
Optimisation of Constant Matrix Multiplication

Operation Hardware Using a Genetic Algorithm

Andrew Kinane, Valentin Muresan, and Noel O’Connor

Centre for Digital Video Processing, Dublin City University, Dublin 9, Ireland
kinanea@eeng.dcu.ie

Abstract. The efficient design of multiplierless implementations of con-
stant matrix multipliers is challenged by the huge solution search spaces
even for small scale problems. Previous approaches tend to use hill-
climbing algorithms risking sub-optimal results. The three-stage algo-
rithm proposed in this paper partitions the global constant matrix mul-
tiplier into its constituent dot products, and all possible solutions are
derived for each dot product in the first two stages. The third stage
leverages the effective search capability of genetic programming to search
for global solutions created by combining dot product partial solutions.
A bonus feature of the algorithm is that the modelling is amenable to
hardware acceleration. Another bonus feature is a search space reduc-
tion early exit mechanism, made possible by the way the algorithm is
modelled. Results show an improvement on state of the art algorithms
with future potential for even greater savings.

1 Introduction

Applications involving the multiplication of variable data by constant values
are prevalent throughout signal processing. Some common tasks that involve
these operations are Finite Impulse Response filters (FIRs), the Discrete Fourier
Transform (DFT) and the Discrete Cosine Transform (DCT). Optimisation of
these kinds of constant multiplications will significantly impact the performance
of such tasks and the global system that uses them. The examples listed are
instances of a more generalised problem – that of a linear transform involving a
constant matrix multiplication (CMM). The problem is summarised as follows:
substitute all multiplications by constants with a minimum number of shifts and
additions/subtractions (we refer to both as ‘additions’) [1]. The optimisation
criterion may be extended beyond adder count to include factors like routability,
glitching etc. but is restricted to adder count in this paper.

2 Problem Statement

A CMM equation y = Ax (where y, x are N-point 1D data vectors and A is an
N × N matrix of M-bit fixed-point constants) may be thought of as a collection
of N dot products with each dot product yi expressed as follows:

2 Andrew Kinane et al.

yi =

N−1∑

j=0

aijxj , i = 0, . . . , N − 1. (1)

Each constant may be represented in signed digit (SD) form:

aij =

M−1∑

k=0

bijk2k, bijk ∈
{

1, 0, 1
}

, 1 ≡ −1. (2)

Combining Eqns. 1 and 2 yields a multiplierless dot product implementation
requiring only adders and shifters:

yi =

N−1∑

j=0

M−1∑

k=0

bijk2kxj , i = 0, . . . , N − 1. (3)

The goal is to find the optimal sub-expressions across all N dot products in
Eqn. 3 that require fewest adder resources. As reviewed below, three properties
can be used in the classification of approaches to this problem: SD permutation,
pattern search strategy and problem subdivision.

SD Permutation Consider that each of the N ×N M-bit fixed point constants
aij have a finite set of possible SD representations. For example with M = 4

the constant (−3)10 can be represented as either (0011)2, (0101)2, (1101)2, (0111)2 or
(1111)2. To find the optimal number of adders, all SD representations of aij should
be considered since for a CMM problem Canonic Signed Digit (CSD) represen-
tation is not guaranteed to be optimal (as shown in Section 5). The difficulty
is that the solution space is very large [2], hence SD permutation has thus far
been applied only to simpler problems [2, 3]. Potkonjak et. al. acknowledge the
potential of SD permutation but choose a single SD representation for each aij

using a greedy heuristic. Neither of the recent CMM-specific algorithms in the
literature apply SD permutation [4, 5], but the algorithm proposed in this paper
does apply it.

Pattern Search The goal of pattern searching is to find the sub-expressions
in the 3D bit matrix bijk resulting in fewest adders. Usually bijk is divided into
N 2D slices along the i plane (i.e. taking each CMM dot product in isolation).
Patterns are searched for in the 2D slices independently before combining the
results for 3D. An example 2D slice is shown in Eqn. 4, a 4-point dot product
with random 8-bit SD constants.

yi =







0.9375

0.921875

0.6013625

0.1328125







T

︸ ︷︷ ︸

aij at A row i







x0

x1

x2

x3







=















2−7

2−6

2−5

2−4

2−3

2−2

2−1

20















T 













0 0 1 1

0 1 0 0

0 0 1 1

1 1 0 0

0 1 1 1

0 1 0 1

0 0 1 0

1 1 0 0















︸ ︷︷ ︸

2D slice of bijk







x0

x1

x2

x3







(4)

Lecture Notes in Computer Science 3

Algorithms may search for horizontal/vertical patterns (P1D) or diagonal pat-
terns (P2D) in the 2D slice. The P1D strategy implies a two-layer architecture
of a network of adders (with no shifting of addends) to generate distributed
weights for each row followed by a fast partial product summation tree (PPST)
to carry out the shift accumulate (Fig. 1). The P2D strategy implies a one-layer
architecture (Fig. 2) of a network of adders that in general may have shifted
addends (essentially merging the two layers of the P1D strategy).

P
P

S
T

A
d

d
er

 N
et

w
o

rk

(D
ir

ec
t

A
d

d
en

d
s)

x
0

x
1

x
N-1

y
i

Fig. 1. P1D Architecture

A
d

d
er

 N
et

w
o

rk

(S
h

if
te

d
 A

d
d

en
d

s)

x
0

x
1

x
N-1

y
i

Fig. 2. P2D Architecture

Potkonjak et. al. use the P1D strategy and search for horizontal patterns
while others use the P2D strategy [4, 5]. However, these approaches select sub-
expressions iteratively based on some heuristic criteria that may preclude an
optimal realisation of the global problem. This is because the order of sub-
expression elimination affects the results [6]. The proposed algorithm sidesteps
this issue by building parallel solutions using the P1D strategy.

Problem Sub-Division As in any hardware optimisation problem, synthesis
issues should be considered when choosing sub-expressions for an N-point dot
product (a 2D slice). If N is large (e.g. 1024-point FFT) then poor layout regular-
ity may result from complex wiring of sub-expressions from taps large distances
apart in the data vector. Indeed a recent paper has shown that choosing such
sub-expressions can result in a speed reduction and greater power consumption
[7]. It is therefore sensible to divide each N-point dot product into N/r sub r-
point dot product chunks, where r < N and r ∈ ZZ, and optimise each chunk
independently. The CMM problem hence becomes N/r independent sub prob-
lems, each with N dot products of length r (Fig. 3). The optimal choice of r is
problem dependent, but the proposed algorithm currently uses r = 4 for reasons
outlined subsequently. Eqn. 4 is an example of a sub dot product with r = 4.

r
-Point
 r
-Point
 r
-Point

r
-Point

r
-Point
 r
-Point

r
-Point

...

...

...

...

...

r
-Point

r
-Point

...

...

a
00
 a
01
 a
02
 a
03

N
rows of chunks

N/r
columns of

chunks

A

 =

Each column a

CMM sub-problem

Sub-Problem

Fig. 3. CMML Divide and Conquer

4 Andrew Kinane et al.

3 Proposed Efficient Modelling Solution

The CMM problem is a difficult discrete combinatorial problem and currently
requires a shift to a higher class of algorithms for more robust near-optimal solu-
tions. This is because the current approaches are greedy hill-climbing algorithms
and the associated results are very problem dependent [6]. The challenge is in the
modelling of the problem to make it amenable to efficient computation. The al-
gorithm proposed here models the problem in such a way as to make it amenable
to so-called near-optimal algorithms (genetic algorithms (GAs), simulated an-
nealing, tabu-search) and also hardware acceleration. The proposed approach
incorporates SD permutation of the matrix constants and avoids hill-climbing
by evaluating parallel solutions for each permutation. Such an approach is com-
putationally demanding but the algorithm has been modelled with this in mind
and incorporates innovative fast search techniques to reduce this burden.

The proposed algorithm permutes the SD representations of the constants in
A. For each permutation, parallel solution options are built based on different
sub-expression choices. These parallel implementations are expressed as a sum
of products (SOP), where each product term in the SOP represents a particular
solution (with an associated adder count). The SD permutation is done on each
CMM dot product in isolation (Section 4.1), and the results are subsequently
combined (Section 4.2). The algorithm searches for the combined SOP that rep-
resents the overall best (in terms of adder count) sub-expression configuration to
implement the CMM equation. Previous approaches derive one implementation
option (akin to a single term SOP) whereas the proposed approach derives par-
allel implementations (a multi-term SOP). It is this multi-term SOP approach
and its manipulation (Section 4) that make the algorithm suitable for GAs and
hardware acceleration.

The proposed algorithm currently uses the P1D strategy, so it searches for
horizontal sub-expression patterns of {±1} digits in a 2D slice. The proposed SOP
modelling idea can be extended to cover the P2D strategy by simply extending
the digit set from {±1} to

{
±1,±2,± 1

2
,±4,± 1

4
, . . .

}
. To save space, the reasoning

for this idea is not elaborated upon in this paper, but is targeted as future work.

4 The Proposed CMM Optimisation Algorithm

The proposed approach is a three stage algorithm as depicted in Fig. 4. Firstly
all SD representations of the M-bit fixed point constants are evaluated using
an M-bit radix-2 SD counter (digit set

{
1, 0, 1

}
). Then, each dot product in the

CMM is processed independently by the dot product level (DPL) algorithm.
Finally the DPL results are merged by the CMM level (CMML) algorithm. The
three steps may execute in a pipelined manner with dynamic feedback between
stages. This offers search space reduction potential as outlined subsequently.

Lecture Notes in Computer Science 5

Unique Fixed-Point Constant Permutation Evaluation

Dot Product

0

Dot Product

1

Dot Product

N-1

for(all permutations){

 loadPermutation();

 elimRedundantRows();

 elim1scompEquivs();

 buildPermSOP();

 insertPermSOP();

}

Dot Product Level (DPL)

CMM Equation

Set of files for each unique constant in matrix

Files store signed digit permutations for that constant

Parallel Processing

...

...

Permutations ordered in terms of number of adders required for each DP

for(all permutations){

 loadPermutation();

 evalPermFitness();

}

CMM Level (CMML)

...

Permutations ordered in terms of number of adders required for entire CMM

initPop();

while(!termination){

 evalPopFitness();

 selection();

 recombination();

 mutation();

}

Option 1 - Exhaustive
 Option 2 - Genetic Algorithm

Merges DPL results

Ordered search space increases

permutation reduction potential

Pipelined implementation

facilitates dynamic feedback to

DPL stage for complex CMM

Fig. 4. Summary of the CMM Optimisation Algorithm

4.1 Dot Product Level (DPL) Stage

The DPL algorithm iteratively builds a SOP, and the final SOP terms are the
unique sub-expression selection options after considering all SD permutations of
the dot product constants in question. The final SOP terms are listed in increas-
ing order of the number of adders required by the underlying sub-expressions.

Each SOP term is represented internally as a data structure with elements
p vec (a bit vector where each set bit represents a specific adder to be resource
allocated) and hw (the Hamming weight of p vec that records the total adder
requirement). The number of possible two input additions is equivalent to the
combinatorial problem of leaf-labelled complete rooted binary trees [8]. With r =

4, the number of possibilities is 180 (proof omitted to save space) and the general
series in r increases quickly for r > 4. We are currently researching an automated
method for configuring the DPL algorithm for any r. Currently, however, each
p vec is a 180-bit vector with a hw equal to the number of required adders.

The DPL algorithm executes for each SD permutation of the dot product
constants in question, and builds a ‘permutation SOP’ at each iteration. This
process is described in detail in [9]. The permutation SOP for Eqn. 4 is given by
Eqn. 5 where pv means bit v is set in the 180-bit p vec for that SOP term.

((p11)(p6)(p3)(p51)(p10)(p0)) OR

((p11)(p6)(p10)(p52)(p0)) OR

((p11)(p6)(p53)(p10)(p0))

(5)

The first term in Eqn. 5 has hw = 6 so it requires 6 unique additions (+PPST)
to implement Eqn. 4 whereas the latter two options only require 5 unique ad-
ditions (+PPST). Obviously one of the latter two options is more efficient if
implementing this dot product in isolation. However, when targeting a CMM

6 Andrew Kinane et al.

problem one must consider the CMM level, and it may be that permuting the
first option at CMML gives a better overall result since it may overlap better
with requirements for the other dot products. Hence it is necessary to store the
entire SOP for each permutation at DPL and then permute these at CMML to
get the guaranteed optimal.

The algorithm checks each term in the permutation SOP produced at each
DPL iteration to see if it has already been found with a previous permutation.
If so it is discarded – only unique implementations are added to the global list.
This global list is implemented using a 2D skip list to minimise the overhead
of searching it with a new term from the current permutation SOP (Fig. 5) [9].
In the horizontal direction there are ‘skip nodes’ ordered from left to right in
order of increasing hw in the skip node list (SNL). In the vertical direction there
are ‘product nodes’ and each skip node points to a product node list (PNL)
of ordered product nodes where each product node in the PNL has the same
number of bits set (i.e. hw) in its p vec bit vector. When inserting a new term
into the list, a unique permutation ID (pid) is added to the node along with
p vec so that the SD permutation that generated it can be reconstructed.

"
Skip Node List
" (
SNL
) - Increasing

hw

next_skip*

top_p*

hw

next_skip*

top_p*

hw

next_skip*

top_p*

hw

N
U
L
L

p_vec

pid

next_p*

p_vec

pid

next_p*

p_vec

pid

next_p*

p_vec

pid

next_p*

NULL

p_vec

pid

next_p*

p_vec

pid

next_p*

"
 P
ro

d
u

ct N
o

d
e L

ist
 " (
 P
N

L

)

In
creasin

g

 (
i
n
t
)

p
_
v
e
c

NULL
 NULL

Fig. 5. DPL Skip List Arrangement

The DPL algorithm is dominated by low level operations such as comparisons,
Boolean logic and bit counting. Indeed profiling shows that on average 60% of
the computation time is consumed by bit counting (50%) and bitwise OR (10%).
Such tasks can readily be accelerated in hardware by mapping the multi-term
SOP to a FIFO structure and the logic OR operations to OR gates.

4.2 Constant Matrix Multiplication Level (CMML) Stage

Once the DPL algorithm has run for each of the dot products in the CMM, there
will be N 2D skip lists – one for each of the N dot products examined. The task
now is to find the best set of overlapping product nodes for all of the CMM dot
products, with one node for each dot product. Overlapping nodes have similar
p vec set bits, and this results in adder resource sharing when implementing
the CMM. It is expected (though not guaranteed) that since the skip lists are
ordered with the lowest hw PNL first, the optimal result will be converged upon

Lecture Notes in Computer Science 7

quickly saving needless searching of large areas of the permutation space. The
CMML algorithm searches for the optimal overlapping nodes from each of the
DPL lists.

Exhaustive Approach An exhaustive CMML algorithm permutes the terms
in each skip list with terms from others, starting from the top of each. For each
permutation, N product nodes (one from each list) are combined using bitwise
OR and bit counting similar to the techniques used in the DPL algorithm. The
value of hw of the combined node represents the number of adders necessary to
implement the CMM for the current permutation. The potential exists to use the
lowest hw value found thus far to rule out areas of the search space – hence the
early exit mechanism referred to previously. For example if an improved value
of hw = 5 is found for a CMML solution, there is no point in searching DPL
PNLs with hw > 5 since they are guaranteed not to overlap with other DPL
PNLs and give a better result than 5. The current best value of hw at CMML
level could also be fed back to the DPL algorithm to reduce the size of the skip
lists generated by DPL (and hence permutation space) without compromising
optimality. However, despite the DPL skip list ordering, the huge permutation
space means that the exhaustive CMML approach is not tractable, especially as
N increases.

Genetic Programming Approach The proposed modelling of the CMM
problem and bit vector representation of candidate solutions means that the
CMML algorithm is very amenable to GAs. The bit vectors can be interpreted
as chromosomes and the value of hw can be used to build an empirical fitness
function (the less adders required the fitter the candidate). A proposed GA to
implement the CMML algorithm is summarised in Algorithm 1.

Algorithm 1: GA-based CMML Algorithm

init pop();
while !termination condition do

eval pop fitness();
selection();
recombination();
mutation();

end

A candidate solution c is represented by a set of N pointers slp[i][c],
where each pointer addresses a product node in dot product skip list i (i=

0, 1, . . . , N − 1). The N product nodes are combined using bitwise OR and bit
counting as described in [9]. The task of the GA is to find the DPL component
product nodes that overlap as much as possible resulting in the fewest adders
necessary to implement the CMM with a P1D architecture (Fig. 1). The indi-
vidual steps of Algorithm 1 are described in the following sections.

Step 0 – Initialise Population The size of the population is determined by
the parameter pop size. Since the DPL stage results are ordered as described

8 Andrew Kinane et al.

in Section 4.1, the population is initialised with candidates (sets of pointers)
near the top of the DPL lists. This is achieved by weighting the selection of the
initial candidates. Let z represent the address each of the N component pointers
slp[i][c] can assume for any candidate c . For each pointer, z is in the range
0 ≤ z ≤ NPi, where NPi is the number of product nodes in skip list i . The
algorithm randomly sets the pointer address z for all N pointers for each of the
initial pop size candidates according to an exponential probability mass function
Eqn. 6.

p(z) =
1

µ
exp(−z/µ) (6)

According to Eqn. 6, the lower the value of parameter µ, the more likely a
candidate is to have DPL component pointers nearer the top of the respective
DPL skip lists (i.e. z tends to zero for each of the N pointers).

Step 1 – Population Fitness Evaluation The fitness of a candidate solution
is obtained by doing a bitwise OR of all of the component pointees followed by
bit counting. The lower the resultant bit count the better, as it means less adder
resources are required to implement the CMM problem with a P1D hardware
architecture. In future work we intend extending the fitness function to include
factors like fanout and logic depth, e.g. Eqn. 7. Currently Eqn. 7 is restricted to
adder count only.

f = α(Adder Count) + β(Fanout) + γ(Logic Depth) + . . . (7)

Step 2 – Selection A good selection method should maintain an appropri-
ate balance between selective pressure and population diversity. The proposed
method is a variation of Goldberg’s Boltzmann Tournament Selection algorithm
[10]. Tournament selection involves a pure random selection of t individuals
(t ≤ pop size) that compete in terms of fitness against each other and the winner
is selected. This process is repeated pop size times. However, we propose to use
a strategy with a ‘fuzzy’ selection decision with t = 2. Goldberg’s algorithm is
based upon simulated annealing, i.e. at high ‘temperatures’ there is a greater
chance that weak candidates may be selected, which enhances population diver-
sity and makes it less likely that the algorithm will get stuck in local optima. As
the temperature cools, the strong candidates begin to dominate selection since
the algorithm should be converging on the true optimum.

The proposed approach uses Eqn. 8 which is plotted along with the exponent
of X = f(j)−f(k)

T
in Fig. 6 where f(j) and f(k) are the fitness values of candidates

j and k respectively.

W =
1

1 + e
f(j)−f(k)

T

=
1

1 + eX
(8)

As is clear from Fig. 6, as the temperature T decreases, the value of the expo-
nential term X moves further from the central vertical axis for a fixed f(j) and
f(k). As T decreases W → 1 when f(j) < f(k) and W → 0 when f(k) < f(j).

The original Boltzmann tournament selection algorithm proposed by Gold-
berg uses t = 3, and lets W equal the probability that j wins the tournament and

Lecture Notes in Computer Science 9��������
1

1

0.5

T
 T

f(k) < f(j) => f(k)
 fitter
f(j) < f(k) => f(j)
 fitter

x

e
x
 W

2S

f(j)
wins

f(k)
wins

f(k)
wins

f(j)
wins

���Weak

Victory

Strong

Victory

x

Fig. 6. Boltzmann Decision Based Simulated Annealing

(1−W) be the probability that k wins the tournament [10]. We propose a variation
on Goldberg’s algorithm by introducing a fuzzy select threshold S to enhance
the population diversity. Using S, the selection algorithm can be programmed to
have a higher probability of selecting a weak candidate as a tournament victor
when the temperature T is high in the early generations. As the temperature
decreases and the algorithm converges on the optimum, the stronger candidate
has a greater chance of victory. The approach is summarised in Algorithm 2.

Algorithm 2: Fuzzy Boltzmann Tournament Selection Algorithm

if f(j) < f(k) then
if W > (0.5 + S) then j wins (strong victory);
else k Wins (weak victory)

end

else if f(j) > f(k) then
if W < (0.5 - S) then k wins (strong victory);
else j Wins (weak victory)

end

else
Choose pure random winner

end

To summarise, the proposed selection method maintains a balance between
population diversity and selection strength. The selection decision depends on
the relative fitness of competing individuals, the temperature T and the fuzzy
select threshold S. Since the GA should converge on globally optimal solutions as
the generations iterate, the parameters T and S should decay over the generations
to select the strong candidates with higher probability.

Step 3 – Recombination After pop size individuals have been selected, a pro-
portion of these are further selected for uniform crossover based on a probability
pc. Since each candidate is represented by N pointers, the uniform crossover
process generates a random N-bit binary mask. Each bit location in the mask
determines the mixture of genetic material from the parents each offspring is cre-
ated with. Consider Fig. 7. If a bit location in the mask is ‘0’, the corresponding

10 Andrew Kinane et al.

pointer component for offspring ‘0’ is created respectively from parent ‘0’, and
the corresponding component for offspring ‘1’ is created from parent ‘1’. The
opposite creation process occurs if the bit is ‘1’.

e.g. "
1101
"

Offspring 0 :

Offspring 1 :

{
*
slp[
0][1]
 |
*
slp[1][1]
|
*
slp[2][0]
|
*
slp[3][1]
}

{
*
slp[0][0]
|
*
slp[1][0]
|
*
slp[2][1]
|
*
slp[3][0]
}

Parent 0
 :

Parent 1
 :

Uniform

XOVER

Random

N
-bit Generator

slp[i][c]

Skip List Pointer:

Dot Product
i
, candidate
c

Fig. 7. Uniform Crossover Example

Step 4 – Mutation After selection and crossover, the DPL component pointers
of each candidate undergo mutation based on a probability pmut. If mutation is
applied, the degree of mutation is determined by a value M , where M ∈ ZZ. A
pointer selected for mutation moves M pointer locations up (M < 0) or down
(M > 0) its associated DPL skip list. The range of mutations possible depends
on the value of a parameter Mmax. The value for M is determined based on a
binomial probability density function p(M) Eqn. 9. This distribution means that
if mutation is applied, smaller mutations are more likely than large mutations.

p(M) =
(2Mmax − 1)!

M !((2Mmax − 1) − M)!
0.5M (0.5)((2Mmax−1)−M) (9)

To allow positive or negative mutations, the binomial distribution is re-aligned
about M = 0 (where p(0) = 0 because M = 0 means no mutation).

After this step, the new population forming the next generation is ready
and the process loops back to step 1. The process continues iterating steps 1-4
until a termination condition is met (a fixed number of generations or a time
constraint).

4.3 Genetic Algorithm Parameter Selection

Choosing values for the parameters that steer a GA is a difficult problem in
itself. The parameter values in Table 1 have been obtained empirically by trial
and error, and future work will investigate a more sophisticated method. Based
on empirical observations, the tuned parameter values in Table 1 imply that the
CMML GA produces better results when there is weak selective pressure (strong
diversity). The reason for this is likely to be because the variance of the solution
space fitness values is quite low, according to the current fitness function, relative
to the size of the solution space. Hence the current search is almost a ”needle in a
haystack” search, so a healthy diversity is needed. Future work on this algorithm
aims to increase the dimensionality of the fitness function to include other factors
like logic depth and fanout as well as adder count. Extending the fitness function
should increase the granularity of the fitness values in the solution space. Hence
the tuned genetic algorithm parameters are likely to change in future so that
the selective pressure will increase.

Lecture Notes in Computer Science 11

Table 1. CMML Genetic Algorithm Parameters

Parameter Name Value

pop size Population Size 3000

µ Initialisation Weight 10.0

T Selection Temperature 0.001

S Selection Threshold 0.4

pc Crossover Probability 0.98

pmut Mutation Probability 0.08

Mmax Max Mutation Size 6

5 Experimental Results

For a fair comparison with other approaches, the number of 1-bit full adders
(FAs) allocated in each optimised architecture should be used as opposed to
‘adder units’, since the bitwidth for each unit is unspecified in other publications
apart from in [5]. FA count more accurately represents circuit area requirements.
Using the 8-point 1D DCT (N = 8 with various M) as a benchmarking CMM
problem, Table 2 compares results with other approaches based on adder units
and FAs where possible. Our approach compares favourably with [5] in terms of
FAs (see FA% savings in Table 2), even though this gain is not reflected by the
number of adder units required.

Our previous results were based on running the proposed CMML GA with
untuned parameters for 100000 generations [9]. Using the tuned parameters of
Table 1, our results clearly improve as is evident from Table 2. The tuned pa-
rameters also find these improved solutions after fewer generations (1000). For
each of the benchmarks in Table 2, the tuned parameters cause the proposed
algorithm to invoke its search space reduction mechanism (Section 4.2). This
reduces the search space from the order of 1020 to 1017 without compromising the
quality of the results , representing a reduction of more than 99%. The hypoth-
esis of achieving extra saving by permuting the SD representations is validated
by the fact that the best SD permutation corresponding to our results in Table 2
are not the CSD permutation.

Table 2. 1D 8-point DCT Adder Unit / Full Adder Requirements

CMM

Initial [1] [4] [5] Ours

+ + + + FA
Untuned GA [9] Tuned GA
+ FA FA% + FA FA%

DCT 8bit 300 94 65 56 739 78 730 1.2 77 712 3.7

DCT 12bit 368 100 76 70 1202 109 1056 12.1 108 1048 12.8

DCT 16bit 521 129 94 89 2009 150 1482 26.2 141 1290 35.8

Even given the savings illustrated in Table 2, there exists significant potential
for improvement:

12 Andrew Kinane et al.

1. Investigation of an optimal value for r, that is the optimal sub division
of large CMM problems into independent chunks. This can only be truly
evaluated if synthesis parameters such as fanout and routability are included
in the fitness function as well as FA count.

2. The integration of the P2D strategy mentioned earlier. It is likely that there
exists an upper bound on the number of rows apart within the bijk slice
between which useful sub-expressions will be found. This is because if sub-
expression addends come from rows far apart in bijk, the adders inferred have
a large bitwidth.

3. Extension of the fitness function as indicated, and subsequent tuning of the
GA parameters.

6 Conclusions

The general multiplierless CMM design problem has a huge search space, espe-
cially if different SD representations of the matrix constants are considered. The
proposed algorithm addresses this by organising the search space effectively, and
by using a GA to quickly search for near optimal solutions. Experimental results
validate the approach, and show an improvement on the current state of the art.

Acknowledgement

The support of the Embark Initiative and of the Informatics Commercialisation
initiative of Enterprise Ireland is gratefully acknowledged.

References

1. Potkonjak, M., Srivastava, M.B., Chandrakasan, A.P.: Multiple Constant Multipli-
cations: Efficient and Versatile Framework and Algorithms for Exploring Common
Subexpression Elimination. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits 15 (1996) 151–165

2. Dempster, A.G., Macleod, M.D.: Digital Filter Design Using Subexpression Elim-
ination and all Signed-Digit Representations. In: Proc. IEEE International Sym-
posium on Circuits and Systems. Volume 3. (2004) 169–172

3. Dempster, A.G., Macleod, M.D.: Using all Signed-Digit Representations to De-
sign Single Integer Multipliers using Subexpression Elimination. In: Proc. IEEE
International Symposium on Circuits and Systems. Volume 3. (2004) 165–168

4. Macleod, M.D., Dempster, A.G.: Common subexpression elimination algorithm
for low-cost multiplierless implementation of matrix multipliers. IEE Electronics
Letters 40 (2004) 651–652

5. Boullis, N., Tisserand, A.: Some Optimizations of Hardware Multiplication by
Constant Matrices. IEEE Transactions on Computers 54 (2005) 1271–1282

6. Macleod, M.D., Dempster, A.G.: Multiplierless FIR Filter Design Algorithms.
IEEE Signal Processing Letters 12 (2005) 186–189

7. Martinez-Peiro, M., Boemo, E.I., Wanhammar, L.: Design of High-Speed Multi-
plierless Filters Using a Nonrecursive Signed Common Subexpression Algorithm.
IEEE Transations on Circuits and Systems II 49 (2002) 196–203

Lecture Notes in Computer Science 13

8. Andres, S.D.: On the number of bracket structures of n-operand operations con-
structed by binary operations (2005) private communication.

9. Kinane, A., Muresan, V., O’Connor, N.: Towards an Optimised VLSI Design
Algorithm for the Constant Matrix Multiplication Problem. In: Proc. IEEE Inter-
national Symposium on Circuits and Systems, Kos, Greece (2006)

10. Goldberg, D.: A note on Boltzmann tournament selection for genetic algorithms
and population-oriented simulated annealing. Complex Systems 4 (1990) 445–460

