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FUTURE WORK

We want to address a number of questions:

• How to evolve systems of ACSNs that control each other?
• How to investigate the ability of those systems to create and sustain specific internal conditions (homeostasis)?
• How to investigate and quantify the robustness of such systems to external shocks and changes of conditions?
• How to transfer insights from this work to build more resilient “self-repairing” and adaptive control-systems?

ROBUSTNESS

● It is argued that key properties in biochemical networks are to be 
robust, this is so as to ensure their correct functioning [3]. Similar 
works include research carried out at the Santa Fe institute in 
studying Cytokine signaling networks to design distributed 
autonomous networks, that are robust to small perturbations and 
responsive to larger ones [14], see Fig 5. Potential applications are 
distributed intelligent systems such as large fleets of robots working 
together, for automated response in computer security, for mobile 
computing networks, etc.

● Alon et al. have demonstrated from studying Escherichia coli 
chemotaxis that molecular interactions can exhibit robustness [1, 13]. 
In this case it means that after a change in the stimulus concentration 
(input), the tumbling frequency (output) managed to reach a steady 
state that is equivalent to the pre-stimulus level. Such properties are 
highly desirable in dynamic engineered systems when subjected to 
internal and external uncertainty and perturbation.

AN  AP P RO AC H T O EVO LVING  
ARTIFICIAL CELL SIGNALING NETWORKS

RINCE

INTRODUCTION

● We distinguish CSNs as being networks made up of more than one distinct cell 
signaling pathway, which interact with each other. An example of a simple 
chemotaxis signaling pathway is shown in Figure 1. 

● Viewed as signal processing systems, Cell Signaling Networks (CSNs) can be 
regarded as special purpose computers [4]. In contrast to conventional silicon-based 
computers, the computation in CSNs is not realized by electronic circuits, but by 
chemically reacting molecules in the cell. 

● Lauffenburger [13] presents an approach where cell signaling pathways could be 
thought of and modelled as control modules in living systems. 

● Yi et al. [19] demonstrated that CSNs may have some of the essential properties of 
an integral feedback control. 

● Artificial CSNs (ACSNs) may therefore be used to implement computation and signal 
processing.

COMPUTATION

CSNs and ANALOG COMPUTERS:

As a “computational” device, CSNs can be 
compared to analog computers:

● CSNs can be modelled with systems of continuous 
differential equations

● Analog computers are precisely designed to model 
the operation of a target dynamical system by 
creating an “analogous” system which shares  the 
same dynamics. 

EVOLUTION

Evolutionary Algorithms  (EAs) are non-deterministic 
search and optimisation algorithms inspired by the principles 
of neo-Darwinism. They have been applied successfully in a 
variety of fields (business, engineering, optimization based 
problems, etc) [7, 10, 11]. 

Generally based on genetic operations such as crossover
and mutation, EAs initially generate a wide range of 
candidate solutions. Over time, through selection, this can be 
reduced to an optimized set. Evolutionary computation can 
deliver useful results without requiring a priori knowledge of 
the entire search space [7, 11].

Such techniques are relevant to the study of Artificial CSNs 
because:

• The complex, and unpredictable, interactions between 
different components of CSNs, make it very difficult to design 
them “by hand” to meet specific performance objectives.

• Natural evolution shows that in suitable circumstances, 
effective CSNs functionality can be achieved through 
evolutionary processes.

CROSSTALK

“Crosstalk” phenomena happen when signals from different pathways become 
mixed together. An example is shown in Fig 4. In traditional communications and 
signal processing engineering, crosstalk is regarded as a defect—an unintended or 
undesigned interaction between signals, that therefore has the potential to cause 
system malfunction. This can also clearly be the case of crosstalk in CSNs. 
However, in the specific case of CSN’s, crosstalk also has additional potential 
functionality, which may actually be constructive:

• Even where an interfering signal is, in effect, adding uncorrelated “noise” to a 
functional signal, this may sometimes improve overall system behaviour. This is 
well known in conventional control systems engineering in the form of so-called 
“dither”. Compare also, [2, 17] on constructive biological roles of noise.

• The crosstalk mechanism provides a very generic way of creating a large space of 
possible modifications or interactions between signaling pathways. Thus, although 
many cases of crosstalk may be immediately negative in their impact, crosstalk 
may still be a key mechanism in enabling incremental evolutionary search for more 
elaborate or complex cell signaling networks.
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GOAL OF WORK PRESENTED IN THIS POSTER

We are investigating the use of artificial Cell Signaling Networks to implement computation, signal processing and (or) control 
functionality. In the following sections we review a number of the research issues which this raises.
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Figure 2: Schematic for the analog computer simulation of the driven constant-force magnitude oscilator.
http://physics.mercer.edu/petepag/yoyo.html

CHEMICAL COMPUTING

CSNs are typically treated in an aggregate manner, where the signal or information is carried by molecular concentration.
An alternative approach is to consider the finer grained behaviours of individual molecules as computational units. 

A single enzyme molecule can be regarded as carrying out pattern matching to identify and bind target substrates, and 
then executing a discrete computational operation in transforming these into the product molecule(s). 

This has clear parallels with a wide variety of so-called rewriting systems in computational theory. 

However, it differs in important ways, such as:

• Operation is stochastic rather than deterministic.
• Operation is intrinsically reflexive in that all molecules can, in principle, function as both “rules” (enzymes) and “strings” 
(substrates/products).

Dittrich [6] provides a more extended discussion of the potential of such “chemical computing”.

ADVANTAGES OF USING CSNs AS MOLECULAR ANALOG COMPUTERS:

● Electronic analog computers have long been displaced by digital computers due to their much greater 
ease of programming and stability. 

● Nonetheless, there may be applications where a molecular level analog computer, in the form of a CSN, 
may have distinct advantages:
   - CSNs may offer capabilities of high speed and small size that cannot be realised with solid state 
electronic technology. 
   - More critically, where it is  required to interface computation with chemical interaction, a CSN may 
bypass difficult stages of signal transduction that would otherwise be required. This could have direct 
application in so-called “smart drugs” and other bio-medical interventions.
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THE ESIGNET PROJECT

The ESIGNET project (Evolving Cell Signaling Networks in Silico) is a Specific Targeted Research Project funded by the 
European Commission under the Sixth Framework Programme.

The overall goal of this project is to study the computational properties of CSNs by evolving them using methods from 
evolutionary computation, and to re-apply this understanding in developing new ways to model and predict real CSNs. The 
project is highly interdisciplinary. Its completion requires insight into the subject from many points of views. The research 
will be at the interface of (at least) Biology, Computer Science, and Control Engineering. 

It also utilises a plethora of approaches and methods. The high potential of the proposal is largely due to the co-ordinated 
and concerted multi-disciplinary and methodological approaches. This is reflected in the composition of the consortium. All 
researchers in this consortium have previously been involved in research at the interface between Computer Science and 
Biology and have a strong ability to integrate insights from those fields.
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A R T I F I C I A L  L I F E  L A B O R A T O R Y  
D U B L I N  C I T Y  U N I V E R S I T Y

Figure 1:  Schematic representation of bacterial 
chemotaxis signaling pathway, adapted from [1]. 
The output is designated by the tumbling 
frequency which is determined from the input, the 
concentration level of ligand bound to the 
membrane receptors. This signal transduction is 
carried out by the reaction cascade depicted by the 
proteins A, B, R, W, X and Z. Details on chemical 
reactions can be found in [16].

F igure 4: Schematic illustration of a CSN composed 
from two distinct cell signaling pathways with unique 
input and output, an interaction between pathways 
occurs as molecule y interacts with xn, this modulates 
the output ofpathway X.

F igure 5:  Representation of dynamic responses of a system to a stimuli taken 
from [13]. No adaptation is observedwhen the system response attains a new 
steady state following the change in input. Partial adaptation describe a partial 
recovery, the difference between the initial state and the new state is lower than 
the one observed in the previous case. Perfect adaptation is met when the system 
is able to come back to its initial state

F igure 3: A: Flowchart of the Lakhesis evolutionary algorithm adapted from [5], the initial population of networks is 
randomly generated referring to genetic diversity. Fitness computation is obtained by: solving ODEs which allows 
one to compute steady states of the network, then the deviation of each node is calculated according to the 
mathematical computation we want the network to perform. Selection implies removal of unfit networks and 
reproduction correspond to asexual reproduction where mutation operators are applied. This process is repeated 
until we get a correct network performing the desired mathematical function. B: Deviation calculation is performed 
via a series of different inputs. C: An evolved network performing exact square-root computation.

For example, Deckard and Saura [5] used such evolutionary techniques to construct (simulated) biochemical networks 
capable of certain simple forms of signal-processing, see Fig 3. 


