
Dublin City University

Research Institute for Networks and Communications Engineering

School of Electronic Engineering, Dublin, Ireland

The Holland Broadcast language

James Decraene

November 2006

Artificial Life Laboratory

Technical report ALL-06-01

James Decraene
School Of Electronic Engineering
Dublin City University
Dublin 9, IRELAND

Telephone: +353-1-700 7696

E-mail: james.decraene@eeng.dcu.ie

Technical report ALL-06-01 CONTENTS

Abstract

The broadcast language is a programming formalism devised by Holland in 1975, which

aims at allowing Genetic Algorithms (GAs) to use an adaptable representation. A GA may

provide an efficient method for adaption but still depends on the efficiency of the fitness

function used. During long-term evolution, this efficiency could be limited by the fixed

representation used by the GA to encode the problem. When a fitness function is very

complex, it is desirable to adapt the problem representation employed by the fitness function.

By adapting the representation, the broadcast language may overcome the deficiencies caused

by fixed problem representation in GAs.

This report describes an initial detailed specification and implementation of the broad-

cast language. Our first motivation is the fact that there is currently no published im-

plementation of broadcast systems (broadcast language-based systems) available. Despite

Holland presented the broadcast language in his book “Adaptation in Natural and Artificial

systems”, he did not support this approach with experimental studies.

Our second motivation is the affirmation made by Holland that broadcast systems could

model biochemical networks. Indeed Holland also described how the broadcast language

could provide a straightforward representation to a variety of biochemical networks (Genetic

Regulatory Networks, Neural Networks, Immune system etc). As these biochemical models

share many similarities with Cell Signaling Networks (CSNs), broadcast systems may also be

considered to model CSNs. One of our goals, within the ESIGNET project, is to develop an

evolutionary system to realize and evolve CSNs in Silico. Examining the broadcast language

may provide us with valuable insights to the development of such a system.

In this paper, we initially review the Holland broadcast language, we then propose a spec-

ification and implementation of the language which is later illustrated with an experiment:

modeling different chemical reactions.

Contents

1 Introduction 4

2 The Broadcast Language 5

2.1 An overview . 5

2.2 The syntax . 5

2.3 The semantic . 6

3 Implementation 10

4 Case studies 11

4.1 Building a NAND gate . 11

Page: 2

Technical report ALL-06-01 CONTENTS

4.2 Regulatory aspects of cell signaling networks . 12

5 Conclusion and future work 14

6 Acknowledgments 15

A Source code 16

B Case studies 32

C Installing BC 37

Page: 3

Technical report ALL-06-01 1 INTRODUCTION

1 Introduction

Our current investigation is concerned with the
development of an evolutionary system platform
to evolve a closed control system of CSNs. This
evolutionary system is based on our novel class of
string-based Artificial Chemistries: the Molecu-
lar Classifier system (MCS). The main inspiration
of MCS comes from Holland Classifier systems
[3] which differs from the MCS by distinguish-
ing a demarcation between messages and classi-

fiers. However this specific demarcation property
is also shared by the precursor of Holland Classi-
fier systems : the broadcast language which was
proposed by the same author in 1975 [4].

Holland proposed the broadcast language to
solve some undesirable issues met with using Ge-
netic Algorithms (GAs) [4, 1]. Holland argued
that GAs provide an efficient method of adap-
tation, however in the case of long-term adapta-
tion, the efficiency of GAs could be limited by the
representation used to encode the problem. This
problem representation is fixed and influences the
complexity of the fitness function, during long-
term evolution, this may limit the performances of
the GA. To overcome this limitation, Holland pro-
posed to adapt the problem representation used
by the fitness function. Adapting the representa-
tion may then generate correlations between the
problem representation and the GA performance.

Another interesting feature discussed by Hol-
land is that the broadcast language is a Tur-
ing Complete programming language. Never-
theless this Turing Completeness property was
only claimed and has never been formally demon-
strated. If the broadcast language is indeed Tur-
ing Complete then no long-term limits will be
given by the language itself. Although this issue
is not covered in this paper, it is still interesting
to mention this property as it may be of some
relevance at a later stage.

Following this, Holland argued that the broad-
cast language provides a straightforward represen-
tation to a variety of models such as the operon-
operator model (a Genetic Regulatory Network
model). As Genetic Regulatory Networks (GRNs)
and CSNs share many properties, it is common
that a modeling technique applied to GRNs could

also be employed for the modeling of CSNs. Thus,
if the broadcast language can model GRNs then
it might as well model CSNs.

However, after describing some of the poten-
tial merits of the broadcast language, we need to
consider the fact that Holland did not support this
approach with experimental studies. We may also
note that there is currently no published studies
on broadcast systems (broadcast language-based
systems) in the literature. After presenting the
broadcast language in his book, Holland did not
pursue this idea but proposed another system
which is a simplification of the broadcast lan-
guage: the Learning Classifier system (LCS) [3].
In 2001, Holland [2] also discussed on the use of
an LCS-based agent model to study the evolution
of complexity of signaling networks. Neverthe-
less, we still focus on the broadcast language be-
cause on the contrary to LCS, broadcast system
do not make the distinct demarcation between
message and rules. This property is shared with
our MCS and is motivated by biological plausibil-
ities (a protein may act as a message/substrate
and as a rule/catalyst).

We believe that the examination of broadcast
systems will provides significant insight for the
development of our evolutionary simulation plat-
form, for the following reasons:

• No demarcation between rules/messages in
broadcast system, a key property shared
with the MCS

• Modeling CSNs may be a natural applica-
tion of broadcast system as claimed by Hol-
land

• This will at least provide more understand-
ing on Holland broadcast language

• The broadcast language is supposedly a
Turing Complete programming language

This report is organized as follows: we first
provide a detailed specification of the broadcast
language, we then present the broadcast system
implementation. This is followed by an experi-
ment in which we evaluate the modeling of dif-
ferent chemical reactions using the broadcast sys-
tem.

Page: 4

Technical report ALL-06-01 2 THE BROADCAST LANGUAGE

2 The Broadcast Lan-

guage

In this section we first present an overview of
the broadcast system, in which we make an anal-
ogy between broadcast systems processes and real
chemical reactions. We then discuss in detail the
language specification: the syntax and semantic.

2.1 An overview

We introduce the broadcast language specification
by providing an overview of the broadcast lan-
guage. The broadcast language basic components
are called broadcast units which can be viewed
as condition/action rules. Whenever a broadcast
unit conditional statement is satisfied, the action
statement is executed. This means that whenever
a broadcast units detect in the environment the
presence of (a) specific signal(s), including them-
selves, then the broadcast unit would broadcast
an output signal.

As an example, we may consider a given
broadcast unit that upon detecting signals I1 and
I2 would broadcast an output signal I3. This is
analogous to catalysts which would form a prod-
uct upon the binding of a specific substrate to its
binding region. In this example a catalyst can be
thought of as a broadcast unit, a substrate would
be a detected signal, the catalyst binding region
would refer to the broadcast unit condition, the
product is the output signal and finally the envi-
ronment would the reaction space (e.g. the cell).

Following above analogy, a substrate can be
degraded during catalysis, we address this issue
in the signal processing ability of broadcast units.
Indeed signal processing can also be performed
with broadcast units: i.e. a broadcast unit may
detect a signal I and broadcast a signal I ′, so that
I ′ is some modification of signal I.

Some broadcast units may broadcast a signal
that may constitute a new broadcast unit. Sim-
ilarly, a broadcast unit can be interpreted as a
signal detected by another broadcast unit. As a
result, a broadcast unit may create new broadcast
units or detect and modify an existing broadcast
unit.

A set of broadcast units, combined as a string,

designates a broadcast device. A broadcast device
can be viewed as a protein complex in which in-
teractions between the several proteins result in
complex functional behavior of the complex. A
collection of broadcast devices could then be re-
garded as a computer program.

Table 1: Comparison of biological and broad-

cast language terminology

Biology broadcast language

sequence of amino acids from
{A, R, N, D, C, E, . . .}

string of symbols
from Λ = {0, 1, ∗, :
, ♦, ▽, H, △, p, ′}

substrate input signal

product output signal

protein with no enzymatic
function

null unit

enzyme broadcast unit

protein complex broadcast device

cellular milieu list of strings from Λ

As a summary, the above table presents a
comparison between the biological and the broad-
cast system terminology.

2.2 The syntax

We first describe the different structures consti-
tuting the language: the symbols, the broadcast
units and broadcast devices. The interpretation
of the symbols, broadcast units and broadcast de-
vices will the follow.

The broadcast language alphabet Λ is finite
and contains ten symbols, Λ∗ is the set of strings
over Λ. The symbols constitute the atomic ele-
ments of the language.

Λ = {0, 1, ∗, :, ♦, ▽, H, △, p, ′}

Let I be an arbitrary string from Λ∗, in I, a
symbol is said to be quoted if it is preceded by
a symbol ′. A broadcast unit In is an arbitrary
string from Λ∗ which does not contain neither un-
quoted ∗ nor unquoted : . A set of broadcast units
may be concatenated to form a broadcast device,
a broadcast device I may contain 0 ≤ n ≤ ∞
broadcast units I1, . . . , In. If n = 0 then I does
not contain any broadcast unit and I is then called

Page: 5

Technical report ALL-06-01 2 THE BROADCAST LANGUAGE

a null device. A null device is only interpreted as
a signal and does not broadcast a signal under
any circumstances. A broadcast device which is
not null is said to be active any may broadcast an
output upon the detection of appropriate signals.

I = p10 ∗ 11′ ∗ △0 : 1△∗ : 11▽ : 11▽

I ′ = 011p′ ∗ ∗▽ : ♦1011△

I ′′ = p11′ ∗ △0 : 1△′∗ : 1p1△ : 0001♦

The above is an example of broadcast devices,
note that I ′′ is a null device. A broadcast device
I is parsed into broadcast units as follows:

• Any prefix occurring to the left of leftmost
∗ is ignored.

• The first broadcast unit is designated from
leftmost unquoted ∗ to (not including) the
next unquoted ∗ on the right if any.

• Following broadcast units are obtained by
repeating above procedure for each succes-
sive unquoted ∗ from the left.

For example the broadcast device I:

I = p10 ∗ 11′ ∗ △0 : 1△∗ : 11▽ : 11▽

designates two distinct broadcast units I1 and I2:

I1 = ∗11′ ∗ △0 : 1△

I2 = ∗ : 11▽ : 11▽

Four types of broadcast unit can be constructed
other than the null unit. To determine the broad-
cast unit type, we first need to identify the num-
ber s of unquoted : occurring in I. If s ≥ 3 then
the third : and anything to the right of it are ig-
nored.

1. ∗I1 : I2

2. ∗ : I1 : I2

3. ∗I1 :: I2

4. ∗I1 : I2 : I3

For example:

I1 = 11′ ∗ △0 : 1△ is of type 1

I1 = 11′ ∗ △0 : 1△ is of type 2

The interpretation of the different types of
broadcast unit will be presented in the following
section.

2.3 The semantic

In this part, we first describe interpretation of
the different types of broadcast units. We then
present how the symbols are interpreted in a
broadcast unit. We finally show how to resolve se-
mantical conflicts that may appear in some broad-
cast units.

Broadcast Units

The finite collection of broadcast devices can
be described by its state S at each time step
t. For example S(0) = {011 : ∗△011 :
11, 101, 100, 0111 : 01 :} describes the set of
broadcast devices at time step t = 0, which corre-
sponds to the initial state of the collection. Four
types of broadcast unit can be distinguished, any
other broadcast units that do not follow one of
those four schemes are null units. broadcast units
may engage in the following interactions based on
discrete timesteps:

1. ∗I1 : I2

If a signal of type I1 is detected at
time t then the signal I2 is broadcast at
time t + 1.

2. ∗ : I1 : I2

If there is no signal of type I1 present at
time t then the signal I2 is broadcast at
time t + 1.

3. ∗I1 :: I2

If a signal of type I1 is detected at
time t then a persistent string of type I2

(if any) is removed from the environment
at the end of time t.

4. ∗I1 : I2 : I3

If a signal of type I1 and a signal of

Page: 6

Technical report ALL-06-01 2 THE BROADCAST LANGUAGE

type I2 are both present at time t then the
signal S3 is broadcast at same time t unless
the string I3 contains unquoted symbols
{▽, H,△} or singly quoted occurrence of ∗,
in which case the string I3 is broadcast a
time t + 1.

For broadcast units of type 1 and 2, the string I2

refers to the output signal. Whereas I1 is said to
be a broadcast unit argument, and this is the case
for any types of broadcast unit. Nevertheless, we
also have additional broadcast unit arguments I2

for broadcast unit of type 3 and 4. Finally, in the
case of type 4 broadcast unit, I3 correspond to
the output signal.

When a broadcast unit of type 2 is fired at
time t, this implies the deletion of a persistent sig-
nal of the. Persistent signals include signal start-
ing with an unquoted occurrence of p but also
active broadcast devices.

Also when an output signal is interpreted for
broadcast, one quote is removed from each quoted
symbol. This allows one to use the quote symbol
to “protect” special symbols to be passed into the
output signal, see next section for an example. A
broadcast unit may broadcast only once at each
time step.

The symbols

The interpretation of each symbol in Λ =
{0, 1, ∗, :, ♦, ▽, H, △, p, ′} is now presented.
When a symbol is said to be ignored, this means
that the symbol is not interpreted by the broad-
cast unit.

{0, 1} 0 and 1 are the basic elements to spec-
ify a signal. A string such as 010110 can
be regarded as the signature of a particu-
lar signal. This signature can be employed
by a broadcast unit to detect and identify
a signal. For example: let I1 = ∗10111 : 00
be a broadcast unit and I2 = 10111 a sig-
nal, both strings are present at time t in the
environment: S(t) = {∗10111 : 00, 10111}.
At time t, I2 is detected by I1, this triggers
the activation of broadcast unit I1, as a re-
sult: S(t + 1) = {∗10111 : 00, 10111, 00}.

∗ As mentioned earlier, this symbol indicates
that the following symbols until the next
unquoted ∗ (if any) are to be interpreted as
a broadcast unit. If a broadcast device I
does not contain any unquoted ∗ then I is
a null unit.

: This symbol is used as a punctuation mark to
differentiate the arguments of a broadcast
unit. The symbol : also determines the type
of the broadcast unit as presented earlier.
If more than two unquoted : are found in
a broadcast unit then the third : and any-
thing to the right of it are ignored.

♦ When this symbol is met in the argument of
a broadcast unit, it indicates that a signal
detected by the broadcast unit may present
any symbol at this position. This spe-
cific symbol occurring in the detected signal
does not affect its acceptation or rejection
by the broadcast unit.

For example, with S(t) = {∗10♦11 :
00, 10011} we still obtain S(t) = {∗10♦11 :
00, 10011, 00}, ∗10♦11 would broadcast 00
if a signal containing 10 . . . 11 is present (. . .
indicates an arbitrary symbol from Λ).

Also if ♦ occurs at the rightmost position
in the argument of a broadcast unit, then
it indicates that a signal detected by the
broadcast unit may present any suffix with-
out affecting acceptance or rejection.

For example, with S(t) = {∗1011♦ :
00, 10011} we obtain S(t + 1) = {∗1011♦ :
00, 101101101, 00}, ∗1011♦ : 00 would
broadcast 00 if any signal containing the
prefix 1011 is detected.

▽ When this symbol occurs in the arguments of
a broadcast unit, it designates an arbitrary
initial (prefix) of terminal (suffix) string of
symbols. This allows one to pass string of
symbols from input signal to the broadcast
signal (≈ unit processing).

For example, with S(t) = {∗10▽ :
▽, 10011} we obtain at t + 1: S(t + 1) =
{∗10▽ : ▽, 10011, 011}. In this case ▽ des-
ignates the suffix 011 occurring in the input

Page: 7

Technical report ALL-06-01 2 THE BROADCAST LANGUAGE

signal 10011. whereas if S(t) = {∗10▽ :
▽, 100100101} then we obtain at t + 1:
S(t + 1) = {∗10▽ : ▽, 100100101, 0100101}.
If several occurrences of ▽ are found in a
given broadcast unit then they all designate
the same substring.

H This symbol is similar to ▽ but can concate-
nate different inputs signals.

For example, with S(t) = {∗10▽ :
11H : 000▽H, 10111, 1100} we obtain at
t + 1: S(t + 1) = {∗10▽ : 11H :
000▽H, 10111, 1100, 00011100}. In this case
▽ designates the suffix 111 occurring in
the input signal 10111 and H designates
the suffix 00 found in the detected signal
1100. The format of the broadcast signal is
000▽H, therefore we replace and concate-
nate ▽ and H accordingly and we obtain
the output signal 00011100.

△ This element is employed in the same man-
ner as ▽ and H but designates an arbitrary
single symbols which position can be any-
where in the argument of a given broadcast
unit.

For example, with S(t) = {∗11△0 :
1△, 1100} the output signal 10 is broadcast
and thus S(t+1) = {∗11△0 : 1△, 1100, 10}.
Whereas if S(t) = {∗11△0 : 1△, 1110} the
output signal 11 is broadcast and S(t+1) =
{∗11△0 : 1△, 1100, 11}.

p When this symbol occurs at the first position
of a string, it designates a persistent string
which persists over time until deleted even
if the string is not an active broadcast unit.
A null device occurring at time t which is
not persistent exists only for one timestep
and is removed at the end of time t.

′ This symbols is used to quote a symbol in the
arguments of a broadcast unit.

For example, with S(t) = {∗11′△0 :
11, 11△} the input signal 11△ is detected
by the broadcast unit and thus the output
string 11 is broadcast at t + 1: S(t + 1) =
{∗11′△0 : 11, 11△, 11}

Semantical conflict resolution

In some cases, the interpretation of some broad-
cast units and symbols may rise ambiguities, we
present how those conflicts are resolved:

• If the arguments of a broadcast unit con-
tain at least one unquoted occurrence of a
symbol from the set {▽, H} then these sym-
bols must occur at the first or last position
to be interpreted of the broadcast unit ar-
guments, otherwise they are treated as null
symbol without any interpretation.

The symbols ▽ or H are specifically de-
signed to designate a prefix or suffix string.
If they are met elsewhere within the argu-
ments of a broadcast unit then they are sim-
ply ignored as it may otherwise leads to am-
biguous interpretation. This applies to any
types of broadcast unit.

• Still regarding ▽ and H symbols, if the first
broadcast unit argument I1 contains more
than one unquoted occurrence of a symbol
from the set {▽, H} then only the first one
is operative and only if it occurs at the first
position, the other ones are ignored.

This also applies for the second broadcast
unit argument I2 in the case of type 4
broadcast units. However there is then an
additional stipulation: If an operative sym-
bol from the set {▽, H} is the same in both
I1 and I2 then only the one occurring in I1

is interpreted, the other symbol met in I2

is ignored.

• Moreover, if a broadcast unit contains more
than one △ symbols then only the left-
most occurrence of △ is operative and is to
be interpreted by the broadcast unit. The
other occurrences of △ found in the broad-
cast unit argument are ignored. A △ sym-
bol may occur anywhere within a broadcast
unit argument. This applies to any types of
broadcast unit.

• If a broadcast unit output signal contains
an unquoted occurrence of △, ▽ or H and if
there is no interpretable occurrences in the
broadcast unit argument, then this symbol

Page: 8

Technical report ALL-06-01 2 THE BROADCAST LANGUAGE

occurring in the output signal is treated as
a null symbol and is not broadcast.

• Similarly, if a single broadcast unit argu-
ment at time t is satisfied simultaneously
by two or more detected signals, then each
signal is assigned a probability p = 1/n
where n is the number of satisfying sig-
nals. Following this, a single detected signal
is picked at random for interpretation by
the broadcast unit using this distribution.
This features allows the representation of
stochasticity in the broadcast system.

Examples

To illustrate above presentation of broadcast units
and their interpretation, we present some exam-
ples of broadcast devices and how they are inter-
preted:

• S(t) = {∗′▽10H01▽ : 11, 10001}
S(t + 1) = {∗′▽10H01▽ : 11, 10001}

In this example, the first occurrence
of ▽ is quoted which means that this
symbol is not interpreted, this indicates
that the broadcast is looking for an input
signal which starts with a ▽. The symbol
H is ignored as it does not occur at the
first or last position of the broadcast unit
argument. The second occurrence ▽ occurs
a the end of the argument, meaning that
it is operative. This implies that an input
signal may possess any suffix without
affecting its acceptance or rejection. In
order to get activated, the broadcast unit
∗′▽10H01▽ : 11 needs to detect a signal of
the form ▽1001 . . . where the dots means
any suffix. As there is no such signals in
the environment, no signal is broadcast.

• S(t) = {∗▽110 : ▽001 :
▽1111H01, 001, p10△110}
S(t + 1) = {∗▽110 : ▽001 :
▽1111H01, 001, p10△110, p10△111101}

This broadcast unit is of type 4, as
the symbol ▽ occurs at the first position
of both I1 and I2, only the first occurrence

is operative whereas the second one is
ignored. This broadcast unit is looking
for two distinct signals, I1 can be satisfied
by a signal of the form . . . 110 and I2 is
satisfied by a signal of the form 001. In
this case a signal 001 is present, and the
input signal p10△110 satisfies I1 therefore
the broadcast unit gets activated. Again
this broadcast unit is of type 4 and may
broadcast at the same time t, however the
output signal is not broadcast at t as the
output contains an unquoted occurrence
of ▽. As a result, the output signal is
broadcast at time t + 1. We note that an
occurrence of H is present in the output
signal, however there is no H occurring in
both I1 and I2. Thus the symbol H can
not be interpreted and is tread as null
symbol. Finally, the output signal is built
as follows: First, we interpret ▽ so that
▽ = p10△, then the strings 1111 and 01
are concatenated resulting in the output
signal: p10△111101.

• S(t) = {∗0110△△ ::
1111△, 11110, 01100, 0110♦}
S(t + 1) = {∗0110△△ :: 1111△, 01100}

This broadcast unit is of type 2 meaning
that if I2 is satisfied at time t then a
persistent signal of the form I2 will be
removed at time t + 1. In I1 there are
two occurrences of △ therefore only the
first one is operative and the second one
is ignored. I1 can be satisfied by a signal
of the form 0110. where the dot stands for
an arbitrary symbol. In this example, two
environmental signals 01100 and 0110♦
are present and satisfy I1. Each signal
is assigned the probability p = 1/2, we
pick one at random, in this case let us say
the string 01100 is picked. I2 is then be
interpreted as a string of the form 11110
(using △ = 0). Finally, at time t + 1 the
signal 11110 is then removed from the
environment.

We note that, if the signal 0110♦ was picked
instead of the signal 11110, then △ would

Page: 9

Technical report ALL-06-01 3 IMPLEMENTATION

have been interpreted as △ = ♦. Thus
the broadcast unit would have been look-
ing for a signal of the form 1111♦ which is
not present in the environment. As a result,
no signal would have been removed at time
t + 1.

3 Implementation

In this section we present our implementation of
the Holland broadcast system. We first depict an
overview of the system and we then describe each
part of the system in detail. The broadcast sys-
tem was implemented using the C++ language,
see Appendix A for source code.

In this object oriented implementation we
may distinguish three main classes:

• Env represents the environment, this ob-
ject holds a list of all current existing de-
vices.

• The class BDevice designates a broadcast
device, an instantiation of BDevice may
hold from 0 to 3 BUnit objects.

• The BUnit class refers to a broadcast unit,
it may contain one or two argument(s) and
an output signal, all represented by strings
of characters.

At time t, all broadcast devices including null
devices are stored in a vector of devices S, this
vector is held by an instance of Env , at time t =
0, S is empty. A vector of character strings A is
employed to hold signals (strings) to be added to
S at the beginning of t, at time t = 0 A represents
the initial set of broadcast devices. D is a vector
of strings holding signals to be removed from S at
the end of t.

Figure 3 presents an overview of the system
from its initialization to its termination. We now
discuss in detail each step presented in this dia-
gram:

1. Initialization: an Env object is instanti-
ated, vectors S, A and D are created and
are empty by default.

Figure 1: Broacast system flowchart

2. Environmental signals: at this step, input
signals (strings of character) given by the
environment are added to set A. At time
t = 0, the input signals correspond to the
initial set of signals. A detector may be
built to probe the environment and insert
new signals into set A.

3. Transferring signals from set A into S: sig-
nals contained in set A are inserted in set
S. Set A is then flushed. Each signal in-
serted in S is processed into broadcast de-
vices (BDevice objects), if a signal gener-
ates an active broadcast device then this
broadcast device is parsed into broadcast
units (BUnit objects).

4. Process signals in S, this step is broken up
into two sequential sub-processes:

(a) we first look for broadcast units of
type 4 that are able to broadcast at
same time t. If those broadcast units
can be satisfied by other signals (in-
cluding themselves) then they broad-
cast their output signals, the latter are

Page: 10

Technical report ALL-06-01 4 CASE STUDIES

then inserted in S. As those new in-
serted signals may satisfy other simi-
lar type 4 broadcast units, we need to
repeat this process until no new signal
gets inserted. This step is needed to
be performed first because those type
4 broadcast units may output signals
that will contribute to other broadcast
unit contained in S.

(b) Then each broadcast device in S is
processed in a sequential order: if a
broadcast device I is active then each
broadcast unit Ii contained in I may
broadcast its output signal upon de-
tecting the adequate signals. A broad-
cast unit which have already been ac-
tivated at time t may not broadcast
again under any circumstances. Out-
put signals issued by type 1, 2 and 4
broadcast unit are stored in set A. If a
type 2 broadcast unit is activated then
its output signal is inserted in set D.
Also if a broadcast device I is a null
device and is not a persistent signal,
then this device signal is added to set
D.

5. Delete signals from sets S and D: for each
signal Id contained in set D, if there is a
signal of the form Id present in S then this
signal is removed from S. If there are n
signals in S that are of the form Id then
only one of those signals is to be deleted. To
determine which signal to delete, we assign
a probability p = 1/n to each signal and we
pick one at random and remove it from S.
D is then flushed.

6. Termination condition: this condition is set
by the user, it may simply be an integer T
indicating the maximum number of steps.
If the termination condition is not satisfied
then go to 1.

4 Case studies

4.1 Building a NAND gate

In this section we describe the construction of a
NAND gate using the broadcast language. This
is intended to demonstrate how the broadcast
language can be considered as a logical univer-
sal computational formalism. Moreover using the
Boolean abstraction, it is also possible to build
qualitative models of natural networks such as Ge-
netic Regulatory Networks. With the Boolean ab-
straction, a molecule is considered as a logical ex-
pression having two different possible states. One
possible state is the ON state meaning that the
molecule is present in the environment. When a
molecule state is OFF, this indicates that the par-
ticular molecule is not present in the environment
(cell).

In the remainder of this section we first
present a simple example in which a NAND gate
is constructed within a static environment (the
inputs values do not change over time), then a
second example follows in which the same gate is
adapted to be used with a dynamic system:

1. We consider a NAND gate having for in-
puts signals A and B and for output sig-
nal C. To construct this logical gate with
the broadcast language, we first represent
each signal A, B, C as null broadcast de-
vices (substrates): A = p001, B = p010
and C = p000.

We then declare the following active broad-
cast devices (enzymes): I1 = ∗p001 : 011
and I2 = ∗p010 : 100, these devices emit
signaling molecules S1 = 011 and S2 = 100
upon detecting A and B respectively. Sim-
ilarly, we define I3 = ∗ : p001 : 101 and
I4 = ∗ : p010 : 110 which would emit
S3 = 101 and S4 = 110 if A or B are not
detected.

Finally the following broadcast devices are
employed to output C according to the
intermediary states of signaling molecules
S1,S2,S3 and S4: I5 = ∗011 : 110 : p000,
I6 = ∗100 : 101 : p000 and I7 = ∗101 : 110 :
p000. Using these broadcast devices, it is
possible to obtain the state of C according

Page: 11

Technical report ALL-06-01 4 CASE STUDIES

to the states of input signals A and B, 2
time steps are necessary to propagate and
process the signals A and B.

2. Within a dynamic system, some modifica-
tions are necessary to maintain our NAND
gate. These modifications are intended so
as to allow the output signal C to degrade
over time. First, the broadcast devices I1,I2

and I3 are modified as follows: As cur-
rently defined, those broadcast devices out-
put the signal p000 (which designates the
persistent signal C) when satisfied, these
output signals are replaced with an addi-
tional signaling molecule S5 = 111. As
a result, we obtain the broadcast devices:
I ′5 = ∗011 : 110 : 111, I ′6 = ∗100 : 101 : 111
and I ′7 = ∗101 : 110 : 111.

We then declare a broadcast device I8 =
∗111 : p000 that upon detecting S5 would
emit the output signal C. Finally we de-
clare a broadcast device I9 = p000 :: p000
that deletes (degrades) C upon detecting
C. We note that as soon as a signal C ap-
pears at time t, it would be removed by I9

at the end of time t. To counter balance
that effect, we double the concentration of
broadcast devices I8 so that the production
rate of C is higher than its degradation rate.

In Fig. 2 we present a simulation using such
a NAND gate specified with the broadcast lan-
guage. In this simulation, the inputs A and
B are manually switched ON/OFF at different
timesteps. We detail the states of the system at
timestep 0,1 and 2:

S(0) = {A = p001 , I1 = ∗p001 : 011,
I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
*I4 = ∗ : p010 : 110, I ′

5
= ∗011 : 110 : 111,

I ′
6

= ∗100 : 101 : 111, I ′
7

= ∗101 : 110 : 111,
I8 = ∗111 : p000, I8 = ∗111 : p000,
I9 = p000 :: p000}

At t = 0, the system is initialized with above
broadcast devices, A is ON, and both B and C
are OFF. We note that both broadcast devices I1

and I4 are satisfied leading to the production of
S1 and S4 at t = 1:

S(1) = {A = p001 , I1 = ∗p001 : 011,
I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
*I4 = ∗ : p010 : 110, I ′

5
= ∗011 : 110 : 111,

I ′
6

= ∗100 : 101 : 111, I ′
7

= ∗101 : 110 : 111,
I8 = ∗111 : p000, I8 = ∗111 : p000,
I9 = p000 :: p000, S1 = 011, S4 = 110}

At t = 1, I ′5 is activated due to the presence
of S1 and S4. I ′5 is a type 4 broadcast device that
is able to output S5 signal during same timestep.
As a result, both I8 broadcast devices are now ac-
tivated and produce two instances of C molecule
at t = 2. As S1,S4 and S5 are not persistent, these
signals are removed at the end of t = 1. However,
as A is still ON and B is OFF, S1 and S4 are
again produced at t = 2.

S(2) = {A = p001 , I1 = ∗p001 : 011,
I2 = ∗p010 : 100, I3 = ∗ : p001 : 101,
*I4 = ∗ : p010 : 110, I ′

5
= ∗011 : 110 : 111,

I ′
6

= ∗100 : 101 : 111, I ′
7

= ∗101 : 110 : 111,
I8 = ∗111 : p000,I8 = ∗111 : p000,
I9 = p000 :: p000, C = p0000,
S1 = 011, S4 = 110}

At the beginning of t = 2, two instances of
C are contained in the system. However the I9

broadcast device is now satisfied by instances of
the C molecule resulting in the removal of one
instance of C.

In this section we present a case study on
the use of the broadcast system to represent and
study biochemical networks.

4.2 Regulatory aspects of cell

signaling networks

In this first case study, we present how the broad-
cast system can be employed to model a signal-
ing pathway where only the regulatory aspects are
covered.

One way to represent the regulatory aspects
of CSNs is through the use of the Boolean formal-
ism. With the Boolean abstraction, a molecule is
considered as a logical expression having two dif-
ferent possible states. One possible state is the
on state meaning that a protein is present in the
environment (the gene coding for this protein is

Page: 12

Technical report ALL-06-01 4 CASE STUDIES

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Input signal A

Signal A state

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Input signal B

Signal B state

-1

 0

 1

 2

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

timestep

Output signal C

Signal C state

Figure 2: NAND gate specified with our implementation of the broadcast language. The output signal C state is
initialized as OFF (0), at timestep 10,20,30 and 40, inputs A/B are manually switched ON/OFF (1/0), We note
that the propagation time needed to process the switching of inputs A or B differs according to the nature of the
switching involved and present states of A,B and C.

being expressed). On the contrary, when a pro-
tein state is off, this indicates that this particular
molecule is not present in the milieu.

A simple Boolean network only requires three
types of information about the network: the con-
nectivity (node to node), the sign of interaction
(inhibitory or excitatory) and the nature of the
summation (how do input signals combine to gen-
erate output). Figure 3 provides an example of
a graphical boolean representation of a signaling
pathway.

In this case study, we propose to use the
broadcast language to mimic the boolean net-
work of the CSN presented in Figure 3. Thus our
broadcast system model will be able to predict the
state of output molecules according to the state
of input molecules.

To accomplish this, we first need to assign to
each molecule (substrate) PhyA, PhyB, Eth, . . .
a string representation (signal) such as
p0000000, p0000001, p0000010, . . ., see Ap-

pendix B for the complete molecule-string
mapping. We then provide the broadcast devices
(enzymes) responsible for the reactions to occur
in this experiment. In this case the broadcast
devices stand for the boolean functions shown in
Fig.3.

(PR1PR5) = (¬PSI2 ∧ (PhyA ∨ PhyB)) ∧ SA

The above equation describes the state of PR1PR
according to the states of PSI2, PhyA, PhyB
and SA. We now present how to represent this
Boolean expression using the broadcast language:

In order to represent an OR gate that takes
for input signals PhyA and PhyB we generate
the following broadcast device:

I1 = ∗p000000♦ : 1000000

This broadcast device indicates that whenever
persistent signals p0000000 or p0000001 (PhyA

Page: 13

Technical report ALL-06-01 5 CONCLUSION AND FUTURE WORK

or PhyB) is detected, the signaling molecule
1000000 is broadcast. This example also demon-
strates how to represent crosstalk phenomena in
the broadcast language. The purpose of using sig-
naling molecules will be shown in the description
of the third broadcast device I3.

The NOT gate is expressed through the use of
type 2 broadcast unit, to represent NOT p0000010
(PSI2), the following broadcast device is em-
ployed:

I2 = ∗ : p0000010 : 1000001

The above broadcast device stipulates that
when no persistent PSI2 molecule is present then
the signaling molecule 1000001 is broadcast.

Following the given example, we want to ex-
press an AND gate. The expression ((p0000000
OR p0000001) AND (NOT p0000010)) can be trans-
lated into the following broadcast device:

I3 = ∗1000000 : 1000001 : 1000010

I3 would broadcast 1000010 only if 1000000 is
detected, meaning that either p0000000 (PhyA)
or p0000001 (PhyB) is on, and only if 1000001
is also detected meaning that p0000010 (PSI2) is
not detected.

I4 = ∗p0000011 : 1000011

The broadcast device I4 is used to broadcast a
signaling molecule 1000011 if p0000011 (SA) is
detected.

I5 = ∗1000010 : 1000011 : 1000100

I5 is similar to I3 and represent an AND gate tak-
ing in account the results of I3 and I4. This broad-
cast device, if satisfied, broadcast a signaling
molecule that is employed to activate PR1PR5
(p0000101), see following broadcast device:

I6 = ∗1000100 : p0000101

See appendix B for the full broadcast system
model and for experimental results. We may note
that because some broadcast units broadcast at

time t + 1, a cascade of similar reactions may
then take a certain amount of timesteps. This is
indeed necessary so that every boolean functions
described in the model are actually processed. In
the current example, 4 timesteps are necessary to
obtain the output states accounting every boolean
gates.

5 Conclusion and future

work

It was demonstrated that the Broadcast Language
can model Genetic Regulatory Networks (GRNs).
This was due to the ability of the Broadcast Lan-
guage to mirror Boolean networks which illus-
trates the wide ranging processing power that
Broadcast Systems are capable of. Nevertheless,
it was also highlighted that the Broadcast Lan-
guage is limited regarding the representation and
simulation of CSNs. To address this issue, we pro-
pose to combine the MCS concept with the Broad-
cast Language in a new system termed “MCS.b”.
The MCS.b complements the broadcast language
(syntax and semantics) and extends it by includ-
ing the following refinements:

• Instead of processing all broadcast devices
sequentially and deterministically during a
time step, the MCS.b processes as follows:
at each time step t, we pick n pairs of broad-
cast devices at random. For each pair of
devices, one of the broadcast devices is des-
ignated (at random) as the catalyst device

and the second one as the substrate device.
If the conditional statement of the catalyst
device is satisfied by the signal of the sub-
strate device, then the action statement of
the catalyst device is executed upon the
substrate device.

• n is a constant and designates the number
of pairs of broadcast devices that will in-
teract during a timestep. It is also plausi-
ble to consider n as the temperature in real
chemistry. Temperature has an important
role in chemical reactions, indeed molecules
at higher temperature have a greater prob-
ability to collide with one another. In the

Page: 14

Technical report ALL-06-01 REFERENCES

PhyA PhyB SA JA EthPSI2

PR1PR5

AtCesA3

ATMPK3

ATRR2

poxATP8a

AtCslB2

ERS2

N:PCOX

PDF1.2

Homeobox
Leu-zipper

Receptor
prot. kinase

Figure 3: Boolean representation of the signal transduction network controlling the plants defense response
against pathogens adapted from [5].

broadcast language “universe”, in order to
increase the “temperature”, one may incre-
ment the integer number n.

• In the broadcast language specification
given by Holland, additional rules were re-
quired to resolve some ambiguities raised by
the interpretation of broadcast devices. To
facilitate this, the MCS.b simplifies the in-
terpretation of broadcast units by preserv-
ing broadcast units of type 1 only.

• Similarly the notion of non-persistent de-
vices is removed: by default all devices are
considered as persistent molecules.

• As type 3 broadcast units and non-
persistent devices no longer exist in this
proposal, no molecule can be deleted from
the population. However the deletion of
molecules is needed to obtain evolutionary
pressure. Our suggestion is as follows: each
time two molecules react together, we pick
a molecule at random and delete it from the
population.

By combining the strength of both the MCS
and Broadcast Language, we expect the MCS.b to
be capable of modeling, simulating and evolving
ACSNs in a more fateful manner. At present, we
have conducted a number of preliminary exper-
iments examining the spontaneous emergence of
collective autocatalytic sets among others. This
was expected to be trivial as this phenomenon was

already demonstrated with other Artificial Chem-
istry Systems (such as Tierra, Alchemy, etc.).
Initial results suggest that the MCS.b performs
as expected, however before these results can be
presented to the research community, validation
against empirical biological data is required.

6 Acknowledgments

This work was funded by ESIGNET (Evolving
Cell Signaling Networks in Silico), an European
Integrated Project in the EU FP6 NEST Initia-
tive (contract no. 12789).

References

[1] D.E. Goldberg. Genetic Algorithms in Search, Op-

timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA,
1989.

[2] J.H. Holland. Exploring the evolution of complex-
ity in signaling networks. Complexity, 7(2):34–45,
2001.

[3] J.H. Holland and J.S. Reitman. Cognitive systems
based on adaptive algorithms. ACM SIGART Bul-

letin, pages 49–49, 1977.

[4] John H. Holland. Adaptation in natural and arti-

ficial systems. MIT Press, Cambridge, MA, USA,
1992.

[5] Marcela B. Trevino Santa Cruz Thierry Genoud
and Jean-Pierre Mtraux. Numeric simulation
of plant signaling networks. Plant Physiology,
126:1430–1437, August 2001.

Page: 15

Technical report ALL-06-01 A SOURCE CODE

A Source code

File main.cpp

1 /∗∗
2 ∗ \ f i l e BUnit . cpp
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #include ”env . h”
25
26 using namespace std ;
27
28 int main (int argc , char ∗ argv []) {
29 srand (time (NULL)) ;
30 int runtime=50;
31 s t r i n g buf ;
32 vector<s t r i ng > myIn i t i a lDev i c e s ;
33 map<const s t r i ng , s t r i ng > myMolecules ;
34 i f s t r e am in ;
35
36 i f (argc==1)
37 in . open (” case3 . dat”) ;
38 else

39 in . open (argv [1]) ;
40
41 while (in) {
42 g e t l i n e (in , buf) ;
43 i f (buf [0] != ’%’ && buf [0] != ’ ’)
44 myIn i t i a lDev i c e s . push back (buf) ;
45 i f (buf [0]== ’%’ && buf [1]== ’%’) {
46 int l o c1=buf . f i nd (’ ’ , 0) +1, l o c2=buf . f i nd (” ” , l o c1)−l o c1 ;
47 myMolecules . i n s e r t (make pair (buf . subs t r (loc1 , l o c2) , buf . subs t r (l o c2+loc1 +1,buf . s i z e

()))) ;
48 }
49 }
50
51 Env myEnv(myIn i t i a lDev i ce s , myMolecules) ;
52 myEnv . run (runtime) ;
53 //myEnv . pr in tMolecu lesConcentra t ion () ;
54 //myEnv . p r in tPe r s i s t en tMo l e cu l e s () ;
55 myEnv . p r in tMo l e cu l e sS ta t e () ;
56 system (”pause ”) ;
57 return EXIT SUCCESS ;
58 }

Page: 16

Technical report ALL-06-01 A SOURCE CODE

File env.h

1 /∗∗
2 ∗ \ f i l e env . h
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #ifndef ENV H
25 #define ENV H
26
27 #include ”BDevice . h”
28
29 /∗∗
30 ∗ An ins tance o f the env c l a s s ho ld s the popu la t ion o f broadcast d ev i c e s
31 ∗ and environmental parameters , in here are a l s o dec la red func t i on to compute s t a t i s t i c s
32 ∗/
33
34 class Env{
35 public :
36 Env(vector<s t r i ng > i n i t i a lD e v i c e s , map<const s t r i ng , s t r i ng > myMolecules) ;
37 ˜Env () ;
38 void s tep () ;
39 int getNumBDevices () ;
40 int getTimeStep () ;
41 void run (const int nbSteps) ;
42 int getConcentrat ion (const s t r i n g aS igna l) ;
43 void pr intMolecu l e sConcent rat ion () ;
44 void pr in tMo l e cu l e sS ta t e () ;
45 void p r i n tPe r s i s t en tMo l e cu l e s () ;
46 /∗∗ Return the s e t o f environmental s i g n a l s
47 ∗/
48 vector<s t r i ng > getEnvSignals () ;
49
50 private :
51 bool remove (const s t r i n g aS igna l) ;
52 void doMatches () ;
53 /∗∗ Set o f the environment broadcas t d ev i c e s
54 ∗/
55 vector<BDevice> bdev i ce s ;
56 /∗∗ Set o f broadcas t d ev i c e s to be removed at next time s t ep
57 ∗/
58 vector<s t r i ng > de lDev i ce s ;
59 /∗∗ Set o f broadcas t d ev i c e s to be added at next time s t ep
60 ∗/
61 vector<s t r i ng > addDevices ;
62 /∗∗ Mapping between molecu les (broadcas t d ev i c e s) s i g n a l s and t h e i r name
63 ∗/
64 map<const s t r i ng , s t r i ng > molecu le s ;
65 void doPIT4Bunits () ;

Page: 17

Technical report ALL-06-01 A SOURCE CODE

66 void f lushAddDevices () ;
67 void i n i tDev i c e s () ;
68 void f l u shDe lDev i c e s () ;
69 void removeNonPSignals () ;
70 /∗∗ Current Simulat ion time s t ep
71 ∗/
72 int t imeStep ;
73 /∗∗ Number o f time s t ep to be run during s imu la t ion
74 ∗/
75 int runtime ;
76
77 } ;
78
79 /∗∗ Return the number o f broadcas t d ev i c e s he ld in the environment
80 ∗/
81 inl ine int Env : : getNumBDevices () {
82 return bdev i ce s . s i z e () ;
83 }
84
85 /∗∗ Return current s imu la t ion time s t ep .
86 ∗/
87 inl ine int Env : : getTimeStep () {
88 return t imeStep ;
89 }
90
91 #endif

Page: 18

Technical report ALL-06-01 A SOURCE CODE

File env.cpp

1 /∗∗
2 ∗ \ f i l e env . cpp
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #include ”env . h”
25 /∗∗ A cons t ruc tor
26 ∗ \param i n i t i a lD e v i c e s i s a s e t o f broadcas t d ev i c e s to be inc luded at time t=0, the se

i n i t i a l d e v i c e s are added in addDevices s e t
27 ∗ \param myMolecules i s a s e t o f pa i r s [b roadcas tDev iceS igna l / nameOfMolecule] e . g .

p00000001 PhyA e tc
28 ∗/
29 Env : : Env(vector<s t r i ng > i n i t i a lD e v i c e s , map<const s t r i ng , s t r i ng > myMolecules) {
30 for (int i =0; i<i n i t i a l D e v i c e s . s i z e () ; i++)
31 addDevices . push back (i n i t i a l D e v i c e s [i]) ;
32 i n i t i a l D e v i c e s . c l e a r () ;
33 molecu le s=myMolecules ;
34 }
35
36
37 /∗∗ A des t ruc t o r
38 ∗/
39 Env : : ˜ Env () {
40 }
41
42 /∗∗ Print out concentra t ion o f each molecule in myMolecules
43 ∗/
44 void Env : : p r in tMolecu l e sConcent rat ion () {
45 map<s t r i ng , s t r i ng > : : i t e r a t o r an I t e r a t o r ;
46 for (an I t e r a t o r = molecu le s . begin () ; an I t e r a t o r != molecu le s . end () ; an I t e r a t o r++)
47 cout<<”\ t ”<<getConcentrat ion ((∗ an I t e r a t o r) . f i r s t)<<”\ t [”<<molecu le s [(∗ an I t e r a t o r) . f i r s t

]<<”] ”<<endl ;
48 }
49
50 /∗∗ Print out s t a t e (On or Off) o f each molecule in myMolecules , a molecule / broadcas t dev i ce

i s On i f i t s quan t i t y i s > 0
51 ∗/
52 void Env : : p r in tMo l e cu l e sS ta t e () {
53 map<s t r i ng , s t r i ng > : : i t e r a t o r an I t e r a t o r ;
54 cout<<”Molecules s t a t e : ”<<endl ;
55 i f (! molecu le s . empty ())
56 for (an I t e r a t o r = molecu le s . begin () ; an I t e r a t o r != molecu le s . end () ; an I t e r a t o r++)
57 cout<<” [”<<molecu le s [(∗ an I t e r a t o r) . f i r s t]<<”] ”<<(getConcentrat ion ((∗ an I t e r a t o r) .

f i r s t)>0?”on” : ” o f f ”)<<endl ;
58 else

59 cout<<”No molecule s p e c i f i e d ”<<endl ;

Page: 19

Technical report ALL-06-01 A SOURCE CODE

60 }
61
62 /∗∗ Print out p e r s i s t e n t (s t a r t i n g with symbol p) broadcas t d ev i c e s present in the popu la t ion
63 ∗/
64 void Env : : p r i n tPe r s i s t en tMo l e cu l e s () {
65 cout<<” Pe r s i s t e n t molecu le s : ”<<endl ;
66 for (int i =0; i<bdev i ce s . s i z e () ; i++)
67 i f ((bdev i ce s [i] . g e tS i gna l ()) [0]== ’p ’)
68 cout<<bdev i ce s [i] . g e tS i gna l ()<<endl ;
69 }
70
71 /∗∗ Return a s e t o f e x i s t i n g broadcas t d ev i c e s in the s imu la t ion
72 ∗/
73 vector<s t r i ng > Env : : getEnvSignals () {
74 vector<s t r i ng > r e s ;
75 for (int i =0; i<bdev i ce s . s i z e () ; i++)
76 r e s . push back (bdev i ce s [i] . g e tS i gna l ()) ;
77 return r e s ;
78 }
79
80 /∗∗ Process matching f o r broaccas t d ev i c e s
81 ∗/
82 void Env : : doMatches () {
83 vector<s t r i ng > envS igna l s=getEnvSignals () ;
84
85 for (int i =0; i<bdev i ce s . s i z e () ; i++)
86 bdev i ce s [i] . match (envSigna ls , addDevices , de lDev i ce s) ;
87 }
88
89 /∗∗ Return the concentra t ion o f a g iven broadcas t dev i ce
90 \param aSigna l i s the s i g n a l o f the broadcas t dev i ce we want the concentra t ion
91 ∗/
92 int Env : : getConcentrat ion (const s t r i n g aS igna l) {
93 int r e s =0;
94 for (int i =0; i<bdev i ce s . s i z e () ; i++)
95 i f (bdev i ce s [i] . g e tS i gna l ()==aS igna l)
96 r e s++;
97 return r e s ;
98 }
99

100 /∗∗ Remove broadcas t d ev i c e s t ha t matches a g iven s i g n a l
101 \param aSigna l i s the s i g n a l o f the broadcas t dev i ce (s) we want to remove from the

environmnet (bdev i c e s s e t)
102 ∗/
103 bool Env : : remove (const s t r i n g aS igna l) {
104 bool r e s=fa l se ;
105 for (int i =0; i<bdev i ce s . s i z e () ; i++)
106 i f (bdev i ce s [i] . g e tS i gna l ()==aS igna l) {
107 r e s=true ;
108 bdev i ce s . e r a s e (bdev i ce s . begin ()+i) ;
109 }
110 return r e s ;
111 }
112
113 /∗∗ Look fo r type 4 broadcas t d ev i c e s t ha t can reac t at same time t , i f t he re are any , make

them reac t and i n s e r t them in current popu la t ion
114 o f broadcas t dev ices , so t ha t they can con t r i bu t e at current time s t ep .
115 ∗/
116 void Env : : doPIT4Bunits () {
117 vector<s t r i ng > envS igna l s=getEnvSignals () ;
118 vector<s t r i ng > PIT4 ;
119
120 for (int i =0; i<bdev i ce s . s i z e () ; i++){
121 PIT4=bdev i ce s [i] . processInstantType4BUnits (envS igna l s) ;
122 i f (! PIT4 . empty ()) {
123 for (int j =0; j<PIT4 . s i z e () ; j++)
124 bdev i ce s . push back (PIT4 [j]) ;
125 i =0;
126 }

Page: 20

Technical report ALL-06-01 A SOURCE CODE

127 }
128 }
129
130 /∗∗ Empty the s e t o f broadcas t d ev i c e s contained in addDevices (the s e t o f broadcas t d ev i c e s

to be added at t+1)
131 ∗/
132 void Env : : f lushAddDevices () {
133 i f (! addDevices . empty ()) {
134 for (int i =0; i<addDevices . s i z e () ; i++)
135 bdev i ce s . push back (BDevice (addDevices [i])) ;
136 addDevices . c l e a r () ;
137 }
138 }
139
140 /∗∗ I n i t i a l i z e every broadcas t d ev i c e s in the popu la t ion
141 ∗/
142 void Env : : i n i tDev i c e s () {
143 for (int i =0; i<bdev i ce s . s i z e () ; i++)
144 bdev i ce s [i] . i n i t () ;
145 }
146
147 /∗∗ Empty the s e t o f broadcas t d ev i c e s contained in de lDev ices (the s e t o f broadcas t d ev i c e s

to be removed at t+1)
148 ∗/
149 // to be done : i f d i f f e r e n t p e r s i s t e n t s i g n a l s are matched then remove only one at random
150 void Env : : f l u shDe lDev i c e s () {
151 i f (! de lDev i ce s . empty ()) {
152 for (int i =0; i<de lDev i ce s . s i z e () ; i++)
153 remove (de lDev i ce s [i]) ;
154 de lDev i ce s . c l e a r () ;
155 }
156 }
157
158 /∗∗ Remove non p e r s i s t e n t s i g n a l s (n u l l b roadcas t d ev i c e s t ha t do not beg in with symbol p)

contained in the popu la t ion (s e t bdev i c e s
159 These broadcas t d ev i c e s are i n s e r t e d in s e t de lDev ices (to be removed at next time s t ep then)
160 ∗/
161 void Env : : removeNonPSignals () {
162 for (int i =0; i<bdev i ce s . s i z e () ; i++)
163 i f (bdev i ce s [i] . getNbUnits ()==0 && (bdev i ce s [i] . g e tS i gna l ()) [0] != ’p ’)
164 de lDev i ce s . push back (bdev i ce s [i] . g e tS i gna l ()) ;
165 }
166
167 /∗∗ Process a s imu la t ion time s t ep
168 ∗/
169 void Env : : s tep () {
170 f lushAddDevices () ;
171 i n i tDev i c e s () ;
172 doPIT4Bunits () ;
173 doMatches () ;
174 removeNonPSignals () ;
175 f lu shDe lDev i c e s () ;
176 timeStep++;
177 }
178
179 /∗∗ Run the s imu la t ion
180 \param nbSteps i s the number o f time s t ep to be run during the s imu la t ion
181 ∗/
182 void Env : : run (const int nbSteps) {
183 runtime=nbSteps ;
184 ofstream f ;
185 f . open (”dynNand . dat”) ;
186
187 cout<<”Running the s imu la t i on . . . ”<<endl ;
188 for (int i =0; i<runtime ; i++){
189 cout<<” step : ”<<i<<” ”<<endl ;
190 // event s :
191 i f (i ==10)
192 de lDev i ce s . push back (”p001”) ;

Page: 21

Technical report ALL-06-01 A SOURCE CODE

193
194 i f (i ==20)
195 bdev i ce s . push back (BDevice (”p010”)) ;
196
197 i f (i ==30)
198 bdev i ce s . push back (BDevice (”p001”)) ;
199
200 i f (i ==40){
201 de lDev i ce s . push back (”p001”) ;
202 de lDev i ce s . push back (”p010”) ;
203 }
204
205
206 step () ;
207 f<<i<<” ”<<getConcentrat ion (”p001”)<<” ”<<getConcentrat ion (”p010”)<<” ”<<

getConcentrat ion (”p000”)<<endl ;
208 }
209 f . c l o s e () ;
210 system (” getP lo t . bat”) ;
211 }

Page: 22

Technical report ALL-06-01 A SOURCE CODE

File BDevice.h

1 /∗∗
2 ∗ \ f i l e BDevice . h
3 ∗ \ author James Decraene
4 ∗/
5
6 #ifndef BDEVICE H
7 #define BDEVICE H
8
9 #include ”BUnit . h”

10
11 /∗∗ An ins tance de s i gna t e s a broadcas t d ev i c e s .
12 ∗ A broadcas t dev i ce may be o f any l eng t h and may any number o f broadcas t un i t
13 ∗/
14
15 class BDevice{
16 public :
17 BDevice (s t r i n g newSignal) ;
18 ˜BDevice () ;
19 s t r i n g g e tS i gna l () ;
20 vector<s t r i ng > processInstantType4BUnits (const vector<s t r i ng > envS igna l s) ;
21 void i n i t () ;
22 int getNbUnits () ;
23 void match (const vector<s t r i ng > envSigna ls , vector<s t r i ng > &envAddDevices , vector<s t r i ng >

&envDelDevices) ;
24
25 private :
26 /∗∗ Signa l o f the broadcas t dev i ce represen ted as a s t r i n g
27 ∗/
28 s t r i n g s i g n a l ;
29 /∗∗ hasReacted i s t rue i f the broadcas t dev i ce has a l ready s u c c e s s f u l l y reac ted with

another broadcas t dev i ce during a g iven time s t ep
30 ∗/
31 bool hasReacted ;
32 /∗∗ nbUnits d e s i gna t e s the number o f broadcas t un i t t ha t the broacas t dev i ce hold , i f

nbUnits = 0 then the broadcas t dev i ce i s n u l l
33 ∗/
34 int nbUnits ;
35 /∗∗ Set o f broadcas t un i t s he ld by the broadcas t dev i ce
36 ∗/
37 vector<BUnit> buni t s ;
38 int parseToUnits (const s t r i n g aS igna l) ;
39 } ;
40
41 /∗∗ Return the number o f broadcas t un i t s he ld by the broadcas t dev i ce
42 ∗/
43 inl ine int BDevice : : getNbUnits () {
44 return nbUnits ;
45 }
46
47 /∗∗ Return the broadcas t dev i ce s i g n a l
48 ∗/
49 inl ine s t r i n g BDevice : : g e tS i gna l () {
50 return s i g n a l ;
51 }
52
53 #endif

Page: 23

Technical report ALL-06-01 A SOURCE CODE

File BDevice.cpp

1 /∗∗
2 ∗ \ f i l e BDevice . cpp
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #include ”BDevice . h”
25
26 /∗∗ A cons t ruc tor
27 \param newSignal i s the s i g n a l (s t r i n g) from which the broadcas t dev i ce i s b u i l t on
28 This s i g n a l i s parsed in to broadcas t un i t s i f any
29 ∗/
30 BDevice : : BDevice (s t r i n g newSignal) {
31 s i g n a l=newSignal ;
32 nbUnits=parseToUnits (s i g n a l) ;
33 }
34
35 /∗∗ A des t ruc t o r
36 ∗/
37 BDevice : : ˜ BDevice () {
38 bun i t s . c l e a r () ;
39 }
40
41 /∗∗ I n i t i a l i z e every broadcas t un i t s he ld by the broadcas t dev ice
42 ∗/
43 void BDevice : : i n i t () {
44 for (int i =0; i<buni t s . s i z e () ; i++)
45 bun i t s [i] . i n i t () ;
46 }
47
48 /∗∗ Look fo r matching s i g n a l s in envS igna l s and act according the type o f the broadcas t

dev i ce
49 \param envSigna l s i s the s e t o f a l l environmental s i g n a l s
50 \param envAddDevices i s the s e t o f a l l the broadcas t d ev i c e s to be added at time t+1
51 \param endDelDevices i s the s e t o f a l l the broadcas t d ev i c e s to be removed at time t+1
52 For every broadcas t un i t s he ld by the broadcas t dev i ce t ha t have not a l ready f i r e d during the

same time s t ep :
53 according to the type o f the broadcas t unit , the output o f the reac t i on i s added to

appropr ia te s e t (add/ de l)
54 ∗/
55 void BDevice : : match (const vector<s t r i ng > envSigna ls , vector<s t r i ng > &envAddDevices , vector<

s t r i ng > &envDelDevices) {
56 bool b=fa l se ;
57 s t r i n g inputS igna l1 , inputS igna l2 ;
58
59 for (int i =0; i<nbUnits ; i++)
60 i f (! bun i t s [i] . hasFired ()) {

Page: 24

Technical report ALL-06-01 A SOURCE CODE

61 switch (bun i t s [i] . getType ()) {
62 case 1 :
63 i f ((inputS igna l1=buni t s [i] . f indMatchIn (0 , envS igna l s)) !=”none”)
64 envAddDevices . push back (bun i t s [i] . reactWith (inputS igna l1 , ””)) ;
65 break ;
66 case 2 :
67 i f ((inputS igna l1=buni t s [i] . f indMatchIn (0 , envS igna l s))==”none”)
68 envAddDevices . push back (bun i t s [i] . reactWith (inputS igna l1 , ””)) ;
69 break ;
70 case 3 :
71 i f ((inputS igna l1=buni t s [i] . f indMatchIn (0 , envS igna l s)) !=”none”)
72 {
73 envDelDevices . push back (bun i t s [i] . reactWith (inputS igna l1 , ””)) ;
74 }
75 break ;
76 case 4 :
77 i f ((inputS igna l1=buni t s [i] . f indMatchIn (0 , envS igna l s)) !=”none” && (

inputS igna l2=buni t s [i] . f indMatchIn (1 , envS igna l s)) !=”none”)
78 envAddDevices . push back (bun i t s [i] . reactWith (inputS igna l1 , inputS igna l2)) ;
79 break ;
80 }
81 }
82 }
83
84 /∗∗ Return a s e t o f broadcas t dev ices , t h i s s e t conta ins a l l b roadcas t d ev i c e s r e s u l t i n g from

broadcas t un i t o f type 4 tha t are ab l e to reac t
85 ∗ during the same time step , as the se may con t r i bu t e to o ther broadcas t d ev i c e s l a t e r during

the same time s t ep
86 ∗/
87 vector<s t r i ng > BDevice : : processInstantType4BUnits (const vector<s t r i ng > envS igna l s) {
88 vector<s t r i ng > r e s ;
89 bool b=fa l se ;
90 s t r i n g inputS igna l1 , inputS igna l2 ;
91
92 for (int i =0; i<nbUnits ; i++)
93 i f (bun i t s [i] . getType ()==4 && ! bun i t s [i] . hasFired ()) {
94 i f ((inputS igna l1=buni t s [i] . f indMatchIn (0 , envS igna l s)) !=”none” && (inputS igna l1=

buni t s [i] . f indMatchIn (1 , envS igna l s)) !=”none”) {
95 for (int j =0; j<buni t s [i] . g e t I (2) . s i z e () ; j++)
96 i f (! isQuoted (bun i t s [i] . g e t I (2) , j) && (bun i t s [i] . g e t I (2) [j]== ’v ’ | | buni t s [i] .

g e t I (2) [j]== ’v ’ | | buni t s [i] . g e t I (2) [j]== ’ ˆ ’)
97 | | (isQuoted (bun i t s [i] . g e t I (2) , j) && buni t s [i] . g e t I (2) [j]== ’ ∗ ’))
98 b=true ;
99 i f (! b)

100 r e s . push back (bun i t s [i] . reactWith (inputS igna l1 , inputS igna l2)) ;
101 }
102 }
103 return r e s ;
104 }
105
106 /∗∗ Return the number o f broadcas t un i t s crea ted . The l a t t e r are parsed from the broadcas t

dev i ce s i g n a l
107 ∗/
108 int BDevice : : parseToUnits (const s t r i n g aS igna l) {
109 int r e s =0,pos1=0,pos2=0;
110 s t r i n g newBunitSignal ;
111
112 while (aS igna l . f i nd (’ ∗ ’ , pos1) != s t r i n g : : npos) {
113 pos1=aS igna l . f i nd (’ ∗ ’ , pos1) ;
114 i f (pos1==0 | | pos1 !=0 && ! isQuoted (aSignal , pos1)) {
115 i f ((pos2=aS igna l . f i nd (’ ∗ ’ ,++pos1)) != s t r i n g : : npos && ! isQuoted (aSignal , pos2)) {
116 newBunitSignal=aS igna l . subs t r (pos1 , pos2−pos1) ;
117 pos1=pos2 ;
118 } else {
119 newBunitSignal=aS igna l . subs t r (pos1 , aS igna l . s i z e ()) ;
120 pos1=aS igna l . s i z e () ;
121 }
122 } else pos1++;
123

Page: 25

Technical report ALL-06-01 A SOURCE CODE

124 i f (! newBunitSignal . empty ()) {
125 bun i t s . push back (BUnit (newBunitSignal)) ;
126 r e s++;
127 }
128 }
129 return r e s ;
130 }

Page: 26

Technical report ALL-06-01 A SOURCE CODE

File BUnit.h

1 /∗∗
2 ∗ \ f i l e BUnit . h
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #ifndef BUNIT H
25 #define BUNIT H
26
27 #include <iostream>

28 #include <f stream>

29 #include <sstream>

30 #include <vector>

31 #include <ctime>

32 #include <s t r i ng >

33 #include <map>
34
35 using namespace std ;
36 #include <gre ta / regexpr2 . h>

37 using namespace regex ;
38
39 /∗∗
40 ∗ An ins tance o f BUnit d e s i gna t e s a broadcas t un i t which may be ho ld by a broadcas t d ev i c e s .
41 ∗ A BUnit may ho ld 2 or 3 arguments according to the type o f the broadcas t un i t (1 ,2 ,3 or 4)

.
42 ∗ The s i g n a l o f a broadcas t un i t i s des i gna ted as a s t r i n g .
43 ∗ For matching purpose , r e gu l a r expre s s i ons are used , the regex form of a broadcas t un i t

argument i s e x t r a c t ed from the compacted form (d i s ca rd ing nu l l symbols o f a s i g n a l s
argument)

44 ∗/
45 class BUnit{
46 public :
47 BUnit (s t r i n g newBunitSignal) ;
48 ˜BUnit () ;
49 int getType () ;
50 bool match (const int argRegexFormindex , const s t r i n g aS igna l) ;
51 s t r i n g g e t I (const int index) ;
52 bool hasFired () ;
53 void i n i t () ;
54 s t r i n g findMatchIn (const int argRegexFormindex , const vector<s t r i ng > envS igna l s) ;
55 s t r i n g reactWith (const s t r i n g inputS igna l1 , const s t r i n g inputS igna l2) ;
56
57 private :
58 /∗∗ Type (1 ,2 ,3 or 4) o f the broadcas t un i t
59 ∗/
60 int type ;
61 /∗∗ Set o f the broadcas t un i t ’ s arguments , a type 1 ,2 ,3 broadcast un i t conta ins 2

arguments I [0] and I [1] (I [0]=1 input / I [1]=1 output)

Page: 27

Technical report ALL-06-01 A SOURCE CODE

62 a type 4 broadcas t un i t ho ld 2 inpu t s : I [0] , I [1] and 1 output : I [2]
63 ∗/
64 s t r i n g I [3] ;
65 /∗∗ Signa l o f the broadcas t un i t represen ted as a s t r i n g o f symbol fron the broadcas t

language a l phabe t
66 ∗/
67 s t r i n g s i g n a l ;
68 /∗∗ Compacted form of the s i g n a l (f o r d i r e c t t r an s l a t i o n to regex form)
69 The compacted form d i s ca rd s a l l n u l l (ignored) symbols
70 ∗/
71 s t r i n g signalCompactForm ;
72 /∗∗ Set o f regex form of the 1 , [2] broadcas t un i t s arguments , conta ins only 1 i f broadcas t

un i t i f o f type 1 ,2 or 3 , 2 i f type 4
73 ∗/
74 s t r i n g argRegexForm [2] ;
75 /∗∗ f i r e d i s True or Not i f the broadcas t un i t has a l ready f i r e d or not during the

t imes tep
76 ∗/
77 bool f i r e d ;
78 int setType () ;
79 s t r i n g getSymbolValueFromSignals (const char symbol , const s t r i n g inputS igna l1 , const

s t r i n g inputS igna l2) ;
80 s t r i n g getSymbolValueFromSignal (const char symbol , const s t r i n g inputS igna l , const int

argIndex) ;
81 s t r i n g setCompactForm () ;
82 s t r i n g setRegexForm (const s t r i n g arg) ;
83 void buildArguments () ;
84 } ;
85
86 /∗∗ Return true i f t h i s p a r t i c u l a r broadcas t un i t has a l ready f i r ed , o therwi se re turn f a l s e
87 ∗/
88 inl ine bool BUnit : : hasFired () {
89 return f i r e d ;
90 }
91
92 /∗∗ Return the broadcas t un i t argument (1 ,2 f o r type 1 ,2 ,3 broadcas t dev ices , 1 ,2 ,3 f o r type

4 broadcas t d ev i c e s)
93 \param index i s the index o f the broadcas t un i t argument
94 ∗/
95 inl ine s t r i n g BUnit : : g e t I (const int index) {
96 return I [index] ;
97 }
98
99

100 /∗∗ Return the type (i n t e g e r between 1 and 4) o f the broadcas t unit ,
101 ∗/
102 inl ine int BUnit : : getType () {
103 return type ;
104 }
105
106 /∗∗ Return True or Not i f the g iven symbol i s quoted (preceded by a ’) or not
107 \param s i s the s i g n a l in which the symbol occurs
108 \param index i s the index o f the symbol we are t e s t i n g
109 ∗/
110 inl ine bool isQuoted (const s t r i n g s , const int index) {
111 return (index>0 && (s [index−1]== ’ \ ’ ’)) ?true : fa l se ;
112 }
113
114 #endif

Page: 28

Technical report ALL-06-01 A SOURCE CODE

File BUnit.cpp

1 /∗∗
2 ∗ \ f i l e BUnit . cpp
3 ∗ \ author James Decraene
4 ∗/
5
6 /∗
7 This f i l e i s par t o f BL.
8
9 BL i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

10 i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
11 the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
12 (at your opt ion) any l a t e r ver s ion .
13
14 Foobar i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
15 but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Pub l i c License f o r more d e t a i l s .
18
19 You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
20 along with Foobar ; i f not , wr i t e to the Free Software
21 Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA
22 ∗/
23
24 #inc lude ”BUnit . h”
25 /∗∗ Construct a broadcas t un i t
26 \param newBunitSignal i s the s t r i n g aka s i g n a l o f the broadcas t un i t
27 ∗/
28 BUnit : : BUnit (s t r i n g newBunitSignal) {
29 s i g n a l=newBunitSignal ;
30 buildArguments () ;
31 type=setType () ;
32 i f (type !=0){
33 signalCompactForm=setCompactForm () ;
34 for (int i =0; i <(type==4?2:1) ; i++)
35 argRegexForm [i]=setRegexForm (I [i]) ;
36 }
37 }
38
39 /∗∗ I n i t i a l i z e the broadcas t un i t
40 ∗/
41 void BUnit : : i n i t () {
42 f i r e d=fa l se ;
43 }
44
45 /∗∗ Return the i n t e r p r e t e d va lue o f a broacas t un i t symbol
46 \param symbol d e s i gna t e s the symbol f o r which we want the i n t e r p r e t a t i o n / va lue g iven the

input s i g n a l s
47 \param inpu tS i gna l i s the current processed s i g n a l
48 \param argIndex i s the index o f the current broadcas t un i t s argument processed
49 ∗/
50 s t r i n g BUnit : : getSymbolValueFromSignal (const char symbol , const s t r i n g inputS igna l , const int

argIndex) {
51 s t r i n g r e s ;
52 int wildcardEdge=0,pos ;
53
54 i f ((pos=I [argIndex] . f i nd (symbol)) != s t r i n g : : npos) {
55 // i s there a v or V symbol l o ca t ed at the beg inning (de s i gna t ing a p r e f i x : −1) or at

the end (de s i gna t ing a s u f f i x : 1) o f the s i g n a l
56 i f (I [argIndex] [0]== ’v ’ | | I [argIndex] [0]== ’V ’)
57 wildcardEdge=−1;
58 else i f (I [argIndex] [I [0] . s i z e ()]== ’v ’ | | I [argIndex] [I [0] . s i z e ()]== ’V ’)
59 wildcardEdge=1;
60
61 i f (symbol==’ ˆ ’)

Page: 29

Technical report ALL-06-01 A SOURCE CODE

62 r e s=(wildcardEdge==−1)? inputS igna l [i nputS igna l . s i z e ()−I [argIndex] . s i z e ()+pos] :
i nputS igna l [pos] ;

63
64 i f (symbol==’v ’ | | symbol==’V ’ && wildcardEdge !=0)
65 r e s=(wildcardEdge==−1)? inputS igna l . subs t r (0 , i nputS igna l . s i z e ()−I [argIndex] . s i z e ()

+1) : i nputS igna l . subs t r (I [argIndex] . s i z e () −1, inputS igna l . s i z e ()−1) ;
66 }
67 return r e s ;
68 }
69
70 /∗∗ Return the va lue o f an i n t e r p r e t e d symbol to be concatenated in the output s i gna l , next

t h i s func t i on c a l l s getSymbolValueFromSignal f o r each input s i g n a l
71 \param symbol d e s i gna t e s the symbol f o r which we want the i n t e r p r e t a t i o n / va lue g iven the

input s i g n a l s
72 \param inpu tS i gna l1 i s the s i g n a l o f the f i r s t input s i g n a l which i s necessary f o r a l l t ypes

o f broacas t un i t s
73 \param inpu tS i gna l2 i s the second op t ionna l input s i g n a l (f o r type 4 broadcas t un i t s only)
74 ∗/
75 s t r i n g BUnit : : getSymbolValueFromSignals (const char symbol , const s t r i n g inputS igna l1 , const

s t r i n g inputS igna l2=””) {
76 s t r i n g r e s ;
77 r e s+=getSymbolValueFromSignal (symbol , inputS igna l1 , 0) ;
78
79 i f (! i nputS igna l2 . empty ())
80 r e s+=getSymbolValueFromSignal (symbol , inputS igna l2 , 1) ;
81
82 return r e s ;
83 }
84
85 /∗∗ Return the product from the reac t i on between the broadcas t un i t and input s i g n a l (s) , 2

input s i g n a l s are taken with type 4 broadcas t un i t s
86 \param inpu tS i gna l1 i s the s i g n a l o f the f i r s t input s i gna l , t h i s regards a l l type o f

broadcas t un i t s
87 \param inpu tS i gna l2 i s the s i g n a l o f second input s i g n a l used with type 4 broadcas t un i t s
88 ∗/
89 s t r i n g BUnit : : reactWith (const s t r i n g inputS igna l1 , const s t r i n g inputS igna l2=””) {
90 s t r i n g r e s ;
91 f i r e d=true ;
92 map<const char , s t r i ng > symbolsValue ;
93
94 symbolsValue [’ 0 ’] = ”0” ;
95 symbolsValue [’ 1 ’] = ”1” ;
96 symbolsValue [’p ’] = ”p” ;
97 symbolsValue [’ v ’] = getSymbolValueFromSignals (’ v ’ , i nputS igna l1 , inputS igna l2) ;
98 symbolsValue [’V ’] = getSymbolValueFromSignals (’V ’ , inputS igna l1 , inputS igna l2) ;
99 symbolsValue [’ ˆ ’] = getSymbolValueFromSignals (’ ˆ ’ , i nputS igna l1 , inputS igna l2) ;

100
101 int j=type ==4?2:1;
102 for (int i =0; i<I [j] . s i z e () ; i++)
103 i f (isQuoted (I [j] , i))
104 r e s+=I [j] [i] ;
105 else

106 r e s+=symbolsValue [I [j] [i]] ;
107
108 return r e s ;
109 }
110
111 /∗∗ Return ”none” i f the broadcas t un i t has not f i nd any matches in the g iven s e t o f s i g n a l s
112 o therwi se re turn the s i g n a l o f a matched s i g n a l
113 \param argRegexFormindex i s the index o f the Broadcast un i t ’ s argument regex form (1 fo r and

type 1 ,2 ,3 b . d ev i c e s , and may a l s o be 2 with type 4 broadcas t dev i c e s)
114 \param envSigna l s i s a s e t o f environmental s i g n a l s in which t h i s broadcas t un i t w i l l be

l ook ing f o r a match
115 ∗/
116 s t r i n g BUnit : : f indMatchIn (const int argRegexFormindex , const vector<s t r i ng > envS igna l s) {
117 vector<s t r i ng > matches ;
118
119 for (int i =0; i<envS igna l s . s i z e () ; i++)
120 i f (match (argRegexFormindex , envS igna l s [i]))

Page: 30

Technical report ALL-06-01 A SOURCE CODE

121 matches . push back (envS igna l s [i]) ;
122
123 i f (matches . empty ())
124 return ”none” ;
125 else return matches [rand ()%matches . s i z e ()] ;
126 }
127
128
129 /∗∗ Return the regex form of the compacted form of the broadcas t un i t s i g n a l
130 ∗/
131 s t r i n g BUnit : : setRegexForm (const s t r i n g arg) {
132 s t r i n g r e s ;
133 for (int i =0; i<arg . s i z e () ; i++){
134 i f (! isQuoted (arg , i) && arg [i]== ’v ’ | | arg [i]== ’V ’)
135 r e s+=”.+” ;
136 else {
137 i f (i==0) r e s+=”ˆ” ;
138
139 i f (arg [i]== ’ 0 ’ | | arg [i]== ’ 1 ’ | | arg [i]== ’p ’)
140 r e s+=arg [i] ;
141
142 i f (isQuoted (arg , i)) {
143 i f (arg [i]== ’ ˆ ’ | | arg [i]== ’ ∗ ’)
144 r e s+=”\\” ;
145 r e s+=arg [i] ;
146 }
147
148 i f (! isQuoted (arg , i) && (arg [i]== ’ ˆ ’ | | arg [i]== ’x ’))
149 r e s+=” . ” ;
150
151 i f (i==arg . s i z e ()−1) r e s+=”$” ;
152 }
153 }
154 return r e s ;
155 }
156
157 /∗∗ re turn true i f aS igna l matches the Bunits cond i t i ons
158 \param argRegexFormindex i s the index o f the Broadcast un i t ’ s argument regex form (1 fo r and

type 1 ,2 ,3 b . d ev i c e s , and may a l s o be 2 with type 4 broadcas t dev i c e s)
159 \param aSigna l i s the g iven s i g n a l the broadcas t un i t i s t r y i ng to match/ bind to .
160 ∗/
161 bool BUnit : : match (const int argRegexFormindex , const s t r i n g aS igna l) {
162 match r e su l t s r e s u l t s ;
163 rpat t e rn p(argRegexForm [argRegexFormindex] , NOCASE) ;
164
165 match r e su l t s : : back r e f type br = p . match (aSignal , r e s u l t s) ;
166 i f (br . matched)
167 return true ;
168 else

169 return fa lse ;
170 }
171
172 /∗∗ Parse the broadcas t un i t s i g n a l in to 2/3 arguments (2 f o r type 1 ,2 ,3 broadcas t dev ices , 3

f o r type 4 broadcas t d ev i c e s)
173 ∗/
174 void BUnit : : buildArguments () {
175 for (int i =0, j =0; j <3 && i<s i g n a l . s i z e () ; i++)
176 i f (s i g n a l [i]== ’ : ’ && ! isQuoted (s i gna l , i))
177 j++;
178 else

179 I [j] . push back (s i g n a l [i]) ;
180 }
181
182 /∗∗ Compute the type (1 ,2 ,3 or 4) o f the broadcas t unit , t h i s i s done according to the s t a t e s

(empty or not) o f the 3 p o s s i b l e broadcas t un i t arguments
183 ∗/
184 int BUnit : : setType () {
185 i f (! I [0] . empty () && ! I [1] . empty () && I [2] . empty ())
186 return 1 ;

Page: 31

Technical report ALL-06-01 A SOURCE CODE

187 else i f (I [0] . empty () && ! I [1] . empty () && ! I [2] . empty ()) {
188 I [0]= I [1] ;
189 I [1]= I [2] ;
190 I [2] . c l e a r () ;
191 return 2 ;
192 } else i f (! I [0] . empty () && I [1] . empty () && ! I [2] . empty ()) {
193 I [1]= I [2] ;
194 I [2] . c l e a r () ;
195 return 3 ;
196 } else i f (! I [0] . empty () && ! I [1] . empty () && ! I [2] . empty ())
197 return 4 ;
198 else

199 return 0 ;
200 }
201
202 /∗∗ Return the compacted form (d i s ca rd ing nu l l symbols) o f the broadcas t un i t s i gna l , t h i s

s t r i n g i s used l a t e r to carry
203 out a d i r e c t mapping to regex form
204 ∗/
205 s t r i n g BUnit : : setCompactForm () {
206 s t r i n g res , arg ;
207 int i , j , k , pos ;
208 bool f=fa l se ;
209
210 for (j =0; j <(type==4?2:1) ; j++)
211 for (i =0; i<I [j] . s i z e () ; i++)
212 i f (! isQuoted (I [j] , i) && (I [j] [i]== ’v ’ | | I [j] [i]== ’V ’) && i !=0 && i != I [j] . s i z e ()−1)
213 I [j] . e r a s e (i −−,1) ;
214
215 for (j =0; j <(type==4?2:1) ; j++)
216 i f ((I [j] [0]== ’v ’ | | I [j] [0]== ’V ’) && ! isQuoted (I [j] , I [j] . s i z e ()−1) && (I [j] [I [j] . s i z e

()−1]== ’v ’ | | I [j] [I [j] . s i z e ()−1]== ’V ’))
217 I [j] . e r a s e (I [j] . s i z e () −1 ,1) ;
218
219 i f (type==4)
220 for (i =0; i<I [1] . s i z e () ; i++)
221 i f (! isQuoted (I [1] , i) && (I [1] [i]== ’v ’ | | I [1] [i]== ’V ’) && (pos=I [0] . f i nd (I [1] [i]))

!= s t r i n g : : npos && ! isQuoted (I [0] , pos))
222 I [1] . e r a s e (i −−,1) ;
223
224 for (j =0; j <(type==4?2:1) ; j++)
225 for (i =0; i<I [j] . s i z e () ; i++)
226 i f (! isQuoted (I [j] , i) && I [j] [i]== ’ ˆ ’)
227 i f (! f) f=true ;
228 else

229 I [j] . e r a s e (i −−,1) ;
230
231 k=type ==4?2:1;
232 arg=(type==4)? I [0]+ I [1] : I [0] ;
233
234 for (i =0; i<I [k] . s i z e () ; i++)
235 i f (! isQuoted (I [k] , i) && (I [k] [i]== ’v ’ | | I [k] [i]== ’V ’ | | I [k] [i]== ’ ˆ ’) && ((pos=arg .

f i nd (I [k] [i]))==s t r i n g : : npos | | (pos != s t r i n g : : npos && isQuoted (arg , pos))))
236 I [k] . e r a s e (i −−,1) ;
237
238 for (i =0; i <3; i++)
239 r e s+=(i==0 | | i==2 && I [i] . empty ()) ? I [i] : ’ : ’+I [i] ;
240
241 return r e s ;
242 }
243
244 /∗∗ A des t ruc t o r
245 ∗/
246 BUnit : : ˜ BUnit () {
247 }

Page: 32

Technical report ALL-06-01 B CASE STUDIES

B Case studies

File case1.dat, “Modeling a simple biochemical network”

1 %−−−
2 %Mapping tab l e o f molecu le s :
3
4 %s i g n a l molecule
5
6 %% p0000000 PhyA
7 %% p0000001 PhyB
8 %% p0000010 PSI2
9 %% p0000011 SA

10 %% p0000100 JA
11 %% p0000101 PR1PR5
12 %% p0000111 ATMPK3
13 %% p0001000 AtCesa3
14 %% p0001001 ERS2
15 %% p0001010 N:PCOX
16 %% p0001011 ETH
17 %% p0001100 poxATP8a
18 %% p0001101 ATRR2
19 %% p0001111 ACslB2
20 %% p0010000 PDF1. 2
21 %% p0010001 HomLeuZip
22 %% p0010010 RePrkinase
23
24 %−−−
25 %i n i t i a l molecule (s) :
26
27 %PhyA
28 p0000000
29
30 %PhyB
31 p0000001
32
33 %PSI2
34 p0000010
35
36 %SA
37 p0000011
38
39 %JA
40 p0000100
41
42 %ETH
43 p0001011
44
45 %−−−
46 %ru l e s :
47 %i f PhyA or PhyB then 1000000
48 ∗p000000x :1000000
49
50 %i f not PSI3 then 1000001
51 ∗ : p0000010 :1000001
52
53 %i f (PhyA or PhyB) and not PSI3 then 1000011
54 ∗1000000:1000001:1000010
55
56 %i f SA then 1000100
57 ∗p0000011 :1000011
58
59 %i f ((PhyA or PhyB) and not PSI3) and SA then 1000101
60 ∗1000010:1000011:1000100
61
62 %i f (((PhyA or PhyB) and not PSI3) and SA) then PR1PR5

Page: 33

Technical report ALL-06-01 B CASE STUDIES

63 ∗1000100: p0000101
64
65 %i f (((PhyA or PhyB) and not PSI3) and SA) then ACslB2
66 ∗1000100: p0001111
67
68 %i f (((PhyA or PhyB) and not PSI3) and SA) then ATMPK3
69 ∗1000100: p0000111
70
71 %i f JA then ATMPK3
72 ∗p0000100 : p0000111
73
74 %i f JA then ERS2
75 ∗p0000100 : p0001001
76
77 %i f JA then poxATP8a
78 ∗p0000100 : p0001100
79
80 %i f Eth then ACslB2
81 ∗p0001011 : p0001111
82
83 %i f Eth then ERS2
84 ∗p0001011 : p0001001
85
86 %i f Eth and JA then PDF1. 2
87 ∗p0001011 : p0000100 : p0010000
88
89 %i f Eth then Homeobox l eu z ippe r
90 ∗p0001011 : p0010001
91
92 %i f not Eth then Receptor prot . k inase
93 ∗ : p0001011 : p0010010
94
95 %i f not JA then 1000111
96 ∗ : p0000100 :1000111
97
98 %i f not Eth then 1001000
99 ∗ : p0001011 :1001000

100
101 %i f not Eth and not JA then N:PCOX
102 ∗1000111 :1001000 : p0001010
103
104 %ATRR2 i s on by default

105 p0001101
106
107 %i f not JA then remove ATRR2
108 ∗p0000100 : : p0001101
109
110 %i f ((PhyA or PhyB) and not PSI3) and SA) then remove ATRR2
111 ∗1000100 : : p0001101
112
113 %AtCesAa3 i s on by default

114 p0001000
115
116 %i f ((PhyA or PhyB) and not PSI3) and SA) then remove AtCesAa3
117 ∗1000100 : : p0001000

Page: 34

Technical report ALL-06-01 B CASE STUDIES

File results.dat, “Series of results from Case study 1”

1 Resu l t s :
2
3 −TEST 1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 Inputs :
5
6 [PhyA] on
7 [PhyB] o f f
8 [PSI2] o f f
9 [SA] on

10 [JA] o f f
11 [ETH] on
12
13 Outputs :
14
15 [PR1PR5] on
16 [ATMPK3] on
17 [AtCesa3] o f f
18 [ERS2] on
19 [N:PCOX] o f f
20 [poxATP8a] o f f
21 [ATRR2] o f f
22 [ACslB2] on
23 [PDF1 . 2] o f f
24 [HomeoboxLeuZipper] on
25 [ReceptorProt . k inase] o f f
26
27 −TEST 2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 Inputs :
29
30 [PhyA] o f f
31 [PhyB] on
32 [PSI2] o f f
33 [SA] o f f
34 [JA] on
35 [ETH] o f f
36
37 Outputs :
38
39 [PR1PR5] o f f
40 [ATMPK3] on
41 [AtCesa3] on
42 [ERS2] on
43 [N:PCOX] o f f
44 [poxATP8a] on
45 [ATRR2] o f f
46 [ACslB2] o f f
47 [PDF1 . 2] o f f
48 [HomeoboxLeuZipper] o f f
49 [ReceptorProt . k inase] on

Page: 35

Technical report ALL-06-01 B CASE STUDIES

File case2.dat, ‘Realizing a NAND gate-example I‘

1 %% p000 output
2
3 %input1
4 p001
5
6 %input2
7 p010
8
9 ∗p001 :011

10 ∗p010 :100
11
12 ∗ : p001 :101
13 ∗ : p010 :110
14
15 ∗011 : 110 : p000
16 ∗100 : 101 : p000
17 ∗101 : 110 : p000

Page: 36

Technical report ALL-06-01 B CASE STUDIES

File case3.dat, ‘Realizing a NAND gate-example II‘

1 %% p000 output
2
3 %input1
4 p001
5
6 %input2
7 %p010
8
9 ∗p001 :011

10 ∗p010 :100
11
12 ∗ : p001 :101
13 ∗ : p010 :110
14
15 ∗011 :110 :111
16 ∗100 :101 :111
17 ∗101 :110 :111
18
19 ∗111 : p000 ;
20 ∗111 : p000 ;
21
22 ∗p000 : : p000

Page: 37

Technical report ALL-06-01 C INSTALLING BC

C Installing BC

File readMe.txt

1 ####BC was compiled using the f o l l ow i n g :
2
3 −Dev−C++ 4 . 9 . 9 . 2 IDE : http : //www. b loodshed . net /devcpp . html
4 −G++ 3 . 3 . 3 (cygwin)
5 −Greta regex : http : // research . microso f t . com/ p r o j e c t s / gre ta /
6 −windows xp
7
8 ####To compile BC:
9

10 −I t i s suggested to use Dev−C++ (open ”bc . dev”)
11 −The GRETA l i b r a r y i s necessary , the devpak (to be used in con junct ion with dev−c++ can be

found here : http : // devpaks . org/ d e t a i l s . php?devpak=10, parameters f o r l i n k e r : − l g r e t a −
lmsvcp60

12
13
14 ####To run BC:
15
16 −BC i s a conso l e based app l i c a t i o n
17 −BC may take for argument the f i l e conta in ing the d e f i n i t i o n o f the broadcas t dev ices , e . g . ”

bc . exe case1 . dat”
18 −Examples are presented in Appendix B o f the r epor t ALL−06−01 (” case1 . dat” and ” case2 . dat”)
19
20 ####Notes on how to define broadcast d ev i c e s :
21
22 −The f o l l ow i n g syntax i s used to d e f i n e broadcast d ev i c e s (in a text f i l e , e . g . ” case1 . dat”) :
23 −”%% p0000000 PhyA” : When %% occurs at the beginning , this i n d i c a t e s that we d e s i r e a mapping

between the s i g n a l s t r i n g and the name o f the broadcast dev i c e /molecule (this can be
used by the program to output in fo rmat ion about molecu le s

24 −”%PhyA” : A s i n g l e % i s used to comment
25 −”p00000000” : The system adds the broadcast d ev i c e s ”p000000” in the i n i t i a l s e t o f broadcast

d ev i c e s

Page: 38

Technical report ALL-06-01 C INSTALLING BC

File Makefile.win

1 # Pro j ec t : bc
2 # Makef i l e c r ea ted by Dev−C++ 4 . 9 . 9 . 2
3
4 CPP = g++.exe −D DEBUG
5 CC = gcc . exe −D DEBUG
6 WINDRES = windres . exe
7 RES =
8 OBJ = main . o BDevice . o env . o BUnit . o $ (RES)
9 LINKOBJ = main . o BDevice . o env . o BUnit . o $ (RES)

10 LIBS = −L” l i b ” − l g r e t a −lmsvcp60 −lgmon −pg −g3
11 INCS = −I ” in c lude ”
12 CXXINCS = −I ” l i b / gcc /mingw32 /3 . 4 . 2 / in c lude ” −I ” in c lude /c++/3.4.2/backward” −I ” in c lude /c

++/3.4.2/mingw32” −I ” in c lude /c++/3.4.2” −I ” in c lude ” −I ”C: /Dev−Cpp/ inc lude / gre ta ”
13 BIN = bc . exe
14 CXXFLAGS = $ (CXXINCS) −pg −g3
15 CFLAGS = $ (INCS) −pg −g3
16 RM = rm −f
17
18 .PHONY: a l l a l l −be f o r e a l l −a f t e r c l ean clean−custom
19
20 a l l : a l l −be f o r e bc . exe a l l −a f t e r
21
22
23 c l ean : c lean−custom
24 ${RM} $ (OBJ) $ (BIN)
25
26 $ (BIN) : $ (OBJ)
27 $ (CPP) $ (LINKOBJ) −o ”bc . exe ” $ (LIBS)
28
29 main . o : main . cpp
30 $ (CPP) −c main . cpp −o main . o $ (CXXFLAGS)
31
32 BDevice . o : BDevice . cpp
33 $ (CPP) −c BDevice . cpp −o BDevice . o $ (CXXFLAGS)
34
35 env . o : env . cpp
36 $ (CPP) −c env . cpp −o env . o $ (CXXFLAGS)
37
38 BUnit . o : BUnit . cpp
39 $ (CPP) −c BUnit . cpp −o BUnit . o $ (CXXFLAGS)

Page: 39

