
Evolving Artificial Cell Signaling Networks:

Perspectives and Methods

James Decraene, George G. Mitchell and Barry McMullin

Artificial Life Laboratory
Research Institute for Networks and Communications Engineering
School of Electronic Engineering
Dublin City University, Glasnevin, Dublin, Ireland
james.decraene@eeng.dcu.ie

Summary. Nature is a source of inspiration for computational techniques which
have been successfully applied to a wide variety of complex application domains.
In keeping with this we examine Cell Signaling Networks (CSN) which are chem-
ical networks responsible for coordinating cell activities within their environment.
Through evolution they have become highly efficient for governing critical control
processes such as immunological responses, cell cycle control or homeostasis. Real-
ising (and evolving) Artificial Cell Signaling Networks (ACSNs) may provide new
computational paradigms for a variety of application areas. In this paper we in-
troduce an abstraction of Cell Signaling Networks focusing on four characteristic
properties distinguished as follows: Computation, Evolution, Crosstalk and Robust-
ness. These properties are also desirable for potential applications in the control
systems, computation and signal processing field. These characteristics are used as
a guide for the development of an ACSN evolutionary simulation platform. Follow-
ing this we describe a novel class of Artificial Chemistry named Molecular Classifier
Systems (MCS) to simulate ACSNs. The MCS can be regarded as a special purpose
derivation of Hollands Learning Classifier System (LCS). We propose an instance
of the MCS called the MCS.b that extends the precursor of the LCS: the broadcast
language. We believe the MCS.b can offer a general purpose tool that can assist
in the study of real CSNs in Silico The research we are currently involved in is
part of the multi disciplinary European funded project, ESIGNET, with the central
question of the study of the computational properties of CSNs by evolving them
using methods from evolutionary computation, and to re-apply this understanding
in developing new ways to model and predict real CSNs.

1 Introduction

Cell Signaling networks (CSNs) are bio-chemical systems of interacting molecules
in cells [12, 17]. Typically, these systems take as inputs chemical signals gen-
erated within the cell or communicated from outside. These trigger a cascade
of chemical reactions that result in changes of the state of the cell and (or)

2 James Decraene et al.

generate some (chemical) output, such as prokaryotic chemotaxis, coordina-
tion of cellular division, or even to order the death of a cell (in the context of
multi-cellular organisms).

As signal processing systems, CSNs can be regarded as special purpose
computers [4]. In contrast to conventional silicon-based computers, the com-
putation in CSNs is not realized by electronic circuits, but by chemically
reacting molecules in the cell. The most important molecular components of
CSNs are proteins and nucleic acids (DNA, RNA). There is an almost infi-
nite variety of potential molecular species, each of which would have distinct
chemical functionality and could engage in interactions with other molecules
with varying degrees of specificity.

We distinguish CSNs as being networks made up of more than one distinct
cell signaling pathway, which interact with each other.

An example of a simple chemotaxis signaling pathway is shown in Figure
1.A. Chemotaxis is a phenomenon where simple organisms such as bacteria
move toward higher concentrations of specific chemicals in their surroundings.
In this diagram, we distinguish six intracellular proteins (denoted as A, B, R,
W, Y and Z) and the membrane receptors which can bind to the correspond-
ing stimulatory element. The input level is determined by the concentration
of bound molecules. This affects the output represented by the tumbling fre-
quency which governs the bacteria direction. Figure 1.B shows, in schematic
form, a simple Cell Signaling Network made up of two such interacting signal
pathways.

We distinguish this work from previous work on real CSNs [12, 17] by
focusing purely on Artificial Cell Signaling Networks (ACSNs). Through the
use of evolutionary computing techniques we allow ACSNs to spontaneously
emerge and adapt to the environment. Potentially of interest for the Biologist
may be the insight that ACSNs gives as to how real CSNs evolved and how
they operate. This synthetic biology approach allows us to incorporate the
present knowledge of real CSNs into ACSNs. This biological understanding
provided guiding points that directed the design of the MCS, these points also
guide the evolution of ACSNs in silico. This may, for example, facilitate the
prediction of missing signaling pathway information in real CSNs [15].

Given our motivation to maintain the biological plausibility of ACSNs,
we are interested in investigating the use of ACSNs to implement computa-
tion, signal processing and (or) control functionality. This is motivated by
preliminary studies which demonstrated that real CSNs could be considered
for computational and engineering purposes:

• In [20], Lauffenburger presents his approach to cell signaling pathways
which could be thought of and modelled as control modules in living sys-
tems.

• Yi et al. [26] demonstrated that CSNs may have some of the essential prop-
erties of an integral feedback control. This is a basic engineering strategy

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 3

W W

A A

R

B

Y Yp

Bp

m

Input

Ouput

(Cell tumbling frequency)

Z

Input

Output

(pathway X)

x

x

0

n

(pathway Y)

cross-talk
y

A B

Output

Fig. 1. A: Schematic representation of bacterial chemotaxis signaling pathway,
adapted from [1]. The output is designated by the tumbling frequency which is de-
termined from the input, the concentration level of ligand bound to the membrane
receptors. This signal transduction is carried out by the reaction cascade depicted
by the proteins A, B, R, W, X and Z. Details on chemical reactions can be found
in [23]. B: A CSN composed from two distinct cell signaling pathways with unique
input and output, an interaction between pathways occurs as molecule y interacts
with xn, this modulates the output of pathway X.

to ensure that a system outputs desired values independent of internal and
external perturbations.

• Deckard and Saura [6] used and evolved artificial biochemical networks
capable of certain simple forms of mathematical computation such as a
square root function.

One way to design ACNs to carry out such complex operations is to use
artificial evolutionary techniques. A significant insight related to the evolution
of signaling networks in silico, was suggested by Holland [15]. Holland pro-
posed examining a simple agent-based model where the agents’ behavior and
adaptation was determined by the use of Learning Classifier System [13, 5].
Based on this machine learning approach Holland suggested that signaling
networks could be modeled with LCS in a top-down fashion. We show how
this work does not lend itself as a method for addressing our project.

We propose a variation of the LCS called the Molecular Classifier Sys-
tem which allows the emergence and evolution of signaling networks. This
approach may be considered as viewing the evolution and design of signaling
networks from a bottom-up manner complementing Holland’s approach.

In section 2 we examine the nature of ACSNs by examining the critical
issues that these raise. In section 3 we first present and discuss Holland’s ap-

4 James Decraene et al.

proach and following this we propose the structure of our ACSN evolutionary
simulation platform, the Molecular Classifier System.

2 Artificial Cell Signaling Networks

As an abstraction of real CSNs, ACSNs are differentiated and simplified by
some key properties. The selection of these particular characteristics is mo-
tivated by the will to employ Artificial Cell Signaling Networks for compu-
tational and control engineering purposes. Four issues are distinguished and
presented: Computation, Evolution, Crosstalk and Robustness.

2.1 Computation

In the simplest cases, CSNs can be approximately modelled by systems of con-
tinuous differential equations, where the state variables are the concentrations
of the distinct species of interacting molecules. As a “computational” device,
this is most naturally compared to a traditional analog computer. Analog
computers are precisely designed to model the operation of a target dynami-
cal system, by creating an “analogous” system which shares (approximately)
the same dynamics. Electronic analog computers (based on the “operational
amplifier” as the core computational device) have long been displaced by
digital computers, programmed to numerically solve the relevant dynamical
equations, due to their much greater ease of programming and stability.

Nonetheless, there may be applications where a molecular level analog
computer, in the form of a CSN, may have distinct advantages. Specifically,
CSNs may offer capabilities of high speed and small size that cannot be re-
alised with solid state electronic technology. More critically, where it is re-
quired to interface computation with chemical interaction, a CSN may bypass
difficult stages of signal transduction that would otherwise be required. This
could have direct application in so-called “smart drugs” and other bio-medical
interventions.

While CSNs are typically treated in this “aggregate” manner, where the
signal or information is carried by molecular concentration, one can also con-
sider the finer grained behaviours of individual molecules are computational
in nature. Thus a single enzyme molecule can be regarded as carrying out
pattern matching to identify and bind target substrates, and then executing
a discrete computational operation in transforming these into the product
molecule(s). This has clear parallels with a wide variety of so-called “rewrit-
ing systems” in computational theory.

However, it also clearly differs in important ways, such as:

• Operation is stochastic rather than deterministic.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 5

• Operation is intrinsically reflexive in that all molecules can, in principle,
function as both “rules” (enzymes) and “strings” (substrates/products).

Dittrich [9] provides a more extended discussion of the potential of such
“chemical computing”.

2.2 Evolution

Evolutionary Algorithms (EAs) are non-deterministic search and optimisation
algorithms inspired by the principles of neo-Darwinism. They have been ap-
plied successfully in a variety of fields [14, 11, 16]. Generally based on genetic
operations such as crossover and mutation, EAs initially generate a wide range
of candidate solutions. Over time, through selection, this can be reduced to an
optimized set. Evolutionary computation can therefore deliver useful results
without requiring a priori knowledge of the entire search space [11, 16].

Such techniques are relevant to the study of ACSNs because:

• The complex, and unpredictable, interactions between different compo-
nents of CSNs, make it very difficult to design them “by hand” to meet
specific performance objectives.

• However, natural evolution shows that in suitable circumstances, effective
CSNs functionality can be achieved through evolutionary processes.

For example, Deckard and Saura [6] used such evolutionary techniques to
construct (simulated) biochemical networks capable of certain simple forms
of signal-processing. In this model (called Lakhesis), computational “nodes”
represent molecule species with an attribute for concentration. Connections
between nodes designate reactions defined by the type and rate of the reaction.

Another ESIGNET project contribution is given by Lenser et al. [24], in
this System Biology approach, a multi-level EA is proposed to evolve biochem-
ical networks (represented in SBML) for performing pre-specified tasks such
as reconstructing real CSNs. The base level EA searches for optimal network
topologies and the second level explores the kinetic parameters.

2.3 Crosstalk

“Crosstalk” phenomena happen when signals from different pathways become
mixed together. This arises very naturally in CSNs due to the fact that the
molecules from all pathways may share the same physical reaction space (the
cell). Depending on the relative specificities of the reactions there is then an
automatic potential for any given molecular species to contribute to signal
levels in multiple pathways. An example is shown in Fig. 1.

In traditional communications and signal processing engineering, crosstalk
is regarded as a defect—an unintended or undesigned interaction between
signals, that therefore has the potential to cause system malfunction. This
can also clearly be the case of crosstalk in CSNs. However, in the specific

6 James Decraene et al.

case of CSN’s, crosstalk also has additional potential functionality, which may
actually be constructive:

• Even where an interfering signal is, in effect, adding uncorrelated “noise” to
a functional signal, this may sometimes improve overall system behaviour.
This is well known in conventional control systems engineering in the form
of so-called “dither”. Compare also, [2, 25] on constructive biological roles
of noise.

• The crosstalk mechanism provides a very generic way of creating a large
space of possible modifications or interactions between signaling pathways.
Thus, although many cases of crosstalk may be immediately negative in
their impact, crosstalk may still be a key mechanism in enabling incre-
mental evolutionary search for more elaborate or complex cell signaling
networks.

2.4 Robustness

It is argued that key properties in biochemical networks are to be robust,
this is so as to ensure their correct functioning [3]. Similar works include
research carried out at the Santa Fe institute in studying Cytokine signaling
networks to design distributed autonomous networks, that are robust to small
perturbations and responsive to larger ones [18]. Potential applications are
distributed intelligent systems such as large fleets of robots working together,
for automated response in computer security, for mobile computing networks,
etc.

Alon et al. have demonstrated from studying Escherichia coli chemotaxis
that molecular interactions can exhibit robustness [1, 20]. In this case it means
that after a change in the stimulus concentration (input), the tumbling fre-
quency (output) managed to reach a steady state that is equivalent to the
pre-stimulus level. This is illustrated in Figure 2.

Signal

Time

no adaptation

partial adaptation

perfect adaptation

Fig. 2. Representation of dynamic responses of a system to a stimuli adapted from
[20]. No adaptation is observed when the system response attains a new steady
state following the change in input. Partial adaptation describe a partial recovery,
the difference between the initial state and the new state is lower than the one
observed in the previous case. Perfect adaptation is met when the system is able to
come back to its initial state

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 7

Such properties are highly desirable in dynamic engineered systems when
subjected to internal and external uncertainty and perturbation.

3 An evolutionary approach to implement ACSNs

In the following, we first examine a specific class of Evolutionary Algorithm
called Learning Classifier System (LCS) devised by Holland in 1976 [13]. In
2001 Holland [15] identified the possibility of using LCS to implement sig-
naling networks (biochemical circuits). However Holland’s work was never
actually implemented. We use Holland’s proposition as the seminal point for
the development of the first Classifier System based ACSN implementation,
our Molecular Classifier System (MCS).

3.1 Learning Classifier Systems

Learning Classifier Systems are systems constructed from condition-action
rules called classifiers. The classifiers can be viewed as IF/THEN statements
in the form IF “rule” THEN “action”. The condition section of the classifier
examines all of the messages in the system and identifies those that satisfy
the rules conditions. Once this is accomplished the action part instructs that
a message is to be sent. Holland’s initial work was modified a number of
times and at present many different varieties of learning classifier systems are
available [19].

In Holland’s LCS the system receives an input from its environment as a
binary encoded data. This is then stored in an internal data store termed the
message list, see Figure 3. The LCS then evaluates the input and determines
an appropriate response, indicated by the action. This action typically alters
the current state of the environment. Any desired behaviour that is exhibited
is then rewarded through a scalar reinforcement. The system iterates the cycle
of response, reinforcement and discovery for each discrete time-step.

Fig. 3. Schematic of Holland’s Learning Classifier System

The rule-base consists of a population of N classifiers. Both parts of the
classifier are randomly initialized. The rule conditions and actions (the classi-
fiers) can be characterized by strings formed from a ternary alphabet 0,1,#.

8 James Decraene et al.

The use of the # provides a single character wildcard which allows for the
potential matching of a greater number of strings e.g. 10# would match two
potential inputs 100 or 101. The use of the wildcard character also provides
for string processing at the action stage, for example: in responding to the
input 110, the rule IF 1#0 THEN 0#1 would produce the action 011. Each
classifier also has an associated fitness measure, quantifying the usefulness of
a rule in attracting external reward.

On receiving an input message, a typical LCS processes as follows: initially
the input message rule-base is scanned and all rules whose condition matches
the external message are added to the “match set” denoted as [M], see Fig-
ure 3. Secondly any other rules matching messages in the message list are
also added to [M]. Rules that contribute significantly to the targeted learn-
ing task may then be reinforced through the use of bidding techniques. For a
comprehensive introduction to Learning Classifier System, see [5].

In [15] Holland proposed an agent-based model where the agents’ behav-
ior and adaptation are determined by the use of Learning Classifier System.
This work provided an existence proof that LCS could be used to evolve a
simple repertoire of condition-action rules to a more complex goal directed
set of rules. In typical biochemical networks, interactions between molecules
follow the same condition-action mechanisms. Thus Holland suggested that
this approach could be used to simulate and evolve signaling networks. His
proposition to design signaling networks was to start with a LCS-based “over-
general” model of a biological phenomenon (e.g. transformation of a healthy
cell to a cancer cell, see Table 1). Then a general phenomenon can be refined

Table 1. Over-general model of the transformation of healthy cell to cancer cell

Rule Condition Action

(1) If healthy cell and DNA damage Then apoptosis or immortality
(2) If immortality Then stable existence or genetic in-

stability
(3) If genetic instability Then ephemeral clonal expansion or

robust clonal expansion

through several iterations. At each iteration, the details of the occurring in-
teractions are detailed, see Table 2. These iterations were continued until the
desired CSN level was reached, where the biomolecular elements are specified
(e.g. protein ligand, receptor, ions etc.), see Table 3 for an example of such a
rule. This refining process clearly shows the top-down methodology to design
signaling networks.

Despite this, the LCS-based approach to specify CSNs sounded promising,
actual implementation was never performed. Importantly, this approach does
not meet the requirements of our project. First, we do not distinguish a demar-
cation between rules and messages, in our context, the chemical operations
are reflexives. Secondly, Holland’s suggestion was to initially model known

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 9

Table 2. Refinement of rule 1

Rule Condition Action

(1.1) IF healthy cell and DNA damage Then apoptosis or mutation for re-
sistance to apoptosis

(1.2) IF resistance to apoptosis Then susceptibility to growth in-
hibitory signals or mutation for
loss of susceptibility to growth in-
hibitory

(1.3) IF loss of susceptibility to immor-
tality

THEN selective growth advantage
and growth inhibitory signals

Table 3. A biomolecular level rule

Rule Condition Outcome

(x.x.x.x) If apropos growth factor Then gf receptor activated

real CSNs, however from our bottom-up perspective, we require the ACSNs
to evolve from very simple networks to more complex networks that exhibit
the known real CSNs properties. As a consequence we propose a variation of
Holland’s LCS to fulfill the requirements of our project.

3.2 The Molecular Classifier System

We define the Molecular Classifier System (MCS) as a class of string-rewriting
based Artificial Chemistries. This approach is inspired by Hollands Learning
Classifier Systems (LCS). In Hollands LCS, a demarcation is distinguished
between rules and messages, however as mentioned earlier operations in a
biochemical networks are intrinsically reflexive in the sense that all molecules
can function as both rules (enzymes) and messages (substrates/products).
The MCS addresses this issues by removing this rules/messages demarcation
found in the LCS.

The behavior of the condition/binding properties and action/enzymatic
functions is specified by a “chemical” language defined in the MCS. The chem-
ical language defines and constrains the complexity of the chemical reactions
that may be represented and simulated with the MCS. For example, a MCS
model using a limited number of computational functions may only fatefully
represent very simplistic chemical reactions.

Before describing the nature of the enzymatic functions (action part of a
molecule), the binding properties of the molecules must be identified. We have
thus far identified the following potential properties: In the MCS approach,
a reaction between molecules may only occur if the informational string of a
first molecule satisfies/binds with the conditional part of a second molecule.
The second molecule may be the same as the first molecule leading to self-
binding. The condition part refers to the binding properties of a molecule
whereas action refers to the computational (“enzymatic”) function. This pat-

10 James Decraene et al.

tern matching occurring implies a notion of specificity or “binding strength”.
A molecule having a high specificity would have less chance to react with
another one. Whereas a molecule having a low specificity is likely to bind to
another more often. Therefore we could translate this into an effect on reaction
rate/kinetics.

When two molecules can bind and consequently react to each other, the
action part of one of the molecules is used to carry out the enzymatic opera-
tions upon the binding molecule (substrate). This operation results in produc-
ing another offspring (product). This is analogous to the action part of a LCS
rule used by Holland [15]. When a reaction occurs, the symbols contained in
the MCS action part are processed in a sequential order (parsed from left to
right). The outcome (product) of the reaction depends on the nature of the
symbols’ functionality.

Fig. 4. Schematic of a reaction in the MCS: When a molecule A can react with a
molecule B, the action statement of molecule A is “executed” upon the informational
string of the binding molecule B. A is viewed as an enzyme and B as a substrate,
thus A’s structure is not affected by the reaction whereas B’s structure is degraded
and a product P is generated. A’s action statement operators take as inputs the
symbols of B ’s string. An offspring molecule P is generated as a result of these
operations

In [21], a minimalist approach to the MCS was proposed to investigate
protocell computation. In this study, a protocell is modelled as a container
for artificial molecules (Molecular Classifier Systems). The latter may interact
with each other to generate new molecular offspring. The chemical language
used in this instance of a MCS for protocells employs a minimal set of compu-
tational components to reduce the conceptual gap between artificial and real
chemistry. To represent, simulate and evolve ACSNs, more computational
functions are necessary, nevertheless the definitive set of operations is still
under investigation as we are trying to understand what are the minimal op-
erational requirements to allow a primitive ACSN to spontaneously emerge.
In the remainder of this section, we present a candidate solution based on a
variant of the Holland Broadcast Language.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 11

3.3 The Holland Broadcast Language

The Broadcast Language is a programing formalism introduced by Holland in
1975 [14, 7], which can be thought of as the precursor for the LCS, the latter
being a simplification of the Broadcast Language. The Broadcast Language
was originally intended to solve some undesirable issues arising out of the use
of Genetic Algorithms (GAs) [14, 11]. Holland argued that GAs provide an
efficient method of adaptation, however in the case of long-term adaptation,
the efficiency of GAs could be limited by the representation used to encode
the problem. This problem representation is usually fixed and influences the
complexity of the fitness function. During long-term evolution, this may limit
the performances of the GA. To overcome this limitation, Holland proposed
to adapt the problem representation used by the fitness function. Adapting
the representation may then generate correlations between the problem rep-
resentation and the GA performance.

A key property shared between the MCS and the Broadcast Language is
the removal of any demarcation between messages and rules. A second benefi-
cial property is the ability of the Broadcast Language to provide a straightfor-
ward representation to a variety of natural models such as the operon-operator
model (a Genetic Regulatory Network model).

The Broadcast Language basic components are called broadcast units

which can be viewed as condition/action rules. Whenever a broadcast unit
conditional statement is satisfied, the action statement is executed. This
means that whenever a broadcast unit detects in the environment the pres-
ence of (a) specific signal(s), including themselves, then the broadcast unit
would broadcast an output signal.

Some broadcast units may broadcast a signal that may constitute a new
broadcast unit. Similarly, a broadcast unit can be interpreted as a signal
detected by another broadcast unit. Broadcast units may also process a given
signal, in the sense that, a broadcast unit may output a signal that is some
modification of the detected/input signal. As a result, a broadcast unit may
create new broadcast units or detect and modify an existing broadcast unit.
A set of broadcast units, combined as a string, designates a broadcast device.

Table 4. Comparison of biological and broadcast language terminology

Biology Broadcast Language

sequence of amino acids from

{A, R, N, D, C, E, . . .}
string of symbols from Λ =

{0, 1, ∗, :, ♦, ▽, H, △, p, ′}

substrate input signal

product output signal

protein with no enzymatic function null unit

enzyme broadcast unit

protein complex broadcast device

cellular milieu list of strings from Λ

12 James Decraene et al.

As a summary, the above table presents a comparison between the biolog-
ical and the broadcast language terminology.

The Broadcast Language alphabet Λ is finite and contains ten symbols, Λ∗

is the set of strings over Λ. The symbols constitute the atomic elements of the
language.

Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′}

Let I be an arbitrary string from Λ∗, in I, a symbol is said to be quoted if
it is preceded by a symbol ′. A broadcast unit In is an arbitrary string from
Λ∗ which contains neither unquoted ∗ or unquoted : .

The finite collection of broadcast devices can be described by its state S at
each timestep t. For example S(0) = {011 : ∗△011 : 11, 101, 100, 0111 : 01 :}
describes the set of broadcast devices at timestep t = 0, which corresponds to
the initial state of the collection. Four types of broadcast unit can be distin-
guished, any broadcast units that do not follow one of the four schemes (see
below) are null units. Broadcast units may engage in the following interactions
based on discrete timesteps:

1. ∗I1 : I2

If a signal of type I1 is detected at time t then the signal I2 is broadcast
at time t + 1.

2. ∗ : I1 : I2

If there is no signal of type I1 present at time t then the signal I2 is broad-
cast at time t + 1.

3. ∗I1 :: I2

If a signal of type I1 is detected at time t then a persistent string of type
I2 (if any) is removed from the environment at the end of time t.

4. ∗I1 : I2 : I3

If a signal of type I1 and a signal of type I2 are both present at time t

then the signal S3 is broadcast at the same time t unless the string I3

contains unquoted symbols {▽,H,△} or singly quoted occurrence of ∗, in
which case the string I3 is broadcast a time t + 1.

The symbols

The interpretation of each symbol in Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′} is now
presented. In particular cases, some symbols may not be interpreted by a given
broadcast unit, these ignored symbols are simply overlooked. However, they
remain important as they may get activated at a later stage where broadcast
units undergo recombination.

{0, 1} 0 and 1 are the basic elements to specify a signal. A string such as
010110 can be regarded as the signature of a particular signal. This signa-
ture can be employed by a broadcast unit to detect and identify a signal.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 13

For example: let I1 = ∗10111 : 00 be a broadcast unit and I2 = 10111
a signal, both strings are present at time t in the environment: S(t) =
{∗10111 : 00, 10111}. At time t, I2 is detected by I1, this triggers the acti-
vation of broadcast unit I1, as a result: S(t+1) = {∗10111 : 00, 10111, 00}.

∗ This symbol indicates that the subsequent symbols until the next unquoted
∗ (if any) are to be interpreted as a broadcast unit. If a broadcast device
I does not contain any unquoted ∗ then I is a null unit.

: This symbol is used as a punctuation mark to differentiate the arguments
of a broadcast unit. The symbol : (position and frequency) determines the
type of the broadcast unit as presented earlier. If more than two unquoted
: are found in a broadcast unit then the third : and anything to the right
of it are ignored.

♦ When this symbol is met in the argument of a broadcast unit, it indicates
that a signal detected by the broadcast unit may present any symbol at
this position. This specific symbol occurring in the detected signal does
not affect its acceptation or rejection by the broadcast unit.
For example, with S(t) = {∗10♦11 : 00, 10011} we obtain at time t + 1
S(t + 1) = {∗10♦11 : 00, 10011, 00}, ∗10♦11 broadcasts 00 if a signal
containing 10 . . . 11 is present (. . . indicates any arbitrary symbol from
Λ).
Also if ♦ occurs at the rightmost position in the argument of a broadcast
unit, then it indicates that a signal detected by the broadcast unit may
present any suffix without affecting acceptance or rejection.
For example, with S(t) = {∗1011♦ : 00, 101101101} we obtain S(t + 1) =
{∗1011♦ : 00, 101101101, 00}, ∗1011♦ : 00 would broadcast 00 if any signal
containing the prefix 1011 is detected.

▽ When this symbol occurs in the arguments of a broadcast unit, it desig-
nates any arbitrary initial (prefix) or terminal (suffix) strings of symbols.
This allows one to pass a string of symbols from the input signal to the
broadcast signal (≈ unit processing).
For example, with S(t) = {∗10▽ : ▽, 10011} we obtain at t+1: S(t+1) =
{∗10▽ : ▽, 10011, 011}. In this case ▽ designates the suffix 011 occurring
in the input signal 10011. whereas if S(t) = {∗10▽ : ▽, 100100101} then
we obtain at t + 1: S(t + 1) = {∗10▽ : ▽, 100100101, 0100101}. If several
occurrences of ▽ are found in the output argument of a given broadcast
unit, then they all designate the same substring.

H This symbol is similar to ▽ but can also concatenate different inputs
signals.
For example, with S(t) = {∗10▽ : 11H : 000▽H, 10111, 1100} we obtain
at t + 1: S(t + 1) = {∗10▽ : 11H : 000▽H, 10111, 1100, 00011100}. In this
case ▽ designates the suffix 111 occurring in the input signal 10111 and
H designates the suffix 00 found in the detected signal 1100. The format
of the broadcast signal is 000▽H, therefore we replace and concatenate ▽

and H accordingly and we obtain the output signal 00011100.

14 James Decraene et al.

△ This symbol is employed in the same manner as ▽ and H but designates an
arbitrary single symbol whose position can be anywhere in the argument
of a given broadcast unit.
For example, with S(t) = {∗11△0 : 1△, 1100} the output signal 10
is broadcast and this produces at S(t + 1) = {∗11△0 : 1△, 1100, 10}.
Whereas if S(t) = {∗11△0 : 1△, 1110} the output signal 11 is broadcast
producing S(t + 1) = {∗11△0 : 1△, 1100, 11}.

p When this symbol occurs at the first position of a string, it designates
a persistent string. This string would then persist over time until it is
deleted, even if the string is not an active broadcast unit. A null device
occurring at time t which is not persistent exists only for one timestep
and is removed at the end of time t.

′ This symbol is used to quote a symbol in the arguments of a broadcast
unit. When a symbol is said to be quoted, it acts as a simple literal, i.e.
a ′△ would only match △.
For example, with S(t) = {∗11′△0 : 11, 11△}, the input signal 11△ is
detected by the broadcast unit and thus the output string 11 is broadcast
producing at t + 1 : S(t + 1) = {∗11′△0 : 11, 11△, 11}.

The broadcast language presented by Holland in the original text omitted a
number of interactions between broadcast devices, which could in certain cases
present us with ambiguities regarding the expected action to be performed.
Holland discussed some of these semantical conflicts [14], while the remaining
ambiguities were addressed in [7, 8]. However in the context of this paper, this
is not an important consideration.

Example: Building a NAND gate

In this section we describe the construction of a NAND gate using the broad-
cast language. This is intended to demonstrate how the broadcast language
can be considered as a logical universal computational formalism. Moreover
using the Boolean abstraction, it is also possible to build qualitative models
of natural networks such as Genetic Regulatory Networks. With the Boolean
abstraction, a molecule is considered as a logical expression having two dif-
ferent possible states. One possible state is the ON state meaning that the
molecule is present in the environment. When a molecule state is OFF, this
indicates that the particular molecule is not present in the environment (cell).

In the remainder of this section we first present a simple example in which
a NAND gate is constructed within a static environment (the inputs values
do not change over time), then a second example follows in which the same
gate is adapted to be used with a dynamic system:

1. We consider a NAND gate having for inputs signals A and B and for
output signal C. To construct this logical gate with the broadcast lan-
guage, we first represent each signal A, B, C as null broadcast devices
(substrates): A = p001, B = p010 and C = p000.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 15

We then declare the following active broadcast devices (enzymes): I1 =
∗p001 : 011 and I2 = ∗p010 : 100, these devices emit signaling molecules
S1 = 011 and S2 = 100 upon detecting A and B respectively. Similarly,
we define I3 = ∗ : p001 : 101 and I4 = ∗ : p010 : 110 which would emit
S3 = 101 and S4 = 110 if A or B are not detected.
Finally the following broadcast devices are employed to output C accord-
ing to the intermediary states of signaling molecules S1,S2,S3 and S4:
I5 = ∗011 : 110 : p000, I6 = ∗100 : 101 : p000 and I7 = ∗101 : 110 : p000.
Using these broadcast devices, it is possible to obtain the state of C ac-
cording to the states of input signals A and B, 2 time steps are necessary
to propagate and process the signals A and B.

2. Within a dynamic system, some modifications are necessary to main-
tain our NAND gate. These modifications are intended so as to allow
the output signal C to degrade over time. First, the broadcast devices
I1,I2 and I3 are modified as follows: As currently defined, those broadcast
devices output the signal p000 (which designates the persistent signal C)
when satisfied, these output signals are replaced with an additional sig-
naling molecule S5 = 111. As a result, we obtain the broadcast devices:
I ′5 = ∗011 : 110 : 111, I ′6 = ∗100 : 101 : 111 and I ′7 = ∗101 : 110 : 111.
We then declare a broadcast device I8 = ∗111 : p000 that upon detecting
S5 would emit the output signal C. Finally we declare a broadcast device
I9 = p000 :: p000 that deletes (degrades) C upon detecting C. We note
that as soon as a signal C appears at time t, it would be removed by
I9 at the end of time t. To counter balance that effect, we double the
concentration of broadcast devices I8 so that the production rate of C is
higher than its degradation rate.

In Fig. 5 we present a simulation using such a NAND gate specified with
the broadcast language. In this simulation, the inputs A and B are manually
switched ON/OFF at different timesteps. We detail the states of the system
at timestep 0,1 and 2:

S(0) = {A = p001 , I1 = ∗p001 : 011, I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
I4 = ∗ : p010 : 110, I ′

5 = ∗011 : 110 : 111, I ′

6 = ∗100 : 101 : 111,
I ′

7 = ∗101 : 110 : 111, I8 = ∗111 : p000, I8 = ∗111 : p000,I9 = p000 :: p000}

At t = 0, the system is initialized with above broadcast devices, A is ON,
and both B and C are OFF. We note that both broadcast devices I1 and I4

are satisfied leading to the production of S1 and S4 at t = 1:

S(1) = {A = p001 , I1 = ∗p001 : 011, I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
I4 = ∗ : p010 : 110, I ′

5 = ∗011 : 110 : 111, I ′

6 = ∗100 : 101 : 111,
I ′

7 = ∗101 : 110 : 111, I8 = ∗111 : p000, I8 = ∗111 : p000,I9 = p000 :: p000,

S1 = 011, S4 = 110}

16 James Decraene et al.

At t = 1, I ′5 is activated due to the presence of S1 and S4. I ′5 is a type 4
broadcast device that is able to output S5 signal during same timestep. As a
result, both I8 broadcast devices are now activated and produce two instances
of C molecule at t = 2. As S1,S4 and S5 are not persistent, these signals are
removed at the end of t = 1. However, as A is still ON and B is OFF, S1 and
S4 are again produced at t = 2.

S(2) = {A = p001 , I1 = ∗p001 : 011, I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
I4 = ∗ : p010 : 110, I ′

5 = ∗011 : 110 : 111, I ′

6 = ∗100 : 101 : 111,
I ′

7 = ∗101 : 110 : 111, I8 = ∗111 : p000, I8 = ∗111 : p000,I9 = p000 :: p000,

C = p0000, S1 = 011, S4 = 110}

At the beginning of t = 2, two instances of C are contained in the system.
However the I9 broadcast device is now satisfied by instances of the C molecule
resulting in the removal of one instance of C.

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Input signal A

Signal A state

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Input signal B

Signal B state

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Output signal C

Signal C state

Fig. 5. NAND gate specified with our implementation of the broadcast language,
details can be found in [7]. The output signal C state is initialized as OFF (0), at
timestep 10,20,30 and 40, inputs A/B are manually switched ON/OFF (1/0), We
note that the propagation time needed to process the switching of inputs A or B

differs according to the nature of the switching involved and present states of A,B
and C.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 17

3.4 Fusing MCS and the Broadcast Language

In [8], it was demonstrated that the Broadcast Language can model Genetic
Regulatory Networks (GRNs). This was due to the ability of the Broadcast
Language to mirror Boolean networks which illustrates the wide ranging pro-
cessing power that Broadcast Systems are capable of. Nevertheless, it was also
highlighted that the Broadcast Language is limited regarding the representa-
tion and simulation of CSNs. To address this issue, we propose to combine the
MCS concept with the Broadcast Language in a new system termed “MCS.b”.
The MCS.b complements the broadcast language (syntax and semantics) and
extends it by including the following refinements:

• Instead of processing all broadcast devices sequentially and determinis-
tically during a time step, the MCS.b processes as follows: at each time
step t, we pick n pairs of broadcast devices at random. For each pair of
devices, one of the broadcast devices is designated (at random) as the cat-

alyst device and the second one as the substrate device. If the conditional
statement of the catalyst device is satisfied by the signal of the substrate
device, then the action statement of the catalyst device is executed upon
the substrate device.

• n is a constant and designates the number of pairs of broadcast devices
that will interact during a timestep. It is also plausible to consider n as
the temperature in real chemistry. Temperature has an important role in
chemical reactions, indeed molecules at higher temperature have a greater
probability to collide with one another. In the broadcast language “uni-
verse”, in order to increase the “temperature”, one may increment the
integer number n.

• In the broadcast language specification given by Holland, additional rules
were required to resolve some ambiguities raised by the interpretation of
broadcast devices. To facilitate this, the MCS.b simplifies the interpreta-
tion of broadcast units by preserving broadcast units of type 1 only.

• Similarly the notion of non-persistent devices is removed: by default all
devices are considered as persistent molecules.

• As type 3 broadcast units and non-persistent devices no longer exist in
this proposal, no molecule can be deleted from the population. However
the deletion of molecules is needed to obtain evolutionary pressure. Our
suggestion is as follows: each time two molecules react together, we pick a
molecule at random and delete it from the population.

By combining the strength of both the MCS and Broadcast Language,
we expect the MCS.b to be capable of modeling, simulating and evolving
ACSNs in a more fateful manner. At present, we have conducted a number
of preliminary experiments examining the spontaneous emergence of collec-
tive autocatalytic sets among others. This was expected to be trivial as this
phenomenon was already demonstrated with other Artificial Chemistry Sys-
tems (such as Tierra, Alchemy, etc.). Initial results suggest that the MCS.b

18 James Decraene et al.

performs as expected, however before these results can be presented to the
research community, validation against empirical biological data is required.

4 Future work

In keeping with the four presented ACSN characteristic properties, we will
focus on the following areas:

4.1 Computation

As part of the ESIGNET project, we will investigate the computational power
of the MCS.b. This will include an examination of the MCS.b for Turing Com-
pleteness. As one of our project goals is to evolve ACSNs for computational
purposes, incorporating completeness may be regarded as a crucial issue.

4.2 Evolution

An ACSN implies several cell signaling pathways interacting with each other.
In order to evolve such a system of signaling networks controlling each other,
it will be necessary to evaluate different Evolutionary Computational (EC)
techniques. Because from biology it is natural to have a hierarchical system
it may prove beneficial to investigate multi-level EC systems e.g. Hierarchical
Genetic Algorithms [10].

4.3 Crosstalk

To obtain a better understanding of the crosstalk phenomenon and more
specifically about the positive and negative effects of crosstalk. We will would
like to see if it is possible to specify a network topology that allows optimal
control of crosstalk effects.

A small world topology [22] may be of interest, as we may observe an
analogy between CSNs and small world networks. This class of network, and
more specifically scale-free networks are characterized by possessing nodes
acting as “highly connected hubs”. Although most nodes in these networks
are of low degree. For example, a highly connected node could be referring
to an ATP molecule that shares the same high degree of connectivity in real
biochemical networks.

4.4 Robustness

We will investigate the ability of ACSNs to create and sustain specific internal
conditions such as homeostasis. We would like to exhibit such robust behavior
in simulated ACSNs, and how through evolutionary changes, robustness can
be refined. Another consequent issue is to quantify the robustness of such
systems to external shocks and changes of conditions.

Evolving Artificial Cell Signaling Networks: Perspectives and Methods 19

5 Conclusion

In this paper we introduced an abstraction of Cell Signaling Networks focus-
ing on four characteristic properties distinguished as follows: Computation,
Evolution, Crosstalk and Robustness. We indicated how these attributes can
be highly desirable properties for potential applications in the control sys-
tems, computation and signal processing field. Following this we described a
novel class of Artificial Chemistry named Molecular Classifier Systems (MCS)
which was inspired by Hollands Learning Classifier System (LCS). To simu-
late and evolve ACNS, we proposed an instance of the MCS called the MCS.b
that extends the precursor of the LCS: the broadcast language. We completed
the paper by examining further work that is required to conclusively validate
our approach.

Acknowledgement

This work was funded by ESIGNET (Evolving Cell Signaling Networks in Sil-
ico), an European Integrated Project in the EU FP6 NEST Initiative (contract
no. 12789).

References

1. U. Alon, M. G. Surette, N. Barkai, and S. Leibler. Robustness in bacterial
chemotaxis. Nature, 397(6715):168–171, January 1999.

2. A. M. Arias and P. Hayward. Filtering transcriptional noise during development:
concepts and mechanisms. Nature Reviews Genetics, 7(1):34–44.

3. N. Barkai and S. Leibler. Robustness in simple biochemical networks. Nature,
387(6636):913–917, June 1997.

4. D Bray. Protein molecules as computational elements in living cells. Nature,
376(6538):307–312, Jul 1995.

5. L. Bull and T. Kovacs. Foundations of Learning Classifier Systems: An Intro-
duction. Foundations of Learning Classifier Systems, 2005.

6. A. Deckard and H. M. Sauro. Preliminary studies on the in silico evolution of
biochemical networks. Chembiochem, 5(10):1423–1431, October 2004.

7. J. Decraene. The Holland Broadcast Language. Technical Report ALL-06-
01, Artificial Life Lab, RINCE, School of Electronic Engineering, Dublin City
University, 2006.

8. J. Decraene, G. G. Mitchell, B. McMullin, and C. Kelly. The holland broadcast
language and the modeling of biochemical networks. In Marc Ebner, Michael
O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar,
editors, Proceedings of the 10th European Conference on Genetic Programming,
volume 4445 of Lecture Notes in Computer Science, Valencia, Spain, 11 - 13
April 2007. Springer.

9. P. Dittrich. Chemical computing. In Jean-Pierre Banâtre, Pascal Fradet, Jean-
Louis Giavitto, and Olivier Michel, editors, UPP, volume 3566 of Lecture Notes
in Computer Science, pages 19–32. Springer, 2004.

20 James Decraene et al.

10. B. Freisleben. Metaevolutionary approaches. In Thomas Bäck, David B. Fo-
gel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation,
pages C7.2:1–8. Institute of Physics Publishing and Oxford University Press,
Bristol, New York, 1997.

11. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, January 1989.

12. Ernst J. M. Helmreich. The Biochemistry of Cell Signalling. Oxford University
Press, USA, 2001.

13. J.H. Holland. Adaptation. Progress in theoretical biology, 4:263–293, 1976.
14. J.H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-

bridge, MA, USA, 1992.
15. J.H. Holland. Exploring the evolution of complexity in signaling networks. Com-

plexity, 7(2):34–45, 2001.
16. J. R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection (Complex Adaptive Systems). The MIT Press, December
1992.

17. G. Krauss. Biochemistry of Signal Transduction and Regulation. John Wiley &
Sons, 2003.

18. S. Forrest L. Segel. Robustness of cytokine signalling networks.
http://www.santafe.edu/research/signallingnetworks.php.

19. P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors. Springer-Verlag, April
2001.

20. D.A. Lauffenburger. Cell signaling pathways as control modules: complexity for
simplicity? Proc. Natl. Acad. Sci. USA, 97(10):5031–3, 2000.

21. B. McMullin, C. Kelly, D. OBrien, G. G. Mitchell, and J. Decraene. Prelimi-
nary Steps toward Artificial Protocell Computation. In Proceedings of the 2007
International Conference on Morphological Computation, 2007. To appear.

22. M. E. J. Newman. Models of the small world: A review, May 2000.
23. R. C. Stewart and F. W. Dahlquist. Molecular components of bacterial chemo-

taxis. Chem. Rev., 87:997–1025, 1987.
24. T. Lenser, T. Hinze, B. Ibrahim, and P. Dittrich. Towards Evolutionary Net-

work Reconstruction Tools for Systems Biology. In Fifth European Conference
on Evolutionary Computation, Machine Learning and Data Mining in Bioinfor-
matics, 2007. To appear.

25. D. Volfson, J. Marciniak, W. J. Blake, N. Ostroff, L. S. Tsimring, and J. Hasty.
Origins of extrinsic variability in eukaryotic gene expression. Nature, December
2005.

26. T. M. Yi, Y. Huang, M. I. Simon, and J. Doyle. Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U
S A, 97(9):4649–4653, April 2000.

