

Abstract— In this paper we present a novel cost benefit

operator that assists multi level genetic algorithm searches.
Through the use of the cost benefit operator, it is possible to
dynamically constrain the search of the base level genetic
algorithm, to suit the user’s requirements. Initially we review
meta-evolutionary (multi-level genetic algorithm) approaches.
We note that the current literature has abundant studies on
meta-evolutionary GAs. However these approaches have not
identified an efficient approach to termination of base GA
search or a means to balance practical consideration such as
quality of solution and the expense of computation. Our Quality
time tradeoff operator (QTT) is user defined, and acts as a base
level termination operator and also provides a fitness value for
the meta-level GA. In this manner the amount of computation
time spent on less encouraging configurations can be specified
by the user. Our approach has been applied to a
computationally intensive test problem which evaluates a large
set of configuration settings for the base GAs. This approach
should be applicable across a wide range of practical problems
(e.g. routing, logistic and biomedical applications).

I. INTRODUCTION

 number of different approaches have been taken to the
development of Genetic Algorithms for different
application areas. The genetic algorithms typically

consist of a number of core parts: representation, fitness
evaluation, crossover and mutation operators. Many differing
forms of operators have been developed. These include for
crossover: Order Crossover [1], Modified Crossover [2],
Partially Mapped Crossover [3], Cycle Crossover [4], 2-
quick / 2-repair [5], plus a number of less frequently used
crossover operators [6]. The mutation operators include:
Displacement Mutation [7], Exchange Mutation [8],

Manuscript received March 15, 2007. This work was supported in part

by the European Union as part of the FP6 ESIGNET project contract No.
12789.

G. G. Mitchell is with the Research Institute for Network
Communications Engineering (RINCE), Dublin City University, Dublin 9,
Ireland. (phone: ++353-1-7005000; fax: ++353-1-7007767; e-mail:
george.mitchell@dcu.ie or geo.mit@gmail.com).

B. McMullin is with the Research Institute for Network
Communications Engineering (RINCE), Dublin City University, Dublin 9,
Ireland. (phone: ++353-1-7005000; fax: ++353-1-7007767; e-mail:
barry.mcmullin@dcu.ie).

J. Decraene is with the Research Institute for Network Communications
Engineering (RINCE), Dublin City University, Dublin 9, Ireland. (phone:
++353-1-7005000; fax: ++353-1-7007767; e-mail:
james.decraene@eeng.dcu.ie).

Insertion Mutation [7, 9], Simple Inversion Mutation [10,
11], Inversion Mutation [12, 13] and other less well known
mutation operators [14].
When encountering a new problem that has not been
evaluated with a genetic algorithm, one is presented with the
question: How does one select appropriate genetic operators
and parameters to obtain the most desirable solution?
This question can be addressed through the use of parameter-
less genetic algorithms and meta-GAs’. These techniques can
help in the selection of efficient parameters for a given
problem.
Such parameter-less techniques include: The Harik’s
parameter-less genetic algorithm (PLGA) [15] and the meta-
evolutionary approach proposed by Mernik [16]. However,
these techniques present significant limitations. For example
Harik only focused on a single parameter: population size.
Mernik evaluated only a small group of crossover operators
and their associated crossover rates. Similarly Freisleben in
1993 [17] used a meta-evolutionary approach to determine
components (selection method, elitist model and a restricted
set of crossover and mutation methods) and parameters
(population size, crossover probability, mutation probability)
for a genetic algorithm to solve instances of the traveling
salesman problem.
All of the foregoing techniques have attempted to identify
the optimal configuration settings (parameters and operator
settings) for genetic algorithms applied to a particular
problem instance.
A modification to the traditional meta-evolutionary approach
[17] is the multi-level genetic algorithm. In a similar way to
the meta-evolutionary search, the meta level (or level one
GA) controls a population of candidate solutions. Each of
these solutions is in turn evaluated through the use of a Base
level (or level two GA). The multi-level GA is not limited to
only two levels in the hierarchy and can have as many levels
as are required to reach the minimal computation unit
required. This form of system has been used to model
biological networks [18].
One practical issue that exists in all of these approaches is
how to balance the large amount of computational effort
(time, space etc) that is required to evaluate parameters and
operators that yield quality solutions that meet a user’s
needs.
We have developed a multi level genetic algorithm, in
essence combining the best of Harik’s and Freisleben’s
techniques together with a cost benefit (Quality-Time
Tradeoff) operator.

A Cost Benefit Operator for Efficient Multi Level Genetic Algorithm
Searches

George G. Mitchell, Barry McMullin, James Decraene

A

1344

1-4244-1340-0/07/$25.00 c©2007 IEEE

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

The multi level genetic algorithm approach can be
summarized by the following properties:

− It uses and evaluates a wide variety of genetic
operators selected from the Path, Binary and
Adjacency representations.

− It evolves parameters such as population size,
crossover rate, mutation rate, constraint handling
techniques, type of crossover and mutation
operators and selection technique. This removes the
need of users to be experts in the field of designing
GAs.

− It provides a cost benefit function that performs a
dual role of termination condition (base level
genetic algorithm) and fitness evaluation (meta
level genetic algorithm).

− Most importantly the cost benefit function is
specified by the user. The latter can define a
tradeoff between quality of solution and the amount
computation effort expended. This allows one to
incorporate realistic commercial constraints on
searching for solutions.

The paper examines the multi-level GA, and then introduces
our Quality-Time Tradeoff operator and its potential
application areas. Following this we present a case study
applying the multi level genetic algorithm with the Quality
time tradeoff operator to one problem instance.

II. MULTI LEVEL GENETIC ALGORITHM

A number of different Genetic Algorithm variants have been
developed that attempt to take advantage of distributed
computing properties, these can take a number of different
forms: distributed GA[19], parallel GA[20], Divide and
Conquer GA [21, 22] and Multi level GA [18, 23].
However, all of these approaches rely on some
predetermined terminating condition (in the form of a fixed
number of time steps, reaching a solution quality threshold,
or reaching an evolutionary plateau for example). An
illustration of a meta-evolutionary genetic algorithm (which
is a multi level genetic algorithm with only two levels) that
we have used is presented in figure 1.
These approaches while being widely accepted in the
computational optimization field, present significant
problems from a practical point of view. Indeed in the case
of specific critical applications (where we have a constraint
on time, financial resources, computational effort, etc), an
efficient balance between the quality and time tradeoff is
required.
To address this quality time tradeoff issue, we designed a n-
level GA coupled with the Quality-Time Tradeoff
mechanism (see figure 1). The latter is a technique which
permits the user to decide what they consider to be the most
important factor for their search: i.e. a tradeoff between the
quality of solution versus speed of return of solution. We

term the operator that accomplishes this, the QTT Quality-
Time Tradeoff operator.

Fig. 1. Multi level genetic algorithm for identifying cost effective
parameters for GAs solving the TSP.

III. QUALITY-TIME TRADEOFF OPERATOR

The use of a tradeoff operator (cost-benefit operator) for
optimization problems is a novel approach for the GA
community, however within the optimization research area it
has been used for some years. Sosi [24] developed a
tradeoff operator for a local optimization algorithm, Duty
(as termed by Sosi) which minimized the excess (error) of a
present solution compared to the benchmark known optimal
solution. An optimal present solution would be found to have
an excess of zero. The generalized Duty measure gives equal
weight to the quality of the solution and the computing time
as follows:

D k (t) = t k * E (t)
(1)

The tradeoff operator used in the experiment of the multi
level GA was as follows:

t r adeo f f = t+wQ
(2)

Where t, the computation time is measured as the number of
generations, Q the quality of the solution is the raw fitness
value for the individual solution and w the weighting factor
placed on the quality of the solution. By weighting the
quality of solutions the tradeoff operator can be set by the
user to terminate the solution at the desired cost benefit point
(where time spent searching for a better solution does not
outweigh the improvement in the quality of the solution).
The tradeoff operator should produce a ‘u’ shaped curve and
then by identifying the minimum of this curve it is possible
to halt the base level GA search. The tradeoff operator
accomplishes this through the use of two key mechanisms:

meta-GA

evaluate

crossover

mutate

select

base-GA

ev
ol

ve

pop size mut rate xrate

City 1 City 2 City 3 …

evaluate

crossover

mutate

select

1 2 3 0 4 5

5 1 3 0 4 2

1 2 0 4 3 5ev
ol

ve

1 0 1 1 1 1

1 1 1 1 1 0

1 1 0 1 1 0

Parameters for GA

base-GA

base-GA

Optimising: parameter setting for base GA

Optimising: TSP tour

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1345

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

1. A low pass filter (for a minimization problem) is
applied to the solution fitness values generated by
the base level GA. This determines the best solution
found so far. This best solution is computed in real-
time.

2. A sliding window grace period is applied. This
gives an opportunity to encounter fitter candidate
solutions. The size of the window is user defined
and affects the running time of the search. Typically
a small window returns a result more rapidly. This
is tightly coupled to the quality time tradeoff.

IV. CASE STUDY

We present a case study to explore configuration settings for
genetic algorithms applied to selected TSP problems. Firstly
we describe the traveling salesman problem, and then we
present how the quality tradeoff operator is instantiated to
solve this problem. Finally we present the result obtained
from our multi level genetic algorithm which uses the
tradeoff operator to balance quality and time efficiently.

A. Quality Time Tradeoff and TSP configuration setting.

Hamiltonian search optimization has for some time remained
one of the key benchmarks for any optimization algorithms
[25]. The Traveling Salesman Problem (TSP) is a form of
Hamiltonian problem. The TSP consists of a minimal
distance Hamiltonian cycle of a complete graph visiting all N
nodes (where N represents the number of cities in the
problem). The TSP is a classical example of an NP-hard
problem and exhibits a factorial growth in number of search
size as the number of cities in the problem increases. In cases
where N is very large an algorithm which generates near-
optimal solutions is at present the most applicable search
technique. Many different approaches have been taken to
finding sub and near optimal solutions for the TSP such as:
2-opt, 3-opt, Ant colony, Tabu search, multiple heuristic
search enhanced GA and many more [9, 26-30].
With a genetic algorithm applied to the TSP some
implementation details differ from the more general genetic
algorithm. In particular these concern the construction of
solutions that are valid according to the constraints of the
TSP - (visit all N cities once and once only). It is common
for genetic algorithms to have some form of validity
preserving operators. These can be validity preserving
crossover and mutation operators that do not allow the
creation of invalid tours (according to the TSP constraints)
or some form of repair, penalty or decoder function can be
used [6].

1) QTT setup.
The initial step is to instantiate a suitable QTT for the
optimization problem at hand, here this is the TSP. this
involves selecting suitable parameters for the window size
and the weighting factor.
Experiments were performed on the well known problems:
eil51, st70 and eil101, these are benchmark problems from

the TSPLIB problem set [31]. Although these selected TSP
problems are trivial (in that current evolutionary approaches
are applied to TSP problem in excess of 7000 nodes) they
allow for more quick evaluation of our approach. It is
important to note that the purpose of this research is to
demonstrate the use of the quality time tradeoff operator, as
opposed to developing a competitive state of the art optimal
search technique.
An example of the typical output from a genetic algorithm
for the eil51 problem is given in figure 2. It is apparent from
this graph that after a period of time the solution enters a
plateau phase where little or no improvements are made to
the fitness of the solution. With multi level genetic
algorithms, similar plateau phases occur during the
evaluation of the base level GAs. In figure 3, a graph is
shown which shows the effect of applying the tradeoff
operator. In this case, a weighting factor was selected that
required solutions be found in relatively small number of
generations. This weighting factor is totally arbitrary and
represents some constraint (financial, time etc.).

0

200

400

600

800

1000

1200

1400

1600

1800

1 1930 3859 5788 7717 9646 11575 13504 15433 17362 19291 21220

eil 51

Generations

F
it

ne
ss

 q
ua

li
ty

Fig. 2. Example GA search for eil-51 TSP.

The appropriate windowing size for a given problem must be
selected so as to allow the GA sufficient time to encounter
better solutions. As the search of a GA is not a linear
improvement (figure 2) it is not easy to suggest a generalized
windowing size and this is yet again a user selected variable.
The approach taken in this case study was to produce an
indicative graph of the genetic search by computing one run
of a GA for the required problem. This provided the user
with some insight into the dynamics of the problem
(proximity to a known optimal solution after n generations).
This technique was found to be a very raw technique for
selecting appropriate window sizes for small TSP problems.

0

5000

10000

15000

20000

25000

30000

Generations (T)

G
A

T
 Q

u a
lit

y

eil51
st70

…... eil101

500 3250 15000

Fig. 3. U curves for Tour length Q vs. generations T.

T
ou

r
le

ng
th

 Q

1346 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

2) The Problem: GA configuration setting for the TSP.
The selection of appropriate operators and their associated
parameters for the TSP is itself a complex and time
consuming problem. With the use of our multi-level genetic
algorithm it is possible to evaluate a large number of
configurations. The amount of available computation power
and time available are factors that affect the quality of
solution that can be expected to be found. In our situation 84
Pentium III PCs were available for use, this allowed our
multi level GA to operate with one PC designated as the
meta-GA machine and 83 computers as base level GAs. An
arbitrary weighting for the tradeoff operator was selected.

 The Meta level-GA specified the parameter strings for each
of the base level-GAs. Each of the elements in the parameter
string encoded the value for a specific parameter in integer
form. The string consisted of eight individual parameters as
illustrated below:

 Locus 1 2 3 4
Gene
Function

Population
Size

Selection
Type

Mutation
Type

Mutation
Rate

Possible
Alleles

0-9 0-9 0-9 00-99

 Locus 5 6 7 8
Gene
Function

Crossover
Type

Crossover
Rate

Adaptive
Mutation

Repair
Type

Possible
Alleles

0-9 0-9 0-9 0-99

Fig. 4. Parameters for configuration string

− The first gene specified the size of the Base-GA
population.

− The second gene specified the selection type.
− The third gene specified the mutation operator.
− The fourth gene specified the mutation rate.
− The fifth gene specified the type of crossover.
− The sixth gene specified the crossover rate.
− The seventh gene specified the use of any

adaptive mutation.
− The eighth gene in the string specified the type

of repair

Fig. 5. Example configuration string as passed to base GA

The Genetic operators that were considered were:
(1) crossover operators - Classical, n-point, Uniform, PMX,
CX, OX, Voting Recombination, MPX, Masked, Modified,
Position, Modified PMX, Complete Subtour Exchange,
Subtour Chunking, Path random combination, Binary
crossovers random combination, Adjacency crossovers
random combination, random combination of all crossovers
(see Larranaga et.al. [14]).

(2) Mutation operators: reciprocal exchange (swap)
mutation, insertion mutation, 2-opt mutation, inversion

mutation, random combination of mutation operators (see
Larranaga et.al. [14]).

(3) repair- different repair configurations were also explored
these repair operators used a number of techniques for the
correction of invalid tours, when repair was not selected then
a penalty function was used (see Mitchell et.al. [32-34] for
details of GeneRepair techniques).

The parameter string therefore had six operator settings
(excluding the mutation rate and crossover rates) that
specified particular operators. The total number of
permutations for these six settings is 45,000. The inclusion
of the mutation and crossover rates increases the total
number of permutations to approximately 45 million. This is
a relatively small number of permutations in comparison to a
reasonable sized TSP problem.
The following problem sizes were used for the experiments
presented in this paper: 50, 70 and 100 cities. The 100 city
size problem set was formed from the KRO series of
TSPLIB benchmark problems [31], these were titled: 100a,
100b, 100c, 100d, 100e. The 70 city size problem set was
constructed from varying sized data sets available from
TSPLIB with the exception of one data set st70. These data
sets therefore are not TSPLIB benchmark problems. The
four data sets constructed that were titled 70a, 70b, 70c and
70d. The 50 city TSP problems data sets were all constructed
from varying sized data sets available from TSPLIB these
data sets were titled 50a, 50b, 50c, 50d and 50e.

These results were produced with a meta GA population size
of 100 parameter strings and the meta GA was permitted to
run for 25 days or approximately between 1000 and 1500
generations (depending on TSP problem size). Although this
is a relatively low number of generations this permitted up to
1500000 different parameter strings to be considered.
Results suggest that a set of operators and associated
parameters for individual TSP problems exist rather than one
single configuration setting suiting all of the tested problems.
The weighting for the tradeoff operator was varied widely so
as to consider a wide range of values. Again it is important
to note that these tests were not performed to produce
optimal result but rather to meet the user’s quality time
tradeoff need. The GA Tradeoff values and the W weightings
are presented in table 1.
The most consistent configuration settings that were found
using the specified weightings and window sizes for the 50,
70 and 100 city problems are presented in table 2.
The result indicate that a large population size is most
consistent with a population size the square of the number of
cities being selected for both the 50 and 70 city problems
and a population size of 4000 individuals being selected for
the 100 city problem. Result found that were common to all
problems were: tournament selection, insertion mutation,
crossover rate of 1, a high initial mutation rate and crossover
operators were a combination of all path representation
crossover operators.

 S1 = 3, 4, 2, 58, 1, 7, 8, 34

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1347

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

TABLE I
GA TRADEOFF RESULTS

Problem
Best

Distance
obtained

QTT
Value

We igh t w

50a 14162 1780 0.1

50b 1113 1122 1

50c 826 4452 5

50d 786 1983 2

50e 954 11274 11

70a 1090 17356 15

70b 130166 26954.8 0.2

70c 769 10556 13

70d 1266 9767 7

70e 1511 8373 5

100a 891 14337 15

100b 1947 30028 15

100c 38313 4814.2 0.1

100d 40348 12833.9 0.2

100e 37871 8428.6 0.2

TABLE II
GA WITH TRADEOFF PARAMETER SETTING

Setting 50 city 70 city 100 city
Population

size
Problem size2 Problem size2 4000

Selection
type

Tournament Tournament Tournament

Mutation Insertion Insertion Insertion

Mutation
rate

0.007 0.007 0.008

Crossover
Random

Combination
- Path

Random
combination

– Path

Random
Combination

- Path

Crossover
rate

1 1 1

Adaptive
mutation

On On On

Repair type Combination Combination
Dynamic

random repair

Constraints for the problem could be satisfied by validity
preserving crossover and mutation operators or when non
validity preserving operators were employed one of 25
possible repair techniques could be employed or a penalty
function to penalize invalid solutions could be selected.
Results indicate that the multi level GA found that a
combination of repair methods were most effective in tests.

V. FUTURE WORK
We have identified another problem that requires the use of a
multi level genetic algorithm and would benefit from the use
of a cost benefit tradeoff operator to limit the amount of time

spent determining base level solutions. Cell Signaling
Networks (CSNs) are highly complex biochemical networks
occurring in living cells. These complex systems of
interacting molecules can be regarded as special purpose
computers which take for input a variety of chemical signals
emitted from or outside the cell (e.g.. hormones, proteins,
ions etc). The reception of these input signals triggers a
series of chemical reactions which can be viewed as a form
of signal processing. The output of such systems can
constitute a change in the state of the cell leading to specific
cellular responses such as: the cell cycle, chemotaxis or
apoptosis (programmed death of the cell). These cellular
activities are crucial for the survival and adaptation of the
organism.
One current goal of Synthetic Biology is to simulate and
evolve Cell Signaling Networks in-silico. The ability to
simulate and direct the evolution of CSNs may allow the
design of molecular computers which may be programmed
to perform specific tasks (e.g. smart drugs). However
simulating CSNs in-silico is computationally expensive due
to the high number of interacting molecules and the intricate
and multi-level nature of these biological networks. This is
why specific techniques from Evolutionary Computation
(EC) are required to assist this enterprise. We believe that
the tradeoff technique proposed in this paper may contribute
to such projects.

In this evolutionary computation problem, we may observe a
hierarchy of processes which constitutes the multi-level
nature of the problem. At least 3 network levels can be
distinguished:

− Molecular level: this is the lowest level in which
the molecules are considered (nodes in the
networks). These molecules may interact with
one another, these chemical reactions constitute
the networks arcs.

− Cellular compartment level: the molecules are
located in compartments within the cell
(membrane, cytosol, nucleus, etc).
Compartments (nodes) may communicate (arcs)
to each other by transferring molecules to one
another.

− Cellular level: At this level, we consider the inter
cellular communication, where cells may
broadcast a signal to other cells.

For each network level, optimization of the network
topology is required. Furthermore, additional features in the
simulation need to be accounted for, such as: Brownian
motion, chemical kinetics and other physical and chemical
properties. For these various reasons, it is easy to understand
why building such an evolutionary simulation platform
requires adapted EC techniques to make it feasible.
Withstanding practical considerations, our proposed tradeoff
operator is a mechanism that could assist in the simulation
and evolution of CSNs by reducing and optimizing the effort
needed during the evolutionary computational process,

1348 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

assisting the search by examining those solutions that offer
the most promising prospects.
Secondly, because we combine our tradeoff technique with a
multi-level Genetic Algorithm, it is possible to use our
approach to evolve the multi-level structure of CSNs.
Although the application of the tradeoff operator has
previously only been evaluated on combinatorial
optimization problems such as the TSP the application in
synthetic biology would be a very worth while experiment
and one which could assist in the better understanding of this
complex problem area.

VI. CONCLUSION
In this paper we presented our quality time tradeoff operator.

This operator allows for more effective searching of problem with
respect to the users requirements with regard quality of solution
and amount of computation time. These needs are a daily challenge
for many practical applications of multi level genetic algorithms.

Through the use of a user specified window size, solutions are
provided with a grace period during which any improvement will
be considered and can affect the running of the search. A second
user specified value is the weighting. This value allows the user to
place an importance on the quality of end solution verses the
amount of computation time expended searching.

Following a presentation of the current literature and a review of
our proposed technique we then presented a case study where the
tradeoff operator was applied to a large complex problem:
configuration setting for selected TSP problems.

Finally we outlined where we believe the tradeoff operator might
be applied in the future.

References

[1] G. Syswerda, "Schedule Optimization Using
Genetic Algorithms," in Handbook of Genetic
Algorithms, L. D. Davis, Ed. New York: Van
Nostrand Reinhold, 1991, pp. 332-349.

[2] L. D. Davis, "Applying Adaptive Algorithms to
Epistatic Domains," Proc. of Int. Joint Conference
on Artificial Intelligence IJCAI, pp. 162-164, 1985.

[3] D. E. Goldberg and R. Lingle, "Alles, Loci and the
TSP," Proc. of the First International Conference
on Genetic Algorithms and Their Applications, pp.
154-159, 1985.

[4] I. M. Oliver, D. J. Smith, and J. R. Holland, "A
study of permutation crossover operators on the
traveling salesman problem," Proc. 2nd
International Conference on Genetic Algorithms
and their Applications, pp. 224-230, 1987.

[5] M. Gorges-Schleuter, "ASPARAGOS an
asynchronous parallel genetic optimization
strategy," Proc. 3rd International Conference on
Genetic Algorithms, pp. 422-427, 1989.

[6] K. D. Crawford and R. Wainwright, "Research

Question: How does one go about developing a new
crossover operator with an a priori expectation of
its merit? (A Survey of Crossover Operators for
Genetic Algorithms)," The University of Tulsa,
Tulsa, USA Technical Report UTULSA-MCS-96-
2,, 1996.

[7] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs. Berlin Germany:
Springer Verlag, 1996.

[8] W. Banzhaf, "The “Molecular” Travelling
Salesman," Biological Cybernetics, vol. 64, pp. 7-
14, 1990.

[9] D. B. Fogel, "An Evolutionary Approach to the
Traveling Salesman Problem," Biological
Cybernetics, vol. 60, pp. 139-144, 1988.

[10] J. H. Holland, Adaptation in Natural and Artificial
Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence: The University of Michigan Press,
1975.

[11] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V.
Gucht, "Genetic Algorithms for the Traveling
Salesman Problem," Proc. 1st International
Conference on Genetic Algorithms and their
Applications, pp. 160-165, 1985.

[12] D. B. Fogel, "Applying Evolutionary Programming
to Selected Traveling Salesman Problems,"
Cybernetics and Systems, vol. 24, pp. 27-36, 1993.

[13] D. B. Fogel, "Empirical Estimation of the
Computation Required to Reach Approximate
Solutions to the Traveling Salesman Problem Using
Evolutionary Programming," Proc. of the Second
Annual Conf. on Evolutionary Programming, pp.
56-61, 1993.

[14] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S.
Dizdarevic, "Genetic Algorithms for the Traveling
Salesman Problem: A Review of Representations
and Operators," Artificial Intelligence Review, vol.
13, pp. 129-170, 1999.

[15] G. Harik and F. Lobo, "A Parameter-Less Genetic
Algorithm," presented at Genetic and Evolutionary
Computation Conference, 1999. GECCO 1999,
1999.

[16] M. Mernik, M. Crepinsek, and V. Zumer, "A Meta
Evolutionary Approach in Searching of the Best
Combination of Crossover Cperators for the TSP.,"
Proc. of the International Conference on Neural
Networks (NN'2000), pp. 32-36, 2000.

[17] B. Freisleben, "Metaevolutionary approaches," in
Handbook of Evolutionary Comutation, T. Bäck, D.
B. Fogel, and Z. Michalewicz, Eds. Oxford, UK:
IOP Press, 1997, pp. C7.2:1.

[18] A. Kosorukoff, J. Mittenthal, and D. E. Goldberg,
"Modeling of evolution of signaling networks in
living cells by evolutionary computation,"
University of Illinois at Urbana Champaign, Urbana
IL, USA, IlliGAL Report No. 2001006, 2001.

[19] T. C. Belding, "The Distributed Genetic Algorithm

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 1349

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

Revisited.," Proc. 6th International Conference on
Genetic Algorithms, pp. 114-121, 1995.

[20] H. Mühlenbein, Parallel Genetic Algorithms,
Population Genetics and Combinatorial
Optimization: Morgan Kaufmann Publishers, 1989.

[21] G. Cesari, "Divide and conquer strategies for
parallel TSP heuristics," Computers & Operations
Research, vol. 23, pp. 681-694, 1996.

[22] S. A. Mulder and I. Wunsch, Donald C., "Million
city traveling salesman problem solution by divide
and conquer clustering with adaptive resonance
neural networks," Neural Networks, vol. 16, pp.
827-832, 2003.

[23] J. Grefenstette, "Optimization of control parameters
for genetic algorithms," IEEE Transactions on
Systems, Man and Cybernetics, vol. 16 (1), pp. 122-
128, 1986.

[24] R. Sosic and G. D. Wilby, "Using the Quality-Time
Tradeoff in Local optimization.," Proceedings of
the IEEE Second ANZIIS Conference, pp. 253- 257,
1994.

[25] Z. Michalewicz and D. B. Fogel, How to SolveIt:
Modern Heuristics. Berlin, Heidelberg, New York:
Springer Verlag, 2000.

[26] G. Dantzig, R. Fulkerson, and R. Johnson,
"Solution of a large-scale travelling salesman
problem," Operations Research, vol. 2, pp. 393-
410, 1954.

[27] S. Lin and B. W. Kernighan, "An Effective
Heuristic Algorithm for the Traveling Salesman
Problem,," Operations Research, vol. 21, pp. 498-
516, 1973.

[28] J. N. MacGregor and T. C. Ormerod, "Human
performance on the traveling salesman problem,"
Perception and Psychophysics,, vol. 58, pp. 527-
539, 1996.

[29] K. Katayama and H. Narihisa, "An Efficient Hybrid
Genetic Algorithm for the Traveling Salesman
Problem," Electronics and Communications in
Japan, Part 3, vol. 84, pp. 1783-1791, 2001.

[30] K.-S. Leung, H.-D. Jin, and Z.-B. Xu, "An
expanding self-organizing neural network for the
traveling salesman problem," Neurocomputing, vol.
62, pp. 267-292, 2004.

[31] G. Reinelt, "TSPLIB - A Traveling Salesman
Problem Library," ORSA Journal on Computing,
vol. 3, pp. 376-384, 1991.

[32] G. G. Mitchell, D. O'Donoghue, and A. Trenaman,
"A New Operator for Efficient Evolutionary
Solutions to the Travelling Salesman Problem,"
Proc. Applied Informatics, pp. 771--774, 2000.

[33] G. G. Mitchell, D. O'Donoghue, D. Barnes, and M.
McCarville, "GeneRepair- A Repair Operator for
Genetic Algorithms," Proc. Genetic and
Evolutionary Computation Conference (GECCO)
Late Breaking Papers, pp. 235--239, 2003.

[34] G. G. Mitchell, "Validity Constraints and the TSP -
GeneRepair of Genetic Algorithms.," Artificial

Intelligence and Applications, pp. 306-311, 2005.

1350 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on June 9, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

