ell,
ALL | 6697 | 3.83 | 2849 | 4.02 | 36.77 | 34.74 compared to visible only, as there were fewer distractors

Table 1. Table above indicates the percentage of frames for which
each initialisation method converged to the highest agreement
score, for all seven sequences tested. The rightmost column indi-
cates that both methods converged to very similar configurations,
within a small tolerance.

of the time. Sequence D contains a lot of skin-like pixels,
due to the colour of the floor, causing the colour-based ini-
tialisation to perform poorly in this sequence. On the other
hand, sequence E contains many people and therefore a lot
of ‘hot’ pixels, causing the infrared-based initialisation to
perform poorly in this sequence. By running the algorithm
with both methods, and selecting the set of parameters with
greater agreement, high quality skin detection is obtained.

6.2. Fusion evaluation

After selecting appropriate parameters for the skin mod-
els, we have a binary image from visible and from infrared
as sources of evidence as to whether or not a pixel is a skin-
pixel. These binary masks can be fused for a final classi-
fication decision. We evaluated 5 simple fusion schemes
on 16 ground-truthed skin-detection images. The fusion
schemes were (i) binary AND, (ii) binary OR, (iii) Visible
only, (iv) IR only and (v) region-based fusion. The region-
based scheme examined all the connected-component re-
gions in the binary OR image. If a region had 10% or more
of its pixels also belonging to the binary AND image, then
it was included. Otherwise, only the pixels in that region
from the AND image were used. Although the threshold of
10% is ad-hoc, a range of thresholds were found to perform
similarly. The results are given in table 2. As expected,
the AND fusion achieves very high precision and the OR

at a similar brightness to skin in the dataset, compared to
skin-colour-like distractors in the visual domain. Using the
F measure [10] to combine precision and recall, the region
based fusion performed best overall.

6.3. Adaptive probabilistic model

The described method does not exploit any temporal in-
formation available in video sequences. However, we now
show how our method can be used to automatically create
probabilistic models of skin and background colour appear-
ance and we compare this to a pre-learned human-annotated
colour model. Manually annotated skin and background im-
ages are available online as part of Sigal et al.’s work on
skin segmentation [9]. Using a similar approach to the orig-
inal work, these samples were used to create 32 x 32 x 32
RGB colour histograms for both skin and background ap-
pearance, and these histograms were normalised and used
as probabilistic models of the skin and background. For a
given colour image, Bayes’ rule can be applied and these
models create a log-likelihood image, giving each pixel a
skin-likelihood value. The pre-trained (PT) model was cre-
ated using 723 images which contained 8,929,954 skin
pixel samples and 129, 642, 003 background pixel samples.

Our skin and background models were created in a simi-
lar fashion but the samples they are trained with were all au-
tomatically selected by our method. For each image in the
video sequence, we detect skin pixels by maximising agree-
ment and then performing binary AND fusion to achieve
high precision. All these pixels are inserted into our skin
model. All pixels which are classified as background by
both IR and visible are inserted into our background model
(NAND fusion). All other pixels are ambiguous, so are ig-
nored. For each video image we tested, we used up to 100 of



the previous images for training our model. Figure 7 shows
examples of the log-likelihood image created by our method
versus the PT model. Figure 8 shows the ROC curve that
indicates the improvement of using adaptive skin modelling
over a pre-trained model.

(a) PT model (b) our model

Figure 7. Examples of log-likelihood images created by (a) the PT
model and (b) our method

Overall Results

T T T
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Figure 8. ROC curve for our automatically learned probabilistic
model (red stars) vs. a PT model (blue circles)

Further experimental results can be found online at
http://www.eeng.dcu.ie/~oconaire/otcbvs07/.
These results include image and video results from sub-
sections 6.1 and 6.3, graphs showing the adaptation of the
skin bounds to changing environments and an illustrative
example of using our method for skin detection on the
OTCBVS benchmark dataset.

7. Conclusion and discussion

In this paper a method is described for automatically
and efficiently choosing appropriate parameters to max-
imise agreement between two binarised sources of informa-
tion. We have given examples of agreement measures for
binary images, such as mutual information and Kendall’s 7,
and shown that both measures are functions of the same four
counts of binary pairings. Using Kendall’s 7 as an agree-
ment measure, experimental results were shown using our
method for shadow detection, with the assumption of back-
ground saturation change, and for skin detection in thermo-
visual imagery.

In cases where no skin is present our method fails since it
relies on common information being present in the sources.

Failure of the method is usually indicated by low agreement
values, the hue bounds lying outside the normal skin range
and the IR lower bound dropping below the Rosin thresh-
old. Since our algorithm is a general method for finding
pixel appearance subspaces that are in strong agreement be-
tween data sources, skin may not always correspond to the
highest agreement peak. For example, a cold blue bottle
might be distinct enough in both modalities to return a high
agreement value, though the initialisation method we use
targets skin and as such, may find the best local peak corre-
sponding to skin.

Colour-spaces other than HSV may be better at separat-
ing the skin and background subspaces using our bounded
model of skin. We believe that this method could be used
to dynamically select the optimum colour-space, again by
testing multiple colour-spaces and choosing the one that re-
turns the highest agreement with infrared. This is targeted
as future work.
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