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Abstract

It is the aim of this work to contribute to the development of model-order re-
duction (MOR) techniques for the field of computational electromagnetics in
relation to the electric field integral equation (EFIE) formulation. The ultimate
goal is to enable a fast-sweep analysis.

In a fast-sweep problem, some parameter on which the original problem de-
pends is varying and the problem must be solved as the parameter changes over
a desired parameter range. The complexity of the original model prohibits its di-
rect use in simulation to compute the results at every required point. However,
one can use MOR techniques to generate reduced-order models (ROMs), which
can be rapidly solved to characterise the
parameter-dependent behaviour of the system over the entire parameter range.

This thesis focus is to implement robust, fast and accurate MOR techniques
with strict error controls, for application with varying parameters, using the
EFIE formulations. While these formulations result in matrices that are signif-
icantly smaller relative to differential equation-based formulations, the matri-
ces resulting from discretising integral equations are very dense. Consequently,
EFIEs pose a difficult proposition in the generation of low-order accurate reduced-
order models.

The MOR techniques presented in this thesis are based on the theory of
Krylov projections. They are widely accepted as being the most flexible and
computationally efficient approaches in the generation of ROMs. There are three
main contributions attributed to this work.

• The formulation of an approximate extension of the Arnoldi algorithm to
produce a ROM for an inhomogeneous contrast-sweep and source-sweep
analysis.

• Investigation of the application of the Well-Conditioned Asymptotic Wave-
form Evaluation (WCAWE) technique to problems in which the system
matrix has a nonlinear parameter dependence for EFIE formulations.

• The development of a fast full-wave frequency sweep analysis using the
WCAWE technique for materials with frequency-dependent dielectric prop-
erties.
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“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.”

Samuel Beckett
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Chapter 1

Introduction

“God runs electromagnetics by wave theory on Monday, Wednesday, and Friday, and the
Devil runs them by quantum theory on Tuesday, Thursday, and Saturday. ”

Sir William Bragg

Electromagnetics has been at the forefront of technological innovations dur-

ing the 20th and in the 21st century. Thus, much effort has been invested in

developing tools for electromagnetic (EM) analysis.

The list of factors that engineers and manufacturers must consider during

the design of new systems has expanded rapidly. Therefore, there is a growing

need for efficient and accurate computational electromagnetic (CEM) analysis

tools to aid engineers during the design process. CEM applications of particu-

lar interest are EM scattering problems, which arise in several areas of research

including radar cross-section computation [1–3], inverse scattering [4–6], and

medical imaging [7, 8]. These all require CEM analysis to understand the inter-

action of EM fields and waves with arbitrary structures. This is achieved by EM

wave scattering solvers generating models that characterise the current induced

when a source EM wave interacts with a scattering structure. From the induced

currents, other scattering qualities of interest can then be computed.

Modelling and simulation play a decisive role in the design and solution

of CEM problems. After the relevant physical laws have been formulated into

finite linear equations that a computer can solve, modelling of the behaviour of

the system is possible in various scenarios. In this simulation phase, one tries to

predict the behaviour of the system and, if any shortcomings are foreseen, the

design can be changed accordingly.

Obviously, any speed-up in the simulation phase of the design and solution

to EM problems is beneficial. One approach is to use a smaller model to describe

the CEM problem, which results in reduced simulation times. Smaller models
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are models that describe the behaviour of a system accurately, without the dis-

advantage of unnecessary detail. This enables the simulation of complex CEM

problems in a reasonable time. These models should be smaller than the original

models and their behaviour should be comparable to the behavior of the origi-

nal model. The use of smaller models is in some configurations inevitable due

to the size of the original models. This is the case for very complex geometries

at high frequencies where a very fine discretisation is required. To model the

EM fields accurately, the size of the discretisation cells must be small compared

to the wavelength; approximately no larger than λ/10 (where λ denotes wave-

length in the dielectric material) [9]. Also, in cases where a very detailed current

distribution across the object is not of interest, a smaller model may capture ad-

equate information for the early stages of a design process.

Another main reason for using MOR is to enable a fast-sweep capability. In

a fast-sweep problem, some parameter on which the original problem depends

is variable and the problem must be solved as the parameter changes over a

desired parameter range. However, the complexity of the original model is such

that its computation for every parameter value would be prohibitive.

A very fine resolution may be required in order to reduce the risk of fail-

ing to capture a region that produces rapidly varying fields. Therefore, one can

use MOR techniques to generate ROMs which can be rapidly solved to charac-

terise the parameter-dependent behaviour of the system over the entire parame-

ter range. When MOR is applied, it is essential that the dominant characteristic

of the original system, with respect to the varying parameter, is captured in the

ROM so that the approximation is accurate. In addition, since the ROM has

fewer unknowns than the original system, it is more computationally efficient

to solve the ROM for many different values of the varying parameter than to

solve the original system over the entire parameter range. Two fast-sweep prob-

lems in electromagnetism that will be investigated in this thesis are contrast-and

frequency-sweep problems.

Contrast-sweep problems are associated with scattering analysis where the

material properties such as the permittivity, permeability and conductivity are

varied over a range, to produce the scattered fields. There has been very limited

research in the field of fast contrast-sweep problems. Much of the research has

been restricted to the solution of inverse problems through the direct simulation

of the forward problem [6]. This requires the repeated solution of full-scattering

problems for the total fields at each step in contrast. Recently published work

by [4, 5] circumvented this particular computational problem by using Krylov

subspace methods to produce a ROM for a homogeneous structure. This is an

2



object which has an uniform material properties throughout its structure. Con-

versely inhomogeneous objects consist of materials that are not of the same kind.

In this work, an approximate extension that accounts for wave scattering from

an inhomogeneous object using a two-dimensional volume integral formulation

is presented. The approximation is shown to be exact in the limit as the level of

reduction approaches zero.

The second application considered is frequency-sweep analysis, which is a

very popular area of research with numerous applications. In many areas such

as radar applications, it is necessary to determine the fields scattered from an ob-

ject over a wide-frequency band. Since the system is frequency-dependent, this

produces a nonlinear parameter dependence and precludes the use of several

standard linear MOR techniques.

In this work, a new MOR technique produced by Slone [10, 11] called Well-

Conditioned Asymptotic Waveform Evaluation (WCAWE) is examined. In par-

ticular, its application to fast-frequency analysis for the EFIE formulation is in-

vestigated. Additionally. this approach is extended to account for the frequency

dependence of dielectric properties in a fast-frequency analysis. This is of partic-

ular importance, as frequency-dependent dielectric variations occur in all mate-

rials and no research to date has treated this variation in a frequency sweep

analysis using MOR.

There are a wide variety of mathematical processes to derive ROMs which

form the field of MOR. These techniques try to capture the essential features of a

system. This means that, after a small number of iterations in a MOR procedure,

the most important information of the original model must be captured in the

ROM. A MOR procedure should

• produce a robust low-order ROM

• be able to be generated and implemented in an efficient manner

• achieve an accurate approximation

• have automatic error controls

In the past decade, MOR techniques have been at the foreground of research

to reduce the computational complexity associated with numerical electromag-

netic simulations. The fundamental methods in the area of MOR were published

in the 1980s and 1990s. However, the basis for many of today’s MOR techniques

is rooted in the Arnoldi [12] and Lanczos [13] algorithms first developed back

in the 1950s. These techniques were used to reduce a matrix to Hessenberg and

tridiagonal form, respectively. The techniques were not applied to produce a
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ROM until the mid-1990s. Methods based on Truncated Balance Realisation

(TBR) [14] and Proper Orthogonal Decomposition (POD) [15] were proposed

in 1981 and 1987 respectively, as a means to produce ROMs.

TBR [16] is a method developed in the area of system and control theory

and is applied to ordinary differential equation sets (ODEs). The TBR method

calculates the largest singular values of a system and uses a similarity transform

to achieve a ROM. POD [15] was developed within the area of computation

fluid dynamics and is applied to nonlinear partial differential equations (PDEs).

These methods use the time response outputs of a system to certain inputs as

a means to build an orthogonal basis onto which the system may be projected.

These projections are subsequently used to create the ROM.

In 1989, Model-Based Parameter Estimation (MBPE) [17] was introduced.

It [18–20] is primarily used in conjunction with the method of moments (MoM).

This method creates a ROM by matching a rational polynomial to data available

from the MoM. A model is interpolated between, or extrapolated from, samples

of this data. The major drawback of this technique is that the sampling points

and interpolation order are not known a priori. Therefore the procedure is not

automated and essentially requires running several simulations before choosing

the best ROM.

The following year, the first methods based on the Asymptotic Waveform

Evaluation (AWE) [21] were published. The focus of this method was the ex-

plicit computation of moments which are then converted into a Padé approxi-

mation. AWE was introduced to perform MOR on circuit analysis problems by

matching moments in a Taylor series for the system transfer function. However,

the use of this expansion is limited to the radius of convergence of the Taylor

series. In such cases, the rational function approach is used to improve the accu-

racy of the numerical solution. The Padé representations have a larger radius of

convergence and therefore can provide a broader extrapolation as they include

poles as well as zeros in the response and as such can match the resonant be-

haviour far better than a truncated power series [1, 22–24]. This technique was

later used for fast-frequency sweep analysis using electric field integral equa-

tions in [1]. However, it has been well documented [22,23] that the AWE process

of sequentially evaluating moments is inherently ill-conditioned, which results

in limited bandwidth. Then, in 1994, techniques based on the Lanczos process

were introduced. The proposed Padé via Lanczos (PVL) [25] method developed

the relation between the Padé approximation and the Krylov subspaces without

explicitly forming the ill-conditioned moments. In 1995, another Krylov-based

method, the Projection via Arnoldi (PVA) [26] method based on the Arnoldi
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methods of the early 1950s, was introduced. These techniques were initially

applied to circuit analysis but later were adopted for use in computational elec-

tromagnetics [4, 27]. However, PVL and PVA suffer from an inherent limitation

which requires the original model to be a linear function of the ROM varying

parameter.

In more recent years, much research has been done in the area of MOR.

Many of these new techniques are tailored to specific applications and formu-

lations while others are more general. The use of Krylov subspace techniques

is widely accepted as being the most flexible and computationally efficient ap-

proach to MOR and has been widely used in various formulations and applica-

tions. Since the essential features of the original system are captured at the early

stage of the iteration, Krylov subspace algorithms can produce very accurate

low-order models. One such avenue of research is the work in [10,11] which has

developed the Well-Conditioned Asymptotic Waveform Evaluation (WCAWE)

method which circumvents the ill-condition properties of the moment matching

sequence. This is achieved by deriving an AWE-Arnoldi based hybrid algorithm

which builds an orthogonalised Krylov subspace that can still match moments.

WCAWE, unlike AWE, does not suffer degradation in the moment matching

power with increasing order. In addition, it does not require the original model

to be a linear function of the ROM varying parameter.

For nonlinear systems, where the dependence on the MOR parameter is non-

linear, much of the recent research has centred on either linearising the prob-

lem and then using a linear Krylov-based technique such as the PVA or other-

wise directly using an AWE variant. Although various linearisation techniques

have been successfully implemented in Finite Element Method (FEM) simula-

tions and subsequently reduced using the PVA algorithm [11,28], it has been the

experience of this author that this approach has several deficiencies. (These nu-

merical issues will be discussed in the next section.) Therefore, in this thesis, the

WCAWE techniques will be used as the primary MOR approach to nonlinear de-

pendence. This technique has been shown to be a stable and robust method for

finite element simulations. It is one of the objectives of this thesis to apply and

extend the WCAWE technique to various EFIE formulations and applications

for nonlinear MOR parameters.

Although much work has been done in the area of MOR, application of

these techniques to the EFIE formulation of EM wave scattering problems has

been limited. Integral equations (IEs) can be solved by the Method of Moments

(MoM) [9, 29], in which the unknown field function is expanded in a set of ex-

pansion or testing functions. The dot product of both sides of the integral equa-
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tion with a set of testing functions is subsequently achieved, and the results are

integrated over the object domain. This leads to a system of linear algebraic

equations that can be solved using direct discrete numerical solution methods

such as Gaussian Elimination (GE) [9, 30] or suitable iterative techniques such

as Conjugate Gradient (CG) methods [9, 30]. While these formulations result

in matrices that are significantly smaller relative to differential equation-based

formulations, the matrices resulting from discretising IEs are dense.

Additionally several other approaches can be used in conjunction with MOR

to reduce the computational expense of solving complicated systems over a de-

sired parameter range. To permit simulation, IE-based tools accelerate computa-

tions by using iterative methods [30, 31] to solve the system in conjunction with

sparsification algorithms. Sparsification techniques, such as the precorrected

fast Fourier transform (PFFT) [32,33] and fast multipole method (FMM) [34] ap-

proximate the discretised model of the original system when computing matrix-

vector products. These methods can reduce the number of operations required

by a matrix-vector product from O (
m2

)
to almost O (m) [28, 35]. For systems

with Toeplitz matrices (each descending diagonal from left to right is constant),

the Conjugate Gradient Fast Fourier Transform (CG-FFT) implementation is very

effective and can reduce the matrix-vector product toO (m log m) operations [34].

By orchestrating different approaches such as sparsification techniques, iterative

methods, preconditioning [9,31,36], and parallelisation [37–39], extremely large-

scale scattering problems in the order of millions of unknowns can be rapidly

solved [40].

Alternatively, using higher-order MoM techniques can achieve well-conditioned

system matrices of reduced-order which can significantly reduce computational

expense. These higher-order MoM schemes comprise higher-order basis func-

tions and an accurate representation of the structure by higher-order curvilin-

ear elements [9, 41, 42]. Recently, this approach has been successfully used for

an accelerated computation of the response of microwave circuits over a wide-

frequency band [43].

We conclude this section with summaries of the material in each of the re-

maining chapters.

The next chapter provides the context necessary to understand the algo-

rithms presented in the following chapters. Specifically, traditional MOR tech-

niques such as Krylov subspace iteration and Asymptotic Waveform Evaluation

are introduced.

Chapter 3 traces the development from the appropriate Maxwell’s laws into

EFIE formulations.
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Chapter 4 introduces the Arnoldi algorithm and then outlines how to gen-

erate ROMs for use with contrast sweep problems. An approximate extension

of this algorithm to produce a ROM for inhomogeneous contrast-sweep analy-

sis is formulated. This approximation is shown to be exact in the limit as the

level of reduction approaches zero. A ROM for source sweep problems is also

developed using the Arnoldi algorithm where for a fixed contrast profile the lo-

cation of the source is varied. Other topics, including automatic error control,

re-orthogonalisation, and Spectral Transformations, are also discussed.

Chapter 5 is dedicated to the application of the WCAWE algorithm for use

with the volume and surface EFIE in a fast-frequency sweep analysis. A mul-

tipoint automatic WCAWE method is also demonstrated which can produce an

accurate solution over a much broader bandwidth. Several numerical examples

are given which illustrate the accuracy and robustness of the proposed methods.

Chapter 6 extends MOR to account for frequency-dependent dielectric prop-

erties in a fast-frequency analysis using the WCAWE. In particular, the variation

in the dielectric properties of the ceramic BaxLa4Ti2+xO12+3x in the sub 1 GHz

frequency range is investigated for various values of x in a frequency sweep

analysis.

Some concluding remarks and a summary of this research are presented in

the final Chapter 7.

1.1 Contribution

It is the aim of this work to contribute to the development of model-order re-

duction (MOR) techniques suitable for use for fast-sweep analysis of EM wave

scattering problems in relation to EFIEs. The main contributions of this thesis

are described in Chapters 4, 5 and 6 and can be summarised as follows:

• The formulation of an approximate extension of the Arnoldi algorithm to

produce a ROM for an inhomogeneous contrast and source sweep analy-

sis.

• The application of the WCAWE technique to achieve a fast-frequency sweep

analysis for electric field integral equation applications.

• The development of a fast full-wave frequency sweep analysis using the

WCAWE technique for materials with frequency-dependent dielectric prop-

erties.
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1.2 Notation

Bold capital and bold lower-case letters denote matrices and vectors, respec-

tively, while lower-case italics denote scalars. The transpose of a vector x is

denoted by xT , and xH denotes the conjugate transpose. The Euclidean norms

are denoted by ‖ · ‖2 while the range of a matrix A is denoted by R (A). For the

sake of clarity the subscript Um×q will be used to explicitly indicate the size of

the relevant matrix/vector. This notation will be used only when the relevant

matrix/vector is first introduced and the short hand Uq will be used thereafter.

This is required due to the adaptive nature of the algorithm being used in this

thesis, where the size of a matrix/vector is directly determined by the number

of iteration taken. In this example since m is fixed and q is adaptive, this short

hand is appropriate. For the case of fixed size matrices/vectors this notation

will not be adopted.
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Chapter 2

Model-Order Reduction

“The question is not what you look at, but what you see”

Henry David Thoreau

This chapter provides the background material necessary to understand the

algorithms presented in the following chapters. Specifically, it introduces tradi-

tional model-order reduction techniques such as Krylov subspace iteration and

Asymptotic Waveform Evaluation. Finally, a review is given of the framework

of how these methods can generate reduced-order models for linear and nonlin-

ear parameter dependence.

2.1 Mathematical statement of model-order reduction problem

In computational modelling of electromagnetic fields for practical applications,

typically a large system of linear equations must be solved. This system origi-

nates from the discretised integral equation. In formal notation, such a system

can be written as

Zx = b (2.1)

where Z is an m×m matrix containing coupling information between the basis

functions, b is a vector of size m containing information about the incident field

while x represent the unknown amplitudes of the m basis functions. We are

interested in the situation where this problem must be solved for a large num-

ber of sampled values of some parameter. MOR is a technique for generating

a ROM of size q, which retains parameter dependencies of the original system

across a desired parameter range as well as certain properties of the original

model. One can readily compute an accurate approximation to desired scatter-

ing quantities, which characterise the original system, from the unknown fields
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yielded by solving the ROM at a given parameter point. Since a smaller system

of equations can be solved more rapidly than the original system of equations,

an accurate approximation to the behaviour of the original system across the

desired parameter range can be quickly computed by solving the ROM at each

point in a parameter range.

2.2 Krylov subspace iteration

In this section, projection methods using Krylov subspaces are considered. Krylov

subspace algorithms exploit projection processes in order to extract approxi-

mate solutions from a specified low-dimensional subspace. Certain conditions

are required in order to be able to extract these approximations; however, once

constrained, a reduced-order matrix problem can be obtained. Krylov methods

have their origins in eigenvalue computation and in particular, in eigenvalue

estimations. This will be the premise for how the Krylov techniques described

in this section obtain accurate low-order approximations. To start this analysis,

the rationale for using Krylov subspace methods is described. A review of how

to extract information about a matrix via matrix-vector multiplication and the

numerical problems associated with such routines will be useful in illustrating

the reason why Krylov techniques are used. To extract an approximation to Z

requires the iterative computation of the sequence of matrix-vector products

K = [b,Zb, · · · ,Zm−1b] (2.2)

where K is an m × m matrix. This sequence is inherently ill-conditioned. In

a direct implementation, finite precision arithmetic causes each newly created

vector to converge towards the eigenvector that is associated with the domi-

nant eigenvalue of Z. As a result, each new vector will contain only information

corresponding to one eigenvalue of Z. Assuming K is nonsingular and not or-

thogonal then

ZK = KK−1ZK = KC = K




0 0 · · · −c1

1 0 · · · −c2

0 1 · · · ...
... · · · 1 −cm




(2.3)

where C is an m ×m companion matrix [36, 44]. Z has now been reduced to a

simpler form, and the eigenvalues of Z can now be found easily by finding the

zeros of the characteristic polynomial of C [36, 44]
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p (x) = xm +
m∑

i=1

cix
i−1 (2.4)

This simpler form is not useful in practice as K is in many cases very ill-conditioned,

resulting in an inaccurate computation. This is due to the fact that the space

formed in Equation 2.2 is created by a power series method [44]. As such, the

columns of K will converge to an eigenvector corresponding to the largest eigen-

value of Z [36,44,45]. Thus, the columns of K will lose linear independence (see

Appendix A) and each newly formed column of K will not add any useful in-

formation to the approximation. From this analysis it is clear that, to achieve an

accurate approximation, the columns of K must be linearly independent. The

space spanned by the columns is called a Krylov subspace,

K (Z,u1) = span{u1,Zu1, . . . ,Zm−1u1} (2.5)

span{u1, . . . ,um} = span{u1,Zu1, · · · ,Zm−1u1} (2.6)

where um is the mth column of the m×m orthonormal matrix U. In what follows

K will be replaced with an orthonormal matrix U such that for all m, the leading

m columns of K and U span the same space. Since each column of the U matrix

is formed to be orthonormal to all the previous ones, the columns are linearly in-

dependent. Due to its structure, the U matrix is subsequently well-conditioned

and easy to invert. Furthermore, the sequence of vector-matrix multiplications

in Equation 2.5 does not have the same numerical instability issues as Equa-

tion 2.2. However, as with all explicit vector-matrix multiplications, round-off

error will exist which will result in loss of orthogonality amongst the columns

of the U matrix. This is rectified by the introduction of a re-orthogonalisation

process in the Krylov iteration which will be discussed in detail in Chapter 4.

In the context of MOR, it should be noted that only the leading columns of

U that will obtain an accurate approximation are produced in a Krylov routine

(This will be discussed in greater detail later in this section). This means a ROM

can be created which is an accurate approximation to the original model.

In order to show how Z can be approximated by using an orthonormal ma-

trix U, a QR decomposition of K [44] is applied. From Equation 2.3
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C = K−1ZK

= R−1QHZQR
(
Q−1 = QH

)

= R−1UHZUR U ≡ Q (2.7)

implying

UHZU = RCR−1 = H. (2.8)

If Z is nonsymmetric, then H is a m×m upper Hessenberg matrix. On the other

hand if Z is symmetric, then it is tridiagonal [44]. This procedure will be used in

Chapter 4 to produce a ROM by using the orthogonal transformation matrix U

to reduce the Z matrix to upper Hessenberg form.
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2.3 Residual minimising methods

After q steps of a Krylov process have been preformed, a m × q orthonormal

matrix Um×q and the corresponding upper Hessenberg matrix Hq×q will have

been obtained. As stated earlier this notation is used due to the adaptive nature

of the algorithm being used in this thesis. This notation will be used only when

the relevant matrix/vector is first introduced and the short hand Uq and Hq will

be used thereafter.

How can these matrixes be used to produce a reduced order approximation?

A Krylov subspace based technique extracts an approximate solution of dimen-

sion q from the subspace Km×q. In order to achieve an accurate approximation,

the solution is chosen from Kq so that q constraints are satisfied. Typically, the

constraints require that the residual is orthogonal to subspaceKq. This subspace

can be represented by an orthonormal matrix Uq whose columns form a basis

for the subspaceKq. This orthonormal matrix is then used to project the original

system onto the subspace Kq. This projection is known as an orthogonal simi-

larity transformation (see Appendix A) which produces the ROM. Creation of a

reduced-order model via projection will be addressed in greater detail in Chap-

ter 4. In this section a review of how an optimum approximation is extracted

from the Krylov subspace Kq is undertaken.

For the linear system in Equation 2.1, the Krylov space technique generates

an approximate solution xq to x the m× 1 vector and corresponding residuals

rq = b− Zxq (2.9)

so that xq ∈ Kq and xq approximates x in q steps [31, 44, 46, 47].

In order to extract an approximation from the Uq and Hq matrices, certain

constraints have to be imposed to ensure a unique solution. To this end Galerkin

conditions are imposed on the residual vector.

Because xq ∈ Kq, xq can be expressed as a linear combination of the columns

of Uq with coefficient vectors aq×1 [31, 44, 47]. As such, an approximation to x

can be made in terms of these q basis vectors of the form

xq =
q∑

n=1

unαn = Uqaq (2.10)

where a = [α1, α2, . . . , αq]H . To find the optimal approximate solution, there

are several approaches to constraining xq, resulting in different Krylov-based

algorithms [44]. A typical way to impose these constraints is to ensure that xq

minimises the 2-norm of the residual ‖rq‖2: this can be achieved by imposing
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q independent orthogonality conditions [44]. Specifically, the residual vector is

constrained to be orthogonal to the q linearly independent vectors un. This is

known as the orthogonal residual property, or a Galerkin condition [44]

rq ⊥ Kq UH
q rq = 0. (2.11)

The orthogonality relation imposed on the residual is illustrated in Figure 2.1.

It is clear from this figure that the residual rq is minimised when the residual is

orthogonal to the space Kq. This is confirmed in the following Theorem [44]

Theorem 2.3.1. Let Z be symmetric, Hq = UH
q ZUq and rq = b − Zxq, where

xq ∈ Kq. If Hq is nonsingular and xq = UqH−1
q e1‖b‖2, where eq = [1, 0, . . . , 0]T ,

then UH
q rq = 0.

Proof. Let aq = H−1
q eq‖b‖2, xq = UqH−1

q eq‖b‖2 ≡ Z−1b (because the first

column of Uq is b/‖b‖2 and its other columns are orthogonal to b therefore

Uqb = eq‖b‖2), rq = b−Zxq and we assume that Hq = UH
q ZUq is nonsingular.

We confirm that UH
q rq = 0 by computing

UH
q rq = UH

q (b− Zxq) = UH
q b−UH

q Zxq

= eq‖b‖2 −UH
q Z

(
UqH−1

q eq‖b‖2

)

= eq‖b‖2 −
(
UH

q ZUq

)
H−1

q eq‖b‖2

= eq‖b‖2 − (Hq)H−1
q eq‖b‖2

= 0. (2.12)
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Figure 2.1: Galerkin condition
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2.4 Review of Asymptotic Waveform Evaluation via Padé approxima-
tion

For nonlinear systems where the dependence on the MOR parameter is nonlin-

ear

Z (k)x (k) = b (k) (2.13)

much of the recent research has centred on either linearising the problem and

then using linear Krylov-based techniques such as the PVA, or directly using

an AWE variant. In Equation 2.13, the Z matrix and the vectors x,b are clearly

dependent on frequency, where k is the free-space wave number. In this work,

a new MOR technique produced in [10,11] called the Well-Conditioned Asymp-

totic Waveform Evaluation (WCAWE) and its application to the fast-frequency

analysis of the EFIE formulation is investigated. In order to understand this

algorithm, the basis of the AWE process and its limitations will be reviewed.

The AWE is a method that extracts information about the system behav-

iour over a wide frequency range from the solution at one or several frequency

points [1, 22–24]. This is possible because coefficients of the matrix equation,

describing the system behaviour, are known functions of frequency. The AWE

method approximates the frequency response at wave number kb by expanding

x (k) into a Taylor series around kb

x (k) =
q∑

n=0

mnβn. (2.14)

Where mn are the moments of x (k), k is the wave number, q is the order of the

Taylor series expansion and β = (k − kb), where kb is the wave number at the ex-

pansion frequency. By substituting Equation 2.14 into Equation 2.13, expanding

the impedance matrix Z (k) and the excitation vector b (k) into a Taylor series,

Equation 2.13 can be re-written as

q∑

n=0

(
Z[n]βn

) q∑

n=0

mnβn =
q∑

n=0

(
b[n]βn

)
. (2.15)

Vector b[q] (kb) denotes the qth derivative with respect to k of b (k) evaluated at

kb divided by q!. Similarly Z[q] (kb) denotes the qth derivative of Z (k) evaluated

at kb divided by q!. For the sake of clarity, Z[q] (kb) and b[q] (kb) and will be

denoted by Z[q] and b[q].

Finally, equating the coefficients of equal powers of β on both sides of Equa-

tion 2.15 yields the moments of Equation 2.14
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w1 = Z−1 (kb)b (kb)

w2 = Z−1 (kb)
[
b[1] (kb)− Z[1] (kb)w1

]

w3 = Z−1 (kb)
[
b[2] (kb)− Z[1] (kb)w2 − Z[2] (kb)w1

]

...

wq = Z−1 (kb)

[
b[q−1] (kb)−

q−1∑

n=1

Z[n] (kb)wq−n

]
. (2.16)

From the above recursive relation, the moment vectors m in Equation 2.14 are

given by

mn = wn+1 for 0 ≤ n ≤ q − 1. (2.17)

Once the moment vectors are obtained, the value of x (k) at other frequencies

can be calculated using Equation 2.14. However, the use of this expansion is

limited to the radius of convergence of the Taylor series. In such cases, the ratio-

nal function approach is used to improve the accuracy of the numerical solution.

The Padé representations have a larger radius of convergence and therefore can

provide a broader extrapolation as they include poles as well as zeros in the re-

sponse and as such can match the resonant behaviour far better than a truncated

power series [1, 22–24]. Typically c is used for the number of zeros and f is the

number of poles in the rational function. The aforementioned Padé approxima-

tions are given by

x (k) =
q∑

n=0

mnβn =
c+f+1∑

n=0

mnβn =

c∑
i=0

diβ
i

1 +
f∑

j=1
ejβj

. (2.18)

Matching the coefficients of equal powers of βc+1, · · · , βc+f leads to a matrix

equation containing the Padé coefficient matrix Pf×f , which allows for the so-

lution of ej to be obtained [22].

Pf




e1

e2

e3

...

ef




= −




mc+1

mc+2

mc+3

...

mc+f




(2.19)
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where

Pf =




mc mc−1 mc−2 · · · mc−f+1

mc+1 mc mc−1 · · · mc−f+2

mc+2 mc+1 mc · · · mc−f+3

...
...

...
. . .

...

mc+f−1 mc+f−2 mc+f−3 · · · mc




. (2.20)

Having found the ej , the unknown coefficients di can be calculated as:

d0 = m0

d1 = m1 + e1m0

d2 = m2 + e1m1 + e2m0

...

di = mi +
i∑

j=1

ejmi−j . (2.21)

Equation 2.19 and 2.21 are repeatedly solved for each element di and ej of the

di and ej vectors. After the Padé approximations have been formed, the solu-

tion at each frequency is found using Equation 2.18. Unfortunately, although

the solution of Equation 2.19 requires solving a relatively small matrix problem,

the Padé coefficient matrix Pf is poorly conditioned, reducing the accuracy of

the final solution. Various solutions are presented in the following sections to

circumvent the numerical sensitivity in the AWE process.

2.4.1 Numerical sensitivity

The AWE moment matching subspace, Wm×q, generated from the recursive

Equation 2.16, is given by

Wq = {w1,w2, . . . ,wq}. (2.22)

It has been well documented [22,23,27] that the process of sequentially evaluat-

ing wq is inherently ill-conditioned, leading to instability in the computation of

the Padé approximation. In a direct implementation, finite precision arithmetic

causes each newly created moment vector wq to converge towards the eigenvec-

tor that is associated with the dominant eigenvalue of Z. As a result, the mo-

ments wq contain only information corresponding to one eigenvalue of Z. As
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a consequence, the coefficient matrix Pf becomes rapidly ill-conditioned. Sub-

sequently, the solution of Equation 2.19 becomes unattainable, thus restricting

its use to approximations of relatively low order, typically for values of q < 20.

Indeed, typically one can expect the process to start to stagnate for values of

q > 10.

The above observation is confirmed by analysing the condition number of

the coefficient matrix Pf of Equation 2.19, cond(Pf ). The condition number is

a measure of the extent to which round-off error affects the accuracy of the nu-

merically computed solution of Equation 2.19. It has been shown in [25] that an

increase of cond(Pf ) by a factor of 10 signals the loss of one decimal digit of accu-

racy in the computed solution. In particular, if double-precision with 16 decimal

digits is used, then the computed solution must be expected to be meaningless

if cond(Pf ) > O (
1016

)
. In Table 2.1, a list of the cond(Pf ) for the Padé coeffi-

cient matrix for the simulation example in Section 5.5.1 is displayed. From this

table it is clear that for small values of q, the coefficient matrix can be extremely

ill-conditioned. One approach to remedy this problem is to use scaling [25].

The original recursive form for the moments wq, generated by Equation 2.16, is

replaced with

wq = Z−1

[
b[q−1]

ξq−1
−

q−1∑

m=0

(1− δq0)Z[m]wq−m

ξm

]
(2.23)

where ξ is a scaling factor used to improve the conditioning of the Padé coeffi-

cient matrix Pf . The subsequent Padé via AWE with adaptive Zeta approxima-

tion is given by

c+f+1∑

n=0

mn (ξβ)n =
∑c

i=0 di (ξβ)i

1 +
∑f

j=1 ej (ξβ)j
(2.24)

The scaling factor is chosen such that all the moments mn are of the same order

of magnitude. This improves the conditioning of Pf and is given by

ξ =
‖m1‖2

‖m0‖2
. (2.25)

This requires the computation of the first two moments before finding ξ and then

re-calculating the second moment vector with the scaling factor. In addition,

expanding the Taylor series in terms of the wave number instead of frequency

will significantly reduce the effect of scaling in the derivation of the moments for

cases where f À k [25]. Scaling the moments by a high frequency amplifies any

errors that exist during the computation of the moments. While scaling reduces
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the effect of ill-conditioning, the scaled moment matrix is still badly conditioned

for small values of q as evident in column two of Table 2.1.
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2.5 Galerkin Asymptotic Waveform Evaluation

Various enhancements to the AWE process have been presented recently.

Amongst them are orthogonalised Krylov subspace methods such as the

Galerkin Asymptotic Waveform Evaluation (GAWE) and WCAWE [48–50]. As

discussed in the previous section, the accuracy of the numerically computed

AWE approximation will only improve with increasing q, if an algorithm is able

to recover information about more than one eigenvalue of Z. It is hence nec-

essary to implement the construction of the bases vectors in Equation 2.22 in a

numerically stable way. This is generally done with the help of an orthogonali-

sation process, where, by imposing an orthogonality relation among the vectors,

linear independence can be maintained. Consequently, high-order approxima-

tions can be constructed. The GAWE was originally proposed by [48] and is

a hybrid Arnoldi AWE process. The GAWE algorithm, outlined in Table 2.2,

generates the vectors of the orthonormal matrix

Wm×q = [w̄1, w̄2, . . . , w̄q] (2.26)

iteratively by utilising a modified Gram-Schmidt process, whose columns define

an orthonormal basis. This procedure computes the orthogonal projection of wq

onto span{w̄1 w̄2 · · · w̄q−1}. This projection is subtracted from the original vec-

tor and the result is normalised to obtain w̄q. This is, by construction, orthogonal

to all the previously computed vectors w̄1, w̄2, . . . , w̄q−1 and has unit norm. Af-

ter q iterations, an approximation to x in Equation 2.14 can be made in terms of

these q basis vectors of the form

x ≈ xq = Wqaq =
q∑

n=1

w̄nαn (2.27)

as explained in Section 2.3 where aq = [α1, α2, . . . , αq]H . The quantities aq are

chosen such that the approximation in Equation 2.27 minimises the residual

rq =
q∑

n=0

(
Z[n]βn

) q∑

n=1

w̄nαn −
q∑

n=0

(
b[n]βn

)
. (2.28)

This is conditional on the careful selection of the associated aq - specifically, that

the residual vector is constrained to be orthogonal to q linearly independent

vectors

rq ⊥ Wq (2.29)

A complete proof is given in [11,51], which shows that this condition is satisfied
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by setting

aq =

(
q∑

n=0

WH
q Z[n]Wqβ

n

)−1 (
q∑

n=0

WH
m×qb

[n]βn

)
. (2.30)

This unique selection ensures that

x ≈ Wqaq. (2.31)
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w1 = Z−1b
H[1,1] = ‖w1‖2

w̄1 = w1H−1
[1,1]

for n = 2, . . . , q

wn = Z−1(b[n−1] −
n−1∑
m=1

Z[m]wn−m)

for i = 1, . . . , n− 1
H[i,n] = w̄H

i wn

w̃n = w̃n −H[i,n]w̄i

end i
H[n,n] = ‖w̃n‖2

w̄n = w̃nH−1
[n,n]

end n.

Table 2.2: Galerkin Asymptotic Waveform Evaluation Algorithm (GAWE).
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2.6 Linearisation of the nonlinear MOR parameters

As an alternative to solving a nonlinear system directly using AWE, linearisation

techniques can be used to linearise the nonlinear parameter. Once linearised, a

Krylov subspace technique such as the Arnoldi or Lanczos algorithm can be

applied. In this section, a linearisation procedure will be reviewed which will

be used to linearise

Z (k)x (k) = b (2.32)

in terms of the nonlinear parameter k. For cases with both sides of Equation 2.32

having frequency-dependent terms, a suitable formulation is discussed later in

this section. This technique was recently given in [28,52] and requires expanding

the impedance matrix Z (k) into a Taylor series as:

q∑

n=0

(
Z[n]βn

)
x (k) = b

(
Z + Z[1]β + Z[2]β2 + Z[3]β3 + . . . + Z[q]βq

)
x (k) = b (2.33)

where q is the order of the truncated Taylor series expansion, β = (k − kb) and

Z[n] denotes the nth derivative of Z (k) evaluated at kb and divided by n!. By

the introduction of new state variables xq Equation 2.33 can now be written in

matrix form as







Z 0 . . .

0 +I
. . .

...
. . . . . .




+ β




Z[1] Z[2] Z[3] · · · Z[c]

−I 0 0 · · · 0

0 −I 0 · · · 0
...

. . . . . . . . . 0

0 0 0 −I 0










x

x0

x1

...

xq




=




b

0

0
...

0




where I is a m ×m identity matrix and x0 in the above formulation is equal to

x in Equation 2.33. The above formulation is referred to as the expanded Taylor

approximation system (ETAS) and can be written in simplified notation as

[Ze1g×g + βZe2g×g]xeg×1 = beg×1
[
Ig + βZe1−1

g Ze2g

]
xeg = Ze1−1

g beg (2.34)
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where Ze1 and Ze2 are the corresponding expanded matrix of size g × g (g =

qm where q = order of Taylor series Equation 2.33 and m = number of basis

function). Equation 2.34 is the starting point for applying a MOR technique

such as the Arnoldi or Lanczos processes since the formulation is now linear

with respect to β.

Although both techniques produce Krylov subspaces in the reduction

process there is no general consensus on which technique is superior. After q

steps of the Arnoldi or Lanczos iteration, an orthonormal matrix Uq is used to

generate a ROM of the form

x (k) ≈ xq (k) = Uq

[
I + βUH

q Ze1−1
g Ze2gUH

q

]−1
UH

q Ze1−1
g beg (2.35)

The above ROM can now be efficiently solved at each β rapidly, as the solution

requires the inversion of a model q ¿ m. The Arnoldi procedure is outlined

in detail in Chapter 4 and [11, 26, 53], while a detailed analysis of the Lanczos

iteration is given in [25, 27, 53, 54].

The Arnoldi and Lanczos algorithm has been shown to work well for linear

parameters [25,26]. However, it has been the experience of this author that when

applied to a linearised model, the resultant ROM has several deficiencies. In or-

der to linearise the problem, the size of the original model needs to be increased

to several times its original size, which can prove prohibitive for largescale com-

putations. Secondly, due to the increase in system size, achieving a relatively

low-order approximation using the Arnoldi or Lanczos algorithm is not guaran-

teed. Finally, due to higher-order terms being truncated to linearise the problem,

the accuracy of the resultant system can be limited.
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Chapter 3

EFIE formulations

“The ideal engineer is a composite ... He is not a scientist, he is not a mathematician, he is
not a sociologist or a writer; but he may use the knowledge and techniques of any or all of
these disciplines in solving engineering problems.”

N. W. Dougherty

This chapter describes the formulation of the electric field integral equation

(EFIE) from Maxwell’s laws which will be used extensively throughout this the-

sis. We present techniques to discretise these integral equations into systems of

linear equations that can be solved numerically and consider in detail the singu-

larity associated with EFIE formulations.

3.1 Differential form of Maxwell’s equations

To accurately analyse the electromagnetic behaviour of arbitrary structures, CEM

solvers generate a model of the original system based on Maxwell’s equations.

The relations and variations of the electric and magnetic fields, charges, and cur-

rent associated with electromagnetic waves are governed by these equations [9,

34]. When modelling an electromagnetic system the solution of Maxwell’s equa-

tions for the unknown electric fields and magnetic fields is the ultimate objec-

tive. There are many ways to find solutions to Maxwell’s equations. Unfortu-

nately, due to the complexity of Maxwell’s equations their analytical solution

exists only for simple cases. For instance, analytical solutions exist for struc-

tures such as a homogeneous sphere or an infinite homogeneous circular cylin-

der. This limitation creates a necessity to solve Maxwell’s equation using nu-

merical techniques. Due to the finite and discrete nature of computer compu-

tation, a CEM solver will approximate the geometry of the original system and

approximate the solution space. Classification of CEM solvers is based on dif-

ferences between the ways the known and unknown quantities are discretised
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or converted from continuous functions to discrete representations that a com-

puter can manipulate. These methods include the Finite Element Method (FEM),

Finite-Difference Frequency Domain (FDTD) and Method of Moments (MoM).

The differential form of Maxwell’s equations is the most widely used repre-

sentation to solve electrometric problems and is given by

∇× E (r, t) = −Mi (r, t)− ∂

∂t
B (r, t) (3.1)

∇×H (r, t) = +J i (r, t) +
∂

∂t
D (r, t) (3.2)

∇ · B (r, t) = 0 (3.3)

∇ · D (r, t) = ρe (r, t) (3.4)

The qualities are

E = electric field intensity (volts/meter)

H = magnetic field intensity (amperes/meter)

D = electric flux density (coulombs/square meter)

B = magnetic flux density (webers/square meter)

J i = source electric current density (amperes/square meter)

Mi = source magnetic current density (volts/square meter)

ρe = electric charge density (coulombs/cubic meter)

All these field quantities are assumed to be time-varying and each is a function

of locations and times. Equation 3.1 is known as Faraday’s law, and states that

a time-varying magnetic flux generates an electric field. Ampere’s law is de-

scribed by Equation 3.2, and states that a time-varying electric flux generates a

magnetic field. Equations 3.3 and 3.4 are the consequence of Gauss’ law which

is a statement of the conservation of flux, More specifically, Equation 3.4 implies

that the electric flux D is produced by a charge density ρe.
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3.2 Time-Harmonic form of Maxwell’s equations

In many practical problems involving electromagnetic waves, these time varia-

tions in Equations 3.1-3.4 are time-harmonic. These time variation can be repre-

sented by eωt and the instantaneous fields can be related to their complex form

by the relation

A (r, t) = <e
(
A (r) expωt

)
(3.5)

where the corresponding complex form is only a function of position. By con-

sidering Maxwell equations for time-harmonic fields, Equations 3.1-3.4 subse-

quently become

∇×E (r) = −Mi (r)− ωB (r) (3.6)

∇×H (r) = Ji (r) + ωD (r) (3.7)

∇ ·B (r) = 0 (3.8)

∇ ·D (r) = ρe (r) (3.9)

The corresponding field theory relations for the time-harmonic equations are

given as

B (r) = µ0µr (r)H (r) D (r) = ε0εr (r)E (r) (3.10)

where µ (r) and ε (r) are the non-time varying permeability and permittivity of

the medium which are functions of position. The permeability and permittivity

are calculated relative to free space and are given by

µ (r) = µ0µr (r) ε (r) = ε0εr (r) . (3.11)

These constitutive parameters are used to characterise the electrical properties

of a material. Media where the constitutive parameters are not functions of po-

sition are known as homogeneous; otherwise they are referred to as inhomoge-

neous. Materials whose constitutive parameters are function of frequency are

referred to as dispersive. All materials exhibit different degrees of variations in

these parameters, this will be discussed in greater detail in Chapter 6.
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3.3 Volume equivalence principle

To simplify the above formulation, it is convenient to replace the dielectric and

magnetic material present in Equations 3.6-3.7 by equivalent sources radiating

in free space. Through the use of the equivalent electric and magnetic current

sources, the volume equivalence principle can be used to determine the scat-

tered fields when a material object is introduced in a free-space environment as

illustrated in Figure 3.1. In the previous Equation, the free-space environment

sources Ji and Mi generated the electric and magnetic fields Ei and Hi. These

sources satisfy Maxwell equations

∇×Ei (r) = −Mi (r)− ωµ0Hi (r) (3.12)

∇×Hi (r) = Ji (r) + ωε0Ei (r) . (3.13)

When these sources radiate in a medium represented by ε and µ they generate

electric and magnetic fields that satisfy

∇×E (r) = −Mi (r)− ωµH (r) (3.14)

∇×H (r) = Ji (r) + ωεE (r) . (3.15)

Subtracting Equations 3.12-3.13 from their corresponding Equations 3.14-3.15

gives

∇× (
E (r)−Ei (r)

)
= −ω

(
µH (r)− µ0Hi (r)

)
(3.16)

∇× (
H (r)−Hi (r)

)
= ω

(
εE (r)− ε0Ei (r)

)
. (3.17)

After defining the difference between the total fields E and incident fields Ei,

and H and Hi as the scattered fields Es and Hs

Es (r) = E (r)−Ei (r) (3.18)

Hs (r) = H (r)−Hi (r) (3.19)

yields the expression

∇×Es (r) = −M (r)− ωµ0Hs (r) (3.20)
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∇×Hs (r) = J (r) + ωε0Es (r) . (3.21)

The volume equivalent electric and magnetic current densities are defined as

J (r) = ω (ε− ε0)E (r) (3.22)

M (r) = ω (µ− µ0)H (r) (3.23)

which exist only in the material itself (ε 6= ε0 and µ 6= µ0) and radiate in a free-

space environment. The above equations are useful for finding the scattered

fields due to the dielectric obstacles. They explicitly relate the scattered fields

and the volume equivalent electric and magnetic current densities. Although

the formulation has now been simplified, solving for the electric field E and

magnetic field H is still difficult. In order to solve for the electric field E and

magnetic field H in Equations 3.22 and 3.23, typically these fields are expressed

in terms of the magnetic vector potential A and the electric vector potential F.

It can be shown that these potentials satisfy the wave equation expressions

∇2A + k2A = −µJ (3.24)

∇2F + k2F = −εM (3.25)

where the background wave-number is given by

kb = ω
√

µ0ε0. (3.26)

A solution to Equations 3.24 and 3.25 for A and F can be written in the form

A (r) =
µ

4π

∫ ∫ ∫

v
J

(
r′

) e−kb|r−r′|

|r− r′| dv′ (3.27)

F (r) =
ε

4π

∫ ∫ ∫

v
M

(
r′

) e−kb|r−r′|

|r− r′| dv′ (3.28)

where the three-dimensional Green’s function is given by

G
(
r, r′

)
=

e−kb|r−r′|

4π|r− r′| . (3.29)

The introduction of these potentials simplifies the solution of the magnetic and

electric fields. The total E and H fields are obtained by the superposition of the

individual fields due to the vector potentials A and F
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E = EA + EF (3.30)

H = HA + HF (3.31)

where

EA = −ωA− 
1

ωµε
∇ (∇ ·A) = −ωA−∇φe (3.32)

EF = −1
ε
∇× F (3.33)

HA =
1
µ
∇×A (3.34)

HF = − 1
ωµ

∇×EF . (3.35)

Now that an expression for the vector potential A and F has been formulated, a

solution for the electric and magnetic fields can be defined by the mixed poten-

tial integral equations (MPIEs) as

E (r) = −ωA− 1
ε
∇× F−∇φe (3.36)

H (r) =
1
µ
∇×A− 1

ωµ
∇×EF . (3.37)

where φe is an electric scalar potential given by

φe =
1

4πε0

∫ ∫ ∫

v
ρe (r)

e−kb|r−r′|

|r− r′| dv′. (3.38)

Combining Equations 3.18-3.19 and Equations 3.39-3.40 results in the volume

electric field integral equation (EFIE) and magnetic field integral equation (MFIE)

respectively
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Ei (r) = E (r) + ωA +
1
ε
∇× F +∇φe

=
J (r)

ωε0 (εr − 1)
+

ωµ

4π

∫ ∫ ∫

v
J

(
r′

) e−kb|r−r′|

|r− r′| dv′

+
1
ε
∇× ε

4π

∫ ∫ ∫

v
M

(
r′

) e−kb|r−r′|

|r− r′| dv′

+∇ 1
4πε0

∫ ∫ ∫

v
ρe (r)

e−kb|r−r′|

|r− r′| dv′ (3.39)

Hi (r) = H (r)− 1
µ
∇×A +

1
ωµ

∇×EF

=
M (r)

ωµ0 (µr − 1)
− 1

µ
∇× µ

4π

∫ ∫ ∫

v
J

(
r′

) e−kb|r−r′|

|r− r′| dv′

+
1

ωµ
∇×−1

ε
∇× ε

4π

∫ ∫ ∫

v
M

(
r′

) e−kb|r−r′|

|r− r′| dv′. (3.40)

These equations are suitable for the analysis of an inhomogeneous material. For

scatterers where the penetrable body is homogeneous with constant εr and µr,

the problem can be formulated in terms of either the volume or surface EFIE. A

detailed explanation of the derivation of the surface EFIE is given in [9, 29]. It

should be noted, that in future chapters the expression (εr − 1) will be classified

as the contrast ζ.

To solve the EFIE for the unknowns, the method of moments (MoM) tech-

nique will be applied which discretises the object into m basis cells. This proce-

dure converts the continuous integral equation into a discrete matrix equation.

The resulting matrix equation can then be solved by using either direct or itera-

tive solver techniques to yield the unknown coefficients.

In particular, the surface integral equations (SIEs) are discretised by elements

composed of a collection of points that are defined only on the surface of the

structure. Basis functions are used to approximate the fields and sources locally

on the surface discretisation cell. The weighted sum of all the basis functions will

approximate quantities over the surface for the entire structure. The matrices

formed are dense, but since unknowns are defined only on the surface of the

structure, SIE formulations can reduce the number of unknowns. However, SIEs

are limited for use with homogeneous structures. For inhomogeneous structures

the use of volume integral equations (VIEs) is preferred. VIEs require the entire

volume of the scattering object to be discretised. This approach will produce a

dense matrix equation. In both cases however, the resulting model size m will

be significantly reduced as compared to finite difference methods. This is due

to the discretisation being restricted to the surface or volume of the scattering
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object as opposed to the surrounding volume [28, 55, 56].

It should be noted that these methods are restricted to the numerical approx-

imations of Maxwell equations at relatively low frequencies. In order to ensure

practical engineering accuracy, at least ten discretisation points per wavelength

are required [9]. It follows that, for moderately high frequencies, a large number

of discretisation points are needed to be able to solve the problem. In such situa-

tions approximate ray-based techniques are used, such as the geometrical theory

of diffraction and uniform theory of diffraction [29, 57]. These high-frequency

methods are based on approximations of Maxwell’s equations.
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Figure 3.1: An inhomogeneous obstacle illuminated by an incident field.

35



3.4 Method of Moments

In this section, a numerical technique called the method of moments (MoM) is

reviewed. This technique is used to convert the EFIE continuous integral equa-

tion from Section 3.3 into a discrete matrix equation. The resultant matrix equa-

tion can than be solved for the unknown vector by direct inversion or by utilising

an iterative method. Consider the inhomogeneous equation

Lf = g (3.41)

where L is a continuous linear operator, f is the unknown function to be deter-

mined and g represents the known excitation. An approximate solution of the

above linear equation may be obtained by converting the unknown function f

into a finite series of the form

f ∼=
m∑

j=1

αjbj (3.42)

where αi are now the unknown coefficients to be determined. The function

b = {b1, b2, . . . , bm} (3.43)

in Equation 3.42 represents the known basis functions that are defined over the

m cells of the discretised structure. Equation 3.42 is now substituted into Equa-

tion 3.41 to obtain

L
m∑

j=1

αjbj = g (3.44)

and the subsequent residual

rj =
m∑

j=1

αjLbj − g. (3.45)

In order to minimise this residual over the entire structure, a set of testing func-

tions

t = {t1, t2, . . . , tm} (3.46)

is utilised. Specifically, the residual is constrained to be orthogonal to the m lin-

early independent testing functions t. This is achieved by taking the inner prod-

uct between the testing functions and Equation 3.44, which can be expressed

as [9, 29, 58]
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m∑

j=1

αj〈ti, Lbj〉 = 〈ti, g〉 i = 1, 2, . . . , m (3.47)

In the above the inner product of two functions t and b is defined as

〈t, b〉 =
∫

v
tbdv. (3.48)

Equation 3.47 results in a system of m linear equations each with M unknowns

and can be written in matrix form as

Zx = b (3.49)

where

Z =




〈t1, Lb1〉 〈t1, Lb2〉 · · · 〈t1, Lbm〉
〈t2, Lb1〉 〈t2, Lb2〉 · · · 〈t2, Lbm〉

...
...

. . .
...

〈tm, Lb1〉 〈tm, Lb2〉 · · · 〈tm, Lbm〉




(3.50)

x =




α1

...

αm




(3.51)

b =




〈t1, g〉
...

〈tm, g〉




. (3.52)

Equation 3.49 can now be solved for the unknown vector x by direct inversion

or by utilising an iterative method.

The choice of basis and testing functions is the principle issue arising within

a method of moment implementation. As discussed in [9, 29, 58], the basis func-

tions b should be linear independent and chosen so that f can be reasonably

approximated (Equation 3.42). The testing functions t should also be linearly

independent to ensure that the m equations in Equations 3.47 are linearly inde-

pendent. Furthermore, it is advantageous to choose a set of testing functions

that will minimise the computations required to evaluate the inner product of

Equation 3.48. A particular choice of testing function is the Dirac-Delta functions
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t = {δ (r− r1) , δ (r− r2) , . . . , δ (r− rm)} (3.53)

where ri represents a point at which the Equation 3.44 is to be constrained and

the Dirac-Delta function is defined as

δ (r− ri) =





1 if r− ri = 0

0 otherwise
i = 1, 2, . . . , m. (3.54)

Using the Dirac-Delta testing functions eliminates the integrations associated

with the inner product of Equation 3.48 and reduces Equation 3.47 to

m∑

j=1

αj〈δ (r− ri) , Lbj〉 = 〈δ (r− ri) , g〉 (3.55)

m∑

j=1

αjLbj |r=ri = g|r=ri i = 1, 2, . . . , m. (3.56)

This simplification ensures that the integral equation is constrained only at dis-

crete points over the structure. For best results, this point is usually placed at

the centre of the discretisation cell. Due to its acceptable accuracy, along with

its computational advantages, this type of testing function is extensively used in

electromagnetic problems. These and other computational complexities, associ-

ated with the Method of Moments, are discussed in detail in [9, 29, 58].
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3.5 Volume EFIE for a two-dimensional homogeneous dielectric ob-
ject for a TMz polarisation

In this section, the scattering from a two-dimensional homogeneous dielectric

object characterised by a permittivity ε and permeability µ using a volume in-

tegral formulation is considered. Following the volume equivalence principle

as discussed in Section 3.3, the inhomogeneous dielectric and magnetic material

present in the problem is replaced by equivalent induced currents and charges.

We can now derive a specialised expression for the electromagnetic scattering

from a two-dimensional dielectric object illuminated by transverse magnetic

(TMz) incident wave as illustrated in Figure 3.2. For the TMz polarization, the

EFIE appearing in Equation 3.39 can be specialised to

Ei
z (r) = Ez (r) + ωAz (3.57)

where for the TMz case the magnetic vector potential has been reduced to

Az (r) =
∫

v
Jz

(
r′

)
G

(
r, r′

)
dv′ (3.58)

and the electric scalar potential φe = 0. Subject to µ = µ0 the electric vector

potential now becomes

F = 0. (3.59)

Additionally, for the two-dimensional case the Green’s function is now given by

G
(
r, r′

)
=

1
4

H
(2)
0

(
kb|r− r′|) . (3.60)

where kb is the background wave number defined in Equation 3.26 and H
(2)
0 is

the zero-order Hankel function of the second kind. By substituting Equation 3.22

into Equation 3.57, the primary unknown in the EFIE can be posed in terms of

the polarisation current density Jz (r′) as

Ei
z (r) =

Jz (r′)
ωε0 (εr (r)− 1)

+ kbη

∫

v
Jz

(
r′

) 1
4

H
(2)
0

(
kb|r− r′|) dv′ (3.61)

where η is the background impedance given by

η =
√

µ0

ε0
. (3.62)

To solve the EFIE for the unknown volume current density, the continuous EFIE
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is discretised by the MoM as described in Section 3.4. By employing this dis-

cretisation procedure, the integral equation can be converted into a finite linear

system of equations which approximate the original system. This approach re-

quires the discretisation of the structure into m cells as illustrated in Figure 3.2.

The unknown function Jz (r′) are then expanded into a finite series of the form

Jz

(
r′

) ∼=
m∑

j=1

αjbj

(
r′

)
(3.63)

where pulse basis functions are utilised

bj

(
r′

)
=





1 if r′ ∈ cell j

0 otherwise.
(3.64)

Substituting Equation 3.63 into Equation 3.61 yields

Ei
z (r) ∼=

m∑

j=1

αj
bj (r′)

ωε0 (εr (r)− 1)
+ kbη

∫

v

m∑

j=1

αjbj

(
r′

) 1
4

H
(2)
0

(
kb|r− r′|) dv′

=
m∑

j=1

αj

(
bj (r′)

ωε0 (εr (r)− 1)
+ kbη

∫

v
bj

(
r′

) 1
4

H
(2)
0

(
kb|r− r′|) dv′

)

=
m∑

j=1

αj

(
ηbj (r′)

kb (εr (r)− 1)
+

kbη

4

∫

v
bj

(
r′

)
H

(2)
0

(
kb|r− r′|) dv′

)
. (3.65)

As prescribed in Section 3.4, a set of testing functions ti is applied to Equa-

tion 3.65, resulting in

〈Ei
z (r) , ti〉 =

m∑

j=1

αj〈
(

ηbj (r′)
kb (εr (r)− 1)

+
kbη

4

∫

v
bj

(
r′

)
H

(2)
0

(
kb|r− r′|) dv′

)
, ti〉.

(3.66)

Using Dirac-Delta testing functions (Equation 3.53), Equation 3.66 can be written

as
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∫

v
Ei

z (r) δ (r− ri) dv =
m∑

j=1

αj

∫

v
δ (r− ri)

(
ηbj (r′)

kb (εr (r)− 1)

+
kbη

4

∫

v
bj

(
r′

)
H

(2)
0

(
kb|r− r′|) dv′

)
dv

Ei
z (ri) =

m∑

j=1

αj

(
ηbj (r′)

kb (εr (ri)− 1)

+
kbη

4

∫

v
bj

(
r′

)
H

(2)
0

(
kb|ri − r′|) dv′

)

Ei
z (ri) =

m∑

j=1

αj

(
η

kb (εr (ri)− 1)

+
kbη

4

∫

cell i
H

(2)
0

(
kb|ri − r′|) dv′

)
. (3.67)

Equation 3.67 produces m equations with m unknowns and can be represented

in matrix form as




Z1,1 Z1,2 Z1,3 · · · Z1,m

Z2,1 Z2,2 Z2,3 · · · Z2,m

Z3,1 Z3,2 Z3,3 · · · Z3,m

...
...

...
. . .

...

Zm,1 Zm,2 Zm,3 · · · Zm,m







α1

α2

α3

...

αm




=




b1

b2

b3

...

bm




.

For ease of notation, the above matrix equation will be represented throughout

this thesis by

Zx = b (3.68)

where the Z matrix is referred to as the impedance matrix whose entries repre-

sent the coupling between different cells in the discretisation. It is given by

Zi,j =
kbη

4

∫

cell i
H

(2)
0

(
kb|ri − r′|) dv′ i 6= j (3.69)

and

Zi,j =
η

kb (εri − 1)
+

kbη

4

∫

cell i
H

(2)
0

(
kb|ri − r′|) dv′ i = j. (3.70)

The b vector contains information about the incident fields. For a TMz polarised
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incident plane wave (see Figure 3.2), Ei
z can be expressed as

bi = Ea exp−k·ri (3.71)

where Ea is the amplitude and k is the propagation vector given by

k = kxx̂ + kyŷ + kz ẑ. (3.72)

Alternatively, for a line source, the elements are given by

bi =
ωµ0

4
H

(2)
0 (kb |ri − rs|) (3.73)

where rs is the source location. The plane wave incident field will be extensively

used throughout this work since an analytical expression for the scattered field

of select geometries is available for this type of source.

The solution of the matrix Equation 3.68 yields the coefficients αj . Once the

current density Jz is obtained, other quantities such as radar cross-section (RCS)

σTM (φ) ∼= kbη
2

4

[
M∑

i=1

αi
2πai

kb
J1 (kbai) ekb(xicosφ+yisinφ)

]2

, (3.74)

can be calculated [9]. J1 is the Bessel function of order 1, ai is the equivalent

radius for cell i (see Section 3.6.1) and xi is the centroid x coordinates of cell

i. The scattered field at any point in space Es
z can now be obtained by using

Equation 3.18.

In the next chapter, the EFIE of Equation 3.61 will be specialised to have the

electric field Ez as the primary unknown, yielding

Ei
z (r) = Ez (r) +

k2
b ζ

4

∫

v
Ez (r) H

(2)
0

(
kb|r− r′|) dv′. (3.75)

As before, the integral equation is discretised using the MoM technique with m

pulse basis functions and Dirac testing functions, leading to the matrix equation

(I + GA)x = b (3.76)

where b is a vector containing information regarding the incident fields and G

is a m×m matrix containing coupling information between the basis functions.

The element in the ith row and jth column of G is given by

Gi,j =
k2

b

4

∫

cell i
H

(2)
0

(
kb|ri − r′|) dv′. (3.77)

The contrast matrix A in Equation 3.76 is a diagonal matrix with diagonal entries
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given by

Ai,i = ζi (3.78)

where ζi is the contrast in the ith pulse basis function domain

ζi = (εr − 1) =
(

εi

ε0
− 1

)
. (3.79)

This formulation will be the starting point for the contrast-sweep analysis of the

next chapter.
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Figure 3.2: TMz wave scattering from a partial discretised structure.
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3.6 Green’s function singularity

Due to the singularity of the Green’s function, careful consideration of the evalu-

ation of Equation 3.70 must be undertaken. This singularity is due to the Hankel

function becoming singular for cases where |r− r′| = 0, which occurs in the di-

agonal elements of the impedance matrix. Due to the large contribution of the

singular components it is important to evaluate its effect accurately. In this sec-

tion, an overview of how to evaluate this singularity is discussed.

3.6.1 Analytical evaluation of Green’s function singularity using circle cell

approximation

If the discretisation cells are approximated by a circle of the same area, the inte-

grals of Equations 3.69-3.70 can be evaluated analytically using [9]

∫ 2π

φ′=0

∫ a

ρ′=0
H

(2)
0

(
kb|r− r′|) ρ′dρ′dφ′ =





2πa
kb

J0 (kbρ)H
(2)
1 (ka)− 4

k2
b

ρ < a

2πa
kb

J1 (ka) H
(2)
0 (kbρ) ρ > a

(3.80)

where

ρ =
√

(xi − x′)2 + (yi − y′)2. (3.81)

(ρ′, φ′) are polar coordinates based on a coordinate origin at the centre of cell j.

Since we evaluate the singularity at the centre of the cell, the instant ρ = a is

not explicitly derived. The first solution given in Equation 3.80 applies if the

observation point is at the centre of the circular cell as illustrated in Figure 3.3.

The singularity is now replaced by analytically evaluating the contribution not

from the centre of the cell but from the entire area of the cell ρ′dρ′dφ′. When ρij

is greater than the radius a of the circular region, the second solution is used.

Substituting these approximations into Equations 3.69 and 3.70 yields

Zi,j =
ηπai

2
J1 (kbai) H

(2)
0 (kb|ri − rj |) i 6= j. (3.82)

and

Zi,j =
ηπai

2
H

(2)
1 (kbai)− ηεri

kb (εri − 1)
i = j. (3.83)

Numerical calculation in [59] has shown that minimal error is incurred in ap-

proximating square cells with circular cells of the same area of cross-section.
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Figure 3.3: Analytical circle-cell approximation.
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3.6.2 Numerical evaluation of Green’s function singularity using triangular

cells

The previous method makes approximations regarding the shape of the cell

in order to remove the singularity. This introduces a modelling error into the

analysis. In order to discretise a complex object accurately, it is recommended

to use triangular cell discretisation. The following method is a fully numerical

approach which has been implemented by [60]. This is more pertinent than an

equivalent analytical approximation as no approximations regarding the shape

of the object are made. In this section, the procedure by [60] is outlined which

was derived for use with the three-dimensional surface EFIE. The results for the

two-dimensional volume integral equation are presented.

Figure 3.4 illustrates the triangle T representing the self-interaction cell that

is being evaluated. r0 and r′ are the observation point and integration points re-

spectively, defined on a coordinate system (u, v). The auxiliary polar coordinate

system is defined by (ρ, φ) where ρ is the distance between the integration and

observation points. φi
a and φi

b are the angles associated with the endpoints of δTi

relative to the coordinate system (u, v). R (φ) is the distance of any point of δTi

to the observation point which is a function of φ, where φi
a < φ < φi

b.

The singularity is isolated inside a disc of radius ε and evaluated analytically.

The self contribution is evaluated numerically from the remaining area of the

cell. This is achieved by splitting the triangle into three sub-triangles δTi and

summing the contribution from each sub-triangle. Observe that

ϑ (φ) = ϑ1 (φ) +
3∑

i=1

ϑi
2 (φ) (3.84)

with

ϑ1 (φ) =
∫ 2π

0
lim
ε→0

∫ ε

0

(
1− j

2
π

ln
(

γkbρ

2

))
ρdρdφ = 0 (3.85)

ϑi
2 (φ) =

∫ φi
B

φi
A

lim
ε→0

∫ R(φ)

ε

(
1− 2

π
ln

(
γkbρ

2

))
ρdρdφ. (3.86)

Setting

x =
γkbρ

2
dx =

γkbdρ

2
gives ρ =

2x

γkb
dρ =

2dx

γkb
(3.87)

and interchanging the limits yields [61]
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ϑi
2 (φ) =

∫ φi
B

φi
A

lim
ε→0

ρ2

2

∣∣∣∣∣
R(φ)

ε

dφ−2

π

∫ φi
B

φi
A

lim
ε→0

∫ γkbR(φ)

2

x=
γkbε

2

ln (x)
(

2
kbγ

)2

xdxdφ. (3.88)

Using the identities

∫ γkbR(φ)

2

x=0
ln (x) xdx =

(
x2

2
ln(x)− x2

4

)∣∣∣∣
γkbR(φ)

2

0

lim
x→0

x2

2
ln (x) = 0

(3.89)

produces

ϑi
2 (φ) =

∫ φi
B

φi
A

lim
ε→0

R (φ)2 − ε2

2
dφ− 2

π

(
2

kbγ

)2 ∫ φi
B

φi
A

lim
ε→0

[((
γkbR (φ)

2

)2

1
2

ln
(

γkR (φ)
2

)
−

(
γkbR (φ)

2

)2 1
4

)

−
((

γkbε

2

)2 1
2

ln
(

γkbε

2

)
−

(
γkbε

2

)2 1
4

)]

=
∫ φi

B

φi
A

R (φ)2

2
dφ− 2

π

∫ φi
B

φi
A

(
R (φ)2

2
ln

(
γkR (φ)

2

)
− R (φ)2

4

)
dφ

=
∫ φi

B

φi
A

R (φ)2

2
− R (φ)2

π
ln

(
γkR (φ)

2

)
+

R (φ)2

2π
dφ

=
∫ φi

B

φi
A

R (φ)2
[



2π

(
1− 2 ln

(
γkR (φ)

2

))]
dφ. (3.90)

Once the integrals have been evaluated, they can be numerically implemented

by using the Gaussian quadrature formula [60, 62]

ϑ (φ) =
3∑

i=1

ϑi
2 (φ) =

3∑

i=1




α∑

j=1

wjfi (φj)


 (3.91)

where {wj}j=1,...,J and {φj}j=1,...,J are the weights and abscissas adopted for

each φi. Substituting Equation 3.91 into Equation 3.70 yields the self-term im-

pedance matrix terms

Zi,j =
η

kb (εri − 1)
+

kbη

4
ϑ (φ) i = j. (3.92)

The benefit of this technique is that no approximations are made regarding the

shape of the basis cell. This technique results in an accurate evaluation of the
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impedance matrix self-term elements for the two-dimensional volume integral

equation.
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Figure 3.4: Numerical evaluation of Green’s function singularity using triangu-
lar cells.
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3.7 TMz analytical solution for two-dimensional homogeneous dielec-
tric circular cylinder

For select geometries, an analytical expression can be derived for the scattered

fields. In this section, the analytical solution for scattering from a two-dimensional

dielectric circular cylinder with radius a is presented [63, 64]. This expression

provides a comparison for the numerical EFIE formulation. Let us first consider

a TMz polarised incident plane wave incident upon a dielectric circular cylinder

that is

Ei
z = Ea exp−k·r (3.93)

Using the wave transformation of [63], the incident field can be expressed as

Ei
z = exp−k·r =

∞∑
n=−∞

−nJn (kρ) expnφ (3.94)

where Jn is the Bessel function of order n. The analytical solution for the scat-

tered field external to the cylinder Es
z is given by

Es
z =

∞∑
n=−∞

−nATMz

n H(2)
n (kρ) expnφ (3.95)

with

ATMz
n =

ηb
ηd

Jn (ka) J
[1]
n (kda)− J

[1]
n (ka) Jn (kda)

Jn (kda) H
(2)[1]
n (ka)− ηb

ηd
J

[1]
n (kda) H

(2)
n (ka)

(3.96)

where ηb and ηd are the background and dielectric wave impedances, while kd is

the wave number in the dielectric. J
[1]
n and H

(2)[1]
n represent the 1st derivatives

of the Bessel and Hankel function, respectively given by

Ψ[1]
n (x) =

1
2
{Ψn−1 (x)−Ψn+1 (x)} (3.97)

where Ψ[1]
n (x) denotes the 1st derivative of either Jn or H

(2)
n . Finally, the expres-

sion for the total scattered field inside the cylinder is given by

Ez =
∞∑

n=−∞
j−nBTMz

n Jn (k (ρ) ρ) expnφ (3.98)

with
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BTMz

n =
−2
πka

Jn (kda) H
(2)[1]
n (ka)− ηb

ηd
J

[1]
n (kda)H

(2)
n (ka)

. (3.99)

Expressions 3.95 and 3.98 will be referred to as the Mie series [63] and will be

used extensively throughout this thesis.
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3.8 TMz example for two-dimensional homogeneous dielectric circu-
lar cylinder

By way of illustrating some of the concepts described previously, a selection of

plots are presented for a homogeneous dielectric cylinder of radius 0.16m cen-

tred at the origin and with a relative permittivity of εr = 2.5. The cylinder is

discretised using m = 400 triangular cells (Figure 3.5(a)). It is illuminated by

a TMz plane wave radiating at a frequency of f = 300 MHz. The Mie series,

as described in Section 3.7, is used to independently evaluate the accuracy of

the MoM solution. Specifically, the MoM solution using the numerical and an-

alytical evaluation of the Green’s function singularity is compared, as given in

Sections 3.6.2 and 3.6.1 respectively.

Figure 3.5(b) shows the magnitude of the internal field ‖Ez‖2 obtained us-

ing the Mie series. Comparison of the Mie series against the MoM using the

numerical and analytical evaluation of Green’s function singularity for ‖Ez‖2

calculated at evenly spaced points along the x axis of the cylinder is displayed

in Figure 3.6(a). It is apparent from this figure that there is minimal difference

between these two techniques. This is confirmed in Figure 3.6(b), which indi-

cates, on average, a 1% relative error.

The total scattered field Es
z , at an observation radius of 0.32m and angles

φ = 0 : 2π, is illustrated in Figure 3.7(a). Finally, Figure 3.7(b) depicts the RCS

using Equation 3.74 for a monostatic setup φs = 0 : 2π comparing the two

singularity techniques. Monostatic is the term given to an experimental setup

where the transmitter and receiver are in the same location. Conversely bistatic

setup comprises of a transmitter and receiver located at different positions.

53



(a) Discretised cylinder using m = 400 triangular cells centred @ (0,0)
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Figure 3.5: Part A: Two-dimensional homogeneous dielectric circular cylinder
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(a) ‖Ez‖2 along the x axis, comparing the Mie series against the Method of Mo-
ments, using the numerical and analytical evaluation of Green’s function singular-
ity from Sections 3.6.2 and 3.6 respectively.
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solution

Figure 3.6: Part B: Comparison of the Method of Moments using the numeri-
cal evaluation against the analytical evaluation for a two-dimensional homoge-
neous dielectric circular cylinder
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Figure 3.7: Part C: Comparison of the Method of Moments using the numeri-
cal evaluation against the analytical evaluation for a two-dimensional homoge-
neous dielectric circular cylinder
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Chapter 4

Fast contrast-sweep analysis using the
Arnoldi MOR algorithm

“Do not worry about your difficulties in Mathematics. I can assure you mine are still
greater.”

Albert Einstein

This chapter presents a MOR algorithm applicable to the volume EFIE for-

mulation in a contrast-sweep analysis. The Arnoldi algorithm will be used to

circumvent the computational complexity associated with the repeated numer-

ical solution of full-scattering problems for the total fields at each step in con-

trast or source location. Contrast-sweep problems are associated with scattering

analysis where the material properties such as the permittivity, permeability and

conductivity are varied over a range, to produce the scattered fields.

The Arnoldi iterative method is based on the projection of an m-dimensional

problem onto a lower-dimensional Krylov subspace. As this chapter will demon-

strate, the Arnoldi algorithm can produce accurate low-order approximations

for a relatively low computational cost.

It will be shown that this method can be used to produce ROMs for homo-

geneous structures. Additionally, an approximate extension that accounts for

wave scattering from an inhomogeneous object using a two-dimensional vol-

ume integral formulation is also presented. This approximation will be shown

to be exact in the limit as the level of reduction approaches zero. Application

of the Arnoldi algorithm for simulations with multiple deviations of the source

location, for a fixed contrast profile, will also be demonstrated. Finally, a shift-

and-invert Arnoldi extension will be introduced which can improve the range

of the Arnoldi iteration in a contrast-sweep analysis.

The chapter is organised as follows. The basic Arnoldi algorithm and fac-

torisation are introduced in Section 4.2. The Hessenberg decomposition of the
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impedance matrix G using an orthogonal reduction is reviewed in Section 4.2.1.

Loss of orthogonality amongst the Arnoldi vectors un is investigated in Sec-

tion 4.2.2. How to generate a reduced order model using the Arnoldi method

for application to scattering from a homogeneous object is introduced in Sec-

tion 4.3. The extension of the Arnoldi algorithm to wave scattering from an

inhomogeneous object is derived in Section 4.4. Computational issues associ-

ated with the Arnoldi algorithm are analysed in Sections 4.4.1, 4.4.2, and 4.4.3.

Numerical results and observations are presented in Section 6.4.

4.1 Problem statement

For the homogeneous case, it is assumed that the original system is described

by the generalised matrix equation specified in Section 3.5

(I + Gζ)x = b. (4.1)

where I,G are m ×m matrices and x,b are a m × 1 vector. The above equation

is repeatedly solved for each value of contrast ζ in a contrast-sweep analysis at

extensive computational expense. In this chapter, the generation of an accurate

low-order approximation of the corresponding form

(
Iq×q + G̃q×qζ

)
x̃q×1 = b̃q×1 (4.2)

will be introduced, where q ¿ m. The change of variable is defined as

G̃ = UH
q×mGUm×q x̃ = UH

q×mx b̃ = UH
q×mb. (4.3)

The orthogonal similarity transformation (see Appendix A) matrix Uq is pro-

duced by the Arnoldi algorithm in Table 4.1 and is used to project the relevant

variables into a lower-order Krylov subspace. Equation 4.2 can be solved rapidly

over a range of contrast ζ for x to determine the total fields Ez (r) throughout

the scatterer and elsewhere. This ROM representation is based on the shift in-

variance property [65] of the Arnoldi iteration. This means that the Arnoldi

algorithm is applied only once with some particular choice of ζ. The resultant

ROM is valid for a whole range of ζ values. The main computational cost as-

sociated with computing a solution for another ζ consists of inverting a system

matrix of order q.
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4.2 The Arnoldi method

The Arnoldi method is an orthogonal projection method that iteratively builds

an orthonormal basis for the Krylov subspace [31, 36, 45, 66]

Kq (G,u1) = span{u1,Gu1, · · · ,Gq−1u1} (4.4)

for G generated by the vector u1. This algorithm generates a Hessenberg reduc-

tion

Hq×q = UH
q GUq (4.5)

where Hq is an upper Hessenberg matrix [36]. To derive the columns of

Uq = [u1,u2, · · · ,uq] (4.6)

iteratively, the Arnoldi process in Table 4.1 [31,36,45,66] is applied. In particular,

UH
q Uq = I UqUH

q = I for q = m (4.7)

implying

GUq = UqHq for q = m. (4.8)

However, it should be noted that for q 6= m the above relations do not hold

UH
q Uq = I UqUH

q 6= I (4.9)

By comparing the q columns of the above equation the following relationship

can be achieved

Guq =
q+1∑

n=1

hn,qun 1 ≤ q ≤ m− 1 (4.10)

where m is the number of basis cells, q is the order of the ROM and n is the

control index of the Arnoldi algorithm. Isolating the last term in the summation

gives

hq+1,quq+1 = Guq −
q∑

n=1

hn,qun ≡ wq (Line 8 Table 4.1). (4.11)

where since the uq are orthonormal, pre-multiplying both sides of the last equal-

ity by uH
n yields
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hn,q = uH
n Guq for n = 1 : q. (4.12)

If wq 6= 0, then uq+1 is specified by

uq+1 = wq/hq+1,q (4.13)

These equations define the Arnoldi process outlined in Table 4.1. The un com-

puted by the Arnoldi algorithm are called the Arnoldi vectors and they define

an orthonormal basis for the Krylov subspace Kq (G,u1)

span{u1,u2, · · · ,uq} = span{u1,Gu1, · · ·Gq−1u1}. (4.14)

The Arnoldi procedure can be essentially viewed as a modified Gram-Schmidt

process for building an orthogonal basis for the Krylov space Kq (G,u1). The

vectors un are mutually orthonormal and have the property that the columns of

the generated Uq matrix span the Krylov subspace Kq. The procedure has the

advantage that it can be stopped part-way, leaving a partial reduction to Hessen-

berg form that is exploited to provide a reduced order model for Equation 4.1.

The modified Gram-Schmidt procedure orthonormalises each vector sequen-

tially. The Arnoldi algorithm in Table 4.1 computes the orthogonal projection of

wn onto span{u1 u2 · · · un}. This projection is subtracted from the original

vector and the result is normalised to obtain un+1, which is, by construction, or-

thogonal to all previously computed Arnoldi vectors {u1,u2, . . . ,un} with unit

norm. A working example of the modified Gram-Schmidt procedure is given in

Appendix A Example A.0.1.

After q steps, the Arnoldi process can be summarised by the q-step Arnoldi

factorisation generated using Equation 4.11

GUq = UqHq + uq+1hq+1,qeT
q (4.15)

= UqHq + wqeT
q (4.16)

where eq = Iq (:, q), hq+1,q is the (q + 1, q) entry of the Hessenberg matrix Hq,

and the vector hq+1,quq+1 is the Arnoldi residual wq of the q-step Arnoldi fac-

torisation and is orthogonal to the columns of Uq.
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u1 = b/‖b‖2

for n = 1, . . . , q
wn = Gun (compute next vector spanning the subspace) ;
for i = 1, . . . , n

hi,n = uH
i wn (compute projections of new vector wn onto the previously

calculated orthonormal vectors ui);
wn = wn − uihi,n (subtract the projections to make wn orthogonal to
previously calculated orthonormal vectors ui);

end i
hn+1,n = ‖wn‖2

if hn+1,n = 0 Quit
un+1 = wn/hn+1,n (make un+1 a unit vector) ;

end n.
H = h (1 : q, :)

Table 4.1: Arnoldi - modified Gram-Schmidt algorithm (AMGS).
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4.2.1 Orthogonal reduction of G to Hessenberg form H

Using the identity UH
q Uq = Iq and the fact that UH

q uq+1 = 0, an expression for

Hq can be derived

UH
q GUq = Hq (4.17)

The matrix Hq is the orthogonal similarity transformation (see Appendix A) of

the matrix G to Hessenberg form given by

Hq =




h1,1 h1,2 h1,3 · · · h1,q

h2,1 h2,2 h2,3 · · · h2,q

0 h3,2 h3,3 · · · h3,q

...
. . . . . .

...

0 · · · · · · hq,q−1 hq,q




.

This matrix can be interpreted as the orthogonal projection of G onto the q-

dimensional subspace Kq, whose leading eigenvalues are approximations to

those of G

projKq
G = UqUH

q G

Hq = UH
q UqUH

q GUq = UH
q GUq (see Theorem A.0.2). (4.18)

From Definition A.0.5 it is clear that G and Hq are approximately unitarily sim-

ilar if q 6= m. As q −→ m, the number of eigenvalues λn (Hq) that constitute

a good approximation for corresponding eigenvalues λn (G) will improve. If

q = m then G and Hq are unitarily similar and λn (Hq) = λn (G). This eventual-

ity is characterised by the residual ‖wn‖2 = 0 (calculated in line 8 of Table 4.1),

at which point the algorithm is terminated. This signals the fact that wn+1 is

linearly dependent with respect to {w1 w2 · · · wn} [31, 45, 67]. However, this

situation is very unlikely to occur in practice, due to finite-precision arithmetic.

In this scenario (‖wn‖2 = 0), Kq (G,u1) is an exact invariant subspace (see Ap-

pendix A) of G.

When the G matrix is symmetric, then Hq is symmetric and tridiagonal and

the Arnoldi algorithm simplifies considerably. For such a case, there is an al-

tered version of the Arnoldi algorithm, called the Lanczos algorithm. The Lanc-

zos algorithm is similar to the Arnoldi algorithm. Unlike the Arnoldi algorithm,

the Lanczos process only orthogonalises the most recent generated vector to the
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previous vector. This results in the Lanczos algorithm being prone to loss of or-

thogonality, making it not as numerically stable as the Arnoldi algorithm. Con-

sequently, the Arnoldi algorithm will be the technique of choice for producing

an orthonormal basis for the Krylov subspace Kq.

4.2.2 Re-orthogonalised Arnoldi algorithm

In exact arithmetic, each newly computed vector un+1 will be orthogonal to the

columns of Uq. The columns of Uq form an orthonormal basis for the Krylov

subspaceKq and Hq is the orthogonal projection of G onto this space. However,

in finite-precision arithmetic, this property will not hold true due to numeri-

cal instabilities associated with the modified Gram-Schmidt orthogonalisation

process [31, 36, 67, 68]. This makes it necessary to re-orthogonalise un+1 against

the columns of Uq. Failure to maintain orthogonality leads to several numerical

difficulties. If subsequent Arnoldi vectors are not forced to be orthogonal to the

previous vectors, then spurious eigenvalues will appear in the spectrum of the

projected matrix Hq. Thus, a computational procedure that monitors the possi-

ble loss of orthogonality in an inexpensive manner is required. In addition, an

efficient and stable computational procedure is needed to enforce orthogonality

when required.

As stated earlier, as q increases the eigenvalues of the approximation matrix

Hq will converge to the eigenvalues of G. The residual wn therefore is expected

to decrease as the q increases until ‖wn‖2 = 0; when q = m. Loss of orthogonal-

ity amongst the generated Arnoldi vectors un will however result in an increase

in the residual wn. Therefore, the decision to perform another step of orthogo-

nalisation is based on whether [68, 69]

‖wn‖2

‖wn−1‖2
< η (4.19)

is less than a prescribed tolerance η (as implemented in line 9 of Table 4.2). Sub-

sequently, a re-orthogonalisation of wn against all the columns of Uq is per-

formed. The parameter η is chosen to satisfy 0 < η < 1. Larger values result

in a relaxing of the orthogonality between Uq and the final wn. Work published

in [68, 69] shows that orthogonality to working precision is accomplished with

at most one step of re-orthogonalisation. A value for the parameter η = 1/
√

2

has been proposed by [69] which results in a good compromise maintaining

an orthogonal set of Arnoldi vectors without an unnecessary amount of re-

orthogonalisation. Loss of orthogonality of the matrix Uq at each iteration step

can be bounded [68, 70]
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‖I−UH
q Uq‖2 ≤ Tolerance. (4.20)

The computational cost of preserving the orthogonality near machine precision

is approximately twice that of the standard Arnoldi algorithm. However, it

will be shown in Section 6.4 that re-orthogonalisation is mandatory to obtain

an accurate approximate solution. In Section 6.4, the loss of orthogonality of

computed vectors ‖I − UH
q Uq‖2 for the Arnoldi algorithm with and without

re-orthogonalisation is plotted.
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u1 = b/‖b‖2

for n = 1, . . . , q
wn = Gun

vn = ‖wn‖2

for i = 1, . . . , n
yi,n = uH

i wn

wn = wn − uiyi,n

end i
if ‖wn‖2 < η ∗ vn

for i = 1, . . . , n
hi,n = uT

i wn

wn = wn − uihi,n

end i
hn,n = hn,n + yn,n

endif
hn+1,n = ‖wn‖2

if hn+1,n = 0 Quit
un+1 = wn/hn+1,n

end n.
H = h (1 : q, :)

Table 4.2: Arnoldi - modified Gram-Schmidt algorithm with re-
orthogonalisation (AMGSR).
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4.3 Model-order reduction for a homogeneous body

This section reviews the formation of a ROM for the case of scattering from a

homogeneous object [5, 31]. We note that computing the fields scattered from a

homogeneous body requires independently solving

x = (I + ζG)−1 b (4.21)

for each value of ζ desired, where the diagonal contrast matrix A has been re-

duced to a constant multiplicative factor ζ. The Arnoldi algorithm achieves this

by iteratively computing the Hessenberg reduction

Hq = UH
q GUq (4.22)

and using it to develop a ROM for the total field. As discussed in Section 2.3,

after q steps of the Arnoldi algorithm, an approximation xq, to x, can be made

in terms of the q basis vectors

x ≈ xq =
q∑

n=1

unαn = Uqaq (4.23)

where aq = [α1 α2 · · · αq]
T is a vector of expansion coefficients for the Arnoldi

basis vectors un that span the Krylov subspace. The residual rq that corresponds

to this approximation is introduced as

rq = b− (I + ζG)xq. (4.24)

To find the optimal approximate solution, xq is constrained to ensure that xq

minimises the residual rq. Specifically, the residual vector is constrained to be

orthogonal to q linearly independent vectors known as the orthogonal residual

property, or a Galerkin condition, as discussed in Section 2.3

rq ⊥ Kq UH
q rq = 0. (4.25)

It is clear from Section 2.3 that the residual rq is minimised when the residual

vector is orthogonal to the space Kq. This requires substituting Equation 4.23

into Equation 4.24

rq = b− (I + ζG)Uqaq (4.26)

and performing a Galerkin test, to give
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UH
q rq = 0

UH
q (b− (I + ζG)Uqaq) = 0
(
UH

q + ζUH
q G

)
Uqaq = UH

q b
(
I + ζUH

q GUq

)
aq = UH

q b (4.27)

which, from the Arnoldi governing Equation 4.22, results in

aq = (I + ζHq)
−1 UH

q b. (4.28)

Clearly substituting Equation 4.28 into Equation 4.27 results in the residual be-

ing minimised as required

UH
q rq = UH

q b− (I + ζHq) (I + ζHq)
−1 UH

q b = 0. (4.29)

Therefore, substituting this into Equation 4.23 yields the ROM for the total field

x ≈ xq = Uq (I + ζHq)
−1 UH

q b (4.30)

This formulation can be used for both contrast and source location sweep prob-

lems. However, this equation can be further reduced by choosing the first Arnoldi

vector to be u1 = ‖b‖−1
2 b

UH
q b = e1‖b‖2 =




‖b‖2

0
...

0




(4.31)

because all the remaining columns of Uq are orthogonal to b. As a result

x ≈ xq = Uq (I + ζHq)
−1 e1‖b‖2. (4.32)

It should be noted that the contrast ζ appears as a parameter and neither Uq nor

matrix Hq depends on ζ. As such, the Uq matrix need only be generated once in

a contrast-sweep analysis. Clearly, Equation 4.32 can be used to efficiently solve

over a wide range of contrasts, as it requires the inversion of a matrix of order

q ¿ m for each contrast value.
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4.4 Model-order reduction for an inhomogeneous body

The MOR technique outlined in [5] is applied only to wave scattering from ho-

mogeneous bodies. This section extends the MOR technique of the previous

section to the case of scattering from inhomogeneous bodies where application

of the surface EFIE is not appropriate. We analyse scattering from a body com-

posed of m distinct homogeneous basis function domains.

Solution of the scattering problem over a range of contrasts necessitates the

ability to compute in an efficient manner the quantity

x = (I + GA)−1 b (4.33)

where A is the diagonal contrast matrix given in Equation 3.78. Again, ex-

pand the approximation xq in terms of q orthonormal vectors generated by the

Arnoldi algorithm as:

x ≈ xq =
q∑

n=1

uqαq = Uqaq (4.34)

Following the same steps as before, the residual can thus be written as

UH
q rq = UH

q (b− (I + GA)Uqaq) (4.35)

and performing a Galerkin test gives

UH
q rq = UH

q (b− (I + GA)Uqaq)

= UH
q b− (

I + UH
q GAUq

)
aq

≈ UH
q b− (

I + UH
q GUqUH

q AUq

)
aq (4.36)

= UH
q b−

(
I + HqÃq×q

)
aq (4.37)

where

Ãq = UH
q AUq. (4.38)

As a result of setting

aq =
(
I + HqÃq

)−1
UH

q b (4.39)

the residual has been minimised
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UH
q rq = UH

q b−
(
I + HqÃq

)(
I + HqÃq

)−1
UH

q b = 0 (4.40)

and assuming u1 = ‖b‖−1
2 b yields the following reduced form for the total field

x ≈ xq = Uq

(
I + HqÃq

)−1
e1‖b‖2. (4.41)

Equation 4.41 can be used for the solution of any inhomogeneous domain of

the same dimension and discretisation. As before, for simulations where there

is any deviation of source location for a fixed contrast profile, the total field is

calculated by

x ≈ xq = Uq

(
I + HqÃq

)−1
UH

q b. (4.42)

4.4.1 Equation 4.36 approximation

In this section, the approximation of line 3 of Equation 4.36 will be substantiated.

As stated earlier, for q 6= m the following relations hold

UH
q Uq = I UqUH

q 6= I. (4.43)

However, due to the independence of the columns of Uq imposed by the re-

orthogonalisation process, Equation 4.36 can be shown to be a valid approxima-

tion. As prescribed in [36], if the columns of Uq are independent and the norm

of the residual matrix

R = AUq −UqSq×q (4.44)

has been minimised for some choice of Sq, then the columns of Uq define an

approximate subspace. The selection of Sq = UH
q AUq = Ãq results in the norm

of the residual being minimised

min‖AUq −UqSq‖2 = ‖ (
I−UqUH

q

)
AUq‖F . (4.45)

Thus, Equation 4.36 becomes a valid approximation with the property that, as

q → m, a better approximation is procured. This is validated numerically in the

results section. Note that, when q = m, Equation 4.36 is exact as

UH
q Uq = UqUH

q = I. (4.46)
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4.4.2 Computational analysis

In this analysis, the shape of the object is known a priori. A variation in the

contrast and source location is considered. For scattering problems where mul-

tiple approximate solutions for varying contrast with fixed-source location are

required, it will be shown that significant computational saving can be achieved

as compared to accelerated solver techniques, such as the Conjugate Gradient

Normal Equation - Fast Fourier Transform (CGNE-FFT) [9]. Additionally, con-

siderable time savings can be obtained for scattering with fixed contrast profiles

and varying source location when compared with such accelerated solvers.

The main computational cost of this approach is incurred in generating the

Krylov matrix Uq. However, once generated it is stored and can be applied to

scattering problems with the same geometry but different contrast configuration

or source locations. The computation of the Uq involves the multiplication of

G by q − 1 Arnoldi vectors un, at a cost of O (
2m2q

)
operations. If a second

orthogonalisation is performed at each iteration, the operation count is doubled

(line 8 of Table 4.2). This represents the worst-case scenario; However, it is clear

that the MGS with re-orthogonalisation is essential, as discussed in Section 4.2.2.

For inhomogeneous scattering problems, the computational cost is increased

by the need to formulate the matrix Ãq in Equation 4.38. This requires an initial

operation cost of O
(
(0.5q)2 m

)
flops, which can be attributed to the sparse na-

ture of the matrix A and the symmetry of the matrix multiplication, UH
q AUq. All

subsequent solutions for domains with different contrast configurations require

only the formation of an amended matrix Ãq. To demonstrate the computational

overhead associated with the calculation of a new Ãq, a simple example is con-

sidered. The homogeneous region 1 (ζ1 = ζ2 = ζ3) in Figure 4.1 is kept constant,

while the contrast in region 2 (ζ4 = ζ5) is varied. For this simple case of two

homogeneous regions as illustrated in Figure 4.1, the arithmetic computation of

Ãq can be written in matrix form as

Ãq =


 ← u1 →

← u2 →







ζ1 0 0 0 0

0 ζ2 0 0 0

0 0 ζ3 0 0

0 0 0 ζ4 0

0 0 0 0 ζ5







↑ ↑
u1 u2

↓ ↓




Ãq = UH
q AmUq. (4.47)

Expanding Equation 4.47 yields
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Âm×q = AUq =




ζ1u1

ζ2u2

0

0

0




+




0

0

ζ3u3

ζ4u4

ζ5u5




= Â1 + Â2 (4.48)

Ãq can now be written in terms of the direct computational cost associated with

each new homogeneous region as

Ãq = UH
q Â1 + UH

q Â2. (4.49)

As discussed earlier, the main computational cost of this approach is incurred

in generating the Krylov matrix Uq and the initial Ãq. However, once gener-

ated, the Uq matrix and non-varying components of Ãq can be used in subse-

quent simulations. Specifically, only the component of Ãq associated with each

varying homogeneous region needs to be re-calculated. For the above example

UH
q Â2 is re-calculated for each simulation where the contrast value in region 2

is changing. Consequently, as the number of homogeneous regions increases,

the computational cost of generating a new Ãq is significantly reduced.

For fixed contrast scattering problems with varying source location, the ad-

ditional computational cost is due to the formulation of the initial Ãq and the

generation of a new b vector at each source location. An additional O (
2q2

)

operations are required to solve the resultant matrix equation in Equation 4.41

which can be efficiently solved over a wide contrast range or source location, as

it requires the inversion of a matrix of order q ¿ m. A complete time analysis

is undertaken in Section 6.4. The computational time associated with the gener-

ation and solution of Equation 4.41 using Arnoldi and CG is compared against

the solution of the original model, Equation 4.33, using an accelerated solver

CGNE-FFT.

71



Figure 4.1: Inhomogeneous discretised structure with two homogenous regions.
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4.4.3 Terminating the iteration

In order to choose an order of the Krylov subspace Kq that can reflect the essen-

tial dynamics of the original model, an effective residual error must be consid-

ered as a stopping criterion to terminate the Arnoldi iteration process. Let the

approximation residual error be defined as

rq =
‖b− (I + GA)xq‖2

‖b‖2
(4.50)

If rq ≤ tolrq for some pre-specified error tolerance value tolrq , the iteration

process is terminated and hence, the ROM is considered to have converged to

this tolerance.

In addition to monitoring the residual error, a procedure to detect when the

process has stagnated is required. This means that uq+1 will essentially offer no

new information and therefore is not expected to improve the approximation.

As discussed earlier, the Arnoldi algorithm approximates the eigenvalues of the

G in order of magnitude. The eigenvalues of largest magnitude are classified as

the most dominant and contain the most amount of information describing the

system. After the most dominant eigenvalues have been approximated, there is

a decrease in the amount of new information introduced into the reduced order

model. Consequently, there is a need to monitor the reduction in new informa-

tion being gained by approximated any new eigenvalues. This can be achieved

by monitoring the convergence of the eigenvalues of the approximation matrix

λ (Hq) to the eigenvalues of λ (G). The Arnoldi technique seeks an approximate

eigenvalue λ̃ and eigenvector ỹ that minimise the eigenvalue problem

‖
(
G− λ̃qI

)
ỹ‖2. (4.51)

When the Arnoldi residual ‖wn‖2 = 0, then the columns of Uq define an exact

invariant subspace of G and the approximate eigenvalues and eigenvectors are

exact. Otherwise, by using the relation

Hqỹ = λ̃ỹ (4.52)

and the Arnoldi factorisation, a bound for the error of the approximation can be

derived [36]. These yield the relation
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GUq = UqHq + uq+1hq+1,qeT
q (4.53)

GUq = UqHq + wqeT
q (4.54)

GUqỹ = UqHqỹ + wqeT
q ỹ (4.55)

GUqỹ = Uqλ̃ỹ + wqeT
q ỹ (4.56)(

G− λ̃I
)
Uqỹ = wqeT

q ỹ. (4.57)

The Ritz residual norm is subsequently given by [36, 45]

‖
(
G− λ̃I

)
x‖2 = ‖wqeT

q ỹ‖2 (4.58)

‖tq‖2 = ‖wqeT
q ỹ‖2 (4.59)

where x = Uqỹ and is known as the Ritz approximate eigenvector. Although

this residual norm is not indicative of the actual error in the approximation

eigenvalues, it is useful in monitoring the stagnation of the Arnoldi process. Ad-

ditionally, obtaining the residual norm, as the algorithm progresses, is inexpen-

sive due to the associated vectors being already generated within the Arnoldi

algorithm. As q increases, the approximate eigenvalues will converge to the

corresponding eigenvalues of the G matrix and subsequently, the size of the

residual norm will decrease. Typically, the process will start to stagnate after the

most dominant eigenvalues have been approximated. Consequently, no addi-

tional useful information will be added by the generation of a new vector uq.

To justify the generation of uq+1, the residual norm can be used to compare the

current value of residual to that of s steps previous

if
(‖tq − tq−s‖2 ≤ toltq

)
Stagnation = True. (4.60)

Typically, a value for the tolerance toltq = 10−4 is used to determine stagnation

and the subsequent termination of the Arnoldi algorithm.
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Figure 4.2: Case study 1 setup - Homogeneous cylinder illuminated by a TMz

incident wave.
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4.5 Numerical results and validations

In this section, the scattered field Es
z is calculated from a circular cylinder for

a variety of contrast profiles and source locations. The numerical performance

of the reduced order model, generated using the Arnoldi algorithm, are com-

pared against an accelerated solver. Subsequently, these are validated against

the direct solution using the MoM.

4.5.1 Case Study 1: Bi-static scattering homogeneous cylinder - Medium 1

We initially consider a homogeneous cylinder of radius r = 1.5λ0 = 1.5m, cen-

tred at the origin and assumed to be embedded in free space (see Figure 4.2). It

is illuminated by a TMz plane wave radiating at a frequency of f = 300 MHz.

The cylinder was discretised using m = 2500 cells and a bi-static backscattered

field Es
z field is computed for the particular case of contrast ζ = 1.1, over an

observation angle of φ = 0 : 2π using a fixed source location. The Mie series,

as described in Section 3.7, is used to validate independently the accuracy of the

MoM solution. The scattered field and associated percentage relative error are

shown in Figures 4.3(a) and 4.3(b) respectively. The percentage relative error is

defined as

δx =
‖xq − x‖2

‖x‖2
× 100 (4.61)

where x is the true value and xq the approximation. The analytical solution is

compared against the MoM and the modified Gram-Schmidt algorithm with re-

orthogonalisation (MGSR) for q = 250. The MGSR represent a 90% reduction in

system size while yielding approximately machine precision accuracy over the

entire observation angle range.

When determining how to terminate the MGSR iteration, the approxima-

tion residual error tq (Equation 4.50) and the Ritz residual norm (Equation 4.59)

are utilised. On the approximation residual error rq reaching the pre-specified

tolerance of tolrq = 10−3, the iteration is terminated. This indicates that the

approximation solution ẽ has converged to e, within the tolerance tolrq .

As identified from Figure 4.4(a), a value of q = 60 results in rq < 10−3.

Figure 4.4(b) clearly demonstrates that as q increases the approximate eigenval-

ues will converge to the corresponding eigenvalues of the G matrix and sub-

sequently the size of the residual norm will decrease. Stagnation in the itera-

tion can be bounded by monitoring the Ritz residual stagnation check (Equa-

tion 4.59). Termination of the iteration will occur when the pre-specified toltq =

10−4 is reached (q = 160), signalling that no additional useful information will
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be added by the generation of a new vector uq as illustrated in Figure 4.5(a).

By way of illustrating how the Arnoldi iteration process progresses, a plot of

the approximation eigenvalue λ (Hq) and the corresponding eigenvalue λ (G),

in order of magnitude is compared in Figure 4.5(b). From this figure, it is clear

that the Arnoldi iteration initially approximates the largest eigenvalues of the

matrix G.

As q is increased, the process rapidly approximates these external eigenval-

ues (eigenvalues of the largest magnitude located in the outer spectrum) to a

higher level of accuracy than the internal eigenvalues (eigenvalues closest to the

origin). Although the external eigenvalues are the most dominant, it will be ev-

ident in the next section that the poor approximation to the internal eigenvalues

(located around the origin) results in a limited contrast sweep range.

Loss of orthogonality of a computed Krylov matrix Un, utilising

re-orthogonalisation at each iteration step is illustrated in Figure 4.6(a)

‖In −UH
n Un‖2 for all 1 6 n 6 q (4.62)

where In is a n×n identity matrix. We note the rapid loss of orthogonality in the

Arnoldi process without the introduction of re-orthogonalisation. Additionally,

it is evident that the MGSR algorithm remains near-machine precision over the

entire iteration process. The effect of loss of orthogonality in a contrast-sweep

analysis will be demonstrated in the next section.

It should be noted that the stopping criteria, as discussed in this section, are

subject to the ROM being analysed for a constant value of ζ = 1.1. As ζ in-

creases, there is no guarantee that the above analysis will produce an accurate

approximation response over a contrast range. Additionally, repeated calcula-

tion of the approximation residual error for each contrast profile and iteration

step will become computationally expensive. Instead, a closer inspection of the

eigenvalue approximation in the proceeding sections will produce a means to

produce an accurate approximation over an extended contrast range.
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(a) ||Es
z ||2 - magnitude in dB for bi-static scattering over range of angle φ = 0 : 2π

comparing MoM, MGSR and the Mie series for a constant contrast of ζ = 1.1 (εr =
2.1) from a homogeneous cylinder.
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(b) Percentage relative error for figure 4.3(a) comparing the MGSR to the MoM
solution.

Figure 4.3: Case study 1 Part A: Bi-static scattering from a homogeneous cylin-
der with r = 1.5λ0, q = 250 and ζ = 1.1 (εr = 2.1), comparing MoM and MGSR.
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(a) Approximation residual relative error rq - (Equation 4.50) for MGSR.
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(b) Ritz residual norm ‖tq‖2 - (Equation 4.59) for MGSR.

Figure 4.4: Case study 1 Part B: Bi-static scattering from a homogeneous cylinder
with r = 1.5λ0, q = 250 and ζ = 1.1 (εr = 2.1), comparing MoM and MGSR.
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(b) ‖λ‖2 - comparing MoM against MGSR eigenvalues in order of magnitude.

Figure 4.5: Case study 1 Part C: Bi-static scattering from a homogeneous cylinder
with r = 1.5λ0, q = 250 and ζ = 1.1 (εr = 2.1), comparing MoM and MGSR.
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Figure 4.6: Case study 1 Part D: Bi-static scattering from a homogeneous cylin-
der with r = 1.5λ0, q = 250 and ζ = 1.1 (εr = 2.1), comparing MoM and MGSR.
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4.5.2 Case Study 1: Mono-static scattering homogeneous cylinder - Medium

1

In these examples, a similar numerical experiment is conducted, where the mono-

static backscattered field Es
z is computed over a range of contrast values of ζ1 =

1.1 : 4 in increments of 0.1. For this experiment, a fixed line source location is

utilised and is located at Cartesian coordinates (-10,0,0). Figures 4.7(a) and 4.7(b)

shows the scattered field and associated error obtained from the MoM, MGS and

the MGSR technique for q = 250, representing a 90% reduction in system size.

It is clear from these figures that the MGSR outperforms the MGS, replicating

the reference solution over the entire contrast range to within near-working pre-

cision, while retaining machine precision orthogonality. The effect of loss of

orthogonality in the MGS process is evident in the condition number of the re-

duced order matrix cond (T) = 7.09+15.

The CPU time associated with the solution of the scattered field for the MoM,

MGS and the MGSR for 45 samples is given in Table 4.3. These simulation were

run on a 3.00 GHz Xeon CPU processor with 3.00 GB of RAM at 2.99 GHz. The

MoM solution is solved using the accelerated solver Conjugate Gradient Nor-

mal Equation Fast Fourier Transform (CGNE-FFT). The CGNE-FFT can reduce

the number of matrix vector multiplications from O (
m2

)
operations per iter-

ation to O (
mlog2m

)
operations. It is evident from this table that the MGSR

significantly decreases the computational expense associated with the direct so-

lution of each contrast value in a sweep analysis. As discussed in Section 4.4.2,

the main computational cost is incurred in generating the Krylov matrix Uq re-

quiring 28.63 seconds. However, as the Krylov matrix need to be only calculated

once, minimal computational expense is required for all subsequent solutions of

q ¿ m. For example, a 90% reduction in system size using the MGSR, with

near-machine precision in accuracy over the entire contrast range, results in a

speed-up of a factor 37.48 as compared to the MoM solution with FFT capabil-

ity, where

Speed-up =
Total CPU time in seconds to generate and solve MoM solution

Total CPU time in seconds to generate and solve MGSR
.

For a 94% reduction, the MGSR incurs an average percentage relative error of

approximately 9% with a speed-up of a factor of 78.41.

In the final example, we consider the case where the contrast value is fixed

and the source location is varying. Using Equation 4.30, the backscattered field

Es
z is observed at φ = 0 and computed over a range of line source location of
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φ = 0 : 2π in increments of 8 degrees. The source location is set at a radius of

10λ0 and the contrast is fixed at ζ = 1.1. From Figures 4.8(a) and 4.8(b), it is clear

that the MGSR replicating the reference solution over the entire range of source

location to within machine precision for q = 250.
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Figure 4.7: Case study 1: Mono-static scattering from a homogeneous cylinder
with r = 1.5λ0, q = 150, 250 and ζ = 1.1 : 0.1 : 4, comparing MoM and MGSR.
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4.6 Shift-and-invert Arnoldi

In order to improve the range of the Arnoldi iteration in a contrast-sweep analy-

sis, either the size of the ROM must increase or a variant of the shift-and-invert

Arnoldi needs to be implemented [31, 44, 45, 65]. As demonstrated earlier, the

Arnoldi algorithm rapidly approximates well-separated external eigenvalues

better than the internal eigenvalues. Since the external eigenvalues are the most

dominant eigenvalues of the matrix G, an accurate approximation can be achieved

from a relative low-order subspace. However, often the eigenvalues are clus-

tered, leading to slower convergence and an unacceptable number of steps are

required to achieve an accurate approximation.

Even if the size of the q is increased, the reduced order scaled matrix ζHq

approximation to ζG decreases as the ζ value is increased. This is illustrated in

Figure 4.10(a), which clearly shows that as we scale the G matrix by the constant

ζ from 1 : 10, the error between λ(ζG) and λ(ζHq) linearly increases

γi = abs (λ (ζiG)− λ (ζiHq)) For ζi = 1 : 10. (4.63)

An alternative is to employ a variant of the shift-and-invert Arnoldi, where the

G matrix is substituted by the shifted and inverted matrix (I + σG)−1 in line 3

of the Arnoldi algorithm. This produced the shift-and-invert modified Gram-

Schmidt with re-orthogonalisation algorithm (SIMGSR) as given in Table 4.4.

The shift point σ is chosen to be equal to the value of the contrast ζ where the

approximation loses accuracy. In effect, the original system is solved exactly at

ζ, resulting in the approximation being exact at the shift point. The Arnoldi al-

gorithm now approximates the external eigenvalues of the shifted-and-inverted

matrix, where the eigenvalues of the G matrix are related to the shifted-and-

inverted matrix by

Gx = λx

(I + σG)x = (1 + σλ)x
1

(1 + σλ)
x = (I + σG)−1 x (4.64)

In the above equation, λ is an eigenvalue of G and 1
(1+σλ) is an eigenvalue of

(I + σG)−1.

The subsequent Arnoldi vectors u generated in SIMGSR define an orthonor-

mal basis for the following union of Krylov subspaces
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span{Uq} = Ka1 (G,u1)
p⋃

j=2

Kaj

(
(I + σjG)−1 ,u1

)
(4.65)

where p is the number of shift points σj and aj is the number of iterations at

each shift

p∑

j=1

paj = q. (4.66)

The (if, else) condition of line 5, Table 4.4, determines how to pass from a shift

point at the origin to the shifted-and-inverted matrix. As long as j = 1, the

algorithm proceeds as the standard Arnoldi algorithm described in Section 4.2.

The occurrence of the condition j 6= 1 signals that the Krylov subspace Kaj has

been completely spanned and that the spanning of the Krylov subspace Kaj+1 is

about to start.

The selection of how many shift points (σj) and the number of eigenvalues to

be approximated at each point can be automated by utilising the approximation

residual error rq and the Ritz residual norm stagnation check. When the Ritz

residual norm stagnates, the iteration is terminated and the ROM is created.

The approximation residual error is then calculated for each value of contrast.

If a particular ζ approximation error is below the tolerance tolrq , the Arnoldi

iteration can then be restarted at step q + 1. A shift-and-inverted matrix is then

solved at the ζ value where the tolerance tolrq was met. The Ritz residual norm

and approximation residual error are repeatedly checked until all of the contrast

values are below the tolerance tolrq .

Finally, after the iteration is terminated, the approximation matrix is pro-

duced by projecting the G matrix onto the space defined by the columns of the

orthonormal matrix Uq. This is given by the operation

Hq = UH
q GUq. (4.67)
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u1 = b/‖b‖2

n = 1
for j = 1, . . . , p

for k = 1, . . . , aj

if j = 1
wn = Gun

else
wn = (I + σjG)−1 un

end
vn = ‖wn‖2

for i = 1, . . . , n
hi,n = uH

i wn

wn = wn − uihi,n

end i
if ‖wn‖2 < η ∗ vn

for i = 1, . . . , n
hi,n = uT

i wn

wn = wn − uihi,n

end i
hn,n = hn,n + yn,n

endif
hn+1,n = ‖wn‖2

if hn+1,n = 0 Quit
un+1 = wn/hn+1,n

n = n + 1
end k.

end j.
Hq = UH

q GUq

Table 4.4: Shift and invert Arnoldi - modified Gram-Schmidt algorithm with re-
orthogonalisation (SIMGSR), p = number of expansion points, aj = number of
eigenvalues approximated at each expansion point.
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4.6.1 Case Study 2: Mono-static scattering homogeneous cylinder - Medium 1

In this section, the application of the SIMGSR to a contrast sweep analysis is in-

vestigated. A similar numerical experiment is conducted where the mono-static

backscattered field Es
z is computed over an extended range of contrast values of

ζ1 = 1.1 : 10 in increments of 0.25. As before, a fixed line source location is used

and is located at Cartesian coordinates (-10,0,0). Figures 4.9(a) and 4.9(b) shows

the scattered field and associated error obtained from the MoM, MGSR and the

SIMGSR technique for q = 250, representing a 90% reduction in system size. It is

clear from these figures that the MGSR approximation is limited to a max value

of ζ = 4.8 for q = 250. Using three shift points ζ1 = 0, ζ2 = 4 and ζ3 = 7 with

q = 84 + 83 + 83 = 250, the SIMGSR replicates the reference solution over the

entire contrast range to within a max average percentage error of 10%.

Comparing Figures 4.10(a) and 4.10(b) clearly shows that as we scale the

G matrix by the contrast ζ from 1 : 10, the error between λ(ζG) and λ(ζHq)

is significantly decreased using the SIMGSR algorithm. The effect of reducing

this error, as ζ increases, ensures that a wider contrast range can be accurately

approximated using multiple shift points. This can be clearly demonstrated by

plotting the average absolute error between λ(ζG) and λ(ζHq) for a range of

ζ = 0 : 10 comparing the first q eigenvalues of the MoM G matrix against the

eigenvalues of the ROM Hq created using the MGSR and SIMGSR

αi =

q∑
n=1

abs (λn (ζiG)− λn (ζiHq))

q
. (4.68)

As evident from Figure 4.11(a) the SIMGSR incurs a slower increase in error

between the scaled eigenvalues, subject to an average error of 0.048 as compared

to the MGSR with 0.138.

The CPU time comparing the MGSR and SIMGSR for 45 samples over the ex-

tended range of contrast is given in Table 4.3. The additional computational time

associated with the SIMGSR is due to the solution of the linear system (I + σG)

for each shift value. This is accompanied using the CGNE-FFT at a cost of 26.76

seconds for each shift. This significantly increases the time required to generate

the Uq matrix. However, the SIMGSR ROM still results in a considerable speed-

up of 9.38 as compared to the direct solution over the entire contrast range.
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Figure 4.9: Case study 2: Mono-static scattering from a homogeneous cylinder
with r = 1.5λ0, q = 250 and ζ = 1.1 : 0.25 : 10, comparing MoM, MGSR and
SIMGSR.
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Figure 4.10: Case study 2 Part A: Error analysis of the approximate eigenvalues
of the ROM created using the MGSR and SIMGSR for a range of ζ values.
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Figure 4.11: Case study 2 Part A: Error analysis of the approximate eigenvalues
of the ROM created using the MGSR and SIMGSR for a range of ζ values.
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4.6.2 Case Study 3: Bi-static scattering inhomogeneous cylinder

- Medium 1,2,3,4

In this section, we consider an inhomogeneous circular cylinder composed of

four concentric regions centred at the origin, with radii r1 = 1.5λ0,

r2 = 1.125λ0, r3 = 0.75λ0, r4 = 0.375λ0, and assumed to be embedded in free

space. The structure is illuminated by a transverse magnetic (TMz) wave em-

anating from a line source located at (−10, 0) and radiating at a frequency of

f = 300 MHz. The cylinder was discretised using m = 2500 cells and the bi-

static backscattered field Es
z is computed for the particular case of

ζ1 = 4, ζ2 = 3, ζ3 = 2, ζ1 = 1.1, over an observation angle of φ = 0 : 2π with a

fixed source location.

The scattered field and associated percentage relative error calculated by

comparing the MoM against the MGSR for q = 250, are shown in Figures 4.12(a)

and 4.12(b) respectively. The MGSR represents a 90% reduction in system size

while yielding a maximum relative error of 6.3%.

As indicated in the previous section, the approximation residual error tq
(Equation 4.50) and the Ritz residual norm (Equation 4.59) are used to deter-

mine when to terminate the MGSR iteration. It can be seen from Figure 4.4(a)

that a value of q = 200 results in rq < 10−3; this indicates that the approxima-

tion ẽ has converged to e within this tolerance. The Ritz residual is monitored

to check for stagnation in the Arnoldi iteration. A value of q = 160 signals that

the tolerance of toltq = 10−4 has been reached and the iteration terminated as

illustrated in Figure 4.14(a).

A plot of the approximation eigenvalue λ (Hq) and the corresponding eigen-

value λ (G), in order of magnitude, is compared in Figure 4.14(b). From this fig-

ure, it is clear that the Arnoldi iteration initially approximates the largest eigen-

values of the matrix G. As q is increased, the process rapidly approximates these

external eigenvalues to a higher level of accuracy than the internal eigenvalues.

Figure 4.6(a) illustrates that the MGSR algorithm retains near-machine pre-

cision orthogonality amongst the computed Krylov vectors in the matrix Un

(Equation 6.13).

Finally, Figure 4.7(b) depicts the subspace residual error

‖(x−Uqaq −GAUqaq)− (x−Uqaq −GUqÃqaq)‖2

‖x−Uqaq −GUqÃqaq‖2

. (4.69)

This plot substantiates the argument for the approximation of Equation 4.36,

by clearly showing that as q increases this approximation converges to working

precision.
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and ζ4 = 1.1 from an inhomogeneous cylinder.
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(b) Percentage relative error for Figure 4.3(a).

Figure 4.12: Case study 3 Part A: Bi-static scattering from an inhomogeneous
cylinder with r = 1.5λ0, q = 250, ζ1 = 4, ζ2 = 3, ζ3 = 2 and ζ4 = 1.1.
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(a) Approximation residual relative error rq - (Equation 4.50) for MGSR.
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Figure 4.13: Case study 3 Part B: Bi-static scattering from an inhomogeneous
cylinder with r = 1.5λ0, q = 250, ζ1 = 4, ζ2 = 3, ζ3 = 2 and ζ4 = 1.1.
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Figure 4.14: Case study 3 Part C: Bi-static scattering from an inhomogeneous
cylinder with r = 1.5λ0, q = 250, ζ1 = 4, ζ2 = 3, ζ3 = 2 and ζ4 = 1.1.
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Figure 4.15: Case study 3 Part D: Bi-static scattering from an inhomogeneous
cylinder with r = 1.5λ0, q = 250, ζ1 = 4, ζ2 = 3, ζ3 = 2 and ζ4 = 1.1.

98



4.6.3 Case Study 4: Mono-static scattering from an inhomogeneous cylinder

- Medium 1,2,3,4

In this section, the MGSR is applied to an inhomogeneous cylinder for a contrast-

sweep analysis. A similar numerical experiment is conducted where the mono-

static backscattered field Es
z is computed over a range of contrast values of

ζ4 = 1.1 : 0.1 : 4 while ζ3 = 2, ζ2 = 3, ζ1 = 4 are kept constant, for a fixed

line source location. Figures 4.16(a) and 4.16(b) show the scattered field and as-

sociated error obtained from the MoM and the MGSR technique for q = 250 and

q = 150. From Table 4.5 and the above figures, a reduction in system size of 94%

results in a maximum relative error of < 6.3% and a Ritz residual norm of 0.1056.

Machine precision accuracy over the entire contrast range can be achieved by a

90% reduction in system size with a Ritz residual norm of 8.43 × 10−3. As dis-

cussed in the previous section, the Ritz residual norm rq and approximation

residual error tq can be used to determine the order of the Arnoldi iteration.

Unfortunately, unlike the homogeneous case, the SIMGSR techniques can

not be used to extend the range of accuracy of the Arnoldi algorithm. This is

due to the contrast ζ being replaced with a contrast profile matrix A. In this

case, there is no singular value of ζ to use as an expansion point. Even if the A

matrix is used in a SIMGSR iteration, since the G matrix is not being scaled by

a contrast value, the columns of the subsequent Uq matrix will not all span the

same solution space. Consequentially, when the G matrix is projected into the

solution space by the operator Uq (Equation 4.67), an inaccurate approximation

matrix Hq will be generated.

As is evident from Table 4.5, the MGSR algorithm can significantly decrease

the computational expense associated with the direct solution of each contrast

value in a sweep analysis. Unlike the homogeneous case as discussed in Sec-

tion 4.4.2, the main computational cost of this approach is incurred in gener-

ating the Krylov matrix Uq and the initial Ãq. However, once generated, the

Uq matrix and non-varying components of Ãq can be used in subsequent sim-

ulations. Specifically, only the component of Ãq associated with each varying

homogeneous region needs to be re-calculated. The CPU time associated with

the solution of the scattered field for the MoM using the CGNE-FFT against the

MGSR with CGNE for 45 samples is given in Table 4.5. This is confirmed in this

table where a combined time of 36.63 seconds is required to generate the initial

Uq and Ãq. However, the CPU time is significantly reduced for all subsequent

generation of the amended Ãq at a cost of 0.4219 seconds. From this table, it

is also clear that as the size of the ROM increases, the CPU overhead associ-

ated with the creation and updating of the contrast profile matrix significantly
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increases.

However, considerable CPU time saving can be achieved by utilising this

method. For a 90% reduction in system size using the MGSR, near-machine

precision in accuracy is observed over the entire contrast range. This reduction

achieves a speed-up of 20.52 as compared to the MoM solution with FFT capa-

bility. Similarly, for a 94% reduction, the MGSR incurs an average percentage

relative error of approximately 6.3% with a speed-up of 43.3.

In the final example, we consider the case where the contrast value is fixed

and the source location is varying, and the approximation solution is generated

using Equation 4.42. Using this formulation, the backscattered field Es
z is ob-

served at φ = 0 and computed over a range of line source location of φ = 0 : 2π

in increments of 8 degrees. The source location is set at a radius of 10λ0 and the

contrasts are fixed at ζ4 = 1.1, ζ3 = 2, ζ2 = 3 and ζ1 = 4. From Figures 4.17(a)

and 4.17(b), it is clear that the MGSR duplicates the reference solution over the

entire range of source location to within machine precision for q = 250.
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(a) ‖Es
z‖2 - magnitude in db for mono-static scattering over range of contrast ζ4 =

1.1:0.1:4 with ζ1 = 4, ζ2 = 3 and ζ3 = 2, comparing MoM and MGSR from an
inhomogeneous cylinder for q = 250 and 150).
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(b) Percentage relative error for Figure 4.16(a).

Figure 4.16: Case study 3: Mono-static scattering from an inhomogeneous cylin-
der with r = 1.5λ0, q = 250, 150, ζ = 1.1:0.1:4, ζ1 = 4, ζ2 = 3 and ζ3 = 2.
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Figure 4.17: Case study 4: Scattering from an inhomogeneous cylinder with
constant contrast and varying source location.
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Chapter 5

Well-Conditioned Asymptotic
Waveform Evaluation

“The important thing in science is not so much to obtain new facts as to discover new ways
of thinking about them.”

Sir William Bragg

This chapter is dedicated to the application of the WCAWE algorithm for fast

frequency-sweep analysis with the EFIE. The evolution of the WCAWE algo-

rithm is explored in detail. The WCAWE algorithm introduces correction factors

that eliminate the ill-conditioning associated with explicit moment-matching

techniques in order to obtain a high-order approximation in a numerically sta-

ble manner. Other numerical implementation issues are discussed in Section 5.6,

including how to terminate the WCAWE iteration process and the extension of

the WCAWE algorithm to wideband applications.

5.1 Well-Conditioned Asymptotic Waveform Evaluation (WCAWE)

In Section 2.5, the GAWE technique was presented. It has been shown in [11, 51]

that the GAWE approximation will not significantly improve the bandwidth

achieved compared to an AWE approximation of the same order. This is due

to the fact that the GAWE is still building the subspaceWq through the same ill-

conditioned moment-matching process as is present in the AWE process (Equa-

tion 2.16). More specifically, the GAWE orthonormalises Wq onto the basis de-

fined by the columns of the matrix Wq which is then used in Equation 2.30. In-

deed, using the AWE with the adaptive zeta will outperform the GAWE. There-

fore, the AWE with adaptive zeta will be used as the method for comparison for

the WCAWE.
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In order to understand the WCAWE process, examination of the possible so-

lution to the problems encountered by the GAWE technique is required - which

is to orthonormalise the GAWE vectors wn onto the columns of Wq before Wq

is generated. This approach is called the alternative GAWE (AGAWE) and is

outlined in Table 5.1. At step n the AGAWE algorithm immediately orthonor-

malised ŵn against Ŵn−1 (ŵn is explicitly orthogonalised against all the pre-

vious vectors ŵ1, ŵ2, . . . , ŵn−1), which subsequently is used to form ¯̂wn. The

orthonormal matrix Ŵq can then be substituted into Equation 2.27 to form an

AGAWE approximation.

However, this approach in general will not match moments and thus will

produce an inaccurate approximation. To examine this point further, consider-

ation of why this new approximation will not match moments is required and

subsequently, how the WCAWE technique resolves these issues. The recursive

forms for the vector in the AGAWE approximation are given as

ŵ1 = Z−1b

ŵ2 = Z−1
(
b[1] − Z[1] ¯̂w1

)

ŵ3 = Z−1
(
b[2] − Z[1] ¯̂w2 − Z[2] ¯̂w1

)

...

ŵq = Z−1

(
b[q−1] −

q−1∑

m=1

Z[m] ¯̂wq−m

)
.

from Algorithm 5.1. If the columns of the matrix Ŵq matches moments, then it

must be the case that

span(Ŵn) = span(Wn) for all 1 6 n 6 q. (5.1)

That is to say, the span of columns of the AGAWE approximation Ŵn must be

equal to the span of the AWE subspace Wn (Note: The AWE is explicitly for-

mulated to match moments of the Taylor expansion and as such if the AGAWE

match moments the span of the corresponding subspaces will be equivalent) for

all n such that 1 6 n 6 q. However, since Ŵq is generated from Ŵq by an

orthonormalisation process, it is always the case that

span(Ŵn) = span(Ŵn) for all 1 6 n 6 q. (5.2)

Therefore, the requirement given in Equation 5.1 is equivalent to the following

requirement:
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span(Ŵn) = span(Wn) for all 1 6 n 6 q. (5.3)

The following examples show that Equation 5.3 does not hold for the case out-

lined. The requirement given in Equation 5.3 can fail to be true for values of n

as low as 2. For example, w1 = ŵ1 therefore

¯̂w1 = ŵ1T−1
[1,1] = w1T−1

[1,1] ∈ span(W1) (5.4)

(where T is defined on line 2, 7 and 10 of Algorithm 5.1) and so

ŵ2 = Z−1
(
b[1] − Z[1] ¯̂w1

)

= Z−1
(
b[1] − Z[1]w1T−1

[1,1]

)
6∈ span(W2). (5.5)

Therefore, span(Ŵ2) 6= span(W2). Thus, in general, the requirement that Equa-

tion 5.3 is not fulfilled and Equation 5.1 does not match moments for n > 1.

n = 3 is generated as a comparison to show how the WCAWE corrects the

AGAWE which will be outlined later in this section

ŵ3 = Z−1
(
b[2] − Z[1] ¯̂w2 − Z[2] ¯̂w1

)

= Z−1
(
b[2] − Z[1]ŵ2T−1

[2,2] − Z[2]w1T−1
[1,1]

)

= Z−1
(
b[2] − Z[1]

(
Z−1

(
b[1] − Z[1]w1T−1

[1,1]

))

T−1
[2,2] − Z[2]w1T−1

[1,1]

)
6∈ span(W3). (5.6)

5.1.1 Summary of terms

• Wq = {w1,w2, . . . ,wq} - AWE and GAWE subspace

• Ŵq = {ŵ1, ŵ2, . . . , ŵq} - AGAWE subspace

• Wq = [w̄1, w̄2, . . . , w̄q] - GAWE orthonormal matrix whose columns de-

fine an orthonormal basis {w̄1, w̄2, . . . , w̄q}

• Ŵq = [ ¯̂w1, ¯̂w2, . . . , ¯̂wq] - AGAWE orthonormal matrix whose columns de-

fine an orthonormal basis { ¯̂w1, ¯̂w2, . . . , ¯̂wq}

• span
(
Wq

)
= span (Wq)

• span
(
Ŵq

)
6= span (Wq)
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ŵ1 = Z−1b
T[1,1] = ‖ŵ1‖2
¯̂w1 = ŵ1T−1

[1,1]

for n = 2, . . . , q

ŵn = Z−1(b[n−1] −
n−1∑
m=1

Z[m] ¯̂wn−m)

for i = 1, . . . , n− 1
T[i,n] = ¯̂wH

i ŵn

ŵn = ŵn −T[i,n]
¯̂wi

end i
T[n,n] = ‖ŵn‖2
¯̂wn = ŵnT−1

[n,n]

end n.

Table 5.1: AGAWE Algorithm.
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5.2 WCAWE algorithm

A proposed approach that avoids the unattractive properties of the AWE and

the GAWE is the WCAWE [10,11,51]. It introduces correction factors that signif-

icantly reduce ill-conditioning in order to obtain a high-order approximation in

a numerically stable manner. The WCAWE process, outlined in Table 5.2, also

rectifies the problem of not matching moments by the introduction of correction

terms in the orthogonalisation process. In doing so, the WCAWE method can re-

main a moment-matching process while simultaneously producing an orthonor-

malised basis. As with the alternative GAWE, the WCAWE process constructs

the columns of the orthonormal matrix

Vq = [v1,v2, . . . ,vq] (5.7)

iteratively by using a modified Gram-Schmidt process. This procedure is used

to orthogonalise vn onto the basis:

Ṽq−1 = {ṽ1, ṽ2, . . . , ṽq−1} (5.8)

(vn is explicitly orthogonalised against all the previous vectors ṽq−1). This is

achieved by computing the orthogonal projection of ṽn onto

span{v1,v2, · · · ,vq−1}. (5.9)

This projection is subtracted from the original vector and the result is normalised

to obtain vq. This is by construction, orthogonal to all previously computed vec-

tors ṽ1, ṽ2, . . . , ṽq−1 with unit norm. In this way, the orthogonality of the basis

vectors is guaranteed and the moment-matching process can be maintained. The

resultant vector generated in Table 5.2 is given by:

ṽ1 = Z−1b

ṽ2 = Z−1
(
b[1]eT

1 PT1 (2, 1) e1 − Z[1]v1

)

ṽ3 = Z−1
(
b[1]eT

1 PT1 (3, 1) e2 + b[2]eT
1 PT1 (3, 2) e1 − Z[1]v2 − Z[2]V1PT2 (3, 2) e1

)

...

ṽn = Z−1

(
n−1∑

m=1

(
b[m]eT

1 PT1 (n,m) en−m

)
− Z[1]vn−1

−
n−1∑

m=2

Z[m]Vn−mPT2 (n,m) en−m

)
(5.10)
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where er is the vector with all entries equal to zero except the rth entry which is

equal to unity. The length of er conforms to the matrix that operates on it. The

correction term in Equation 5.10 is given by:

PTw (n,m) =
m∏

t=w

T−1
[t:n−m+t−1,t:n−m+t−1] (5.11)

where

2∏

t=1

T−1
t = T−1

1 T−1
2 (5.12)

and w = 1 or 2.

Definition 5.2.1. Given a q × q matrix T and four integers i1, i2, j1 and j2 such

that 1 ≤ i1 ≤ i2 ≤ q and 1 ≤ j1 ≤ j2 ≤ q, let T[i1,j1] be the entry in T at the

intersection of row i1 and column j1. Furthermore, let T[i1:i2,j1:j2] denote the

block matrix extracted from T starting from row i1 and going through row i2

from columns j1 through j2.

The n −m × n −m matrix PTw (n,m) is a composition of many blocks ex-

tracted from the matrix T. The T matrix is a q× q upper triangular, nonsingular

matrix created by the coefficients of the Gram-Schmidt process. Each column

in the T matrix is the projection of the newly created vector ṽq onto the basis

Vq−1 = {v1,v2, . . . ,vq−1}.

T =




t1,1 t1,2 t1,3 · · · t1,q

t2,2 t2,3 · · · t2,q

t3,3 · · · t3,q

. . .
...

tq,q




=




‖ṽ1‖2 vH
1 ṽ2 vH

1 ṽ3 · · · vH
1 ṽq

‖ṽ2‖2 vH
2 ṽ3 · · · vH

2 ṽq

‖ṽ3‖2 · · · vH
3 ṽq

. . .
...

‖ṽq‖2




.

As such, T is a matrix that tracks the mapping from one vector basis to an-

other. It should be noted that if T is chosen to be the identity matrix, then

the WCAWE vectors ṽq from Equation 5.10 reduce to AWE vectors wq from

Equation 2.16. Indeed, the WCAWE process is actually a generalisation of both

the AWE and Arnoldi processes. Central to being able to maintain a moment-

matching process, the Ṽq and Vq matrices are related by the T matrix which is

used to orthonormalise Ṽq, given by:

Vq = ṼqT−1. (5.13)

109



5.2.1 Summary of terms

• Wq = {w1,w2, . . . ,wq} - AWE and GAWE subspace

• Ŵq = {ŵ1, ŵ2, . . . , ŵq} - AGAWE subspace

• Ṽq = {ṽ1, ṽ2, . . . , ṽq} - WCAWE subspace

• Wq = [w̄1, w̄2, . . . , w̄q] - GAWE orthonormal matrix whose columns de-

fine an orthonormal basis {w̄1, w̄2, . . . , w̄q}

• Ŵq = [ ¯̂w1, ¯̂w2, . . . , ¯̂wq] - AGAWE orthonormal matrix whose columns de-

fine an orthonormal basis { ¯̂w1, ¯̂w2, . . . , ¯̂wq}

• Vq = [v1,v2, . . . ,vq] WCAWE orthonormal matrix whose columns define

an orthonormal basis {v1,v2, . . . ,vq}

• span
(
Wq

)
= span (Wq)

• span
(
Ŵq

)
6= span (Wq)

• span (Vq) = span (Wq)
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ṽ1 = Z−1b (compute first moment) ;
t1,1 = ‖ṽ1‖2

v1 = ṽ1/t1,1 (compute first WCAWE vector) ;
for n = 2, . . . , q

ṽn = Z−1

(
n−1∑
m=1

(
b[m]eT

1 PT1 (n,m) en−m

)− Z[1]vn−1

−
n−1∑
m=2

Z[m]Vn−mPT2 (n,m) en−m

)
(compute next corrected vector) ;

for i = 1, . . . , n− 1
ti,n = vH

i ṽn (compute projections of new vector ṽn onto span{v1,v2, · · · ,vq−1});
ṽn = ṽn − ti,nvi (subtract the projections to make ṽn orthogonal to the previously
calculated orthonormal vectors vi);

end i
tn,n = ‖ṽn‖2

vn = ṽn/tn,n (make vn a unit vector) ;
end n.

Table 5.2: Well-Conditioned Asymptotic Waveform Evaluation Algorithm
(WCAWE).
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5.3 Example showing that the WCAWE algorithm matches moments

As before, the proof that the WCAWE process matches moments is conditional

on the requirement of Equation 5.3, which corresponds to:

span(Vn) = span(Wn) for all 1 6 n 6 q. (5.14)

To start this example, some facts and definitions must be stated.

Definition 5.3.1. Let X be a q × q upper triangular matrix whose entries are

X[j1,j2] =





eT
1 PT1 (j2, j1 − 1) ej2−j1+1 for 2 ≤ j1 ≤ j2 ≤ q

1 for j1 = j2 = 1

0 otherwise.

Remark. The X matrix is never actually computed, but its definition is necessary

to facilitate this proof. X[q,q] is the product of the diagonal coefficients of the

T−1
[q−1,q−1] matrix that implicitly scales the nth AWE vector wn to generate the

nth vector of the well-conditioned process vn that is presented in Equation 5.10

X[q,q] = T−1
[1,1]T

−1
[2,2] · · ·T−1

[q−1,q−1]. (5.15)

The X matrix ensures that the columns of Vn are orthogonal and match mo-

ments. This will be clearly demonstrated in the proceeding example.

Fact 5.3.1. Since T is nonsingular, span(Vq) = span(Ṽq). This follows from

Equation 5.13 and the fact that a subspace is closed under multiplication.

The following example will explicitly show that Equation 5.14 is true for n =

1, 2, 3. A complete proof for n = q is given in [11, 51]. Let Wq be as given in

Equation 2.16, X as given in Definition 5.3.1 and Ṽq as given in Equation 5.10.

Then by showing that

Ṽq = WqX[1:q,1:q] (5.16)

it follows that

span(Ṽq) = span(Wq) (5.17)

which in conjunction with Fact 5.3.1 proves that

span(Vq) = span(Wq). (5.18)
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Initially, it is clear that for q = 1 that ṽ1 = w1 = w1X[1,1]. Therefore span(ṽ1) =

span(w1) (see Definition A.0.1).

For the case q = 2,

ṽ2 = Z−1
(
b[1]eT

1 PT1 (2, 1) e1 − Z[1]v1

)

= Z−1
(
b[1]T−1

[1,1] − Z[1]ṽ1T−1
[1,1]

)

= Z−1
(
b[1] − Z[1]w1

)
T−1

[1,1] (5.19)

= w2T−1
[1,1]

= w2eT
1 PT1 (2, 1) e1 (see Equation 5.11)

= w2X[2,2]. (see Definition 5.3.1) (5.20)

Therefore, Ṽ2 = W2X[1:2,1:2] and span(Ṽ2) = span(W2). If Equations 5.5

and 5.19 are compared, it becomes clear how the WCAWE process matches mo-

ments. In Equation 5.5, the orthogonalisation matrix T−1
[1,1] fails to scale the gen-

erated vector appropriately to ensure that the vector ŵ2 spans the same space

as W2. This is rectified in Equation 5.19 where the vector w2 is scaled correctly,

ensuring that ṽ2 spans the same space as the columns of W2.

For the case q = 3,

ṽ3 = Z−1
(
b[1]eT

1 PU1 (3, 1) e2 + b[2]eT
1 PU1 (3, 2) e1 − Z[1]v2 − Z[2]V1PU2 (3, 2) e1

)

Note:
(
eT

1 PU1 (3, 1) e2 = 0
)

since j1 = 0 (see Definition 5.3.1)

= Z−1
(
b[2]T−1

[1,1]T
−1
[2,2] − Z[1]v2 − Z[2]v1T−1

[2,2]

)

= Z−1
(
b[2]T−1

[1,1]T
−1
[2,2] − Z[1]ṽ2T−1

[2,2] − Z[2]ṽ1T−1
[1,1]T

−1
[2,2]

)

since Vq = ṼqT−1
[1:q,1:q] (see Equation 5.13)

= Z−1
(
b[2]T−1

[1,1]T
−1
[2,2] − Z[1]w2T−1

[1,1]T
−1
[2,2] − Z[2]w1T−1

[1,1]T
−1
[2,2]

)

= Z−1
(
b[2] − Z[1]w2 − Z[2]w1

)
T−1

[1,1]T
−1
[2,2]

= w3T−1
[1,1]T

−1
[2,2]

= w3eT
1 PU1 (3, 2) e1

= w3X[3,3] (5.21)

Therefore, Ṽ3 = W3X[1:3,1:3] and span(Ṽ3) = span(W3). The proof that Ṽq =

WqX[1:q,1:q] is given in [11, 51]. Since the span(Vq) = span(Ṽq), then it is the

case that span(Vq) = span(Wq). This proves that the space Vq matches mo-
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ments and consequently, that the WCAWE technique can maintain a moment-

matching process while simultaneously generating an orthonormal space. By

imposing this orthogonality relation amongst the generated vectors, linear in-

dependence can be maintained and so high-order approximations can be con-

structed. Thus, the WCAWE process does not suffer from the numerical diffi-

culties associated with the explicit moment computation methods as discussed

in Section 2.4.1. However, due to finite precision computation, loss of orthogo-

nality between the computed vectors can occur.

Ultimately, this process results in the approximation to the solution vector xq for

any frequency f in the range fmin 6 f 6 fmax given by Equation 2.27 defined in

Section 2.5, which corresponds to:

xq = Vqaq (5.22)

with

aq =

(
q∑

n=0

VH
q×mZ[n]

m×mVm×qβ
n

)−1 (
q∑

n=0

VH
q×mb[n]

m×1β
n

)
(5.23)

Clearly Equation 5.22 can be used to solve efficiently over a wide range of fre-

quencies as it requires the inversion of a matrix of order q ¿ m for each fre-

quency value.
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5.4 Recursive formulation of the matrix derivatives

In this section, the qth order recursive equation for the differentiation of the

volume EFIE formulation of a two-dimensional inhomogeneous lossy dielec-

tric object with real permittivity is reviewed. In order to model the frequency-

dependent variations evident in Equations 3.82 and 3.83, obtained using the

circular-cell approximation as outlined in Section 3.6.1, care needs to taken.

The following identities give the qth order recursive form of the derivatives

of a function a (kb) expanded as a product [71]

if a (kb) = b (kb) c (kb) , then a[q] (kb) =
q∑

p=0


 q

p


 b[q−p] (kb) c[p] (kb)

(5.24)

or a quotient [71]

if a (kb) =
b (kb)
c (kb)

, then a[q] (kb) =
1

c (kb)


b[q] (kb)−

q∑

p=1

c[p] (kb) a[q−p] (kb)




(5.25)

where


 q

p


 =

q!
p! (q − p)!

(5.26)

is the binomial coefficient. Using the above identities, the qth derivative with

respect to k of the matrix entry Zi,j (k), evaluated at kb, is given by

Z
[q]
i,j =

ηπai

2

q∑

p=0


 q

p


 J1 (kb0ai)

[p] H
(2)
0 (kb0 |ri − rj |)[q−p] i 6= j (5.27)

and

Z
[q]
i,j =

ηπai

2
H

(2)
1 (kb0ai)

[q] − (−1)[q] ηεriq!

(kb0)
[q+1] (εri − 1)

i = j. (5.28)

Careful consideration needs to taken when differentiating the Bessel and Hankel

functions by using the following recursive relation [72]:
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Ψ[q]
v =

1
2q

q∑

p=0

(−1)(p+2)


 q

p


Ψv−q+2p (5.29)

where Ψ[q]
v denotes the qth derivative of J, Y,H(1),H(2) of order v.
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5.5 Numerical results and validations

In this section, the radar cross-section (RCS) is calculated for profiles of varying

geometry, size and contrast with the objective of validating the WCAWE Al-

gorithm by comparison with the MoM using a two-dimensional volume EFIE

formulation.

5.5.1 Case Study 1: Homogeneous cylinder - Medium 1

We initially consider a homogeneous cylinder of radius r = λ0/2 = 0.08m, εr =

2, centred at the origin and assumed to be embedded in free space. The structure

is illuminated by a TMz wave emanating from a plane wave source. The cylinder

was discretised using m = 170 cells and the RCS was computed over a band of

frequencies f = 0.5 : 2.5 GHz with 0.014 GHz increments for a monostatic setup

φ = 0.

The Mie series, as described in Section 3.7, is used to validate independently

the accuracy of the MoM solution. This is illustrated in Figure 5.1(a), where the

Euclidean norm of the current density is plotted comparing the MoM solution

to the Mie series. The RCS and associated percentage relative error are shown

in Figures 5.1(b) and 5.2(a), respectively. The MoM is the true value and is com-

pared against the Padé via AWE with adaptive zeta and the WCAWE for q = 15.

Although scaling reduces the ill-conditioning of the Padé coefficient matrix as

discussed in Section 2.4.1, these strategies still result in significant round-off er-

ror for relatively small values of q. This is confirmed in Table 2.1 where the con-

dition number for the Padé via AWE with and without the scaling factor Zeta is

listed. Indeed, for values of q > 10, the condition number greatly increases and

the AWE results start to deteriorate.

From Figures 5.1(b) and 5.2(a), it is clear the WCAWE out-performs the Padé

via AWE with adaptive Zeta, duplicating the MoM solution over the entire band

of frequencies to within a 1% relative error. The Padé via AWE with adaptive

zeta achieves the same accuracy over a much smaller range of f = 0.66 : 2.3

GHz. As an additional means to measure the accuracy of the approximation so-

lution xq at each frequency sample, the relative residual [11, 49, 73] is generated.

After the approximate solution xq has been generated the relative residual

rq =
‖aq‖2

‖
q∑

n=0
b[n]βn‖2

(5.30)

is generated for all frequencies fj in the range fmin 6 fj 6 fmax where
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aq =
q∑

n=0

(
Z[n]βn

)
xq −

q∑

n=0

b[n]βn. (5.31)

If rq < tolrq for some pre-specified tolerance value tolrq , the solution is consid-

ered to have converged at frequency fj . Figure 5.2(b) depicts the relative resid-

ual rq calculated over the entire band of frequencies. It indicates that the range

of frequencies f = 0.5 : 2.5 GHz has converged to within tolrq = 10−2 of the

MoM solution for the WCAWE, confirming Figure 5.2(a). Additionally Table 5.3

illustrates the decline in accuracy of the Padé via AWE with adaptive Zeta as the

moment order increases as compared to the WCAWE (Line 6 - nm).

As an indicator of the rate of convergence of the frequency points to the

tolrq = 10−2 over the iteration process, Figure 5.3(a) depicts the number of con-

verged frequency points that has been achieved in total at each iteration. From

this figure, we note the WCAWE process results in a regular addition of con-

verged frequency points at each iteration.

Figure 5.3(b) illustrates the loss of orthogonality of a computed set of mo-

ments mn at each iteration step

‖In×n −MH
n×mMm×n‖2 for all 1 6 n 6 q (5.32)

where

M = [m1,m2, . . . ,mn] (5.33)

and In is an n × n identity matrix. It should be noted that if the moments are

exactly orthogonal, Equation 5.32 will equate to zero. However, due to finite

precision this eventuality will not occur. From this figure, it is clear that the

computed moments remain close to machine precision, ensuring that each new

moment contains additional new useful information. The total scattered field

Es
z , at an observation radius of 1m and angles θ = 0 : 2π, for a converged

approximation frequency f = 0.5 GHz is illustrated in Figure 5.4(a).

The CPU time associated with the solution of the RCS for the MoM, Padé

via AWE with adaptive Zeta and WCAWE is given in Table 5.3. It is evident

from this table that the WCAWE significantly decreases the computational ex-

pense associated with the direct solution of each frequency sample in a sweep

analysis. Additionally, it is clear from this table that as the number of moments

increase, the WCAWE technique significantly outperforms the AWE in the num-

ber of frequency points that have converged to tolrq . The Padé via AWE with

adaptive Zeta and WCAWE CPU times are similar due to the additional times
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required to scale the Padé via AWE with adaptive Zeta moments. The main

computational overhead is due to the generation of the derivatives and this is

clearly illustrated in Figure 5.4(b). However, as the derivatives need only be

calculated once, minimal computational expense is required for all subsequent

solutions. Additionally, this figure indicates the number of frequency samples

required to achieve a computational saving when compared against generating

the MoM solution at each frequency point. For example, for q = 10 moments in

order for the WCAWE to break even computationally with the MoM solution, 35

frequency samples would be required, taking 9.8 seconds to generate and solve.

This figure demonstrates that as the order of the moments increases, the num-

ber of samples required to break even rapidly increases. Consequently careful

consideration is required when choosing the order of the WCAWE technique.
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Figure 5.1: Case study 1 Part A: Single point expansion - Homogeneous cylinder.
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Figure 5.2: Case study 1 Part B: Single point expansion - Homogeneous cylinder.
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5.6 Multipoint Well-Conditioned Asymptotic Waveform Evaluation
(MWCAWE)

In order to extend the bandwidth in a frequency sweep, a multipoint approach

should be implemented. Several practical implementation issues must therefore

be addressed. These include:

• how many expansion points to use

• where to place them

• the approximation order at each expansion point

Determining the optimum size of the approximation order q at each expansion

point will result in a more efficient approximation. As evident in Table 5.3 (line

6 - tg), most of the computational cost of generating the approximation is due

to the calculation of the derivatives. Figure 5.4(b) illustrates the CPU break-

even analysis comparing the cost of generating the derivatives to the number

of frequency samples required. As the number of moments increase there is a

rapid increase in the number of samples required to achieve a CPU saving using

the WCAWE over the MoM. These data can be used as a guide to determine the

maximum number of moments that should be matched at each expansion point.

After determining the maximum value for q at the central expansion point

β0, one must consider if further expansion points are required and where they

must be located, such that the approximate solution can converge to a pre-

specified tolerance. After β0 has been chosen, the approximate solution xq and

the relative residual rq should be generated for all frequencies fj in the range

fmin 6 fj 6 fmax. If rq < tolrq for some pre-specified tolerance value tolrq ,

the solution is considered to have converged at frequency fj . If either fmin or

fmax is not converged, another expansion point is selected at the centre of the

region in which convergence did not take place and rq generated. The uncon-

verged region is continually divided and tested until all values of fj are marked

as converged. Figure 5.5 clearly illustrates this strategy.
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Figure 5.5: Multipoint WCAWE procedure.
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5.6.1 Case Study 2: Inhomogeneous square - Medium 1,2

In the second example, a similar numerical experiment is conducted for an in-

homogeneous square of length l = λ0 = 0.36m, centred at the origin, with

broadside incidence. The square is composed of two equally sized regions, with

(x < 0, εr = 2, medium 1) and (x ≥ 0, εr = 3, medium 2). The square was discre-

tised using m = 990 cells and the RCS was computed over a band of frequencies

f = 0.5 : 1.2 GHz with 5 MHz increments for a monostatic setup φ = 0.

Figures 5.6(a) and 5.6(b) show the RCS results obtained which compare the

MoM results against the WCAWE for q = 12. Figure 5.6(a) shows the RCS versus

frequency with one expansion point at β0 = 850 MHz. The WCAWE algorithm

duplicates the reference solution over the band of frequencies f = 0.66 : 1.06

GHz. This is confirmed in Figure 5.6(b), which shows that the relative residual

rq < 10−2 (1% relative error) over the range of frequencies f = 0.66 : 1.06 GHz.

In order to achieve additional bandwidth, a multipoint WCAWE (MWCAWE)

approach must be implemented. From Figure 5.6(a), it is clear that for such an

approach, we need to place two additional expansion points. These are auto-

matically positioned at the centre of the two unconverged bands of frequency

(β1, β2 = 580, 1130 MHz respectively) for (q1 = 7, q2 = 8).

Figures 5.7(a) and 5.7(b) indicate that the Multipoint WCAWE can provide

accurate and robust fast frequency sweeps in broadband applications. The CPU

results using the WCAWE and MWCAWE are compared with the MoM direct

calculation to demonstrate the efficiencies of these approaches, as shown in Ta-

ble 5.4. From these results, the computational saving associated with the mul-

tipoint approach is clearly evident with the MWCAWE approximately achiev-

ing a speed-up of 1.57, while achieving < 1% relative error over the entire fre-

quency range. Achieving the same level of accuracy using a single point ex-

pansion would incur significantly more computational cost. This is due to the

computational cost required to generate the high-order moments, which take

significantly more computational time to compute, as compared to low order

moments. However, it should be noted that although multiple expansion points

with low-order moments can significantly reduce the CPU times, this approach

can become computationally expensive for large-scale simulations. This is due

to the need to make and invert a Z matrix at the expansion frequency for each

new expansion point.

The rate of convergence of the frequency points to the tolrq =10−2 over the

iteration process is depicted in Figure 5.8(a) for each expansion point. From

this figure, we note that the WCAWE process results in a regular addition of

converged frequency points at each iteration. Finally Figure 5.8(b) illustrates the
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loss of orthogonality of a computed set of moments mn at each iteration step

for each expansion point (see Equation 6.13). It is clear from this figure that the

computed moments remain close to machine precision, ensuring that each new

moment contains additional new useful information.

128



Le
ge

nd
Te

ch
ni

qu
e

M
oM

W
C

A
W

E
M

W
C

A
W

E

O
rd

er
m

=
99

0
q

=
12

q
=

12
+

7
+

8
=

27

t m
(s

)
48

86
.2

-
-

n
s

14
5

14
5

14
5

t g
(s

)
-

21
32

.8
33

24
.3

n
m

-
79

14
5

t s
(s

)
2.

4
0.

09
0.

09

t t
(s

)
52

34
.2

21
45

.8
5

33
37

.3
5

Sp
ee

d-
up

-
2.

44
1.

57

Ta
bl

e
5.

4:
C

PU
ti

m
e

an
al

ys
is

(C
as

e
st

ud
y

2
-
f

=
0.

5
:

1.
2

G
H

z,
m

=
si

ze
of

M
oM

m
at

ri
x,

q
=

nu
m

be
r

of
m

om
en

ts
,t

m
=

C
PU

ti
m

e
in

se
co

nd
s

to
ge

ne
ra

te
M

oM
m

at
ri

ce
s

fo
r

al
ls

am
pl

es
,n

s
-

nu
m

be
r

of
fr

eq
ue

nc
y

sa
m

pl
es

,t
g

=
C

PU
ti

m
e

in
se

co
nd

s
to

ge
ne

ra
te

m
om

en
ts

,
n

m
=

nu
m

be
r

of
fr

eq
ue

nc
y

sa
m

pl
es

co
nv

er
ge

d
to

pr
ed

efi
ne

d
to

le
ra

nc
e

to
l r q

=1
0−

2
,t

s
=

av
er

ag
e

C
PU

ti
m

e
in

se
co

nd
s

to
so

lv
e

fo
r

R
C

S
at

ea
ch

fr
eq

ue
nc

y,
t t

=
to

ta
lC

PU
ti

m
e

in
se

co
nd

s
to

ge
ne

ra
te

an
d

so
lv

e
ca

se
st

ud
y

pr
ob

le
m

).

129



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
34

36

38

40

42

44

46

48

50

52

Frequency (GHz)

R
C

S
 σ

(d
B

)

 

 
MoM
WCAWE

(a) σTM (Φ) RCS frequency sweep comparing MoM and WCAWE - Medium 1,
εr = 2 Medium 2, εr = 3.

0.7 0.75 0.8 0.85 0.9 0.95 1

0

2

4

6

8

10

x 10
−3

Frequency (GHz)

R
el

at
iv

e 
R

es
id

ua
l (

r q)

 

 
WCAWE

(b) Relative residual rq for WCAWE.

Figure 5.6: Case study 2 Part A: Single point expansion - Inhomogeneous square.
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Figure 5.7: Case study 2 Part A: Multipoint expansion - Inhomogeneous square.
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5.7 Three-dimensional surface EFIE for a perfectly conducting object

In this section, the results for the three-dimensional surface integral formulation

for a perfect electrically conducting (PEC) square are introduced. For a PEC, the

total tangential electric field is zero at the surface. The governing equations and

qth derivative are given by [2].

5.8 Numerical results and validations

The RCS is calculated for a three-dimensional PEC square with the objective of

validating the WCAWE Algorithm by comparison with the method of moments

using a 3-dimensional surface EFIE formulation.

5.8.1 Case Study 1: Perfect electrically conducting square

We consider a homogeneous square plate of side length l = λ0 = 0.02m, εr = 2,

centred at the origin. The plate is illuminated by a plane wave with broad-

side incidence θinc = π/2, φinc = 0 and polarisation αinc = π/2. The plate

was discretised using m = 930 cells and the RCS was computed over a band

of frequencies f = 0.5 : 35.0 GHz with 0.25 GHz increments for a monostatic

setup φsca = 0. Figure 5.9(a) compares the RCS MoM results against the Padé

via AWE with adaptive zeta and WCAWE for q = 24 with one expansion point

at β0 = 17.75 GHz. The increased accuracy of the WCAWE algorithm over the

AWE is clearly evident as it duplicates the reference solution over the band of

frequencies f = 5.25 : 34.5 GHz with a 1% relative error, while the Padé is lim-

ited to a similar error over the band f = 10.75 : 27.5 GHz. This is confirmed

in Figures 5.9(b) and 5.10(a), which illustrate the percentage relative error and

the relative residual rq (see Equation 5.30), respectively. They demonstrate that

the range of frequencies f = 5.25 : 34.5 GHz has converged to the pre-specified

tolrq = 10−2 (1% relative error). It should be noted that the spike in error associ-

ated with the AWE in Figure 5.9(b) at approximately 10 and 30 GHz can not be

accounted for.

Figure 5.10(b) illustrates the loss of orthogonality of a computed set of mo-

ments mn at each iteration step (Equation 6.13). From this figure, it is clear that

the computed moments remain close to machine precision, ensuring that each

new moment contains additional new useful information. The total scattered

field Es
z , at an observation radius of 1m and angles θ = 0 : 2π, for a converged

approximation frequency f = 0.5 GHz is illustrated in Figure 5.11(a).

The CPU time associated with the solution of the RCS for the MoM, Padé via

AWE with adaptive Zeta and WCAWE is given in Table 5.5. It is evident from
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this table that the WCAWE significantly decreases the computational expense

associated with the direct solution of each frequency sample in a sweep analysis.

Significantly, a CPU speed-up of 1.32 is achieved using the WCAWE technique

over the MoM using q = 24 moments while duplicating the reference solution

over the entire bandwidth to within a 10% relative error.

Additionally, it is clear from this table that as the number of moments in-

creases the WCAWE technique significantly outperforms the AWE in the num-

ber of frequency points that have converged to tolrq . The Padé via AWE with

adaptive Zeta and WCAWE CPU times are similar due to the additional times

required to scale the Padé via AWE with adaptive Zeta moments.

The main computational overhead is due to the generation of the deriva-

tives, and this is clearly illustrated in Figure 5.11(b). However, as the deriva-

tives need only be calculated once, minimal computational expense is required

for all subsequent solutions. Additionally, this figure indicates the number of

frequency samples required to achieve a computational saving when compared

against generating the MoM solution at each frequency point. It should be noted

that there is a much slower increase in the computational expense for generating

higher order moments than that of the equivalent order volume EFIE illustrated

in Figure 5.4(b). Consequently, the surface EFIE can utilise higher order mo-

ments while still producing significant computational time savings.
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Figure 5.9: Case study 1 Part A: Single point expansion - Homogeneous square.
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Chapter 6

Fast frequency-sweep analysis for object
with frequency-dependent dielectrics

“Science... never solves a problem without creating ten more.”

George Bernard Shaw

In this chapter, an extension of the WCAWE to account for frequency-dependent

dielectric properties in a fast-frequency analysis is formulated. In particular, the

variation in the dielectric properties of the lanthanum substituted barium ti-

tanate microwave ceramic BaxLa4Ti2+xO12+3x in the sub 1 GHz frequency range

is investigated for various values of x in a frequency-sweep analysis. This ce-

ramic is chosen because it displays a marked variation in its dielectric properties

with frequency.

6.1 Frequency dependence of the dielectric properties

Frequency-dependent dielectric variations will occur in all material and typi-

cally follow a decrease in the real and complex part of the permittivity as the

frequency increases. As discussed in [74, 75], there are several regimes in which

the dielectric permittivity is changing. This is due to the fact, that at frequencies

approaching 1 GHz and above, the molecules of a material can no longer rotate

fast enough to remain in phase with the applied field [74,75]. Consequently, the

contribution of the molecular polarization to the net polarisation declines, which

causes a decrease in the dielectric permittivity as the applied field frequency in-

creases.

Over the past decade, much research has been carried out on the electro-

magnetic characterisation of materials over different frequency ranges [76–78].

Propagation of ultrawideband signals through wall and floors has been the main
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focus of the current research. Work described in [76–80] has tabulated the elec-

tromagnetic properties of various materials, in particular the complex dielectric

constants recorded using experimental techniques and their variation against

frequency.

To date, no research has applied MOR to problems examining the wave scat-

tering from a lossy dielectric object with complex permittivity which varies with

frequency, using the EFIE formulations. In particular, the importance of the con-

tribution of frequency dependence of these dielectric constants in the accuracy

of a MOR frequency sweep analysis has not been researched.

For a lossy dielectric, the matrix element for the impedance matrix using the

circle-cell approximation in Section 3.6.1 is given by

Zi,j =
ηπai

2
J1 (kbai)H

(2)
0 (kb |ri − rj |) i 6= j (6.1)

and

Zi,j =
ηπai

2
H

(2)
1 (kbai)− ηεc

kb (εc − ε0)
i = j (6.2)

The complex permittivity is given by [29, 81]

εc (ω) = ε′ − 
σ

2πf
= ε′ − ε′′ (6.3)

while the real permittivity is given by ε′ = εrε0, with εr being the relative permit-

tivity constant. The real part determines the ability of a material to transmit an

electric field and is determined by the ability of a material to polarise in response

to the field. The imaginary part of the complex permittivity, ε′′, represents all the

dielectric loss of the medium [29, 81]. In dielectric materials, this loss can be at-

tributed to defects, space charge formation and lattice distortions in the material

which can produce an absorption current. A measure of the power loss in the

medium is given by the ratio [29, 81]

tan δc =
ε′′

ε′
∼= σ

2πfε′
(6.4)

where δc is the loss angle. Both the real and imaginary parts are functions

of frequency and are in fact related to each other by the Kramers-Kronig rela-

tion [82–84]

ε′ (ω) =
1
π
P

∫ ∞

−∞

ε′′ (ω1)
ω1 − ω

dω1 (6.5)
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ε′′ (ω) = − 1
π
P

∫ ∞

−∞

ε′ (ω1)
ω1 − ω

dω1 (6.6)

where P means that the Cauchy principal value of the integral is used. The

Cauchy principal value is used to exclude the singularity ω1 = ω from the re-

gion of integration [83, 84]. The dependence of the real and imaginary parts of

permittivity on frequency is clearly evident in these equations. The Kramers-

Kronig relation shows that as a consequence of causality, the real part of the per-

mittivity could be related to the Hilbert transform of the imaginary part [83,84].

Causality is the principle that the state of a system depends upon its past but

not its future. It is expressed in the frequency domain as the principle that a

causal response function has no poles in the closed upper half plane [83, 84].

Cauchy’s theorem may then be used to derive the relationship between the real

and imaginary parts of such a function, as seen in the above relations.

6.2 Dielectric ceramic BaxLa4Ti2+xO12+3x

Dielectric ceramics are used extensively in microwave devices such as resonators

and antennas. These materials are required to have high dielectric constants (ε′)
and low tangent losses (tan δ) in order to satisfy the demands of high electri-

cal loads [79, 80]. Due to the precise nature of these devices, it is essential that

the frequency-dependent fluctuation of ε is accounted for in a frequency sweep

analysis. Recently, several new microwave dielectric ceramics were reported

in [80] with excellent dielectric properties that will be used as the basis for this

study. In this research, the contribution of this variation in the dielectric proper-

ties of ceramics in the MHz frequency range will be investigated.

6.3 Recursive formulation of the matrix derivatives

In order to model the frequency-dependent variations in ε evident in Equa-

tions 6.5 and 6.6, careful consideration needs to taken when differentiating Equa-

tions 6.1 and 6.2. To model this dependence, initially a third-order polynomial

is fitted to the tabulated dielectric properties of the ceramic

BaxLa4Ti2+xO12+3x listed in [80] and illustrated in Figures 6.1(a) and 6.1(b) for

two distinct values of x. An analytical expression is independently fitted for

both the real and imaginary permittivity of the form

ε′ (kb) = a′k3
b +b′k2

b +c′kb +d′ and ε′′ (kb) = a′′k3
b +b′′k2

b +c′′kb +d′′ (6.7)
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where (a′, b′, c′, d′) and (a′′, b′′, c′′, d′′) are the polynomial constants for real and

imaginary permittivity in each basis cell respectively. Using Equation 6.7 and

the identities Equation 5.24 and 5.25, the qth derivative with respect to k of the

matrix entry Zi,j (k), evaluated at kb, is given by

Z
[q]
i,j =

ηπai

2

q∑

p=0


 q

p


J1 (kbai)

[p] H
(2)
0 (kb |ri − rj |)[q−p] i 6= j (6.8)

and

Z
[q]
i,j =

ηπai

2
H

(2)
1 (kbai)

[q] − Cq i = j (6.9)

where

Cq =
1

kb (εci (kb)− ε0)


(ηεci (kb))

[q]




q∑

j=1

−



j∑

p=0


 j

p


 (kb)

[p] (εci (kb)− ε0)
[j−p]


C [q−j]





 . (6.10)

In particular

(ηεci (kb))
[q] = (η)[q]

((
a′ik

2
b + b′ikb + c′i

)[q] − 
(
a′′i k

2
b + b′′i kb + c′′i

)[q]
)

. (6.11)

The following recursive relation is used [72]

Ψ[q]
v =

1
2q

q∑

p=0

(−1)(p+2)


 q

p


Ψv−q+2p (6.12)

when differentiating the Bessel and Hankel functions, where Ψ[q]
v denotes the qth

derivative of J, Y, H(1),H(2) of order v.
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6.4 Numerical results and validations

In this section, the RCS is calculated for profiles of varying contrast with the

objective of validating the WCAWE Algorithm by comparison with the method

of moments. The effect of the frequency-dependent variation in the dielectric

properties of the ceramic BaxLa4Ti2+xO12+3x for two values of x is examined in

a frequency-sweep analysis using a two-dimensional volume EFIE formulation.

6.4.1 Case Study 1: Homogeneous cylinder - Medium 1

We initially consider a homogeneous cylinder of radius r = λ0/3 = 0.2m, cen-

tred at the origin and assumed to be embedded in free space. The frequency

dependent dielectric properties for this object are illustrated in Figure 6.1(a) for

x = 0. The structure is illuminated by a TMz wave emanating from a plane wave

source. The cylinder is discretised using m = 1020 cells and the RCS was com-

puted over a band of frequencies f = 400 : 500 MHz with 0.68 MHz increments

for a monostatic setup φ = 0.

Figures 6.2(a) and 6.2(b) show the RCS and associated percentage relative

error obtained in comparing the MoM against the Padé via AWE with adaptive

Zeta and the WCAWE for q = 15. To demonstrate the significant effect of the

frequency dependence of the permittivity ε, the RCS is calculated using the MoM

with an average value for the dielectric properties for x = 0 (Figure 6.1(a)) (ε′ =
104.46, tan δ = 0.087). This is evident in Figure 6.2(a) where this approximation

results in a significant error over the entire frequency range, thereby justifying

the need to account for the frequency dependence of the dielectric properties.

Although scaling reduces the ill-conditioning of the Padé coefficient matrix

as discussed in Section 2.4.1, these strategies still result in significant round-off

error for relatively small values of q. From Figures 6.2(a) and 6.2(b), it is clear

the WCAWE outperforms the Padé via AWE with adaptive Zeta, duplicating

the reference solution over the entire band of frequencies to within a 1% relative

error. This is confirmed in Figure 6.3(a), where the relative residual rq (Equa-

tion 5.30) demonstrates that each sample in the range f = 400 : 500 MHz has

converged to a pre-specified tolrq = 10−2.

As an indicator of the rate of convergence of the frequency points to the

tolrq = 10−2 over the iteration process, Figure 6.3(b) depicts the number of con-

verged frequency points that has been achieved in total at each iteration. From

this figure, we note that the WCAWE process results in a regular addition of

converged frequency points at each iteration. Figure 6.4(a) illustrates the loss of

orthogonality of a computed set of moments mn at each iteration step
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‖In×n −MH
n×mMm×n‖2 for all 1 6 n 6 q (6.13)

From this figure, it is clear that the computed moments remain close to machine

precision, ensuring that each new moment contains additional new useful infor-

mation.

The CPU time associated with the solution of the RCS for the MoM, Padé via

AWE with adaptive Zeta and WCAWE is given in Table 6.1. It is evident from

this table that the WCAWE significantly decreases the computational expense

associated with the direct solution of each frequency sample in a sweep analysis.

Additionally, it is clear from this table that as the number of moments increases

the WCAWE technique significantly outperforms the AWE in the number of fre-

quency points that have converged to rq. The Padé via AWE with adaptive Zeta

and WCAWE CPU times are similar due to the additional times required to scale

the Padé via AWE with adaptive Zeta moments. The main computational over-

head is due to the generation of the derivatives and this is clearly illustrated in

Figure 6.4(b). However, as the derivatives need only be calculated once, mini-

mal computational expense is required for all subsequent solutions. Addition-

ally, this figure indicates the number of frequency samples required to achieve a

computational saving.
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(a) Dielectric constant and loss tangent of BaxLa4Ti2+xO12+3x for x = 0.0.
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(b) Dielectric constant and loss tangent of BaxLa4Ti2+xO12+3x for x = 0.2.

Figure 6.1: Microwave dielectric properties of BaxLa4Ti2+xO12+3x as a function
of frequency for two specific values of x.
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(a) σTM (Φ) RCS frequency sweep comparing MoM, Padé via AWE with adaptive
zeta, WCAWE, and MoM using average valve for dielectric constant ε′ = 104.46
and tan δ = 0.087 (Figure 6.1(a) x = 0.0).
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(b) Percentage relative error for Figure 6.2(a) comparing the AWE and WCAWE to
the MoM solution.

Figure 6.2: Case study 1 Part A: Single point expansion - Homogeneous cylinder.
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Figure 6.3: Case study 1 Part B: Single point expansion - Homogeneous cylinder.
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Figure 6.4: Case study 1 Part C: Single point expansion - Homogeneous cylinder.
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6.4.2 Case Study 2: Inhomogeneous cylinder - Medium 1,2

In the second example, a similar numerical experiment is conducted for an in-

homogeneous circular cylinder composed of two concentric regions centred at

the origin, with radius (r1 = λ0/3 = 0.2m, medium 1), (r2 = λ0/6, medium 2).

The cylinder is discretised using m = 1020 cells and the RCS was computed

over a band of frequencies f = 400 : 600 MHz with 0.68 MHz increments for a

monostatic setup φ = 0.

Figure 6.5(a) shows the RCS results obtained in comparing the MoM results

against the WCAWE (q = 12) and using an average value for the dielectric prop-

erties in medium 1 and 2 with one expansion point at β0 = 500 MHz (medium

1 - ε′ = 104.46, tan δ = 0.087, Figure 6.1(a) x = 0.0 and medium 2 - ε′ = 119.43,

tan δ = 0.079, Figure 6.1(b) x = 0.2). The WCAWE algorithm duplicates the

reference solution over the band of frequencies f = 450 : 540 MHz to within an

1% relative error and degrades thereafter. Again, we note the need to include

the frequency-dependent variation of the dielectric properties in the WCAWE

process. This is shown in Figure 6.5(a) where there is a significant error over the

entire frequency range for the MoM solution based on the average value for the

complex permittivity.

In order to achieve additional bandwidth, a MWCAWE approach must be

implemented. From Figure 6.5(a), it is clear that for such an approach, we need

to place two additional expansion points. These are automatically positioned at

the centre of the two unconverged bands of frequency (β1, β2 = 425, 574 MHz

respectively) for (q1 = 6, q2 = 5). Figures 6.5(b) indicate that the Multipoint

WCAWE can provide accurate and robust fast frequency sweeps in broadband

applications.

The CPU results using the WCAWE and MWCAWE are compared with the

MoM direct calculation to demonstrate the efficiencies of these approaches, as

shown in Table 6.2. It can be seen that using the MWCAWE is approximately

2.22 times faster while achieving within 1% relative error over the entire fre-

quency range. Although multiple expansion points with low-order moments

can significantly reduce the CPU times, it should be noted that this approach

can become computationally expensive for large-scale simulations. This is due

to the need to make and invert a Z matrix at the expansion frequency for each

new expansion point.
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(b) Multipoint σTM (Φ) RCS frequency sweep using MoM, WCAWE and MoM us-
ing average value for dielectric constant (β0 = 500 MHz q0 = 12, β1 = 425 MHz
q1 = 6, β2 = 574 MHz q2 = 5).

Figure 6.5: Case study 2: Multipoint expansion - Inhomogeneous cylinder.
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Chapter 7

Conclusions

“I know not with what weapons World War III will be fought, but World War IV will be
fought with sticks and stones.”

Albert Einstein

The main focus of this work is a contribution to the development of MOR

techniques for EFIE formulations for fast-sweep analysis. Although much re-

search has been done in the area of MOR, application of these techniques to the

area of the EFIE formulation has been limited. The EFIE results in difficulties

when forming low-order accurate ROMs, due to the dense nature of the matri-

ces associated with the discretisation of IEs. In particular, this property leads

to several numerical difficulties, which result in an increase in the order of the

ROM to generate accurate approximations. Krylov-based methods suffer from

early loss of orthogonality amongst the vectors of the Krylov subspace. For

AWE variants, there is a need for significantly more moments to be matched to

achieve an accurate ROM over a wide bandwidth.

Fast-sweep problems are a very popular area of research with numerous ap-

plications. Of particular interest are contrast-and frequency-sweep analysis. In a

fast-sweep analysis, some parameter on which the original problem depends is

variable and it is required to solve this problem as the parameter changes over

a desired parameter range. MOR techniques will generate ROMs that can be

rapidly solved to characterise the parameter-dependent behaviour of the sys-

tem over the entire parameter range.

Contrast-sweep problems are associated with scattering problems where the

material properties such as the permittivity, permeability, and conductivity are

varied over a range, to produce the equivalent scattered fields. There has been

very limited research in the field of fast contrast-sweep problems. Much of the

research has been restricted to the solution of the inverse problem through the
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repeated direct simulation of the forward problem. This requires the repeated

solution of the full-scattering problem for the total fields at each step in con-

trast. Problems associated with the repeated solution of a system over a wide

bandwidth are commonplace in several areas of electromagnetics. In many ar-

eas, such as radar applications, it is necessary to determine the scattering from

an object over a wide-frequency band. Since the discretised EFIE systems are

frequency-dependent, this produces a nonlinear parameter dependence and re-

stricts the use of several MOR techniques.

In Chapter 4 the Arnoldi algorithm was introduced and the procedure for

generating ROMs using this algorithm was outlined for a contrast-sweep config-

uration. An extension of this algorithm to produce a ROM for inhomogeneous

geometries using the volume EFIE formulation was formulated. Additionally,

it was demonstrated that the Arnoldi algorithm can be used to efficiently solve

problems involving multiple source locations.

As Chapter 4 demonstrated, the Arnoldi algorithm can produce accurate

low-order approximations for a relatively low computational cost. The Arnoldi

algorithm produces the ROM through the orthogonal similarity transformation,

which projects the relevant variables onto a lower-order Krylov subspace. This

reduced-order model representation is based on the shift-invariance property

of the Arnoldi iteration. This means that the Arnoldi algorithm is applied only

once for some particular choice of contrast profile matrix A. Due to the shift-

invariance, the resultant Arnoldi matrix can be used for a whole range of con-

trast profiles. The computational expense for any subsequent simulation with

an alternative contrast distribution is reduced to the formation of a revised Ã

and the inversion of a matrix of order q ¿ m.

The approximate extension of the Arnoldi algorithm to deal with inhomoge-

neous structures is a consequence of the approximate subspace generated. This

has been shown to be a valid approximation due to the independence of the

columns of the generated orthonormal matrix, imposed by the re-orthogonalisation

process. Notably, this approximation was demonstrated to produce a significant

reduction in the system size for varying geometries, sizes and contrast profiles

while still resulting in an accurate approximation over a wide contrast range.

Finally, a process for monitoring the linear independence of the generated

Arnoldi vectors has been applied in conjunction with a relative residual in order

to automate the termination of the Arnoldi iteration.

In Chapter 5, a fast frequency-sweep method for a two-dimensional volume

EFIE formulation for inhomogeneous lossy dielectric objects was demonstrated,

using the WCAWE approach. Additionally, this algorithm was applied to pro-
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duce a ROM for three-dimensional surface EFIE formulation, to achieve fast and

accurate frequency-sweep calculations of electromagnetic wave scattering from

perfectly conducting three-dimensional objects.

The WCAWE method provides the flexibility needed to handle efficiently

the shortcoming of the AWE with Padé; specifically, the loss of accuracy as q

increases due to the explicit moment-matching process and the ill-conditioned

Padé coefficient matrix. We have demonstrated that a significant reduction in

the system size can be achieved while still resulting in an accurate approxi-

mation over a wide frequency range. We considered homogeneous and inho-

mogeneous geometries of various sizes and contrasts over a wide bandwidth

and compared the RCS using the MoM with AWE and the WCAWE algorithm.

Practical implementation issues were addressed, and numerical examples were

given to illustrate the accuracy and robustness of the proposed methods. These

examples demonstrated that the WCAWE can produce a numerically stable and

robust high-order approximation from a single expansion point as compared

to the Padé via AWE with adaptive zeta. It has been shown that, in order to

achieve a much broader bandwidth, a multipoint approach is necessary to pro-

duce an efficient and accurate response throughout the entire bandwidth. Fi-

nally, a process for monitoring the linear independence of the generated moment

vectors was applied, in conjunction with a relative residual in order to automate

the multipoint approach.

The final contribution was to achieve a fast full-wave frequency-sweep analy-

sis using the WCAWE technique for materials with frequency-dependent dielec-

tric properties. Over the past decade, much research has been carried out on the

electromagnetic characterisation of materials over different frequency ranges.

Propagation of ultrawideband signals through walls and floors has been the

main focus of the current research. To date, no research has applied MOR to

problems examining the wave scattering from a lossy dielectric object with com-

plex permittivity which varies with frequency, using the EFIE formulations. In

particular, the importance of the contribution of frequency dependence of these

dielectric constants in the accuracy of a MOR frequency sweep analysis has not

been researched.

We used experimental tabulated results showing the electromagnetic prop-

erties of various materials. Specifically, the complex dielectric constants were

recorded and their variation against frequency. We then applied a third-order

polynomial to achieve an analytical expression for the real and imaginary per-

mittivity independently for each material using the tabulated material constants.

Using this analytical expression and a recursive derivative formulation, a fast
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frequency-sweep analysis that takes account of the frequency dependence of the

permittivity and conductivity parameters was achieved. Various configurations

of homogeneous and inhomogeneous cylinders of differing radii and contrasts

were analysed. By comparing the RCS using the MoM with an average value

for the dielectric constant and the loss tangent against the frequency-dependent

counterpart, the significant effect of the frequency dependence of the permittiv-

ity ε and conductivity σ was demonstrated.

Finally it should be noted that all numerical formulations employed in this

thesis were validated against the exact Mie series solution.

7.1 Future study

Krylov space methods have been shown to be very well suited for reducing the

size of linear systems. However, as with the WCAWE algorithm, more efficient

and stricter error controls need to be developed to help in the termination of the

iterative process.

The application of Krylov-based methods when there are nonlinear depen-

dencies and largescale simulations is an area of research that requires significant

work. One way to enhance the performance of Krylov-based model reduction

could be to execute the algorithm on multiple processors. One can break the al-

gorithm into portions that can be treated in a parallel fashion. There are at least

two types of exploitable parallelism within model reduction via projection. The

first is the parallelism that exists in the basic matrix operations of matrix-vector

products. The second type arises from the unions of the subspaces in multipoint

expansions; accordingly, the interpolation points could be distributed across the

processors. These strategies could result in two levels of parallelism where the

second type of parallelism could be combined with that in the basic matrix op-

erations.

The solution of symmetric matrix systems is computationally less expensive

than that of non-symmetric systems, and results in considerably lower storage

costs. Non-symmetric systems can be preconditioned to produce corresponding

symmetric matrix systems. The use of generating ROM, from such symmetric

matrix systems, using Krylov based algorithms is an area which merits further

investigation.

As with the WCAWE, the Arnoldi algorithm required some tuning to ad-

dress some practical implementation issues. These include finding more robust,

efficient termination schemes to find the value needed for q and creating adap-

tive interpolation point strategies.

In relation to the WCAWE further investigation is required to find ways to
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decrease the number of moments required to achieve a wide bandwidth using a

single-point analysis. This may be achieved by using the WCAWE algorithm in

conjunction with other techniques such as the model-based parameter estima-

tion approach [19]. Future work should analyse the application of WCAWE to

largescale problems such as three-dimensional structures. This would require

orchestrating several different approaches to make the WCAWE procedure vi-

able, such as incorporation of sparsification techniques, iterative methods, pre-

conditioning, higher-order basis functions and parallelisation.

Extension of the full-wave frequency-sweep analysis using the WCAWE tech-

nique to consider three-dimensional structures with frequency-dependent di-

electric properties could also be investigated. Comparison of these results against

experimental and ray-based techniques would be another area of worthwhile

research. There is a need to understand how the dielectric material proper-

ties over a bandwidth will influence device functionality and design. Conse-

quently, a comprehensive compilation of dielectric properties over the complete

microwave range is required. This database would be valuable in designing

accurate simulators that take into account the significant contribution of this fre-

quency dependence of dielectric values.
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Appendix A

Basic definitions and proofs

This Section introduces some basic definitions and proofs that are used exten-

sively throughout this work. In particular , it shows how to produce an ortho-

normal basis for a subspace and gives the background to orthogonal projection

techniques.

Span

Definition A.0.1. Given a collection of vectors U = {u1,u1, . . . ,uq}, the set of

linear combinations of these vectors is a subspace and is referred to as the span

of U [36, 85]:

span{U} = span{u1,u2, . . . ,uq} =
q∑

n=1

αnun. (A.1)

Range

The range of a matrix R (Z) is defined as the span of the columns of Z.

Independence

A set of vectors are linearly independent if none of them can be written as a

linear combination of a finite number of many other vectors in the collection [36,

85].

Definition A.0.2. A set of vectors U = {u1,u1, . . . ,uq} is linearly dependent if

there exist some non-zero αq for 1 ≤ q ≤ n such that

q∑

n=1

αquq = 0. (A.2)
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Otherwise, the set U is called linearly independent.

Basis

A basis is a set of vectors that, in a linear combination, can represent every vector

in a given vector space, and such that no element of the set can be represented

as a linear combination of the others [36,85]. In other words, a basis is a linearly

independent spanning set.

Definition A.0.3. A basis U of a subspace W is a linearly independent subset of

W that spans W.

Invariant Subspace

Definition A.0.4 ( [36, 44]). An invariant subspace W of Z satisfies Zu ∈ W for

all u ∈ W.

Proposition A.0.1 ( [36,44]). Let Z be m×m, let U = [u1,u2 . . . ,uq] be any m× q

matrix with independent columns, and let W = span (U) (the q-dimensional

space spanned by the columns of U). Then W is an invariant subspace if and

only if there is an q × q matrix H such that ZU = UH.

Orthogonal Basis

A set of vectors U = {u1,u2, . . . ,uq} is said to be an orthogonal set if each pair

of distinct vectors from the set are orthogonal, that is, if uH
j uq = 0 whenever

j 6= q [85, 86].

Theorem A.0.1 (Orthogonal Basis [86]). If U = {u1,u2, . . . ,uq} is an orthogonal

set of nonzero vectors, then U is linearly independent and hence is a basis for

the subspace spanned by U.

The set of vectors U are said to be orthonormal if every vector of U has a 2-norm

equal to unity [85, 86].

Orthonormal Matrix

Theorem A.0.2 ( [85, 86]). An m × n matrix U has orthonormal columns if and

only if UHU = I.

This theorem is particularly usefully when applied to square matrices. An or-

thonormal matrix is a square invertible matrix U such that U−1 = UH . A square

matrix U ∈ Cn is unitary if U−1 = UH .
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Orthonormal Projection

Theorem A.0.3 ( [85, 86]). If {u1, . . . ,un} is an orthonormal basis for a subspace

W, then

projWz = (z · u1)u1 + (z · u2)u2 + · · ·+ (z · un)un

=
(
uH

1 z
)
u1 +

(
uH

2 z
)
u2 + · · ·+ (

uH
n z

)
un (A.3)

If U = [u1, . . . ,un], then

projWz = UUHz (A.4)

is the orthogonal projection of a vector z onto the subspace W.

Similarity Transformations

Definition A.0.5 ( [87]). Let U be a square nonsingular matrix having the same

size as a matrix Z. We say that the matrices Z and U−1ZU are similar, and the

transformation from Z to U−1ZU is called a similarity transformation. If U is

orthogonal

H = U−1ZU = UHZU (A.5)

is an orthogonal similarity transformation. Moveover, we say that the two ma-

trices are unitarily similar if U is unitary.

By using similarity transformations, it is possible to reduce a given matrix to any

one of several similar, or canonical forms [36,44,65]. Of particular interest in this

thesis is the similarity transformation to Hessenberg form. Two similar matrices

share the same spectrum and the same characteristic polynomial. As described

above in Theorem A.4, any similarity transformation is also a change of basis

operation [65]. If U is orthogonal, square and nonsingular, then λ (Z) = λ (H)

and we say that Z and H are similar. In this context, U is called an orthogonal

similarity transformation and W is an invariant subspace for Z [36, 44].

Gram-Schmidt Process

The Gram-Schmidt process is an algorithm for producing an orthogonal or or-

thonormal basis for any nonzero subspace [36, 85, 86].
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Example A.0.1 ( [85]). Let W = span{z1, z2, z3}. Construct an orthogonal basis

for W.

Solution. Let v1 = z1 and W1 = Span{z1} = Span{v1}. Let v2 be the vector

produced by subtracting from z2 its projection onto the subspace W1. That is,

let

v2 = z2 − projW1
z2

= z2 − z2 · v1

v1 · v1
v1 (A.6)

where v2 is the component of z2 orthogonal to z1 and {v1,v2} is an orthogonal

basis for the subspace W2 spanned by z1 and z2. Now let v3 be the vector

produced by subtracting from z3 its projection onto the subspace W3. Use the

orthogonal basis {v1,v2} to compute the projection onto W2

projW2
z3 = Projection of z3 onto v1 + Projection of z3 onto v2

=
z3 · v1

v1 · v1
v1 +

z3 · v2

v2 · v2
v2. (A.7)

Then v3 is the component of z3 orthogonal to W2, namely

v3 = z3 − projW2
z3. (A.8)

See Figure A.1 [85] for a diagram of this construction. Observe that v3 is in W,

because z3 and projW2
z3 are both in W. Thus {v1,v2,v3} is an orthogonal set of

nonzero linear independent vectors in W. Hence, by Theorem A.0.1 {v1,v2,v3}
is an orthogonal basis for W.

The generalised Gram-Schmidt formula for producing an orthogonal basis {v1,v2, . . . ,vq}
is given by

vq = zq − zq · v1

v1 · v1
v1 − · · · zq · vq−1

vq−1 · vq−1
vq−1. (A.9)

An orthonormal basis can be constructed from this orthogonal basis by normal-

ising vq, to form the vector uq = vq/‖vq‖, to obtain a vector of length 1 at each

step of the construction leading to replacement of Equation A.9 with

vq = zq − (zq · u1)u1 − · · · (zq · uq−1)uq−1. (A.10)

This is the basis for the classical Gram-Schmidt (CGS) and modified Gram-

Schmidt (MGS) orthogonalisation processes outlined in Tables A.1 and A.2, re-
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spectively. These algorithms are mathematically equivalent. However, the CGS

method is numerically unstable in floating point arithmetic when the columns

of U are nearly linearly dependent resulting in loss of orthogonality amongst the

computed un vectors. A rearrangement of the calculation in line 4 of Table A.1

results in the MGS, which yields a more stable computation. As such the MGS

will be the primary orthogonalisation process used in the Arnoldi algorithm.

Figure A.2 illustrates an example of the modified Gram-Schmidt process when

Z is 2× 2 matrix.
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for n = 1, . . . , q
vn = zn (compute next vector spanning the subspace) ;
For i = 2, . . . , n

hi,n= uH
i zn (compute projections of new vector zn onto the subspace);

vn = vn − hi,nui (subtract the projections to make vn orthogonal to the previously
end i calculated orthonormal vectors ui);
hn,n = ‖vn‖2

if hn,n = 0 Quit (vn is linearly dependent on v1,v2, . . . ,vn−1) ;
un = vn/hn,n (make un a unit vector) ;

end n.

Table A.1: The classical Gram-Schmidt (CGS) algorithm.

for n = 1, . . . , q
vn = zn (compute next vector spanning the subspace) ;
for i = 2, . . . , n

hi,n = uH
i vn (compute projections of new vector vn onto the subspace);

vn = vn − hi,nui (subtract the projections to make vn orthogonal to the previously
end i calculated orthonormal vectors ui);
hn,n = ‖vn‖2

if hn,n = 0 Quit (vn is linearly dependent on v1,v2 . . . ,vn−1) ;
un = vn/hn,n (make un a unit vector) ;

end n.

Table A.2: The modified Gram-Schmidt (MGS) algorithm.
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Figure A.1: Example A - The construction of v3 from z3 and W2.
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Figure A.2: Modified Gram-Schmidt when Z is 2× 2 matrix.
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Appendix B

Acronyms

AGAWE Alternative Galerkin Asymptotic Waveform Evaluation

AWE Asymptotic Waveform Evaluation

CEM Computational Electromagnetic

CG Conjugate Gradient

CG− FFT Conjugate Gradient - Fast Fourier Transform

CGNE− FFT Conjugate Gradient Normal Equation - Fast Fourier Transform

CGS classical Gram-Schmidt

EFIE Electric Field Integral Equation

EM Electromagnetic

ETAS Expanded Taylor Approximation System

FEM Finite Element Method

FDM Finite Difference Method

FDTD Finite-Difference Frequency Domain

FMM Fast Multipole Method

GAWE Galerkin Asymptotic Waveform Evaluation

GE Gaussian Elimination

IE Integral Equation

MBPE Model-based parameter estimation

MGS Arnoldi - modified Gram-Schmidt
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MGSR Arnoldi - modified Gram-Schmidt with re-orthogonalisation

MWCAWE Multipoint Well-Conditioned Asymptotic Waveform Evaluation

MoM Method of Moments

MOR Model-order Reduction

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PEC Perfect Electric Conductor

PFFT Precorrected Fast Fourier Transform

POD Proper Orthogonal Decomposition

PVL Padé via Lanczos

PVA Projection via Arnoldi

RCS Radar Cross Section

RF Radio Frequency

RMM Residual Minimising Methods

ROM Reduced-order Model

SIE Surface Integral Equation

SIMGS Shift and Invert Arnoldi modified Gram-Schmidt

SPPT Segregation by primary phase factors

TBR Truncated Balanced Realisation

TM Transverse Magnetic

VIE Volume Integral Equation

WCAWE Well-Conditioned Asymptotic Waveform Evaluation
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