
An Efficient Hardware Architecture for a Neural

Network Activation Function Generator

Daniel Larkin⋆, Andrew Kinane, Valentin Muresan, and Noel O’Connor

Centre for Digital Video Processing, Dublin City University, Dublin 9, Ireland.
{larkind,kinanea,muresanv,oconnorn}@eeng.dcu.ie

Abstract. This paper proposes an efficient hardware architecture for
an elementary function generator that is suitable for use as the activa-
tion function in an artificial neural network (ANN). A spline-based ap-
proximation function is designed that provides a good trade-off between
accuracy and, whilst also being inherently scalable and adaptable to
other approxmations. This has been achieved by using a minimax poly-
nomial and through optimisation of the placement of the splines by using
a genetic algorithm. The approximation error of the proposed activation
function compares favourably to all related research in this field. Multi-
plication circuitry is avoided through the use of distributed arithmetic
thereby reducing the area overhead and power consumption of the hard-
ware implementation. The proposed architecture is up to 2,751 times
faster than a direct implementation of a sigmoid activation function on
an ARM 9 processor with a comparable clock frequency.

1 Introduction

Artificial neural networks (ANN) have found widespread deployment in a broad
spectrum of classification, perception, association and control applications [1].
However, practical ANN implementations for high dimensional data tasks, such
as multimedia analysis, computer gaming, etc, create considerable demands for
microprocessor cycles. This is due to the fact that such ANN require extremely
high throughput, in addition to a large number of inputs, neurons and layers. The
associated computational complexity is highly undesirable from real time opera-
tion and low power consumption perspectives. This poses considerable problems
for constrained computing platforms (e.g. mobile devices) which suffer from lim-
itations such as low computational power, low memory capacity, short battery
life and strict miniaturisation requirements. An attractive solution to this is to
design systems whereby ANN complexity can be addressed by offloading pro-
cessing from the host processor to dedicated hardware for general purpose ANN
acceleration.

There has been considerable research in both analog and digital hardware
ANN implementations – [2][3][4]. Low complexity architectures have been favoured,

⋆ The support of the Enterprise Ireland Informatics Initiative is gratefully acknowl-
edged.

2

particularly for implementing the activation function. Low complexity approaches
have the benefit of allowing reduced silicon area, but this typically comes at the
expense of output performance. It is generally accepted that, as the resolution
and precision of the inputs, weights and the activation function are reduced, so
too is the ability of the ANN to act as a universal approximator [5][6]. How-
ever, in an era where large microprocessors now use half a billion transistors,
the overall benefit of area savings in the order of tens to hundreds of transistors
is questionable, particularly if the output performance and scalability is com-
promised. This observation has motivated us to design a high precision, power
efficient hardware activation function generator, which is capable of accommo-
dating multiple activation functions and their derivatives.

The rest of this paper is organised as follows: section 2 details related prior re-
search in the area. Section 3 proposes the use of a minimax spline approximation
scheme. Section 4 outlines an associated hardware architecture for this scheme.
Section 5 details hardware synthesis results and power consumption estimates,
whilst section 6 draws conclusions about the work presented.

2 Related Research

Given its desirable non linear characteristics and ease of differentiability, a Sig-
moid based activation function, such as that defined in eqn. 1, is commonly
used in neural networks [7]. However, a direct hardware implementation is not
practical as it requires excessive logic, resulting in significant power loss.

y(x) =
1

1 + e−x
(1)

Consequently, a number of approximations amenable to hardware implementa-
tion have been developed. Since a direct look up table (LUT) implementation
uses excessive memory, approaches typically fall into the following broad cat-
egories: piecewise linear approximations [8][9][10][11][12][13], piecewise second
order approximations [11] and combinatorial input/output mappings [14]. Fur-
thermore, there is considerable variance within each category. For example, an
A-Law companding technique is used in [8], a sum of steps approximation is used
in [9], a multiplier-less piecewise approximation is presented in [10], a recursive
piece multiplier-less approximation is presented in [13]. An elementary function
generator capable of multiple activation functions using a first and second order
polynomial approximation is detailed in [11]. Recently, a combinatorial approach
has been suggested that considerably reduces the approximation error [14]. Our
approach, which will be describe in detail in section 4, uses a minimax first order
polynomial approximation. The use of a minimax polynomial has been suggested
before in the context of a floating point activation function approximation [12].
However, we further minimise the maximum error and implement an area and
power efficient architecture. Our approach produces a small approximation error,
whilst being suitable for implementation of multiple activation functions.

3

2.1 Data representation and precision requirements

In function approximation there are two sources of error, the approximation
method error and the data representation error resulting from the use of a finite
number of bits. To minimise area and power consumption, the minimum num-
ber of bits should be chosen that results in an acceptable error. Hardware ANN
reduced precision issues were previously explored in [5][6]. It was found that 10
precision bits were sufficient for multi-layer perceptrons (MLP) trained via back
propagation [6]. Using fewer precision bits than this will effect the convergence
speed for on-chip learning, and in some cases may completely prevent conver-
gence. The number of integer bits should be chosen based on the range of the
activation function. The functions we propose implementing (see section 5) have
a maximum usable input integer range of ±8 and a maximum usable output
range of ±1. For these reasons, we propose using 14 input bits (4 integer bits
and 10 fractional bits) and 12 output bits (2 integer bits and 10 fractional bits).
This scheme was also used by [11]. Data representation and precision used in
this and other related research is shown in table 1. [DAN: VASSILIADIS SEEM
TO HAVE DIFFERENT INPUT/OUTPUR RANGES AND DIFFERENT IN-
TEGER/PRECISION BITS?]

Input Output
Total Range Integer Fractional Total Range Integer Fractional
Bits Bits Bits Bits Bits Bits

Myers et al [8] 16 [-8,8[4 12 8 [0,1[1 7

Alippi et al [9] not discussed

Amin et al [10] 8 [-8,8[4 4 8 [0,1[1 7

Vassiliadis et al [11] 14 [-4,4[3 10 14 [0,1[4 10

Faiedh et al [12] Single precision floating point

Basterretxea et al [13] not discussed

Tommiska-337 [14] 6 [-8,8[3 3 7 [0,1[0 7

Tommiska-336 [14] 6 [-8,8[3 3 6 [0,1[0 6

Tommiska-236 [14] 5 [-4,4[2 3 6 [0,1[0 6

Tommiska-235 [14] 5 [-4,4[2 3 5 [0,1[0 5
Table 1. Data widths and precision used in related research

3 Proposed Approximation Scheme

Polynomial approximating functions, such as a Taylor series (see eqn. 2 for a
Taylor series expansion of a sigmoid function), can be used to represent any
arbitrary continuous function. To reduce the order of the approximating polyno-
mial, the input domain of the function can be sub-divided into smaller intervals.
This allows a polynomial of much lower order to be used to approximate each
of the of sub-intervals. The resulting composite function is known as a piecewise
polynomial or spline. Using a spline-based activation function approximation
offers the benefit that multiple activation functions can be accommodated by

4

merely changing the coefficients of the approximating polynomials. This implies
that minimal extra hardware is required to support these additional functions.

SigmoidTaylor =
1

2
+

1

4
∗ x −

1

48
∗ x

3 +
1

480
∗ x

5 −
17

80640
∗ x

7 +
31

1451520
∗ x

9
... (2)

A Taylor series expansion itself is unsuitable for spline approximation as the
approximation error is maximised at the boundaries of the spline i.e. large errors
are present at the points where the splines are joined. [DAN: DOESN’T REALLY
EXPLAIN WHY A TAYLOR IS UNSUITABLE AS OPPOSE TO ANOTHER
TECHNIQUE – AREN’T THEY ALL PIECE-WISE? ALSO MAY CONFUSE
THE READER INTRODUCING TAYLOR FOR EQN 2 AND THEN NOT
USING IT, ALTHOUGH I SEE WHY YOU DID THIS.] Consequently, other
approximating polynomials, such as least squares have been employed [11]. We
propose using the Remez reduction algorithm to solve the minimax spline ap-
proximation [15] since this approach is novel in the context of fixed point ANN
activation function approximation. A minimax polynomial minimises the maxi-
mum error over a range for a given order. As will be detailed in section 5, this
greatly improves the approximating error relative to other polynomial approx-
imating schemes such as least squares. We advocate using a first order min-
imax approximation, as this is capable of achieving an acceptable error (see
section 2 DAN: YOU DON’T REALLY TALK ABOUT ACCEPTABLE ER-
ROR IN SECTION 2 EXCEPT IN VERY HIGH LEVEL TERMS. I SUGGEST
REPHRASING OR DELETING THIS REFERENCE TO SECTION 2) with
a small number of approximating polynomials. This has the further benefit of
avoiding higher order x

n operations. To further reduce the number of splines
required to achieve a specified accuracy, we employ the common approach of
range reduction that exploits inherent redundancies (e.g. symmetry, periodic
behaviour, etc) so that fewer splines can be used to fully represent the function.

3.1 Optimisation of spline locations

The placement of the approximating polynomials on the input range clearly has
a major bearing on the overall approximation error. The simplest approach is
to evenly distribute the polynomials over the approximating range. However,
astute placement can reduce the approximating error, although the potential
search space for optimal placement is large. For example, when using 5 polyno-
mials in a 0 to 8 range with a precision of 10−3, there are in the order of 217

possible combinations for the location of the polynomials. To address this large
search space issue, we propose using a genetic algorithm (GA) to find the op-
timum location of the approximating polynomials. Unlike an exhaustive search,
this solution is scalable even if the input range were to become extremely large
(for example, double precision floating point). DAN: OK BUT WHY A GA
SPECIFICALLY AS OPPOSE OT ANOTHER OPT APPROACH?

The GA was implemented using Matlab [16]. The fitness function firstly
uses the Remez reduction algorithm [DAN: NEED A ONE LINER EXPLANA-
TION OF WHAT’S HAPPENING HERE] to calculate the minimax polynomial

5

coefficients for each candidate in the population. Using these coefficients, the
minimax spline approximation to the chosen activation function (e.g. Sigmoid)
is constructed. The mean and maximum errors are then calculated from this
approximation, using at least 106 samples. The GA explores the search space
whilst attempting to minimise these mean and maximum error values.

As is usually the case, the GA needed extensive tuning through trial and error
exploration of the different input parameters. Initial population sizes of 10 to
1,000 were considered, along with extensive investigation into different crossover
functions and different mutation functions. Our best results were obtaind using
arithmetic crossover and a multi-point non uniform mutation with 5 mutation
points.

4 Hardware Architecture

STILL WORKING ON THIS SECTION

4.1 Range Reduction & Reconstruction

4.2 Calculation of Approximating Polynomials

Array Multiplier

Distributed Arithmetic Multiplication

5 Results - still needs work

5.1 Approximation Error

[DAN: NEED TO EXPLAIN HERE WHAT FIGURES IN THE TABLE MEAN
AND WHY IT IS A FAIR COMPARISON. E.G. WHY IS FAIR TO COMPARE
OUR APPROACH TO THAT OF [11] – DIFFERENT RANGES AND NOT
CLEAR HOW MANY SEGMENTS THEY USE] We used the proposed sig-
moid activation function approximation to compare our approach to previous
research. We tested our method using 2 to 8 approximating polynomial seg-
ments. The maximum and average error results for these tests can be seen in
table 2. When using 5 or more segments, our method outperforms all related
research. Comparing our 4 segment implementation with the first and second
order 4 segment approach of [11], our implementation gives an error that is al-
most 4 times smaller. The improvement obtained by using the genetic algorithm
is apparent from comparing our five segment approach with the five segment
approach of [12]. Our approach is 36% more accurate despite the fact that [12]
employs a single precision floating point data representation.

[DAN CHANGE ”OUR APPROACH” IN TABLE TO ”PROPOSED AP-
PROACH”]

6

Design Range Maximum Average
Error Error

Myers et al [8] [-8,8[0.0490 0.0247

Alippi et al [9] [-8,8[0.0189 0.0087

Amin et al [10] [-8,8[0.0189 0.0059

Vassiliadis et al (First Order) [11] [-4,4[0.0180 0.0035

Vassiliadis et al (Second Order) [11] [-4,4[0.0180 0.0026

Faiedh et al [12] [-5,5] 0.0050 n/a

Basterretxea et al (q=3) [13] [-8,8[0.0222 0.0077

Tommiska (337) [14] [-8,8[0.0039 0.0017

Tommiska (336) [14] [-8,8[0.0077 0.0033

Tommiska (236) [14] [-4,4[0.0077 0.0040

Tommiska (235) [14] [-4,4[0.0151 0.0069

Our approach (2 segments) [-8,8[0.0158 0.0068

Our approach (3 segments) [-8,8[0.0078 0.0038

Our approach (4 segments) [-8,8[0.0047 0.0024

Our approach (5 segments) [-8,8[0.0032 0.0017

Our approach (6 segments) [-8,8[0.0023 0.0012

Our approach (7 segments) [-8,8[0.0017 0.0009

Our approach (8 segments) [-8,8[0.0013 0.0009
Table 2. Maximum and average Sigmoid Approximation errors

5.2 Hardware Implementation Results

The design was captured in Verilog HDL and synthesised using Synopsys De-
sign Compiler and Synplicity Synplify Pro for a 90nm TSMC ASIC library and
Xilinx Virtex 2 FPGA respectively. Power consumption estimates for the ASIC
library were generated using Synopsys Prime Power. A summary of the synthesis
results for a five segment implementation can be seen in table 3. The distributed
arithmetic approach uses 15% less area than the array multiplier for an ASIC
implementation.

[DAN: AGAIN DESCRIBE WHY THIS IS A VALID COMPARISON – RE-
MEMBER REVIEWERS ARE UNLIKELY TO BE HARDWARE BODS]

Area Max Frequency Average Power
[Gates] [MHz] [mWatts]

ASIC - Array multiplier 1917 250 0.1423mW -this figure is a problem!!

ASIC - Distributed Arithmetic 1635 250 0.152mW

FPGA - Array multiplier 2800 40 n/a

FPGA - Distributed Arithmetic ? 40 n/a
Table 3. Synthesis Results

DISCUSS FPGA IMPLEMENTATION

7

COMPARE TO RELATED RESEARCH - ATTEMPT TO NORMALISE
THEIR RESULTS

Both array multiplier and distributed arithmetic architectures complete pro-
cessing within one clock cycle. This compares very favourable to a direct imple-
mentation of a sigmoid activation function on an ARM 9 processor, which we
profiled (see table 4) as requiring a minimum of 395 clock cycles [DAN: PRO-
VIDE MORE DETAIL - OPTIMISED IMPLEMENTATION, OR THROWN
TOGETHER?]. Profiling also revealed that even a first order spline approxi-
mation requires a minimum of 55 clock cycles on an ARM 9 processor. [DAN:
WHY IS THIS INTERESTING .. COS WE’RE SO MUCH BETTER THAN
THAT AND YET ONLY NEED 1 CYCLE ... HAND HOLD THE READER
THROUGH THIS EVEN AT THE RISK OF SOUNDING ”OBVIOUS”]

Design Floating Point Instruction Clock
Co-processor count cycles

Direct implementation not present 1,688 2,550

Direct implementation present 114 395

1st order spline approximation not present 323 448

1st order spline approximation present 55 163
Table 4. Sigmoid activation function profiling on an ARM 920 Processor

6 Future work and conclusions

This paper presented a high precision, scalable hardware architecture for an ac-
tivation function generator. It represents preliminary work toward a complete
power efficient hardware ANN accelerator for mobile platform suitable for han-
dling high dimensional data sets such as those used in multimedia applications.
In the future, we plan to extend the number of activation functions supported,
along with modifications to the genetic algorithm to compensate for any biases
introduced from the rounding of the coefficients to a finite word length [DAN:
NEED TO EXPLAIN OR REMOVE]. In addition, we also intend to conduct a
thorough investigation on the suitability of using floating point representation.

References

[1] Benard Widrow, David E. Rumelhart, and Michael A. Lehr, “Neural networks:
Applications in industry, business and science,” Communications of the ACM,
vol. 37, no. 3, pp. 93–105, Mar. 1994.

[2] G. Cauwenberghs and M. Bayoumi, Learning on Silicon - Adaptive VLSI Neural

Systems, Kluwer Academic, 1999.
[3] David Zhang and Sankar K. Pal, Neural Networks and Systolic Array Design,

World Scientific, New Jersey, 2002.

8

[4] U. Ruckert, “ULSI architectures for artificial neural networks,” IEEE Micro, vol.
22, no. 3, pp. 10–19, May 2002.

[5] Sorin Draghici, “On the capabilities of neural networks using limited precision
weights,” Neural Networks, vol. 15, no. 3, pp. 395 – 414, Apr. 2002.

[6] J.L. Holt and J.N Hwang, “Finite precision error analysis of neural network
hardwareimplementations,” vol. 42, no. 3, pp. 280 – 291, Mar. 1993.

[7] Simon Haykins, Neural Networks - A Comprehensive Foundation, Prentice-Hall,
1999.

[8] D.J. Myers and R.A Hutchinson, “Efficient implementation of piecewise linear
activation function for digital vlsi neural networks,” in Electronics Letters, Nov.
1989, vol. 25, pp. 1662–1663.

[9] C. Alippi and G. Storti-Gajani, “Simple approximation of sigmoid functions:
Realistic design of digital vlsi neural networks,” in Proceedings of the IEEE Int’l

Symp. Circuits and Systems, June 1991, pp. 1505–1508.
[10] H. Amin, K.M. Curtis, and B.R Hayes Gill, “Piecewise linear approximation

applied to nonlinear function of a neural network,” IEE Proceedings Circuits,

Devices and Systems, vol. 144, pp. 313 – 317, Dec. 1997.
[11] S. Vassiliadis, Ming Zhang, and J.G. Delgado-Frias, “Elementary function gen-

erators for neural-network emulators,” IEEE Transactions on Neural Networks,
vol. 11, no. 6, pp. 1438 – 1449, Nov. 2000.

[12] H. Faiedh, Z. Gafsi, and K. Besbes, “Digital hardware implementation of sigmoid
function and its derivative for artificial neural networks,” in Proceedings. of the

13th International Conference on Microelectronics, Rabat, Morocco, Oct. 2001,
pp. 189 – 192.

[13] K. Basterretxea, J.M. Tarela, and I. del Campo, “Approximation of sigmoid
function and the derivative for hardware implementation of artificial neurons,”
IEE Proceedings of Circuits, Devices and Systems, vol. 151, no. 1, pp. 18–24, Feb.
2004.

[14] M.T. Tommiska, “Efficient digital implementation of the sigmoid function for
reprogrammable logic,” IEE Proceedings Computers and Digital Techniques, vol.
150, pp. 403 – 411, Nov. 2003.

[15] J.A. Pineiro, S.F. Oberman, J.M. Muller, and J.D. Bruguera, “High-Speed Func-
tion Approximation Using a Minimax Quadratic Interpolator,” vol. 54, pp. 304 –
318, Mar. 2005.

[16] “The MathWorks - MATLAB and Simulink for Technical Computing,”
http://www.mathworks.com/.

