
 
 

 

  

 
Abstract— In this paper we present a novel cost benefit 

operator that assists multi level genetic algorithm searches. 
Through the use of the cost benefit operator, it is possible to 
dynamically constrain the search of the base level genetic 
algorithm, to suit the user’s requirements. Initially we review 
meta-evolutionary (multi-level genetic algorithm) approaches. 
We note that the current literature has abundant studies on 
meta-evolutionary GAs. However these approaches have not 
identified an efficient approach to termination of base GA 
search or a means to balance practical consideration such as 
quality of solution and the expense of computation. Our Quality 
time tradeoff operator (QTT) is user defined, and acts as a base 
level termination operator and also provides a fitness value for 
the meta-level GA. In this manner the amount of computation 
time spent on less encouraging configurations can be specified 
by the user. Our approach has been applied to a 
computationally intensive test problem which evaluates a large 
set of configuration settings for the base GAs. This approach 
should be applicable across a wide range of practical problems 
(e.g. routing, logistic and biomedical applications). 
 

I. INTRODUCTION 

 number of different approaches have been taken to the 
development of Genetic Algorithms for different 
application areas. The genetic algorithms typically 

consist of a number of core parts: representation, fitness 
evaluation, crossover and mutation operators. Many differing 
forms of operators have been developed. These include for 
crossover: Order Crossover [1], Modified Crossover [2], 
Partially Mapped Crossover [3], Cycle Crossover [4], 2-
quick / 2-repair [5], plus a number of less frequently used 
crossover operators [6]. The mutation operators  include: 
Displacement Mutation [7], Exchange Mutation [8],  
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Insertion Mutation [7, 9], Simple Inversion Mutation [10, 
11], Inversion Mutation [12, 13] and other less well known 
mutation operators [14]. 
When encountering a new problem that has not been 
evaluated with a genetic algorithm, one is presented with the 
question: How does one select appropriate genetic operators 
and parameters to obtain the most desirable solution?  
This question can be addressed through the use of parameter- 
less genetic algorithms and meta-GAs’. These techniques can 
help in the selection of efficient parameters for a given 
problem. 
Such parameter-less techniques include: The Harik’s 
parameter-less genetic algorithm (PLGA) [15] and the meta-
evolutionary approach proposed by Mernik [16]. However, 
these techniques present significant limitations.  For example 
Harik only focused on a single parameter: population size. 
Mernik evaluated only a small group of crossover operators 
and their associated crossover rates. Similarly Freisleben in 
1993 [17] used a meta-evolutionary approach to determine 
components (selection method, elitist model and a restricted 
set of  crossover and mutation methods) and parameters 
(population size, crossover probability, mutation probability) 
for a genetic algorithm to solve instances of the traveling 
salesman problem.  
All of the foregoing techniques have attempted to identify 
the optimal configuration settings (parameters and operator 
settings) for genetic algorithms applied to a particular 
problem instance.  
A modification to the traditional meta-evolutionary approach 
[17] is the multi-level genetic algorithm. In a similar way to 
the meta-evolutionary search, the meta level (or level one 
GA) controls a population of candidate solutions. Each of 
these solutions is in turn evaluated through the use of a Base 
level (or level two GA). The multi-level GA is not limited to 
only two levels in the hierarchy and can have as many levels 
as are required to reach the minimal computation unit 
required. This form of system has been used to model 
biological networks [18]. 
One practical issue that exists in all of these approaches is 
how to balance the large amount of computational effort 
(time, space etc) that is required to evaluate parameters and 
operators that yield quality solutions that meet a user’s 
needs. 
We have developed a multi level genetic algorithm, in 
essence combining the best of Harik’s and Freisleben’s 
techniques together with a cost benefit (Quality-Time 
Tradeoff) operator.  
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The multi level genetic algorithm approach can be 
summarized by the following properties: 
 

− It uses and evaluates a wide variety of genetic 
operators selected from the Path, Binary and 
Adjacency representations. 

− It evolves parameters such as population size, 
crossover rate, mutation rate, constraint handling 
techniques, type of crossover and mutation 
operators and selection technique. This removes the 
need of users to be experts in the field of designing 
GAs.  

− It provides a cost benefit function that performs a 
dual role of termination condition (base level 
genetic algorithm) and fitness evaluation (meta 
level genetic algorithm). 

− Most importantly the cost benefit function is 
specified by the user. The latter can define a 
tradeoff between quality of solution and the amount 
computation effort expended. This allows one to 
incorporate realistic commercial constraints on 
searching for solutions. 

 
The paper examines the multi-level GA, and then introduces 
our Quality-Time Tradeoff operator and its potential 
application areas. Following this we present a case study 
applying the multi level genetic algorithm with the Quality 
time tradeoff operator to one problem instance.  

 

II. MULTI LEVEL GENETIC ALGORITHM 

A number of different Genetic Algorithm variants have been 
developed that attempt to take advantage of distributed 
computing properties, these can take a number of different 
forms: distributed GA[19], parallel GA[20], Divide and 
Conquer GA [21, 22] and Multi level GA [18, 23].  
However, all of these approaches rely on some 
predetermined terminating condition (in the form of a fixed 
number of time steps, reaching a solution quality threshold, 
or reaching an evolutionary plateau for example). An 
illustration of a meta-evolutionary genetic algorithm (which 
is a multi level genetic algorithm with only two levels) that 
we have used is presented in figure 1. 
These approaches while being widely accepted in the 
computational optimization field, present significant 
problems from a practical point of view. Indeed in the case 
of specific critical applications (where we have a constraint 
on time, financial resources, computational effort, etc), an 
efficient balance between the quality and time tradeoff is 
required.  
To address this quality time tradeoff issue, we designed a n-
level GA coupled with the Quality-Time Tradeoff 
mechanism (see figure 1). The latter is a technique which 
permits the user to decide what they consider to be the most 
important factor for their search: i.e. a tradeoff between the 
quality of solution versus speed of return of solution. We 

term the operator that accomplishes this, the QTT Quality-
Time Tradeoff operator. 
 

 
Fig. 1.  Multi level genetic algorithm for identifying cost effective 
parameters for GAs solving the TSP. 

 
 

III. QUALITY-TIME TRADEOFF OPERATOR 

The use of a tradeoff operator (cost-benefit operator) for 
optimization problems is a novel approach for the GA 
community, however within the optimization research area it 
has been used for some years. Sosi  [24] developed a 
tradeoff operator for a local optimization algorithm, Duty 
(as termed by Sosi ) which minimized the excess (error) of a 
present solution compared to the benchmark known optimal 
solution. An optimal present solution would be found to have 
an excess of zero. The generalized Duty measure gives equal 
weight to the quality of the solution and the computing time 
as follows: 
 

D k ( t )  =  t k  *  E ( t )  
( 1 )  

 
The tradeoff operator used in the experiment of the multi 
level GA was as follows:  
 

t r adeo f f  =  t+wQ 
( 2 )  

 
Where t, the computation time is measured as the number of 
generations, Q the quality of the solution is the raw fitness 
value for the individual solution and w the weighting factor 
placed on the quality of the solution. By weighting the 
quality of solutions the tradeoff operator can be set by the 
user to terminate the solution at the desired cost benefit point 
(where time spent searching for a better solution does not 
outweigh the improvement in the quality of the solution).  
The tradeoff operator should produce a ‘u’ shaped curve and 
then by identifying the minimum of this curve it is possible 
to halt the base level GA search.  The tradeoff operator 
accomplishes this through the use of two key mechanisms: 
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1. A low pass filter (for a minimization problem) is 
applied to the solution fitness values generated by 
the base level GA. This determines the best solution 
found so far. This best solution is computed in real-
time. 

2. A sliding window grace period is applied. This 
gives an opportunity to encounter fitter candidate 
solutions. The size of the window is user defined 
and affects the running time of the search. Typically 
a small window returns a result more rapidly. This 
is tightly coupled to the quality time tradeoff. 

 
IV. CASE STUDY 

 

We present a case study to explore configuration settings for 
genetic algorithms applied to selected TSP problems. Firstly 
we describe the traveling salesman problem, and then we 
present how the quality tradeoff operator is instantiated to 
solve this problem. Finally we present the result obtained 
from our multi level genetic algorithm which uses the 
tradeoff operator to balance quality and time efficiently. 
 
A. Quality Time Tradeoff and TSP configuration setting. 

Hamiltonian search optimization has for some time remained 
one of the key benchmarks for any optimization algorithms 
[25]. The Traveling Salesman Problem (TSP) is a form of 
Hamiltonian problem. The TSP consists of a minimal 
distance Hamiltonian cycle of a complete graph visiting all N 
nodes (where N represents the number of cities in the 
problem). The TSP is a classical example of an NP-hard 
problem and exhibits a factorial growth in number of search 
size as the number of cities in the problem increases. In cases 
where N is very large an algorithm which generates near-
optimal solutions is at present the most applicable search 
technique. Many different approaches have been taken to 
finding sub and near optimal solutions for the TSP such as: 
2-opt, 3-opt, Ant colony, Tabu search, multiple heuristic 
search enhanced GA and many more [9, 26-30]. 
With a genetic algorithm applied to the TSP some 
implementation details differ from the more general genetic 
algorithm. In particular these concern the construction of 
solutions that are valid according to the constraints of the 
TSP - (visit all N cities once and once only). It is common 
for genetic algorithms to have some form of validity 
preserving operators. These can be validity preserving 
crossover and mutation operators that do not allow the 
creation of invalid tours (according to the TSP constraints) 
or some form of repair, penalty or decoder function can be 
used [6]. 
 
1) QTT setup. 
The initial step is to instantiate a suitable QTT for the 
optimization problem at hand, here this is the TSP. this 
involves selecting suitable parameters for the window size 
and the weighting factor. 
Experiments were performed on the well known problems: 
eil51, st70 and eil101, these are benchmark problems from 

the TSPLIB problem set [31]. Although these selected TSP 
problems are trivial (in that current evolutionary approaches 
are applied to TSP problem in excess of 7000 nodes) they 
allow for more quick evaluation of our approach. It is 
important to note that the purpose of this research is to 
demonstrate the use of the quality time tradeoff operator, as 
opposed to developing a competitive state of the art optimal 
search technique. 
An example of the typical output from a genetic algorithm 
for the eil51 problem is given in figure 2. It is apparent from 
this graph that after a period of time the solution enters a 
plateau phase where little or no improvements are made to 
the fitness of the solution. With multi level genetic 
algorithms, similar plateau phases occur during the 
evaluation of the base level GAs. In figure 3, a graph is 
shown which shows the effect of applying the tradeoff 
operator. In this case, a weighting factor was selected that 
required solutions be found in relatively small number of 
generations. This weighting factor is totally arbitrary and 
represents some constraint (financial, time etc.). 
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Fig. 2.  Example GA search for eil-51 TSP. 

 
The appropriate windowing size for a given problem must be 
selected so as to allow the GA sufficient time to encounter 
better solutions. As the search of a GA is not a linear 
improvement (figure 2) it is not easy to suggest a generalized 
windowing size and this is yet again a user selected variable. 
The approach taken in this case study was to produce an 
indicative graph of the genetic search by computing one run 
of a GA for the required problem. This provided the user 
with some insight into the dynamics of the problem 
(proximity to a known optimal solution after n generations). 
This technique was found to be a very raw technique for 
selecting appropriate window sizes for small TSP problems. 
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2) The Problem: GA configuration setting for the TSP.  
The selection of appropriate operators and their associated 
parameters for the TSP is itself a complex and time 
consuming problem. With the use of our multi-level genetic 
algorithm it is possible to evaluate a large number of 
configurations. The amount of available computation power 
and time available are factors that affect the quality of 
solution that can be expected to be found. In our situation 84 
Pentium III PCs were available for use, this allowed our 
multi level GA to operate with one PC designated as the 
meta-GA machine and 83 computers as base level GAs.   An 
arbitrary weighting for the tradeoff operator was selected.   
 
 The Meta level-GA specified the parameter strings for each 
of the base level-GAs. Each of the elements in the parameter 
string encoded the value for a specific parameter in integer 
form. The string consisted of eight individual parameters as 
illustrated below: 
 

     Locus 1 2 3 4 
Gene 
Function 

Population 
Size 

Selection 
Type 

Mutation 
Type 

Mutation 
Rate 

Possible 
Alleles 

0-9 0-9 0-9 00-99 

    Locus 5 6 7 8 
Gene 
Function 

Crossover 
Type 

Crossover 
Rate 

Adaptive 
Mutation 

Repair 
Type 

Possible 
Alleles 

0-9 0-9 0-9 0-99 

Fig. 4. Parameters for configuration string 
 

− The first gene specified the size of the Base-GA 
population.   

− The second gene specified the selection type. 
− The third gene specified the mutation operator. 
− The fourth gene specified the mutation rate. 
− The fifth gene specified the type of crossover. 
− The sixth gene specified the crossover rate. 
− The seventh gene specified the use of any 

adaptive mutation. 
− The eighth gene in the string specified the type 

of repair 
 

 
Fig. 5. Example configuration string as passed to base GA 
 
 
The Genetic operators that were considered were:  
(1) crossover operators - Classical, n-point, Uniform, PMX, 
CX, OX, Voting Recombination, MPX, Masked, Modified, 
Position, Modified PMX, Complete Subtour Exchange, 
Subtour Chunking, Path random combination, Binary 
crossovers random combination, Adjacency crossovers 
random combination, random combination of all crossovers 
(see Larranaga et.al. [14]). 
 
(2) Mutation operators: reciprocal exchange (swap) 
mutation, insertion mutation, 2-opt mutation, inversion 

mutation, random combination of mutation operators (see 
Larranaga et.al. [14]).  
 
(3) repair- different repair configurations were also explored 
these repair operators used a number of techniques for the 
correction of invalid tours, when repair was not selected then 
a penalty function was used (see Mitchell et.al. [32-34] for 
details of GeneRepair techniques). 
 
The parameter string therefore had six operator settings 
(excluding the mutation rate and crossover rates) that 
specified particular operators. The total number of 
permutations for these six settings is 45,000. The inclusion 
of the mutation and crossover rates increases the total 
number of permutations to approximately 45 million. This is 
a relatively small number of permutations in comparison to a 
reasonable sized TSP problem.  
The following problem sizes were used for the experiments 
presented in this paper: 50, 70 and 100 cities. The 100 city 
size problem set was formed from the KRO series of  
TSPLIB benchmark problems [31], these were titled: 100a, 
100b, 100c, 100d, 100e. The 70 city size problem set was 
constructed from varying sized data sets available from 
TSPLIB with the exception of one data set st70. These data 
sets therefore are not TSPLIB benchmark problems. The 
four data sets constructed that were titled 70a, 70b, 70c and 
70d. The 50 city TSP problems data sets were all constructed 
from varying sized data sets available from TSPLIB these 
data sets were titled 50a, 50b, 50c, 50d and 50e. 
 
These results were produced with a meta GA population size 
of 100 parameter strings and the meta GA was permitted to 
run for 25 days or approximately between 1000 and 1500 
generations (depending on TSP problem size). Although this 
is a relatively low number of generations this permitted up to 
1500000 different parameter strings to be considered.  
Results suggest that a set of operators and associated 
parameters for individual TSP problems exist rather than one 
single configuration setting suiting all of the tested problems. 
The weighting for the tradeoff operator was varied widely so 
as to consider a wide range of values.  Again it is important 
to note that these tests were not performed to produce 
optimal result but rather to meet the user’s quality time 
tradeoff need. The GA Tradeoff values and the W weightings 
are presented in table 1. 
The most consistent configuration settings that were found 
using the specified weightings and window sizes for the 50, 
70 and 100 city problems are presented in table 2. 
The result indicate that a large population size is most 
consistent with a population size the square of the number of 
cities being selected for both the 50 and 70 city problems 
and a population size of 4000 individuals being selected for 
the 100 city problem.  Result found that were common to all 
problems were: tournament selection, insertion mutation, 
crossover rate of 1, a high initial mutation rate and crossover 
operators were a combination of all path representation 
crossover operators. 
 

                     S1       =          3, 4, 2, 58, 1, 7,  8, 34 

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1347

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore.  Restrictions apply.



 
 

 

TABLE I 
GA TRADEOFF RESULTS 

Problem 
Best 

Distance 
obtained 

QTT 
Value 

We igh t  w  

50a 14162 1780 0.1 

50b 1113 1122 1 

50c 826 4452 5 

50d 786 1983 2 

50e 954 11274 11 

70a 1090 17356 15 

70b 130166 26954.8 0.2 

70c 769 10556 13 

70d 1266 9767 7 

70e 1511 8373 5 

100a 891 14337 15 

100b 1947 30028 15 

100c 38313 4814.2 0.1 

100d 40348 12833.9 0.2 

100e 37871 8428.6 0.2 

 
 

TABLE II 
GA WITH TRADEOFF PARAMETER SETTING 

Setting 50 city 70 city 100 city 
Population 

size 
Problem size2 Problem size2 4000 

Selection 
type 

Tournament Tournament Tournament 

Mutation Insertion Insertion Insertion 

Mutation 
rate 

0.007 0.007 0.008 

Crossover 
Random 

Combination 
- Path 

Random 
combination 

– Path 

Random 
Combination 

- Path 

Crossover 
rate 

1 1 1 

Adaptive 
mutation 

On On On 

Repair type Combination Combination 
Dynamic 

random repair 

 
Constraints for the problem could be satisfied by validity 
preserving crossover and mutation operators or when non 
validity preserving operators were employed one of 25 
possible repair techniques could be employed or a penalty 
function to penalize invalid solutions could be selected. 
Results indicate that the multi level GA found that a 
combination of repair methods were most effective in tests. 
 
 

 

V. FUTURE WORK 
We have identified another problem that requires the use of a 
multi level genetic algorithm and would benefit from the use 
of a cost benefit tradeoff operator to limit the amount of time 

spent determining base level solutions. Cell Signaling 
Networks (CSNs) are highly complex biochemical networks 
occurring in living cells. These complex systems of 
interacting molecules can be regarded as special purpose 
computers which take for input a variety of chemical signals 
emitted from or outside the cell (e.g.. hormones, proteins, 
ions etc). The reception of these input signals triggers a 
series of chemical reactions which can be viewed as a form 
of signal processing. The output of such systems can 
constitute a change in the state of the cell leading to specific 
cellular responses such as: the cell cycle, chemotaxis or 
apoptosis (programmed death of the cell). These cellular 
activities are crucial for the survival and adaptation of the 
organism. 
One current goal of Synthetic Biology is to simulate and 
evolve Cell Signaling Networks in-silico. The ability to 
simulate and direct the evolution of CSNs may allow the 
design of molecular computers which may be programmed 
to perform specific tasks (e.g. smart drugs). However 
simulating CSNs in-silico is computationally expensive due 
to the high number of interacting molecules and the intricate 
and multi-level nature of these biological networks. This is 
why specific techniques from Evolutionary Computation 
(EC) are required to assist this enterprise. We believe that 
the tradeoff technique proposed in this paper may contribute 
to such projects. 
 
In this evolutionary computation problem, we may observe a 
hierarchy of processes which constitutes the multi-level 
nature of the problem. At least 3 network levels can be 
distinguished: 

− Molecular level: this is the lowest level in which 
the molecules are considered (nodes in the 
networks). These molecules may interact with 
one another, these chemical reactions constitute 
the networks arcs. 

− Cellular compartment level: the molecules are 
located in compartments within the cell 
(membrane, cytosol, nucleus, etc). 
Compartments (nodes) may communicate (arcs) 
to each other by transferring molecules to one 
another. 

− Cellular level: At this level, we consider the inter 
cellular communication, where cells may 
broadcast a signal to other cells. 

 
For each network level, optimization of the network 
topology is required. Furthermore, additional features in the 
simulation need to be accounted for, such as: Brownian 
motion, chemical kinetics and other physical and chemical 
properties. For these various reasons, it is easy to understand 
why building such an evolutionary simulation platform 
requires adapted EC techniques to make it feasible. 
Withstanding practical considerations, our proposed tradeoff 
operator is a mechanism that could assist in the simulation 
and evolution of CSNs by reducing and optimizing the effort 
needed during the evolutionary computational process, 

1348 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore.  Restrictions apply.



 
 

 

assisting the search by examining those solutions that offer 
the most promising prospects. 
Secondly, because we combine our tradeoff technique with a 
multi-level Genetic Algorithm, it is possible to use our 
approach to evolve the multi-level structure of CSNs.  
Although the application of the tradeoff operator has 
previously only been evaluated on combinatorial 
optimization problems such as the TSP the application in 
synthetic biology would be a very worth while experiment 
and one which could assist in the better understanding of this 
complex problem area.  
 
 

VI. CONCLUSION 
In this paper we presented our quality time tradeoff operator. 

This operator allows for more effective searching of problem with 
respect to the users requirements with regard quality of solution 
and amount of computation time. These needs are a daily challenge 
for many practical applications of multi level genetic algorithms.  

Through the use of a user specified window size, solutions are 
provided with a grace period during which any improvement will 
be considered and can affect the running of the search. A second 
user specified value is the weighting. This value allows the user to 
place an importance on the quality of end solution verses the 
amount of computation time expended searching. 

Following a presentation of the current literature and a review of 
our proposed technique we then presented a case study where the 
tradeoff operator was applied to a large complex problem: 
configuration setting for selected TSP problems. 

Finally we outlined where we believe the tradeoff operator might 
be applied in the future. 
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