
 
 

Identification of Body Fat Tissues in MRI Data 
 

Dana Ileaa, Ovidiu Ghitab, Kevin Robinsonb, Robert Sadleirb, Michael Lynchb, 
Darren Brennanc, and Paul F. Whelanb, Senior Member IEEE 

 
aFaculty of Electrical Engineering and Computers, 

Transilvania University Brasov, Romania 
 

bVision Systems Group, 
School of Electronic Engineering, 

Dublin City University, Glasnevin, Dublin, Ireland 
 

cCappagh National Orthopaedic Hospital 
Finglas, Dublin, Ireland 

 
 

Abstract-- In recent years non-invasive medical 
diagnostic techniques have been used widely in medical 
investigations. Among the various imaging modalities 
available, Magnetic Resonance Imaging is very attractive 
as it produces multi-slice images where the contrast 
between various types of body tissues such as muscle, 
ligaments and fat is well defined. The aim of this paper is 
to describe the implementation of an unsupervised image 
analysis algorithm able to identify the body fat tissues from 
a sequence of MR images encoded in DICOM format. The 
developed algorithm consists of three main steps. The first 
step pre-processes the MR images in order to reduce the 
level of noise. The second step extracts the image areas 
representing fat tissues by using an unsupervised 
clustering algorithm. Finally, image refinements are 
applied to reclassify the pixels adjacent to the initial fat 
estimate and to eliminate outliers. The experimental data 
indicates that the proposed implementation returns 
accurate results and furthermore is robust to noise and to 
greyscale in-homogeneity. 

Index Terms—MRI, Body fat, Image de-noising, Image 
segmentation, Clustering, Region growing.  

I. INTRODUCTION 

The accurate determination of a person’s total body fat 
is an important issue in medical analysis as obesity is a 
significant contributing factor to a variety of serious 
health problems.  The medical literature identifies a 
wide range of diseases that are closely related to obesity 
including hypertension, coronary heart disease, strokes, 
gout, diabetes, various types of cancer and 
psychological disorders such as depression and low self-
esteem [5].  
 
In the past the evaluation of total body fat has included 
techniques such as hydro-density, callipers and air 
displacement (Bod Pod). The accuracy of these 
techniques is limited and furthermore the results are 
subject to inter and intra observer variability. More 
recently, new techniques have been developed and 
among them the most important are DEXA, NIR and 
TOBEC (more details about these techniques can be 

found in [5]). In most cases these techniques are 
accurate but the equipment is dedicated and expensive 
and this is a deterring factor for their application in 
current medical investigations. On the other hand 
Magnetic Resonance Imaging (MRI), although 
expensive, is used extensively for many types of medical 
investigations and as such MRI facilities are available 
more readily and widely. 
 
Alternative medical techniques have been used to 
measure the body fat such as Computer Tomography 
(CT) and MRI. As in the past the quality of MRI images 
was limited, CT was widely used to measure the total 
body fat. The results proved to be very encouraging but 
it should be mentioned that due to the effect of the 
ionising radiation involved this technique is rendered 
impractical for serial investigations [8]. With the 
advancement in medical imaging, current MRI produces 
high-resolution volumetric image sequences and it 
becomes an attractive imaging modality to measure 
body fat.   
 
In our investigation we attempt to extract the areas 
representing fat tissues in a sequence of MR images. 
The image segmentation task has to be able to 
accommodate problems such as greyscale in-
homogeneity within the regions representing fat tissues 
and a relatively low signal to noise ratio.  In order to 
address these issues firstly we pre-process the input data 
to reduce the noise level. Then, the pre-processed data is 
roughly segmented using an unsupervised clustering 
method. Finally, the result is further improved by 
applying image refinements to eliminate misclassified 
pixels.  
 
This paper is organised as follows. In this section we 
have introduced the problem to be investigated. Section 
2 details the segmentation algorithm. Section 3 presents 
some experimental results and Section 4 concludes the 
paper. 



 
 

II. IMAGE SEGMENTATION 

A visual examination of the images contained in the data 
sets reveals that the fat tissues tend to have a higher 
grayscale value than other tissues. But these images also 
indicate that there is quite a high grayscale variation 
within the image regions which represent fat tissues and 
in some situations their grayscale values are lower than 
those associated with other tissues such as those 
representing bones, liver or brain. Therefore, accurate 
segmentation cannot be achieved by applying simple 
methods based on thresholding.  

Thus, in order to cope with these problems we have 
devised a three-step segmentation algorithm. The first 
step involves pre-processing the input image in order to 
reduce the level of noise. As a visual examination 
indicates that the imaged fat tissues always have their 
grayscale values higher than 100, we eliminate from the 
input data the information that has grayscale values 
below this threshold. Then, we reduce the level of 
speckle noise by applying a median filter which is 
followed by the application of a feature–preserving 
adaptive smoothing operator. The adaptive smoothing 
operator is applied to eliminate the Gaussian distributed 
noise while preserving the high-gradient image 
information (i.e. image edges). The aim of this pre-
processing scheme is to achieve a smooth de-noised 
image. The next section will briefly introduce the 
adaptive smoothing operator used in this 
implementation.  

A. Adaptive smoothing operator 

The aim of this operation is to remove the additive 
image noise while preserving the image edge 
information.  To this end, we implemented the 
smoothing algorithm described in [2]. This smoothing 
algorithm tries to adapt pixel intensities to the local 
attributes present in the image by evaluating two 
discontinuity measures (i.e. local and contextual) that 
should be preserved during the smoothing operation.  

The local discontinuity is measured using four detectors 
that approximates the image gradients in four directions: 
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where Ix,y is the pixel intensity at (x,y). These four 
detectors respond strongly to local edges and a local 
discontinuity measure can be defined as follows: 
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As the local discontinuity evaluates the local gradients it 
is sensitive to image noise. Unfortunately, the MR 
images reveal a high level of noise and as a result the 
local discontinuity is not efficient in distinguishing the 
true local discontinuities from noise. Thus, the local 
discontinuity has to be augmented with a contextual 
discontinuity, which evaluates the attributes of the 
neighboring pixels.  

In this implementation the contextual discontinuities are 
measured by the local variance that is measured in a 
predefined neighborhood (see Eq. 3).  
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where σ2
xy is the measured variance, µR is the mean 

intensity value computed in the square neighborhood R.  

The adopted smoothing strategy uses both local and 
contextual discontinuities and for each pixel its intensity 
value is iteratively updated with the nonlinear 
transformation illustrated in Eq. (4).  
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In Eqs. 4 to 6 the parameter t defines the iteration and 
the transformation illustrated in Eq. 4 updates the 
intensity values of each pixel using two weighting 
parameters (η and γ) which measure non-linearly the 
contextual and local discontinuities.  The variables S 
and α are important as they determine to what extent the 
local and contextual discontinuities should be preserved 
during the smoothing operation.  

In our implementation we set these parameters to the 
following values S = 10, α=10, θσ =0.2, window size R 
=2, and the algorithm is run for 2 iterations.  



 
 

Fig 1 illustrates the performance of the adaptive 
smoothing operation. Note that the smoothing operation 
did not affect the edge localization. 
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Fig. 1. Adaptive smoothing operation. (a) Input image.  
(b) Filtered image. 

 

B. Clustering and Image Refinements 

The second step involves the application of 
unsupervised clustering [3] on the image obtained from 
the first step. For this implementation we have used an 
agglomerative clustering technique [1] where the 
parameters for inter-cluster variation are set to 0.8 for 
lower threshold and 1.2 for higher threshold. The 
number of resulting clusters is dependent on the 
complexity of the input image. To extract the data 
clusters associated with body fat tissues we applied a 
threshold operation where the threshold value is set to 
120. As some input images (especially those from the 
beginning and the end of the sequence) show areas 
where the noise signal is amplified (see Fig. 2) we have 
to eliminate the small areas defined by bright pixels. It 
should be noted that some of these pixels have been 
removed by the pre-processing scheme (see for example 
Fig. 3b). 

 
Experimentation indicated that the image bright areas 
derived from fat tissues will consist of more than 20 
pixels. Thus we have eliminated regions with fewer than 
20 pixels by applying a label by area operation. The 
algorithm evaluates each labeled image starting with the 

smallest label and those that have less than 20 pixels are 
eliminated. 
 

 
 

Fig. 2. Input image showing large image areas defined by 
noise. 

 
The image resulting from the second step is subjected to 
the application of image refinements as some other 
tissues (e.g. brain and liver) are misclassified as body 
fat. For this purpose the following strategy has been 
employed. Each image pixel (resulting from step 2) that 
has been classified as fat (marked in white) is evaluated 
in its 3x3 neighborhood and the pixels that have a 
grayscale value larger than 150 are counted. If inside 
this 3x3 neighborhood more than half of the total 
number of pixels have values larger than 150 then the 
pixel is deemed to have been correctly classified. 
Otherwise the pixel is considered to have been 
misclassified and it is reclassified as background. This 
strategy is the 2D version of that described in [4]. The 
aim of this algorithmic scheme is to eliminate significant 
misclassified areas. 
 

The next step is applied to improve the segmentation by 
reclassifying the pixels adjacent to segmented areas. For 
this strategy we employed a region growing technique 
which is based on the morphological dilation operation 
[9]. This algorithm has two inputs, namely the original 
image and the segmentation result obtained after the 
previous step is completed.  The segmented image is in 
binary form where the fat tissues are marked in white 
while the rest of the tissues are background. The 
algorithm dilates the binary image with a 3x3 square 
structuring element and the dilated pixels are 
reclassified as fat tissue only if their grayscale values are 
above a threshold value that has been experimentally set 
to 130. This strategy is iteratively applied until no pixels 
are reclassified. The aim of this operation was to fill the 
gaps in the segmented structure and close the boundary 
discontinuities. 



 
 

III. EXPERIMENTS AND RESULTS 

The algorithm described in Section 2 has been 
implemented using the NeatVision 2.0 Java graphical 
development environment [6]. The segmented data is a 
binary volume where the voxels defined by fat tissues 
are marked in white while the background is marked 
with black.  
 
The calculation of the total body fat (TBF) involves the 
formula shown in Eq. 8. 
 

DensityFatDimVoxelNTBF FatVoxels __ ∗∗=     (8) 

 
where NFatVoxels is the total number of fat voxels 
contained in the dataset, Voxel_Dim is the voxel 
dimension (in cm3), and Fat_Density is the density of 
the fat tissue. The voxel dimension can be extracted 
from the DICOM header and the datasets used in our 
study have a dimension of  2.02 × 2.02 × 8 [mm3]. The 
medical literature indicates that the fat tissue density is 
constant [7] and it has a value of 0.918 [g/cm3]. The 
number of fat voxels is determined by counting the 
white voxels contained in the segmented data. We 
normalized these values in order to yield the total body 
fat in kilograms.  
 

A database of 19 datasets (9 males and 10 females) was 
used to assess the validity of the proposed segmentation 
algorithm. The body mass index (BMI) values of these 
datasets range from 19 to 32.  The BMI is a measure 
commonly used to assess people’s level of fitness in 
terms of anthropometric measurements. BMI values are 
classified into 4 categories which are listed in Table 1. 
 

TABLE 1. 
BMI CATEGORIES. 

BMI Category 
<18.5 Underweight 

18.5-24.9 Normal weight 
25-29.9 Overweight 

>30 Obese 
 

A visual examination of the datasets used in this study 
shows a large variation in the grayscale values between 
similar tissues within the same dataset and from dataset 
to dataset. A significant level of noise has also been 
noticed in image areas with a low contrast.  As a result 
we devised a three-component segmentation algorithm 
to identify the fat tissues as described in the Section II. 
Figures 3 to 5 depict the segmentation results that were 
achieved after the algorithm was applied to three 
representative data sets. 
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                              (a)                                            (b)                                            (c)                                            (d) 
 

Fig. 3. Experimental data –dataset 1 (slice 4). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering. 
 (d) Image resulting after image refinements is applied.�
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                      (a)                                                (b)                                              (c)                                                (d) 
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Fig. 4. Experimental data –dataset 2 (slice 26). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering. 
 (d) Image resulting after image refinements is applied. 
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                       (a)                                               (b)                                               (c)                                                 (d) 
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Fig. 5. Experimental data –dataset 3 (slice 17). (a) Input image. (b) Pre-processed image. (c) Image resulting after clustering. 
 (d) Image resulting after image refinements is applied.



 
 

The segmentation results illustrated above indicate the 
performance of the devised algorithm. The segmentation 
results for datasets 1 and 3 demonstrate precise fat tissue 
segmentation. The results obtained for dataset 2 indicate 
small errors where a part of the liver has been classified 
as fat tissue. These errors are due to the fact that these 
tissues have a higher grayscale value than that of most 
fat tissues in the dataset.    
 
The overall performance of this algorithm has been 
evaluated on 19 datasets and the results obtained are 
very encouraging. The algorithm proved to be robust to 
a high level of image noise and the threshold parameters 
required by the clustering algorithm and the threshold 
operations did not need to be readjusted. 
 
As illustrated in these results we have demonstrated that 
the process of segmenting the body fat is not a trivial 
one. However we have shown that identification of body 
fat tissues in MR data is an achievable goal and 
currently we intend to test the segmentation algorithm 
on more datasets and have its performance evaluated by 
a medical practitioner. 
 

IV. CONCLUSIONS 

This paper described the development of a robust 
segmentation technique for detection of the body fat 
tissues in a sequence of MR multi-slice images. The 
devised algorithm consists of three main components.  

The first component performs image de-noising, the 
second clusters the image data while the third improves 
the initial segmentation result by applying image 
refinements.  

The developed algorithm proved to be robust in the 
presence of severe grayscale variation within the image 
regions representing fat tissue and against the noise 
introduced in the MR imaging process.  
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