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Abstract— Nature is a source of inspiration for computational
techniques which have been successfully applied to a wide variety
of complex application domains. In keeping with this we examine
Cell Signaling Networks (CSN) which are chemical networks
responsible for coordinating cell activities within their envi-
ronment. Through evolution they have become highly efficient
for governing critical control processes such as immunological
responses, cell cycle control or homeostasis. Realising (and
evolving) Artificial Cell Signaling Networks (ACSNs) may provide
new computational paradigms for a variety of application areas.
Our abstraction of Cell Signaling Networks focuses on four
characteristic properties distinguished as follows: Computation,
Evolution, Crosstalk and Robustness. These properties are also
desirable for potential applications in the control systems, com-
putation and signal processing field. These characteristics are
used as a guide for the development of an ACSN evolutionary
simulation platform. In this paper we present a novel evolu-
tionary approach named Molecular Classifier System (MCS) to
simulate such ACSNs. The MCS that we have designed is derived
from Holland’s Learning Classifier System. The research we are
currently involved in is part of the multi disciplinary European
funded project, ESIGNET, with the central question of the study
of the computational properties of CSNs by evolving them using
methods from evolutionary computation, and to re-apply this
understanding in developing new ways to model and predict real
CSNs.

I. INTRODUCTION

Cell Signaling networks (CSNs) are bio-chemical systems
of interacting molecules in cells [1], [2]. Typically, these
systems take as inputs chemical signals generated within the
cell or communicated from outside. These trigger a cascade of
chemical reactions that result in changes of the state of the cell
and (or) generate some (chemical) output, such as prokaryotic
chemotaxis, coordination of cellular division, or even to order
the death of a cell (in the context of multi-cellular organisms).

As signal processing systems, CSNs can be regarded as spe-
cial purpose computers [3]. In contrast to conventional silicon-
based computers, the computation in CSNs is not realized by
electronic circuits, but by chemically reacting molecules in the
cell. The most important molecular components of CSNs are
proteins and nucleic acids (DNA, RNA). There is an almost
infinite variety of potential molecular species, each of which
would have distinct chemical functionality and could engage
in interactions with other molecules with varying degrees of
specificity.

We distinguish CSNs as being networks made up of more
than one distinct cell signaling pathway, which interact with
each other.

An example of a simple chemotaxis signaling pathway is
shown in Figure 1. Chemotaxis is a phenomenon where simple
organisms such as bacteria move toward higher concentrations
of specific chemicals in their surroundings. In this diagram,
we distinguish six intracellular proteins (denoted as A, B, R,
W, Y and Z) and the membrane receptors which can bind
to the corresponding stimulatory element. The input level is
determined by the concentration of bound molecules. This
affects the output represented by the tumbling frequency which
governs the bacteria direction.
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Fig. 1. Schematic representation of bacterial chemotaxis signaling pathway,
adapted from [4]. The output is designated by the tumbling frequency which
is determined from the input, the concentration level of ligand bound to the
membrane receptors. This signal transduction is carried out by the reaction
cascade depicted by the proteins A, B, R, W, X and Z. Details on chemical
reactions can be found in [5].

Figure 2 shows, in schematic form, a simple Cell Signaling
Network made up of two such interacting signal pathways.

We distinguish this work from previous work on real CSNs
[1], [2] by focusing purely on Artificial Cell Signaling Net-
works (ACSNs). Through the use of evolutionary computing
techniques we allow ACSNs to spontaneously emerge and
adapt to the environment. Potentially of interest for the Biolo-
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Fig. 2. Schematic illustration of a CSN composed from two distinct cell
signaling pathways with unique input and output, an interaction between
pathways occurs as molecule y interacts with xn, this modulates the output
of pathway X.

gist may be the insight that ACSNs gives as to how real CSNs
evolved and how they operate. This synthetic biology approach
allows us to incorporate the present knowledge of real CSNs
into ACSNs. This biological understanding provided guiding
points that directed the design of the MCS, these points
also guide the evolution of ACSNs in silico. This may, for
example, facilitate the prediction of missing signaling pathway
information in real CSNs [6].

Given our motivation to maintain the biological plausibility
of ACSNs, we are interested in investigating the use of
ACSNs to implement computation, signal processing and (or)
control functionality. This is motivated by preliminary studies
which demonstrated that real CSNs could be considered for
computational and engineering purposes:

• In [7], Lauffenburger presents his approach to cell sig-
naling pathways which could be thought of and modelled
as control modules in living systems.

• Yi et al. [8] demonstrated that CSNs may have some of
the essential properties of an integral feedback control.
This is a basic engineering strategy to ensure that a
system outputs desired values independent of internal and
external perturbations.

• Deckard and Saura [9] used and evolved artificial bio-
chemical networks capable of certain simple forms of
mathematical computation such as a square root function.

One way to design ACNs to carry out such complex opera-
tions is to use artificial evolutionary techniques. A significant
insight related to the evolution of signaling networks in silico,
was suggested by Holland [6]. Holland proposed examining
a simple agent-based model where the agents’ behavior and
adaptation was determined by the use of Learning Classifier
System [10], [11]. Based on this machine learning approach
Holland suggested that signaling networks could be modeled
with LCS in a top-down fashion. We show how this work does
not lend itself as a method for addressing our project.

We propose a variation of the LCS called the Molecular
Classifier System which allows the emergence and evolution
of signaling networks. This approach may be considered as

viewing the evolution and design of signaling networks from
a bottom-up manner complementing Holland’s approach.

In section II we examine the nature of ACSNs by examining
the critical issues that these raise. In section III we first present
and discuss Holland’s approach and following this we propose
the structure of our ACSN evolutionary simulation platform,
the Molecular Classifier System.

II. ARTIFICIAL CELL SIGNALING NETWORKS

As an abstraction of real CSNs, ACSNs are differentiated
and simplified by some key properties. The selection of these
particular characteristics is motivated by the will to employ
Artificial Cell Signaling Networks for computational and con-
trol engineering purposes. Four issues are distinguished and
presented: Computation, Evolution, Crosstalk and Robustness.

A. Computation

In the simplest cases, CSNs can be approximately modelled
by systems of continuous differential equations, where the
state variables are the concentrations of the distinct species
of interacting molecules. As a “computational” device, this
is most naturally compared to a traditional analog computer.
Analog computers are precisely designed to model the opera-
tion of a target dynamical system, by creating an “analogous”
system which shares (approximately) the same dynamics.
Electronic analog computers (based on the “operational am-
plifier” as the core computational device) have long been
displaced by digital computers, programmed to numerically
solve the relevant dynamical equations, due to their much
greater ease of programming and stability.

Nonetheless, there may be applications where a molecular
level analog computer, in the form of a CSN, may have distinct
advantages. Specifically, CSNs may offer capabilities of high
speed and small size that cannot be realised with solid state
electronic technology. More critically, where it is required
to interface computation with chemical interaction, a CSN
may bypass difficult stages of signal transduction that would
otherwise be required. This could have direct application in
so-called “smart drugs” and other bio-medical interventions.

While CSNs are typically treated in this “aggregate”
manner, where the signal or information is carried by
molecular concentration, one can also consider the finer
grained behaviours of individual molecules are computational
in nature. Thus a single enzyme molecule can be regarded
as carrying out pattern matching to identify and bind target
substrates, and then executing a discrete computational
operation in transforming these into the product molecule(s).
This has clear parallels with a wide variety of so-called
“rewriting systems” in computational theory.

However, it also clearly differs in important ways, such
as:

• Operation is stochastic rather than deterministic.
• Operation is intrinsically reflexive in that all molecules

can, in principle, function as both “rules” (enzymes) and
“strings” (substrates/products).



Dittrich [12] provides a more extended discussion of the
potential of such “chemical computing”.

B. Evolution

Evolutionary Algorithms (EAs) are non-deterministic search
and optimisation algorithms inspired by the principles of neo-
Darwinism. They have been applied successfully in a variety
of fields [13], [14], [15]. Generally based on genetic operations
such as crossover and mutation, EAs initially generate a wide
range of candidate solutions. Over time, through selection, this
can be reduced to an optimized set. Evolutionary computation
can therefore deliver useful results without requiring a priori
knowledge of the entire search space [14], [15].

Such techniques are relevant to the study of ACSNs because:

• The complex, and unpredictable, interactions between
different components of CSNs, make it very difficult
to design them “by hand” to meet specific performance
objectives.

• However, natural evolution shows that in suitable cir-
cumstances, effective CSNs functionality can be achieved
through evolutionary processes.

For example, Deckard and Saura [9] used such evolution-
ary techniques to construct (simulated) biochemical networks
capable of certain simple forms of signal-processing. In this
model (called Lakhesis), computational “nodes” represent
molecule species with an attribute for concentration. Connec-
tions between nodes designate reactions defined by the type
and rate of the reaction. The algorithm employed is depicted
in Figure 3.

Randomly create initial
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Evaluate networks 
fitness

Selection of
 fit networks

Reproduction by
cloning and mutation
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obtained?

no
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Fig. 3. Flowchart of the Lakhesis evolutionary algorithm adapted from [9],
the initial population of networks is randomly generated referring to genetic
diversity. Fitness computation is obtained by: solving ODEs which allows one
to compute steady states of the network, then the deviation of each node is
calculated according to the mathematical computation we want the network
to perform. Selection implies removal of unfit networks and reproduction
correspond to asexual reproduction where mutation operators are applied. This
process is repeated until we get a correct network performing the desired
mathematical function.
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Fig. 4. A: Deviation calculation is performed via a series of different inputs.
B: An evolved network performing exact square-root computation [9]

Each reaction is described by a set of Ordinary Differential
Equations (ODE). Solutions to ODEs are generated by using
a 4th order Runge-Kutta solver and describe the changes
in molecular concentration of the network in time. “Fit”
networks are determined by their ability to sustain steady states
which correspond to molecular species reaching a constant
concentration, with a desired relationship between input and
output. Figure 4 A shows a random network with series of
different inputs/outputs, an evolved network performing exact
square-root computation is presented in Figure 4 B.

C. Crosstalk

“Crosstalk” phenomena happen when signals from different
pathways become mixed together. This arises very naturally in
CSNs due to the fact that the molecules from all pathways may
share the same physical reaction space (the cell). Depending
on the relative specificities of the reactions there is then
an automatic potential for any given molecular species to
contribute to signal levels in multiple pathways. An example
is shown in Fig. 2.

In traditional communications and signal processing engi-
neering, crosstalk is regarded as a defect—an unintended or
undesigned interaction between signals, that therefore has the
potential to cause system malfunction. This can also clearly
be the case of crosstalk in CSNs. However, in the specific case
of CSN’s, crosstalk also has additional potential functionality,
which may actually be constructive:

• Even where an interfering signal is, in effect, adding
uncorrelated “noise” to a functional signal, this may
sometimes improve overall system behaviour. This is well
known in conventional control systems engineering in the
form of so-called “dither”. Compare also, [16], [17] on
constructive biological roles of noise.

• The crosstalk mechanism provides a very generic way
of creating a large space of possible modifications or
interactions between signaling pathways. Thus, although
many cases of crosstalk may be immediately negative
in their impact, crosstalk may still be a key mechanism
in enabling incremental evolutionary search for more
elaborate or complex cell signaling networks.

D. Robustness

It is argued that key properties in biochemical networks are
to be robust, this is so as to ensure their correct functioning



[18]. Similar works include research carried out at the Santa
Fe institute in studying Cytokine signaling networks to design
distributed autonomous networks, that are robust to small
perturbations and responsive to larger ones [19]. Potential
applications are distributed intelligent systems such as large
fleets of robots working together, for automated response in
computer security, for mobile computing networks, etc.

Alon et al. have demonstrated from studying Escherichia
coli chemotaxis that molecular interactions can exhibit ro-
bustness [4], [7]. In this case it means that after a change
in the stimulus concentration (input), the tumbling frequency
(output) managed to reach a steady state that is equivalent to
the pre-stimulus level. This is illustrated in Figure 5.
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Fig. 5. Representation of dynamic responses of a system to a stimuli adapted
from [7]. No adaptation is observed when the system response attains a new
steady state following the change in input. Partial adaptation describe a partial
recovery, the difference between the initial state and the new state is lower
than the one observed in the previous case. Perfect adaptation is met when
the system is able to come back to its initial state

Such properties are highly desirable in dynamic engineered
systems when subjected to internal and external uncertainty
and perturbation.

III. AN EVOLUTIONARY APPROACH TO IMPLEMENT

ACSNS

In the following, we first examine a specific class of
Evolutionary Algorithm called Learning Classifier System
(LCS) devised by Holland in 1976 [10]. In 2001 Holland [6]
identified the possibility of using LCS to implement signaling
networks (biochemical circuits). However Holland’s work was
never actually implemented. We use Holland’s proposition as
the seminal point for the development of the first Classifier
System based ACSN implementation, our Molecular Classifier
System (MCS).

A. Learning Classifier Systems

Learning Classifier Systems are systems constructed from
condition-action rules called classifiers. The classifiers can be
viewed as IF/THEN statements in the form IF “rule” THEN
“action”. The condition section of the classifier examines all
of the messages in the system and identifies those that satisfy
the rules conditions. Once this is accomplished the action part
instructs that a message is to be sent. Holland’s initial work

was modified a number of times and at present many different
varieties of learning classifier systems are available [20].

In Holland’s LCS the system receives an input from its
environment as a binary encoded data. This is then stored in an
internal data store termed the message list, see Figure 6. The
LCS then evaluates the input and determines an appropriate
response, indicated by the action. This action typically alters
the current state of the environment. Any desired behaviour
that is exhibited is then rewarded through a scalar reinforce-
ment. The system iterates the cycle of response, reinforcement
and discovery for each discrete time-step.

Fig. 6. Schematic of Holland’s Learning Classifier System

The rule-base consists of a population of N classifiers.
Both parts of the classifier are randomly initialized. The rule
conditions and actions (the classifiers) can be characterized
by strings formed from a ternary alphabet 0,1,#. The use of
the # provides a single character wildcard which allows for
the potential matching of a greater number of strings e.g. 10#
would match two potential inputs 100 or 101. The use of the
wildcard character also provides for string processing at the
action stage, for example: in responding to the input 110, the
rule IF 1#0 THEN 0#1 would produce the action 011. Each
classifier also has an associated fitness measure, quantifying
the usefulness of a rule in attracting external reward.

On receiving an input message, a typical LCS processes
as follows: initially the input message rule-base is scanned
and all rules whose condition matches the external message
are added to the “match set” denoted as [M], see Figure 6.
Secondly any other rules matching messages in the message
list are also added to [M].

Then through a bidding technique a rule is selected from
the rules in [M]. Once the rule is selected, it then becomes
the system’s external action. Following this, the message list
is purged and the action string is posted in preparation for
the next cycle. Any remaining spaces on the internal message
list can then be filled by of other rules selected via the
bidding technique. This bidding technique can be a simple
stochastic roulette wheel selection method. The rules’ bids are
formed from two components: the rules fitness and the rules
specificity, that is the proportion of literal characters that the
string contains. The following formula is typically used:

Bid(C, t) = β.specificity(C).fitness(C, t)



The reinforcement stage sets about redistributing bids across
rules to be chosen later in the cycle. At each time step, winners
placed their bids in a bucket. Each of the previous winners are
then equally given a portion of the bucket, the fitness being
shared amongst the activated rules. When a reward is received
from the environment, the winning rule that produced the last
output obtains this reward.

Holland terms this technique the bucket brigade algorithm
and this can be viewed as an economical analogy to the
middle man in a financial arrangement. A steady state genetic
algorithm is utilized over the whole rule-set. After a defined
number of time-steps the GA uses a roulette wheel technique
to select parent rules based upon the fitness of the rules. The
parent rules produce offspring through the use of a mutation
and crossover operator and the new offspring replace an
existing rule from the population.

For a comprehensive introduction to Learning Classifier
System, see [11].

B. Implementing signaling networks with LCS

In [6] Holland proposed an agent-based model where the
agents’ behavior and adaptation are determined by the use of
Learning Classifier System. This work provided an existence
proof that LCS could be used to evolve a simple repertoire
of condition-action rules to a more complex goal directed set
of rules. In typical biochemical networks, interactions between
molecules follow the same condition-action mechanisms. Thus
Holland suggested that this approach could be used to simulate
and evolve signaling networks.

His proposition to design signaling networks was to start
with a LCS-based “over-general” model of a biological phe-
nomenon (e.g. transformation of a healthy cell to a cancer cell,
see Table I). Then he refined this general phenomenon through
several iterations. At each iteration, the details of the occurring
interactions were refined, see Table II. These iterations were
continued until the desired CSN level was reached, where
the biomolecular elements are specified (e.g. protein ligand,
receptor, ions etc.), see Table III for an example of such a rule.
This refining process clearly shows the top-down methodology
to design signaling networks.

(1) IF healthy cell and DNA
damage

THEN apoptosis or immortality

(2) IF immortality THEN stable existence or genetic
instability

(3) IF genetic instability THEN ephemeral clonal expan-
sion or robust clonal expansion

(4) robust clonal expansion THEN cancer mass

TABLE I

OVER-GENERAL MODEL OF THE TRANSFORMATION OF HEALTHY CELL TO

CANCER CELL

Despite this, the LCS-based approach to specify CSNs
sounded promising, actual implementation was never per-
formed. Importantly, this approach does not meet the require-
ments of our project. First, we do not distinguish a demarcation
between rules and messages, in our context, the chemical

(1.1) IF healthy cell and DNA
damage

THEN apoptosis or mutation
for resistance to apoptosis

(1.2) IF resistance to apoptosis THEN susceptibility to growth
inhibitory signals or mutation
for loss of susceptibility to
growth inhibitory

(1.3) IF loss of susceptibility to
immortality

THEN selective growth advan-
tage and growth inhibitory sig-
nas

TABLE II

REFINEMENT OF RULE 1

IF apropos growth factor THEN gf receptor activated

TABLE III

A BIOMOLECULAR LEVEL RULE

operations are reflexives. Secondly, Holland’s suggestion was
to initially model known real CSNs, however from our bottom-
up perspective, we require the ACSNs to evolve from very
simple networks to more complex networks that exhibit the
known real CSNs properties. As a consequence we propose a
variation of Holland’s LCS to fulfill the requirements of our
project.

C. The Molecular Classifier System and ACSNs

Holland distinguished a demarcation between rules and
messages, however operations in a biochemical networks
are intrinsically reflexive in the sense that all molecules
can function as both rules (enzymes) and messages (sub-
strates/products). In the MCS, we address this through the use
of a dual-level encoding of the artificial molecules. The first
level encoding referring to primary structure (messages) as a
string of variable length and the second level corresponding
to secondary structure (rules).

A similar multi-level encoding approach was introduced by
Hofstadter [22] and is called Typogenetics. The aim of Hofs-
tadter’s system was to describe some of the basic principles of
molecular biology using a typographic system. In this system,
the primary structure alphabet includes the four amino acids
ACGT, secondary structure is extracted by splicing strands
of amino acids from the primary structure. These strands of
amino acids correspond to their enzymatic functions identified
by the use of a lookup table.

Similarly the MCS uses this primary-secondary structure
mapping, the primary structure alphabet used in the MCS
contains 1s and 0s. The secondary structure (“folded”) is
determined by extracting codons of n bits, e.g. if we are
using codons of 3 bits in length then the secondary structure
alphabet would comprise to a maximum of 8 different symbols
or enzymatic functions, see Table V.

The variety of operations is limited by the codon length.
Codons having longer bit length allow a greater number of
computational functions. For example, Table V presents a
chemical language comprising 6 functional operations {H, L, :
, #, ?, :}. By using a codon length of 3, we allow a set



Encoding Structure
Primary 1 0 1 0 1 1 0 0 0 1 0 1
Secondary H # : H

TABLE IV

A SIMPLE ARTIFICIAL MOLECULE USING THE MCS ENCODING

of 8 distinct computational functions to be defined. In this
definition, redundant functions may also be specified within
this set of functions.

000 001 010 011 100 101 110 111
: H * # L H L ?

TABLE V

AN EXAMPLE OF A PRIMARY/SECONDARY STRUCTURE ALPHABET

MAPPING

The behavior of the condition/binding properties and ac-
tion/enzymatic functions is specified by a “chemical” language
defined in the MCS. The more computational functions a
chemical language defines, the more complex chemical be-
havior can be observed in a MCS simulation.

Before describing the nature of the enzymatic functions
(action part of a molecule), the binding properties of the
molecules must be identified. We have thus far identified the
following potential properties: in the LCS approach, a reaction
between two molecules may only occur if one of the molecules
(message) satisfies the conditional part of a candidate molecule
(self binding may also occur). In the MCS we are not using the
message/rule demarcation, instead we are using the following:

• The message is encoded in the primary structure
• The condition/action rule is encoded in the secondary

structure

The condition part of a rule refers to the binding properties
of a molecule whereas action refers to the computational
(“enzymatic”) function. Thus, for a reaction to occur in the
MCS between two molecules, the primary structure of a
molecule needs to satisfy the secondary structure condition
part/binding rule of a candidate molecule.

Following this description of the binding rule used in the
MCS, we now present the enzymatic functions that may occur.
When two molecules can bind to each other and consequently
can react with other, the secondary structure action part of one
of the molecules is used to carry out the enzymatic operations
upon the binding molecule (substrate). This operation results
in producing another artificial molecule (product). This is
analogous to the action part of a LCS rule used by Holland
[6].

As shown in Table V, we have a limited number of sym-
bols/operations in the secondary structure alphabet according
to the codon length used. When a reaction occurs, the symbols
contained in the secondary structure are processed in a se-
quential order, also the secondary structure symbols are parsed
from the left. The outcome (product) of the reaction depends
on the nature of the symbols’ functionality. The definitive set

of operations is still under investigation as we are trying to
understand what are the minimal operational requirements to
allow a primitive ACSN to spontaneously emerge. This would
facilitate more complex ACSNs mimicking natural CSNs to
be built/evolved upon this generic ACSNs.

A potential set of operations to be used in the secondary
structure is defined as follows. Two classes of operation can
be discriminated: the condition/binding pattern language and
action/enzymatic functions. A punctuation mark “:” is used to
distinguish the condition/action part in the secondary structure.
This punctuation mark may of may not be present in the
secondary structure, a molecule having no punctuation mark
in the secondary structure would have no enzymatic function.
We define the pattern language used for binding properties as
follows:

• “H” matches 1
• “L” matches 0
• “#” single symbol wildcard matches exactly 0 or 1
• “*” wildcard matches substring of any length

Pattern matching implies a notion of specificity or “binding
strength”. A molecule having a high specificity would have
less chance to react with another one. Whereas a molecule
having a low specificity is likely to bind to another more often.
Therefore we could translate this into an effect on reaction
rate/kinetics.

When a molecule A can react with a molecule B, the
action statement of the secondary structure of molecule A is
“executed” on the primary structure of the binding molecule
B. A is viewed as an enzyme and B as a substrate, thus A’s
structure is not affected by the reaction whereas B’s structure is
degraded and a product P is generated. A’s secondary structure
operators take as inputs the symbols of B’s primary structure.
An offspring molecule P is generated as a result of these
operations, see Figure 7.

Fig. 7. Schematic of a reaction in the MCS

Regarding the potential “action” language, several operators
can be distinguished:

• “-” cleavage operator



• “+” ligation operator
• “c” copy operator

The copy operator can be subjected to random mutation
determined by a probability Pm. Also the symbol segment
length to be copied is variable. Potential mutations that may
occur during copy are as follows:

• point mutation: the offspring gets the opposite symbol to
the parent symbol

• point deletion: the symbol is not replicated
• point insertion: the symbol is copied again

In addition to mutation operators, the evolutionary process is
carried through the use of several common genetic operations
such as crossover, selection routines, and appropriate evalua-
tion function for the domain. Defining the MCS is a natural
step to Holland’s work on employing evolutionary techniques
to investigate signaling networks.

IV. FUTURE WORK

In keeping with the four presented ACSN characteristic
properties, we will focus on the following areas:

A. Computation

Concerning the language implementation, we are also in-
vestigating in parallel other potential languages such as the
broadcast language proposed by Holland [10]. The broadcast
language was the precursor of LCS. Holland envisaged the
modeling of Genetic Regulatory Networks using this approach,
however this was never performed. A motivation to investigate
this language is that it may be Turing Complete as suggested
by Holland.

We are investigating the computational power of the broad-
cast language, this will also us to analyze and demonstrate
whether or not the broadcast language is Turing Complete. As
one of our project goals is to evolve ACSNs for computational
purposes, incorporating completeness may be regarded as a
crucial issue.

B. Evolution

An ACSN implies several cell signaling pathways inter-
acting with each other. In order to evolve such a system of
signaling networks controlling each other, it will be neces-
sary to evaluate different Evolutionary Computational (EC)
techniques. Because from biology it is natural to have a
hierarchical system it may prove beneficial to investigate
multi-level EC systems e.g. Hierarchical Genetic Algorithms
[23].

C. Crosstalk

To obtain a better understanding of the crosstalk phe-
nomenon and more specifically about the positive and negative
effects of crosstalk. We will would like to see if it is possible
to specify a network topology that allows optimal control of
crosstalk effects.

A small world topology [24] may be of interest, as we
may observe an analogy between CSNs and small world

networks. This class of network, and more specifically scale-
free networks are characterized by possessing nodes acting
as “highly connected hubs”. Although most nodes in these
networks are of low degree. For example, a highly connected
node could be referring to an ATP molecule that shares the
same high degree of connectivity in real biochemical networks.

D. Robustness

We will investigate the ability of ACSNs to create and
sustain specific internal conditions such as homeostasis. We
would like to exhibit such robust behavior in simulated AC-
SNs, and how through evolutionary changes, robustness can be
refined. Another consequent issue is to quantify the robustness
of such systems to external shocks and changes of conditions.

V. CONCLUSION

In this paper we have introduced a novel mechanism: the
MCS for evolving ACSNs from a bottom-up approach. This
technique is inspired by the work of Holland and Hofstadter
utilizing Classifier Systems and Multi-level encodings. We
discussed Holland’s approach to implement biological circuits,
in which known real CSNs could be specified in a top-
down fashion using LCS. However this remains an unim-
plemented sketch to model real CSNs. The requirements of
our project contradict his proposed method on several points.
Principally, we want to evolve signaling networks from a
bottom-up approach. Secondly we are examining artificial
signaling networks, and these were characterized as potentially
providing four properties distinguished as follows: Computa-
tion, Evolution, Crosstalk and Robustness. We indicated how
these attributes can be highly desirable properties for potential
applications in the control systems, computation and signal
processing field. We completed the paper by examining further
work that is required to conclusively validate our approach.
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