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Abstract

A novel approach for the automatic segmentation has been developed to extract

the contours of the epi-cardium and endo-cardium boundary of the left ventricle

of the heart. The developed segmentation scheme takes multi-slice and multi-phase

Magnetic Resonance (MR) images of the heart, transversing the short-axis length

from the base to the apex. Each image is taken at one instance in the heart’s phase.

The images are segmented using a diffusion-based filter followed by an unsupervised

clustering technique and the resulting labels are checked to locate the left ventricle

(lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the

right ventricle cavity. The wall between these two blood-pools (interventricular sep-

tum) is measured to give an approximate thickness for the myocardium. This value

is used when a radial search is performed on a gradient image to find appropriate

robust segments of the epi-cardium boundary. The robust edge segments are then

joined using a normal spline curve. Experimental results are presented with very

encouraging qualitative and quantitative results and a comparison is made against

the state-of-the art level-sets method.
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1 Introduction

According to the World Health Organisations [1] 2002 Report, 29% of deaths

in their 191 members states were a result of cardiovascular disease (CVD),

32% in women and 27% in men. These alarming statistics have spurred the

increase in research into the diagnosis and prevention of CVDs. The size and

structure of the left ventricle is a primary indicator for the diagnosis and treat-

ment monitoring of many CVDs. For example, left ventricle contraction and

thickening plays a key role in the assessment of deficient blood supply to the

cardiac tissue (ischaemia) [2] while a fall in left ventricle output or the ejection

fraction can be a late complication of elevated vascular resistance (hyperten-

sion). Diagnostic imaging is set to play a vital role in the future fight against

heart disease.

Traditional methods of cardiac imaging include cardiac ultrasound and an-

giography. Cardiac ultrasound is a tomographic imaging system, it is relatively

cheap, non-invasive and can image on arbitrary planes. It gives low contrast

when compared to MR and X-ray and hence cannot image through gaseous

mediums and has a low signal-to-noise (SNR) ratio due to frequency attenua-

tion in the tissue. Also, it has a low SNR in cases where the patient presents

obesity. 3D ultrasound [3,4] has been introduced to analyse the heart function
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but currently does not have the resolution to accurately distinguish between

the epi-cardium border and other organs in the thoracic cavity [5].

In angiography, X-ray projection images are used. The quality of the image

can suffer when the heart muscle is overlapped by the diaphram or the ribs. A

contrast agent is injected into the heart cavity by means of a pigtail catheritor

threaded through the arteries. This may cause complications like arrhythmias

(irregular heartbeat) or embolism (by dislodging plaque from the wall) and

may even result in death. This contrast agent also has difficulty reaching the

apex of the heart [6].

Cardiac Magnetic Resonance Imaging (CMRI), which is used in this study is

a well established and rapidly advancing imaging modality in analysing heart

disease. It is considered by some authors [7,8] to be the reference standard.

MR has proved to be more accurate than echo-cardiology in the calculation of

the ejection fraction and also shown superior results in endo-cardium border

segmentation [8]. It has a wide topographical field of view and high contrast

between soft tissues without the need for a contrast agent. This means there is

a high discrimination between the flowing blood and the myocardium muscle.

It is non-invasive with high spatial resolution and can be gated using an elec-

trocardiogram (ECG) at different phases during the hearts pulse. However, it

can suffer from noise and gray scale variation between adjacent slices [6,9–13].

All of these modalities are providing increasing amounts of information in

higher dimensions, spatially and temporally. Such an increase in data pro-
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duced from the different modalities makes it much more laborious and time-

consuming for the cardiologist to hand-annotate and measure the myocardium.

Recent research projects have moved from a manual segmentation toward a

fully automated segmentation of the left ventricle [14–16,9].

1.1 Segmentation Background

Computer Aided Diagnostic (CAD) tools have been developed to aid car-

diologists with the manual delinearisation of the myocardium [17,18]. Mea-

surements are taken using geometric approximations of the left ventricle (lv).

While these geometric models are fair approximations for healthy patients,

they are not as accurate when compared to the actual MR image data [7].

Manual segmentation also suffers from inter- and intra- observer variability.

Semi-automated methods have been developed in order to further aid the

cardiologist in the segmentation process [19–21]. These methods require user

intervention by placing an initial contour around the lv or moving the cur-

sor around the lv wall while the border attaches itself to the high gradi-

ent points. Although these approaches considerably reduce the time taken to

manually segment the myocardium boundary it is still subject to inter- and

intra-observer variability.

Traditional methods of segmentation such as thresholding, region-growing,

edge-detection and watershed [22–24] (reviewed in [6]) are also used in the

evaluation of the left ventricle cavity and wall. These methods on their own
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have difficulty dealing with noise, gray scale variations and low gradients asso-

ciated with most medical images and a high degree of supervision is required

from the user.

Snakes or active contours [25] are curves that move toward the sought-for

shape in a way that is controlled by internal forces such as rigidity, elasticity,

and an external image force. The external force should attract the contour

to certain features, such as edges in the image [26–29]. Initialisation of the

contour is the key to its success. Bad initialisation can draw the curve away

from the left ventricle to edges that best fit its predefined parameters. Snakes

and active contours have difficulty working on images with low contrast and

may not be able to flag important features such as wall thinning.

Level-set [30] methods have become well established methods for segmenta-

tion. Level-sets have also become a prevalent method in medical image segmen-

tation [31–33]. Level-sets have gained popularity due to their implicit nature

and ability to perform well in noisy data. They also have the ability to split and

re-join throughout the deformation without the need for re-parameterisation.

Similar to active contours, they rely on the first initialisation step and can fall

into the trap of local minima.

Recently, in the field of medical image processing, many model-based seg-

mentation approaches have been studied (reviewed in [10,34]). Geometrically

deformable models [35–37] are parametric representations of the desired shape

to be segmented. These parametric models can enhance the local properties of
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an image such as gray level or texture to aid the delinerisation in poor quality

images.

Active shape models (ASMs) [38–40] are a model driven segmentation ap-

proach. The model is built up using a priori knowledge about the left ventricle

shape, usually hand-annotated segmentations from a training set of data. This

shape model is then compressed, usually using principle component analysis

(PCA), to find the common modes of shape variation. The mean shape then

searches an unseen image and converges over the most likely set of features.

The mean shape is then deformed using the PCA modes. The accuracy of

the segmentation relies heavily on the amount and variation of images in the

training set. If the training set is too small with low variation, there is a lim-

ited number of unseen images that the model is applicable too. On the other

hand, if the model is large with large variation it may easily choose some er-

roneous points. The hand annotation of the training set can also be very time

consuming and introduce bias.

Active appearance models (AAM) [38,16] are similar to ASMs but texture

of the shape is added to the model and they perform a combined shape-

appearance statistical analysis. Stegmann [41] showed how these active ap-

pearance models could be applied to analyse short axis MR images of the

heart. Mitchell [42] addresses the problems that AAMs have with attaching

the model with the gradient information by formulating a hybrid approach

which combines ASMs and AAMs. Lelieveldt [43] introduces a time factor

into his Active Appearance Motion Models and minimises the appearance-to-

target differences. Again all AAMs suffers the same limitations as the shape
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models with regards to the variation and building of the training sets.

We present a two-phase approach to address these issues. A diagram for the

segmentation scheme is illustrated in figure 4. In the first stage automatically

locates and segments the lv cavity. It is invariant to changes in scale and

changes in gray scale through the volume image. It performs a true segmenta-

tion of the endo-cardium boundary including the papillary muscles attached

to the myocardium. The inclusion or exclusion of the papillary muscles in

the calculation of the ejection fraction is usually dependent on the radiologist

who can make this decision once the automatic segmentation is performed.

In the second phase, we use the thickness of the interventricular septum (the

myocardium between the left and right ventricle) as a guide for segmenting

the remainder of the epi-cardium, using edge information. The epi-cardium

boundary is closed using a spline.

This paper is organised as follows: Section 2 discusses the preprocessing with

a short description of the segmentation algorithm. Section 3 focuses on the

automatic detection of the lv cavity where we perform the segmentation of

the lv cavity on both the end-systole and end-diastole phases and calculate

the ejection fraction subsequently [44]. Section 4 moves onto the heuristics

involved in segmenting the outer wall of the myocardium. The results are

shown and evaluated in Section 5 with concluding remarks in Section 6.
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2 Smoothing and Clustering algorithms in brief

Each image slice is smoothed to remove the noise which occurs in MR im-

ages [23]. The image is then clustered using an adapted k -means algorithm.

The clustering of MRI data using different clustering techniques has being

documented in [45,46].

2.1 Edge-preserving Smoothing

In this preprocessing step, noise is filtered out of the image while maintaining

the important edge information using an edge preserving filter. The use of

diffusion-based filters also been performed in MRI data [47–50] . The adap-

tive smoothing algorithm proposed by Chen [51] is an adaptation of [52] but

searches the image for both local and contextual discontinuities. These dis-

continuities are preserved during the smoothing operation.

2.1.1 Local Discontinuities

The local discontinuity is measured using four detectors:

EHxy = |Ix+1,y − Ix−1,y|,

EVxy = |Ix,y+1 − Ix,y−1|,

EDxy = |Ix+1,y+1 − Ix−1,y−1|,

ECxy = |Ix+1,y−1 − Ix−1,y+1|

(1)
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(a) (b)

(c) (d)

Fig. 1. Figures show the filtering of the short axis view (a) The original image of

the short axis view (b) Results after a single pass of a 5x5 average filter, (c) Shows

the results after a single pass of a 5x5 fifth-largest median filter and (d) The results

from the Adaptive filtering using a 5x5 neighbourhood mask, note the preservation

of the edge features.

where Ix,y is the gray scale value of the image at position (x, y). The local

discontinuity measure at that point can then be defined as:

Exy =
EHxy + EVxy + EDxy + ECxy

4
(2)
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2.1.2 Contextual Discontinuities

The contextual discontinuities are then measured using the spatial variance.

A square kernel Nxy(R) is first set up and the mean of its members calculated:

µxy(R) =

∑
(i,j)∈Nxy(R) Ii,j

|Nxy(R)| (3)

The spatial variance is then calculated to be:

σ2
xy(R) =

∑
(i,j)∈Nxy(R)(Ii,j − µxy(R))2

|Nxy(R)| (4)

This variance is then normalised to σ̃2
xy and thresholded with θσ = (0 ≤ θσ ≤

1) to limit the number of contextual discontinuities.

2.1.3 Smoothing Algorithm

Using two forms of discontinuities above leads to a less ambiguous smoothing

solution, the local discontinuities indicate detailed local structures and the

contextual discontinuities show important features. The algorithm is iterative

and the updated pixel values now become:

I t+1
xy = I t

xy + ηxy

Σ(i,j)∈Nxy(1)/{(x,y)}ηijγ
t
ij(I

t
i,j − I t

x,y)

Σ(i,j)∈Nxy(1)/{(x,y)}ηijγt
ij

(5)

where,

ηij = exp(−αΦ(σ̃2
xy(R), θσ)), (6)

γt
ij = exp(−Et

ij/S) (7)

The variables S and α determine the extent to which the local and contextual

discontinuities should be preserved during smoothing. If there are a number of

contextual discontinuities in the image then the value of ηij will have a large
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influence on the updated intensity value. On the other hand, if there are a

number of local discontinuities, then both γij and ηij will have the overriding

effect, as ηij is used for gain control of the adaption [51]. The values used in

the smoothing were a window size of R = 1 (this translates to a 3x3 smoothing

window), run for 3 iterations, θσ = 0.2, S = 10.0 and α = 10. These values

were found experimentally to give the optimal results for all the images used

in this study.

2.2 Clustering

The smoothed images are then clustered using an adaptation of the k-means

algorithm proposed by Duda and Hart [53,54]. This algorithm has four steps

to find the image clusters.

(i) Initialise the position of the means m1 → mk.

(ii) Assign each of the k-items to the cluster whose mean is nearest.

(iii) Recalculate the mean for the cluster gaining the new item and the mean for

the cluster loosing the same item. Recalculation is made using the variance.

(iv) Loop through steps (ii) and (iii) until there are no movements of items.

The image is clustered using an initial guess of 15-20 independent cluster

centres which is sufficient to capture all the relevant features. The pixels are

clustered together using the strategy explained before. The number of clusters

is then optimised by merging clusters with similar attributes. This is repeated

until there are no more clusters to be merged [44].
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(a) (b)

(c) (d)

Fig. 2. Figure shows four images, two gradient-echo images before (a) and after

clustering (b), and two spin-echo images before (c) and after clustering (d).

3 Automatic Detection of lv cavity

The image has now been segmented into separate clustered regions. The next

step is to automatically detect which of these clusters represents the lv cavity

on the first slice. To allow for different imaging parameters the lv cavity is

located using shape descriptors only and not using the gray scale values. The

images are short axis, therefore we assume that the lv cavity approximates a

circular shape and that the lv feature is continuous in successive slices. Ap-

proximation to a circle is calculated as the error between the shape and the
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least squares approximation to the circle (see Appendix ). It is also assumed

that the lv is not located on the peripheral of the image.

The volume of the left ventricle is then extracted using two criteria:

(i) Overlapping area of the regions contained in successive slices.

(ii) Gray scale value of the regions under investigation

The regions cannot be connected using just gray scale values due to the vari-

ation in the intensity values through the volume caused, to some extent, by

coil intensity falloff. The lv regions are then connected in 3D and the volumes

are then rendered (see figure 3). The ejection fraction is calculated using the

volumes. The ejection fraction is defined as “the proportion, or fraction, of

blood pumped out of your heart with each beat” [55] and can be represented

by the equation:

EF =
Vendo(tD)− Vendo(tS)

Vendo(tD)
(8)

where Vendo is the volume of the inner walls of the heart, Vendo(tD) = maxt[Vendo(t)]

is the end-diastolic volume and Vendo(tS) = mint[Vendo(t)] is the end-systolic

volume.

4 Segmentation of epi-cardium border

The procedure for segmenting the epi-cardium is illustrated in figure 4. The

position of the lv cavity is already known for each slice as explained in the

previous section. In order to determine the epi-cardium border a region of
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(a) (b)

Fig. 3. The rendered images of the (a) end-diastole and the (b) end-systole phases

of the cardiac cycle. These volumes that are constructed from the true segmentation

of the images excluding fat and papillary muscles on the endo-cardium.

interest is defined around the lv cavity. Two copies of this region of interest

are taken. The first image Image1 is used to find a value for the approximate

radius of the myocardium and the second image Image2 is used to find real

borders around the myocardium. The two are combined to find the true value

of the epi-cardium around the lv.

Image1 is again clustered using a predefined low number of clusters around the

region of interest. A low number of clusters is chosen because of the scarcity

of important features around the lv cavity. Anatomically, the closest blood

pocket to the lv cavity is the right ventricle cavity, it is also known that the

thickness of the myocardium will not change drastically over the entire cir-

cumference. The thickness of the interventricular septum between the two

blood pockets can give a reliable estimate for the thickness of the rest of the

myocardium.
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Image2 is zoomed using an area averaging technique around the area of in-

terest. The zooming operation is applied to increase the edge separation. The

image is then segmented using a thresholded edge-based algorithm [56]. The

largest connected segments within certain bounds of the estimated thickness

found from Image1 are taken as potential border segments. There is an angu-

lar restraint placed on the transition of these segments around the epi-cardium

to eliminate stepping into the endo-cardium border or stepping out to other

organs.

A closed natural cubic spline is fitted around the points on the epi-cardium

[57] (see Appendix ). The spline is used to close the epi-cardium contour by

connecting all the points on the curve in a smooth way. Splines are piece-

wise polynomials of degree n (n = 3 in the case of cubic splines) with the

pieces smoothly joined together. The joining points of the polynomial pieces

are called control points which need not be evenly spaced.

5 Results

In order to assess the performance of the automatic segmentation, results were

compared against those obtained by manually segmenting 25 volume image se-

quences for the endo- and epi-cardium borders. The manual segmentation was

assisted by an experienced cardiologist. Each volume includes 5-12 images con-

taining the lv, transversing the lenght of the cavity and includes the papillary

muscles. The imaging device used was a Siemens Magnetom Sonata, 1.5 Tesla,

TR = 3.2ms, TE = 1.6ms, flip-angle 60◦ and resolution (1.37× 1.37× 8mm)

for the bright blood sequence and a Siemens Vision 1.5T , T1-weighted scan
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used in the dark blood sequence. The automatic segmentation results can

be seen in figure 5. The method shows good visual results for bright blood

images 5(a)-(f) and dark blood images 5(g)-(i). The errors are calculated on

volumes, endo and epi contours areas, myocardium thickness and finally point

correspondence. The latter is measured against a level-set segmentation (see

Appendix ).

Table 1 shows the signed average and root mean square error of the ejection

fraction from eight volumes from the sequence. The ejection fractions were

worked out using pairs of volumes, not necessarily the end-systole and end-

diastole and compared with the ejection fraction calculated from the manually

segmented volumes. We can see in Table 1 low errors between the manual and

automatic results.

The errors for the manually segmented endo-cardium area and the automat-

ically traced area are given in Table 1. The signed average and root mean

square error are shown. Errors around the apex have a significant effect be-

cause a low number of pixels is a high proportion of the overall manually

traced area. Linear regression analysis was also performed in figure 7(a) and

high correlation value of r = 0.98 is obtained. Reproducibility is assessed using

the Bland-Altman plot, figure 7(c) [58]. Note that the graphs are relatively

zoomed to show the detailed distribution and the plots are graphed in units

of mm2.

The epi-cardium area was assessed using the same techniques. It shows a

16



slightly lower percentage error for both the average signed and the rms errors.

This can be attributed to the increased overall area of the manually traced con-

tours. Linear analysis, figure 7(b), gives an value of r = 0.94 which is slightly

lower than that produced for the endo-cardium. This lower correlation is a

result of low contrast on the lateral side of the heart making the segmentation

of the epi-cardium border difficult. In this case our algorithm connects two

end-points of robust segments, how the ends are connected can incorporate a

priori information [59]. Manual segmentation is also problematic in areas of

low gradient and is dependent on the the users own interpretation of ’what

looks appropriate’. Reproducibility was again assessed with the Bland-Altman

plot, figure 7(d).

Tables 2 and figure 8 gives the Euclidean point to curve error in mm’s for

>150 images through a heart sequence. It gives the minimum and maximum

distance between the manual and automatic segmentation contours. The aver-

age distance, standard deviation (SD) and root-mean-square (RMS) are also

given. The results are compared to those obtained using the level set technique,

detailed in the Appendix , where the user selects the lv cavity for each image.

The large maximum errors taken from the level-set approach are mainly due to

the level-set encountering local minima due to the variation in blood intensity

in the image. The results for the epi-cardium boundary point to curve errors

are shown in Table 3 and illustrated in figure 9.
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Table 1

Mean Percentage Errors ± 1SD for manual versus automatic

Average Signed Error RMS Error

Ejection Fraction 1.593 ± 0.82 3.176

Endocardium Areas -3.623 ± 5.14 4.765

Epicardium Areas -0.556 ± 4.29 3.75

Table 2

Point to curve Errors between manual and computer segmentation for both the

clustering and level-set techniques for the endo-cardium boundary(mm)

Endo

Method Min (mm) Max (mm) Average (mm) SD (mm) RMS (mm)

Clustered 0.0 7.07 0.69 0.88 1.12

Level-Set 0.0 10.296 1.08 1.36 1.73

Table 3

Point to curve Errors between manual and automatic segmentation for the epi-

cardium boundary(mm)

Endo

Method Min (mm) Max (mm) Average (mm) SD (mm) RMS (mm)

Robust Arc 0.0 13.45 1.31 1.86 2.14

6 Conclusion

A fully automatic detection and segmentation of the left ventricle myocardium

has been detailed in this paper. An edge preserving filter followed by an unsu-

pervised clustering to successfully segment the left ventricle cavity from short

axis MR images of the heart. Once the cavity volume is extracted the ejection
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fraction can be calculated. The edge-point accuracy is compared with level-set

segmentation of the blood pool.

In the second part of the paper the epi-cardium border is successfully seg-

mented using an edge-based technique. The thickness of the wall is approxi-

mated by measuring the thickness of the interventricular septum. The inter-

ventricular septum is an anatomically sound feature of the heart and because

it is surrounded by blood on both sides it can be robustly segmented. This

measurement is then used as an initial estimate for the thickness of the com-

plete wall. A gradient image of the area around the lv is computed and the use

of the approximate wall thickness, gradient points potentially belonging to the

epi-cardium border are selected. If there are no viable gradients found on the

epi-cardium border then the outer wall is estimated using the approximation

found using the interventricular septum.

We believe that general models in ASMs\AAMs built up from training sets

are limited in their application to the variety of heart shapes. Abnormalities

in the image data can indicate disease. Model based approaches approximate

to the closest plausible instance shape from the training set Point Distribution

Model (PDM), but this may not be sufficiently accurate. Also AAMs cannot

deal well with the changes in texture. This paper presents a robust, fully au-

tomated method to identify the endo-cardium and epi-cardium borders that

does not rely on a priori knowledge nor does it use constraints to find the left

ventricle cavity.

Left ventricle segmentation is primarily motivated by the need to clinically
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diagnose a feature of the heart with potential problems. Models that approx-

imate left ventricular boundaries try to fit variations of boundaries that have

already been segmented. The left ventricle is anatomically variant, the scan-

ners are inconsistant and the variations of pathologies found in patients is

vast. To build a model to accommodate such diversity would be an immense

task. Our algorithm makes no approximations but produces a true evaluation

of the heart structure by segmenting the true borders in the image. We should

remember that the aim is not to segment hearts that are part of a model but

to assist the cardiologist in the prognosis by delineating the true anatomical

features present in the image.

Evaluating the endo-cardium and epi-cardium borders using this approach

could provide a more appropriate technique for flagging problems like wall

thinning and low ejection fraction.
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Appendix

LMS Circle

Using the Least Squares solution a circle is fitted around a collection of points,

Pi, with images coordinates, (xi, yi) for i = 1, 2...N .

A circle is defined by three parameters. These parameters are the coordinates

of its centre (x0, y0) and its radius r. The equation of a circle can be written

isolating these three parameters as follows:




2xi 2yi 1







x0

y0

r2 − x2
0 − y2

0




=




x2
i + y2

i




In order to find these three unknowns a linear least squares solution is ob-

tained where:

A =




2x1 2y1 1

2x2 2y2 1

2x3 2y3 1

...

2xN 2yN 1




, b =




x2
1 + y2

1

x2
2 + y2

2

x2
3 + y2

3

...

x2
N + y2

N




The best fitting circle for the points Pi is the least squares solution to [x0 y0 r2−
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x2
0 − y2

0 ]T = (AT A)−1AT b where (AT A)−1AT b can be written as:




4
∑

x2
i 4

∑
xiyi 2

∑
xi

4
∑

xiyi 4
∑

y2
i 2

∑
yi

2
∑

xi 2
∑

yi N




−1 


2
∑

x3
i + 2

∑
xiy

2
i

2
∑

y3
i + 2

∑
x2

i yi

∑
xi +

∑
y2

i




The errors of this least squares solution can be calculated with ecircle =‖

A[x0 y0 r2 − x2
0 − y2

0 ]− b ‖

Splines

A spline fits a smoothed curve around a collection of points Pi where i =

1, 2, 3...N . It works by fitting a cubic curve between each pair of points in the

collection. Smoothness of the curve is maintained by forcing the first and

second derivative of the end point of one curve to equal the start of the next

curve. This is achieved by solving a system of simultaneous equations. The

equation is illustrated below:

fi(x) = ai + biu + ciu
2 + diu

3

0 ≤ u ≤ 1

1 ≤ i ≤ n

Where i is the amount of points on the curve and u is the number of steps in

between each point. The coefficients of the cubic equation are:

22



a = xn

b =
dxn

dP

c = 3(xn+1 − xn)− 2
dxn

dP
− dxn+1

dP

d = 2(xn − xn+1) +
dxn

dP
+

dxn+1

dP

The derivatives used in to smooth the curve are computed as follows:




D[0]

D[1]

.

.

.

D[n]




=




4 1 1

1 4 1

1 4 1

...

1 4 1

1 1 4




−1 


3(x1 − xn)

3(x2 − x0

.

.

3(xn − xn−2

3(x0 − xn−1)




Level-Set Formulation

The formulation of the problem is straight forward. The evolving curve or

front Γ, evolves as the zero level-set of a higher dimensional function φ. This

function deforms with a force F that is dependent on both curvature of the

front and external forces in the image. The force acts in the direction of the

normal to the front.

φt + F |∇φ| = 0

φ(x, y, t = 0) = given

(9)
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Our implementation is a standard two step approach which includes a fast-

marching initial step to speed up the segmentation. Fast marching is a special

case of the above equation where F (x, y) > 0. Let T (x, y) be the time that the

front Γ crosses the point (x, y). The function T (x, y) then satisfies the equation;

|∇T |F = 1 (10)

which simply says that the gradient of the arrival time is inversely proportional

to the speed of the surface. The T function is evaluated using the diffusion

and attraction to pixels within the front. The front grows out from its initial

position to points with the smallest value of T (x, y). The T (x, y) function is then

updated and and continued until the front does not grow.

The fast-marching step is then followed with a fine tuning step using a narrow-

band level-set method. Here the shape model is implicitly represented as the

zero level-set of a function φ. Where φ = signed distance to the Γ, negative if

inside the front and positive if outside. φ is iteratively updated as;

φt+1 = φt + kI(1− εκ)|∇φ|+ β∇I · ∇φ (11)

where ε and beta are user parameters, κ is the curvature term and equal to

∇ · ∇φ
|∇φ| and kI is an image dependent speed term and is given by 1

1+∇I . The

third term, ∇I · ∇φ represents the attractive force vector normal to the front.

The updates were performed efficiently within a narrow-band around the front.
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Fig. 4. A schematic representation of the two phases involved in the segmentation

of the endo- and epi- cardium border. Stage I shows the preprocessing and seg-

mentation processes, the automatic detection of the lv cavity and the connection

of the cavity through the volume. Stage II shows the method for segmenting the

epi-cardium border in each image
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. The left ventricle contours obtained using our automatic segmentation

method in short axis cardiac MR images. Figures (a)-(f) show images taken at

both the end-diastolic phase and end-systolic phase of a gradient-echo sequence.

Figures (g)-(i) show images from a spin-echo study.
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(a) (b)

(c)

Fig. 6. Figure shows the rendered myocardium for the end-diastolic phase
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Fig. 7. Figures (a)-(b) shows scatterline plot of manual segmentation against the

automatic segmentation for both the endo- and epi-areas and figures (c)-(d) shows

Bland-Altman plot for the same
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Fig. 8. Plot of the average thickness of the myocardium over 34 slices with both the

manual segmentation and the automatic segmentation shown. Values are taken at

evenly spaced radial positions around the endo cardium border.
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Fig. 9. Plot of the average thickness of the myocardium over 34 slices with both the

manual segmentation and the automatic segmentation shown. Values are taken at

evenly spaced radial positions around the endo cardium border.
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