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Abstract. Currently millions of sensors are being deployed in sensor networks 
across the world. These networks generate vast quantities of heterogeneous data 
across various levels of spatial and temporal granularity. Sensors range from 
single-point  in  situ  sensors  to  remote  satellite  sensors  which  can  cover  the 
globe. The semantic sensor web in principle should allow for the unification of 
the  web  with  the  real-word.  In  this  position  paper,  we  discuss  the  major 
challenges  to  this  unification  from  the  perspective  of  sensor  developers 
(especially  chemo-sensors)  and  integrating  sensors  data  in  real-world 
deployments. These challenges include: (1) identifying the quality of the data; 
(2) heterogeneity of data sources and data transport methods; (3) integrating 
data  streams  from  different  sources  and  modalities  (esp.  contextual 
information), and (4) pushing intelligence to the sensor level.

Keywords:  Environmental  sensor  networks,  chemo-sensors,  metadata 
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1   Introduction

The semantic sensor web offers the unique opportunity to unify the real and virtual 
world [1].  The notion of  unifying  the real  world with the virtual  world has  been 
described before as internet-scale control, a concept that which originated with IBM 
researchers Ron Ambrosio and Alex Morrow [2]. The notion of internet-scale sensing 
and how it relates to chemo-sensors has also been examined [3], and this suggestion 
made that the realization of large-scale sensor networks should be based on internet 
enabled  sensors  that  allow  for  external  browsing  of  the  sensor’s  status,  provide 
command and control, and facilitate feedback of information to individuals and other 



devices (see Fig. 1). Such a view suggests pushing analytics down to the sensor level. 
The  internet-scale  sensing concept  is  very  similar  to  current  proposals  for  the 
Semantic  Sensor Web (SSW) where  such a system will  need  to  be  automatically 
deployed, automatically configured and have tailored delivery of information for a 
variety of users [1]. 

At its simplest a SSW is one where sensor data is annotated with semantic metadata 
to increase interoperability as well as to provide contextual information essential for 
situational knowledge [4]. According to the ‘Sensor Model Language (SensorML) for 
In-situ  and  Remote  Sensors’  discussion  paper  a  sensor  is  "an  entity  capable  of 
observing  a  phenomenon  and  returning  an  observed  value.  A  sensor  can  be  an 
instrument or a living organism (e.g. a person)…", p12, [5]. Clearly, manual sampling 
still takes place in many parts of the world (where it may be a legal requirement) and 
this  results  in  under-sampling.  Under-sampling  can  be  overcome  either  by  using 
remote  sample  collection  devices  (auto-samplers)  or  by  using  sensor  networks  to 
continuously measure over long time periods. However, we should note that the SSW 
will  have  to  deal  with  data  from manual  sampling  (perhaps  via  a  lab-based  data 
management  system)  as  well  as  near  real-time data  streams.  This  is  important  as 
“events” may be detected via SSW but confirmation may require autosamplers to grab 
samples from the same source at the same time, and flag that they are available; an 
operator  has  to  go  to  the  sample,  and  collect  for  a  more  sophisticated  lab-based 
analysis that generate data acceptable in a court.

The variety of existing sensor networks is extensive but the core consistent with 
that  of  SSW in that  it  envisages  a  world in which the status of the real  world is 
monitored  by  large  numbers  of  distributed  sensors,  forming  a  sensor  ‘mesh’  that 
continuously feeds  data into integration  hubs,  where  it  is  aggregated,  correlations 
identified, information extracted, and feedback loops used to take appropriate action 
[6]. Sensor networks provide a web of interconnectivity that provides the multiple 
sources of information that will underpin more accurate decision making. Decision-
making in the SSW will be absolutely essential. Decision making is a complex and 
demanding process which is often constrained in a number of possibly conflicting 
dimensions including quality, responsiveness and cost. We suggest that analytics in 
the SSW will happen across a continuum from one edge of the SSW to the other, 
from the sensors right through to the end user. By this we mean data stream analytics 
can occur on the sensor itself (see Section 4) and from any point in SSW to the end 
user who may apply his or her own analytics to a variety of data streams from the 
SSW. 

Sensor networks are composed of sensor nodes which are the smallest component 
of a sensor network that has integrated sensing and communication capabilities and 
these can be wired (as in some coastal observatories) or wireless (as in wireless sensor 
networks).  The  sensor  node  has  basic  networking  capabilities  through 
communications with a base-station and sometimes other nodes. The simplest sensor 
nodes will have a  microcontroller  to perform basic processing operations but sensor 
nodes  can  also  be  highly  complex,  e.g.  remote  sensing  instruments  on  satellite 
platforms, and which perform complex processing operations locally. 

At present  the culture in SSW/wireless  sensor  network (WSN) research is  very 



heavily biased towards transducers like thermistors which is understandable as they 
exhibit  almost  ideal  behaviour  -  low cost,  long-life,  very  low-power,  small  form 
factor,  high  accuracy  and  precision,  rugged,  reliable,  etc.  This  bias  colours  the 
expectations of SSW/WSN researchers in that they expect all sensors to conform to 
this ideal. The physical  sensor bias, in short, is the notion that  all sensors act like 
thermistors and thus are held to be reliable or at least reliable enough that questions of 
data  quality  are  relatively  straightforward,  and  the  sensors  are  simple  to  use  and 
require little maintenance. In reality this is invariably not the case for a variety of 
reasons including, leaching of active components from sensing membranes (see [7]), 
physical  damage,  lack  of  selectivity,  non-linear  performance,  baseline  drift  and 
biofouling  (particularly  in  the  marine  environment).  And as  such  the  data  stream 
generated  by  sensors  (especially  environmental  sensors)  is  prone  to  data  quality 
(trust) issues [8]. Physical  sensors which are encapsulated can also be affected by 
extreme  changes  in  temperature.  The  SSW  system  itself  must  be  capable  of 
examining the  streams of  data being imported,  and  both observing  environmental 
events as they take place (e.g. pollution event) or observing erratic behaviour from a 
particular sensor and flagging it as unreliable and requiring attention. An end user 
who accesses data from the SSW should be given information on the quality of the 
data from a sensor or set of sensors and ultimately be given enough information to 
ascertain whether they wish to trust the data or not. But how is the analytics to take 
place ? Should there be a standard? The solution to this may lie in current research on 
the interaction between the rule and the ontology layers of the Semantic Web. 

In dealing with raw data streams we can ask – what does this data stream mean ? 
Generally  speaking  data  streams  are  not  self  identifying  and  we  require  outside 
information,  metadata,  to  understand  the  stream.  The  main  driver  for  the  use  of 
metadata has been data sharing. Scientists generate large amounts of data and often 
we wish to share this data with other researchers. This "data sharing" is made easier 
when the data formats are the same or at least interoperable. However, it is often the 
case that "data sharing" is difficult due to competing standards and a general lack of 
metadata.  In  the marine area  there has  been  much work on establishing metadata 
standards. This work has been driven by practical needs as often because researchers 
are interested in phenomena that cover large areas where several groups or institutes 
are gathering data. To get  a full picture of a particular phenomenon, e.g.  an algal 
bloom along a coast line, a researcher may need to augment the in-situ sensor data 
streams with information from a variety of other sources (e.g. satellite information). 
Therefore in considering SSW applications it is worth examining current standards to 
see if they can fit into a SSW.

Another goal  of  internet-scale sensing and the SSW is to allow for plug’n’play 
sensors (or alternatively deploy-and-forget sensors). It  is worth noting how difficult 
this in the real world. Consider the example of an ocean observatory such as the one 
being developed by the Monterey Bay Aquatic Research Institute (MBARI). MBARI 
highlight  that  the  network  for  the  ocean  observatory  will  use  a  wide  variety  of 
communication links:  optical  fibre,  microwave,  packet  radio,  satellite and acoustic 
[9]. This results in a diversity of throughput, latency and intermittence throughout the 
network. These are factors which will also affect the SSW in the real-world, namely – 



can the SSW handle a diversity of throughput, latency and intermittence ? There has 
been  work  done  on  data  transport  protocols  that  guarantee  delivery  (e.g.  [IBM’s 
MQTT) but  where  a  sensor  is  continuously sending data  it  may be the case  that 
dropping several packets is not considered a large problem. This is major challenge 
(and perhaps the most obvious) for the SSW – given the heterogeneity of data sources 
and data transport methods how can they all fit neatly into the SSW ?

Therefore, from the perspective of sensor developers (especially chemo-sensors) 
and with respect to integrating sensors data in real-world deployments there are four 
main challenges to the unification of the real and virtual world: 

1. The heterogeneity of data sources and data transport methods that all must 
neatly fit into the SSW. 

2. The quality of the data must be described and understood. 
3. Data  streams  from  different  sources  and  modalities  (esp.  contextual 

information)  which  vary  in  across  many  dimensions,  including  spatial, 
temporal, granularity of data, must be integrated.

4. The SSW must be capable of supporting analytics  (e.g.  decision making) 
across the SSW nodes.

Some of these challenges are inter-related e.g. a solution to integrating data streams 
from different sources and modalities must respond to challenge (1).

2   Integrating data from heterogeneous sensors and modalities: a 
marine example

The question of what constitutes a sensor must not be constrained when considering 
the SSW. For example in the context of environmental monitoring, in-situ wireless 
sensor networks (WSN's) substantially reduce the need for costly labour-intensive on-
site sampling and data collection. However WSN's pose some distinct disadvantages 
and  we  are  often  required  to  consider  alternative  or  complementary  sensing 
modalities.  In  order  to  identify  and  highlight  some of  the  issues  for  the  SSW in 
relation to integrating data from heterogeneous sensors, we will examine the scenario 
of  marine  monitoring.  However  many of  the  issues  outlined  here  can  equally  be 
applied to other application scenarios.

Marine  monitoring  includes  the  observation  of  various  aspects  of  the  marine 
environment.  It  ranges  from  the  detection  of  pollution  and  the  development  of 
harmful algal  blooms to the monitoring of  coastal  features and coastal  erosion. A 
recent analysis of developments in mote-based wireless sensor networks with respect 
to environmental monitoring [6] suggests that there are still many limitations with the 
current  capability  of  these  platforms  for  sustainable  environmental  sensing.  As 
previously  mentioned,  in-situ  sensors  which  are  in  direct  contact  with  the 
environment  are  subject  to  the  problem  of  bio-fouling  and  require  regular 
maintenance. This can result in unreliable and noisy data or gaps in the sensing data. 
Furthermore, the more advanced chemo-sensors are still quite expensive to produce, 



and at present require regular maintenance (from days to weeks). Therefore only a 
limited  number  of  these  may  be  deployed  in  the  environment  and  are  subject  to 
regular maintenance. Due to the expense and logistical difficulties associated with in-
situ networks and some of the problems outlined above, it is currently not possible to 
monitor  a  wide  area  over  long  periods  of  time  with  current  mote-based  wireless 
sensor networks. Also, in-situ sensor networks may not be suited to certain types of 
applications. For example Alexander and Holman [10] used an alternative sensing 
mechanism (video cameras) to quantify near-shore morphology of a coastal location 
since the turbulent nature of the surf zone often makes it difficult to maintain in-situ 
instrumentation.

2.1   Satellite-based remote sensing

Due  to  the  limitations  outlined  above,  alternative  sensing  modalities  are  often 
considered for the purposes of marine monitoring. Sophisticated satellite sensors are 
very effective for monitoring many parameters such as sea surface temperature, sea 
surface  height,  ocean  currents,  turbidity,  and  chlorophyll  pigment  concentration 
(which subsequently  can be used to determine the amount  of  algal  growth in the 
water). A number of these sensors are orbiting the earth on various satellite platforms. 
These sensors have differing spatial resolutions and operate on satellites with varying 
orbits and orbit cycle times (which subsequently affect geo-spatial comparison and 
temporal resolution).

Some of these sensors only operate in the solar reflective spectral range; hence 
they only gather useful data on cloud-free days during periods of daylight (i.e. when 
illumination  conditions  are  suitable).  For  example,  MERIS  (Medium  Resolution 
Imaging Spectrometer) onboard ESA's Envisat platform is a programmable, medium-
spectral resolution, imaging spectrometer, which operates in this range. Its primary 
purpose is to measure the colour of the ocean and subsequently derive estimates of the 
concentration of parameters such as chlorophyll and suspended sediments. It  has a 
spatial resolution of 1200m over the ocean and 300m over land and coastal zones and 
it completes coverage of the Earth in 3 days [11].

Other  sensors are not subject  to these restrictions and can provide data during 
periods of darkness and cloud-cover. An example of such a sensor is a radar altimeter 
which  transmits  microwave  frequency  pulses  to  the  sea  surface  and  receives  the 
reflected echoes [12].  This type of remote sensor is  often used for measuring sea 
surface  height.  The  Ocean  Surface  Topography  Mission  (OSTM)/Jason-2  is  an 
international  satellite  mission  that  was  launched  in  June  2008  to  extend  the 
continuous climate record of sea surface height measurements. The main instrument 
onboard Jason-2 is an altimeter that measures the distance from the satellite to the 
ocean surface. It repeats its ground track every ten days, covering 95 percent of the 
world's ice-free oceans [13].

Many of these satellite sensor streams also arrive in various formats. Furthermore 
data is not overlaid on one common grid which affects geospatial comparison. There 
exists  a  number  of  European  and  international  projects  aimed  at  improving  the 
interoperability of satellite sensor data; an example of such a project is the Global 
High  resolution  Sea  Surface  Temperature  pilot  project  (GHRSST-PP)  which  was 



initiated  by  GODAE  –  Global  Ocean  Data  Assimilation  Experiment.  GODAE 
identified that numerical ocean forecasting models require a near real-time supply of 
SST data, sampled often enough to resolve the diurnal cycle, along with an accuracy 
better than 0.2K and a spatial resolution better than 10 km which is only possible by 
combining the best capabilities of different types of sensors. 

In  2002  GODAE initiated  GHRSST-PP  [14]  and  the  data  products  from this 
programme satellite  provide  SST observations  from various  satellite  sensors  in  a 
common  format  (netCDF)  together  with  a  measure  of  uncertainty  for  each 
observation. This means that all satellite SST data are presented in a common format 
and the user doesn’t have to re-code for the ingestion of different satellite data. The 
ancillary data provided allows the user to filter data based on the criteria outlined to 
their specific application. A combined analysis of all available SST data is carried out 
enabling the benefits of using in situ, microwave satellite SST and infra-red satellite 
SST in synergy. Diagnostic datasets are also produced for a number of sites around 
the globe. This is where all available data for a number of areas are gathered and 
subsequently  resampled  onto  a  common  grid  to  assist  intercomparison  and 
characterisation of the various input data streams [15]. 

2.2   Alternatives to Satellite-based remote sensing

Another alternative sensing modality is that of optical airborne remote sensing. Its 
major benefit as opposed to satellite remote sensing is that the user can define its 
operational  and  deployment  characteristics.  It  generally  can  provide  much  higher 
spatial  resolution  data  and  be  deployed  when  atmospheric  (i.e.  cloud  free), 
environmental,  and  solar  conditions  are  acceptable  to  study  specific  phenomenon 
[16]. This can also be coordinated with in-situ sampling for algorithm validation or 
development. In coastal aquatic environments, many processes occur over space and 
time  scales  that  cannot  be  adequately  monitored  using  satellite  remote  sensing 
systems. The use of airborne remote sensing offers unique capabilities that enable 
specific coastal events to be studied. Coastal video systems have also been identified 
as effective tools for coastal monitoring and can be used to monitor coastal erosion, 
sea conditions, etc. A prime example of this is a major European research project 
entitled CoastView [17]. This is an alternative to the more expensive satellite and 
airborne remote sensing data which can also provide data over long periods of time at 
high spatial and temporal scales which is suitable for monitoring inland and coastal 
marine locations. Web cams and CCTV cameras are cheap and easily deployed. In 
fact, there are an abundance of web-cams available on the World Wide Web that can 
be used for monitoring purposes.

The singular use of video and images from cameras can act as a powerful sensing 
tool  but  even  more  so  when  used  in  combination  with  other  sensing  modalities. 
Davidson et  al.  [17] point  out that  despite  the potential  to improve monitoring of 
coastal zones with coastal video systems, that there are many coastal management 
issues that may only be addressed adequately through the integration of additional 
data sources and expert knowledge alongside the image data. For example, O’Connor 
et al have investigated the use of multiple sensing modalities in a river location [18] 
using video feeds with data streams on pH, temperature, turbidity, conductivity and 



depth. It can provide some context around what is being sensed by monitoring various 
parameters. The conditions surrounding certain events may subsequently be deduced 
e.g. what are the environmental conditions surrounding an algal bloom event, what 
were  the  prior  conditions  to  increased  phosphate  detected  in  the  water.  This  can 
subsequently  be  used  to  automatically  control  the  sampling  frequency  of  in-situ 
sensors. Multiple sensing signals can also be used to deduce the quality of data and 
provide this information to the user. 

2.3   Problems facing SSW from the coalface of the marine enviroment

The SSW should be aiming at providing similar functionality to GHRSST-PP on a 
much larger scale. In effect the SSW must be able to provide an awareness of the 
capabilities, limitations and differences of the sensors and associated data streams. 
This is necessary in order to select appropriate data streams, from the diverse array 
currently  available,  to  meet  the  needs  of  specific  applications.  Other  problems 
outlined in this section were that: (a) the phenomena sensed is broad and this requires 
a broad suite of sensors / instruments which all have to described / classified within 
the SSW; (b) In the real world we will have unreliable and noisy data or gaps in the 
sensing data and the SSW must account for this; (c) data is often in different formats 
(which currently results in users having to recode) and these must neatly fit into the 
SSW; (d) SSW should allow reasoning over heterogeneous multimodal sensor data 
and  push  intelligence  to  the  sensor  level  i.e.  if  condition  (x),  condition(y)  and 
condition(z)  are  met,  start  sampling  more  frequently  or  alert  the  responsible 
authorities  that  samples  need  to  be  taken  immediately,  (e)  the  SSW  should 
accommodate interoperability of data streams and be able to deduce that the sensing 
signal in question is faulty or offline and subsequently provide the alternative. 

All of these problems relate to the four challenges outlined in section 1. Challenge 
(1) which relates to the heterogeneity of data sources covers problems (a), (c), and (e) 
and so appears to be the largest challenge to SSW. While challenge (2) which relates 
to data quality is highlighted by problem (b), and (d) relates to challenge (4) where 
analytics occur across the SSW.

3   Precursors & building blocks of the Semantic Sensor Web

Considering the maxim that it is best not to reinvent the wheel we will outline a 
number of attempts at describing data and sensors. These attempts can be viewed as 
the precursors  to the SSW or as possible components in  future architectures.  One 
movement in sensor research is towards making sensors web-resident thus making it 
possible to remotely discover, access, and use real-time data taken directly from the 
sensors.  These three activities, discovery, access and use are fundamental to working 
with sensors. We will briefly describe three standards of data description and sensor 
description (1) the CDI XML schema [19], (2) MarineXML [20] / CSML and (3) 
SensorML [21]. SensorML falls into the category of sensor description rather than 
just data description. We should stress that these three standards are just three among 



a larger community of standards, e.g. KeelyBricks [22], MBARI [23] , MIML [24], 
ESML [25] , and OBIS [26]. The common data index (CDI) is designed to be used as 
an index to the individual datasets held by sea-search partners and as such could be 
described as a description of data sets [19]. This metadata about data sets has been 
implemented in an XML format known as the CDI XML schema. . The CDI XML 
format has adopted the ISO19115 metadata standard which is an ISO standard that 
defines  the schemas for  describing geographic  information and services [19].  The 
CDI is supposed to provide enough information to answer the following questions: (1) 
Where? - What is the geographical location of the captured data?  (2) When? - When 
the observation began and when did it  end? What was the sampling interval? (3) 
What?  -  What  was  measured?  (4)  How?  -  What  instruments  were  used?  What 
platforms were involved? (5) Who? - Who is the originator of the data? (6) Where to 
find data? - Which partner holds the data? Is there web access? Are there restrictions?

MarineXML gives a common framework for the data and its structure in terms of a 
catalogue of feature types but does so by largely using the Climate Science Markup 
Language  (CSML)  to  tag  data.  In  fact,  it  is  probably  more  correct  to  say  that 
MarineXML is a framework for allow interoperability of marine data. The framework 
requires the implementation of a common vocabulary for measurement systems by 
use of parameter dictionaries for storing agreed definitions of  phenomena and the 
units  used  to  measure  them.  This  is  the  same  solution  that  the  CDI  uses  for 
instruments and the respective measurements. However, MarineXML adapts the unit 
and  phenomena  dictionary  definitions  inherent  in  the  Climate  Science  Markup 
Language (CSML) in applying a GML encoding of CFStandardNames for referencing 
phenomena dictionaries and UDUnits for unit definitions.  Essentially,  phenomena 
(things that  can be sensed/measured) are measured in terms of  units.  GML has a 
dictionary  of  phenomena  and  associated  units  (of  measurement).  Whereas  CDI 
schema XML is based on ISO19115 and MarineXML is based on ISO 19136 both 
these ISO standards fall into the general ISO 19100 category of geographic standards. 
Thus we use the term "MarineXML/CSML" to refer to the data standard rather than 
the whole data interoperability framework of MarineXML.

As with the CDI XML schema there is the conception that a common framework 
and grammar for expressing the data and its structure is needed and that this also 
necessitates a common vocabulary of measurement systems and feature types. But 
abstractly all marine data in general should have the following attributes: (1) Position: 
all  data  will  have  associated  positional  information;  (2)  Time;  (3)  Units;  (4) 
Tolerances:  accuracy,  precision,  resolution;  (5)  Source;  (6)  Agent:  what  person  / 
organisation carried out the data recording? (7) Method: method by which the data 
was obtained, (8) Promoter: entity that initiates data collection, e.g.  a government 
agency; (9) Original purpose: what was the original purpose of the data collection? 
(10)  Restrictions:  are  there  copyright  restrictions  etc?  (11)  Errors;  (12)  Quality 
control; (13) Form; (14) Format; (15) Metadata.

SensorML  is  an  XML  based  description  of  the  process  or  processes  of 
measurement that a sensor or sensor systems performs. Processes are entities that take 
one or more inputs and through the application of well-defined methods using specific 
parameters, results in one or more outputs.  In addition there is a large amount of 
metadata  related  to  the  sensor  with  respect  to  system  location,  capabilities, 



characteristics,  contacts,  time  constraints,  legal  constraints,  security  constraints 
amongst others. 

3.1   The problem of granularity and metadata standards

One problem which reoccurs in the creation of SSW systems is - what metadata is 
to be used and how specific should it be? However, a second problem arises when 
organizations  use  different  types  of  metadata  and  this  problem  is  a  question  of 
semantics in the broadest sense – what do the metadata terms actually mean? It may 
be the case that different groups may represent the same data in different ways or use 
codes that have different levels of granularity. The SSW system has to be able to deal 
with all  these problems.  In  Table 1  are listed two parameters which list  the GF3 
codes. In this example the code “DRYT” refers to “Dry bulb temperature”. In Table 2 
we list  a  number of  BODC codes related to  “air  temperature” using a “dry  bulb 
thermometer”. As can be seen the BODC codes list the instrument used, in this case a 
“dry bulb thermometer”, as well as what is being measured. The BODC also appears 
to have more entries for “air temperature” using a “dry bulb thermometer” than GF3. 
The BODC in this case is more detailed and thus has a higher level of granularity and 
different levels pose a problem which data with different tags have to be integrated. 
Does “DRYT” map onto all three BODC codes or is it just equivalent to one of the 
BODC codes? This type of question must be answered by developers of the SSW 
system but also more importantly is must be answered by the community of users. 
The problem of granularity is a general problem for ontology-builders and those who 
wish to map ontologies. This problem also falls under challenge (2), the heterogeneity 
of data sources, when the SSW uses descriptions to aid in classifying data sources the 
choice of appropriate metadata standards is fundamental. 

4.1 Chemo-sensors & the semantic sensor web

Chemo/bio-sensor Networks employ emerging molecular sensing technologies in 
order to monitor specific targets in the environment, and in some cases develop linked 
proxies  for  predictive  use.  The  Adaptive  Sensors  Group  (based  in  Dublin  City 
University)  have  developed  a ground-based  sensing  device,  in  this  case,  an 
autonomous phosphate analyzer [27]. This is a field-deployable system for long-term 
monitoring  of  phosphate  levels  in  natural  waters  was  developed  incorporating 
sampling,  pumping,  reagent  and  waste  storage,  optical  detection,  and  wireless 
communication in a robust  and portable device.  The analyzer  is  more complex in 
design than common sensors such as thermistors and passive infrared sensors as it 
uses “wet chemistry” to analyse phosphate which involves pumps, valves and fluid 
handling, the use of reagents and storage of waste.

The phosphate monitoring analyser is designed to operate autonomously in long-
term field deployments. Figure 2 depicts trial results from a waste water treatment 
plant obtained during a 30+ day trial. A trial of this length is a major achievement as 
many chemo-sensors operate over days rather than weeks to months. Comparable data 



were  obtained  by  the  plant’s  monitoring  system  suggesting  that  the  wireless 
phosphate analyser can produce reliable data and is sufficiently robust to be operated 
in a completely autonomous manner for at least seven weeks. 

4.1   Analytics: pushing intelligence to the edge of the semantic sensor web 

SmartBay is a program of national infrastructure investment with the aim of enabling 
the  development  of  next  generation  advanced  coastal  and  marine  monitoring  and 
management technologies [28]. The Marine Institute (Ireland) and IBM are engaged 
in a multiyear collaboration to develop and provide advanced capabilities for global 
water  management  solutions.  This  collaboration  is  multifaceted  but  two  major 
outcomes have been the development of an advanced embedded sensor platforms and 
the  development  SmartBay  information  portal.   The  advanced  embedded  sensor 
platforms  are  based on hardware  that  is  ultra  low power  and  embedded software 
builds  IBM  technology  (e.g.  J9  JVM,  Lotus  Expeditor  components,  MQ 
Microbroker).  This platform has been developed to  push intelligence down to the 
sensor level where real-time decision making can take place. 

The autonomous phosphate analyzer [27]  was used as a testbed for the advanced 
embedded sensor platforms. The core idea here is to push intelligence onto the sensor. 
The new system has the following capabilities: (1) Self monitoring - the system is 
able  to  monitor  its  consumables  and  change  sample  rates  in  response  to  outside 
events;  (2)  Scalability  –  the  command  and  control  can  be  updated  remotely  and 
multiple  units  can  be  updated  simultaneously;  (3)  Verifiable  data  transmission  – 
MQTT is used to ensure data is delivered.

The  concentration  of  phosphate  in  the  treatment  plant  is  affected  by  the  local 
ambient weather conditions and so it is desirable to vary the sampling rate as local 
weather  conditions  change.  Rainfall  can result  in  increases  in  phosphate  levels  in 
water  bodies  due  to  increased  run  off  from  agricultural/forestry  land  where 
manure/fertilizers  are  used.  Heavy rainfall  or  storm events  can also lead  to  large 
increases  in  the  flow  in  a  river  which  can  also  increase  phosphate  levels.  The 
inclusion of satellite meteorological data, which is usually available directly on the 
web or  can  be  acquired  from the  local  meteorological  institute,  can  give  a  more 
complete picture of the reasons behind the changes of the pollutants measured. This is 
exemplified by the causal link between deterioration in water treatment effectiveness 
and  the  waste  volume  throughput.   A  major  increase  in  water  volume input  for 
example  due  to  heavy  rainfall  in  the  local  catchment,  may  overwhelm a  plant’s 
capacity and lead to a deterioration in the treated water quality.  For a chemo-sensor 
such as the phosphate system on board analytics may identify events based on local 
changes in phosphate level but data from contextual sources are required to provide 
the full picture. The seamlessly joining of plug-n’-play sensors into the SSW requires 
the system to be able to handle (1) the sensor and (2) contextual information. Can the 
SSW  provide  a  sensor  with  contextual  information  that  can  allow  for  predictive 
modeling? 

Recent developments in wireless sensor node technologies have resulted in devices 
with increased CPU, memory and transmission capabilities. Such developments have 
lead to the possibility of deploying goal based reasoners onto the leaf nodes of the 



network to engage in real  time, in-situ and intelligent decision making. Given the 
remote operation, potential latency in message transmission and data volume, such 
abilities may be crucial to the successful operation of the sensing system. Each entity 
resident on a node is termed an agent and there may be multiple agents on a single 
node. An example of one such system is AgentFactory Micro Edition (AFME) [29]. 
AFME has  been  successfully  deployed  on  a  wide  range  of  devices  with  varying 
capabilities. For example, it has been used on SunSPOTs to provide adaptive sensing 
capabilities. AFME has also been deployed to the SmartBay Phosphate Monitoring 
system. Using AFME provides a common programming model for the wide range of 
sensor devices that  may possibly be deployed to compliment the core system. As 
mentioned previously, it also provides in network decision making so for example, 
decisions based on trade-offs between system accuracy and power consumption can 
be taken without human intervention in the field. The degree of cleaning of the device 
will impact power consumption, as well as sample quality. In some cases it may be 
vital to have a very precise reading when, for example, no other sensors are within the 
locality. However, when numerous other sensors are also participating, then minor 
inaccuracies may be tolerated as they can be averaged out by using a combination of 
all  sensor  readings.  Further  standard  energy  saving  decisions  such  as  adaptive 
transmission and sampling frequencies can also be taken by the agents.  

In addition to network based decisions, the agents can also provide some analytic 
mechanism to signify important trends in the data. For instance, if a phosphate level is 
breached  as  in  Figure  2,  the  agent  might  decide  to  notify  a  local  or  government 
authority. Such thresholding and event detection can be disseminated to the agents in 
a  similar  way  to  the  policy  level  considerations  such  as  prioritizing  power 
consumption discussed previously. The thresholds may be automatically adjusted on a 
daily or even hourly basis depending on the cumulative levels detected over a given 
period  of  time.  A  code  snippet  from  AFME  which  would  classify  three  high 
phosphate events in the Figure 2 but more importantly a series of actions can occur 
from this ongoing event detection is given below:

newThreshold(?t) > setThreshold(?t)
threshold(?x), reading(?y) > checkReading(?x, ?y);
thresholdBreached(?amount) > informUserAgent(?amount);
severeThresholdBreached(?amount), strictPolicy() > informPlantAgent(?amount); 

Further code from AFME could also detect sensor drift, diagnose operational issues 
and identify further user-defined events and integrate outside data sources.

However,  Figure  2  also  highlights  the  challenges  to  the  SSW.  The  reference 
sensor  (in  red)  does  not  identify  the  first  event  that  is  flagged  by  the  prototype 
phosphate sensor. Which raises the question - is this event real or is it a false positive? 
Many sensors will need access to contextual information and have sophisticated on-
board intelligence to assist in the process of deciding whether detected events are true 
or  false.  The SSW should allow sensors  to  discover,  access,  and process relevant 
contextual  information  -  even  sophisticated  instruments  such  as  the  prototype 
phosphate sensor can benefit from contextual information that improves the quality of 
event detection.  The contextual information should also be quality tagged (e.g. via 
metadata) to identify whether it should be used or not by other nodes in the SSW and 
this quality checking may further require access to other sets of related contextual 



information; which highlights the challenge of quantifying data quality. It will also be 
the case that false negatives can occur (what events have been missed?) and so as the 
numbers  of  devices  scale  up,  the  complexity  of  decision-making  also  scales  up. 
However,  in  both cases  (false  positives  and  false  negatives),  the  quality  of  event 
detection, and dependent decision making, can be improved.  In the case of false 
positives, the confidence in a positive decision is enhanced through, for example for 
the phosphate sensor, correlation of sampling rate with rainfall level; i.e. water quality 
decreases  when  there  is  a  heavy  rainfall  event  in  the  local  catchment;  therefore 
increase sampling rate to get more independent measurements for cross-validation. 
On  the  other  hand,  if  an  event  is  predicted  from contextual  information  but  not 
detected (possible false negative), the instrument could be instructed to check the data 
using more sophisticated algorithms to see if there is any evidence of an event.  

4.2   Problems facing SSW from the coalface of analytics and chemo-sensors

To summarise our discussion of analytics and chemo-sensors, it  is clear that more 
sophisticated decision making tools are needed to ensure that the incidence of false 
positives and false negatives is minimized. If this is not done then the usefulness of 
the aggregated information will be unacceptably compromised, and WSN effectively 
useless. In short, decision-making tools are required to if we are to achieve workable, 
functioning  internet-scale  sensing.  This  problem  falls  under  challenge  (4)  where 
analytics  may  occur  across  the  whole  SSW  and  challenge  (3)  where  contextual 
information will  have  to  accessed from different  data  streams (and different  data 
sources and modalities). 

5   Conclusions

Currently millions of sensors are being deployed in sensor networks across the world. 
These networks generate vast quantities of heterogeneous data across various levels 
of spatial and temporal granularity. The semantic sensor web will handle sensor data 
ranging from networks to single-point in-situ sensing to remote sensing which can 
cover the globe. This will result in the unification of the web with the real-word. In 
this position paper, we discussed the major challengers to this unification from the 
perspective of sensor developers (especially chemo-sensors) and integrating sensors 
data in real-world deployments. These challenges are:  

1. The heterogeneity of data sources and data transport methods that all must 
neatly fit into the SSW. 

2. Identifying the quality of the data. 
3. Integrating  data  streams  from  different  sources  and  modalities  (esp. 

contextual information).
4. Analytics (e.g. decision making) may occur across the SSW.



These  challenges  were  discussed  in  relation  to  current  metadata  standards, 
integrating  data  sources  in  the  marine  environment  and  in  relation  to  a  chemical 
analyzer.  These challenges cannot be dealt with separately as we have seen in the 
marine environment  that  the heterogeneity  of  data sources  makes integrating data 
streams  from  different  sources  and  modalities  extremely  difficult,  and  makes 
analytics based on contextual information problematic. The identification data quality 
will also rely on contextual information that is difficult to automatically process given 
the  heterogeneity  of  data  sources.  Thus  heterogeneity  of  data  sources  (and  data 
transport methods) is the core challenge but the other challenges must be dealt with 
for  the  SSW  to  offer  a  fully  scaleable,  integrated  solution  to  environmental 
monitoring.  
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Table 1.  GF3 codes for a number of parameters captured by M3A buoys.  

Parameter Unit GF3 codes
Air Temperature Celsius DRYT
Wind Speed m/sec WSPD
… … …

Table 2.  BODC codes for ‘Air temperature’ using a dry bulb thermometer.  

Parameter Description BODC codes
Air Temperature “AirTemp”:Temperature  of  the 

atmosphere  by  dry  bulb 
thermometer

CDTBSS01

Air Temperature “AirTemp”:Temperature  of  the 
atmosphere  by  dry  bulb 
thermometer

CDTASS02

Air Temperature “AirTemp”:Temperature  of  the 
atmosphere  by  dry  bulb 
thermometer

CDTASS03
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Fig. 2. Chemo-sensor in action: trial results. The phosphate levels of a waste water treatment 
plant obtained with a prototype analyzer during a 30+ day trial are shown. Comparable data 
were obtained by the plant’s monitoring system for reference values (on-line monitor).  The 
AgentFactory Micro Edition operating on the phosphate analyzer detects three high phosphate 
events based on the prototype analyzer data using the indicated threshold, which can set off a 
chain of remedial action.  However, the first event is possibly a false positive as the reference 
system does not  indicate  high levels.   Furthermore,  high levels  of  phosphate  are  indicated 
towards the end of the trial by the reference monitor, but not by the prototype system, which is 
potentially a false negative.

High Phosphate Level Events

Fig.  1. Establish  the  chain.  All 
analytical  measurements  must  be 
linked  to  realize  the  concept  of 
Internet-scale  sensing.  Localized 
control  of  important  parameters  is 
maintained,  but  the  information  is 
shared  with  external  users  via  the 
Internet.


