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Abstract 
 
The vascular endothelium is a dynamic cell monolayer located at the interface of the 
vessel wall and bloodstream, where it regulates the physiological effects of humoral 
and hemodynamic stimuli on vessel tone and remodelling. Hemodynamic forces are 
of particular interest and include shear stress, the frictional force generated by blood 
as it drags against the endothelium, and cyclic strain, transmural pressure due to the 
pulsatile nature of blood flow. Both forces can profoundly modulate vascular 
endothelial metabolism and function and, within normal physiological ranges, 
typically impart an atheroprotective effect which disfavours pathological remodelling 
of the vessel wall. Changes to arterial wall architecture (i.e. remodelling) are a key 
feature of vascular diseases (e.g. atherosclerosis) and often stem from disruption of 
normal blood flow patterns, leading to vascular endothelial dysfunction and 
dysregulation of the underlying smooth muscle cell layer. The focus of the PhD 
project was to investigate hemodynamic challenge of vascular endothelial cells 
impacts smooth muscle cells. In order to assess the hemodynamic challenge of 
vascular endothelial cells, shear stress and cyclic strain were applied to BAECs. Both 
forces resulted in morphological realignment of cells along with a clear realignment 
for the actin cytoskeleton in the direction of flow. Furthermore, ZO-1 localisation also 
increased at the cell-border. We next investigated how hemodynamic challenge of 
vascular endothelial cells putatively impacts vascular smooth muscle cell growth 
properties. Four experimental models were employed namely; laminar shear stress, 
turbulent shear stress, pulsatile shear stress with co-culture and cyclic strain using in 
vitro hemodynamic modelling. Laminar shear stress, pulsatile shear stress with co-
culture and cyclic strain of endothelial cells resulted in a decrease in BASMC 
proliferation with a parallel increase in apoptosis. Turbulent shear resulted in the 
opposite effect caused a slight increase in BASMC proliferation with no effect on 
apoptosis. This indicated that physiological forces impart an atheroprotective effect. 
In the hemodynamic models, BAECs and BASMCs were not in physical contact. This 
suggested that BAECs secreted factor(s) acting directly on the BASMC (or indirectly) 
on the BAECs were responsible for these effects. As the BAECs and BASMCs were 
not in physical contact this suggested that BAECs secreted factor(s) acting directly on 
the BASMC (or indirectly) on the BAECs were responsible for these effects. To 
investigate the endothelial signalling pathways and effectors putatively mediating 
these effects specific pharmacological inhibitors were employed. The results revealed 
that an integrin-Rac1 pathway possibly upstream of NO production may be mediating 
this endothelial regulatory response under LSS. We investigated the impact of LSS-
derived BCM on the expression of cell cycle associated genes within the smooth 
muscle cells both single gene- and microarray-based RealTime PCR methodologies. 
Our results highlighted key CDK, cyclins and other cell cycle regulatory proteins. 
This study confirms the importance of hemodynamic challenge on the endothelium 
and the putative interactions between endothelial and smooth muscle cells in vascular 
remodelling. 
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CHAPTER 1 

 

Introduction 
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1.1 Introduction 

 

Cardiovascular disease (CVD) includes dysfunctional conditions of the heart, 

arteries and veins, which supply oxygen to all parts of the body. Different forms of 

CVD include atherosclerosis, stroke, hypertension and intimal hyperplasia. CVD is 

the leading cause of death in the United States and most European countries. In the 

United States, after age 40, 49% of men and 32% of women develop coronary heart 

disease (Yu et al., 2007). CVD is also the main cause of mortality in Ireland 

accounting for over 36% of all deaths (approximately 10,000 deaths per year) (Irish 

Heart Foundation). The largest number of these relate to coronary heart disease and 

heart attacks with 22% of all deaths occurring under 65 (premature death). Ireland 

also suffers from one of the highest mortality rates in Europe with 52 premature 

deaths per 100,000 as compared with the EU average of 42 (Irish Heart Foundation). 

Over €169 billion is spent every year on cardiovascular disease in Europe. There are 

significant variations in different countries with relation to healthcare budgets on the 

treatment of CVD. Many European countries including the UK and Germany invest 

around 15-17% of their healthcare budget while Ireland invests a mere 4.4% of the 

total healthcare budget (Leal et al., 2006). In view of these facts a Cardiovascular 

Health Strategy was implemented in Ireland in 1999 by the government to reduce 

CVD mortality rates by 2009 at a cost of €220m. To date, only €60m has been 

invested. Ireland also has a shortage of cardiologists with only 11 per million 

compared to an EU average of 35 per million. While the trend is going in the right 

direction, these reports clearly indicate that further investment and research is 

required to support this strategy (Irish Heart Foundation). 
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Whilst significant progress has been made over the last 30 years in the reduction of 

CVD, it is still extremely prevalent in our society. Diagnostic and treatment facilities 

have greatly improved and huge efforts have gone into public health awareness 

programmes. Risk factors such as smoking, diet, cholesterol, obesity sedentary 

lifestyle, high blood pressure and elevated cholesterol levels are all causative factors 

in CVD (gender, age, genetics and ethnicity are also contributing factors).  

 

In order to understand the cellular basis of CVD, we need to examine the 

physiological, cellular, and genetic processes that regulate the vascular endothelium 

and ultimately, vascular remodelling. Among the physiological factors, hemodynamic 

forces associated with blood flow (i.e. shear stress and cyclic circumferential strain) 

play a pivotal role in vascular remodelling events. Indeed, under normal physiological 

conditions these forces impart an “atheroprotective” effect that disfavours 

pathological remodelling of the vessel wall.  When these forces become perturbed or 

attenuated however, we get pathological vessel remodelling. It is our purpose in this 

thesis to examine how these hemodynamic forces impact the endothelium with 

consequences for the functional properties of the underlying smooth muscle cells and 

ultimately for vessel remodelling.  

 

1.2 Vascular Remodelling 

 

Vascular remodelling can be described as any enduring change in the size or 

composition of a blood vessel. Remodelling of the blood vessel may occur to 

accommodate and adapt to changes in hemodynamic forces or as a response to 

inflammation or injury. Two basic types of vessel remodelling include normal or 
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“healthy” remodelling (e.g. angiogenesis, vasoconstriction and vasodilation) and 

abnormal or “unhealthy” remodelling (e.g. atherosclerosis and restenosis), the latter 

stemming from endothelial dysfunction. When the endothelium becomes 

dysfunctional (diet, injury, abnormal blood flow), normal biochemical processes 

within the vessel wall become impaired. Among the ensuing changes, one typically 

observes a decrease in synthesis and release of endothelial derived nitric oxide (NO), 

a potent vasodilator. These changes lead to loss of remodelling control, pre-disposing 

the vasculature to inflammatory diseases such as atherosclerosis. The following 

sections will examine in greater detail the effects of hemodynamic forces on the 

endothelium under both physiological and pathological circumstances. 

 

1.2.1 Blood Vessel Structure 

 

Blood vessels function to transport blood throughout the body. The arterial wall 

comprises of three layers: the tunica intima, which is the innermost layer and consists 

of a single layer of endothelial cells; the tunica media, which is the middle layer and 

consists of smooth muscle cells, connective tissue membrane and elastic fibres 

providing support and tone for the vessel wall; and the tunica adventitia, the 

outermost layer comprised primarily of fibroblasts and connective tissue (Li et al., 

2007). Both arteries and veins are comprised of the same three layers with less 

smooth muscle and connective tissue present in veins, thus making them thinner and 

containing less blood pressure than in arteries (Fig. 1.1). Blood vessel remodelling is 

pivotal to the development of many CVDs.   
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Fig. 1.1: Human Blood Vessels. Blood vessels function to transport blood throughout the 
body. They are comprised of three main layers: tunica intima, which is the innermost layer 
comprising the endothelium; tunica media is the middle layer that makes up the bulk of the 
vessel wall thickness; and tunica adventitia is the outermost layer. (Fox Stuart 1 Human 
Physiology 4th Brown Publishers). 
 

 

1.2.2 Vascular Endothelial Cells (ECs) 

 

The endothelial cell appears flat and cobble stone-like in shape. They form a single 

cell monolayer or “endothelium” that lines the lumen of blood vessels. The 

endothelial cell membrane contains many complex proteins that behave as receptors 

or ion channels, as well as caveolae which regulate the passage of fluid and 

macromolecules between the luminal and cellular compartments. The cortical web 

surrounding the endothelial monolayer contributes to cell shape and elasticity by 

responding to changes in intravascular pressure in addition to anchoring membrane 

proteins (Esper et al., 2006). Endothelial permeability (barrier function) is maintained 
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by the regulated apposition of tight/adherens junction protein complexes between 

adjacent endothelial cells. They regulate the passage of solutes and macromolecules 

between the blood and sub-endothelial space. Regulation of this is crucial for vascular 

homeostasis and is a central mechanism underlying vascular remodelling processes 

(Balda and Matter, 1998). Actin stress fibres that cross the cytoplasm adapt the shape 

of cells in response to hemodynamic forces such as blood flow and vessel wall 

distension. When flow increases, shear stress increases, causing cells to flatten and 

align in the direction of blood flow. As flow decreases, cells lose their realignment, 

increase in volume and appear like “cobble stones” (Esper et al., 2006). As will be 

discussed in detail later, the primary function of the endothelium is to maintain the 

health of the blood vessel by serving as a dynamic signalling interface between the 

vessel wall and circulating blood conditions.  

 

1.2.3 Vascular Smooth Muscle Cells (SMCs) 

 

Smooth muscle cells are spindle–shaped cells which can contract and relax and 

thus are the driving force behind vasoconstriction and vasodilation. In a relaxed state 

they are 20-500 microns in length and 5 microns wide. SMCs are characterised by 

their organised appearance and are arranged in sheets or bundle of cells. The 

cytoplasms of SMCs are inter-connected by gap junctions to allow different 

molecules and ions to pass between cells. Gap junctions are composed of connexons 

which connect across the intercellular space and provide communication to regulate 

simultaneous contraction of the medial SMCs (Yeh et al., 1997; Lash et al., 1990). 

The cellular cytoskeleton comprises actin filaments and a contractous protein called 

myosin. These filaments along with intermediate filament proteins (desmin and 
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vimentin) provide an organised cytoskeleton (Giuriato et al., 1992). SMC actin 

filaments are coupled to cell-ECM focal adhesions and cell-cell junctions. The former 

focal adhesion and intercellular junctions provide actin cytoskeleton attachment sites 

to both extracellular connective tissue and neighbouring cells. Cells are therefore 

mechanically coupled to one another such that cytoskeletal contraction of one cell 

induces contraction in an adjoining cell. 

 

SMC contraction is caused by the sliding of myosin and actin filaments over each 

other. Intermediate filaments (desmin and vimentin) are also involved in pulling the 

cell ends, thus causing the cell to shorten. Myosin undergoes a conformational change 

producing globular heads which protrude and attach cross-bridges with the actin 

filaments causing the filaments to move. The heads then release the actin filament and 

adopt their original configuration. They can also bind to another part of the actin 

molecule and drag it along further - a process known as cross-bridge cycling. This 

process can only occur when the myosin heads have been activated to allow cross-

bridges to form (Kamm and Stull, 1985). The myosin heads are comprised of heavy 

and light protein chains. When the light chains are phosphorylated by an enzyme 

called myosin light-chain kinase (MLCK), they become activated and contraction 

begins. MLCK only works when the SMC is stimulated to contract. Stimulation 

causes an increase of calcium into the SMC either from the extracellular space or 

endoplasmic reticulum. Calcium binds to calmodulin forming a calcium-calmodulin 

complex. This in turn activates MLCK allowing contraction to begin (van Lierop et 

al., 2002). To reverse contraction, myosin light-chain phosphatase dephosphorylates 

the myosin light chains (Kamm and Stull, 1985). 
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1.2.4 Endothelial Homeostasis  

 

As already mentioned the vascular endothelium is a monolayer of endothelial cells 

lining the vessel. The endothelium is strategically located between the bloodstream 

and the vessel wall, thereby playing a pivotal role in vascular homeostasis (Sagripanti 

et al., 2000). It regulates the physiological (and pathological) input of mechanical and 

humoral stimuli on underlying SMCs in the medial layer of the vessel wall. In this 

way, it regulates vessel tone and remodelling and modulates biological processes in 

immune and inflammatory processes. Under normal conditions, the endothelium 

displays anti-platelet, anti-coagulant and fibrinolytic properties, thus providing a non-

thrombogenic surface for blood flow. A subtle balance between endothelium-derived 

relaxing and contracting factors helps maintains vascular homeostasis.  

 

Among the physiological stimuli that impact upon the endothelium, mechanical or 

hemodynamic forces associated with blood flow are of central importance. These 

include cyclic strain, which is caused by a transmural force acting perpendicularly to 

the vessel wall (stems from the “pulsatile” nature of cardiac output), and shear stress, 

the frictional force created by blood flow as it “drags” against endothelial cells in 

vessels. These biomechanical forces have a profound effect on the endothelium and 

can regulate cellular fates including morphology, function (e.g. proliferation, 

migration, angiogenesis, barrier etc.), gene expression patterns and the 

synthesis/secretion of various biomolecules essential for the regulation of vessel 

remodelling processes (Traub and Berk, 1998). 
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1.2.5 Endothelial Dysfunction 

 

Most common cardiovascular diseases such as atherosclerosis, restenosis and 

cerebral ischemia are preceded by endothelial dysfunction. This occurs when 

endothelial homeostasis is compromised by pathological stresses, which may include 

oxidative stress, hyperlipidemia, hypertension, inflammation and abberant blood flow 

(Melo et al., 2004). Endothelial dysfunction is often characterised by reduced NO 

production, an increase in contracting factors such as endothelin-1 (ET-1) and 

angiotensin-II (ANG-II) and elevated oxidative damage. This biochemical imbalance 

leads to an increase in vascular tone, platelet adhesion, barrier failure, inflammation 

and ultimately, undesireable changes in smooth muscle cell proliferation and 

migration (Bonetti et al., 2003). 

 

As pointed out, NO production represents just one of several proposed mechanisms 

whereby physiological levels of shear stress may protect against endothelium 

dysfunction and aberrant wall remodelling. It regulates the surrounding environment 

by inhibiting the activation of growth factors and displaying anti-migratory/anti-

proliferative effects on underlying SMCs. NO also displays anti-inflammatory 

properties within the endothelium by inhibiting cytokines and cell adhesion molecules 

that attract immune cells, and is partly mediated through NO-dependent inhibition of 

nuclear transcription factor-kappa B (NF-κB) (Cannon et al., 1998).  

 

Nitric oxide (NO) is a free radical when released from endothelial cells. Three 

nitric oxide synthase (NOS) isoforms have been identified: neuronal NOS (nNOS) 

and endothelial NOS (eNOS) are constitutively expressed, whilst inducible NOS 
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(iNOS) is regulated by cytokine stimulation. In endothelial cells, NO is synthesised 

from L-arginine by eNOS, a process which requires O2 and nicotinamide adenine 

dinucleotide phosphate (NADP). Both shear stress and cyclic strain are potent stimuli 

for NO synthesis. Shear stress for example, activates the opening of specialized Ca2+ 

and K+ ion channels in the endothelial cell resulting in hyperpolarisation. This leads to 

an increase in intracellular Ca2+ and eNOS activation. Due to its low molecular weight 

and lipophilic properties, NO easily diffuses across the endothelial cell membrane to 

the smooth muscle cell (Esper et al., 2006). NO stimulates soluble guanylyl cyclase, 

which in turn increases cyclic GMP. The increase in intracellular cGMP causes a 

decrease in intracellular Ca2+ and dephosphorylation of myosin light chains, leading 

to smooth muscle cell relaxation, as shown in Fig. 1.2 (Lusher et al., 1990). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1.2: Nitric Oxide pathway. Nitric oxide from the endothelium enters smooth muscle cells 
where it activates guanylyl cyclase (GC). GC converts guanosine triphosphate (GTP) to cyclic 
guanosine monophosphate (cGMP). The increase in cGMP decreases Ca2+ resulting in 
smooth muscle cell relaxation. 
 
 

Depending on NO release and the site of activation of cGMP, various functional 

outcomes may arise. For example, in vascular SMCs, induction of cGMP decreases 

intracellular calcium resulting in vasodilation (Moncada et al., 1991). In platelets, 

increased cGMP decreases platelet activation and adhesion to the endothelium 
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(Radomski et al., 1993). NO also inhibits the activation of growth factors, as well as 

displaying anti-inflammatory properties by inhibiting cytokines and cell adhesion 

molecules that attract immune cells and prevents excessive exocytosis of 

inflammatory mediators via blockade of Weibel-Palade body secretion (i.e. Ang-II, 

ET-1, von Willebrand Factor, p-selection). In this way, NO production and release 

represents one of several potential mechanisms whereby physiological levels of shear 

stress protect the endothelium against dysfunction. In areas of vessel curvature or 

bifurcation, where the normally atheroprotective “laminar” shear stress becomes 

attenuated and/or “turbulent”, vessel homeostasis becomes imbalanced. In these flow 

compromised areas, NO production is greatly reduced and an inflammatory process 

leading to abberant wall remodelling ensues. These hemodynamically sensitive 

locations within the vasculature are therefore obvious sites for development of 

atherosclerotic plaques (Esper et al., 2006). Fig. 1.3 highlights this concept. 

 

 
 
Fig. 1.3: Laminar versus turbulent shear stress – consequence for endothelium 
dysfunction. Steady laminar shear stress promotes release of factors from endothelial cells 
that inhibit thrombosis and adverse remodelling events. Low shear stress and turbulence 
favour pro-thrombotic, pro-migratory, and pro-proliferative effects contributing to adverse 
remodelling in diseases such as atherosclerosis. (Chatzizisis et al., 2007) 

Laminar 
shear stress 

Low and 
oscillatory shear 
stress 

Blood flow  

Cross-section 

Blood Flow 
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1.2.6 Endothelial-Dependent Remodelling: Angiogenesis  

 

Angiogenesis, a physiological form of endothelial-dependent remodelling, is a 

process involving the formation of a new blood vessel from pre-existing vessels. 

During angiogenesis, new capillaries are formed by “sprouting” from existing 

microvessels in response to paracrine factors released from neighbouring cells. This 

process is essential in many physiological functions including embryogenesis, 

reproductive development, vascular wound healing, and repair. Angiogenesis occurs 

by sequential events in response to physiological stimuli. These are tightly regulated 

by angiogenic stimulators and inhibitors. The balance between angiogenic stimulators 

and inhibitors is crucial as excessive stimulation can cause a shift in the balance 

resulting in an “angiogenic switch”. This switch can lead to endothelial dysfunction, 

manifested as unhealthy or unwanted angiogenesis, the latter characteristic of 

pathologies such as cancers, dysfunctional uterine bleeding, inflammatory and 

immune diseases (Carmeliet et al., 2005). 

 

Angiogenic growth factors such as vascular endothelial growth factor (VEGF), 

basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) 

activate receptors on endothelial cells that line the pre-existing blood vessels. This 

results in the degradation of their basement membrane through the release of 

proteases including matrix metalloproteinases (MMPs), plasminogen activators, 

tryptases and cathepsins. The endothelial cells subsequently proliferate into the 

surrounding interstitial matrix and connect to neighbouring vessels forming capillary 

sprouts. These sprouts extend towards the angiogenic stimulus by the migration of 

endothelial cells, a process which employs vascular cell adhesion molecule-1 
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(VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and integrins. The sprouts 

finally differentiate and form loops to become new vessel lumen (Rosen et al., 1997), 

which is demonstrated in Fig. 1.4. 

 

 
Fig. 1.4:  Angiogenesis signalling pathway. Angiogenesis occurs by sequential events in 
response to stimuli, which are regulated by angiogenic stimulators and inhibitor. 
[http:www.angio.org] 
 

VEGF and bFGF are key regulators in angiogenesis. bFGF stimulates endothelial 

cells, smooth muscle cells and fibroblasts, increasing proliferation, migration and 

differentiation. It also stimulates VEGF synthesis in tumour cell lines (Klein et al 

1997; Tsai et al., 1995). VEGF is more selective, stimulating endothelial cells only. 

VEGF responses are mediated primarily by cell surface VEGF receptors. These 

receptors activate a tyrosine kinase signalling cascade that in turn activates several 

angiogenic processes such as EC barrier destabilization, proliferation, and migration 

(Hyder et al., 1999). Cytokines such as platelet derived growth factor (PDGF) and 
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transforming growth factor-β (TGF-β) indirectly induce VEGF and bFGF expression 

by vascular smooth muscle cells rather then directly stimulating endothelial cell 

proliferation. Both cytokines up-regulate VEGF and bFGF transcription in vascular 

smooth muscle cells. Hypoxia, another potent angiogenic stimulus increases VEGF 

expression but not bFGF (Brogi et al., 1994). Angiogenesis inhibitors target VEGF 

and VEGF receptors causing arrest of endothelial cell proliferation and preventing 

vessel growth. They also induce regression of existing vessels by increasing 

endothelial cell apoptosis (Carmeliet et al., 2005). 

 

As mentioned, unhealthy angiogenesis may also contribute to the progression of 

pathologies such as atherosclerosis. In normal arteries, a dense network of capillaries 

known as the “vasa vasorum” supply blood to the outer adventitial and medial layers, 

while in diseased arteries these networks become mores extensive and disorganised 

and extend into the intimal layer of the atherosclerotic plaque. These can cause 

haemorrhages, blood clotting and decreased blood flow to the heart muscle, leading to 

myocardial infarction (Isner, 1999). 

 

1.2.7 Endothelial-dependent remodelling: Atherogenesis 

 

Atherosclerosis is characterized by progressive deleterious remodelling of the 

vessel wall. Atherosclerotic lesions occur at specific mechanically sensitive locations 

within the vasculature. There are five major regions of arterial plaque formation; (i) 

coronary arteries, (ii) major branches of the aortic arch, (iii) major branches of the 

abdominal aorta, (iv) visceral extremity branches of the abdominal aorta and (v) lower 

extremity branches of the abdominal aorta. Hemodynamic forces, in particular shear 



 15 

stress, play a fundamental role in this localisation. In response to normal levels of 

shear and the laminar shear characteristic of linear stretches of vessel, shear imparts 

an atheroprotective effect on the endothelium, preventing the formation of fatty 

streaks associated with plaque development (Traub and Berk, 1998). However, in 

certain bifurcated and curved regions of vessel, flow becomes turbulent/attenuated 

and both cyclic strain and shear stress are dramatically altered. This results in 

increased ROS levels and decreased nitric oxide production, the former caused by a 

reduction in antioxidants, leading to endothelial “activation”, one of the initial events 

in the endothelial dysfunction cascade leading to atherosclerotic plaque development. 

This is further exacerbated by reduction in endothelial barrier integrity and increased 

platelet adhesion and neutrophil infiltration into the sub-endothelial space, in essence 

leading to an inflammatory reaction (Cunningham et al., 2005). 

 

During this inflammatory response, low density lipoprotein (LDL) accumulates in 

the sub-endothelial matrix and is oxidised, becoming trapped within the vessel wall. 

Oxidised LDL stimulates the production of pro-inflammatory components such as 

adhesion molecules (ICAM-1, PCAM-1, VCAM-1, P-selectin and E-selectin), growth 

factors (macrophage colony-stimulating factor) and chemotactic proteins (monocyte 

chemotactic protein-1, MCP-1). These pro-inflammatory molecules, in particular 

ICAM-1 and MCP-1, act as potent chemoattractants for monocytes/macrophages 

(Kume et al., 1992). Monocytes “roll” along the endothelium allowing them to slow 

down and firmly attach to the endothelial surface. After adhering, monocytes enter the 

arterial wall through cell junctions by diapedesis. Once in the sub-intimal space, 

monocytes transform into active macrophages. Substantial uptake of LDL by 

macrophages results in foam cell formation within atherosclerotic lesions, an effect 
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that is mediated by scavenger receptors SR-A and CD36 (Febbraio et al., 2000; 

Suzuki et al., 1997). Furthermore, macrophages along with T-cells secrete growth 

factors and cytokines, stimulating smooth muscle cell migration and proliferation into 

the intima, generating lipid deposits and calcification. These characteristic stages of 

lesion development ultimately yield an atherosclerotic plaque with a thin fibrous cap, 

which is shown in Fig. 1.5 (Quinn et al., 1987). 

 

 
 

Fig. 1.5: Diagram of the atherosclerotic plaque formation. Endothelial dysfunction leads to 
the initiation of atherosclerosis. Over time, lipid accumulation, SMC migration and 
proliferation, and matrix synthesis within the lesion narrow the arterial lumen. 
[http:www.britannica.com/eb/art-95216]  
 

There are three main determinants of a plaque’s vulnerability to rupture: (i) The 

core size and consistency- a larger core of soft lipid-rich atheromatous gruel is highly 

unstable, (ii) Thickness of the fibrous plaque- thinning of the cap increases a plaque’s 

ability to rupture, and (iii) Cap inflammation and repair- a cap which is slow to heal 

due to decreased SMC presence, or an inflamed cap due to macrophage influx, is 

more likely to rupture (Pasterkamp and Virmani, 2002). Studies have shown that 

SMC proliferation accounts in part for lesion formation in its early stages with many 
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advanced plaques comprising a SMC-rich fibrous cap overlying a necrotic core 

(Clowes and Schwartz, 1985). SMC have been considered as directly responsible for 

generating the atherosclerotic plaque via proliferation, migration from the medial 

layer, and synthesis of matrix proteins (Ross, 1993). However, recent reports have 

shown the beneficial protective role of SMC in atherosclerosis as studies have found 

that plaques which undergone rupture have a paucity of SMCs compared to stable 

lesions. Also the fibrous cap of advanced plaques is thinned from the loss of SMCs 

(Weissberg et al., 1996; Davies et al., 1993). Therefore, it is now widely accepted that 

SMC proliferation is deleterious in the early steps of atherosclerotic lesion formation, 

but SMCs protect the integrity responsible for promoting plaque stability and that a 

lack of SMC proliferation in established plaques is associated with the increased 

incidence of plaque rupture (Newby and Zaltsman, 1999). Atherogenesis typically 

does not manifest itself until middle and old age, however it does begin early in life. 

Moreover, whilst plaque localization is clearly localized to hemodynamically unstable 

regions of the vascularure, other risk factors such as smoking, diet, genetics, stress 

and injury can influence the rate and extent of plaque initiation and progression. 

 

1.3 Factors Impacting Endothelial Homeostasis and Dysfunction 
 

Multiple factors, both internal and external, can impact endothelial homeostasis 

and dysfunction through regulation (and dysregulation) of vascular cell processes 

including apoptosis, proliferation, and migration. The following subsections will 

examine these factors in more detail. 
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1.3.1  External Factors 

 

Endothelial dysfunction is a key early step in the development of a variety of 

diseases such as atherosclerosis. External factors such as infection, diet, genetics, 

stress, smoking and sedentary lifestyle impact endothelium health (dos Santos et al., 

2008). Active smoking as well as passive smoking significantly impairs the 

endothelium as the degree of dysfunction is associated with the extent of exposure. 

The exact cause of the deleterious effect of smoking on endothelial function remains 

unclear but several potential mechanisms may be involved including direct toxicity to 

endothelial cells, increased levels of oxidative stress, platelet activation and oxidative 

modification of lipoproteins (Celermajer et al., 1996). Active smoking is associated 

with an increased tendency towards thrombosis which may increase the risk of 

myocardial infarction and ischemic stroke (Barbash et al., 1993; Mueller et al., 1992). 

The average increase in coronary atherosclerosis in smokers is approximately 25% 

(McGill et al., 1988). Diet and obesity are also involved in endothelial dysfunction. 

Studies have shown that obesity is accompanied by increased triglycerides which lead 

to ADP deficiency a factor in the production of ROS. Oxidative stress in turn can 

reduce NO through peroxynitrite formation leading to endothelial dysfunction. 

Obesity also leads to increased pro-inflammatory cytokines, prostaglandins, and 

elevated LDL. Indeed, LDL reduction by diet can greatly reduce hyperglycemia and 

lower oxidative stress to improve endothelial function (Gielen and Hambrecht, 2004). 

Exercise also reduces cardiovascular events as regular exercise has been shown to 

improve glycemic control and prevent overt type diabetes in patients. It increases 

glucose uptake in skeletal muscle, thereby lowering glucose levels and improving 

insulin action leading to improved vasoreactvity (Tuomilehto at al., 2001; Goodyear 
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et al., 1991). Genetics and stress are also significant risk factors. Polymorphisms of 

the activin-receptor-like-kinase 1 (ALK1) gene encoding transforming growth factor-

β (TGF-β) were detected in endothelial cells of patients with pulmonary hypertension 

(Trembath, 2001). Moreover, animal studies using rats have shown that chronic social 

stress by crowding impaired endothelial function via reduced vascular NO synthesis 

and altered vascular function (Bernatova and Csizmadiova, 2006). Mental stress is 

known to provoke myocardial ischemia (Deanfield et al., 1984) and is linked to 

increased morbidity and mortality (Ghiadonia et al., 2000; Bosma et al., 1997). It is 

clear therefore that external factors can impair endothelium homeostasis resulting in 

initiation and progression of vascular diseases such as atherosclerosis. Treatment of 

these external factors can modify their impact on the endothelium and associated 

cardiovascular disorders. 

 

1.3.2 Hemodynamic Factors 

 

As mentioned earlier, a central feature of endothelial dysfunction is abberant blood 

flow leading to improper hemodynamic stimulation. Blood vessels are constantly 

subjected to mechanical or hemodynamic forces. These include cyclic strain, a 

transmural force acting perpendicular to the vessel wall, which stems from the 

“pulsatile” nature of cardiac output and shear stress, the frictional force created by 

blood flow “dragging” against the endothelium (Lehoux et al., 2003) (Fig. 1.6). Both 

forces are involved in regulating vascular cell processes including apoptosis, 

proliferation, migration and morphological characteristics. Under normal conditions, 

hemodynamic forces impart an “atheroprotective” effect on the endothelium that 

disfavours pathological changes in vessel structure. 
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Fig. 1.6: Biomechanical stimulation of a blood vessel. Hemodynamic forces associated 
with blood flow, namely cyclic strain and shear stress, play a pivotal role in the physiological 
control of vascular tone, remodelling and the initiation and progression of vascular 
pathologies [Cummins et al., 2007].  
 

 

1.3.2.1 Cyclic Strain 

  

Cyclic strain causes the arterial wall to rhythmically distend and relax to the 

cardiac cycle, leading to outward stretching of both vascular endothelial cells and 

smooth muscle cells (Kakisis et al., 2004). In maintaining this normal circumferential 

stress, according to Laplace’s equation, the wall tension can be described by T=Pr/h 

where P is blood pressure, r is vessel radius and h is thickness of the wall (Lehoux et 

al., 2003).  

 

Numerous studies have shown that cyclic strain has a profound effect on 

endothelial metabolism and can induce qualitative and quantitative changes in gene 

expression and cell fate. In addition to affecting the expression and/or activation of 

numerous signalling molecules associated with mechanotransduction, cyclic strain has 

been shown to modulate the expression and activation of numerous classes of effector 
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genes in vascular endothelial cells including those regulating; (i) Vessel diameter - 

NO, eNOS, cyclooxygenase-2 (COX II), endothelin-1 (ET-1), and thimet 

ologopeptidase (Coen et al., 2004, Cotter et al., 2004), (ii) Cell-cell communication 

and barrier function - zonula occludens (ZO-1), occludin and ICAM-1 (Collins et al., 

2006; Pradhan et al., 2004), (iii) Proliferation - PDGF and VEGF (Sumpio et al., 

1998; Zheng et al., 2001), and (iv) Migration/angiogenesis - MMP-2, MMP-9, MT1-

MMP, uPA, and RGD-dependent integrin (von Offenberg Sweeney et al., 2005; 

Yamaguchi et al., 2002). 

 

Vascular cells respond to cyclic stretch both morphologically and phenotypically. 

Cyclic strain has an immediate effect on vascular cells. After exposure for 15 min, the 

actin fibres morphologically align perpendicularly to the force vector, subsequently 

followed by phenotypic or cell fate changes (Iba et al., 1991). Induced endothelial 

alignment from cyclic strain is regulated by focal adhesion kinase (FAK) and paxillin 

(Yano et al., 1996; Naruse et al., 1998), whereas the smooth muscle cell response is 

mediated by NO and NADPH signalling (Standley et al., 2002; Chen et al., 2003). 

 

Physiological levels of cyclic strain (5-10%) on aortic endothelial cells have been 

shown to increase EC proliferation (Iba et al., 1991; Li and Sumpio, 2005) and 

migration (von Offenberg Sweeney et al., 2005), whilst reducing EC apoptosis (Haga 

et al., 2003; Liu et al., 2003). Studies by von Offenberg Sweeney et al. for example 

have linked cyclic strain to endothelial migration and angiogenesis. Their studies 

showed a two-fold increase in migration and tube formation in response to chronic 

equibiaxial cyclic strain (5%, 24 h) of endothelial cells, events which were Giα 

subunit-dependent and protein tyrosine kinase-independent (von Offenberg Sweeney 
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et al., 2005). Moreover von Offenberg Sweeney and others have demonstrated that 

cyclic strain of endothelial cells up-regulates MMP-2 and MMP-9 expression, activity 

and secretion, thereby implicating a role for these enzymes in strain-dependent 

vascular remodelling (von Offenberg Sweeney et al., 2004; von Offenberg Sweeney 

et al., 2005). In response to physiological levels of cyclic strain, apoptosis is 

suppressed in vascular endothelial cells by the activation of Akt (Chen et al., 2001). 

This anti-apoptotic effect was dependent on the activation of PI3-Kinase (PI3K) 

leading to the phosphorylation of Bad (Bayer et al., 1999). By contrast, higher 

“pathological” levels of cyclic strain (15-20%) induced apoptosis in endothelial cells 

(and smooth muscle cells), a process which involved an increase in integrin 

expression and activity (Wernig et al., 2003), as well as TNF-α clustering (Sotoudeh 

et al., 2002). This in turn lead to p38 and JNK phosphorylation, with subsequent p53 

activation and ultimately the up-regulation of pro-apoptotic Bax (Mayr et al., 2002). 

Elevated cyclic strain also induces production of reactive oxygen species (ROS) 

resulting in direct oxidative damage on the endothelium (Mayr et al., 2002). 

 

 
 
Fig. 1.7: Cyclic strain suppresses apoptosis in endothelial cells. Physiological levels of 
cyclic strain (5-10%). PI3K/AKT activation leads to Bad phosphorylation suppressing 
apoptosis.  
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Interestingly, literature indicates a large diversity in the effects of cyclic strain 

applied directly to SMCs. Differences in species, vascular bed, and extracellular 

matrix type all contribute to variable observations (Kakisis et al., 2004). Exposure of 

rabbit aortic SMCs to cyclic strain showed an increase in proliferation (Birukov et al., 

1995), whilst both inhibition and enhancement of proliferation has been reported in 

bovine aortic smooth muscle cells (Dethlefesen et al., 1996; Mills et al., 1997). PDGF 

plays a vital role in stretch-induced proliferation, usually with increased levels of both 

PDGF-A and PDGF-B mRNA observed in SMCs (Wilson et al., 1993; Li et al., 

1997). The extracellular matrix (ECM) also plays a role in stretch-induced 

proliferation. Exposure of canine coronary SMCs grown on elastin to cyclic strain 

resulted in reduced proliferation, while no change in proliferation was observed with 

cells grown on collagen (Spofford et al., 2003). Smooth muscle cells exposed to 

cyclic strain underwent enhanced apoptosis via a p53 dependent pathway (Mayr et al., 

2002). Moreover cyclic strain has also been implicated in a paracrine regulatory axis 

between endothelial cells and smooth muscle cells. Recent studies by von Offenberg 

Sweeney et al. have shown that cyclic strain-induced endothelial MMP-2 significantly 

reduced smooth muscle cell migration. Moreover, the effects of MMP-2 appeared to 

be mediated through a putative interaction with an EC signalling system (von 

Offenberg Sweeney et al., 2004). 

 

These studies clearly demonstrate the importance of cyclic strain in regulating 

vascular cell function by inducing changes in gene transcription and effector 

activation, thereby leading to changes in cell fate. Cyclic strain also functions by 

increasing endothelial sensitivity to shear stress resulting in a lowered threshold level 

of shear required to provoke regulatory effectors. It should be noted that both cyclic 
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strain and shear stress “jointly” impact endothelial homeostasis within the vessel wall 

(Zhao et al., 1995), although most studies choose to investigate them as “independent 

variables”. 

 

1.3.2.2  Shear Stress 

 

The endothelium is exposed to shear stress due to blood flow dragging against the 

vessel wall. Shear rate within a vessel can be described by the equation: τ = 4µQ/πr³ 

where τ is shear stress (dynes/cm2), µ is blood viscosity (dynes sec/cm2), Q is flow 

rate (mL/sec), and r is the vessel radius (cm). The term r is raised to the third power. 

Thus, where Q is constant, a small change in r will result in a large change in τ. Shear 

stress acts directly on the endothelium and under physiological conditions, the mean 

shear stress remains constant at 10-15 dynes/cm2, promoting an anti–inflammatory, 

anti-thrombotic, anti-coagulative and pro-fibrinolytic state. The atheroprotective 

impact of shear is also manifested through anti-apoptotic effects on endothelial cells. 

 

At biomechanically sensitive regions of the vasculature, such as branch points or 

bifurcations, the steady laminar flow of blood is disrupted, leading to turbulent flow 

patterns. The central wall of the bifurcation is subjected to high shear stress while the 

lateral wall experiences re-circulation vortexes resulting in flow reversal and shear 

stress attenuation (Lehoux et al., 2003) (Fig. 1.3). Whilst steady laminar shear 

promotes anti-thrombotic effects, endothelial cell survival and NO production, all 

conducive with atheroprotection, shear attenuation and turbulence reverse these 

effects, resulting in pro-inflammatory events and endothelial dysfunction (Traub and 

Berk, 1998). 
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Laminar shear stress of endothelial cells leads to reorganization of actin-containing 

stress fibres and gross morphological realignment in the direction of the flow vector, 

both occuring in tandem with changes in gene and protein expression. Shear stress 

regulates expression of various endothelial proteins including growth factors (TGF-β 

and PDGF) (Negishi et al., 2001; Resnick et al., 1993), adhesion molecules (ICAM-1 

and VCAM-1) (Chiu et al., 2003), vasodilators (NO), vasoconstrictors (ET-1) 

(Kuchan et al., 1993) and coagulation factors (Lin et al., 1997). 

 

Endothelial cell response to shear stress is differentially mediated through 

activation of G-proteins, ion channels, integrins, and receptor tyrosine kinases. These 

mechanosensors, which are discussed in detail in the next section, activate second 

messenger systems to impact target gene expression and cell function. MAPKs 

(extracellular signal regulated kinase ERK1/2, for example) are serine/threoine kinase 

second messengers activated in response to mechanical stimuli in endothelial cells. 

ERK1/2 plays a major role in endothelial mechanotransduction as it can target various 

substrates including other protein kinases (Raf and Mek-1), transcription factors (c-

myc, c-jun and c-fos) and enzymes (cPLA2) (Berk et al., 1995). Another shear-

sensitive member of the MAPK family is JNK, which is reported to have an apoptotic 

effect on endothelial cells. Unsurprisingly, studies have shown that shear stress blocks 

JNK activity (Surapisitchat et al., 2001). 

 

Shear stress of endothelial cells invariably leads to activation of eNOS and NO 

production, key players in the atheroprotective effects of shear on the endothelium. 

Moreover, under laminar flow conditions, endothelial ROS production (e.g. free 

radicals, non-radicals, and hydrogen peroxide) is balanced by cellular antioxidant 
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generation, preventing oxidant damage to the cell. As with NO, ROS are also 

important modulators of signalling cascades, gene transcription, cell growth and 

apoptosis, although the precise mechanisms are still unknown (Chen and Keaney, 

2004; Ulrich and Bachschmid, 2000).  

 

In conclusion, hemodynamic forces such as cyclic strain and shear stress can 

induce qualitative and quantitative changes in vascular cell gene expression and 

function via complex signalling pathways, with important consequences for vessel 

remodelling and overall health. The ability of vascular cells (and particularly 

endothelial cells) to detect and respond to changes in their hemodynamic environment 

is therefore of relevance to vascular pathology and involves a process referred to as 

“mechanotransduction”. This will be discussed in greater detail in the next section. 

 

1.4 Endothelial Mechanotransduction 

 

Vascular endothelial cells and smooth muscle cells employ various mechanisms to 

detect mechanical stimuli such as cyclic strain and shear stress and convert then into 

chemical signals via mechanoreceptors. These include G-proteins, integrins, ion 

channels, and receptor tyrosine kinases (Papadaki and Eskin, 1997). These 

mechanisms can illicit signalling cascades, ultimately leading to transcription factor 

regulation and associated consequences for gene expression and cellular functions 

(Kakisis et al., 2004). A fuller understanding of endothelial mechanosensitivity and 

hemodynamic regulation requires an appreciation of these signalling mechanisms.  
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1.4.1 Heterotrimeric G-proteins 

 

Heterotermic G-proteins comprise of 3 subunits - α, β, and γ. Several isoforms of 

each subunit exist resulting in dozens of possible trimer combinations. The specific 

combination of subunits affects not only the receptor it binds but also which 

downstream target is affected. They provide a means to transduce various 

extracellular stimuli into specific cellular responses. In this way, they play a vital role 

in endothelial-mediated regulatory processes (Redmond et al., 1998). This diversity of 

G-protein subunit combinations helps to transduce and integrate a multitude of 

external signals. G-proteins are defined based on the sequence and function of their α 

subunits and fall into four main categories; Gαs, Gαq, Gαi and Gα12. G-proteins are 

typically (but not exclusively) associated with a GPCR, which is located at the cell 

surface. Upon activation by mechanical or humoral factors the GPCR may undergo a 

conformational change resulting in activation of the bound G-protein. This promotes 

the exchange of bound GDP (guanine diphosphate) for GTP (guanine triphosphate) on 

the α subunit, subsequently causing the bound heterotrimeric molecule (inactive) to be 

released from the receptor and to dissociate into an active α monomer and βγ dimer. 

Both the α and βγ subunits can interact with distinct downstream effectors such as 

adenylyl cyclase, phosphodiesterases, phospholipase C, Src, and ion channels.  These 

effectors in-turn regulate the intracellular concentrations of secondary messengers 

such as cAMP, cGMP, IP3, DAG, arachidonic acid, sodium, potassium, and calcium 

ions, ultimately culminating in a physiological response (e.g. regulation of gene 

transcription). The α subunit “self-deactivates” via an intrinsic GTPase activity and 

re-associates with the βγ subunit to repeat the G-protein cycle. This is illustrated in 

Fig. 1.7 (Simon et al., 1991; Morris et al., 1999). 
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Fig. 1.8: Mechanism of G-Protein Action. Following cell stimulation (i.e. Agonist), the 
activated GPCR catalyses GDP/GTP exchange at the α subunit, promoting dissociation of the 
inter-generic complex. Both α and βγ subunits subsequently interact with downstream 
effectors. Following intrinsic hydrolysis of GTP by the α subunit, the α and βγ subunits re-
associate into functional heterotrimer. 
 

Studies have reported shear stress-dependent G-protein activation by showing that 

antisense Gαq oligonucleotides could block shear-induced ras-GTPase activity (Gudi 

et al., 2003). Similarly, pertussis toxin (a Giα subunit inhibitor) has been shown to 

prevent shear stress activation of ERK1/2 (Jo et al., 1997). G-protein activation was 

also detected in response to cyclic strain, a process dependent on both force 

magnitude and strain rate, confirming the role of G-proteins in mechanotransduction 

(Clark et al., 2002). Moreover, work conducted in this laboratory has shown that 

cyclic strain can regulate mRNA expression and enzymatic function of the zinc 

metallopeptidases, thimet oligopeptidase and neurolysin, in BAECs via alternate Gi 

protein signalling pathways (Cotter et al., 2004). 
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Fig. 1.9: G-protein signalling cascade. External Stimuli such as mechanical or humoral can 
activate G-proteins, which ultimately results in the phosphorylation of MAPKs, which 
phosphorylate and regulate the activities of substrates such as transcription factors, 
cytoskeletal components and other kinases, which in turn regulate cell survival, proliferation, 
differentiation and motility. In addition to stimulating MAPK signalling, platelet-derived growth 
factor receptor (PDGFR)-family kinases also activate other signalling pathways — such as 
those involving phosphatidylinositol 3-kinase (PI3K) and phospholipase-C  (PLC ) — which 
also lead to changes such as increased proliferation and survival (not shown). (Dibb et al., 
2004). 
 

 

1.4.1.1   Small G proteins (GTPases) 

 

Distinct from heterotrimeric G-proteins, the small G-protein superfamily contains 

over 150 members. They serve as signal transducers regulating a diverse range of 

cellular functions (Heo and Meyer, 2003). They are monomeric guanine nucleotide 

proteins with molecular masses of 20-25 kDa. Structurally and functionally, they can 

be classified into 5 sub-families, namely; (i) Ras (Ras, Rap and Ral), (ii) Rho (Rho, 

Rac and cdc4), (iii) ARF (Arf1-Arf6, Arl1-Arl7 and Sar), (iv) Rab (>60 members eg. 
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Rab5) and (v) Ran. In general, the Ras GTPase family controls cell fate and 

differentiation, the Rho GTPase family regulates actin cytoskeletal dynamics and cell 

migration, the Rab GTPase family controls vesicular trafficking and the Ran GTPase 

family controls microtubule organisation and nuclear transport (Lundquist et al., 

2006). They function as molecular switches in a manner dependent on their guanine 

nucleotide bound forms by cycling between a GDP-bound “inactive” state and GTP-

bound “active” state, with GDP/GTP exchange mediated by guanine nucleotide 

exchange factors (GEFs). Their activity is time-limited by GTPase activating proteins 

(GAP), proteins which accelerate the intrinsic GTPase activity and deactivation. 

Active GTP-bound GTPases subsequently interact with effectors that mediate 

downstream cellular responses (Kono et al., 2008), as illustrated in Fig. 1.8. 

 

 

 

 
Fig. 1.10: GTPase Cycle. In resting cells, GTPases exist in the GDP-bound inactive form. 
Following cell stimulation, guanine nucleotide exchange factors catalyze the exchange of 
GDP with GTP. The activated GTPase then interacts with effectors to elicit downstream 
cellular responses. GTPase activating proteins (GAPs) stimulate the intrinsic activity of 
GTPases and convert GTP-bound active form back to inactive GDP-GTPases. 
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Shear stress induces a rapid activation of Ras GTPase which in turn regulates 

ERK1/2 and JNK (Tseng et al., 1995; Li et al., 1996). Activation of Rho, Rac and 

Cdc42 has also been observed in endothelial cells in response to shear stress 

(Wojciak-Stothard and Ridley, 2003). Furthermore, Rac1 GTPase activation in 

response to shear stress has been shown to contribute to reactive oxygen species 

(ROS) production in endothelial cells (Tzima et al., 2002; Yeh et al., 1999). As we 

can see small GTPases serve as mechanotransducers which modulate downstream 

signalling pathways regulating diverse and cellular events such as proliferation, 

apoptosis, migration and cytoskeleton rearrangement, however many other GTPase 

functions are still being elucidated.  

 

1.4.2 Integrins 

 

Integrins exist as αβ heterodimers that connect the cellular cytoskeleton to the 

ECM, forming a signalling interface as shown in Fig. 1.9 (Ernstrom et al., 2002). 

Each combination of subunits has its own binding specificity and signalling 

properties. As multiple forms of each subunit exist, subunit combinations can give 

rise to at least 24 different integrins, 16 of which are associated with the vasculature 

(Lehoux et al., 2003). Each subunit has a large extracellular domain, a transmembrane 

spanning region and a short cytoplasmic domain. The extracellular domain binds 

directly to extracellular matrix proteins such as fibronectin, laminin, collagen, 

vitronectin, fibrinogen and osteopontin. The cytoplasmic domain associates with 

intracellular signalling molecules and cytoskeletal proteins to regulate cellular events 

involving signal transduction and cytoskeletal organisation (Davies, 1995; Wilson et 

al., 1995).  



 32 

Integrin signalling is crucial in development, maintenance and function of the 

vascular system. Integrins have the ability to act as a bridge between the ECM and the 

cellular cytoskeleton, enabling them to transmit mechanical and biochemical signals 

in either direction (inside-out and outside-in signalling). Integrin signalling may 

involve changes in integrin affinity and/or avidity, the former referring to changes in 

integrin conformation and the latter referring to changes in integrin clustering at focal 

adhesion sites (Giancotti and Ruoslahti, 1999; Schoenwaelder and Burridge, 1999). 

This can subsequently result in the activation of signalling cascades to regulate 

biological processes such as cell migration, growth, adhesion, inflammation and 

differentiation (Fig. 1.9).  

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1.11: Integrin structure. Integrin αβ heterodimer linked to the actin cytoskeleton via 
adaptor and ECM proteins. 

 

Integrins play an important role in the mechanosensor/mechanotransduction 

process in vascular endothelial cells (and SMCs). Both shear stress and cyclic strain 

are known to activate integrins, increasing their affinity for extracellular proteins. 

Both subunits interact with intracellular signalling molecules and cytoskeletal proteins 
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to regulate cellular responses (Shin et al., 2003). These responses vary depending on 

which integrin is activated. For example, cyclic strain of vascular smooth muscle cells 

grown on vitronectin and fibronectin results in increased proliferation, which can be 

inhibited by either anti-β5 or anti-αvβ3 antibodies. However, SMCs grown on elastin 

or laminin do not proliferate under the same conditions (Wilson et al., 1995; Reusch 

et al., 1996). In endothelial cells, the work of Chen et al. has elegantly demonstrated 

the shear-dependent activation of integrins leading to their association with the 

adaptor protein, Shc (Chen et al., 1999). Increased binding of WOW-1, an antibody 

specific for activated αvβ3, has also been shown under shear in endothelial cells 

(Tzima et al., 2001). Shear induced activation of integrins leads to increased 

activation of Fak, c-Src (a non-receptor tyrosine kinase) and adaptor molecules such 

as Shc (Fig. 1.10). These mediate the activation of ERK1/2, a member of the MAPK 

kinase family (Lehoux et al., 2003, Chen et al., 1999), as well as transcription factors 

such as NF-κB and AP-1. 

 

 

 

 

 

 

Fig.1.12: Integrin/RTK-dependent mechanotransduction in ECs in response to shear 
stress. Integrins (αvβ3) and receptor tyrosine kinases (RTKs, e.g. Flk-1) in ECs convert 
mechanical stimuli such as shear into chemical signals by associating with Shc. Ras 
activation by the Shc·Grb2·Sos complex activates ERK and JNK pathways leading to 
transcriptional activation of AP-1/TRE-mediated gene expression (Chen et al., 1999). 
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Importantly, blockade of integrins using neutralizing antibodies or RGD blocking 

peptides abrogates these shear-dependent effects (Bhullar et al., 1998). Selective 

blockade of integrin αvβ3 prevented shear stress activation of ERK, JNK, and NF-κB, 

while RGD peptide abolished the anti-apoptotic effect of shear stress (Katsumi et al., 

2004). Finally, with respect to cyclic strain, work in our laboratory has demonstrated 

that integrin blockade with cRGD peptide reduced strain-induced endothelial tube 

formation (von Offenberg Sweeney et al., 2005). 

 

 

1.4.3 Protein tyrosine Kinases (PTKs) 

 

Tyrosine phosphorylation is an important mechanism in signal transduction with 

PTKs playing key roles in various cellular responses (e.g. proliferation, migration, 

differentiation, and survival). There are two distinct categories of PTKs: RTKs (59 

members) and non-receptor PTKs (32 members).  

 

1.4.3.1 Receptor Tyrosine Kinases (RTKs) 

 

Members of the RTK family include insulin receptor (IR), epidermal growth 

factor receptor (EGFR), and PDGF.  RTKs consist of an extracellular ligand binding 

domain, a single transmembrane helix, a cytoplasmic domain containing the catalytic 

core and additional regulatory sequences. The transmembrane domain anchors the 

receptor in the plasma membrane, while the extracellular domains bind growth 

factors. Upon stimulation by humoral or mechanical factors, RTK dimerization 

occurs. This causes catalytic tyrosine kinase domain activation leading to 
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autophosphorylation. This in turn leads to the stabilization of the active conformation 

and the creation of phosphotyrosine docking sites for other intracellular signal 

transduction proteins (Fig. 1.11). These may include GTPase RAS, PI3-kinase, 

phospholipase C and adaptor proteins such as Shc and Grb2 (Lemmon et al., 1994). 

Numerous studies have shown an increase in RTK activities in endothelial cells which 

have been exposed to mechanical stimuli such as cyclic strain and shear stress 

(Sadoshima et al., 1997; Ishida et al., 1996). RTKs also play key roles in shear stress-

mediated regulation of endothelial cell shape and stress fibre formation (Chien et al., 

1998).  

 

 

Fig. 1.13: Receptor tyrosine kinase activation. RTKs become activated by ligand binding 
(or mechanical factors) causing a conformational change in the receptor and 
dimerization/autophosphorylation of a tyrosine(s) on the cytosolic domain of the receptor. This 
results in the recruitment of other signalling proteins involved in the signalling cascade 
[http://www.uic.edu]. 

 
 
1.4.3.2 Non-Receptor PTKs 
 

Non-receptors PTKs unlike RTKs are located in the cytoplasm, nucleus, or 

anchored to the plasma membrane. They consist of 8 families: Src, JAK, ABL, FAK, 

FPS, Csk, Syk and Btk. Each family contains several structurally diverse members 
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involved in mediating different aspects of cell function (e.g. Src/cell proliferation, 

FPS/differentiation, ABL/growth inhibition, and FAK/cell adhesion) (Schesslinger, 

2000). Shear stress has been shown to rapidly activate FAK and Src in endothelial 

cells (Schaller and Parsons, 1994). 

 

1.4.4 Ion Channels 

 

Ion channel activation is one of the most rapid responses to hemodynamic 

challenge, occurring within seconds or minutes of stimulation. These include shear 

stress-induced K+ channels and stretch-activated cationic channels (Baraket et al., 

2006). K+ channel activation leads to cell membrane hyperpolarisation and can be 

activated by shear rates as low as 0.1 dynes/cm². Blockade of this channel in 

endothelial cells by either barium chloride or tetraethylammonium results in the 

attenuation of shear-dependent increases in NO, eNOS and TGF-β (Oleson et al., 

1988). Cl- channels are activated independently of K+ channels and induce cell 

membrane depolarisation following the initial hyperpolarisation by K+. This suggests 

that K+ channels achieve maximal activation before the Cl- channels. Ion channel 

activation also varies in response to shear stress magnitude. For example, high shear 

stress results in Ca2+ influx and cytoskeletal/morphological reorganisation whilst low 

shear stress does not elicit any of these responses in endothelial cells (Barakat et al., 

2006). Studies by Ohno et al. have also shown that shear induction of TGF-β could be 

attenuated by K+ channel blockade, implying a role for the latter in flow-stimulated 

gene expression in endothelial cells. They also demonstrated that shear stress 

elevation of cGMP is mediated by K+ channels (Ohno et al., 1995). Interestingly, this 

shear-sensitive K+ channel appears to be endothelial cell specific, as it was not found 
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in vascular smooth muscle cells (Papadaki and Eskin, 1997). From these reports it is 

clear that ion channels serve as mechanosensors, however, the force-dependent 

activation process itself remains unclear.  

 

1.4.5 Endothelial Cell Receptors 

 

Cell surface receptors have also been shown to play an important role in the 

mechanotransduction process in vascular endothelial cells. In direct response to shear 

stress, PECAM1 has been implicated in activation of a Src family kinase. VE-

cadherin is also required in this pathway by associating with VEGFR1. Once this 

occurs, active Src kinase transactivates VEGFR1 leading to PI3K activation resulting 

in downstream signalling such as integrin activation and Akt-dependent 

phosphorylation of eNOS. This model of integrin activation by PI3K could explain 

why integrin antibodies such as anti- v 3
 (Bhullar et al., 1998) inhibit responses to 

flow (Hahn and Schwarz, 2009). Previous studies by Chen et al. have also 

demonstrated that shear stress (12 dynes/cm²) induced a rapid and transient tyrosine 

phosphorylation of Flk-1 and its concomitant association with the adaptor protein Shc 

(Chen et al., 1999). 

 

1.5 Endothelial Cell-Smooth Muscle Cell Interactions 

 

Vascular endothelial and smooth muscle cells are the major cellular components of 

the vessel wall and as such both direct and indirect EC-SMC interactions play an 

important role in maintaining normal vessel homeostasis. Evidence has demonstrated 

that cell-cell interactions can regulate cell functions with respect to growth, migration 
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and differentiation, as well as affect the expression of regulatory molecules such as 

fibrinolytic factors, coagulation factors and angiogenic factors (Yoshida et al., 1996; 

Helenius et al., 2004). In this regard, in vivo studies have shown direct physical 

contact between endothelial cells and smooth muscle cells via “myoendothelial 

bridges” (Spagnoli et al., 1982; Little et al., 1995). 

 

In vitro EC-SMC “static” co-culture models (i.e. non-contact indirect interaction 

models) are relatively commonplace in literature. By contrast, EC-SMC 

“hemodynamic” co-culture models, which specifically explore the impact of 

endothelial hemodynamic challenge (e.g. shear) on SMC remodelling, are relatively 

few. EC-SMC co-culture has previously been demonstrated to enhance SMC adhesion 

and spreading, a mechanism shown to be dependent on β1-integrin and the activation 

of P13K/Akt (Wang et al., 2007). EC-SMC co-culture also induced SMC 

differentiation, again mediated by the PI3K/Akt pathway (Brown et al., 2005). In a 

recent hemodynamic study model, EC-SMC co-culture induced ICAM-1, VCAM–1, 

and E-selectin gene expression in endothelial cells, an effect which could be inhibited 

by endothelial shear stress (Chiu et al., 2003). Moreover, endothelial shear decreased 

SMC migration and MMP-2 activity in an EC-SMC co-culture system apparently 

consistent with the atheroprotective effect of shear stress (Sakamota et al., 2006). 

Consistent with this latter paper, a related study by von Offenberg Sweeney et al. 

demonstrated that cyclic strain of BAECs could significantly reduce BASMC 

migration in a non-co-culture model. This effect was found to be mediated by strain-

induced endothelial MMP-2. Moreover, MMP-2 appeared to act indirectly in these 

events through a putative interaction with a BAEC signalling system (von Offenberg 

Sweeney et al., 2004b). 
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These studies clearly indicate that bi-directional cross-talk (with consequences for 

cellular functions) exists between endothelial cells and smooth muscle cells, which in-

turn may be regulated by the magnitude and nature of hemodynamic challenge to the 

endothelium. This phenomenon is undoubtedly of vital importance to endothelial-

dependent remodelling and vessel health and will form the basis for the experimental 

objectives of this thesis. In view of the regulatory complexities involved, the 

following sub-sections will take a closer look at the vascular signaling mechanisms 

central to the regulation of cell functions such as proliferation, migration etc. 

 

1.5.1 Proliferation 

 

The cell cycle consists of sequential events that occur in cell replication. It 

comprises of four distinct phases; G1 phase, S phase, G2 phase and M phase. G1-S-G2 

phases are collectively known as interphase. In addition, cells that have temporarily or 

reversibly ceased dividing are in a quiescent state (the G0 phase). During G1 phase, 

the cell grows and becomes larger and the various factors needed to replicate DNA 

are assembled. The S phase involves DNA synthesis, after which the cell enters the G2 

phase where it continues to grow and produce new proteins. The M phase (mitosis) 

involves cell division after which the cells return to the G1 phase, the cell cycle 

completed. Cells in the G1 phase do not always complete the cycle and may enter a 

quiescent or G0 state. Regulation of the cell cycle is crucial to prevent any 

uncontrolled replication and involves detecting and repairing any genetic damage. 

Cell cycle check points at the G1/S phase and G2/M phase ensure an orderly cell cycle 

progression. G1/S progression is a rate-limiting step in the cell cycle and is also 
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known as a restriction point (Vermeulen et al., 2003). The cell cycle is illustrated in 

Fig. 1.12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.14: The Cell Cycle. The first phase of the cell cycle (G1) involves cell growth and 
preparation for DNA replication. It then enters the S phase where DNA synthesis occurs 
(chromosomes formed). During G2 phase, cell growth continues in preparation for cell 
division. The cell finally enters the M Phase where mitosis occurs (chromosome are 
separated and divided into daughter cells). The cell returns to the G1 phase and cell cycle 
completion.  
 

 

Regulation of the cell cycle progression relies on two classes of molecules; cyclin 

dependent kinases (CDKs) and cyclins. Cyclins serve as regulatory subunits, whilst 

CDKs function as catalytic subunits. Once bound together, they become activated and 

phosphorylate a variety of (largely unknown) target proteins, thereby coordinating 

entry into the successive phases of the cell cycle (Table 1.1). Whilst cyclin levels 

change with the different phases of the cell cycle, levels of CDKs tend to remain 

stable (Koledova and Khalil, 2006). In response to extracellular signals such as 

  Growth & Preparation 

Mitosis 
 Growth & Enzyme Assembly 

DNA  Replication 

G1 phase 

G2 phase 

M Phase S Phase 
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growth factors, cyclin D is typically the first cyclin to be activated, with low levels 

produced during early G1 phase and increasing towards G1/S phase. It binds to CDK4 

and CDK6 forming active complexes which are involved in early G1 phase, as well as 

phosphorylating retinoblastoma susceptibility protein (Rb). This latter protein controls 

the expression of molecules needed to progress from G1 to S phase by binding to E2F 

transcription factors and blocking transcription. Rb phosphorylation causes it to 

dissociate from the E2F/DP1/Rb complex, thereby activating E2F, which in turn 

activates transcription of genes such as thymidine kinase, DNA polymerase, cyclin A 

and cyclin E (all required for entry into the S phase). CDK2 is sequentially activated 

by cyclin E (E1 and E2), forming an active complex pushing the G1/S transition and is 

rapidly deactivated once the cell enters S phase. Within the S phase, cyclin A levels 

increase and activate CDK2 forming a cyclin A-CDK2 complex to initiate the G2/M 

phase transition (possibly to facilitate in DNA replication) (Sherr, 1993). Cell cycle 

progression through mitosis is regulated by the cyclin B-CDK1 complex. Cyclin B is 

degraded during anaphase, regulating cellular progression out of mitosis and back to 

the G1 phase (King et al., 1994). 

 

CDK Cyclin Cell Cycle Phase Species 

CDK1 B G2/M phase Vertebrates 

CDK1 A G2/M phase Vertebrates 

CDK2 A S phase Vertebrates 

CDK2 E G1/S transition Vertebrates 

CDK4 D G1 phase Vertebrates 

CDK6 D G1 phase Vertebrates 

 
Table 1.1: CDKs and Cyclins. A range of typical CDK/cyclin complexes associated with cell 
cycle phase transitions in vertebrates. 
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Cyclin-CDK complexes are regulated by a variety of specific CDK inhibitor 

proteins that bind to and inactivate CDKs. There are two main groups; Ink4 family 

(p15ink and p16ink4) and the KIP/Cip family (p27Kip1, p21Cip1/Waf1 and p75Kip2). 

The Ink4 family inhibit CDK4/6 activity, whilst the KIP/Cip family inhibit the cyclin 

E-CDK2 complex (Sherr and Roberts, 1999), thus halting the cell cycle in the G1 

phase. 

 

SMC proliferation plays a crucial role in various diseases such as cancer, diabetes 

and atherosclerosis. In this regard, endothelium-derived components are frequently 

proposed to regulate SMC proliferation. In vivo studies have shown that L-arginine, a 

metabolic precursor of endothelial NO, prevented intimal thickening after balloon 

angioplasty (Tarry and Makhoul, 1994). Studies have also shown that NO inhibits 

G1/S transition by inhibiting CDK2-mediated Rb phosphorylation possibly via p21 

(Ishida et al., 1997). NO stimulates generation of cyclic adenosine 3’5’-

monophosphate (cAMP) and cyclic guanosine 3’5’- monophosphate (cGMP) in 

SMCs, second messengers known to mediate changes in cell proliferation. Studies 

have shown that cAMP suppresses induction of cyclin D/A expression and may cause 

up-regulation of p27Kip1 levels in SMCs. This in turn decreases CDK2/4 activities 

contributing to cell cycle arrest (Vadiveloo et al., 1997; Fukumoto et al., 1999; 

Kronemann et al., 1999). cGMP partially delays cell cycle progression by suppressing 

cyclin D and CDK4 (Koyoma et al., 2001). TGF-β and PKC are also known to inhibit 

cell proliferation by preventing Rb phosphorylation G1/S phase transition. By contrast 

potent growth factors such as PDGF and VEGF induce mitogenic signalling pathways 

such as mitogen-activated protein kinase (MAPK/ERK1/2) pathway and 
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phosphatidylinositol3-kinase (PI3K) pathway in SMCs, thereby promoting cell 

proliferation (Bornfeldt and Krebs, 1999). 

 

As we can see the cell cycle is a staggeringly complex process involving specific 

cyclin-CDK interactions with consequences for downstream CDK substrates and the 

associated regulation of a variety of cellular processes including transcription, 

translation, DNA synthesis, and mitosis. Dysregulation of this cycle is therefore a 

pivotal feature of diseases characterised by unwanted cell proliferation, which include 

endothelial dysfunction-based diseases such as atherosclerosis and restenosis.  

 

1.5.2 Apoptosis 

 

Apoptosis is a carefully regulated process that occurs in normal development and 

homeostatic maintenance in all tissues including cells of the vascular wall. It is 

distinguished from necrosis at the morphological and biochemical level. During 

apoptosis the cell shrinks and loses contact with neighbouring cells. Its chromatin 

condenses around the nuclear membrane with subsequent plasma membrane blebbing 

resulting in the cell being fragmented into apoptotic bodies (membrane enclosed 

structures). These bodies are then digested by macrophages without causing an 

inflammatory response. In contrast, necrosis results from damaging external stimuli 

causing severe swelling and loss of membrane integrity ultimately resulting in 

disruption of the cell. This allows cellular contents to leak into the extracellular 

environment and elicit an inflammatory response (Leist and Jaattela, 2001). Apoptosis 

can be triggered by a number of stimuli such as microbial infection, death receptor 

activation, ionizing radiation and cellular stress. Cellular stress typically activates an 
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“intrinsic” pathway, whilst death receptors activate an “extrinsic” signalling pathway. 

Moreover, both pathways converge to activate the caspase system (Danial and 

Korsmeyer, 2004). 

 

The extrinsic pathway is activated by death receptors - cell surface receptors 

belonging to the tumour necrosis family (TNF). They consist of an intracellular 

domain and a death domain (DD) in their cytoplasmic tail essential for initiating 

apoptosis. Apoptotic signals are transmitted upon binding to their respective ligands. 

The most characterised death receptor ligands are TNF receptor-1 (TNF-1) Fas ligand 

(CD95) and TNF-Related Apoptosis Inducing Ligand (TRAIL), either of which can 

initiate a caspase cascade within seconds, culminating in apoptosis as shown in Fig. 

1.13 (Putcha et al., 2002). 

 

Cellular stress (viral infection, oxidative stress, humoral factors, radiation, and 

toxic chemicals) may initiate the intrinsic pathway through the mitochondrion. 

Apoptotic proteins cause the mitochondria to undergo morphological change causing 

swelling (either through membrane pore formation or by increased permeability) 

allowing apoptotic effectors to leak out. These effectors include cytochrome c, 

apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases 

(SMAC) and other pro-apoptotic molecules (Gupta, 2003). The membrane pore is 

formed by pro-apoptotic (Bad, Bax, Bid and Bak) and anti-apoptotic (Bcl-2 and Bcl-

XL) proteins. Pro-apoptotic proteins act as sensors to cellular damage, relocating to 

the surface of the mitochondrion where anti-apoptotic proteins are located, disrupting 

pore formation dynamics and leading to release of other pro-apoptotic molecules 
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(Adams and Cory, 2001). These factors amplify the apoptotic signal and activate the 

caspase cascade. 

 

Caspases are a family of cysteine proteases and are central to apoptotic execution 

of apoptosis. They exist as inactive zymogens within the cell and are activated 

following induction of apoptosis. They can be divided into two groups; initiator 

caspases (caspase-2, -8, -9, -10) and effector caspases (caspase-3, -6, -7). Induction of 

apoptosis results in activation of an initiator caspase causing downstream activation of 

effector caspases. These then cleave key cellular protein targets leading to 

biochemical and morphological changes, which are described below; 

(i) Inactivation of enzymes involved in DNA repair: Caspase-3 prevents DNA 

repair by preventing cleavage of poly (ADP-ribose) polymerase or PARP. 

(ii) Breakdown of structural nuclear proteins: Caspase-6 causes degradation of 

laminin, an intra-nuclear protein that maintains nuclear shape and interaction between 

chromatin and nuclear membrane. Its degradation by caspase-6 results in chromatin 

condensation and nuclear fragmentation, known characteristics of apoptosis. 

(iii) Fragmentation of DNA: Caspase-activated DNase (CAD) causes fragmentation 

of DNA into nucleosomal units. It is cleaved by caspase-3 releasing it from the 

inactive complex (ICAD). 
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Fig. 1.15: The extrinsic and intrinsic pathways to caspase activation. The extrinsic 
pathway is activated by triggering of death receptors such as Fas-associated death domain 
protein (FADD), which form a death-inducing signalling complex (DISC). This recruits and 
activates the initiator caspase-8. In the intrinsic pathway, cellular stress induces apoptosis by 
mitochondrial perturbation and the release of proteins such as cytochrome c. The Bcl-2 family 
regulates this release with anti-apoptotic and pro-apoptotic members. Cytochrome c binds to 
apoptotic factor1 (Apaf1) causing a formation of the Apaf/caspase-9 apoptosome complex 
and activates initiator caspase-9. Activated initiator caspases-8/-9 in turn activate the effector 
caspases-3/-6/-7 which cleave key cellular substrates resulting in the biochemical and 
morphological changes associated with apoptosis (Mac Farlane and Williams, 2004). 

 

NO inhibits apoptosis by directly inhibiting caspases through nitrosylation 

(Bennett et al., 1999) and by inactivating the caspase cascade via downstream 

mediators such as cGMP (Pollman et al., 1996), tumour suppressor protein p53 

(Messmer et al., 1994) and Fas (CD95). Interestingly, NO also down-regulates anti-

apoptotic Bcl-2 (Xie et al., 1997; Hata et al., 1996) and up-regulates pro-apoptotic 

Bax, the latter promoting apoptosis via induction of p53 (Ghatan et al., 2000). Within 

SMCs, studies have shown that cAMP inhibits apoptosis via PKA (Orlov et al., 

1999). Other studies suggest that SMC apoptosis may occur via signalling through 
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death receptors as delivery of exogenous Fas ligand has been shown to induce SMC 

apoptosis and reduced neointima formation (Sata at al., 1998). Importantly, elevated 

SMC apoptosis is also associated with rupture-prone atherosclerotic plaques. 

Apoptosis, influenced through both intrinsic and extrinsic pathways to regulate SMC 

growth, is therefore critical in the regulation of vessel remodelling events and 

vascular health.  

 

1.5.2 Migration 

 

Cell migration is a feature of numerous physiological processes. It is a dynamic 

cyclical process where the cell extends a protrusion and adheres to the extracellular 

matrix (ECM). The generation of the contractile force by the actin-myosin 

cytoskeleton moves it forward towards the protrusion and attachments at the cell rear 

release as the cell continues to move forward. These steps involve the continuous 

rearrangement of cytoskeletal elements and dynamic cell-ECM interactions. The cycle 

is initiated by external signals which activate a complex signalling cascade involving 

a variety of different molecules (Gerthoffer et al., 2007). 

  

In order for a cell to migrate, it must become polarized by reorganisation of the 

microtubule cytoskeleton. Establishment of this polarity along with its maintenance is 

governed by a set of inter-linked positive feedback loops involving integrins, 

microtubules, phosphoinositide 3-kinases (PI3Ks) and the Rho family of GTPases. 

One of the first molecules to become polarized is chemotactic agent phosphatidyl-

inositol triphosphate (PIP3). Accumulation of PIP3 (by PI3Ks) at the leading edge 

activates the Rho family GTPases (Rac, Cdc42) resulting in actin polymerization 
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(Rodriguez et al., 2003). Cdc42 is a key regulator of polarity as cells lose their ability 

to respond to a chemotactic gradient and migrate randomly. Cdc42 activates 

downstream targets Par6 and PKC, which localize the microtuble-organizing centre 

(MTOC) and Golgi apparatus in front of the nucleus, thereby establishing cell polarity 

(Etienne-Manneville and Hall, 2002; Rodriguez et al., 2003). 

 

The cycle is initiated by external signals (chemotactic stimuli), which are sensed 

and converted to polarized internal responses in the cell membrane.  Small GTPases 

(RhoA, Rac1 and Cdc42) act together to co-ordinate cell migration. Rac1 acts at the 

front of migrating cells, stimulating actin-mediated membrane protrusion of the 

leading cell toward the chemotactic stimuli, or along varying adhesiveness within the 

ECM. Rac1 and Cdc42 activate SCAR/WAVE and WASP proteins, which in-turn 

activate the Arp2/3 complex, generating cellular protrusions which contract at the 

front of the cell and propel the cell towards the stimulus (Raftopoulou and Hall, 

2004). Protrusions can take the form of lamellipodia with a branching dendritic 

network of actin filaments, or filopodia where parallel bundles of filaments are 

formed. Cdc42 is also involved in the directionality of movement and can contribute 

to cell speed by enhancing Rac1-mediated membrane protrusion at the front of cells 

(Nobes and Hall, 1995). RhoA and its effector ROCK act primarily at the rear of cells 

to induce forward movement of the nucleus and cell body and mediate detachment of 

the back of the cell from the ECM. ROCK regulates myosin II causing the release of 

adhesive connections in the rear of the cell and retraction of the tail completes the 

cycle. Cell migration is regulated by growth factors (PDGF), cytokines, extracellular 

matrix components, and hemodynamic forces (shear stress and cyclic strain). Cell 
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migration coordinates a variety of intracellular activities with Rho-GTPases playing 

key roles (Ridley, 2001). 

 

1.5 Summary 

 

The vascular endothelium is a dynamic cellular interface between the vessel wall 

and bloodstream. The unique position of the endothelium allows it to regulate vessel 

tone and remodelling in response to numerous physiological and pathological stimuli. 

Central among these stimuli are blood flow-associated hemodynamic forces (cyclic 

strain and shear stress). Endothelial cells detect hemodynamic forces by converting 

them into chemical signals via mechanoreceptors (e.g. G-proteins, integrins, ion 

channels, protein tyrosine kinases, caveolae etc.). These in turn initiate signalling 

cascades leading to the modulation of transcriptional and post-translational 

mechanims to bring about changes in endothelial cell functions. In this way, blood 

flow can regulate endothelial cell metabolism and can induce qualitative and 

quantitative changes in gene expression, ultimately impacting on vessel wall 

homeostasis (including smooth muscle cell properties).  

 

1.6 Thesis Overview 

 

The data presented in the following chapters examines how hemodynamic 

challenge of vascular endothelial cells putatively impacts on vascular smooth muscle 

cell proliferation and apoptosis in different in vitro model systems as a paradigm for 

their regulatory co-interaction in vivo. Specifically, it details the role played by 

laminar shear stress (and to a lesser extent, cyclic strain) in this context, as well as the 
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possible endothelial signalling pathways and effectors involved in mediating the 

observed effects. It also investigates the impact of this hemodynamic regulatory 

paradigm on the expression of cell cycle-associated genes within smooth muscle cells. 

Our findings are presented in the following manner: 

 

Chapter 3: Vascular Cell Characterisation Studies  

 

Chapter 4: Endothelial Cell Hemodynamic Challenge – Impact on Smooth Muscle 

Cell Growth 

 

Chapter 5: Endothelial Laminar Shear Stress – Signalling Studies and Smooth 

Muscle Cell Cycle-Associated Gene Expression Changes 
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CHAPTER 2 

 

Materials & Methods 
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2.1 Materials 

 

All reagents used in this study were of the highest purity commercially available 

and were of cell culture standard when applicable. 

 

Acros Organics (New Jersey, USA) 

Formaldehyde (37%) 

 

AGB Scientific (Dublin, Ireland) 

Whatmann chromatography paper 

 

Amersham Pharmacia Biotech (Buckinghamshire, UK) 

Anti-mouse 20
 antibody, HRP-conjugated 

Anti-rabbit 20antibody, HRP-conjugated 

ECL Hybond nitrocellulose membrane 

ECL hyperfilm 

Rainbow molecular weight marker, broad range (6-175kDa) 

 

Bachem UK Ltd. (St. Helens, UK)  

Cyclic RGD peptide  

 

Bio-Rad Laboratories (California, USA) 

Script™ cDNA synthesis kit 

 

Bio Sciences Ltd (Dun Laoghaire, Ireland) 
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DEPC-treated water 

Trizol® reagent 

 

Calbiochem (Bad Soden, Germany) 

Genistein 

GM6001 

MMP-2 inhibitor (cis-9-Octadecenoyl-N-hydroxylamide) 

MMP-9 inhibitor I  

NF023 

PD98059 

Pertussis toxin  

TGF-βR1 antagonist 

 

Cayman Chemical Company (Michigan, USA)  

Anti-rabbit eNOS polyclonal IgG 

 

Coriell Cell Repository (New Jersey, USA) 

Bovine Aortic Endothelial Cells 

Bovine Aortic Smooth Muscle Cells 

 

DakoCytomation (Glostrup, Denmark) 

Anti-rabbit von Willebrand Factor polyclonal IgG 

Fluorescent Mounting Media 

 

Dunn Labortechnik GmBH (Germany) 



 54 

Bioflex® plates (Pronectin®-coated) 

 

Gibco (Scotland, UK) 

UltraPURE Distilled Water DNAse-/RNAse-Free 

 

Invitrogen (Groningen, The Netherlands)  

VybrantTM Apoptosis Assay Kit #2 

VybrantTM CFDA-SE cell tracer kit 

 

Molecular Probes (Oregon, USA) 

Alexa Fluor® 488 F(ab’)2 fragment of goat anti-mouse IgG (H+L) 

Alexa Fluor® 488 F(ab’)2 fragment of goat anti-rabbit IgG (H+L) 

 

MWG Biotech (Milton Keynes, UK) 

Primer sets for; GAPDH, eNOS, MMP-2, CDK1, CDK2, CDK4, CDK5, Cyclin D1, 

Cyclin A, Cyclin E, and p27Kip 

(note: primer sequences are shown in text) 

 

Nalgene (New York, Ireland) 

Cryogenic vials 

Cryo freezing container 

 

PALL Corporation (Dun Laoghaire, Ireland) 

Biotrace nitrocellulose membrane 
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Pierce Chemicals (Cheshire, UK) 

BCA protein assay kit 

Supersignal West Pico chemilumenescent substrate 

 

Promocell (Heidelberg, Germany) 

Human Aortic Endothelial Cells 

Human Aortic Smooth Muscle Cells 

Endothelial Cell Basal Media 

Smooth Muscle Cell Growth Media 

basic fibroblast growth factor  

Fetal calf serum  

Endothelial Cell Growth-Stimulating Factor  

Epidermal Growth Factor  

Fetal calf serum  

Hydrocortisone  

Insulin 

Trypsin Neutralizing Solution  

 

SABiosciences (Frederick, MD, USA) 

RT² First Strand Kit 

RT² SYBR Green/ROX qPCR Master Mix 

Human Cell Cycle RT² Profiler™ PCR Array 

 

Sarstedt (Drinagh, Wexford, Ireland) 

1.5 ml micro tube with safety cap 
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10, 200, and 1000 µl pipette tips  

15 and 50 ml falcon tubes 

2, 5, 10, and 25 ml serological pipettes  

6-well tissue culture plates 

96-well tissue culture plates 

T-25 tissue culture flasks 

T-75 tissue culture flasks 

T-175 tissue culture flasks 

P100 tissue culture petri dishes 

 

Scientific Imaging Systems (Eastman Kodak Group, Rochester, NY) 

Kodak 1D image analysis software 

 

Sigma Chemical Company (Poole, Dorset, England) 

2-propanol 

Ammonium persulfate 

Agarose 

β-mercaptoethanol 

Bisacrylamide 

Bovine serum albumin 

Brightline haemocytomoeter 

Bromophenol blue 

CHAPSO 

Chloroform 

Dimethylsulfoxide  
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Ethylenediaminetetraacetic acid  

Ethidium bromide 

Fetal calf serum 

Gelatin 

Hanks balanced salt solution 

Hydrochloric acid 

Isopropanol 

Lauryl sulfate (i.e. sodium dodecyl sulphate (SDS)) 

Methanol 

Mineral oil (molecular grade) 

N-Acetyl-Asp-Glu-Val-Asp-pNitroanilide 

p-Nitroaniline 

Penicillin-streptomycin (100x) 

Phosphate buffered saline 

Polyacrylamide 

Ponceau S solution 

Potassium chloride 

Potassium phosphate 

Potassium phosphate-dibasic trihydrate 

Potassium hydroxide 

RPMI 1640 tissue culture media 

Sodium chloride 

Sodium orthovanadate 

Sodium phosphate-dibasic anhydrous 

Sodium phosphate-monobasic anhydrous 
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Tetramethylethylenediamine 

Triton® X-100 

Trizma base 

Trypsin-EDTA (10x) 

Tween® 20 

 

Qiagen (West Sussex, U.K.) 

SYBR Green® PCR Kit 

 

Spectrum Laboratories Inc., (Santa Clara, Ca, US)  

Cellmax Perfused Transcapillary Co-Culture Capillaries 

 

Zymed Laboratories (CA, USA) 

Anti-mouse ZO-1 monoclonal IgG 
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2.2 Cell Culture Methods 

 

All cell culture procedures were carried out under clean, sterile conditions using a 

Bio Air 2000 MAC laminar flow unit. Cells were routinely examined using an 

Olympus CK30 phase-contrast microscope. 

 

2.2.1 Culture of Bovine Aortic Endothelial Cells 

 

Differentiated Bovine Aortic Endothelial Cells (BAECs) were obtained from 

Coriell Cell Repository, New Jersey, USA. (Catalogue No. AG08500). The cells were 

derived from a one year old male Hereford cow (thoracic aorta removed immediately 

post-mortem on 10/22/85). BAECs were cultured in RPMI 1640 media supplemented 

with 10% fetal calf serum (FCS) and antibiotics (50 U/ml penicillin, 50 µg/ml 

streptomycin). Cells were cultured in T25 cm2, T75 cm2, and T175 cm2 flasks, as well 

as 6-well plates, and grown in a humidified atmosphere of 5% CO2/95% air at 37°C. 

In the case of cyclic strain experiments, cells were grown on Bioflex® 6-well culture 

plates, which have a flexible Pronectin®-bonded silicon membrane growth surface. 

All experiments were carried between cell passage 5 – 13. 

 

2.2.2 Culture of Bovine Aortic Smooth Muscle Cells 

 

Differentiated Bovine Aortic Smooth Muscle Cells (BASMCs) were obtained from 

Coriell Cell Repository, New Jersey, USA. (Catalogue No. AG08504). The cells were 

derived from a one year old male Angus breed (thoracic aorta removed immediately 

post-mortem on 10/22/85). BASMCs were cultured in RPMI 1640 media 
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supplemented with 10% fetal calf serum (FCS) and antibiotics (50 U/ml penicillin, 50 

µg/ml streptomycin). Cells were routinely cultured in T25 cm2, T75 cm2, and T175 

cm2 flasks, as well as 6-well plates and grown in a humidified atmosphere of 5% 

CO2/95% air at 37°C. All experiments were carried out between cell passage 5 – 13.  

 

2.2.3 Trypsinisation of BAECs and BASMCs 

 

BAECs and BASMCs are adherent cell lines and trypsinisation was required for 

their sub-culture. Growth media was removed from the flasks and the cells were 

washed in Hank’s Balanced Salt Solution (HBSS) to remove α-macroglobulin, a 

trypsin inhibitor present in FCS. An appropriate volume of trypsin/ethylenediamene 

tetracetic acid (10% v/v trypsin/EDTA in HBSS) was subsequently added to the cells 

and incubated for 1 – 2 min at 37°C until the cells were rounded, but not fully 

detached and the flask then tapped briefly to detach them from the growth surface. 

Trypsin was inactivated by the addition of complete growth media containing FCS 

and the cells were removed from suspension by centrifugation at 1,000 g for 5 min. 

Cells were then counted using a bright-line haemocytometer for incorporation into 

experiments, sub-cultured at a 1:5 spit ratio, or cryopreserved. 

 

2.2.4 Culture of Human Aortic Endothelial Cells  

 

Differentiated Human Aortic Endothelial Cells (HAECs) were purchased from 

Promocell (Heidelberg, Germany). The cells were derived from a 22 year old male 

human. HAECs were cultured in Endothelial Cell Basal Media (Promocell) 

supplemented with 5% fetal calf serum (FCS), 5% Endothelial Cell Growth-



 61 

Stimulating Factor (ECGS), 10 ng/ml Epidermal Growth Factor, 1 µg/ml 

Hydrocortisone, and antibiotics (50 U/ml penicillin, 50 µg/ml streptomycin). Cells 

were routinely cultured in T25 cm2, T75 cm2, and T175 cm2 flasks, as well as 6-well 

plates, and grown in a humidified atmosphere of 5% CO2/95% air at 37°C. All 

experiments were carried out on between cell passage 5 – 9.  

 

2.2.5 Culture of Human Aortic Smooth Muscle Cells  

 

Differentiated Human Aortic Smooth Muscle Cells (HASMCs) were purchased 

from Promocell, Heidelberg, Germany. The cells were derived from a 22 year old 

male human. HASMCs were cultured in Smooth Muscle Cell Growth Media 

(Promocell) supplemented with 5% fetal calf serum (FCS), 0.5 ng/ml Epidermal 

Growth Factor, 2 ng/ml basic fibroblast growth factor 5 µg/ml insulin, and antibiotics 

(50 U/ml penicillin, 50 µg/ml streptomycin). Cells were cultured in T25 cm2, T75 

cm2, and T175 cm2 flasks, as well as 6-well plates, and grown in a humidified 

atmosphere of 5% CO2/95% air at 37°C. All experiments were carried out between 

cell passage 5 – 7. 

 

2.2.6 Trypsinisation of HAECs and HASMCs 

 

HAECs and HASMCs are adherent cell lines and trypsinisation was required for 

their sub-culture. Growth media was removed from the flasks and the cells were 

washed in HBSS. An appropriate volume of 10% v/v trypsin/EDTA (in HBSS) was 

added to the cells and incubated for 2 – 5 min at room temperature until the cells were 

rounded, but not fully detached, and tapped briefly to detach them from the growth 
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surface. Trypsin Neutralizing Solution (Promocell) was added and the cells were 

removed from suspension by centrifugation at 1,000 g for 5 min. Cells were then 

counted using a bright line haemocytometer for incorporation into experiments, sub-

cultured at a 1:3 split ratio, or cryopreserved. 

 

2.2.7 Cryogenic Preservation and Recovery of Cells 

 

For long-term storage, BAECs, BASMCs, HAECs and HASMCs were stored in 

liquid nitrogen in a cryofreezer unit (Thermoylen Locator Jr. Cryostorage System). 

Cells to be stored were centrifuged after trypsinisation and the supernatant was 

removed. The resultant pellet was resuspended in 1 ml of freezing media as follows: 

BAECs and BASMCs – RPMI 1640 supplemented with 20% v/v FCS, 10% 

dimethylsulphoxide (DMSO), and antibiotics. HAECs and HASMCs – Growth media 

containing 5% FCS, 10% DMSO and antibiotics. The cell suspension was transferred 

to sterile cryogenic vials and frozen in a -800C freezer at a rate of -10C/minute in a 

Nalgene cryo freezing container. Following overnight freezing at -800C, the cryovials 

were transferred to a liquid nitrogen cryofreeze unit. Cells were recovered by rapid 

thawing and resuspended in 5 ml growth media followed by centrifugation at 1,000 g 

for 5 min to remove DMSO. The resultant pellet was resuspended in fresh growth 

media and transferred to a culture flask. Media was removed the following day, cells 

washed in HBSS and fresh growth media added. 
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2.2.8 Cell Counting 

 

Cell counting was performed using a bright-line haemocytometer slide to control 

cell seeding densities and to monitor BASMC proliferation rates post-treatment. 

Trypan blue staining was used to determine cell viability. 20 µl of trypan blue was 

added to 100 µl of cell suspension and incubated for 2 min at room temperature. 20 µl 

of this suspension was loaded to the counting chamber of the haemocytometer and the 

cells were visualized by light microscopy (Fig. 2.1). Viable cells excluded the dye and 

thus appeared colourless, whilst dead cells stained blue. The number of viable cells 

was calculated using the following equation: 

 

Average Cell No. x 1.2 (dilution factor) x 1 x 104 (area under coverslip mm3) = Viable cells/ml 

 

 

 
Fig. 
2.1: 
Bri
ght

-
line 
hae
mo

cytometer slide. The slide contains a very shallow well or chamber with a grid etched on it. A 
liquid suspension of cells is place on the grid and is viewed using a light microscope. The 
number of cells per grid can be counted to calculate the number of cells per ml of suspension. 
 

2.2.9 Hemodynamic Force Studies 

 

2.2.9. Laminar Shear Stress: Orbital Rotation 

 

For laminar shear stress studies, BAECs and HAECs were seeded at 2 x 105 

cells/cm2 in 6-well plates and allowed to grow to confluency. Following this, media 

Counting grid (Central area) 
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was removed and replaced with 4 ml of fresh growth media and plates subjected to 

laminar shear stress on an orbital rotator (Stuart Scientific Mini Orbital Shaker OS) as 

previously described (Colgan et al., 2007). Suitable rotational speeds were selected to 

produce a shear stress range from 0-10 dynes/cm2 (0-24 h) (Fig. 2.2), according to the 

equation described by Hendrickson and co-workers (Hendrickson et al., 1999); 

 

τ  = α√ρn(2πf)³ 

 

Where    τ = shear stress (dynes/cm2) 

α = radius of rotation (cm) 

ρ = density of liquid (g/L) 

     n = viscosity (7.5 x 10-3 dynes/cm2 at 37°C) 

f = rotations per second 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2: Stuart orbital rotator. Apparatus used for non-pulsatile laminar shear stress 

studies. 

 

Post-shear, BAEC-conditioned media (BCM) was typically harvested and incubated 

with BASMCs in order to monitor effects on BASMC apoptosis and proliferation. 
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2.2.9.2 Pulsatile Shear Stress: CELLMAX® Artificial Capillary System 

 

The CELLMAX® Artificial Capillary System (Spectrum Labs, CA) is an 

automated closed perfusion system comprising a bundle of 50 semi-permeable, 

Pronectin®-coated polypropylene capillaries. Media from a reservoir is pumped 

through the capillary bundle at a chosen flow rate via gas permeable silicone rubber 

tubing. As the gear pump rotates, the motor shaft forces the pump pins to depress the 

pump tubing on the capillary module, thereby forcing growth media to flow in a 

pulsatile fashion through the flow path and the capillary bundle. An electronic control 

unit housed outside the humidified incubator regulates pump flow rate and pulse 

amplitude. The co-culture system itself is housed in a humidified CO2 incubator. Prior 

to cell seeding and shearing studies, the system is pre-equilibrated by purging the 

system with normal growth media (RPMI 1640 containing 10% FCS and antibiotics) 

and then circulating media through the system at high flow (20 dynes/cm²) for 3 days 

(Fig 2.3). 

 

For co-culture preparation, trypsinised BAECs (T75 flask of confluent BAECs) 

were seeded into the intralumenal space (ILS) of the capillary bundle using a “double-

syringe” method (described by the manufacturers), and the displaced media was 

discarded. The cells were gently titurated three times across the bundle to ensure an 

even distribution. Cells were then allowed to adhere to inner capillary surfaces for 3 h, 

after which the pump was set to low flow (0.3 ml/min; pulse pressure of 6 mmHg; 

shear stress of 0.5 dynes/cm2) and returned to the incubator for 3 days. BASMCs were 

then seeded into the extra-capillary space (ECS), again using the double-syringe 

method. Cells were allowed to attach to the outer capillary surface for 3 h before 
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restoring the media at low flow for a further 5 days. BAEC and BASMC attachment 

periods (3 h) were both conducted in low serum RPMI (1% FCS) to enhance cell 

attachment to capillary walls. During cell growth to confluency, growth media was 

adjusted to 20% FCS. The number of cells that did not adhere following low flow 

restoration were routinely counted to monitor adherence efficiency post-seeding. At 

confluency, the media flow rate was gradually “ramped up” to high flow (20 dynes 

cm2) over 5 h. After completion of the experimental time-course (5 days), cells were 

harvested from ILS and ECS compartments by first washing the cells with HBSS 

solution using the double-syringe method, and removing the remaining cells by 

treatment with 0.125% trypsin-EDTA (3-5 min at 37°C). The circulating media was 

also harvested at the end of each experiment. For mono-culture preparations (i.e. 

endothelial cell-free controls), only BASMCs were seeded into the ECS compartment 

and BAECs excluded from the ILS compartment. 

 

 

 
 
Fig. 2.3: CELLMAX  Artificial Capillary System. Electron micrograph of extracapillary 
vascular smooth muscle cell (top right) and intraluminal endothelial cell growth (bottom right) 
within the capillary bundle of the Cellmax® Artificial Capillary System (left). 
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2.2.9.3 Cyclic strain: Flexercell® Tension Plus™ FX-4000T™ System 

 

For cyclic strain studies, BAECs were seeded onto 6-well Bioflex® plates. 

Bioflex® plates have a flexible ECM-coated silicon membrane bottom which can be 

deformed by microprocessor-controlled vacuum (Dunn Labortechnik GmbH, 

Germany) and allowed to come to confluency. Media was then replenished and the 

cells were exposed to equibiaxial cyclic strain. A Flexercell® Tension Plus™ FX-

4000T™ system (Flexercell International Corp., Hillsborough, NC) was used to apply 

physiological equibiaxial cyclic strain to each plate (0-10% strain, 60 cycles/min, 0-

24 h, cardiac waveform) as previously described by others in our laboratory (Collins 

et al., 2006; von Offenberg Sweeney et al., 2004) (Fig. 2.4). 

 

 

 
 

Fig. 2.4: Flexercell® Tension Plus™ FX-4000T™ system. The system is used to apply 
physiological equibiaxial cyclic strain to cells. 
 

2.2.10 Inhibitor Studies 
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For pharmacological inhibition studies, BAECs were grown in 6-well plates until 

approximately 70-80% confluent, after which the growth media was removed and the 

cells were rinsed in HBSS. Inhibitors were reconstituted in a suitable diluent. 

Working concentrations were then prepared in RPMI 1640 supplemented with 10% 

FCS and antibiotics. Cells were then exposed to inhibitors for 1 h prior to, 

subsequently for the duration of, hemodynamic challenge. The following 

pharmacological inhibitors were used (concentrations were gained from current 

literature and manufacturer’s recommendations); 

 

Apocynin (10 µM - NAD(P)H oxidase)  

Cyclic RGD peptide (100 µM, cRGD - β1/β3 Integrins)  

Pertussis toxin (100 ng/ml, PTX - Heterotrimeric Gα-subunit) 

Genistein (50 µM - Protein Tyrosine Kinases)  

GM6001 (10 µM - Matrix Metalloproteinases)  

L-NAME (1 mM - eNOS) 

MMP-2/-9 Inhibitors (100 µM) 

NSC23766 (50 µM - Rac1) 

ALK5 Inhibitor I (20 µM - TGF-β R1) 

 

2.2.11 Preparation of Whole Cell Lysates 

 

BAECs and BASMCs and were washed in HBSS before being harvested using 

either a cell scraper (for 6-well plate studies) or by trypinization (for perfused 

capillary studies) and centrifuged at 1,000 g for 5 min. The cells were lysed in a 

modified RIPA buffer (50 mM HEPES, 150 mM NaCl, 10 mM EDTA, 10 mM 
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sodium pyrophosphate, 1 mM sodium orthovanadate, 100 mM NaF, and 1% Triton X-

100 supplemented with a 1/100 dilution of Sigma protease and phosphatase inhibitor 

cocktails). Cells were rotated gently for 1 h at 4°C and subsequently centrifuged at 

13,000 g for 20 min at 4°C. The supernatant fraction was stored at -80°C.  

 

2.3 Biochemical Methods 

 

2.3.1 Bicinchoninic Acid (BCA) protein microassay 

 

In this assay, Cu2+ reacts with protein under alkaline conditions to produce Cu+, 

which in-turn reacts with BCA to produce a coloured product. Two separate reagents 

were supplied in the commercially supplied available kit (Pierce Chemicals); (A) an 

alkaline bicarbonate solution and; (B) a copper sulphate solution. 1 part solution B is 

mixed with 49 parts solution A. 200 µl of this mixture is then added to 10 µl of 

protein lysate or BSA standards (standard curve in the range 0-2 mg/ml). The 96-well 

plate is incubated at 37°C for 30 minutes and the absorbance read at 560 nm using a 

Bio-TEK® ELx800 microtitre plate reader. 

 

2.3.2 Western Blotting 

 

SDS-PAGE was carried out on BAEC and BASMC lysates as described by 

Laemmli et al. (Laemmli, 1970) using 10% polyacrylamide gels. Gels were prepared 

as outlined below in Table 2.1; 
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Recipe Resolving gel (10%) Stacking gel (5%) 

Upper Tris Buffer  0 ml 0.75 ml 

Lower Tris Buffer 1.5 ml 0 ml 

40% Acrylamide 1.5 ml 0.375 ml 

10% w/v SDS 6 µl 30 µl 

10% w/v Ammoniun Persulfate 30 µl 15 µl  

Distilled water 3 ml 1.85 ml 

TEMED 7 µl 7 µl 

 
Table 2.1: SDS-PAGE gel formulations.  Resolving gel buffer and stacking gel buffers have 
a pH of 8.8 and 6.8, respectively. 
 

 

The resolving gel was poured first, overlaid with ethanol and allowed to 

polymerize for 20 min. The ethanol was removed and the stacking gel was overlaid 

onto the resolving gel, a comb inserted and the gel allowed to polymerize for 20 min. 

Combs, clamps, and gaskets were then removed and the gel plates inserted into the 

electrophoresis chamber. The chamber was subsequently filled with reservoir buffer 

(25 mM tris, 192 mM glycine, 0.1% SDS, pH 8.3). 

 

The protein concentration of each sample was determined by BCA assay to 

facilitate equal protein loading/well. 4X loading buffer (4 g SDS, 20 ml glycerol, 2 ml 

β-marcaptoethanol, 0.04 g bromophenol blue and 24 ml 0.25 M TrisCl, made up to a 

final volume of 50 ml, pH 6.8) was added to the volume-adjusted samples and boiled 

at 95ºC for 5 min and immediately placed on ice. Samples were then loaded onto the 

gel and the samples were separated electrophoretically at 150 V, 90 mA and 150 W 

for 3 h.  

 

Following electrophoresis, the gel was removed and soaked for 10 min in transfer 

buffer (25 mM tris pH 8.3, 192 mM glycine, 20% methanol and 0.1% w/v SDS). 
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Nitrocellulose membrane and Whatmann filter paper were cut to the same size as the 

gel and soaked in transfer buffer. Proteins were transferred to the membrane for 1 h at 

100 V, 500 mA and 150 W using an Atto semi-dry transfer system. Following 

transfer, the membrane was soaked in Ponceau S Solution for 5 min to monitor and 

normalize for variations in protein loading. The membrane was subsequently washed 

gently in a solution of 1X PBS and 0.05% Tween-20 (PBS-Tween). Following 

washing, the membrane was blocked for 2 h in blocking solution (5% BSA solution). 

Membranes were washed again in PBS-Tween and incubated overnight in eNOS 

primary antibody (Anti-rabbit eNOS polyclonal IgG at 1/2000 dilution (Cayman 

Chemical Company) at 4ºC. The membranes were washed vigorously for 30 minutes 

in PBS-Tween and then incubated with a suitable HRP-linked secondary antibody for 

2 h (Anti-rabbit 20antibody, HRP-conjugated at 1/5000 dilution) (Amersham 

Pharmacia Biotech)) with subsequent washing for 30 min in PBS-Tween. Membranes 

were developed by incubation in West Pico Supersignal reagent (Pierce) according to 

the manufacturers instructions. Blots were developed by autoradiography (Amersham 

Hyperfilm) to visualise bands. The images were captured using a Kodak DC290 

digital camera and a quantitative comparison between bands carried out using Kodak 

1D (version 3.5.4) densitometry imaging software.  

 

2.3.3 Immunocytochemistry 

 

Both endothelial and smooth muscle cells (bovine and human) were prepared for 

immunocytochemical analysis to visually monitor the expression and/or subcellular 

localization of marker proteins, as previously described by Groarke et al., with minor 

modifications (Groarke et al., 2001). Cells were washed twice in PBS and fixed with 
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3% formaldehyde for 15 min.  Cells were subsequently washed in PBS, permeabilised 

for 15 min with 0.2% Triton X-100, and blocked for 30 min in 5% BSA solution. 

Following this, cells were incubated for 2 h with the appropriate primary antibody or 

stain (Table 2.2). Cells were then incubated for 1 h with 1:400 dilution of either 

AlexaFluor-488 anti-mouse or anti-rabbit secondary antibody. Cells were also stained 

with nuclear DAPI staining by incubating cells with 0.5 x 10-6 µg/ml DAPI for 3 min.  

Cells were sealed with coverslips using DAKO mounting media (DAKO Cytomation, 

Cambridgeshire, UK) and visualized by fluorescent microscopy (Olympus BX50). 

 

Primary Anti-serum/Stain Company Concentration/Dilution Time (h) 

Rhodamine-Phalloidin Molecular Probes 1:200 1 

SMC α-actin Sigma 1:400 3 

von Willebrand Factor DakoCytomation 1:1000 3 

Zonula Occludens-1 Zymed  0.5 µg/ml 3 

 
Table 2.2 Immunocytochemical reagents. Staining and antisera information for 
immunocytochemical imaging. 
 

 

2.3.4 Caspase-3 Assay  

 

Caspase-3 assay is a colorimetric assay that detects p-nitroanilide (pNA) release 

after Caspase-3 cleaves the bond from the labelled substrate, Ac-DEVD-pNA. The 

absorbance of pNA was measured using a microtiter plate reader at 405 nm. Substrate 

(Ac-DEVD-pNA) is mixed with 10X Assay Buffer (20 mM Hepes, 0.1% CHAPSO, 5 

mM DTT, 2 mM EDTA, and 10% DMSO) to give a 2 mM concentration. 10 µl of 

this substrate is added to 25 µl of cell lysate and diluted in 1X Assay Buffer (20 mM 

HEPES, 0.1% CHAPSO, 5 mM DTT, and 2 mM EDTA) to give a final volume of 

100 µl. The samples were incubated in a 96-well plate for 45 min and the absorbance 
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measured at 405 nm. Appropriate negative controls and blanks were included in the 

assay. A pNitroanilide (pNA) standard curve (0-200 µg/µl), prepared under identical 

assay conditions, allowed for Caspase-3 activity to be calculated for each sample. 

 

2.4 Molecular Methods 

 

2.4.1 RNA Isolation 

 

Post-treatment, BASMCs were harvested for gene expression analysis. Trizol® is a 

ready-to-use reagent for the isolation of total RNA, DNA, and/or protein from cells 

and tissues. Based on a method developed by Chomczynski and Sacchi (Chomczynski 

and Sacchi, 1987). Trizol® maintains the integrity of the RNA, whilst disrupting the 

cells and dissolving the cellular components. Post-treatment, cells were washed and 

lysed directly in 6-well plates by the addition of 1 ml Trizol® per cm2. A pipette was 

used to titurate samples a number of times to ensure complete homogenization. The 

samples were subsequently incubated at room temperature for 5 min. 0.2 ml 

chloroform was added per ml of Trizol® used and mixed vigorously for 15 sec before 

being incubated for 5 min at room temperature. Samples were then centrifuged at 

12,000 g for 15 min at 4°C. The mixture separated into a lower red phenol-chloroform 

phase, an interphase, and an upper colourless aqueous phase.  RNA remained in the 

aqueous phase, which was carefully removed and transferred to a fresh tube. The 

RNA was precipitated out of solution by the addition of 0.5 ml of isopropanol per 1 

ml of Trizol® used. Samples were incubated for 15 min at room temperature and then 

centrifuged at 12,000 g for 10 min at 4°C. The RNA precipitate forms a gel-like pellet 
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on the side of the tube. The supernatant was removed and the pellet washed in 1 ml of 

75% ethanol per ml of Trizol® used followed by centrifugation at 7,500 g for 5 min at 

40C. The resultant pellet was air-dried for 5-10 min before being resuspended in 

DEPC-treated water. The sample was then stored at -800C. 

 

2.4.2 Spectrophotometric Analysis of Nucleic Acids 

 

RNA concentration was determined by measuring the absorbance at 260nm. DEPC 

water in a quartz cuvette was used to blank the spectrophotometer. The RNA 

concentration was determined as follows; 

 

ABS @260nm x 40 x dilution factor = [RNA] (µg/ml) 

 

The purity of RNA samples was also established by reading the absorbance at 260 nm 

and 280 nm and then determining the ratio between the two (A260/A280). Pure RNA 

has a ratio of 2.0, lower ratios indicate the presence of proteins, higher ratios imply 

the presence of organic reagents. 

 

2.4.3 RealTime PCR analysis  

 

2.4.3.1 Reverse Transcription  

 

cDNA was synthesized from messenger RNA (mRNA) using an iScript™ cDNA 

Synthesis Kit (Bio-Rad Laboratories, California, USA). The RT reaction was 

prepared as described in Table 2.3. Using a PCR Sprint Thermo Cycler (Thermo 
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Electron Corporation, Massachusetts, USA), the RT reaction was subjected to one 

cycle consisting of three phases; (i) 25°C for 5 min, (ii) 42°C for 30 min, and (iii) 

85°C for 5 min. The resultant cDNA was stored at -20/-80°C until required for PCR. 

 

RT Cocktail Volume 

5X Buffer  4 µl 

Reverse Transcriptase  1 µl 

RNA 1 µg 

RNase-free water to a final volume 20 µl 

 
Table 2.3: RT Recipe.  
 
 
2.4.3.2 RealTime PCR 

 

RealTime PCR was carried out using a Rotor-GeneRG-3000TM LightCycler 

(Corbett Research, Australia) using SYBR Green PCR chemistry. SYBR Green is a 

fluorescent dye which, when bound to the minor groove of double-stranded DNA, 

emits fluorescence. The fluorescence increase during amplification is directly 

proportional to the amount of cDNA product formed, thus allowing for quantitative 

comparisons between genes of interest. cDNA was amplified for the target sequences 

of interest namely MMP-2, eNOS, CDK1, CDK2, CDK4, CDK6, Cyclin A, Cyclin 

D1, Cyclin E,  p27kip, and GAPDH (the latter housekeeping gene included for 

normalization purposes). Primer sequences of interest are detailed below in Table 2.4.  



 76 

 

Target gene Primer Sequence Annealing Temp Product Size 

CDK1 For: 5'-CAGACTAGAAAGTGAAGAGG-3' 

Rev: 5'-CTTCTGGAGATCTATACCAG-3' 

55ºC 415 bp 

CDK2 For: 5'-CATTCCTCTTCCCCTCATCA-3' 

Rev: 5'-AGCTCCGTCCATCTTCATCC-3' 

55ºC 491 bp 

CDK4 For: 5'-CCTTCCCGTCAGCACAGTTC-3'    

Rev: 5'-CAGAGCGTAACCACCACAGG-3' 

55ºC 206 bp 

CDK6 For: 5'-TTGGATAAAGTGCCAGAACC-3' 

Rev: 5'-TTTCCTAGTTGGTCGACATC-3' 

55ºC 354 bp 

Cyclin D1 For: 5'-CTGGCCATGAACTACCTGGA-3' 

Rev: 5'-CCACTTGAGCTTGTTCACCA-3' 

57ºC 332 bp 

Cyclin A For: 5′-AGACCCTGCATTTGGCTGTG-3′ 

Rev: 3′-ACAAACTCTGCTACTTCTGG-5′ 

55ºC 294 bp 

Cyclin E For: 5'-TTCTGGATTGGCTGATGGAG-3' 

Rev: 5'-AAGCAGCGAGGACACCATAA-3' 

57ºC 462 bp 

p27kip For: 5'-CGGGTTAGCGGAGCAGTG-3′ 

Rev: 5'-AGGCTTCTTGGGCGTCTG-3′ 

57ºC 253 bp 

MMP-2 For: 5'-TGGCAACCCCGACGTGG-3′ 

Rev: 5'-AGGCTTCTTGGGCGTCTG-3′ 

55 ºC 534 bp 

eNOS For: 5'-CCGTGTCCAACATGCTGCT -3′ 

Rev: 5'-ACCTCGCATTACCATACACA -3′ 

55ºC 396 bp 

GAPDH For: 5'-AGGTCATCCATGACCACTTT-3' 

Rev: 5'-TTGAAGTCGCAGGAGACAA-3' 

55ºC 337 bp 

 
Table 2.4: Primer sequences for RealTime PCR. 
 

Each PCR reaction was set up in triplicate (Table 2.5); 

 

PCR Mix Volume 

SYBR Green (total reagent) 12.5 µl 

DEPC Water  8.5 µl 

Forward Primer 1.0 µl 

Reverse Primer 1.0 µl 

cDNA   2.0 µl 

Total 25 µl 

 
Table 2.5: PCR Recipe.. 
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The following PCR cycle program was used for product amplification with the 

appropriate annealing temperature; 

 

Denature   950C  15 min 

Cycling Denature 950C  20 sec 

Annealing 590C  30 sec       45 cycles 

    Extension 720C  30 sec 

  Hold    600C  1 min 

  Melt    50 – 1000C  

 

Melt curve analysis was routinely carried out to rule out non-specific primer-dimer 

products. For quantification purposes, glyceraldehyde phosphate dehydrogenase 

(GAPDH) a house-keeping gene, was included for normalization purposes. Agarose 

gel electrophoresis was also carried out to confirm fragment sizes of various primers. 

 

2.4.4 PCR Microarray  

 

This specific analysis profiles the expression of 84 genes relevant to cell cycle 

regulation. The PCR Microarray system includes the RT² First Strand Kit which 

generates the CDNA (SABiosciences, Frederick, MD, USA) and the Human Cell 

Cycle RT² Profiler™ PCR Array (SABiosciences, Frederick, MD, USA).which 

examines the expression of the relevant genes. The real-time PCR instrument 

employed was the ABI-7900HT Fast RT-PCR system (Applied Biosystems, 

Warrington, UK)  
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2.4.4.1 Reverse Transcription 

 

The RT² First Strand Kit (SABiosciences, Frederick, MD, USA) was used to 

generate cDNA and contains a genomic DNA elimination step. A genomic DNA 

elimination mixture (Table 2.6) was prepared for each RNA sample; 

 

DNA Elimination Volume 

Total RNA 1 µg 

GE (5X gDNA Elimination Buffer) 2 µl 

RNase-free water to a final volume 10 µl 

 
Table 2.6: DNA Elimination Recipe. This step removes any residual genomic DNA from the 
RNA sample. 
 

The samples are incubated at 42ºC for 5 min and immediately placed on ice for at 

least 1 min. The following RT recipe (Table 2.7) was then prepared for each sample 

to give a final volume of 10 µl; 

 

RT Cocktail Volume 

BC3 (5X RT Buffer 3) 4 µl 

P2 (Primer and External Control Mix) 1 µl 

RE3 (RT Enzyme Mix 3) 2 µl 

RNase-free water 3 µl 

Total volume 10 µl 

 
Table 2.7: RT Recipe.  
 

Samples were centrifuged briefly and RT Cocktail and Genomic DNA Elimination 

Mixture were combined to give a final volume of 20 µl. The samples were incubated 
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at 42ºC for 15 min and then heated at 95ºC for 5 min to stop the reaction. The 

resultant cDNA was stored at -20 ºC. 

 

2.4.4.2 PCR Microarray 

 

The Human Cell Cycle RT² Profiler™ PCR Array (SABiosciences, Frederick, MD, 

USA) profiles the expression of 84 genes key to cell cycle regulation in a 96-well 

format. The array monitors the expression of genes that positively and negatively 

regulate the cell cycle, DNA replication, checkpoints, and arrest. Five house-keeping 

genes and three RNA and PCR quality controls were also included. The real-time 

PCR instrument employed was the ABI-7900HT Fast RT-PCR system with variable 

Taqman® Low Density Array platform (compatible with the Human Cell Cycle RT² 

Profiler™ PCR Array). For each sample, a PCR reaction mix was prepared and 

aliquoted out onto a separate plate at 25 µl per well (Table 2.8 - volumes shown are 

PCR reaction mix per well); 

 

PCR Mix Volume 

RT² SYBR Green/ROX qPCR Master Mix 12.5 µl 

ddwater  10.5 µl 

cDNA  1.0 µl 

Total 22.5 µl 

 
Table 2.8: PCR Recipe.  
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The following PCR cycle program was then used for product amplification; 

 

Denature   950C  10 min 

Cycling Denature 950C  15 sec 

Annealing 600C  60 sec       40 cycles 

    Extension 600C  30 sec 

  Hold    600C  1 min 

  Melt    50 – 1000C  

 

A brief diagrammatic overview of the RT2 PCR microarray procedure is shown 

below in Fig. 2.6; 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6: RT2 PCR Array. The array combines the real-time PCR performance with the ability 
of the microarrray to detect the expression of 84 key related genes to cell cycle regulation.  
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2.5 Fluorescence Activated Cell Sorting (FACS) Analysis 

 

Flow cytometry is a process used to characterise the properties of fluorescently 

labelled cells. It provides information about cell size, granularity, and the phenotypic 

expression of protein markers on or in a particular cell, as well as the proliferative, 

apoptotic, and necrotic state of cells in response to different experimental treatments. 

 

2.5.1 Apoptosis 

 

A Vybrant™ Apoptosis Assay Kit #2 was used to monitor apoptosis in BASMCs. 

The kit contains a Alexfluor488-conjugated recombinant Annexin V. The 

Alexafluor488 dye is an almost perfect spectral match to Fluorescein IsoThioCyanate 

(FITC), but it creates brighter and more photostable conjugates. The kit also includes 

red-fluorescent Propidium Iodide (PI) nucleic acid-binding dye. PI stains necrotic 

cells (but not live apoptotic cells) with red fluorescence, binding tightly to the nucleic 

acids in the cell. After staining a cell population with Alexafluor488-conjugated 

Annexin V and PI in the provided binding buffer, apoptotic cells show green 

fluorescence, dead cells show red and green fluorescence, and live cells show little or 

no fluorescence. These populations can easily be distinguished using a flow cytometer 

with the spectral line of an argon-ion laser set for 488 nm excitation. 

 

BASMCs were seeded onto 6-well plates (5 x 104 cells/cm2) and allowed to grow 

for 24 h. Cells were then quiesced for 48 h and incubated with BCM harvested from 

hemodynamic experiments. Post-treatment (4 and 6 days treatment with BCM), 

BASMCs were washed once in PBS, harvested by trypsinization and pelleted by 
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centrifugation (1,000 g for 5 min). Cells were washed again in 1 ml PBS (containing 

0.1% BSA), and resuspended by gentle pipetting. Cells were subsequently pelleted by 

centrifugation and re-suspended in 200 µl of 1X Annexin-binding buffer. Propidium 

Iodide (0.4 µl from 100 µg/ml working solution) and 1 µl Alexafluor488 Annexin V 

were added to the cell suspension and incubated at room temperature for 15 min. 

Cells were then placed on ice pending flow cytometry analysis (Becton Dickinson 

FACSCaliber). 

 

2.5.2 Proliferation  

 

The succinimidyl ester of carboxyfluorescein diacetate (CFDA-SE) was used to 

monitor proliferation in BASMCs. CFDA-SE is a dye that passively diffuses into the 

cytoplasm of cells. CFDA-SE couples to both intracellular and cell-surface proteins 

by reaction with lysine side chains and other available amine groups. When cells 

divide, CFDA-SE labelling is distributed equally between the daughter cells, resulting 

in halving of the mean cellular fluorescence. As a result, each successive generation 

in a population of proliferating cells is marked by a halving of cellular fluorescence 

intensity that is readily detected by flow cytometry (Molecular Probes). 

 

BASMCs were seeded onto 6-well plates (5 x 104 cells/cm2) and allowed to grow 

for 24 h. Cells were washed once with PBS and 1 ml of 5 µM carboxy-fluorescein 

diacetate succinimidyl ester (CFDA-SE, prepared in PBS) was added to each well for 

10 min at 37°C. Following incubation, CFDA-SE was replaced with fresh media and 

the cells were allowed to recover for 6 h before 48 h quiescence. Cells were then 

treated with BCM harvested from hemodynamic experiments. Post-treatment (4 and 6 
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days treatment with BCM), BASMCs were harvested by trypsinization/centrifugation 

and washed twice with 1 ml PBS (containing 0.1% BSA). Cells were resuspended in 1 

ml PBS (containing 0.1% BSA) and then placed on ice pending flow cytometry 

analysis. Proliferation was also routinely monitored by cell counting over a 7-day 

BCM treatment period using a Sigma bright-line haemocytometer. 

 

2.6 Statistical Analysis 

 

Results are expressed as mean±SEM. Experimental points were performed in 

triplicate with a minimum of three independent experiments (n=3). Means were 

compared by Student’s unpaired t-test or Two-Way ANOVA with replication, where 

applicable. A value of P≤ 0.05 was considered significant. 
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3.1 Introduction 

 

Studies have shown that both laminar shear stress and cyclic strain have a profound 

effect on morphological and phenotypic changes in endothelial cells (Iba et al., 1991). 

Endothelial cells can sense the direction and magnitude of blood flow and are able to 

adapt their shape and cytoskeletal structure in response to this. Hemodynamic forces 

have also been shown to modulate the expression and/or activation of several effector 

genes such as eNOS, matrix metalloproteinases (e.g. MMP-2), and zonula occludens 

(ZO-1), the latter known to be involved in endothelial tight junction assembly (Collins 

et al., 2006; von Offenberg Sweeney et al., 2004; Colgan et al., 2007). 

 

The aim of this chapter was to assess the characteristics of the procured bovine 

and human vascular cells (BAEC/BASMC, HAEC/HASMC) wrt marker protein 

expression and morphological response under static and force conditions. 
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3.2  Results 

 

3.2.1 BAEC/BASMC Characterisation 

 

Our initial studies examined the gross morphology of static BAECs and BASMCs 

using light microscopy. Both cell types were cultured in RPMI 1640 supplemented 

with FCS and antibiotics. BAECs displayed a characteristic “cobblestone” 

morphology, whilst BASMCs displayed a “spindle” morphology (Fig. 3.1 A,B). 

BAECs were then examined immunocytochemically for EC-specific von Willebrand 

Factor (vWF), whilst BASMCs were monitored for expression of SMC-specific α-

actin (Fig. 3.1 C,F). Both BAECs and BASMCs were positive for their individual 

marker. Negative controls included primary antibody exclusion (Fig. 3.1 D,E). 

 

3.2.2 HAEC/HASMC Characterisation 

 

Gross morphology of static HAECs and HASMCs was also examined using light 

microscopy. HAECs were cultured in Promocell Endothelial Media supplemented 

with 5% FCS, 5% ECGS, 1 µg/ml hydrocortisone, and antibiotics. HASMCs were 

cultured in Promocell Smooth Muscle Cell Media supplemented with 5% FCS, 0.5 

ng/ml epidermal growth factor, 2 ng/ml bFGF, 5 µg/ml insulin, and antibiotics. 

HAECs displayed a cobblestone morphology, whilst HASMCs displayed a “spindle” 

morphology (Fig 3.2 A,B). HAECs were then examined immunocytochemically for 

EC-specific vWF, whilst HASMCs were monitored for expression of SMC-specific α-

actin (Fig. 3.2 C,F). Both HAECs and HASMCs were positive for their individual 

markers. Negative controls included exclusion of primary antibody (Fig. 3.2 D,E).
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Fig. 3.1: BAEC and BASMC marker protein expression. Brightfield image of static; (A) 
BAECs and (B) BASMCs. Immunocyochemical expression of; (C) endothelial cell-specific 
vWF and (F) smooth muscle cell-specific α-actin (F). Controls involving incubation without 
primary anti-serum show no fluorescence (D, E). Images are representative of 3 experiments.  
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Fig. 3.2: HAEC and HASMC marker protein expression. Brightfield image of static; (A) 
HAECs and (B) HASMCs. Immunocyochemical expression of; (C) endothelial cell-specific 
vWF and (F) smooth muscle cell-specific α-actin (F). Controls involving incubation without 
primary anti-serum show no fluorescence (D, E). Images are representative of 3 experiments. 
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3.2.3  BAEC Responsiveness to Shear Stress  

 

The effects of shear stress (10 dynes/cm2, 24 h) on BAEC morphology were 

examined in order to ensure they were capable of sensing and responding to a defined 

level of hemodynamic stimulation. Post-shear, cells were monitored for changes in 

shear-dependent indices such as cellular realignment, cytoskeletal remodelling, barrier 

function and eNOS expression. 

 

Following exposure to laminar shear stress (orbital rotation model), BAECs 

demonstrated gross morphological realignment in the direction of the shear vector. 

This contrasts with static cells which were more random and multi-directional (Fig. 

3.3 A, B). Cells were also examined by fluorescence microscopy for morphological 

changes in the actin cytoskeleton using Rhodamine-Phalloidin (i.e. stains for F-actin). 

Static cells expressed F-actin in a disorganised “stress fibre” fashion. Sheared cells by 

contrast, displayed a clear realignment of the cytoskeleton in the direction of flow 

with a “cortical actin” ring clearly visible along the cell periphery (Fig 3.3 C,D) 

conducive to enhanced barrier function. Shear-dependent tight junction assembly, an 

important index of endothelial barrier function (Colgan et al., 2007), was also 

monitored following BAEC shear. Static cells displayed a highly “discontinuous” 

pattern of zonula occludens-1 (ZO-1) immunoreactivity along the cell-cell border, 

whilst localization for this tight junction-protein appeared somewhat more defined 

and continuous in sheared endothelial cells (Fig 3.3 E,F). 

 

To further examine the effects of shear stress on BAECs, the regulatory effect on 

eNOS mRNA and protein expression levels were examined. Several studies have 
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shown that shear stress of endothelial cells increases both eNOS mRNA and protein 

(Li et al., 2003; Davis et al., 2001; Nadaud et al., 1996). Following exposure of 

BAECs to shear stress (10 dynes/cm2, 24 h), eNOS mRNA and protein levels were 

examined. eNOS mRNA levels, as measured by RealTime PCR, increased by 2.4±0.2 

fold compared to control (Fig. 3.4 A). eNOS protein levels increased by 1.58±0.1 fold 

compared to control, as observed by Western immunoblotting (Fig. 3.4 B). 
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Fig. 3.3: BAEC responsiveness to shear stress. Following BAEC exposure to shear stress 
(10 dynes/cm2, 24 h), changes in cellular morphology and cytoskeletal remodelling were 
monitored. Brightfield image of; (A) unsheared control cells and (B) sheared cells. 
Rhodmaine-Phalloidin staining for F-actin in; (C) unsheared control cells and (D) sheared 
cells. Dotted arrows indicates direction of shear vector. Solid white arrow indicates cortical 
actin formation. Cell-cell border localization of ZO-1 in; (E) unsheared control cells and (F) 
sheared cells. Red arrows displays ZO-1 cell-cell border localization. DAPI nuclear staining is 
shown in blue. Images are representative of 3 experiments.  
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Fig. 3.4: Shear-dependent up-regulation of eNOS mRNA and protein expression. 
Following BAEC exposure to shear stress (10 dynes/cm2, 24 h), changes in eNOS mRNA and 
protein levels were monitored; (A) eNOS mRNA and (B) eNOS protein. Histogram in (A) 
represents fold change in mRNA expression compared to unsheared control (2.4±0.2 fold). 
Histogram in (B) represents fold change in Western immunoblot band intensity compared to 
unsheared control (1.58±0.1 fold) (immunoblot is shown above histogram). Histograms are 
averaged from three independent experiments (±SEM). *P≤0.05 relative to unsheared control. 
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3.2.4  BAEC Responsiveness to Cyclic Strain  
 

Following BAEC exposure to equibiaxial cyclic strain (10%, 24 h, cardiac 

waveform), cells were examined for changes in cytoskeletal reorganisation, barrier 

function and MMP-2 expression. Static cells expressed actin in a disorganized state, 

whilst cells exposed to cyclic strain appeared to display higher cortical actin 

realignment at the cell-cell contacts (Fig. 3.5 A,B). Furthermore, barrier function was 

investigated in response to cyclic strain. It revealed that static cells displayed a jagged 

localization pattern for tight junction-associated ZO-1 along the cell-cell border (Fig. 

3.5 C). Cells exposed to cyclic strain however, showed a more pronounced pattern of 

ZO-1 immunoreactivity along the cell-cell border (Fig. 3.5 D). 

 

To further examine the effects of cyclic strain on BAECs, the regulatory effect on 

MMP-2 mRNA expression levels were examined. Following exposure to cyclic strain 

as described above, MMP-2 mRNA expression was monitored by Real-Time PCR. 

Fig. 3.6 illustrates that 10% strain increased MMP-2 mRNA expression levels by 

1.7±0.37 fold compared to unstrained controls. 
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Fig. 3.5: BAEC response to cyclic strain. Following BAEC exposure to cyclic strain (5-10%, 
24 h), changes in cellular morphology and cytoskeletal remodelling were monitored. 
Rhodmaine-Phalloidin staining for F-actin in; (A) unstrained control cells and (B) strained 
cells. Solid white arrow indicates cortical actin formation. Cell-cell border localization of ZO-1 
in; (C) unstrained control cells and (D) strained cells. Red arrows displays ZO-1 cell-cell 
border localization. DAPI nuclear staining is shown in blue. Images are representative of 3 
experiments. 
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Fig. 3.6: Strain-dependent up-regulation of MMP-2 mRNA expression. Following BAEC 
exposure to equibiaxial cyclic strain (10% strain, 24 h), changes in MMP-2 expression levels 
were monitored. Histogram represents fold change in mRNA expression level (1.7±0.37 fold) 
compared to unstrained control (0%) and is averaged from three independent experiments 
(±SEM). *P≤0.05 relative to unstrained control. 
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3.3 Discussion 
 

Our initial studies investigated the basic characteristics of endothelial and smooth 

muscle cell lines obtained from commercial sources. Both vascular endothelial and 

smooth muscle cells were found to exhibit expected morphological characteristics 

under static conditions and to express cell-specific markers (e.g. vWF and α-actin), 

the latter monitored by immunocytochemistry. 

 

The responsiveness of BAECs to shear stress and cyclic strain, the hemodynamic 

forces under study, were also examined. Exposure of BAECs to laminar shear stress 

(10 dynes/cm2, 24 h) induced a gross morphological realignment of cells in the 

direction of flow. In parallel with this, F-actin realignment and cortical actin 

formation in response to shear were also observed, indicating the importance of 

cytoskeletal reorganisation in flow-dependent endothelial responses (Colgan et al., 

2007; Birukov et al., 2002). Furthermore, we monitored endothelial barrier function 

in response to shear stress. ZO-1, a tight junction-associated protein, appears highly 

discontinuous with long finger-like projections in unsheared cells. Following shear 

however, it becomes more continuous and linearly distributed along the cell-cell 

border, consistent with tight junction assembly and up-regulation of barrier function 

(Colgan et al., 2007). Regulation of endothelial barrier function by circulatory stimuli 

such as shear is crucial for maintaining homeostasis, as barrier disruption can lead to 

vascular diseases (Colgan et al., 2007). We also investigate the effect of shear stress 

on eNOS, a well characterized shear stress-responsive enzyme in endothelial cells. 

After 24 h of shear stress, both mRNA and protein expression levels of eNOS 
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increased significantly, an effect that has been observed in both in vitro and in vivo 

models (Searles et al., 2006). 

 

Endothelial cells exposed to cyclic strain (10%, 24 h) also exhibited a degree of 

actin remodelling, as F-actin stress fibre reduction and cortical actin formation was 

observed in response to strain. Cyclic strain also enhanced localization of endothelial 

ZO-1 at the cell-cell border. These findings correlate to other results from our 

laboratory, which demonstrate that physiological levels of cyclic strain can up-

regulate the expression and assembly of tight junction proteins (occludin and ZO-1) in 

BAECs (Collins et al., 2006). We also investigated the response of MMP-2 mRNA 

after exposure of BAECs to cyclic strain (10%, 24h). MMPs are involved in ECM 

degradation and vessel remodelling. Studies have shown that cyclic strain of vascular 

endothelial cells can up-regulate MMP-2 mRNA (Grote et al., 2003; von Offenberg 

Sweeney et al., 2004). This correlates with our own findings demonstrating cyclic 

strain-induced up-regulation of MMP-2 mRNA. It should also be noted, previous 

studies from our laboratory have shown that cyclic strain increases BAEC migration 

and tube formation (von Offenberg Sweeney et al., 2005), with apparent roles for 

MMP-2 and MMP-9 in these events. Physiological levels of cyclic strain have also 

been shown to increase proliferation, whilst reducing apoptosis (Iba et al., 1991; Li 

and Sumpio, 2005; Haga et al., 2003; Liu et al., 2003). 

 

In conclusion this chapter has confirmed morphological characteristics of the 

commercially procured vascular endothelial and smooth muscle cells (bovine and 

human) to be used for subsequent investigations. It also confirmed the expression of 
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cell-specific markers for endothelial and smooth muscle cultures. Finally, it 

demonstrated the “mechano-responsiveness” of endothelial cells (specifically 

BAECs) with respect to cellular morphology, cytoskeletal remodelling, and mechano-

sensitive gene (eNOS, MMP-2) expression. The following chapters will investigate 

how variable hemodynamic challenges to endothelial cells putatively impacts smooth 

muscle cell growth properties. 
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4.1 Introduction 

 

Vascular smooth muscle cells and endothelial cells are the major cellular 

components of the vessel wall. Vascular endothelial cells, which provide an interface 

between circulating blood and the vessel wall, are constantly subjected to mechanical 

forces associated with blood flow and play a pivotal role in maintaining vessel 

structure and function. The endothelium is exposed to two principal hemodynamic 

forces, laminar shear stress and cyclic strain. Shear stress is the frictional force 

generated by blood flow and cyclic strain is the transmural pressure exerted 

perpendicularly to the direction of flow (the latter stemming from the pulsatile nature 

of cardiac output). Under physiological conditions hemodynamic forces impart an 

atheroprotective effect. However, alteration in the magnitude and pattern of 

hemodynamic challenge can favour endothelial dysfunction leading to pathological 

changes in vessel structure associated with vascular diseases such as atherosclerosis. 

Endothelial cells (and SMCs) can detect and respond to hemodynamic forces. Indeed, 

the previous chapter demonstrated endothelial cell responsiveness to both shear stress 

and cyclic strain. Moreover, force-dependent (and independent) EC-SMC interactions 

likely play an important role in cellular communication in the regulation of vascular 

remodeling. In this regard, a number of studies have demonstrated the importance of 

endothelial cells in regulating smooth muscle cell functions such as proliferation, 

migration and apoptosis.  

 

The aim of this chapter was to investigate how different types of hemodynamic 

challenge to BAECs may impact on BASMC proliferation and apoptosis. 
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In order to investigate this, a number of model systems were employed. These 

included; (i) orbital rotation model (laminar shear stress), (ii) CELLMAX® Artificial 

Capillary System (pulsatile shear), and a (iii) Flexercell® Tension Plus™ FX4000T™ 

System (cyclic strain). Initially, we examined how physiological levels of laminar 

shear stress on endothelial cells impact on smooth muscle cell proliferation and 

apoptosis in a force- and time-dependent manner using an established orbital rotation 

model to generate BAEC-conditioned media (BCM) for studies with BASMCs. As a 

control experiment, we also examined turbulent shear using an improvised model 

(back-forth shaking). A perfused transcapillary co-culture system (CELLMAX® 

Artificial Capillary System) was also employed to investigate how pulsatile laminar 

shear of BAECs impacts on BASMC proliferation and apoptosis. With this system, 

BAECs were seeded into the intra-lumenal space (ILS) of the Pronectin®-coated 

capillary bundle and BASMCs seeded onto the extracapillary surface (ECS). This 

model much more accurately mimics the three-dimensional hemodynamic 

environment of the blood vessel, allows for application of higher shear rates (with 

pulsatility) than orbital rotation, and enables dual direction cell-cell communication 

(Redmond et al., 1995). In addition to shear stress the endothelium is chronically 

exposed to cyclic circumferential strain. Like shear it plays an important role in 

physiological control of vascular tone, remodelling, and associated pathologies. 

Previous studies in our lab have demonstrated that incubation of BASMCs with cyclic 

strain-derived BCM significantly decreased BASMC migration via a putative 

mechanism involving MMP-2 (von Offenberg Sweeney et al., 2004). We therefore 

decided to revisit this hemodynamic model as part of our studies using the Flexercell® 

Tension Plus™ FX4000T™ System. 
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4.2 Results 

 

4.2.1 Laminar shear-derived BCM decreases BASMC proliferation in a time- 

and force-dependent manner  

 

We first examined the effect of BAEC-conditioned media (BCM) on BASMC 

proliferation following BAEC exposure to laminar shear stress (LSS) of varying 

magnitude. BAECs were exposed to varying levels of laminar shear stress (0, 2.5, 5, 

and 10 dynes/cm²) for 24 h. BASMCs were subsequently incubated with shear-

derived BCM and their proliferation monitored. Hemocytometer cell counts clearly 

indicated shear-dependent decreases in BASMC proliferation by 12±0.5% and 

20±0.7% at 5 and 10 dynes/cm², respectively (P≤0.05) (Fig. 4.1 A,B). Shear-

dependent decreases in BASMC proliferation were also confirmed by FACS analysis 

(Fig. 4.1C). 

 

We next investigated if this anti-proliferative effect on BASMCs was dependent on 

the duration of BAEC shear. The effect of BCM on BASMC proliferation following 

BAEC exposure to constant laminar shear stress (10 dynes/cm²) of varying duration 

(24 and 48 h) was examined. Hemocytometer cell counts showed a shear-dependent 

decrease in BASMC proliferation by 19±1.6% and 34±0.7% at 24 and 48 h, 

respectively (P≤0.05) (Fig 4.2 A,B). A temporal response was also confirmed by 

FACS analysis (Fig 4.2 C). 
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Fig. 4.1: Force-dependent effect of shear-derived BCM on BASMC proliferation. BAECs 
were exposed to varying levels of laminar shear stress (0-10 dynes/cm2, 24 h). BCM was 
harvested and incubated with static BASMCs for up to 7 days to monitor effects on 
proliferation. Effects of BCM on BASMC proliferation as shown by cell counts; (A) over 7day 
period and (B) specifically highlighted for day 4. Day 4 shows decreases in BASMC 
proliferation by 12±0.5% and 20±0.7% at 5 and 10 dynes/cm², respectively. Corresponding 
FACS analysis taken for day 4 is also shown (C). Proliferation decreases as the peaks shift to 
the right. All data are averaged from three independent experiments ±SEM. *P≤0.05 versus 
unsheared control. δP≤0.05 versus 5 dynes/cm2. FACS scan are representative of 3 
experiments. 
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Fig. 4.2: Time-dependent effect of shear-derived BCM on BASMC proliferation. BAECs 
were exposed to a constant level of laminar shear stress (10 dynes/cm2) for varying times (0, 
24, and 48 h). BCM was harvested and incubated with static BASMCs for up to 7 days to 
monitor effects on proliferation. Effects of BCM on BASMC proliferation as shown by cell 
counts; (A) over 7day period and (B) specifically highlighted for day 4. Day 4 shows a 
decrease in BASMC proliferation by 19±1.6% and 34±0.7% at 24 and 48 h, respectively. 
Corresponding FACS analysis taken for day 4 is also shown (C). Proliferation decreases as 
the peaks shift to the right. All data are averaged from three independent experiments ±SEM. 
*P≤0.05 versus unsheared control. δP≤0.05 versus 24 h shear. FACS scan are representative 
of 3 experiments. 
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4.2.2 Laminar shear-derived BCM increases BASMC apoptosis in a time- and 

force-dependent manner  

 

We next determined the impact of BCM on BASMC apoptosis following BAEC 

exposure to laminar shear stress of varying force (0-10 dynes/cm²) for 24 h. Our 

results indicated an increase in apoptosis from 3.84±0.4% in unsheared controls to  

5.94±0.3% and 9.24±1.1% at 5 and 10 dynes/cm², respectively (P≤0.05) (Fig. 4.3 

A,B). Results also indicated an apparent dose-dependent increase in caspase-3 activity 

(monitored in BASMC lysates as an alternate apoptotic index) (Fig. 4.3 C). Necrotic 

levels in all samples were very low ranging from 0-0.5%.  

 

We next investigated if the pro-apoptotic effect on BASMC was dependent on the 

time of BAEC shear. To this end, the effect of BCM on BASMC apoptosis following 

BAEC exposure to constant laminar shear stress (10 dynes/cm²) of varying duration 

(24 and 48 h) was examined. Our results showed increases in apoptosis by 1.24±0.8 

fold and 1.97±0.8 fold after 24 and 48 h of shear, respectively, relative to unsheared 

24 and 48 h controls (P≤0.05) (Fig. 4.4 A, B). Time-dependent increases in BASMC 

caspase-3 activity were also observed after 24 and 48 h shear, as shown in Fig. 4.4 C. 

Necrotic levels in all samples were very low ranging from 0-0.8%. 
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Fig. 4.3: Force-dependent effect of shear-derived BCM on BASMC apoptosis. BAECs 
were exposed to varying levels of laminar shear stress (0-10 dynes/cm2, 24 h). BCM was 
harvested and incubated with static BASMCs for up to 4 days to monitor effects on apoptosis. 
Effect of BCM on BASMC apoptosis as shown by FACS analysis (A) with corresponding 
histogram at day 4 (B). An increase in apoptosis was observed from 3.84±0.4% in unsheared 
controls to  5.94±0.3% and 9.24±1.1% at 5 and 10 dynes/cm², respectively. FACS measures 
EA (early apoptosis) and LA (late apoptosis). Caspase-3 activity is shown in (C). 25 mM 
hydrogen peroxide (H2O2) is included in (B, C) as a positive control for apoptotic induction. All 
data are averaged from three independent experiments ±SEM. *P≤0.05 versus unsheared 
control. FACS scans are representative of 3 experiments. 
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Fig. 4.4: Time-dependent effect of shear-derived BCM on BASMC apoptosis. BAECs 
were exposed to constant laminar shear (10 dynes/cm2) for 24 and 48 h. BCM was harvested 
and incubated with static BASMCs for up to 4 days to monitor effects on apoptosis. Effect of 
BCM on BASMC apoptosis as shown by FACS analysis (A) with corresponding histogram at 
day 4 (B) (Note: 48 h shear control is not shown). An increase in apoptosis was observed  by 
1.24±0.8 fold and 1.97±0.8 fold after 24 and 48 h. FACS measures EA (early apoptosis) and 
LA (late apoptosis). Caspase-3 activity is shown in (C). All data are averaged from three 
independent experiments ±SEM. *P≤0.05 versus unsheared control. FACS scans are 
representative of 3 experiments. 

Control 

N                 LA 

V                 EA 
FL1-AlexaFluor 

FL
3-

PI
 

FL1-AlexaFluor 

V               EA 

N                LA 

48 h Shear  

FL
3-

PI
 

FL1-AlexaFluor 

N                  LA 

 

24 h Shear 

V               EA 

FL
3-

PI
 

A                         B 

    C 



 108 

4.2.3 Putative impact of turbulent shear stress (TSS) on BASMC proliferation 

and apoptosis  

 

As a control experiment, we also looked at the effect of TSS-derived BCM (24 h) 

on BASMC proliferation and apoptosis. In the absence of a cone-plate viscometer, a 

relatively crude model (back-forth shaking) was used to generate a moderate level of 

turbulence. Unlike laminar shear stress, turbulent shear typically induces an 

“atherogenic” effect in vivo (Traub and Berk, 1998). In response to TSS, BASMCs 

displayed an increase in proliferation by 10±0.4% (P≤0.05) (Fig. 4.5 A,B), and a 

small decrease, albeit statistically insignificant, in apoptosis (from 4.27±0.6% to 

3.86±0.7%) (Fig 4.5 C,D). 
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Fig. 4.5: Effect of TSS-derived BCM on BASMC proliferation and apoptosis. BAECs 
were exposed to a moderate level of TSS (24 h). BCM was harvested and incubated with 
static BASMCs for up to 7 days to monitor effects on proliferation and apoptosis. Effect of 
BCM on BASMC proliferation at day 4 as shown by cell counts (A) with corresponding FACS 
analysis at day 4 (B)  (Increase by 10±0.4%). FACS measures EA (early apoptosis) and LA 
(late apoptosis). Effect of BCM on BASMC apoptosis as shown by histogram (C) with 
corresponding FACS analysis at day 4 (D)  (from 4.27±0.6% to 3.86±0.7%). All data are 
averaged from three independent experiments ±SEM. *P≤0.05 versus non-turbulent control. 
FACS scans are representative of 3 experiments. 
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4.2.4 BAEC pulsatile shear decreases BASMC proliferation in a perfused co-

culture model 

 

For these studies, BAECs were seeded into the intra-lumenal spaces of the 

capillary bundles, whilst BASMCs were seeded onto the extracapillary surface of the 

capillary bundle, thereby mimicking the 3-D hemodynamic environment of a blood 

vessel. In this model, direct EC-SMC contact was prevented by the thickness of the 

capillary wall (~150 µM), although the porous nature of the wall allowed for humoral 

cross-talk between the two cell lines. Following a short ramping-up period, intra-

luminal media flowrate was adjusted to give a shear level of 20 dynes/cm2 (high 

shear) and maintained at this level for 5 days. Parallel low shear co-cultures were also 

maintained at 0.3 dynes/cm2 (just enough media flow to ensure adequate perfusion). 

BASMC-only controls were included in all experiments (i.e. BAECS were excluded 

from the ILS in order to correct for the putative effects of hydrostatic pulse-pressure 

on BASMC proliferation and apoptosis). 

 

Post-shear (5 days), BASMCs were harvested for analysis of proliferation in 

normal growth media. Using hemocytometer cell counting, we observed a significant 

decrease (approx. 42±0.9% at day 4) in the proliferation rate of harvested BASMCs 

maintained under high shear co-culture with BAECs (P≤0.05) (Fig. 4.6 A,B). This 

decrease was also confirmed by FACS analysis of harvested BASMCs (i.e. BASMCs 

were pre-labelled with carboxyfluorescein diacetate (CFDA-SE) before being seeded 

into the extra-capillary space) (Fig. 4.6 C). Noteworthy, in the absence of BAECs, we 

observed a slight increase in BASMC proliferation under high flow (also determined 

by direct FACS analysis) (Fig. 4.6 D). 
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Fig. 4.6: BAEC/BASMC co-culture: Impact of pulsatile shear on BASMC proliferation. 
BASMCs co-cultured with BAECs under low (0.3 dynes/cm2) and high shear (20 dynes/cm2) 
conditions for 5 days. Post shear, harvested BASMCs were seeded onto 6-well plates (5x104 
cells/well) and monitored for proliferation by cell counts for up to 7 days. Effects of shear on 
BASMC proliferation; (A) monitored over 7 days and (B) highlighted specifically for day 4 
(decrease of 42±0.9%). Post-shear, CFDA-SE pre-labelled BASMCs were also harvested for 
direct FACS analysis of the co-culture model (C) and mono-culture (D). Proliferation 
decreases as the peaks shift to the right. All data are averaged from three independent 
experiments ±SEM. *P≤0.05 versus low shear co-culture. FACS scan is representative of 3 
experiments. 
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4.2.5 BAEC pulsatile shear increases BASMC apoptosis in a perfused co-

culture model 

 

We next examined how shear stress of BAECs impacts on BASMC apoptosis. 

BAECs were seeded into the intra-lumenal spaces of CELLMAX® Pronectin-coated 

capillary bundles, whilst BASMCs were seeded onto the extracapillary surface of the 

capillary bundle, thereby mimicking the 3-D hemodynamic environment of a blood 

vessel. Following a short ramping-up period, intra-luminal media flowrate was 

adjusted to give a shear level of 20 dynes/cm2 (high shear) and maintained at this 

level for 5 days. Parallel low shear co-cultures were also maintained at 0.3 dynes/cm2 

(just enough media flow to ensure adequate perfusion). BASMC-only controls were 

included in all experiments (i.e. BAECS were excluded from the ILS in order to 

correct for the putative effects of hydrostatic pulse-pressure on BASMC proliferation 

and apoptosis). 

 

Post shear, BASMCs were harvested and monitored for apoptosis in normal 

growth media. Using FACS analysis, we observed an increase in apoptosis (2.8±0.6% 

to 6.9±0.5%) for BASMCs maintained under high shear co-culture with BAECs 

(P≤0.05) (Fig. 4.7 A,B). A significant increase in apoptosis was also confirmed by 

monitoring caspase-3 activity in harvested BASMCs (P≤0.05) (Fig. 4.7 C). 

Noteworthy, in the absence of BAECs, we observed similar increases in BASMC 

apoptosis as monitored by FACS analysis and caspase-3 assay (data not shown). 
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Fig. 4.7: BAEC/BASMC co-culture: Impact of pulsatile shear on BASMC apoptosis. 
BASMCs co-cultured with BAECs under low (0.3 dynes/cm2) and high shear (20 dynes/cm2) 
conditions for 5 days. Post shear, harvested BASMCs were seeded onto 6-well plates and 
monitored for apoptosis for up to 7 days. Effects of shear on BASMC apoptosis; (A) by FACS 
analysis with (B) corresponding histogram at day 4 (an observed increase in apoptosis  -
2.8±0.6% to 6.9±0.5%). FACS measures EA (early apoptosis) and LA (late apoptosis). 
Caspase-3 activity is shown in (C). All data are averaged from three independent experiments 
±SEM. *P≤0.05 versus low shear co-culture. FACS scans are representative of 3 
experiments. 
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4.2.6 Pulsatile shear-derived BCM decreases BASMC proliferation 

 

We next investigated the effect on BASMC proliferation of BCM (obtained from 

low (0.3 dynes/cm2) and high shear (20 dynes/cm2) CELLMAX® media reservoirs 

following “co-culture” experimentation). BCM was harvested and subsequently 

incubated with BASMCs. Proliferation was then monitored over 7 days by 

hemocytometer cell counts and FACS analysis. There was a shear-dependent increase 

in proliferation by 10%±0.75% compared to low shear. The pulsatile shear-dependent 

increase in proliferation was reversed by 12.5±1.03% in BASMCs in the presence of 

BAECs at high shear stress (P≤0.05) (Fig. 4.8 A,B, C).  

 

4.2.7 Pulsatile shear-derived BCM increases BASMC apoptosis  

 

In tandem with the above study, the effect on BASMC apoptosis of BCM 

(obtained from low - 0.3 dynes/cm2 and high - 20 dynes/cm2 CELLMAX® media 

reservoirs following co-culture experimentation) was also investigated. BCM was 

harvested and subsequently incubated with BASMCs.Apoptosis was then monitored 

by FACS analysis. The results showed a slight increase in BASMC apoptosis in 

response to high pulsatile shear derived BCM from a monoculture (2.42±0.63% 

compared to control 1.34%±0.52%) (data not shown). The presence of BAECs did not 

reverse this effect, but in a similar manner increased BASMC apoptosis as measured 

by FACS (2.42±1.17% compared to control 1.34%±0.52%) as shown in Fig. 4.9 A, B. 

This effect was also determined by Caspase-3 assay showing that PLS BCM in both 

the presence and absence of BAECs increased apoptosis in BASMC by (1.17±0.17 

fold and 1.13±0.06 fold) as shown in Fig. 4.9 C.   
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Fig. 4.8: BAEC/BASMC co-culture: Impact of pulsatile shear-derived BCM on BASMC 
proliferation. BASMCs co-cultured with BAECs under low (0.3 dynes/cm2) and high shear 
(20 dynes/cm2) conditions for 5 days. Post-shear, BCM was harvested and incubated with 
static quiescent pre-labeled BASMCs for up to 7 days to monitor proliferation. Effects of BCM 
on BASMC proliferation as shown by cell counts; (A) monitored over 7 days, and (B) 
highlighted specifically for day 4 (decrease by 12.5±1.03%). Corresponding FACS analysis 
specifically highlighted for day 4 is also shown (C). Proliferation decreases as the peaks shift 
to the right. All data are averaged from three independent experiments ±SEM. *P≤0.05 
versus low shear co-culture. FACS scan is representative of 3 experiments. 
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Fig. 4.9: BAEC/BASMC co-culture: Impact of pulsatile shear-derived BCM on BASMC 
apoptosis. BASMCs co-cultured with BAECs under low (0.3 dynes/cm2) and high shear (20 
dynes/cm2) conditions for 5 days. Post-shear, BCM was harvested and incubated with static 
quiesced BASMCs for up to 7 days to monitor apoptosis. Effects of BCM on BASMC 
apoptosis; (A) by FACS analysis with (B) corresponding histogram at day 4. Increase in 
apoptosis by 2.42±1.17% compared to control 1.34%±0.52%. FACS measures EA (early 
apoptosis) and LA (late apoptosis). Caspase-3 activity is shown in (C). All data are averaged 
from three independent experiments ±SEM. *P≤0.05 versus low shear co-culture. FACS 
scans are representative of 3 experiments. 
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4.2.8 Cyclic strain-derived BCM decreases BASMC proliferation in a force-

dependent manner 

 

In this chapter, we investigated the effect of BCM on BASMC proliferation 

following BAEC exposure to equibiaxial cyclic strain of varying magnitude. BAECs 

were exposed to varying levels of cyclic strain (0-10% strain, 24 h) and the 

subsequent conditioned media (BCM) harvested and incubated with BASMCs. 

BASMC proliferation was monitored by hemocytometer cell counts and FACS 

analysis as previously described. Our results by hemocytometer cell counts indicated 

a significant decrease in BASMC proliferation for both 5 (16±2.06% at day 4) and 

10% strain (15±2.56% at day 4) (P≤0.05) (Fig. 4.10 A,B). FACS analysis yielded 

similar findings (Fig. 4.10 C). 

 

4.2.9 Cyclic strain-derived BCM increases BASMC apoptosis in a force-

dependent manner 

 

We next examined the impact of BCM on BASMC apoptosis following BAEC 

exposure to equibiaxial cyclic strain of varying magnitude (0-10% strain, 24 h). 

BASMCs were incubated with harvested BCM and monitored for apoptosis by FACS 

analysis. Our results indicate slight increases in apoptosis to 3.43±1.1% and 

4.03±0.9% at 5% and 10% strain, respectively (P≤0.05) (Fig. 4.11). Necrosis levels in 

all samples were very low ranging from 0-0.9%.  
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Fig. 4.10: Force-dependent effect of cyclic strain-derived BCM on BASMC proliferation. 
BAECs were exposed to varying levels of cyclic strain (0-10%, 24 h). BCM was harvested and 
incubated with static BASMCs for up to 7 days to monitor effects on proliferation. Effects of 
BCM on BASMC proliferation as shown by; (A) cell counts over 7-day period and (B) 
specifically highlighted for day 4 - decreases at 5% (16±2.06% at day 4) and 10% strain 
(15±2.56% at day 4). Corresponding FACS analysis specifically highlighted for day 4 is also 
shown (C). Proliferation decreases as the peaks shift to the right. All data is averaged from 
three independent experiments ±SEM. *P≤0.05 versus unsheared control of 3 experiments. 

 

C  

Unconditioned Media 
0% Strain 
5% Strain 
10% Strain 

 

 

 

 

 

 

 

 

Unconditioned 
Media 

0% 
Stran 

 

 

 

A                                                   B     

Red - Unconditioned Media 
Green - 0% Strain 
Blue - 5% Strain 
Purple - 10% Strain 



 119 

 

Fig. 4.11: Force-dependent effect of cyclic strain-derived BCM on BASMC apoptosis. 
BAECs were exposed to varying levels of cyclic strain (0-10%, 24 h). BCM was harvested and 
incubated with static BASMCs for up to 4 days to monitor effects on apoptosis. Effect of BCM 
on BASMC apoptosis as shown by; (A) FACS analysis with corresponding histogram at day 4 
(B) (increases in apoptosis observed to 3.43±1.1% and 4.03±0.9% at 5% and 10% strain). 
FACS measures EA (early apoptosis) and LA (late apoptosis).  All data is averaged from 
three independent experiments ±SEM. *P≤0.05 versus 0% strain. 
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4.3 Discussion 

 

Hemodynamic forces play an important role in physiological control of vascular 

tone, remodelling and associated pathologies. Moreover, these forces indirectly 

impact vascular smooth muscle cell fate decisions by regulating vascular endothelial 

signalling events. Disruption in blood flow can perturb the normal hemodynamic 

challenge to the vascular endothelial cell and result in adverse remodelling of the 

vessel wall. Suitable communication between endothelial and smooth muscle cells is 

therefore essential for maintaining proper vessel homeostasis. SMC proliferation and 

apoptosis are particularly important during vascular development. Indeed, 

dysregulated smooth muscle cell proliferation and apoptosis is an important 

contributor to the pathogenesis of several cardiovascular disease states such as 

atherosclerosis. 

 

The first goal in this chapter was to ascertain, using a number of different 

experimental approaches, how shear stress challenge to endothelial cells impacts on 

BASMC proliferation and apoptosis. Initial investigations clearly demonstrated that 

LSS-derived BAEC-conditioned media (BCM) (0-10 dynes/cm2, 24 h) decreased 

BASMC proliferation in a force-dependent manner. Whilst a shear rate of 2.5 

dynes/cm2  had no significant effect on BASMC proliferation, higher shear rates (5-10 

dynes/cm2) led to progressively higher decreases in BASMC proliferation. Inhibition 

of BASMC proliferation by LSS-derived BCM (10 dynes/cm2, 0-48 h) was also found 

to be time-dependent. These findings are somewhat consistent with previous studies 

in our lab which have demonstrated an anti-migratory effect (approx. 35%) of cyclic 

strain BAEC-conditioned media on vascular smooth muscle cells (Von Offenberg 
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Sweeney et al., 2004). In parallel with a decrease in BASMC proliferation, we also 

observed a BCM-dependent increase in BASMC apoptosis (both time- and force-

dependent). Collectively, these findings point to a relationship between the magnitude 

and time of LSS applied to BAECs and the anti-proliferative/pro-apoptotic effects on 

BASMCs. 

 

As a control experiment, we looked at the effect of turbulent shear stress (TSS) of 

BAECs on BASMC proliferation and apoptosis. LSS typically induces an 

atheroprotective effect in vivo, whilst TSS has the opposite effect (Traub and Berk, 

1998). In areas of vascular bifurcation and curvature, where blood flow shear stress is 

low or oscillatory, vessel homeostasis becomes imbalanced leading to endothelial 

dysfunction. These areas are key locations for deleterious remodelling of the 

underlying medial smooth muscle cells leading to development of atherosclerotic 

plaques (Esper et al., 2006). Our studies have found that following exposure of 

BAECs to an improvised form of moderate turbulent shear for 24 h, the resultant 

BCM increased BASMC proliferation slightly without effecting BASMC apoptosis. 

Unsurprisingly, these TSS findings are in contrast with our observations of the effects 

induced by LSS-derived BCM, and are consistent with the notion that hemodynamic 

shear can serve as an independent variable to modulate the influence of endothelial 

cells on the proliferative and apoptotic profiles of underlying smooth muscle cells 

within the vessel wall. Moreover, these findings correlate somewhat with previous 

reports indicating that direct application of TSS to SMCs promotes SMC proliferation 

(Haga et al., 2003). Turbulent shear has also been shown to directly increase 

endothelial cell proliferation in contrast to the inhibitory effect of laminar shear 

(Kraiss et al., 2001; Dardik et al., 2005; Lin et al., 2000).  
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The orbital rotation/BCM model we employed had certain limitations; there was 

non-physiological geometry, it had a maximum shear capacity of only 10 dynes/cm2, 

and it was a non co-culture format. Therefore we decided to employ a far more 

superior model system to investigate EC-SMC communication. A novel transcapillary 

co-culture system (CELLMAX® Artificial Capillary System) was employed to verify 

our previous BCM findings and to investigate how pulsatile shear stress of BAECs 

may impact on BASMC proliferation and apoptosis in a hemodynamic co-culture 

format. The advantage of this system is that it closely reflects the three-dimensional 

hemodynamic environment of a blood vessel (i.e. BAECs were seeded into the intra-

lumenal capillary space of the Pronectin®-coated capillary bundles, whilst BASMCs 

were seeded onto the outer capillary walls), creating a more realistic mimic of EC-

SMC co-regulation during hemodynamic challenge experiments. Higher physiological 

shear rates are also possible with this system. 

 

Our initial findings with this system demonstrated that BASMC mono-cultures (i.e. 

BASMCs cultured alone on CELLMAX capillaries, in the absence of intra-luminal 

BAECs, under low and high shear) increased their proliferation under high pulsatile 

shear, most likely due to the elevated hydrostatic pulse pressure (Birney et al., 2004). 

We next investigated the effect of BAEC/BASMC co-culture on BASMC 

proliferation following BAEC exposure to pulsatile shear at low and high rate for 5 

days. BASMCs (pre-labeled with CFDA-SE) were then harvested and; (i) 

immediately subjected to FACS analysis and (ii) incorporated into cell count assays 

over 7 days to monitor their proliferation. Shear-derived BCM was also harvested 

from the media reservoir and incubated with static quiescent BASMCs (prepared 

separately) to monitor impact on proliferation. In each instance the high shear was 
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found to significantly reduce BASMC proliferation. As there was no direct EC-SMC 

contact in this co-culture model (and as BCM from the media reservoir was seen to 

exhibit an anti-proliferative effect), this likely points to the shear-induced endothelial 

release of a paracrine anti-proliferative factor(s). The identity of these factors has yet 

to be definitively established (although possible candidate molecules will be 

examined in the next chapter). These results support a role for the endothelium in 

“protecting” the underlying SMCs against hemodynamic forces. Such endothelium-

mediated regulation of the smooth muscle cell can also be seen in other studies. 

Noteworthy is an early EC-SMC parallel plate co-culture study by Nackman et al. in 

which flow over ECs was seen to decrease SMC proliferation, as measured by [3H]-

thymidine uptake. Unfortunately, this study had a number of serious limitations to 

enable one to draw firm conclusions (e.g. lack of any SMC-only mono-culture flow 

controls, endothelial de-nudation from the membrane during flow, lack of any flow-

dependent dose response effect etc.) (Nackman et al., 1998). Another study by 

Sakamoto et al. has shown that during EC-SMC co-culture, shear stress decreases 

SMC migration and MMP-2 activity via flow-induced endothelial cell NO (Sakamoto 

et al., 2006). In vitro co-culture studies, using the CELLMAX® Artificial Capillary 

System, have also shown that pulsatile shear stress increases SMC migration, which is 

reversed by flow-induced endothelial cell PAI-1 and PDGF (Redmond et al., 2001; 

Palumbo et al., 2002). Pulsatile shear stress using the CELLMAX® Artificial 

Capillary System also regulates eNOS, cyclooxygenase, and G-protein expression in 

co-cultured SMCs and ECs (Redmond et al., 1998; Hendrickson et al., 1999). 

Furthermore, studies have shown that under hemodynamically “static” conditions, 

EC-SMC co-culture enhances vascular smooth muscle cell adhesion and spreading via 
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activation of β1-integrin and phosphatidylinositol 3-kinase/Akt pathways (Wang et 

al., 2007). 

 

Interestingly, whilst the anti-proliferative effect of high pulsatile shear on 

BASMCs was BAEC-dependent, the pro-apoptotic effects appeared to be BAEC-

independent. This contrasts with the BAEC-dependent pro-apoptotic effects seen with 

orbital shear-derived BCM, although this may be explained by the presence of 

pulsatile pressure in the CELLMAX® model (which is absent in the orbital rotation 

model). Recent findings from our lab have already shown that pulsatile shear stress 

increased SMC apoptosis in an endothelial-independent manner (Birney et al., 2004). 

It is therefore tempting to speculate that both conditioned media (BCM) and pulse 

pressure may be inducing the same pro-apoptotic pathway in a non-additive manner, 

with either stimulus inducing pathway saturation. Further experimentation will be 

required to properly address this issue in greater detail. 

 

We next investigated how cyclic strain of BAECs may impact on BASMC 

proliferation. Our results showed that BCM harvested from endothelial cells exposed 

to cyclic strain significantly decreased BASMC proliferation. This is consistent with 

our earlier results showing anti-proliferative effects on BASMCs when BAECs are 

exposed to laminar shear stress (pulsatile and non-pulsatile). Moreover, it supports 

our hypothesis that hemodynamic challenge to the endothelium under physiological 

condition contributes to BASMC quiescence and medial layer integrity. Our cyclic 

strain results are also consistent with the findings of von Offenberg Sweeney and co-

workers who demonstrate anti-migratory effects of BCM on BASMCs following 

chronic 5% strain (von Offenberg Sweeney et al., 2004). Noteworthy, previous 

studies have also presented reports on the effects of cyclic strain applied directly to 
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SMCs on their growth in vitro. In this regard, findings have been conflicting. 

Depending on the species of SMC, the extracellular matrix environment, and the type 

of cyclical strain regime applied, SMCs can either increase (Birukov et al., 1995; 

Wilson et al., 1993) or decrease (Morrow et al., 2005; Schulze et al., 2003; Hipper 

and Isenerg 2000) their proliferative capacity. With regard to the latter, cyclic strain 

has been shown to decrease DNA synthesis of SMC and to inhibit SMC cycle 

progression at the G1/S phase (Hipper and Isenerg, 2000; Chapman et al., 2000). 

 

Cyclic strain-derived BCM also enhanced BASMC apoptosis. This is again 

consistent with our previous results showing pro-apoptotic effects on BASMCs when 

BAECs are exposed to laminar shear stress (pulsatile and non-pulsatile). It also 

concurs with several other studies that report how direct application of cyclic strain to 

SMCs induces SMC apoptosis in vitro both (Morrow et al., 2005; Kakasis et al., 

2004; Mayr et al., 2002) and in vivo (Mayr et al., 2000; Wernig et al., 2002). 

 

In conclusion, we have shown that hemodynamic challenge of BAECs impacts 

BASMC apoptosis and proliferation via paracrine factor(s). Using both endothelial-

conditioned media and EC-SMC co-culture approaches, laminar shear stress of 

BAECs in vitro was observed to decrease BASMC proliferation, whilst increasing 

apoptosis. By contrast, moderate turbulent shear stress of BAECs increased BASMC 

proliferation with no effect on apoptosis. Similarly, treatment of BAECs with 

equibiaxial cyclic strain also decreased BASMC proliferation, whilst enhancing 

BASMC apoptosis. These findings confirm that blood flow-associated forces can 

serve as independent variables to modulate the influence of endothelial cells on the 

proliferative and apoptotic profiles of underlying smooth muscle cells within the 
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vessel wall, likely contributing to the atheroprotective influence of hemodynamic 

forces under defined physiological ranges. 
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CHAPTER 5 

 

EC Laminar Shear Stress – EC 

Signalling and SMC Cell Cycle Gene 

Expression 
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5.1 Introduction 

 

Both shear stress and cyclic strain, blood flow-associated stimuli that impact on the 

endothelium, profoundly modulate vessel wall homeostasis and under normal 

physiological conditions, impart an atheroprotective effect that disfavours 

pathological changes in vessel wall structure. Vascular endothelial cells detect these 

forces via mechanosensors (e.g. G-proteins, integrins, PTKs and ion channels), which 

in turn can initiate complex signalling cascades within endothelial cells, culminating 

in cellular responses often manifested as altered migratory, proliferative and apoptotic 

profiles in both endothelial and smooth muscle cells (i.e. both autocrine and paracrine 

regulation). Moreover, interactions between the endothelial cell and the extracellular 

matrix (ECM) are critical in determining the vascular endothelium response to these 

forces. 

 

In the previous chapter, we confirmed that in vitro hemodynamic challenge of 

BAECs regulated BASMC proliferation and apoptosis. This chapter will specifically 

focus on those endothelial signalling mechanisms activated in response to LSS 

which may putatively mediate the “anti-proliferative” effects of BCM observed on 

SMCs. For these studies, specific pharmacological inhibition strategies will be 

employed to block selected endothelial signalling mechanisms. As the bulk of our 

studies have been done using a BAEC/BASMC cell culture model, we also conduct 

an investigation to determine the applicability of this regulatory paradigm to an 

equivalent human vascular cell model (HAEC/HASMC). Finally, in an effort to 

shed further light on the regulatory events taking place within the SMC phase, the 
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impact of LSS-derived BCM on expression of smooth muscle cell cycle-associated 

genes will be examined. 
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5.2 Results 

 
5.2.1 Integrin blockade: cRGD 

 

In order to determine the involvement of endothelial integrins in modulating BCM-

dependent effects on BASMC proliferation, BAECs were pre-treated with a 

pharmacological inhibitor of integrins, cyclic RGD (cRGD) peptide (100µM), prior to 

and for the duration of applied shear stress (10 dynes/cm2
, 24 h) (Buckley et al., 

1999). Static BASMCs were incubated with the harvested BCM and monitored for 

proliferation by FACS analysis and cell counts as previously described. LSS-derived 

BCM decreased BASMC proliferation by 18±2.1% relative to control, by BAEC pre-

incubation with cRGD (P≤0.05) (Fig. 5.1 A-C). A baseline inhibitory effect of cRGD 

peptide (7±1.7%) was also noted (P≤0.05). 

 

5.2.2 Rac1 blockade: NSC23766 

 

To ascertain the role of Rac1 GTPase in modulating BCM-dependent effects on 

BASMC proliferation, NSC23766, a specific pharmacological inhibitor for Rac1, was 

employed (Gao et al., 2004). BAECs were pre-treated with 50 µM NSC23766 prior to 

and for the duration of shear stress (10 dynes/cm2, 24 h). Static BASMCs were 

subsequently incubated with harvested BCM and monitored for proliferation by 

FACS analysis and hemocytometer cell counts. LSS-derived BCM decreased 

BASMC proliferation by 19±0.8% relative to control (P≤0.05) (Unsheared). In the 

presence of NSC23766, this effect was fully recovered to baseline proliferation levels. 

A baseline inhibitory effect of NSC23766 (5±0.9%) was also noted (Fig. 5.2 A-C). 
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Fig. 5.1: Effect of LSS-derived BCM on BASMC proliferation following BAEC integrin 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of cRGD. The harvested BCM was incubated with static quiescent BASMCs and 
proliferation was monitored by; (A) FACS analysis at day 4 (18±2.1% - proliferation decreases 
as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. Histogram in 
(C) shows cell counts specifically for day 4. Histograms were averaged from three 
independent experiments ±SEM. *P≤0.05 versus unsheared controls. δP≤0.05 versus shear. 
FACS scans are representative of 3 experiments. 
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Purple – Shear + cRGD 
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A                                                     B 
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Fig. 5.2: Effect of LSS-derived BCM on BASMC proliferation following BAEC Rac1 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of NSC23766. The harvested BCM was incubated with static quiescent BASMCs 
and proliferation was monitored by; (A) FACS analysis at day 4 (19±0.8% - proliferation 
decreases as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. 
Histogram in (C) shows cell counts specifically for day 4. Histograms were averaged from 
three independent experiments ±SEM. *P≤0.05 versus unsheared controls. δP≤0.05 versus 
shear. FACS scans are representative of 3 experiments. 
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5.2.3 eNOS blockade: L-NAME 

 

To examine the role of NO, L-NAME a specific pharmacological inhibitor was 

employed. BAECs were pre-treated with 1 mM L-NAME prior to and for the duration 

of shear stress (10 dynes/cm2, 24 h). Static BASMCs were incubated with the 

harvested BCM and monitored for proliferation by FACS analysis and 

hemocytometer cell counts. LSS-derived BCM decreased BASMC proliferation by 

12±1.0% relative to control (unsheared), an effect that was reversed by BAEC pre-

incubation with L-NAME (P≤0.05) (Fig. 5.3 A-C). A slight baseline inhibitory effect 

of L-NAME (3±1.2%) was also observed (albeit statistically insignificant). 

 

5.2.4 TGF-β blockade: ALK5 R1 Antagonist  

 

The role of TGF-β in modulating BCM-dependent effects on BASMC proliferation 

was investigated using ALK5 R1 Antagonist (20 µM), a specific pharmacological 

inhibitor for TGF-β. Static BASMCs were incubated with the harvested BCM and 

monitored for proliferation by FACS analysis and hemocytometer cell counts. LSS-

derived BCM decreased BASMC proliferation by 14±1.3% relative to control 

(unsheared), an effect that could be fully attenuated by BAEC pre-incubation with 

ALK5 R1 Antagonist (P≤0.05) (Fig. 5.4 A-C). A slight baseline inhibitory effect of 

ALK5 R1 Antagonist (1±0.9%) was also observed (albeit statistically insignificant). 
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Fig. 5.3: Effect of LSS-derived BCM on BASMC proliferation following BAEC eNOS 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of L-NAME. The harvested BCM was incubated with static quiescent BASMCs and 
proliferation was monitored by; (A) FACS analysis at day 4 (Proliferation decreases as the 
peaks shift to the right) and (B) hemocytometer cell counting over 7 days. Histogram in (C) 
shows cell counts specifically for day 4 (12±1.0%). Histograms were averaged from three 
independent experiments ±SEM. *P≤0.05 versus unsheared controls. δP≤0.05 versus shear. 
FACS scans are representative of 3 experiments. 
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Red – Unsheared  
Blue – Shear 

Blue – Shear 
Purple – Shear + L-NAME 



 135 

 

 
Fig. 5.4: Effect of LSS-derived BCM on BASMC proliferation following BAEC TGF-β 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of ALK5 R1 Antagonist. The harvested BCM was incubated with static quiescent 
BASMCs and proliferation was monitored by; (A) FACS analysis at day 4 (proliferation 
decreases as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. 
Histogram in (C) shows cell counts specifically for day 4 (14±1.3%). Histograms were 
averaged from three independent experiments ±SEM. *P≤0.05 versus unsheared controls. 
δP≤0.05 versus shear. FACS scans are representative of 3 experiments.  
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Purple – Unsheared +TGF-β  
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Blue – Shear 

Blue – Shear 
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5.2.5 Heterotrimeric G-protein blockade: PTX  

 

To investigate the involvement of Gα-subunits in modulating BCM-dependent 

effects on BASMC proliferation, pertussis toxin (PTX) (100ng/ml), a specific 

pharmacological inhibitor for Gα protein subunits was employed (Burns, 1988). 

BAECs were pre-treated with PTX prior to and for the duration of shear stress (10 

dynes/cm2
, 24 h). Static BASMCs were incubated with the harvested BCM and 

monitored for proliferation by FACS analysis and hemocytometer cell counting. LSS-

derived BCM decreased BASMC proliferation by 16±1.2% relative to control 

(unsheared), an effect that was not reversed by BAEC pre-incubation with PTX 

(20±1.4%) (P≤0.05) (Fig. 5.5 A-C). A slight baseline inhibitory effect of PTX 

(3±0.9%) was also observed (albeit statistically insignificant). 

 

5.2.6 ERK1/2 blockade: PD98059 

 

The role of MAPKs were examined using PD98059, a specific inhibitor for 

ERK1/2 (Alessandrini et al., 1999). BAECs were pre-treated with 10 µM PD98059 

prior to and for the duration of shear stress (10 dynes/cm2, 24 h). Static BASMCs 

were incubated with the harvested BCM and monitored for proliferation by FACS 

analysis and hemocytometer cell counts. LSS-derived BCM decreased BASMC 

proliferation by 18±0.7% relative to control (unsheared), an effect exacerbated further 

by BAEC pre-incubation with PD98059 (27±0.5%) (P≤0.05) (Fig. 5.6 A-C). A slight 

baseline inhibitory effect of PD98059 (3±0.5%) was also observed (albeit statistically 

insignificant). 
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Fig. 5.5: Effect of LSS-derived BCM on BASMC proliferation following BAEC Gα-
subunit blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the 
absence or presence of PTX. The harvested BCM was incubated with static quiescent 
BASMCs and proliferation was monitored by; (A) FACS analysis at day 4 (16±1.2% - 
proliferation decreases as the peaks shift to the right) and (B) hemocytometer cell counting 
over 7 days. Histogram in (C) shows cell counts specifically for day 4. Histograms were 
averaged from three independent experiments ±SEM. *P≤0.05 versus unsheared controls. 
FACS scans are representative of 3 experiments. 
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Fig. 5.6: Effect of LSS-derived BCM on BASMC proliferation following BAEC ERK1/2 
MAPK blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence 
or presence of PD98059. The harvested BCM was incubated with static quiescent BASMCs 
and proliferation was monitored by; (A) FACS analysis at day 4 (18±0.7% - proliferation 
decreases as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. 
Histogram in (C) shows cell counts specifically for day 4. Histograms were averaged from 
three independent experiments ±SEM. *P≤0.05 versus unsheared controls. δP≤0.05 versus 
shear. FACS scans are representative of 3 experiments. 
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5.2.7 NADPH oxidase blockade: Apocynin 
 

To ascertain the role of NADPH oxidase in modulating BCM-dependent effects on 

BASMC proliferation, BAECs were pre-treated with NADPH oxidase-specific 

apocynin (Johnson et al., 2002) prior to and for the duration of shear stress (10 

dynes/cm2, 24 h). Static BASMC were incubated with the harvested BCM and 

monitored for proliferation by FACS analysis and cell counts. LSS-derived BCM 

decreased proliferation by 18±1.0%, an effect exacerbated further by BAEC pre-

incubation with 10 µM apocynin (P≤0.05). A slight baseline inhibitory effect of 

apocynin was also observed (6.5±0.9%) (Fig. 5.7 A-C). 

 

5.2.8 PTK blockade: Genistein 

 

To investigate the role of PTK’s, a specific pharmacological inhibitor was 

employed. BAECs were pre-treated with (50 µM) Genistein prior to and for the 

duration of shear stress (10 dynes/cm2, 24 h). Static BASMCs were incubated with the 

harvested BCM and monitored for proliferation by FACS analysis and 

hemocytometer cell counts. LSS-derived BCM decreased BASMC proliferation by 

16±0.22% relative to control (unsheared), an effect that was reversed by BAEC pre-

incubation with L-NAME (Fig. 5.8 A-C). A slight baseline inhibitory effect of PTX 

(8±0.63%) was also observed (albeit statistically insignificant). 
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Fig. 5.7 Effect of LSS-derived BCM on BASMC proliferation following BAEC NADPH 
oxidase blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the 
absence or presence of apocynin. The harvested BCM was incubated with static quiescent 
BASMCs and proliferation was monitored by; (A) FACS analysis at day 4 (18±1.0% - 
proliferation decreases as the peaks shift to the right) and (B) hemocytometer cell counting 
over 7 days. Histogram in (C) shows cell counts specifically for day 4. Histograms were 
averaged from three independent experiments ±SEM. *P≤0.05 versus unsheared controls. 
FACS scans are representative of 3 experiments. 
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Fig. 5.8: Effect of LSS-derived BCM on BASMC proliferation following BAEC PTK 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of Genistein. The harvested BCM was incubated with static quiescent BASMCs and 
proliferation was monitored by; (A) FACS analysis at day (16±0.22% - proliferation decreases 
as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. Histogram in 
(C) shows cell counts specifically for day 4. Histograms were averaged from three 
independent experiments ±SEM. *P≤0.05 versus unsheared controls. FACS scans are 
representative of 3 experiments. 
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5.2.9 MMP blockade: GM6001 
 

To investigate the role of MMP’s, a specific pharmacological inhibitor was 

employed. BAECs were pre-treated with (10 µM) GM6001 prior to and for the 

duration of shear stress (10 dynes/cm2, 24 h). Static BASMCs were incubated with the 

harvested BCM and monitored for proliferation by FACS analysis and 

hemocytometer cell counts. LSS-derived BCM decreased BASMC proliferation by 

15±1.1% relative to control (unsheared), an effect that was reversed by BAEC pre-

incubation with GM6001 (P≤0.05) (Fig. 5.9 A-C). A slight baseline inhibitory effect 

of GM6001 (1±1.1%) was also observed (albeit statistically insignificant). 
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Fig. 5.9: Effect of LSS-derived BCM on BASMC proliferation following BAEC MMP 
blockade. BAECs were exposed to shear stress (10 dynes/cm2, 24 h) in the absence or 
presence of GM6001. The harvested BCM was incubated with static quiescent BASMCs and 
proliferation was monitored by; (A) FACS analysis at day 4 (15±1.1%) (Proliferation 
decreases as the peaks shift to the right) and (B) hemocytometer cell counting over 7 days. 
Histogram in (C) shows cell counts specifically for day 4. Histograms were averaged from 
three independent experiments ±SEM. *P≤0.05 versus unsheared controls. FACS scans are 
representative of 3 experiments. 
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Signaling Component Inhibitor Effect (+/-) 

Integrins cRGD (100 µM) + 

Rac1 NSC23766 (50 µM) + 

G-proteins PTX (100 ng/ml) - 

PTKs Genistein (50 µM) - 

ERK1/2 PD98059 (10 µM) - 

NADPH oxidase Apocynin (10 µM) - 

NO L-NAME (10 µM) + 

TGF-β ALK5 R1 Antagonist (20 µM) + 

MMPs GM6001 (10 µM) - 

 
Table 5.1: Pharmacological inhibition studies. Table summarises the BAEC signalling 
components found to putatively mediate the anti-proliferative effects of LSS-derived BCM on 
BASMCs. (-) inhibitor had no effect, (+) inhibitor reversed anti-proliferative effect. 
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5.2.10 Proof-of-concept study: HAEC/HASMC model 

 

We next asked if the observations made with the BAEC/BASMC model (with 

respect to the shear-induced anti-proliferative effects) could be replicated in an 

equivalent HAEC/HASMC model. Investigating this however presented some 

methodological hurdles. In the BAEC/BASMC model, both cell types were cultured 

in the same growth media (RPMI 1640 with FCS and antibiotics), thus ensuring that 

BASMCs could proliferate in BAEC-conditioned media. However, both HAECs and 

HASMCs require their own specific media, giving rise to potential problems growing 

either cell type in a different media. In order to address this, confluent HAECs were 

exposed to shear stress in Promocell Human Endothelial Cell Basal Media (5% FCS, 

5% ECGS/H, 10 ng/ml epidermal growth factor, 1µg/ml hydrocortisone, and 

antibiotics) and Promocell Human Smooth Muscle Cell Growth Media (5% FCS, 

0.5ng/ml epidermal growth factor, 2 ng/ml basic fibroblast growth factor, 5 µg/ml 

insulin, and antibiotics). Both types of HAEC-conditioned media (labelled HCM-EC 

and HCM-SMC) were harvested and incubated with HASMCs to monitor 

proliferation over 7 days (FACS analysis and hemocytometer cell counts). 

Interestingly, HASMCs cultured in the presence of either type of LSS-derived HCM 

did not show any inhibition in proliferation compared to control  (HCM-EC (3±0.7%) 

and HCM-SMC (0±0.4%)) (Fig. 5.10 A-D). 

 
As LSS-derived HCM had no effect on HASMC proliferation, we decided to 

examine the possible effects of LSS-derived BCM. Confluent BAECs were incubated 

in both standard RPMI growth media and Promocell Human Smooth Muscle Cell 

Growth Media and exposed to shear stress (10 dynes/cm2, 24 h). Both types of 

BAEC-conditioned media (labelled BCM-STD and BCM-SMC) were harvested and 
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incubated with HASMCs to monitor proliferation over 7 days (FACS analysis and 

hemocytometer cell counts). The results again showed that neither type of BCM 

appeared to induce an anti-proliferative effect on HASMCs (BCM-STD (3±0.9%) and 

BCM-SMC (0±0.8%)) (Fig. 5.11 A-D). 

 

Finally, as neither LSS-derived BCM nor -HCM appeared to have an effect on 

HASMC proliferation, we decided to examine the possible effects of LSS-derived 

HCM on BASMCs. Confluent HAECs were incubated in both standard RPMI growth 

media and Promocell Human Endothelial Cell Basal Media and exposed to shear 

stress (10 dynes/cm2, 24 h). Both types of HAEC-conditioned media (labelled HCM-

EC and HCM-STD) were harvested and incubated with HASMCs to monitor 

proliferation over 7 days (FACS analysis and hemocytometer cell counts). Both 

HCM-EC and HCM-STD inhibited BASMC proliferation by 13±0.9% and 11±1.3%, 

respectively (P≤0.05) (Fig. 5.12 A-F). 
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Fig. 5.10 Effect of HAEC-conditioned media on HASMC proliferation. Confluent HAECs 
were incubated in Promocell Human Endothelial Cell Basal Media or Human Smooth Muscle 
Cell Growth Media and exposed to shear stress (10 dynes/cm2, 24 h). The resultant HCMs 
(termed HCM-EC and HCM-SMC, respectively) were incubated with HASMCs and 
proliferation was monitored by hemocytometer cell counting and FACS analysis; (A, B) HCM-
EC and (C, D) HCM-SMC.No change in proliferation was observed by resultant HCM-EC 
(3±0.7%) or HCM-SMC (0±0.4%). Proliferation decreases as the peaks shift to the right. 
FACS scans are representative of 3 experiments. 
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Fig. 5.11: Effect of BAEC-conditioned media on HASMC proliferation. Confluent BAECs 
were incubated in standard RPMI growth media and Promocell Human Smooth Muscle Cell 
Growth Media and exposed to shear stress (10 dynes/cm2, 24 h). The resultant BCMs 
(termed BCM-STD (3±0.9%) and BCM-SMC (0±0.8%), respectively) were incubated with 
HASMCs and proliferation was monitored by hemocytometer cell counting and FACS 
analysis; (A, B) BCM-STD and (C, D) BCM-SMC. Proliferation decreases as the peaks shift to 
the right. FACS scans are representative of 3 experiments. 
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Fig. 5.12: Effect of HAEC-conditioned media on BASMC proliferation. Confluent HAECs 
were incubated in standard RPMI growth media and Promocell Endothelial Cell Growth Media 
and exposed to shear stress (10 dynes/cm2, 24 h). The resultant HCMs (termed HCM-STD 
and HCM-EC, respectively) were incubated with BASMCs and proliferation was monitored by 
hemocytometer cell counting and FACS analysis; (A-C) HCM-STD (13±0.9%) and (D-F) 
HCM-EC (11±1.3%).and (D-F) HCM-EC. Histograms were averaged from three independent 
experiments ±SEM. *P≤0.05 versus unsheared controls. Proliferation decreases as the peaks 
shift to the right. FACS scans are representative of 3 experiments. 
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5.2.8 Gene Expression Studies 
 

Having initially focussed our attention on the BAEC signalling pathways 

putatively mediating the anti-proliferative effects of shear on BASMCs, we next 

decided to extend our model to investigate the direct effects of LSS-derived BCM on 

cell cycle-associated gene expresion patterns in BASMCs. The cell cycle is regulated 

by cyclin dependent kinases (CDKs) and cyclins, which when activated, coordinate 

entry into the successive phases of the cell cycle. Two analytical formats were 

selected to investigate this; (i) Human Cell Cycle RT² Profiler™ PCR Microarray to 

monitor the expression of 84 genes key to cell cycle regulation; (ii) Standard 

RealTime PCR to individually monitor a selected number cell cycle-associated genes 

using gene-specific primers. 

 

5.2.8.1 Impact of EC laminar shear on SMC gene expression: PCR Microarray  

 

The Human Cell Cycle RT² Profiler™ PCR Microarray (SABiosciences) is a 96-

well plate that profiles the expression of 84 genes key to cell cycle regulation. This 

96-well array contains pre-designed primers for genes that positively and negatively 

regulate the cell cycle, DNA replication, checkpoints, and arrest. Five housekeeping 

genes and three RNA and PCR quality controls are also included in this array. 

Moreover, in view of the unexpected lack of any anti-proliferative effects on 

HASMCs following either HCM or BCM treatment (as shown in previous section), 

we decided to use BASMCs for this study (although mindful of the fact that we may 

get reduced primer hybridization efficiency on certain target genes using bovine 

mRNA on a human PCR array). BAECs were exposed to shear stress (0 or 10 

dynes/cm2, 24 h) and the harvested BCM incubated with static BASMCs (4 days). 
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Total BASMC mRNA was then harvested for PCR microarray analysis (as described 

in sections 2.4 and 2.4.4, respectively). Results indicated shear-dependent modulation 

of a number of cell cycle-associated genes in BASMCs (highlighted in Fig. 5.13 A-

C). 

 

 5.2.8.2 Impact of EC laminar shear on SMC gene expression: RealTime PCR 

  

In addition to PCR microarray, standard RT-PCR was employed to individually 

monitor a selected number cell cycle-associated genes using gene-specific primers. In 

this regard, we focused on the cyclin/CDK family of genes, a number of which were 

found to be regulated within the PCR microarray. Specifically, LSS-derived BCM (10 

dynes/cm2, 24 h) was harvested and incubated with BASMCs (4 days). Total BASMC 

mRNA was harvested and monitored for expression levels of specific genes using 

RealTime PCR analysis. Our results indicated shear-dependent up-regulation of cyclin 

D1 (1.44±0.2 fold) and CDK4 (2.67±0.2 fold). By contrast, we observed a down-

regulation in CDK1, CDK2 and CDK6 mRNA levels (to 0.25±0.1, 0.51±0.2, and 

0.62±0.2 fold of control, respectively) (P≤0.05). Interestingly, no statistically 

significant change was observed in p27Kip1, cyclin A, or cyclin E levels (Fig 5.14 

A,B). 
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Position UniGene RefSeq Symbol Description 
B12 Hs.591241 NM_001241 CCNT2 Cyclin  T2 
C04 Hs.514997 NM_004359 CDC34 Cell division cycle 34 
C02 Hs.334562 NM_001786 CDC2 Cell division cycle 2 
E04 Hs.577202 NM_005316 GTF2H1 General transcription factor IIH 
F05 

Hs.509523 NM_002431 MNAT1 
Menage a trois homolog 1, cyclin H assembly 
factor 

H02 Hs.412707 NM_000194 HPRT1 Hypoxanthine phosphoribosyltransferase 1 
A09 Hs.150749 NM_000633 BCL2 B-cell CLL/lymphoma 2 
B01 Hs.23960 NM_031966 CCNB1 Cyclin B1   
E08 Hs.300559 NM_014708 KNTC1 Kinetochore 
E10 Hs.591697 NM_002358 MAD2L1 MAD2 mitotic arrest deficient 
G05 Hs.487540 NM_002947 RPA3 Replication protein A3 
C07 Hs.5000015 NM_003885 CDKR1 Cyclin-dependent kinase 5, regulatory subunit 1 
G12 Hs.533273 NM_003334 UBA1 Ubiquitin-like modifier activating enzyme 1 
C01 Hs.374127 NM_003903 CDC16 Cell division cycle 16 homolog 
B10 Hs.292524 NM_001239 CCNH Cyclin H  
A03 Hs.152173 NM_013367 ANAPC4 Anaphase promoting complex subunit 4 

 

Fig. 5.13: Cell cycle PCR Microarray. Following exposure to LSS-derived BCM, BASMC 
mRNA was harvested and monitored for cell cycle gene expression using the Human Cell 
Cycle RT² Profiler™ PCR Array. (A) Fold change in gene expression relative to unsheared 
controls; (B) Panel of differentially regulated genes identified in the array. Data is the result of 
one array study (i.e. one control array and one shear array). GAPDH has been used for 
normalization between control and shear samples. 
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Fig. 5.14: Individual gene expression analysis by RT-PCR. Following exposure to LSS-
derived BCM, BASMC mRNA was harvested and monitored for expression of individual cell 
cycle-associated genes; (A) CDK mRNA levels and (B) Cyclin mRNA levels. Histograms 
represent shear-dependent fold change in gene expression level relative to the unsheared 
control normalized to 1.0 for each gene. Up-regulation of cyclin D1 (1.44±0.2 fold) and CDK4 
(2.67±0.2 fold). By contrast, we observed a down-regulation in CDK1, CDK2 and CDK6 
mRNA levels (to 0.25±0.1, 0.51±0.2, and 0.62±0.2 fold of control). Histograms are averaged 
from three independent experiments ±SEM. *P≤0.05 relative to unsheared control. 
 
 
 
 
 

A 
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Fig. 5.15: Agarose gels of CDK and cyclin primer sequences. BASMC PCR product 
for CDKs and cycins were monitored for correct fragment size by agarose gels. Gels are 
representative. 
 

 

 

 

 Cyclin A                                 294 kDa  

CDK6                                           354 kDa 

Cyclin E                               462 kDa 

p27KipCip                                           253 kDa 

GAPDH                                337 kDa 
   

CDK1                                       415 kDa 

       CDK2                              491kDa 

 

CDK4                                                      206 kDA 

Cyclin D1                                           332 kDa 
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5.3 Discussion 

 

Due to its unique location between the vessel wall and bloodstream, the 

endothelium can detect both humoral and biomechanical stimuli and transduce these 

signals effectively to the underlying smooth muscle cell layer with consequences for 

smooth muscle cell function and medial integrity. Suitable communication between 

endothelial and smooth muscle cell is therefore essential for maintaining proper vessel 

homeostasis. Disruption in blood flow pattern can perturb the normal hemodynamic 

challenge to the vascular endothelial cell and result in adverse remodelling of the 

vessel wall. In this regard, endothelial cells can act as intermediates in the mechano-

regulation of smooth muscle cell functions through the production of growth factors, 

cytokines, signalling molecules, and enzymes, which may subsequently alter smooth 

muscle cell phenotype. With respect to the latter, smooth muscle cell proliferation and 

apoptosis are particularly important during vascular development. Indeed increased 

smooth muscle cell proliferation and apoptosis are important contributors to the 

pathogenesis of several cardiovascular disease states including atherosclerosis, 

restenosis and hypertension.  

 

The first aim of this study was to investigate the endothelial mechanotransduction 

systems putatively mediating the effects of hemodynamically-derived BCM on 

BASMC growth properties. Given the potentially broad nature of this aim, it was 

decided to focus specifically on the anti-proliferative effects of LSS-derived BCM. 

For these studies we employed pharmacological inhibitors to selectively block 

signalling through a number of shear-activated mechanosensory mechanisms in 

endothelial cells (e.g. G-proteins, integrins, PTKs, NO, NADPH oxidase, MAPKs 

etc.), and the anti-proliferative effects of the harvested BCM subsequenly assessed by 
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different methods. Our investigations revealed that the shear-dependent decrease in 

BASMC proliferation putatively involved integrin-, Rac1- and NO-mediated 

signalling. 

 

In endothelial cells, integrins are established mechanotransducers known to play a 

role in various biological processes such as cell migration, proliferation, adhesion and 

survival (Chen et al., 1999). They are heterodimeric ECM-binding receptors that can 

convert mechanical stimuli into intracellular responses. Studies in endothelial cells 

have shown that integrin clustering with the adaptor proteins Shc and FAK occurs in 

response to shear stress, which in turn can activate downstream Ras/MAPK pathways 

(Shyy et al., 2002; Chen et al, 1999). Studies have also shown that shear stress in 

HUVECs up-regulates integrin expression (Urbich et al., 2000). In our model, cyclic-

RGD, a pharmacological inhibitor of β1/β2 integrins was used to ablate integrin 

activation during BAEC shear (Buckley et al., 1999). Our findings indicated that 

following integrin blockade with cRGD during the BAEC-shearing process, the 

decrease in BASMC proliferation by LSS-derived BCM was reversed to baseline 

proliferation levels (Note: a baseline inhibitory effect was observed for cRGD in 

unsheared controls). This would suggest that the anti-proliferative impact of BCM on 

BASMCs is mediated through shear activation of an integrin signalling pathway in 

endothelial cells. 

 

Rac1 is a member of the Rho GTPase family of proteins known to integrate a 

number of cellular signalling processes. It regulates a diverse array of cellular events 

including control of cell growth, cytoskeletal reorganization and activation of protein 

kinases (Li et al., 2000) and is activated by mechanical forces such as shear stress 
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(Chen et al., 1999) and cyclic strain (Birukova et al., 2006). Rac1 is also an active 

component of the NADPH oxidase complex. For these studies we employed 

NSC23766, a pharmacological inhibitor that specifically inhibits Rac1. When 

NSC23766 was included in the BAEC-shearing process, the anti-proliferative effects 

of harvested BCM on BASMCs was completely reversed to baseline proliferation 

levels (Note: a slight baseline inhibitory effect in unsheared control cells was 

observed), thus implicating shear activation of endothelial Rac1 in these events. 

Numerous studies have shown a relationship between integrins and Rac1. For 

example, previous reports have shown that during endothelial shear, integrins can 

activate downstream Rac1 to induce flow alignment (Goldfinger et al., 2008). Studies 

have also shown that Rac1 activition in response to shear stress could be regulated by 

integrin binding to ECM ligands (Tzima, 2001). 

 

Smooth muscle cell proliferation (and apoptosis) is likely modulated by BAEC-

derived paracrine factor(s) that are regulated in turn by endothelial shear stress. Our 

data so far has implicated potential roles for integrins and Rac1 in the anti-

proliferative impact of BCM on BASMCs in vitro. Shear stress is one of a number of 

potent physiological stimuli for eNOS activation and NO production in endothelial 

cells. NO is a known inhibitor of VSMC proliferation (Buga et al., 1991) and has 

been shown to inhibit RASMC proliferation via MAPK signalling (Bauer et al., 

2001). Moreover, Kader et al. have shown that eNOS over-expression in endothelial 

cells can inhibit smooth muscle cell proliferation in vitro. In their study, BAECs were 

transfected with the human eNOS gene and co-incubated with BASMCs in vitro. 

eNOS-transfected BAECs significantly over-expressed eNOS and decreased BASMC 

proliferation (Kader et al., 2000).  Our own results revealed that eNOS blockade with 
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L-NAME during BAEC-shear reversed the anti-proliferative effects of LSS-derived 

BCM on BASMCs. Whilst this would suggest a direct role for NO within the 

BASMC phase, it is worth noting that NO is a very short-lived signalling metabolite 

with half-life of just seconds in vivo. Thus, high levels of NO are unlikely to be found 

in BCM after 24 h shear. Nitrite by-products however, may be present in measurable 

levels, and may be responsible for the anti-proliferative effects observed on BASMCs. 

Also relevant, Lee et al. have demonstrated NO-dependent regulation of endothelial 

integrin activation, which may also account for the anti-proliferative effects of eNOS 

blockade in this shear model (Lee et al., 2000). 

 

TGF-β, which is secreted by endothelial cells in a latent inactive form, has been 

shown to be involved in the inhibition of SMC proliferation (Ueba et al., 1997). 

Studies have shown that upon exposure to laminar shear stress endothelial cells up-

regulate TGF-β production (Ohno et al., 1995). In view of these observations, we 

investigated a potential role for endothelial-derived TGF-β in our BASMC 

proliferation model. Specifically, we employed an “activin receptor-like kinase 5” 

(ALK5) antagonist (a blocker of TGF-β receptor 1 activation) to attenuate the 

autocrine/paracrine action of LSS-induced TGF-β on endothelial cells during shear. 

Interestingly, the resultant BCM was found to have significantly attenuated anti-

proliferative impact on BASMCs, suggesting that shear-induced TGF-β may be acting 

directly on the endothelial cell with putative consequences for BAEC media 

conditioning (possibly via modulation of NO production - Schwartz et al., 2005). 

Conversely, the observations may also arise from residual antagonist present in the 

BCM following 24 h conditioning, which may be preventing interaction of shear-

induced endothelial TGF-β with SMC receptors. A more definitive experiment will be 



 159 

required to yield more conclusive findings on the role of this effector (e.g. siRNA 

blockade of TGF-β in endothelial cells prior to shear, treatment of post-shear BCM 

with a TGF-β neutralizing antisera). 

 

Heterotrimeric G-proteins are composed of α-monomers and βγ-dimers, which 

transduce signals from activated transmembrane receptors (e.g. G-protein coupled 

receptors, GPCRs) to intracellular effectors. Several studies have reported the ability 

of G-proteins to transduce shear stress into intracellular signaling cascades (e.g. Ras 

activation, ERK-1/2 activation) (Jo et al., 1997; Gudi et al., 2003). Thus, we 

hypothesized a putative role for shear-induced endothelial G-protein signalling in the 

anti-proliferative effects of BCM on BASMCs. The pharmacological inhibitor, PTX, 

was employed to inhibit heterotrimeric Gα subunits. Results indicated that PTX did 

not attenuate the decrease in BASMC proliferation by LSS-derived BCM, thus ruling 

out any hemodynamic involvement of endothelial Gα subunit signalling in these 

events. 

 

Protein tyrosine kinases (PTKs) play a key role in signal transduction to regulate 

various cellular responses such as proliferation, migration, differentiation, and 

survival. Studies have shown that in response to shear stress, an increase in PTK 

activity was observed in endothelial cells (Ishida et al., 1996). PTKs have also been 

shown to play a role in shear-dependent NO production (Corson et al., 1996). For our 

studies, genistein was employed to attenuate PTK activation and signalling following 

shear onset in BAECs. Our results indicated that genistein did not reverse the BCM-

induced decrease in BASMC proliferation, likely ruling out a role for PTK signalling 

in these events. 
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Our data implicating Rac1 involvement in the anti-proliferative impact of BCM is 

also worthy of further mention. Rac1 is an activating component of the NADPH 

oxidase complex (Quinn et al., 1993), suggesting involvement of the latter. Shear 

stress is also known to modulate NADPH oxidase activation and cellular redox levels 

(i.e. superoxide) in various instances (Duerreschmidt et al., 2006). Pre-treatment of 

BAECs with apocynin (an NADPH oxidase inhibitor) however, did not recover the 

anti-proliferative effect of BCM, ruling out Rac1-mediated NADPH oxidase 

activation in these events. 

 

The MAP kinase family are potential downstream candidates to mediate some of 

the effects of shear stress on vascular cell function. In response to flow, 

mechanosensors such as integrins, PTK’s, and G-proteins can activate the Ras/MAP 

kinase signalling cascade, initiating transcription factor activation and protein 

synthesis and leading to changes in cell growth, transformation, and differentiation 

(Cowan et al., 2003). The MAPK family is comprised of three main and distinct 

signalling pathways: the extracellular signal-regulated protein kinase (ERK), the c-jun 

N-terminal kinases or stress-activated protein kinases (JNK/SAPK), and the p38 

family of MAP kinases (Cowan et al., 2003). Investigations have shown that a shear 

rate of 12 dynes/cm2 was found to activate endothelial ERK1/2 and p38, but to reduce 

activity of JNK (Surapisitchat et al., 2001). Moreover our own group have 

demonstrated activation of ERK1/2 and p38 in BAECs following a physiological dose 

of cyclic strain (von Offenberg Sweeney et al., 2005). Shear-dependent ERK1/2 

activation also leads to increased expression of c-fos and c-jun to form the activating 

protein-1 (AP-1) transcription factor which plays a significant role in the expression 
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of a number of genes (Proud, 1994). For our studies the pharmacological inhibitor, 

PD98059, was employed to block shear-dependent ERK1/2 activation. Interestingly, 

our results demonstrated that ERK1/2 blockade had no effect on these events. p38 

MAPK was not examined in this instance, and so its putative involvement 

downstream of integrin/rac1 activation cannot be discounted at this time. 

 

Matrix metalloproteinases (MMPs) are a diverse family of mechanosensitive zinc-

dependent proteases which degrade ECM components (e.g. collagen, laminin and 

fibronectin) and non-matrix substrates (e.g. growth factors and cell surface receptors). 

Previous reports have confirmed that MMPs play a significant role in regulating SMC 

proliferation, as MMP inhibitor (BB94) was shown to inhibit intimal thickening after 

arterial injury in vivo by decreasing SMC proliferation (Zempo et al., 1996). 

Extracellular proteases, including MMPs, have also been shown to activate TGF-β, a 

known inhibitor of smooth muscle cell proliferation (Annes et al., 2003; Mc Caffrey 

et al., 1995). Moreover, several studies have shown that hemodynamic challenge can 

differentially modulate MMP expression and function in different vascular cell types, 

with consequences for vascular cell fates. Previous studies in our lab have 

demonstrated that cyclic strain of endothelial cells up-regulates MMP-2 and MMP-9 

expression, activity and secretion, implicating a pivotal role for these collagenases in 

hemodynamically-mediated vascular remodelling. Particularly noteworthy, studies by 

von Offenberg Sweeney and co-workers have shown that strain-induced endothelial 

MMP-2 significantly reduced smooth muscle cell migration in a BCM model of 

paracrine regulation (von Offenberg Sweeney et al., 2004), a study which prompted 

us to consider a putative role for MMP-2 in our SMC proliferation model. Of 

relevance, shear stress has been shown to regulate MMP’s, both in cultured 
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endothelial cells and in animal models, albeit in an apparently opposite manner to 

cyclic strain. Studies have shown for example, that MMP-2 production is actually 

reduced (via NO) in microvascular endothelial cells in response to laminar shear 

stress (Milkiewicz et al., 2006). Bassiouny et al. and Palumbo et al. also report 

decreased endothelial MMP-2 production and release in response to high laminar 

shear (Bassiouny et al. 1998; Palumbo et al., 2002), whilst oscillatory (but not 

laminar) shear increased MMP-9 in murine lymphoid endothelial cells (Magid et al., 

2003). Consistent with the reported down-regulatory effect of shear on gelatinase 

production and release, our own studies confirm (by gelatin zymmography – data not 

shown) a shear-dependent increase in intracellular MMP-2, likely due to decreased 

secretion and enhanced intracellular accumulation. Moreover, blockade of MMP 

activity in LSS-derived BCM had no statistically significant effect on its anti-

proliferative effects on BASMCs. 

 

We have implicated Rac1, integrins and NO in mediating this anti-prolfierative 

effect. However, their linear progression or indeed other potential downstream 

components involved are still unknown. Interestingly, our results have ruled out a 

possible role for both NADPH oxidase and ERK1/2. As previously mentioned, Rac1 

is an activating component of the NADPH oxidase complex (Quinn et al., 1993) and 

shear stress has been shown to modulate NADPH oxidase activation and cellular 

redox levels (i.e. superoxide) in various instances (Duerreschmidt et al., 2006). 

Interestingly, pre-treatment of BAECs with apocynin (an NADPH oxidase inhibitor) 

did not recover the anti-proliferative effect of BCM, ruling out Rac1-mediated 

NADPH oxidase activation in these events. This suggests that Rac1 is mediating this 

effect via other signalling components such as integrins and NO. Also, several studies 
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have implicated Rac1, integrins and NO in the regulation of MAPK pathways 

(ERK1/2, JNK1/2, and p38 MAPK) (Nosaka et al., 2001; Murga et al., 2002). Indeed 

MAPK have been shown to be activated in response to shear stress. Given that our 

results demonstrated no role for ERK1/2 in mediating this anti-proliferative effect 

suggests a possible role for JNK1/2 or p38, however further studies are needed to 

address this. 

 

We next examined whether the anti-proliferative effects observed in the 

BAEC/BASMC laminar shear model could also be replicated in an equivalent 

HAEC/HASMC model. Interestingly, our results revealed that shear-conditioned 

media from neither HAECs nor BAECs attenuated HASMC proliferation. In a parallel 

control study, HAEC-conditioned media however, was found to induce an anti-

proliferative effect on BASMCs. This latter finding suggests that the lack of 

observable effect on HASMC proliferation in these studies cannot simply be ascribed 

to a “species difference” issue (as HAECs can induce an anti-proliferative effect in 

response to shear). We suspect however, that the extremely rapid doubling time of the 

commercially available HASMCs (≤24 h) may account somewhat for this 

phenomenon, possibly in conjunction with a need for significantly higher HAEC 

shear levels (>20 dynes/cm2). 

 

In a final series of experiments, we endeavoured to investigate the impact of LSS-

derived BCM on the regulation of smooth muscle cell cycle-associated gene 

expression. Our approach to this study took two formats; (i) Human Cell Cycle RT² 

Profiler™ PCR Microarray to monitor the expression of 84 genes key to cell cycle 

regulation; (ii) Standard RealTime PCR to individually monitor a selected number 
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cell cycle-associated genes using gene-specific primers. Using the PCR microarray 

approach, we observed differential regulation of up to 16 genes. Moreover, 8 of these 

genes displayed a change in expression in excess of 1.5 fold. Notable examples 

included up-regulation of UBA1 (ubiquitin-like modifier activating enzyme 1) and 

down-regulation of CDC2 (cell cycle division 2 or CDK1), CCNH (cyclin H), CDC16 

(cell division cycle 16 homolog), GTF2H1 (general transcription factor 2H), BCL2 

(Bcl-2), KNTC1 (kinetichore associated 1), and MAD2L1 (MAD2 mitotic arrest 

deficient-like 1). 

 

These changes are basically consistent with a cell cycle inhibitory effect (and thus, 

anti-proliferative effect). CDK1 (CDC2) for example, is one of the components of the 

maturation promoting factor (MPF) controling cell division cycle. When CDK1 binds 

to cyclin B it allows the cell to progress through mitosis (Sherr, 1993). Significant 

down-regulation of CDK1, as seen in our PCR microarray study, would therefore be 

expected to block mitotic progression by reducing cyclin B-CDK1 complex 

formation. GTF2H1 (TFIIH), a multi-subunit complex composed of 9 polypeptides, is 

a general transcription factor for RNA polymerase, which also plays a role in 

nucleotide/DNA excision repair (Zawel and Reinberg 1995; Friedberg, 1996). 

GTF2H1 can be separated into 2 stable sub-complexes; the core GTF2H1 complex 

and the CDK-activating kinase (CAK) complex. The CAK complex consists of 

CDK27 (kinase catalytic complex), cyclin H (regulatory subunit), and Mat1 

(assembly factor) (Nigg, 1996; Johnson and Walker, 1999). CDK27 has recently been 

shown to phosphorylate the carboxyl-terminal domain of polymerase II (Roy et al., 

1994; Feaver et al., 1994). This induces the RNA polymerase to start producing RNA, 

marking the end of initiation and the start of elongation (Maldonado and Reinberg, 
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1995). The kinase activity of GTF2H1 also appears to play a role in promoter 

clearance and/or elongation of polymerase II transcription (Friedberg, 1996). Our 

PCR microarray study demonstrated down-regulation of both GTF2H1 and CCNH 

(cyclin H), again consistent with anti-proliferative events. It is tempting to speculate a 

possible role for p53, a growth suppressor and a regulator of cell cycle progression, in 

this context. In vitro and in vivo studies have shown that wild-type p53 can bind to 

cyclin H, leading to a down-regulation of the CAK complex activity (Schneider et al., 

1998). This may involve p53-mediated transactivation of p21Cip1/Waf1, an efficient 

inhibitor of cyclin dependent kinases (Eldeiry et al., 1993). Further studies examining 

the effects of BCM on p53 and p21Cip1/Waf1 expression and activation in BASMCs 

are needed to address this question. 

 

Down-regulation of KNTC1 (Kinetochore associated 1) was also observed in our 

study. This is the protein structure on chromosomes where the spindle fibers attach 

during division to pull the chromosomes apart. Thus, down-regulation of KNTC1 

prevents chromosomal segregation normally associated with mitosis and meiosis. 

Interestingly, BCL2 (Bcl-2), an anti-apoptotic protein was also down-regulated, likely 

pointing to the pro-apoptotic effects observed in BASMCs following BAEC shear. 

 

Finally, the up-regulation of UBA1 (Small Ubiquitin-like MOdifier activating 

enzyme-1, SUMO-1) deserves some mention. Ubiquitin-like proteins affect the ability 

of the modified target protein to interact with other cellular factors (unlike 

ubiquitination, which generally targets proteins for degradation) (Vertegal et al., 

2006). Reports on SUMO-1 have shown that it can conjugate to growth suppressor 

p53 to enhance its transactivation (Gostissa et al., 1999). Thus, up-regulation of 
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SUMO-1 may increase transactivation of p53 leading to a cell cycle arrest and 

elevated apoptosis, consistent with the findings of our study. In further support of an 

underlying role for p53 in these events, previous studies have also shown that p53 

interacts with and inhibits the ability of RPA3 (Replication protein A3) to bind to 

ssDNA (Dutta, 1993; Dutta et al., 1993), thereby preventing the onset of S-phase. 

RPA3 is a hetero-trimeric single-stranded DNA-binding protein that is highly 

conserved in eukaryotes. It plays essential roles in many aspects of nucleic acid 

metabolism including DNA replication (Wobbe et al., 1987; Wold and Kelly, 1988), 

DNA excision repair (Coverley et al., 1992; Coverley et al., 1991), and recombination 

(Heyer et al., 1990; Moore et al., 1991). 

 

Preliminary results from the Human Cell Cycle RT² Profiler™ PCR microarray 

therefore confirm our hypothesis that the anti-proliferative (and pro-apoptotic) effects 

of LSS-derived BCM on BASMCs may be reflected in changes in the expression 

patterns of key cell cycle-regulating genes. In view of the large change observed in 

CDK1 expression, and of the pivotal role played by cyclin-CDK dynamics in cell 

cycle progression, it was decided to examine more closely the impact of our shearing 

paradigm on the expression of a range of cyclins and CDKs in BASMCs using 

standard RT-PCR in conjunction with pre-designed gene-specific primers. 

 

Following treatment of BASMCs with LSS-derived BCM as described in Methods, 

our results indicated that cyclin D1 and CDK4 are signficantly up-regulated, whilst 

CDK1, CDK2, and CDK6 are down-regulated. Induction of cyclin D1 and CDK4 

likely initiates G1 phase progression. Cyclin D is the first cyclin to be produced and 

assembles with its catalytic partners, CDK4 and CDK6, to progress through the G1 
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phase (Sherr et al., 1993). Entry into the next phase of the cycle typically relies on 

CDK2 activation, as CDK2 is sequentially activated by cyclin A and E (Girard et al., 

1991; Ohtsubo et al., 1995). However, down-regulation of CDK2 likely reduced 

formation of an active cyclin E-CDK2 complex, preventing G1/S phase transition. 

CDK2 down-regulation would also reduce cyclin A-CDK2 complex formation and 

thus prevent the G2/M phase transition. Also noteworthy, significant down-regulation 

of CDK1 would be expected to reduce cyclin B-CDK1 complex formation, which is 

necessary for the progression of mitosis (King et al., 1994; Arellano and Moreno, 

1997). Collectively, these expression changes indicate that the anti-proliferative effect 

of LSS-derived BCM on BASMC putatively involves blockade of G1/S and G2/M 

phase transitions, as well as mitotic progression. These findings also correlate with 

other studies. Several reports suggest that inhibition of CDK4 and CDK6 may not be 

necessary to arrest cell cycle progression and that inhibition of CDK2 alone may be 

sufficient to achieve cell cycle arrest (Brooks et al., 1997; Ishida et al., 1997; 

Sasaguri, 1996). 

 

As previously mentioned, cyclin-CDK complexes are regulated by a variety of 

specific CDK inhibitor proteins that bind to and inactivate CDKs. Members of the 

KIP/Cip family (p27Kip1 and p21Cip1/Waf1) have an inhibitory effect on cyclin E-

CDK2 complex formation (Sherr and Roberts, 1999), thus halting the cell cycle in the 

G1 phase. Studies have shown that p27Kip1 over-expression completely inhibits 

CDK2 activity and cell growth (Polyak et al., 1994; Toyoshimap et al., 1994). 

Similarly, recombinant p21Cip1/Waf1 inhibits CDK2, but not CDK4, activity (Poon 

et al., 1996), and p21Cip1/Waf1-deficient mouse embryo fibroblasts showed an 

increase in CDK2, but not CDK4, activity compared to wild type animals (Brugarolas 
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et al., 1998). For our PCR study, we prepared gene-specific primers to examine the 

expression of p27Kip1. Interestingly, our results revealed that endothelial shear did 

not appear to affect p27Kip1 expression levels in SMCs. Whilst this suggests that this 

inhibitor is not involved in our specific shear model, post-translational modification 

and activation of cellular pools of p27Kip1 cannot be ruled out at this point. 

 

On a related note, endothelial-derived NO within the vasculature stimulates 

generation of cyclic adenosine 3’,5’-monophosphate (cAMP) and cyclic guanosine 

3’,5’-monophosphate (cGMP) in both the endothelium and the underlying smooth 

muscle cell layer. cAMP and cGMP are second messengers involved in the 

intracellular signal transduction of a wide variety of extracellular stimuli. These 

signals regulate many biological processes including cell proliferation, differentiation, 

migration, and apoptosis (Koyama et al., 2001). Studies have shown that cAMP can 

inhibit smooth muscle cell proliferation in vitro (Southgate and Newby, 1990; 

Assender et al., 1992) and reduce formation of neointimal lesions after arterial injury 

in vivo (Indolfi et al., 1997; Wang et al., 2000). Interestingly, cAMP suppresses 

expression of both cyclin D and A, and stimulates up-regulation of p27Kip1 in smooth 

muscle cells, thus preventing G1/S transition (Vadiveloo et al., 1997; Fukumoto et al., 

1999). cAMP induction of p27Kip1 in-turn has also been shown to suppress CDK2 

and CDK4 activities in human smooth muscle cells (Koyama et al., 2001; Fukumoto 

et al., 1999). Recent reports also show a potential role for cGMP in regulation of cell 

cycle progression. Specifically, cGMP has been reported to up-regulate 

p21Cip1/Waf1, which associates with and suppresses CDK2 activity (Ishida et al., 

1997; Tanner et al., 2000). Whilst our data implicates a role for NO (and/or NO-

derived nitrite by-products) in the anti-proliferative effect of LSS-derived BCM on 
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BASMCs, the lack of either p27Kip1 up-regulation or CDK4 suppression suggests 

NO may be working via a cAMP-independent pathway. In this regard, the observed 

down-regulation of CDK2 may possibly be attributable to cGMP-dependent up-

regulation of p21Cip1/Waf1 (not examined in our investigations). 

 

In conclusion therefore, we have shown that laminar shear stress of BAECs in vitro 

decreases BASMC proliferation. Within the endothelium these events are mediated 

through integrin-, Rac1-, and NO-dependent signalling pathways. Furthermore, our 

studies implicate endothelial shear in the regulation of cell cycle-associated gene 

expression in SMCs, with consequences for cell cycle progression at the G1 phase. 



 170 

 

 

 

 

 

CHAPTER 6 

Final Summary 
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6.1 Final Summary 

 

The vascular endothelium is strategically located between the bloodstream and the 

vessel wall, where it plays a pivotal role in vascular homeostasis (Sagripanti et al., 

2000). Due to its unique location, it regulates the impact of physiological stimuli 

(mechanical and humoral) on endothelial dependent vessel tone and remodelling 

events. Under normal conditions it imparts an atheroprotective effect displaying anti-

platelet, anti-coagulant, and fibrinolytic properties. Thus, a critical balance between 

the endothelium-derived relaxing and contracting factors is necessary to maintain 

vascular homeostasis. Of particular importance are the mechanical or hemodynamic 

forces associated with blood flow, which impact upon the endothelium. These include 

cyclic circumferential strain, the transmural force acting perpendicularly to the vessel 

wall, and fluid shear stress, the frictional force generated by blood flow. Both forces 

can profoundly impact the endothelium and can regulate vascular cell functions 

including cell morphology, cell function/fate and the synthesis/secretion of various 

macromolecules essential for the regulation of vessel remodelling processes (Traub et 

al., 1998). Moreover disruption of normal hemodynamic forces can be either 

causative of, or contributory to vascular diseases such as atherosclerosis and stroke 

(Esper et al., 2006). 

 

In view of the importance of hemodynamic forces to endothelium function and 

vessel health, the aim of this study was to investigate the putative impact(s) of 

hemodynamic challenge to the endothelium on the properties of the underlying medial 

layer SMCs. In this regard, four experimental models were employed, namely; (i) 

laminar shear stress; (ii) turbulent shear stress; (iii) pulsatile laminar shear stress with 
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co-culture; and (iv) equibiaxial cyclic strain. For laminar shear stress studies, BAECs 

were exposed to shear in 6-well plates via rotation on an orbital shaker (0-10 

dynes/cm2, 0-48 h) as previously described (Hendrickson et al., 1999; Colgan et al., 

2007). BAEC-conditioned media (BCM) was subsequently harvested and incubated 

with quiescent BASMCs, after which, BASMC proliferation and apoptosis were 

monitored. For turbulent shear stress, an improvised model (back-forth shaking) was 

employed to generate TSS-derived BCM for studies with BASMCs. For pulsatile 

shear studies, a CELLMAX® Artificial Capillary System (a perfused transcapillary 

co-culture system) was employed. This is a far more accurate mimic of both the three-

dimensional hemodynamic environment of a blood vessel and the spatio-temporal 

dynamics of endothelial-smooth muscle cell communication. For cyclic strain studies, 

BAECs were into custom 6-well Bioflex® plates comprising a flexible pronectin-

bonded growth surface and exposed to equibiaxial cyclic strain (0-10% strain, 60 

cycles/min, 24 h, cardiac waveform) using a Flexercell® Tension Plus™ FX-4000T™ 

system (Flexcell International Corp.- Hillsborough, NC). 

 

We commenced our studies by examining the basic characteristics of commercially 

available cell lines (bovine and human endothelial/smooth muscle cells) under static 

conditions in complete growth media. These initial studies confirmed normal 

endothelial and smooth muscle cell morphology (“cobble-stone” versus “spindle-

shaped”), as well as expression of cell-specific markers (ECs: von Willebrand Factor, 

SMCs: SMC-specific α-actin). Bovine endothelial cells were also examined under 

conditions of hemodynamic challenge to ensure normal hemodynamic responsiveness. 

Specifically, we examined the effect of laminar shear stress and cyclic strain on 

BAEC morphology, F-actin dynamics, and tight junction-associated zonula 
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occludens-1 (ZO-1) localisation. Exposure of BAECs to chronic shear stress (10 

dynes/cm2, 24 h) resulted in distinct morphological realignment of cells in the 

direction of the shear vector, along with a clear realignment of the actin cytoskeleton 

in the direction of flow. Moreover, Rhodamine-Phalloidin staining demonstrated that 

cortical actin formation (consistent with elevated barrier function) was clearly up-

regulated and visible along the cell periphery in response to shear stress. Cell-cell 

border localisation of ZO-1 was also increased as it appeared more continuous and 

evenly distributed along the cell-cell border under shear stress. With respect to tight 

junction ZO-1, the regulatory association between hemodynamic forces and 

endothelial tight junction assembly and barrier function has been well established 

(Conklin et al., 2002; Collins et al., 2006; Colgan et al., 2007). Regulation of barrier 

integrity is crucial for normal endothelial-mediated vascular homeostasis and is a 

central pathophysiological mechanism of many vascular remodelling-associated 

processes (Balda and Matter 1998; Harhaj and Antonetti, 2004). Indeed, vascular 

pathologies exhibiting altered vessel hemodynamic loading with associated 

remodelling (e.g. atherosclerosis and restenosis) frequently correlate with 

compromised endothelial barrier integrity (Harhaj and Antonetti 2004; van Nieuw et 

al., 2002). Also of relevance, up-regulation of eNOS mRNA and protein levels were 

also observed in BAECs after exposure to shear stress. In response to cyclic strain 

(10% equibiaxial strain, 24 h cardiac waveform), enhanced ZO-1 cell-cell border 

localisation was also observed in parallel with an up-regulation of MMP-2 mRNA, 

observations again consistent with previous publications (Collins et al., 2006; von 

Offenberg Sweeney et al., 2004a). 
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Vascular remodelling in response to mechanical stimuli requires careful regulation 

of smooth muscle cell properties such as proliferation and apoptosis (Galis et al., 

2002; Clarke and Bennett 2006). A number of endothelial-derived biomolecules 

released in response to mechanical forces putatively impact vascular smooth muscle 

cell fates (Wang et al., 2003; Sumpio et al., 1998; Cucina et al., 2003; Powell et al., 

1998; Fillinger et al., 1997). Interactions between ECs and SMCs in the vessel wall 

are considered to be an important factor in the control of blood vessel growth and 

function (Spagnoli et al., 1982). Previous studies in animal models have demonstrated 

that SMC proliferation occurs quickly after endothelial injury and may account for 

early lesion formation (Clowes and Schwartz, 1985), with many advanced plaques 

consisting of a SMC-rich fibrous cap overlying a necrotic core. Until recently, SMCs 

have been viewed as being directly responsible for initiating the atherosclerotic 

plaque, through elevated proliferation, migration from the medial layer, and synthesis 

of matrix proteins (Ross, 1993). By contrast, recent work has presented evidence 

showing a beneficial/protective role of SMC proliferation in atherosclerosis 

(Weissber, 1996). These studies indicate a paucity of SMCs in plaques that have 

undergone plaque rupture compared with stable lesions (Davies, 1993). Moreover, 

arteries prone to develop atherosclerosis, as well as unstable plaques typically have 

“fewer” SMCs (Davies et al., 1993; Tracy, 1995). It is now generally accepted that 

SMCs can protect the integrity of the developed plaque by promoting stability through 

elevated proliferation. Indeed, a lack of SMC proliferation in plaques, due in part to 

cellular senescence, and even SMC death via apoptosis or other mechanisms, is 

associated with the late consequential events in the atherosclerotic plaque progression 

and destabilisation (Newby and Zaltsman, 1999). Thus, whilst elevated SMC 

proliferation may be a contributory feature of endothelial dysfunction and early 
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plaque development, it also paradoxically serves as a protective feature wrt plaque 

nature, stabilization, and rupture. 

 

SMC apoptosis has been implicated in a number of deleterious aspects of 

atherosclerosis, including plaque rupture, vessel remodelling, coagulation, 

inflammation, and calcification. Apoptosis of SMCs within atherosclerotic plaques 

has been shown to induce multiple features of plaque vulnerability (to rupture), 

including fibrous cap thinning, increased necrotic cores, and inflammation. The local 

inflammation may further weaken the fibrous cap by secretion of matrix 

metalloproteinases, leaving the “thinned” cap prone to rupture (Clarke and Bennett 

2006). In early lesions, apoptotic frequencies are minimal (relative to elevated 

proliferative state) but peak in advanced plaques with both SMCs and macrophages 

showing features of elevated apoptosis (Lutgens et al., 1999). Indeed, plaques from 

patients with unstable symptoms show higher levels of apoptosis than those with 

stable lesions (Geng et al., 1995). This is consistent with the reports of reduced SMC 

proliferation in unstable plaques, and points to the reciprocal coupling of proliferative 

and apoptotic status in SMCs during plaque initiation and progression to maturity. 

 

Mindful of these facts, we began to address our experimental objective; To 

investigate the impact of hemodynamic challenge to BAECs on BASMC proliferation 

and apoptosis using various hemodynamic modeling paradigms (described above). 

Initial investigations using the orbital rotation model of shear demonstrated that LSS-

derived BCM (0-10 dynes/cm2, 0-48 h) decreased BASMC proliferation whilst 

increasing apoptosis. The force-and time-dependency of these effects was also 

confirmed. As the two vascular cell types were not in physical contact during shear, 
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this indicated that the effects observed could be attributed to a BAEC-secreted 

factor(s) acting on BASMCs. As a control experiment, we also examined the effect of 

TSS of BAECs (using a highly improvised model of turbulent shear stress) on 

BASMC proliferation and apoptosis. In vessel areas typically exposed to TSS, vessel 

homeostasis becomes imbalanced leading to endothelial dysfunction and 

atherogenesis (Esper et al., 2006). Our results showed that TSS-derived BCM slightly 

increased BASMC proliferation (without effecting BASMC apoptosis), essentially in 

contrast to the anti-proliferative effect induced by LSS-derived BCM. 

 

A more superior pulsatile laminar shear model, the CELLMAX® Artificial 

Capillary System, was next used to investigate the impact of pulsatile laminar shear 

on BAEC-dependent regulation of BASMC proliferation and apoptosis in a perfused 

co-culture format (0.3 -vs- 20 dynes/cm2, 5 days). Our initial results indicated that 

BASMC mono-cultures (i.e. no intra-lumenal BAECs) increased their proliferation 

slightly under high pulsatile shear stress, likely due to elevated hydrostatic pressure 

(Birney et al., 2004). In the presence of intra-lumenal BAECs however, significant 

anti-proliferative effects on co-cultured BASMCs were clearly observed at high shear. 

This is consistent with our earlier observations of anti-proliferative effects with LSS-

derived BCM (i.e. from the orbital rotation shear system) and also builds very 

significantly on the earlier, rudimentary findings of Nackman and co-workers 

(Nackman et al., 1998). Using this pulsatile co-culture model, we also noted with 

interest that high shear enhanced BASMC apoptosis to a similar extent in both the 

absence and presence of intra-lumenal BAECs. Whilst this is consistent with the 

earlier findings of Birney et al., in which high pulse-pressure was found to elevate 

BASMC apoptosis (Birney et al., 2004), it is in contrast with the BAEC-dependent 
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pro-apoptotic effects observed using LSS-derived BCM. We concluded that this 

finding may point to an (undefined) apoptotic pathway that can be induced by either 

hydrostatic pulse pressure or BCM in a non-additive manner. 

 

Consistent with the above findings following BAEC shear stress, BCM harvested 

from BAECs exposed to cyclic strain (0-10% strain, 60 cycles/min, 24 h, cardiac 

waveform) also demonstrated an anti-proliferative and pro-apoptotic impact on 

BASMCs. This finding is in full agreement with an earlier study from our laboratory 

in which treatment of BAECs with an identical cyclic strain regimen significantly 

down-regulated BASMC migration via an MMP-2-dependent mechanism (von 

Offenberg Sweeney et al., 2004b). 

 

For the final chapter of the thesis, we decided to specifically focus on how laminar 

shear stress of BAECs impacts BASMC proliferation, with initial emphasis on the 

endothelial mechanosensor and effector components putatively mediating the anti-

proliferative effects of LSS-derived BCM. Pharmacological inhibitors were employed 

to selectively block endothelial signalling mechanisms during shear-dependent BCM 

generation. In this regard, our investigations point to the importance of endothelial 

integrin-, Rac1- and NO-dependent mechanisms in the shear-dependent conditioning 

of BCM and subsequent anti-proliferative effects on BASMCs (Fig. 6.1). 

 

Integrins were initially examined as previous studies report their frequent role in 

transduction of mechanical forces in endothelial cells (Shyy et al., 2002; Chen et al., 

1999). They are also involved in activating downstream pathways which modulate 

cellular responses. Our results revealed that incubation of BAECs with cRGD during 
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BCM generation could reverse the anti-proliferative effects of LSS-derived BCM on 

BASMCs. Interestingly, the cRGD-dependent reversal appeared more significant at 

day 6, as opposed to day 4 (and vice-versa for Rac1). This most likely stems from 

counting error in analysis of the BASMC growth curves over 7 days, or may possibly 

reflect an undefined temporal factor(s) in these experiments. Rac1 has been 

implicated in a diverse array of cellular events such as control of cell growth and 

cytoskeletal reorganisation, and therefore plays a pivotal role in the responsiveness of 

endothelial cells to shear stress (Li et al., 2000; Ridley et al., 1992; Nobes and Hall 

1995; Tzima et al., 2002). Not surprisingly, incubation of BAECs with NSC23766, a 

potent Rac1 inhibitor, reversed the anti-proliferative action of LSS-derived BCM. Of 

relevance, studies have shown that in endothelial cells under shear, integrins may 

activate downstream Rac1 to induce flow alignment of endothelial cell morphology 

(Goldfinger et al., 2008). The integrin-dependent regulation of Rac1 activity in 

endothelial cells is likely due to integrin binding of ECM ligands (Tzima, 2001). 

Conversely, studies have also demonstrated that Rac1 may activate integrins 

downstream in respone to shear stress in endothelial cells. Fujiwara et al. have shown 

that Rac1 activation is pivotal in endothelial cells for integrin-mediated cell spreading 

and migration (Fujiwara et al., 2004). Mohri et al., have also shown that Rac1 can up-

regulate integrin expression and induce cell adhesion (Mohri et al., 2002). The present 

study therefore suggests that shear activation of the integrin-Rac1 signalling axis not 

only have consequences for endothelial properties, but also for endothelial-dependent 

regulation of underlying SMCs. 

 

Nitric oxide (NO) is produced in endothelial cells in response to normal levels of 

shear stress and is known to have numerous effects on the vessel wall, including anti-
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proliferative effects on SMCs (Buga et al., 1998). Indeed, areas of low shear manifest 

reduced NO production (Buga et al., 1991), a potential contributor to proliferation of 

smooth muscle cells and lesion initiation in vivo. Incubation of BAECs with L-NAME 

(blockade of eNOS) appeared to recover the anti-proliferative action of LSS-derived 

BCM, suggesting NO involvement in this model. As NO has a relatively short 

(seconds) physiological half-life (Hakim et al., 1996), one is unlikely to find 

considerable levels of NO in BCM after 24 h shear. Rather, nitrite by-products are 

likely to be present in measurable levels and may possibly contribute to the anti-

proliferative effects seen on BASMCs. NO-dependent regulation of endothelial 

integrin activation as previously described (Lee et al., 2000) may also possibly 

account for the apparent anti-proliferative effects of L-NAME in this regulatory 

model. 

 

Interestingly, selective blockade of heterotrimeric Gα-subunits, protein tyrosine 

kinases (PTK), and ERK-1/2 signalling in endothelial cells had no significant effect 

on the anti-proliferative effects of BCM. Shear-dependent activation of these 

signalling components has previously been reported in endothelial cell studies. 

Heterotrimeric G-proteins for example, have been shown to activate ERK1/2 and Ras 

GTPase activity in response to shear stress (Jo et al., 1997; Gudi et al., 2003), and 

have also been implicated in flow-induced angiogenesis (Cullen et al., 2002). Shear-

dependent activation of PTK has also been demonstrated in endothelial cells with 

consequences for downstream events including NO production (Corson et al., 1996), 

MAPK activation (Ishida et al., 1996; Takahashi et al., 1996). Moreover, ERK1/2 has 

also been shown to be activated by shear stress leading to changes in endothelial 

growth properties (Surapisitchat et al., 2001). 
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Fig. 6.1: Proposed Signaling model: The above schematic depicts the endothelial signalling 
mechanism proposed to transduce endothelial shear into reduced SMC proliferation. LSS-
dependent activation of an Integrin-Rac1 signaling a likely upstream event, with possible 
consequences for NO production downstream. NO production can give rise to intracellular 
and extracellular cAMP, cGMP and nitrite by-products. Both transcrptional and translational 
events are proposed to contribute to media conditioning during hemodynamic challenge 
(Chatzizisis et al.,2007) 
 

 

In a separate series of experiments, we examined whether the anti-proliferative 

effects observed in the BAEC/BASMC laminar shear model could also be replicated 

in an equivalent HAEC/HASMC model. Interestingly, our results revealed that shear-

conditioned media from neither HAECs nor BAECs attenuated HASMC proliferation. 

In a parallel control study, HAEC-conditioned media however, was found to induce 

an anti-proliferative effect on BASMCs. This latter finding suggests that the lack of 

observable effect on HASMC proliferation in these studies cannot simply be ascribed 

to a “species difference” issue (as HAECs can induce an anti-proliferative effect in 

response to shear). We suspect however, that the extremely rapid doubling time of the 

commercially available HASMCs (≤24 h) may account somewhat for this 



 181 

phenomenon, possibly in conjunction with a need for significantly higher HAEC 

shear rates than the 10 dynes/cm2 employed here. 

 

In a final series of experiments, we used RealTime PCR (microarray and individual 

primers) to investigate the impact of LSS-derived BCM on the regulation of smooth 

muscle cell cycle-associated gene expression. Using the PCR microarray approach, 

we observed differential regulation (i.e. ≥1.5 fold) of up to 8 genes. Notable examples 

included up-regulation of UBA1 (ubiquitin-like modifier activating enzyme 1) and 

down-regulation of CDC2 (cell cycle division 2 or CDK1), CCNH (cyclin H), CDC16 

(cell division cycle 16 homolog), GTF2H1 (general transcription factor 2H), BCL2 

(Bcl-2), KNTC1 (kinetichore associated 1), and MAD2L1 (MAD2 mitotic arrest 

deficient-like 1). These changes are basically consistent with a cell cycle inhibitory 

effect (and thus, anti-proliferative effect) and appear to confirm our hypothesis that 

the anti-proliferative (and pro-apoptotic) effects of LSS-derived BCM on BASMCs 

may be reflected in changes in the expression patterns of key cell cycle-regulating 

genes. CDK1 (CDC2) for example, is one of the components of the maturation 

promoting factor (MPF) controling cell cycle division. When CDK1 binds to cyclin B, 

it allows the cell to progress through mitosis (Sherr, 1993). Significant down-

regulation of CDK1 (over 7 fold), as seen in our PCR microarray study, would 

therefore be expected to block mitotic progression by reducing cyclin B-CDK1 

complex formation. Down-regulation of KNTC1 (Kinetochore associated 1), the 

protein regulating chromosmal segregation during mitosis/meiosis, was also observed 

in our study. BCL2 (Bcl-2), an anti-apoptotic protein was also down-regulated, likely 

pointing to the pro-apoptotic effects observed in BASMCs following BAEC shear. 
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Similarly, the up-regulation of UBA1 (SUMO-1) observed in our PCR microarray 

study is also highly relevant. Reports on SUMO-1 have shown that it can conjugate to 

growth suppressor p53 to enhance its transactivation (Gostissa et al., 1999). Thus, up-

regulation of SUMO-1 may increase transactivation of p53 leading to a cell cycle 

arrest and elevated apoptosis, consistent with the findings of our study. In further 

support of an underlying role for p53 in these events, previous studies have also 

shown that p53 interacts with and inhibits the ability of RPA3 (Replication protein 

A3) to bind to ssDNA (Dutta, 1993; Dutta et al., 1993), thereby preventing the onset 

of S-phase. 

 

In view of the considerable fold down-regulation observed in CDK1 expression 

using the Human Cell Cycle RT² Profiler™ PCR microarray, and in view of the 

pivotal role played by cyclin-CDK dynamics in cell cycle progression, we decided to 

examine more closely the impact of our shearing paradigm on the expression of a 

range of cyclins and CDKs in BASMCs using standard RT-PCR in conjunction with 

pre-designed gene-specific primers. Following treatment of BASMCs with LSS-

derived BCM as described in Methods, our results indicated that cyclin D1 and CDK4 

are signficantly up-regulated, whilst CDK1, CDK2, and CDK6 are down-regulated. 

The down-regulation of CDK2 is particularly significant as CDK2 up-regulation and 

activation is normally required for G1/S phase transition within the cell cycle. CDK2 

is sequentially activated by cyclin A and E (Girard et al., 1991; Ohtsubo et al., 1995). 

Thus, down-regulation of CDK2 would likely reduce formation of an active cyclin E-

CDK2 complex, preventing G1/S phase transition. CDK2 down-regulation would also 

reduce cyclin A-CDK2 complex formation, thus preventing the G2/M phase transition. 

These findings also correlate with other studies. Several reports suggest that inhibition 
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of CDK4 and CDK6 may not be necessary to arrest cell cycle progression and that 

inhibition of CDK2 alone may be sufficient to achieve cell cycle arrest (Brooks et al., 

1997; Ishida et al., 1997; Sasaguri, 1996). Also noteworthy, significant down-

regulation of CDK1 would be expected to reduce cyclin B-CDK1 complex formation, 

which is necessary for the progression of mitosis (King et al., 1994; Arellano and 

Moreno, 1997). In conclusion therefore, these expression profiles indicate that the 

anti-proliferative effects of LSS-derived BCM on BASMCs putatively involve 

blockade of G1/S and G2/M phase transitions, as well as mitotic progression (Fig. 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2: Cell cycle regulation: The above schematic depicts the impact of LSS-derived 
BCM on regulation of cell cycle-associated cyclin-CDK gene expression. Arrows indicate up- 
or down-regulation of gene expression. 
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In conclusion, the aim of this thesis was to model the regulatory impact of the 

vascular endothelium on smooth muscle cell function(s) as a consequence of the 

blood flow-associated hemodynamic forces, shear stress and cyclic strain. To this end, 

we can conclude that defined hemodynamic challenge to BAECs can induce release 

of paracrine signals leading to anti-proliferative and pro-apoptotic effects on 

BASMCs (at physiological hemodynamic loadings). We speculate that a Rac1-NO 

signalling pathway, possibly upstream of integrin production, may be mediating this 

endothelial regulatory response under laminar shear stress. With respect to the anti-

proliferative effects of LSS, BCM-induced blockade of the smooth muscle cell cycle 

at the G1/S and G2/M phase transitions, as well as blockade of mitotic progression, are 

proposed. 

 

This study has highlighted the importance of hemodynamic forces to proper vessel 

homeostasis and endothelial-dependent remodelling, with normal hemodynamic 

stimulation clearly prompting the endothelium to suppress SMC growth and 

migration. Indeed, hemodynamically-sensitive areas of the vasculature manifesting 

pathological blood flow patterns can be transduced by ECs into paracrine signalling 

events with consequences for dysregulation of SMC gene expression, unchecked 

growth/migration and ultimately initiation of atherosclerotic plaque formation. 

 

Finally, over the course of these studies we have addressed the question of 

hemodynamic EC-SMC regulation using a broad range of modelling approaches, in 

conjunction with multiple analytical read-outs. To our knowledge, this is the first time 

this question has been addressed to this extent and it builds on other directly related 

studies in this field published through this laboratory (von Offenberg Sweeney et al., 
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2004b). Moreover, several endothelial and smooth muscle cell-associated signalling 

components have been identified as being relevant to this process. We anticipate that 

these findings will contribute to a better overall understanding of the 

mechanoregulatory dynamic that exists between these two cell types, with future 

benefits for the development of strategies to treat atherosclerosis and other vascular 

diseases. 
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