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Abstract 
Magnetorheological (MR) fluids possess rheological properties, which can be changed 
in a controlled way. These rheological changes are reversible and dependent on the 
strength of an excitation magnetic field. MR fluids have potentially beneficial 
applications when placed in various applied loading (shear, valve and squeeze) modes. 
The squeeze mode is a geometric arrangement where an MR fluid is sandwiched 
between two flat parallel solid surfaces facing each other. The distance between these 
two parallel surfaces is called the gap size. These surfaces are either pushed towards or 
pulled apart from each other by orthogonal magnetic-induced forces. In this study, a test 
rig was designed and built to perform the experiments with three different types of MR 
fluids. One type of water-based and two types of hydrocarbon-based MR fluids were 
activated by a magnetic field generated by a coil using different magnitudes of DC 
electrical current. To finalize the design, a Finite Element Method Magnetics (FEMM) 
was used to predict the magnetic field strength throughout the MR fluids. For each trial, 
combination of three process parameters were experimented in both compression and 
tension modes on each type of MR fluid. The three process parameters were the electric 
current applied to the coil, the initial gap size and the compressive or tensile speed. In 
every test, the speed and the current in the coil were kept constant, while the 
instantaneous compressive and tensile forces were recorded. Experimental results 
showed that MR fluids have distinct unique behaviour during the compression and 
tension processes. The behaviour of MR fluids was dependent on the relative movement 
between the solid magnetic particles and the carrier fluid in both squeeze modes. A high 
ratio of solid particles to carrier liquid in the MR fluid is an indication of high magnetic 
properties. The water-based MR fluid had a relatively large solids-to-liquid ratio. At a 
given applied current, significant increases in compressive and tensile stresses were 
obtained in this fluid type. On the other hand, the hydrocarbon-based MR fluids had 
relatively lower solids-to-liquid ratios, whereby, less significant increases in 
compressive and tensile stresses were obtained. The magnetic field strength was 
proportional to the applied current. Consequently, the MR effect, in terms of resulting 
stresses, was directly proportional to the current. When plotting stress against strain for 
each experiment, the slopes of the curves were found to be larger in general when the 
initial gap sizes were smaller. This was due to higher magnetic fields generated in 
smaller initial gap sizes. However, the stress-strain relationships were slightly affected 
by changing the compressive or tensile speeds. In general, the compressive stresses were 
much higher than the tensile stresses for the same experimental parameters throughout 
this study. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

 

 

 

 

 

 



 

1.0 Introduction 

 

Controllable fluids are materials that respond to an external excitation field. 

When exposed to an electric or magnetic field, their rheological behaviour exhibits 

remarkable changes. These smart materials are commonly referred to as 

Magnetorheological (MR) fluids, Electrorheological (ER) fluids and ferrofluids. 

Amongst these smart fluids, MR fluids gain more attention since they can produce the 

highest stress, which can be applied into many applications [1, 2]. An MR fluid is a 

suspension of micron-sized magnetically soft particles in a carrier liquid, which can 

exhibit dramatic changes in rheological properties. The change from a free-flowing 

liquid state to a solid-like state is reversible and is dependent on the presence of a 

magnetic field. Iron powder is the most popular material used as particle inclusion due to 

its high saturation magnetization. Under the influence of a magnetic field, these iron 

particles are arranged to form very strong chains of “fluxes” with the pole of one particle 

being attracted to the opposite pole of another particle [3]. Once aligned in this manner, 

the particles are restrained from moving away from their respective flux lines and act as 

a barrier preventing the flow of the carrier fluid. 

 

 MR fluids can be operated in three working modes depending on the type of 

deformation employed such as shear mode, valve mode and squeeze mode [2, 4, 5]. In 

the case of the shear mode, the MR fluid is located between surfaces moving in relation 

to each other with the magnetic field flowing perpendicularly to the direction of motion 

of these shear surfaces. In the valve mode, the MR fluid is forced to flow directly 

between static plates, while in the squeeze mode, the MR fluid is squeezed by a normal 

pressure in the direction of the magnetic field under dynamic or static (compression or 

tension) loadings. Details regarding these working modes are explained in the next 

chapter.  

 

 

1.1 Motivation of study 

 

Many potential applications of MR fluids have been suggested in the literature. 

Applications have been demonstrated in the automotive industry where benefits could be 
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achieved in parts such as clutches, brakes, dampers and actuators [2, 6, 7]. Most of the 

researchers in the field assume a geometrical arrangement referred to as shear mode in 

their design, but it was found that the magnitudes of the stress in systems with ‘shear 

mode’ geometry are too low to be of value in the potential applications listed above. 

Concurrent with the extensive investigation of the shear strength of the MR fluids, 

researchers started to search for other techniques to take advantage of utilizing MR 

fluids to achieve higher forces. Therefore, the squeeze mode appeared to be one of the 

most interesting modes to be investigated. The geometrical arrangement designated 

squeeze mode can produce compressive and tensile stresses which are much higher and 

this has generated new interest in this approach.  

 

The values of compressive stress, obtained with MR fluids, are similar to those 

reported in experimental studies using ER fluids [8-10]. Tian et al. [8] studied the 

performance of ER fluid under different working modes. It was reported that the 

compressive stress was the greatest among other stresses, whilst tensile yield stress was 

higher than shear yield stress. These results agreed well with computer simulation on the 

employment of single chain or a column of Body Centred Tetragonal (BCT) unit cells 

structure. Compressive loading was found to transfer the largest force from plate to plate 

with computer simulation modelling [9]. Monkman [10] has considered the compressive 

effect for different type of ER fluids and observed that the hardness modulus of the 

fluids increased as the electrode gap size was reduced. Additionally, Tian et al. [11] have 

investigated a stepwise compression of ER fluids that contained zeolites and silicones in 

squeeze mode. In order to understand the tensile stress, Tian et al. [12] introduced a 

normalized method to differentiate the tensile behaviour of the ER fluids under various 

applied electric field strengths. Other co-workers [13] reported that the tensile behaviour 

of ER fluids was proportional to the electric field for several values of electric field 

power depending on the range of the applied voltages. Under squeeze mode, many 

factors contribute to variable stresses such as ratio of solid suspension to carrier liquid 

[10], initial gap distances [14] and external field strength [3, 15, 16]. In another study 

done by Choi et al. [17] on poly(methylaniline) based ER fluid, with the factors 

previously mentioned, it was found that compressive speed also affected the 

compressive and tensile stresses. Furthermore, the suspension particle size can cause a 
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significant effect on the yield stress. Generally, a higher stress, can be obtained with 

coarser particles sizes [18].  

 

Despite the fact that MR fluids have been investigated repeatedly with the 

squeeze mode geometry, controlling vibration of rotor systems was dealt with in many 

of the studies. Forte et al. [19], Ahn et al. [20] and Carmignani et al. [21] developed an 

MR squeeze film damper system for rotor applications. The performance of the squeeze 

film damper in dynamic behaviour in relation to the magnetic field strength was studied. 

Forte et al. [19] have carried out a preliminary test to obtain the optimum conditions for 

each steady rotational speed of MR squeeze film damper. Later, Carmignani et al. [21], 

continued to work on the effectiveness in dampening the rotor vibrations and controlling 

its dynamic characteristics. Furthermore, Wang et al. [22] investigated the dynamic 

performance of a similar system, and in a later study, Wang et al. [23] analyzed the 

mechanical properties of the film and the unbalanced response characteristics of the MR 

squeeze film in the damper-rigid rotor system.  

 

In another experimental investigation done by Vieira et al. [24], the force-

displacement curve was greatly affected by the magnetic field strength, frequency and 

displacement factors in squeeze mode under oscillatory conditions. In terms of the forces 

produced by squeeze mode; fluid film force and magnetic pull force are also affected by 

the dynamic performance of an MR fluid squeeze film damper [22]. Even though 

tension and compression behaviour of the MR fluids were observed during these 

experimental studies, individual investigation on these behaviour still needs to be 

performed. A thorough study of the stress-strain relationships in compression and 

tension of MR fluids under squeeze mode is still not complete. In consequence of the 

potential commercial impact of the MR fluids, it is essential to understand the behaviour 

of MR fluid under squeeze mode in order to determine the desirable or achievable 

stresses. Therefore, a systematic and thorough further study of MR fluid in squeeze 

mode with various factors needs to be conducted.  
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1.2 Purpose of study 

 

MR fluids show excellent properties as a result of rapid, dramatic and reversible 

change of the consistency in magnetic field. The preference for either type of fluid or 

working mode depends on the requirements of the sought application. Thus, 

investigation of the behaviour of MR fluids in tension and compression condition are 

interesting for both academic researchers and engineers. The potentials of an MR fluid 

can only be fully exploited if the property profile and the design of the device are 

accommodated with each other. Therefore, the main objective of this study is to 

investigate the behaviour of MR fluids in squeeze mode. More specifically, the aims of 

this study can be summarized as follows:  

 

A. To design and build a test rig in order to carry out the compression and tension 

tests under squeeze mode. 

 

B. To simulate a magnetic field generated by a coil to achieve the required magnetic 

field strength. 

 

C. To study the behaviour of MR fluids under compression and tension in terms of 

stress-strain relationship. 

 

D. To investigate the influence on the stress-strain curve due to different factors 

such as, type of carrier liquid, applied current, initial gap size and compressive 

speed. 

 

E. To compare between compressive and tensile stresses of the MR fluids. 

  

 

1.3 Outline of thesis 

 

This thesis is organized in five chapters. A brief and comprehensive overview of 

the main points of the research process is shown in figure 1.1. The thesis contains an 

introductory chapter which gives a brief introduction on MR fluids and their behaviour 
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under the influence of magnetic fields to the readers who are not already familiar with 

the subject. This chapter also talks about previous research findings leading to the 

objectives of this study. Each chapter in this thesis ends with a brief summary outlining 

the achievements and findings that were established in the chapter. The remainder of this 

thesis is organized as follows: 

 

Chapter 2:  Field responsive fluids that undergo significant responses leading to 

consequent rheological changes upon the influence of an external field 

are reviewed in this chapter.  

 

Chapter 3:  The theoretical background which covers basic principles and 

rheological properties of MR fluids is described. Major significance is 

given to the individual working modes and their applications.  

 

Chapter 4: The simulation and experimental procedure related to the test rig design 

is covered in order to obtain the best magnetic field strength generated 

by a coil for optimum performance in squeeze mode. 

 

Chapter 5: This chapter is provided with results and discussions on the behaviour 

of MR fluids under compressive and tensile loadings. 

 

Chapter 6: This chapter is furnished with results and discussions of each factor that 

contributes to the effects on the performance of MR fluids. 

 

Chapter 7: This chapter is presented with conclusions and highlights of the study 

contribution, and is concluded with recommendations for future 

research work. 
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Figure 1.1: Summary of the research process in chapter 1. 

 

 

 

 

 6



 

 

 

 

 

CHAPTER 2 
 

FIELD RESPONSIVE FLUIDS 
 

 

 

 

 

 

 

 

 



 

2.0 Introduction  

 

Smart materials, such as rheological materials exhibit a perceptible change of a 

certain physical behaviour in reaction to external stimuli. In this chapter, a brief 

description about smart materials, their properties and some of the theory of the 

magnetism are discussed.  

 

 

2.1 Smart materials 

 

In the earlier development, most eras of technological development have been 

connected to utilize and alter the use of materials such as the stone, bronze and iron 

ages. Until relatively recent years, the vigorous technological change in many respects 

has switched towards information technology. These changes are generously 

demonstrated by the ability of microprocessors to control daily domestic appliances. 

However, the generation of the information technology has stimulated material sciences 

and led to a new family of engineered materials and structures. Smart materials are 

materials that have multiple properties (chemical, electrical, magnetic, mechanical and 

thermal), or can transform energy (photovoltaic, thermo-electric, piezoelectric, 

photoluminescent, and electrostrictive) which can be altered or tuned using external 

fields [25]. In general, smart materials can be divided into many categories based on 

their stimulus and response as shown in table 2.1. 
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Table 2.1: Classification of the smart materials and their response. 

Stimulus Material Class Response 

Shape Memory Alloys [26] Mechanical strain 
Temperature 

Pyroelectrics [27] Electric polarization 

Electric Current Piezoelectrics [28, 29] Mechanical strain 

Electroluminescent Materials [30] Light emission 

Electrochromic Materials [31] Colour change 

Electrorheological Materials [1, 32]  Rheology change 
Electric Field 

Electrostrictors [33] Mechanical strain 

Electric Field / pH  Electroactive Polymers [34] Mechanical strain 

Magnetorheological Materials [4, 35] Rheology change 

Ferrofluids [36] Rheology change Magnetic Field 

Magnetostrictors [37, 38] Mechanical strain 

 

 

MR materials are field responsive rheology under smart materials, where their 

properties may be controlled by the execution of an external magnetic field. The 

materials are currently enjoying renewed interest within the technical community in 

terms of the fundamental and applied research. Usually, MR materials comprise of MR 

fluids, foams and elastomers [39]. The focus on MR fluids makes possible numerous 

applications in the automotive, aerospace and other sectors of technology [40], and has 

attracted much interest of many researchers in recent years [41-44]. 

 

 

2.2 Field responsive fluids 

 

Field responsive fluids are materials that undergo significant responses leading to 

consequent rheological changes upon the influence of an external field. There are two 

main classes of smart fluids; MR fluids and ER fluids under the influence of applied 

magnetic and electric fields, respectively. The fluids comprise a carrier liquid, such as a 

dielectric medium, including mineral oil or hydrocarbon oil, and solid particles. MR 
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fluids require the use of solid particles that are magnetizable, and ER fluids make use of 

solid particles responsive to an electric field. In addition, ferrofluids (magnetic liquid) 

also can be categorized as smart materials. In the presence of a magnetic field, colloidal 

magnetic fluids retain their liquid properties. They do not generally exhibit the ability to 

form particle chains or develop a yield stress. However, ferrofluids experience a body 

force on the entire fluid, and this force causes the fluids to be attracted to regions of high 

magnetic field strength. Table 2.2 shows the comparison of some of the properties 

between them. In a general manner, MR and ER fluids demonstrate specific advantages 

or disadvantages which can be considered as complementary rather than competitive. 

They have their own markets and applications in different fields [45, 46]. For instance, 

one of the advantages of MR fluids is higher stresses that they can withstand, while the 

major advantage of ER fluids is a smaller size of the systems that they can be developed 

with them.  

 

Table 2.2: Comparison the properties of MR fluids, ER fluids and ferrofluids. 

No. Items 
MR fluids  

[18, 42, 47] 

ER fluids  

[48] 

Ferrofluids 

[49] 

1 Particulate material 
Ferromagnetic, 

ferrimagnetic, etc 

Polymers, 

Zeolites, etc 

Magnetite, 

hematite, etc 

2 Particle size 0.1 – 10 μm 0.1 – 10 μm < 10 nm 

3 Carrier fluid 

Water, synthetic oils, 

non-polar and polar 

liquids, etc 

Oils, dielectric 

gel and other 

polymers 

Aqueous 

paramagnetic 

salt solution 

4 Density (g/cc) 3-5 1 -2 1-2 

5 
Off viscosity  

(Pa.s-1 @ 25 °C) 
0.1 to 0.3 0.1 to 0.3 0.002-0.05 

6 Required field ~3 kOe ~ 3 kV/mm ~ 1 kOe 

7 
Yield strength 

(Field)  
100 kPa 10 kPa 

( ) 2
)0(
≈

Δ
η
η B  

8 Device excitation 
Electromagnets and / 

or permanent magnet 
High Voltage 

Permanent 

magnet 
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One benefit of these materials is that electromechanical actuators can be 

appropriately designed and fabricated. The utilization of MR or ER fluids can work to 

rapidly respond in active interface between sensors or controls and mechanical outputs. 

The fluids can be employed in vibration isolation systems as an example of precision 

surface shaping/polishing machines, mechanical clutches, brakes damping devices, 

building seismic isolators, torque/tension controllers, gripping/latching devices and fluid 

flow controllers [50]. 

 

 

2.2.1 Magnetorheological fluids 

 

MR fluids can be described as magnetic field responsive fluids which are part of 

a group of relatives known as smart or actively controllable fluids. The discovery of MR 

fluids is credited to Jacob Rabinow at the US National Bureau of Standard in 1948 [51]. 

MR fluids consist of magnetically permeable micron-sized particles dispersed 

throughout the carrier medium either a polar or non-polar fluid, which then influence the 

viscosity of the MR fluids. On the other hand, MR fluids are controllable fluids that 

exhibit dramatic reversible change in rheological properties (elasticity, plasticity or 

viscosity) either in solid-like state or free-flowing liquid state depending on the presence 

or absence of a magnetic field. In the presence of an applied magnetic field, the 

suspended particles appear to align or cluster and the fluid drastically thickens or gels. 

The flow resistance (apparent viscosity) of the fluid is intensified by the particle chain. 

When the magnetic field is removed, the particles are returned to their original 

condition, which lowers the viscosity of the fluid. The fluid structure is dependent on 

many factors such as volume fraction, magnetic field strength and carrier fluid. The fluid 

structure is also responsible for a rapid formation and is reversible either in solid-like 

state or free-flowing liquid state. The changes of solid-liquid state or the consistency or 

yield strength of the MR fluid can be precisely and proportionally controlled by altering 

the strength of the applied magnetic field. These characteristics provide simple, quiet 

and rapid response interfaces between electronic control and mechanical systems.  
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Most of the researchers used carbonyl iron as particles scatter in oil medium, for 

instance silicone oil [18, 22, 52, 53], hydrocarbon oil [54], mineral oil [55-57] and 

hydraulic oil [58]. The material also can be produced at a relatively lower cost as 

compared to MR fluids that include hydrophobic-oil type fluids as a carrier fluid.  Iron 

powder is the most popular material used as particle due to its high saturation 

magnetization about 2.1 T [59]. Those particles are arranged in a proper order from one 

pole to another pole of a magnet to form very strong chains or fluxes [3]. Initially, in the 

absence of the magnetic field, the iron particles in the space between two walls move 

unrestrained. In the presence of the magnetic field, the iron particles are organized along 

the direction of the applied magnetic field. These particles are constructed into a uniform 

polarity and connected to the walls [60]. Once aligned in this manner, the iron particles 

are refrained from moving out of their respective flux lines and act as a barrier to an 

external force. The yield stress, in this case, symbolizes the maximum of the stress-strain 

relationship, and the chains will break when the stress has reached its maximum which 

allows the fluid to flow even if the magnetic field is still applied [61]. 

 

MR and ER fluids use feedback information such as rapid response interfaces 

between electric controls and mechanical systems to vigorously change the material 

behaviour. By changing the material behaviour, the performance of the devices is 

intensified to a certain level that unattainable using conventional materials and devices. 

MR fluids can be considered as unique smart materials because they produce 

milliseconds response time [39, 62]. The fluids may be used in both small and large 

displacement devices in order to generate very large forces and torques without reliance 

on the velocity of the working systems. The performance of the fluids depends on the 

fluids’ structure in connection with many factors such as volume fraction, carrier fluid 

and particle size [49]. The development and success of MR fluids in recent years are 

mainly due to the rapid research devoted to improving the technology into one that is 

commercially viable. Research studies done by industries such as Lord Corporation and 

Liquids Research Limited and all over the world have contributed to the MR 

technologies in order to be used in a wide variety of applications [47, 63].  
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2.2.2 Electrorheological fluids 

 

One of the attractive field-responsive fluids, similar to MR fluid, is ER fluid 

which also exhibit rheological changes or ability to alter their flow under the influence 

of an applied electric field. In the earlier era, ER fluids have long been known as 

electroviscous fluids [64], where rheological effects were used to depict the changes 

observed in the mechanical properties of the fluid due to electrostatic stress. 

Nevertheless, the initial discovery of electrorheological fluids is credited to the 

American inventor Willis M. Winslow [65] who, in the 1947 described the effects of ER 

fluids in his patent. He also discussed in details the ER effects (also known as Winslow 

effect) in his work with regard to the mechanism of induced fibration [66]. Subsequent 

studies on the ER fluids and their effect gained much more attention. The ER effect was 

ascribed to Klass and Martinek [67] regarding the study on electroviscous properties of 

suspensions, where a large change in electroviscosity as a function of many parameters 

was found.  

 

ER fluids comprise of electrical polarizable particles dispersed in carrier fluid 

(electrically insulating oil) with complement of additives and/or surfactants [68, 69]. 

Basically, an ER fluid consists of particles containing mobile charge carriers such as 

polyacene quinines, polymeric electrolytes of Bayer, carbonaceous fluid of Bridgestone, 

zeolites and polyelectrolytes [70]. For a certain particle like silica, in order to increase 

the performance of ER effect, polyelectrolytes are added for the purpose of absorbing 

water onto the particulate material. This process increases the electrostatic force of 

attraction between the particles, where the effect decreases as the amount of water 

absorbed decreases [71, 72]. Therefore, at the initial stage, ER fluids had not created 

much interest until Block and Kelly [73] discovered water-free ER fluids. These 

materials are classified as intrinsically polarizable materials. For instance ferroelectric, 

inorganic, semiconductor polymer, metal, coated conductor and liquid crystal materials 

are water-free ER materials, which perform as a function of bulk polarization or 

interfacial polarization [74]. Furthermore, particle shape was also found to affect the 

performance of ER fluids [75]. 
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The working mechanism of MR fluids is assumed to be similar to that of ER 

fluids except the MR fluids are limited by magnetic saturation while ER fluids are 

limited by dielectric strength [66]. When an electric field is applied, the particles inside 

the ER fluid become polarized and have a higher dielectric constant than its surrounding 

carrier fluids. At the greatest field concentration, the number of polarized particles is 

increased by the movement of the mobile charges to those areas. This results in 

inducement of dipoles moments that attract one another and endure particles alignment 

to minimize the dipole-dipole interaction energy in the field direction [40]. These 

particle chains restrict the movement of the fluid.  

 

In comparison, MR fluids are found to be superior to ER fluids in terms of yield 

stress, current consumption and stability [42]. In addition, the amount of active fluids 

required in the MR fluids in order to execute mechanical performance is less than the 

requirement of ER fluids. Even though ER and MR fluids require almost the same 

magnitude of power, MR fluids need only small voltages and high currents, while ER 

fluids demand high voltages and low currents. Furthermore, MR fluids have an 

advantage over ER fluids in the sense of the influence of contaminants or impurities. ER 

fluids are very sensitive to this factor but MR fluids are not [39]. Thus, the extremely 

high voltage requirements and inability to withstand contamination of ER fluids make 

them unpractical for most of commercial applications.  

 

In contrast, ER fluids have a distinctive feature where they show higher response 

characteristics as compared to MR fluids. For instance, Choi et al. [76] have done 

comparison of the field controlled characteristics between ER and MR clutches. They 

found that shorter time is needed to track the desirable trajectory in the ER clutch to the 

desired set-torque. In another study, El Wahed et al. [77] discovered that ER devices 

appeared to provide more viable means (in terms of input displacement and transmitted 

force) of achieving fixing relaxation subjected to various magnitudes of impact loading. 

 

 

 

 

 

 13



 

2.2.3 Ferrofluids 

 

Another category of field responsive fluids is ferrofluids which are different from 

the usual MR fluids. Ferrofluids consist of colloidal suspension of monodomain ultra-

fine magnetic particles (typically less than 10 nm), dispersed in either aqueous or non-

aqueous liquids [78-80]. Basically, particle types of superparamagnetic materials such as 

iron oxides, Mn-Zn Ferrites, Ferrum and Cobalt is chosen together with a carrier fluid, 

such as water, oil or diester, to produce a stable colloidal suspension. When an external 

magnetic field is applied, dipolar interactions are induced within the particles causing 

them to align in the field direction. Forces exerted from the magnetic field are 

transmitted through viscous friction to the ferrofluids, which leads to various interesting 

phenomena. However, ferrofluids do not exhibit yield stress (like MR fluids), but, 

instead they have field dependent viscosity [81].  

 

In contrast, MR fluids have larger particles and react differently as compared to 

ferrofluids under the same influence of the magnetic field [82]. MR fluids can change 

their viscosity with the formation of a chain structure and solidify when a magnetic field 

is applied. However, ferrofluids commonly keep their viscosity with high magnetic 

fields without forming any chain. However, since ferrofluids are synthesized by 

colloidal magnetic particles, they are more stable compared to MR fluids, which are 

based on non-colloidal magnetic particles. Practical applications of this property include 

automotive, mechanical engineering, optics, electronic devices, biomedical and heat 

dissipation [78, 79]. 

 

 

2.3 Origin of magnetism  

 

There are three types of magnets such as permanent magnet, temporary magnet 

and electromagnet that could attract other pieces of iron or steel. A permanent magnet is 

connected with the motion and interaction of its electrons, and has a high coercivity to 

retain magnetism for a long time. The coercivity can be described as the intensity of the 

magnetic field required to reduce the magnetization of that material to zero after the 

magnetization of the sample has reached saturation [83]. A temporary magnet has a low 
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coercivity which is readily magnetized but retains only a very small field. They easily 

become magnetized under the influence of an external field. Electromagnets can be 

produced by wrapping a coil of wire around soft iron core. The magnetic field is created 

only during the time of current flow through the coil. The strength of these magnets is 

indicated by the magnetic moment, as a result on the atomic scale from the orbital 

motion of the electrons around the nucleus. The source of electromagnetic moment is 

indicated by a quantum mechanical property (spin dipole magnetic moment). The 

overall magnetic moment of the atom is referred to as the net sum of all the magnetic 

moments of the individual electrons. The net of magnetic moment is due to the tendency 

of the magnetic dipoles to oppose each other to reduce the net energy. Some pairs of the 

electrons in an atom are either adding or cancelling each other, resulting in different 

forms of magnetism [84].  

 

The behaviour of magnetic materials can be classified as diamagnetic, 

paramagnetic, ferromagnetic, anti-ferromagnetic and ferrimagnetic as shown in table 

2.3. Magnetic susceptibility (in table 2.3) is the degree of magnetization of a material in 

response to an applied magnetic field. At room temperature, both diamagnetic and 

paramagnetic materials do not exhibit any hysteresis where the magnetism of these 

materials is very weak. Hysteresis is a property of a system that does not instantly follow 

the forces applied to it. Instead the system reacts slowly or does not return completely to 

its original state depending on its immediate history. Diamagnetism exhibits a very small 

negative magnetization in a material that consists of atoms with almost no net magnetic 

moment. Magnetic permeability is the ability of a substance to acquire a high 

magnetization in relatively weak magnetic fields. The relative permeability can also be 

referred to as the ratio of the permeability of a magnetic material to the permeability of 

vacuum. Thus, the relative permeability in the diamagnetism is slightly less than zero 

when it reacts with an external magnetic field. On the contrary, a paramagnetic material 

with disorder of the atomic moment generates no net magnetization. This material has a 

relative permeability that is slightly greater than one [83]. 
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Table 2.3: Different types of magnetic behaviour. 

Type of 

Magnetism 
Magnetic Behaviour Magnetic Susceptibility Examples [85] 

Diamagnetic 

 

Small and negative 
Copper, silver, gold 

and alumina 

Paramagnetic 

 

 

 Small and positive 

Aluminium, 

titanium and alloys 

of copper 

Ferromagnetic 

 

 

 

 

Very large and positive, 

function of applied field, 

microstructure dependent 

Iron, nickel and 

cobalt 

Anti-

ferromagnetic 

 

 

 

 

Small and positive 

Manganese, 

chromium, MnO 

and NiO 

Ferrimagnetic 

 

 

 

 

Large and positive, 

function of applied field, 

microstructure dependent 

Ferrites 

 

 

Ferromagnetic is a material with high magnetic permeability, capable of 

becoming highly magnetic and have the ability to retain a permanent magnetic moment. 

The elementary magnetic dipoles inside the domains are all oriented parallel to each 

other. Domains can be classified as regions in the material in which all of the dipoles are 

aligned. However, when the domains are all oriented in an anti-parallel direction to each 

other, the material is said to be anti-ferromagnetic and appears to be nonmagnetic. 

Whereas, if the domains of a specific type of anti-ferromagnetic in which the net domain 

 16



 

of the system is not equal to zero, such material is said to be ferrimagnetic [86]. This 

happens due to the spin in each direction not being equal. 

 

 

2.4 Magnetic materials 

 

Ferromagnetic and ferrimagnetic are two types of materials that are widely used 

in magnetic components. They have different coercivity depending on their sizes or 

domains. The coercivity increases when the amount of particles of the magnetic 

materials increases. Therefore materials with a few or no domains have a high coercivity 

whilst those with many domains have low coercivity. The energy of the domains on 

either side of the walls (an interface separating magnetic domains) will increase with the 

application of a very low magnetic field. This low magnetic field produces zero 

coercivity where there is nothing to impede its motion. Under the pressure of the applied 

magnetic field, magnetization reversal occurs either by coherent rotation of the magnetic 

moments in the domain or by nucleation and growth of reverse domains. The coercivity 

of a crystal structure in a permanent magnet is usually very small. A crystal structure 

(also known as a lattice) is a set of atoms arranged in a particular way. However, due to 

imperfections in the structure such as inclusion [87] and dislocation [88], the crystal 

coercivity increases. These factors act as a barrier to the movement of domain 

boundaries.  

 

Inclusions are small "holes" in the medium, usually formed by the entrapment of 

a foreign material. The inclusions are either nonmagnetic or having much smaller 

magnetization than their surroundings. Such inclusions impede the process of 

magnetization, having magnetic poles induced on their surface causing a reduction in the 

surface energy of the domain walls. On the other hand, a dislocation in the crystal lattice 

interacts with the domain walls. In some cases, the easy axes on two sides of the 

dislocation may be aligned differently. (In iron, the easy axes are all mutually 

perpendicular). If the dislocation is severe, the exchange interaction between atoms on 

the two sides of the wall may become negligible and a domain wall might not be able to 

cross the boundary.  
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Generally, if a material is easily magnetized and demagnetized, it can be referred 

to as a soft magnetic material, whereas, if it is difficult to demagnetize, it can be referred 

to as a hard magnetic material. Apart from coercivity, there are few other factors that can 

differentiate between soft and hard magnetic materials such as hysteresis loop, saturation 

magnetization, permeability and remanence. 

 

 

2.4.1 Hysteresis loop 

 

A hysteresis loop carries a lot of information on the magnetic properties of a 

material and can be represented by the relationship between magnetic flux density B and 

magnetic field intensity H and is normally called the B-H curve [86]. A material with a 

wide hysteresis loop has low permeability and high remanence, coercivity, reluctance 

and residual magnetism. On the contrary, a material with a narrower loop has the 

opposite characteristics. An example of a hysteresis loop for a ferromagnetic material is 

shown in figure 2.1.  
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Figure 2.1: Magnetic flux density versus magnetic field strength [86]. 

 

 

The ferromagnetic hysteresis loop is generated by measuring the magnetic flux B 

as the magnetizing force H is changed. Initially, magnetization for an unmagnetized 

 18



 

ferromagnetic material will follow the dashed line, in figure 2.1, until it reaches 

magnetic saturation. Points S and S’ represent the saturation values at positive and 

negative sides, respectively. When the value of H is reduced to zero, the curve moves 

from point S to point BBr instead of return back to its original point. At this point, some of 

the magnetic flux density still exists and this residual field BrB  is called the magnetic 

remanence. When the value of H is placed in the negative side or as H is reversed, the 

curve further moves to point -Hc (coercivity or coercive force) at zero value of B. With 

further increase of H in the negative direction, the material will become magnetically 

saturated reaching the point S’ as the magnetizing force is increased in the negative 

direction.  

 

On the other hand, when the value of H is increased back to zero, the curve 

moves from point S’ to point -BBr, which has the same value of BrB  in the other direction. 

This is because they have the same amount of the residual magnetism. The curve moves 

to Hc when H is given a positive value at zero value of B. Further increases of H will 

result the curve to move back to point S, where the curve completes the loop [89].  

 

Figure 2.2 shows typical hysteresis loops for hard and soft magnetic materials. 

The shape and size of the hysteresis loop greatly depends on the type of the material. 

The loop will be narrow if the material is easily magnetized. On the other side, the loop 

will be wide if the material does not get magnetized easily. In addition, different types of 

magnetic materials will saturate at different values of magnetic flux density, which is 

affecting the height of the loop. The loop area also depends upon the maximum flux 

density that is established in the material. 
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Figure 2.2: Hysteresis loops for soft and hard magnetic materials. [90]. 

 

 

Table 2.4: Comparison magnetic properties between soft and hard magnetic materials. 

Magnetic Property Soft Magnetic Material Hard Magnetic Material 

Hysteresis loop Narrow Large area 

Remanence High High 

Coercivity Low High 

Saturation flux density High Good 

 

 

Table 2.4 gives the magnetic properties of hard and soft magnetic materials. The 

permanent magnets are made from hard magnetic materials such as steel, cobalt steel 

and carbon steel. The magnet is quite strong since these materials have high remanence. 

They are difficult to be demagnetized by removing the magnetic fields due to their high 

coercivity. The electromagnets or temporary magnets are made from soft magnetic 

materials such as soft iron. They can be easily demagnetized and produce strong 

magnets since these materials have low coercivity and high saturation flux density, 

respectively. For instance, transformer cores are made from soft magnetic materials 

since they have narrow hysteresis loop (smaller hysteresis loop area). When a 

transformer is in use, its core is taken through many cycles of magnetization. The energy 
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lost as heat in reversing the magnetization of the material (hysteresis loss) is 

proportional to the area of the hysteresis loop.  

 

 

2.4.2 Hard magnetic materials 

 

Hard magnets, also referred to as permanent magnets, are magnetically saturated 

materials. As a result, once magnetized, these materials have a very large intrinsic 

coercivity and become permanent magnets [86]. At the atomic level, ferromagnetic 

materials exhibit a long-range ordering phenomenon which causes unpaired-electron 

spins to line up parallel to each other in a domain. A strong magnetic field exists within 

the domain, but as an entire material it has a small magnetic field because the domains 

are randomly oriented with respect to one another. An external magnetic field can cause 

the magnetic domains to line up with each other. As a result, the material is said to be 

magnetized.  

 

One of the important factors in permanent magnets is called magnetic remanence 

of the material. This phenomenon occurs when the applied magnetic field is removed 

where a fraction of the saturation magnetization still remains [83]. A certain level of 

energy is required in order to force the domains back to the original condition. 

Normally, hard magnetic materials are used in the production of permanent magnets. 

The properties of ferromagnetic materials make them applicable to be utilized as a 

magnetic memory. Some of the compositions of the ferromagnetic materials will retain 

an imposed magnetization indefinitely such that the criteria of permanent magnets can 

be fulfilled.  

 

 

2.4.3 Soft magnetic materials 

 

Soft magnetic materials require a very small magnetizing field to become 

magnetized. For instance, a magnetic field is created when a current is passed through a 

wire wound around a soft magnetic core. They have a low coercivity and once the 

magnetizing field is removed, the flux density essentially goes to zero. Alternating 
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current (AC) or direct current (DC) electrical circuits can be used in order to generate a 

magnetic field or to create a force. Permeability is the main consideration for the 

material selection in the DC application, whereas the saturation magnetization may then 

be significant. This would be the case, for example, in shielding applications where the 

flux must be channelled through the material, and can also be utilized to amplify the flux 

generated by an electric current [83]. Energy loss is the most critical factor in the system 

for AC applications as the material is cycled around its hysteresis loop. The energy loss 

can originate from three different sources such as hysteresis loss, eddy current loss and 

anomalous loss (magnetic losses in soft magnetic material) [86]. Hysteresis losses can be 

reduced by the reduction of intrinsic coercivity with a consequent reduction in the area 

within the hysteresis loop. An eddy current is a swirling current set up in a conductor in 

response to a changing magnetic field. Eddy current losses can be reduced by decreasing 

the electrical conductivity of the material. Because of the skin effect at a higher 

frequency which can influence the overall conductivity, it also can be reduced by 

laminating the material. Finally, anomalous losses can be reduced by having a 

completely homogeneous material, so that there is no obstruction to the motion of the 

domain walls [91]. 

 

 

2.5 Concept of electromagnetism 

 

 Electromagnetism can be described as relationship between electricity and 

magnetism. A changing magnetic field produces an electrostatic force. Similarly, 

changing electric field generates a magnetostatic field. The magnetic field is generated 

by the motion of electric charges such as electric current, to cause a magnetic force 

associated with magnets. A type of a helical coil or solenoid can be used in order to 

produce an electromagnetic field. Figure 2.3 shows the basic solenoid where a wire is 

wound around an air core.  
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Figure 2.3: Schematic of a basic solenoid coil wound around air. 

 

Kraus [89] recommended that the magnetic flux density B at the centre of the 

coil (maximum value) can be calculated as  

 224 lr

NIB
+

=
μ  (2-1)

where B is the magnetic flux density or magnetic inductance (tesla, T or Weber/m2, 

Wb/m2), μ is the permeability of the material in the field (N/m2), N is the number of 

turns on the excitation coil (turn, t or can be considered as unitless), I is the current 

enclosed in the coil in each turn (A), r is the radius of the wire (m) and l is the length of 

the solenoid (m). At the one end of the coil, the magnetic flux density becomes 

  222 lr

NIB
+

=
μ  (2-2)

If the length of the solenoid is much greater than its radius (l >> r), equations (2-1) 

reduces to 

 
l
NIB μ

=  (2-3)

and equation (2-2) reduces to 

 
l

NIB
2
μ

=  (2-4)
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2.5.1 Magnetic properties 

 

Magnetic field intensity H is the amount of magnetizing force which is 

proportional to the length of a coil l and the amount of electrical current passing through 

the coil I (refer to figure 2.3). According to Ampere’s law, the line integral of H around 

a single closed path is equal to the current enclosed is denoted by [89] 

 IdLH =⋅∫  (2-5)

where H is the magnetic field intensity (Am-1) and dL is the infinitesimal element of path 

length (m). An analogous relation with static electric field and the relation of 

magnetomotive force, equation (2-5) can also be written as 

 FIdLH ==⋅∫  (2-6)

where F is the magnetomotive force (mmf) is equal to the current enclosed (ampere-

turn, At).  

 

If the path of integration in equation (2-6) consists of a number of turns of wire 

each with a current in the same direction, equation (2-6) may be written as 

 NIFdLH ==⋅∫  (2-7)

In other word, if the magnetic field is generated by a cylindrical coil, then 

 
l

NIH =  (2-8)

In this case, the unit of H can be written as either ampere-turns per metre (At/m) or 

simply ampere per metre (A/m).  

 

In a vacuum, magnetic flux density B represents the magnitude of the internal 

field strength within a substance that is subjected to an H field [86] and is given by, 

 HB 0μ=  (2-9)

where, μ0 is the permeability of a vacuum = 4π x 10-7 ≈ 1.257 x 10-6 T.m/A. If there is a 

material, other than vacuum, in the middle of the magnetic fields, the magnetic flux 

density now is [83]: 
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 HB μ=  (2-10)

Relative permeability μr (unitless) is used to measure the degree to which the material 

can be magnetized, where 

 
0μ
μμ =r  (2-11)

 

Magnetization M is a property of some materials that describes the level of 

magnetic field affect is given by [86],  

 MHB 00 μμ +=  (2-12)

where, M is the magnetization of a material (magnetic moment per unit volume, A.m2/kg 

or Wb.m/kg). 

 

In general, a material becomes magnetized in response to an external field H and 

can be measured through susceptibility and permeability. Hence, M can be expressed as  

 HM mχ=  (2-13)

where χm is the magnetic susceptibility (unitless). Magnetic susceptibility is the degree 

of magnetization of a material in response to an applied magnetic field. Both relative 

permeability and magnetic susceptibility are related as follows:  

 mr χμ += 1  (2-14)

 

 

2.6 Summary of chapter 2 

 

A brief and comprehensive overview of the main points of a body of the research 

process is shown in figure 2.4. The general knowledge about smart materials, their 

properties and some of the theory of the magnetism are discussed in great details. The 

basic fundamentals of the smart materials lead to the focus subject on MR fluids in 

chapter 3. 
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Figure 2.4: Summary of the research process in chapter 2. 
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CHAPTER 3 
 

MAGNETORHEOLOGICAL 

FLUIDS 

 

 

 

 

 

 



 

3.0 Introduction 

 

Pertaining to the technological challenges, it can be expected that the continuing 

development of the technology based on smart fluids will create a large number of new 

electromechanical devices in the near future. This chapter reviews the details of MR 

fluids in terms of rheological properties and basic principles when magnetic field is 

applied. Finally, a substantial amount of potential applications are listed depending on 

their working modes followed by a brief summary of the chapter.  

 

 

3.1 Composition of MR fluids  

 

As mentioned in section 2.2.1, MR fluids consist of non-colloidal suspensions, 

magnetically soft ferromagnetic, ferrimagnetic or paramagnetic elements and 

compounds in a non-magnetic medium. However, MR fluids consist of suitable 

magnetizable particles (iron, iron alloys, iron oxides, iron nitride, iron carbide, carbonyl 

iron, nickel and cobalt) [46, 92]. A preferred magnetic responsive particle that is 

commonly used to prepare MR fluids is carbonyl iron. The possible maximum yield 

stress induced by MR effect is mainly determined by the lowest coercivity and the 

highest magnitude of saturation magnetization of the dispersed particles. Therefore, soft 

magnetic material with high purity such as carbonyl iron powder appears to be the main 

magnetic phase for most of the practical MR fluids composition [93]. Other than 

carbonyl iron, Fe-Co alloys and Fe-Ni alloys can also be used as MR materials, 

whereby, Fe contributes to the high saturation magnetization. However some of the 

ferrimagnetic materials such as Mn-Zn ferrite, Ni-Zn ferrite and ceramic ferrites have 

low saturation magnetizations and are therefore suitable to be applied in low yield stress 

applications [46].  

 

Iron powder magnet can be prepared by hydrogen reduction of ferric oxide [94] 

or by Chemical Vapour Deposition (CVD) from iron pentacarbonyl,  [18, 40]. 

Once the particles are magnetized, the oriented domains can grow with the 

magnetization persisted and simultaneously increased permeability. Saturation 

magnetization of the iron can be obtained when all of the domains are properly oriented. 

( )5COFe

 27



 

The domain walls can easily move, ideally making the magnetization a single-valued 

function of the magnetizing field, so that there is no hysteresis loss when the field 

reverses repeatedly. The particle size should be meticulously selected, so that it can 

exhibit multi-domain characteristics when subjected to an external magnetic field. MR 

particles are typically in the range of 0.1 to 10 μm [18, 95], which are about 1000 times 

bigger than those particles in the ferrofluids [42]. In the MR fluids, magnetic particles 

within a certain size distribution can give a maximum volume fraction without causing 

unacceptable increasing in zero-field viscosity. For instance, fluid composition that 

consists of 50 % volume of carbonyl iron powder was used in the application of 

electromechanically controllable torque-applying device. An MR material was utilized 

thus providing a drive connection between two independently rotating components [96].  

 

The carrier liquid forms the continuous phase of the MR fluids. Examples of 

appropriate fluids include silicone oils, mineral oils, paraffin oils, silicone copolymers, 

white oils, hydraulic oils, transformer oils, halogenated organic liquids, diesters, 

polyoxyalkylenes, fluorinated silicones, cyanoalkyl siloxanes, glycols, water and 

synthetic hydrocarbon oils [40, 92]. A combination of these fluids may also be used as 

the carrier component of the MR fluids. In the earlier patents, inventors were using 

magnetizable particles dispersed in a light weight hydrocarbon oil [97], either a liquid, 

coolant, antioxidant gas or a semi-solid grease [98] and either a silicone oil or a 

chlorinated or fluorinated suspension fluid [99]. However, when the particles settled 

down, the field-induced particle chains formed incompletely at best in which MR 

response was critically degraded. Later, in order to prevent further sedimentation, new 

compositions of MR fluids with consideration on viscoplastic [55] and viscoelastic 

continuous phases [52] were formulated, so that the stability could be improved 

immensely. In addition, a composite MR fluid has been prepared by Pan et al. [100] with 

a combination of iron particles powder, gelatine and carrier fluids. They showed that the 

MR effects were superior under low magnetic field strength, and had a better stability 

compared to pure iron carbonyl powder alone.  

 

Surfactants, nanoparticles, nanomagnetizable or coating magnetizable particles 

can be added to reduce the sedimentation of the heavy particles in the liquid phase [56, 

93]. The sedimentation phenomenon can cause a shear-thinning behaviour of the 
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suspension [59]. With further sedimentation, with MR fluids under the influence of high 

stress and high shear rate over a long period of time, the fluid will thicken (in-use-

thickening) [45, 101]. Sedimentation phenomenon will reduce the MR effect where the 

particles in the MR fluids are settled down and form a hard “cake” that consists of firmly 

bound primary particles due to incomplete chain formation [53]. MR particles such as 

carbonyl iron can be described as the particle erosions and similar to onion like structure 

where they can be easily peeled by jolt or frictions. Anti-settling agent such as 

organoclay can provide soft sedimentation. When the composition of MR fluids has 

relatively low viscosity, it does not settle hard and can easily re-disperse [92]. Coating of 

the polymer layer also influences magnetic properties of the particles and cause them to 

easily re-disperse after the magnetic field is removed [102]. However, specific properties 

of MR fluids such as shear and yield stresses under the same conditions were 

enormously degraded inevitably by addition of the coating layer. This is due to the 

shielding of the polymer layer that affects the magnetic properties of the particles [102, 

103]. In addition, some additives can improve the secondary properties like oxidation 

stability or abrasion resistance.  

 

 

3.2 Magnetic properties of MR fluids 

 

The static magnetic properties of MR fluids are important to design any MR 

fluid-based devices and can be characterized by B-H and M-H hysteresis. Through the 

magnetic properties, the dependence of the MR fluid response on the applied current in 

the device can be predicted. There are many methods to measure the hysteresis loops for 

the fluid under different fields such as vibrating sample magnetometer (VSM) [18, 104], 

alternating gradient magnetometer (AGM) [80] and other induction techniques. 

 

Under the influence of the magnetic field, a standard model for the structure is 

used to predict the behaviour of the particle of MR fluid [61]. The model is based on a 

cubic network of infinite chains of the particles arranged in a line with respect to the 

direction of the magnetic field as shown in figure 3.1. The chains are considered to 

deform with the same distance between any pair of neighbours in the chains and increase 

at the same rate with the strain when the MR fluid is strained. This model is seems quite 
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simple since the chains, in actual case, are formed into some more compact aggregates 

of spheres in which can be constituted in the form of cylinders. Under shear stress, these 

aggregates might deform and eventually break. Even though the particles develop into 

different complicated structures under different conditions [85], the standard model still 

can be used in order to give a valid prediction of the yield stress [61].  

 

 
 

Figure 3.1: Schematic representation of the affine deformation of a chain of spheres 

[61]. 

 

 

The equation of motion of each particle under a magnetic field is required in 

order to evaluate the bulk property of MR fluids. At a very low magnetic field, the 

magnetic force tensor Fij is obtained as point-dipole similar to the pair interaction, the 

magnetic dipole moment induced by other particles and surrounding walls for an 

unmagnetized and isolated sphere under a uniform magnetic field is given by [60]: 
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where Fij is the magnetic force tensor acts on particle i from j, μf is the specific 

permeability of particles, μ0 is the vacuum permeability, m is magnetic dipole moment of 

particles and rij is position from j to i. The magnetic dipole moment induced in particles 

within MR fluid is given by [105], 

 Ham f
3

04 βμπμ=  (3-2)

 30



 

where H is the uniform magnetic field, a is the diameter of the particles and β is given 

by, 

 
fp

fp

μμ
μμ

β
2−
−

=  (3-3)

where μp is the specific permeability of carrier liquid. 

 

At high magnetic fields, the magnitude of the moment can be considered as 

independent point dipoles when magnetization of the particle reaches saturation. 

Magnetic moment is given by [80]. 

 ss Mam μπ 3

3
4

=  (3-4)

where μsMs is the saturation magnetization of the particle, which is about 1.7 x 106 A/m 

for bulk iron and 0.48 x 106 A/m for the magnetite. 

 

 

3.3 Fundamentals of rheological properties 

 

Rheology is defined as a study of the flow properties [106] and the behaviour of 

materials [107] or the response of materials to applied stress [108]. Rheology is an 

interdisciplinary field and is used to describe the properties of a wide variety of 

materials such as oil, food, ink, polymers, clay, concrete, asphalt and others. A 

rheometer is the instrument used to measure a material’s rheological properties for 

which the equipment uses the working principal of a viscometer. There are many types 

of rheometers with very versatile control such as the stress and/or strain rheometers and 

capillary rheometers. The measurement of rheological properties of suspension, colloidal 

dispersion and emulsion provides critical information for product and process 

performance in many industrial applications. The materials must be stable in order to be 

performed properly or to process efficiently [106]. These are often complex formulation 

of solvents (or fluids); suspended particles of varying sizes and shapes, and various 

additives used that affect stability. 
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Many factors affect the stability such as hydrodynamic forces, Brownian motion, 

strength of the antiparticles interaction, volume fraction, electrostatic forces, size and 

shape of particles, and steric repulsion. These factors are responsible for the unique 

rheological properties of MR fluids. For instance, a quick formation of a network in 

response to an external field creates a rapid liquid-to-solid transition [109]. Measuring 

the rheology of a formulation gives an indication on the colloidal state and the 

interactions that are occurring. Rheology-based measurements can help predict which 

formulation might exhibit flocculation, coagulation or coalescence, resulting in 

undesired effects such as settling, creaming, separation and others. Flocculation is 

referred to the process by which particles are caused to stick together in floc (formation 

of loose or open aggregates), while coagulation is a process in which dispersed colloidal 

particles agglomerate (formation of compact aggregates) and coalescence is the 

disappearance of the boundary between two particles in contact, or is the process by 

which particles merge and pull each other to make the slightest contact. Rheology 

measurements and parameters can be used to determine the processing behaviour of 

non-Newtonian materials, viscoelastic behaviour as a function of time, the degree of 

stability of a formulation at rest condition or during transport, and zero shear viscosity or 

the maximum viscosity of the fluid phase to prevent sedimentation.  

 

The viscosity equation on the basis of a hydrodynamic theory for dilute 

dispersions of spherical particles has been developed by Einstein about 100 years ago 

[110]. The equation has been derived as  

 φη 5.21+=r  (3-5)

where ηr is the relative viscosity of the suspension and φ is the volume fraction of the 

suspended solutes or particles assumed to be spherical. The addition of the solid 

particles to a liquid will increase the amount of particles and consequently increases the 

volume fraction of the particles. Therefore, as the volume fraction of particles increases, 

there will be an increase in the fluid’s viscosity. Shook [111] has suggested that the 

maximum concentration of the particles φmax should be incorporated in the relationship 

between viscosity and concentration as 
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However, these equations do not depend on the particle size but instead depend 

on the particle shape and solid concentration. Thus, Toda and Furuse [112] extended the 

equation in order to satisfy the viscosity behaviour of concentrated dispersion for small 

and large particles, given by, 
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respectively, where κ is the correction factor that may depend on the size and 

concentration of the particles. If the value of κ is equal to one, then the size effect is 

neglected and equation (3-8) is transformed into equation (3-7).   

 

The viscosity of the fluid can be increased with additional amounts of the solid 

particles. However, at the same time, the fluid behaviour will change and diverge from a 

Newtonian fluid. A fluid is known to be Newtonian when the stress at any point is 

proportional to the applied strain rate at that point. Shear stress τ  increases with the 

shear rate 
dy
du  which often can be represented by the relationship  

 
n

y dy
du
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⎠
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⎝

⎛
+= ηττ  (3-9)

where τy, η and n are constants. τy is the yield stress and η is the dynamic viscosity. 

 

Newtonian fluids occur when the fluids show no yield stress or τy is equal to zero 

and n is equal to one. The viscosity of a Newtonian fluid is independent of time and 

shear rate. In addition, the deviation of the behaviour of Newtonian fluid is known as a 

non-Newtonian fluid which the viscosity change is dependent on the applied shear rate. 

As shown in figure 3.2, the behaviour of the fluids can be classified into Newtonian 

 33



 

fluids and non-Newtonian fluids such as plastic, Bingham plastic, pseudo-plastic and 

dilatant fluids [113]. Fluids are said to be plastic when the shear stress must reach a 

certain minimum value before it begins to flow. If n, in equation 3-9, is equal to one, the 

material is known as a Bingham plastic. For the pseudo-plastic or shear-thinning fluid, 

the dynamic viscosity decreases as the shear rate increases. On the other hand, a shear-

thickening or dilatant fluid exhibits the converse property of pseudo-plastic for which 

the dynamic viscosity increases as the shear rate increases. If P, in equation 3-9, is equal 

to 0, the shear thickening fluid is represented by n > 1 and shear thinning fluid by n < 1. 

 

 
Figure 3.2: Classification types of the behaviour of the fluids [113]. 

 

 

Additional non-Newtonian behaviour or time dependent properties are rheopecty 

and thixotropy [114]. In principle, shear thickening proceeds from the rheopecty and 

shear thinning proceeds from the thixotropy. As stress is applied, the apparent viscosity 

increases with the duration of the stress, the fluid is then called rheopectic. If the 

apparent viscosity decreases with the duration of stress, the fluid is then called 

thixotropic. Rheopectic behaviour occurs as a result of temporary aggregation due to 

interaction between the particles rather than breakdown due to collision of the attractive 

particles. On the other hand, the decrease in the viscosity of the thixotropic fluid occurs 

because of the breakdown of the microstructure and behaves like a liquid. These time-
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dependent behaviour are reversible, which is, when the stress is removed the structure 

that was disturbed by shearing builds up in the thixotropic material and breaks down in 

the rheopectic material. Thus, the material settles back into its original consistency.  

 

 

3.3.1 Basic principles of MR fluids 

 

MR fluids respond to the external field, where the particles are held together to 

form chains parallel to the applied field. The interaction between the particles impedes 

to a certain level of the shear stress without breaking and simultaneously increases the 

viscosity of the fluids [115]. In many cases, the effect of MR fluids is described by 

Bingham Plastic model [58]. A modified or extended Bingham model, or a combination 

of Bingham model with other models such as viscous and coulomb friction have also 

been used to describe the behaviour of MR fluid [116, 117]. In the absence of an 

external field, MR fluids behave like a normal fluid which is known as Newtonian fluid. 

Rheological studies have revealed the concept of dynamic yield stress. Rheology is 

primarily concerned about the study of the relationship between the shear stress and 

shear strain for solid materials and liquids. Figure 3.3 shows the basic concept of shear 

stress when a force is applied onto a fluid element. 

 

 
 

Figure 3.3: Fluid element under a shear force [118]. 
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When a shearing force F is applied at the top area of the element, shear stress can 

be calculated by the ratio of force over effective area which is equal to the force per unit 

area.  

 
Area

Fstressshear =τ,  (3-10)

  where zxArea δδ ×= .  

 

Shear strain is the deformation caused by the shear stress and can be measured 

by the size of the angle φ. The value of φ is constant for a fixed value of shear stress in a 

solid state. However in a fluid state, the value of φ increases as the shear stress is applied 

depending on the duration of time.  

 

For a small particle to move from point E to point E’, a distance x due to shear 

stress, the small deformation can be written as: 

                   
y
xstrainshear =γ,  (3-11)
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where u
t
x
=  is the velocity of the particle at E.  Shear stress is proportional to the rate 

of shear strain, therefore: 

 y
utcons ××= tanτ  (3-13)

The term 
y
u  is the change in velocity with y, or the velocity gradient, and may be written 

in the differential form 
dy
du . The constant of proportionality is known as the dynamic 

viscosity η of the fluid, giving 
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 γηητ &or
dy
du

=  (3-14)

Equation (3-14) can be recognized as a Newtonian fluid’s equation. 

 

For a non-Newtonian fluid with shear stress τ above the yield stress τy, the 

equation can be represented by Bingham plastic’s equation as: 

 yy ττγηττ >+= ,&  (3-15)

Below the yield stress, material behaves viscoelastically as denoted by:  

 yG ττγτ <= ,  (3-16)

where G is the complex material modulus. If the shear stress τ and shear strain rateγ&  are 

known, the kinematic viscosity v can be calculated from,  

 ρ
η

=v  (3-17)

where ρ is the density of the fluid and η is the dynamic viscosity. 

 

 

3.3.2 Rheology of MR fluids 

 

MR fluid is a suspension of magnetically soft micron-sized particles in a carrier 

liquid. MR fluids demonstrate an ability to change their viscosity in milliseconds by 

several orders of magnitude under the influence of an applied magnetic field. There are 

many factors that influence the rheological properties of controllable MR fluids such as 

concentration and density of particles, particle size and shape distribution, properties of 

the carrier fluid [119], additional additives, applied field and temperature. The 

relationships of all these factors are very complex and are important in establishing 

methodology to improve efficiency of these fluids for suitable applications. Excellent 

MR fluids must have low viscosity and coercivity of particles without the influence of 

an external magnetic field and can achieve maximum yield stress in the presence of the 

external magnetic field. Gross [97] in his invention related to the valve for magnetic 

fluids, found that the advantage of large particle sizes or heavy suspensions can increase 
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the size of the gap which also increases the flow of the fluid. Conversely, the large 

particles of the magnetically active phase of MR fluids lead to a strong tendency for 

particles to settle out of the liquid phase [102]. 

 

Some of the techniques are typically necessary in order to increase the yield 

stress; either by increasing the volume fraction of MR particles or by increasing the 

strength of the applied magnetic field. However, neither of these techniques is desirable 

since a higher volume fraction of the MR particles can add significant weight to the MR 

devices as well as increases the overall off-state viscosity of the material. In that 

connection, restricting the size and geometry of the MR device capable of utilizing that 

material, and a higher magnetic field significantly increases the power requirement of 

the device. To overcome this difficulty, Carlson [120] in his patent introduced alloy-

particles material that was used as a solid particle instead of the common carbonyl iron. 

This MR fluid independently increases the yield stress without requiring increment of 

either the volume fraction of particles or magnetic field strength.  

 

 

3.3.3 Off- and on-state rheology  

 

The novelty of MR fluids is to minimize the off-state viscosity of the fluid, while 

the on-state yield stress of the fluid is maximized [121]. Both off-state viscosity and the 

on-state yield stress are very important in order to achieve a maximum MR effect. Turn-

up ratio refers to the differences between off-state viscosity and on-state yield stress. 

Turn-up ratio can also be defined as the ratio of the force output (on-state controlled by 

yield stress) generated by the magnetically activated MR fluid divided by the force 

output (off-state controlled by viscosity) for the same fluid in the off-state. As 

mentioned earlier, the increases in the volume fraction of the particle can increase the 

yield stress and viscosity of the MR fluids. In any event, the on- and off-states of MR 

fluids have been linked together in the sense that any attempt to maximize the on-state 

yield stress by increasing the solid volume fraction will carry a great penalty in turn-up 

ratio because the viscosity in the off-state will increase at the same time [49]. Thus, in 

order to obtain a suitably high yield stress, one must tolerate a relatively high viscosity 

when the material is in the turned off condition. In other words, the influence of 
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materials that contain particles of a single particle size mode could result in a crucial 

turn-up ratio. Therefore, it is necessary to maximize the turn-up ratio. For instance, a 

mixture of two different particle sizes or bimodal, can contribute to a significant 

improvement in turn-up ratio [121].  

 

Viscosity of the controllable fluids at zero magnetic fields is generally in the 

range of 0.1 kPa to 1.0 kPa [102], depending on the function of carrier liquid, additives, 

surfactants [93], particle loading and particle size distribution [121]. Under field 

responsive effect, the applied field induces a dipole moment in the same direction of the 

magnetic field in each particle causing the formation of chains. Those chain formations 

are responsible for the increase in yield stresses by the order of at least 100 times when 

subjected to a magnetic field [102]. A high magnetic field turns the magnetically soft 

particles into solid within milliseconds and substantially uniformly redisperses in the 

solvent after the magnetic field is removed. Foister [121] has found that at the off-state 

condition, the blend of large and small particles did not change the viscosity, whereas it 

provided an increase in yield stress. Furthermore, the size distribution of particles may 

affect the off-state viscosity and also on-state yield stress, since particles of different 

sizes may have different magnetic properties. Alternatively, by using volume fraction of 

a bimodal particle population with suitable fraction of the small particles, it is possible to 

obtain a high turn-up ratio [122].  

 

 

3.3.4 Volume fraction and particle size factors 

 

Few studies on the field-induced structures have determined the fundamental 

properties of the MR fluids. Researchers characterized the structures of self-assembly 

MR fluids depending on the cell thickness and the volume fraction of particles [81, 123, 

124]. The magnetic flux density increases as the volume fraction of particles of the fluid 

increases [2], and as a result, the yield stress also increases. In order to predict this 

result, a mathematical model based on the theory of homogenization has been proposed 

by Simon et al. [125]. However, the authors did not consider the particle shapes and the 

microstructure of the fluid.  Liu et al. [81] observed that the structure of MR fluid with 

low volume fraction can be characterized by uniformly spaced columns after the fluid 
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undergoes phase transition, changing from a liquid to solid. Even though they used 0.5 

μm particles sizes, their finding was concurred with Lemaire et al. [82], where the shape 

of the aggregate changes from an ellipsoid to a cylinder for bigger particle sizes 100 - 

400 μm at a higher volume fraction. In another experimental work, Carletto and Bossis 

[123] have observed the formation of a periodic planar structure in the plane of rotation 

of the field between parallel walls. They also showed that the shape of the domain 

depends on the geometry of the cell. The structures become complex (either the pattern 

forms like individual chains, walls or a mixture of chains and walls) and highly 

dependent on the cell thickness [124]. Oi et al. [104] reported that the uniform structures 

formed by the aligned magnetic rods exhibited larger magnetic anisotropy of particulate 

magnetic materials compared to microsphere shaped particles. The roll-slip behaviour 

has been observed by Davis et al. [126]. The authors showed the influence of surface 

roughness on reducing the effective viscosity, as they reduced the viscous dissipation of 

flowing suspensions. 

 

At a high volume fraction, colloidal particles experience hydrodynamic 

interactions with each other and with the walls of the container. The friction, due to this 

phenomenon at about half of the concentration, would become significant in increasing 

the viscosity. Other than that, particle size distribution [122], particle shape [50, 104] 

and surface roughness [126] also have strong effects on viscosity. Moreover, bigger 

particle sizes give more yield stress where they consume more magnetization than fine 

particles [18]. Existing particles for MR fluids typically have spherical shapes. 

According to Starkovich and Shtarkman [50], particles with uncommon shapes such as 

cubic or cylindrical shapes give at least 10 times higher yield stress than the 

conventional shapes. This phenomenon is due to the increase of packing density, 

improved field homogeneity and larger interaction (contact area). This yields the 

necessary forces between the particles even at the level of small intensity of the 

magnetic fields. Furthermore, those shapes contribute to a larger magnetic anisotropy as 

compared with the spherical shape [104].   

  

In general, magnetic characteristics (such as permeability) of the MR fluids only 

depend on the volume fraction but not on the type of particle size distribution [49]. 

Therefore, it is possible to reduce the off-state viscosity by utilizing a suitable fraction of 
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the small particles in order to obtain a desired yield stress based on the volume fraction 

of bimodal particle population. A combination of small and big particles (bimodal) 

strongly affects the viscosity and can be controlled within a wide range by controlling 

the respective fractions of the small and large particles in the bimodal size distribution 

families. In accord with Zaman and Dutcher [122], for a fixed size of large particles, as 

the size ratio is increased a minimum viscosity occurs at a higher volume ratio of the 

small particles in the system. Small particles act to fill up the voids in between the large 

particles, producing more efficient packing structure of small particles and forms distinct 

chains [58]. Furthermore, the introduction of the fine particles can greatly reduce the 

settling rate of the MR fluid. A ratio of particle sizes of at least five times larger can 

raise the on-state yield stress without affecting the off-state viscosity for a fixed volume 

fraction of solid [121].  

 

 

3.4 MR fluid modes of operation and its applications 

 

In general, MR fluid devices use one of the three basic modes of operation of 

MR fluids or any combination of them depending on the function of the system. These 

series of actions are known as valve mode, shear mode, and squeeze mode [4, 39, 117]. 

Before designing any MR fluid device, the rheological, magnetic properties, the circuit 

and the working mode of the MR fluid should be considered. Rabinow [98] reported 

initial ideas of potential applications of MR fluids, such as dashpots or shock absorbers, 

energy-absorbing devices, three-dimensional graphs and mould making. In energy 

dissipating or braking devices as shown in figure 3.4 (a), the MR fluid was used to give 

a sufficient resistance which can be adjusted by the electric current to control the 

rotation. Figure 3.4 (b) shows the 3-dimensional graphic application where the position 

of the pins can be adjusted by the MR fluid. This concept also applies to the adjusting 

device or pointer device (figure 3.4 (c)). Other than that, the widest applications are in 

the damper area such as dashpots or shock absorbers (figure 3.4 (d)). A piston in this 

device moves through the fluid in the housing cylinder where there is enough space 

between the piston and the wall of the cylinder for the passage of the fluid.  
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(a) (b) 

 
 

(c) (d) 

 

Figure 3.4: Diagrams of application ideas. (a) Energy dissipating or braking device, (b) 

3-dimensional graphic device, (c) adjusting device or pointer device and (d) dashpot or 

shock absorber [98]. 

 

 

MR fluid as a moulding medium as depicted from figure 3.5 is another highly-

applicable idea by Rabinow [98]. For example, a screw can be reproduced by inserting it 

into the MR fluid. A magnetic field is then used to produce a sufficient intensity passed 

through the MR fluid hence the viscosity of the fluid can be controlled. After the MR 

fluid is considered to have solidified, the screw is unscrewed from the MR fluid, leaving 

a cavity. A suitable material such as molten wax or plaster of Paris, is then poured into 
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the cavity. Following solidification of that material, another replica is produced by either 

bringing the MR fluid back to its normal viscosity under zero magnetic field or 

unscrewing the replica. This concept also suitable for other methods of casting for 

example the lost wax method or to cast complicated shapes by using split moulds. 

However, this idea is not suitable for casting a magnetic material since the magnetic 

field creates an interaction between the MR fluid and the magnetic material. As a result, 

the magnetic material is difficult to remove in the presence of magnetic field. 

 

  
(a) (b) 

 
(c) 

 

Figure 3.5: MR fluid used to make a mould, (a) screw was inserted into the mould, (b) 

moulds after the screw was unscrewed and (c) cavity was filled by molten material [98]. 

 

 

3.4.1 Valve mode 

 

Valve mode, shown schematically in figure 3.6, is one of the operating modes in 

the MR devices where the flow of the MR fluid between motionless plates or an orifice 

is created by a pressure drop. The magnetic field, which is applied perpendicular to the 

direction of the flow, is used to change the viscosity of the MR fluid in order to control 

the flow. Therefore, the increase in yield stress or viscosity alters the velocity profile of 

the fluid in the gap between two plates. A typical velocity profile for Bingham-plastic of 
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the valve mode is illustrated in figure 3.7. The velocity profile contains a pre-yield 

region, where the velocity gradient is zero across the plug region. 

 

 
 

Figure 3.6: Basic concept of valve mode. 
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Figure 3.7: Velocity profile of the fluid flow in valve mode. 

 

 

The value of the pressure drop ΔP (Pa) can be represented by the following relation [7] 
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(3-18)

where F is the applied force (N), Ap is the effective area of the flow channel (m2), η is 

the differential post yield viscosity (Pa.s), La is the active length of the flow channel (m), 

vp is the cylinder head velocity (ms-1), b is the mid annulus circumference of the MR 
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valve (m), d is the gap distance (m), and δ  is the nondimensional plug thickness, 

equivalent to δ / d. Parameters d and δ are shown in figure 3.7. If the value of δ  is equal 

to zero, the flow can be considered as a Newtonian flow. 

 

High stress can be achieved by the optimization of the valve design with 

maximum magnetic field strength. Yoo and Wereley [7] achieved a maximum magnetic 

flux density at the gap with an optimized design based on a constraint on the outer 

diameter limitation. They showed the importance of the material selection for the 

magnetic circuit to generate a magnetic field. In another study, Rosenfeld and Wereley 

[127] optimized a magnetic valve design within a constrained cylindrical volume. A 

comparison between MR and ER valves that were almost qualitatively identical in their 

development or production of a field-controllable yield stress and valve design has been 

carried out. Those optimized MR valves provided a greater range of controllable 

damping which makes MR technology more attractive for volume constrained 

conditions. Furthermore, Kulkarni et al. [16] have found that the pressure drop values in 

a linear damper with valve mode are higher than the stress values obtained for the 

squeeze film damper. However, the differences are mainly due to the damper design 

characteristics and partly are due to the MR fluid characteristics [16]. A proper 

comparison can be achieved if the authors used the same type and volume of the MR 

fluid.   

 

A high resistance produced by the valve mode can be used in many applications 

such as dampers, valves and actuators [43, 127-129]. Even though magnetic valves  

controlling the flow of magnetic fluids have been invented at an earlier time [97, 99], 

different forms of valve mode, such as MR dampers, could be applied in knee prosthesis, 

vibration dampers, active engine mounts, propshaft mounts and seismic dampers for 

civil industry [130]. The applications of MR fluids bring additional functionality whilst 

keeping the design simplicity. For example, figure 3.8 shows a seismic damper in a 

simple design in which the outer cylindrical housing constitutes a part of the magnetic 

circuit. MR fluid is forced to flow through the annular space by movement of the piston. 

The effective fluid orifice is the entire annular space between the piston outside diameter 

and the inside of the damper cylinder housing. An electromagnetic coil is wound on the 

piston to produce a magnetic field to act on the fluid. 
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Figure 3.8: Schematic of an MR fluid seismic damper [2]. 

 

 

3.4.2 Shear mode 

 

The second working mode for controllable fluid devices is the direct shear mode. 

An MR fluid is situated between two surfaces, whereby only one surface slides or rotates 

in relation to the other, with a magnetic field applied perpendicularly to the direction of 

motion of these shear surfaces. Shear mode as shown in figure 3.9, is useful due to the 

characteristics of the shear stress versus shear rate which can be controlled by the 

magnetic field strength. In order to optimize the magnetic field generated by a coil, 

Sasssi et al. [131] developed a new approach in the coils arrangement and showed that 

the damping coefficient could be increased by up to three times in the MR damper. 

When the magnetic field is applied, the behaviour of the MR fluid is often represented 

by a Bingham plastic fluid of equation (3-15) to describe the constitutive relation of the 

fluid and the device.  
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Figure 3.9: Basic concept of shear mode. 

 

 

The direct shear mode has been studied thoroughly especially in the MR damper 

technology. Masri et al. [132] proposed a curve fitting technique for representing the 

nonlinear restoring force of an ER device in order to characterize the ER material 

behaviour under static and dynamic loading over a wide range of electric fields. Spencer 

et al. [133] developed a phenomenological model which is based on the improved Bouc-

Wen hysteresis model to represent MR dampers. Moreover, Dominguez et al. [134] 

integrated the current excitation as a variable to gain a better characterization of the 

hysteresis phenomenon. However, this model is over parameterized and is difficult in 

comparing different identification techniques for the same device due to non-uniqueness 

in the determination of the model parameters. Therefore, Ikhouane and Dyke [135] 

suggested a friction Dahl model for a frictional device whose friction parameters change 

with the voltage to characterize the dynamics of an MR damper. In terms of the 

behaviour of the damper under conditions of high-velocity and high field input, Lee et 

al. [136] recommended the Herschel-Bulkley shear model to analyze the performance of 

impact damper systems.  

 

In an actuator system, An and Kwon [137] used a modified nonlinear model, 

which considered a magnetic hysteresis of ferromagnetic material (Hodgdon model) and 

a nonlinear Bingham model to obtain a torque estimator. The authors managed to 

estimate the undesirable hysteretic nonlinearity to produce the optimum design of the 

actuator. Furthermore, Neelakantan et al. [138] incorporated a volume fraction profile of 
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particles with an analytical technique for calculating the torque transmitted in clutches 

experiencing particle centrifuging. The effect of centrifuging at high rotational speeds 

and the subsequent sealing problems associated with it can be mitigated by the proposed 

model. In connection with a brake system, Huang et al. [6] utilized Bingham model as a 

basis to analyze the torque transferred by the MR fluid within the brake. 

 

Extraordinary features of the direct shear mode like simplicity, fast response, 

simple interface between electrical power input and mechanical power output using 

magnetic fields, and controllability are features that make MR fluid technology suitable 

for many applications such as dampers, brakes, clutches and polishing devices [6, 138-

140]. For instance, figure 3.10 shows a cylindrical MR fluid clutch where the input shaft 

is linked to the outer cylinder and the output shaft is linked to a rotary piston [138]. The 

MR fluid is restrained in a small ring-shaped gap between the outer cylinder and the 

rotary piston. The coil is resided in the piston to generate a magnetic field. As a result, 

the torque transmitted across the clutch will increase and can be adjusted by controlling 

the strength of magnetic field.  

 

 
 

Figure 3.10: Schematic of a cylindrical MR clutch [138]. 
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3.4.3 Squeeze mode 

 

The third working mode of MR fluids is the squeeze mode. This mode has not 

been widely investigated. Squeeze mode operates when a force is applied to the plates in 

the same direction of a magnetic field to reduce or expand the distance between the 

parallel plates causing a squeeze flow. In squeeze mode, the MR fluid is subjected to 

dynamic (alternate between tension and compression) or static (individual tension or 

compression) loadings. As the magnetic field charges the particles, the particle chains 

formed between the walls become rigid with rapid changes in viscosity. The 

displacements engaged in squeeze mode are relatively very small (few millimetres) but 

require large forces. 

 

The squeeze mode was disclosed by Stanway et al. [141] in 1992. They studied 

the usage of ER fluids in squeeze mode and found that the yield stress produced under 

DC excitation could be several times greater than the shear mode. The same outcome 

was later confirmed by Monkman [10] for fluids under compressive stress. 

Consequently, systematic investigations have been carried out by many researchers to 

evaluate the mechanical and electrical properties of ER fluids in squeeze flow. Despite 

the fact that the Bingham plastic model was used to describe the behaviour of ER fluid 

in shear mode, Nilsson and Ohlson [15] have not recommended to utilize that model in 

squeeze mode. Bingham parameters tested from shear mode are not well-founded for the 

calculation of the squeeze mode behaviour. Sproston et al. [142] characterized the 

performance of ER fluids in dynamic squeeze mode using a bi-viscous model under a 

constant potential difference or by a constant field. Later on, Sproston and El Wahed 

[143] utilized the model to assess the fluid’s response to a step-change in the applied 

field and the influence of the size of solid phase. Even though the model was useful to 

predict the peak values of the input and transmitted forces [144], a more refined model is 

needed, according to authors, to predict the detailed temporal variations. Therefore, a 

new approach of modified bi-viscous model was developed by El Wahed et al. in order 

to model the behaviour of an ER squeeze mode cell under dynamic conditions [145, 

146]. Furthermore, Yang and Zhu [147] extended this latter model by incorporating 

Navier slip condition to obtain the radial velocity, pressure gradient, pressure and 

squeeze force.  
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The behaviour of MR fluids in squeeze mode under oscillatory conditions was 

investigated by Vieira et al. [24]. They found that the damping performance of an MR 

damper can be obtained by increasing the magnetic field strength or the displacement 

amplitude. Changing the frequency of the system also contributed to various behaviours 

of MR fluids. Forte et al. [19] optimized the design of a MR damper for rotor 

applications and showed that the damping characteristics of rotor vibrations can be 

controlled by varying the current in the magnetic coils. Later on, they improved both the 

design and the model through a more practical design process [21]. Moreover, Wang et 

al. [22] investigated and subsequently analyzed the mechanical properties of squeeze 

film and the unbalanced response characteristics of a MR fluid squeeze film damper. 

The squeeze mode of a MR damper has significant advantages such as simple structure, 

clear effectiveness and quick response [23]. In another study done on a flexible rotor 

system, the whirling amplitude was reduced by monitoring the rotating speed [20].  

 

The stress produced by the squeeze mode is the highest stress amongst other 

modes and can be used in damping vibrations with low amplitudes and high dynamic 

forces [22, 32]. In vibration isolation of structural system, the unwanted vibration in a 

relatively high frequency range can be attenuated by activating the ER mount [148]. 

Examples for vibration control are isolation engine mount [149], turbomachinery [150] 

and squeeze film damper [151]. Another interesting application on the squeeze mode is 

related to haptic devices where the user can feel the resistance forces by touching and 

moving a tool. Figure 3.11 [152] shows a prototype of Haptic Black Box II (HBB-II), 

that contains a number of pistons (act as fast actuators), in which works with a MR fluid. 

The prototype is designated as a box where the operator can insert his/her bare hand into 

a latex glove, and interacts with a virtual object by freely moving the hand without 

mechanical constraints. The pistons can be individually raised and lowered against the 

finger tip in order to approximate the virtual object. The force, then, will convey 

information about the shape and surface texture of an object. In this way, sensory 

receptors on the whole operator’s hand would be excited, rather than restricting to just 

one or few fingertips or phalanges. 
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Figure 3.11: Schematic of an MR haptic device [152]. 

 

 

a. Compression 

 

Compression is one of the mechanisms in the squeeze mode as shown in figure 

3.12. The geometric arrangement for compression is accomplished by two flat parallel 

solid surfaces facing each other. The two surfaces are pushed towards each other by an 

external force, operating at right angles to both surfaces. The liquid in the gap between 

them is initially free to move away from this increasingly small gap, by flowing parallel 

to the surfaces, and collecting in a region beyond the gap. Under the presence of a 

magnetic field, a magnetic dipole moment of the micron-sized particles is induced, so 

that dipole interactions occur between the particles. The particles form chains and 

coordinate according to the flux paths [3]. Consequently, this formation resists and 

restricts the fluid movement from repositioning out of their respective flux paths.  
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Figure 3.12: Basic concept of compression in squeeze mode 

 

 

There are few experimental investigations under compressive loading compared 

to studies on the other modes of ER fluid. Monkman [10] has performed experimental 

trials to show the effects of applied compressive force on the depth of a layer of ER 

fluid. Three types of ER fluid were used in his study; one type was a silicone-based ER 

fluid and two types of hydrocarbon-based ER fluids. The results showed that, the effects 

of an external field in any event at a higher field, as the distance between the plates 

closes the applied stress of the ER fluids increases. A description based on the 

mechanics of particle chains has been recommended to be responsible for the gap size 

effect on the compression of ER fluids rather than delineated by the Bingham model and 

the continuous media theory [14]. The effect of an external field on the compressive 

stress was also applied to the magnetostrictive polymer composite gels [153]. In another 

study done by Choi et al. [17] on poly(methylaniline) based ER fluid, confirmed that 

compressive stress can be affected by initial gap size and electric field strength, and 

demonstrated that compressive speed was also one of the factors.  

 

An investigation the properties of ER fluids which dealt with a solid-like 

material under slow compression and tension was conducted by Tian et al. [8]. Stress-

strain relationship of ER fluids based on zeolite and silicone oil was obtained under 

compressive and tensile loadings. Under the same electric field strength, compressive 

stress was the highest stress and followed by the tensile and shear stresses. Compression 

of ER fluids can be described by the mechanics of compressing a continuous fluid at the 
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presence of an external field. While at higher external field strength, structure 

strengthening of ER fluids should be taken into account [11]. In order to provide a 

practical knowledge to design and control ER actuators involving voltage on/off 

adjustment corresponding to different external conditions, transient behaviour of a 

compressed ER fluid have been experimentally investigated by Tian et al. [154]. They 

illustrated that the amplitude of the applied voltage had small effect on the ascending 

time. However, the compressive speed and compressive strain position have influenced 

greatly the ascending time of the transient compressive stress. The compressive stress 

increases quicker at a higher speed and a smaller gap size. Meng and Filisko [155] 

explored the contribution of the electrode sizes to the compression of ER fluids. Their 

results showed that for the same field intensity, the bigger diameter of electrode size 

originated in a greater mean pressure than the smaller diameter of electrode size. They 

also showed that the continuum non-Newtonian squeeze-flow theory was only capable 

of describing the behaviour at the very beginning stage of compression. See et al. [156] 

discovered that the compressive modulus of a MR fluid (ratio of compressive stress to 

compressive strain) had no significant difference at 0.05 of strain value in comparison 

between one-step and slow compressions.  

 

In terms of theoretical works, Lukkarinen and Kaski [9] studied the mechanical 

properties of ER suspensions with consideration given to the microscopic behaviour 

using computer simulations. They used an electrostatic point-dipole model to compare 

the behaviour of ER fluids under compression and shear strains. The authors found that 

the difference in maximum forces between sheared and compressed systems are about 

tenfold. Furthermore, the maximum force on the moving plate to be strongly 

compression-rate dependent. In another study done by Lukkarinen and Kaski [157], the 

model was embodied with or without multipolar corrections and the interaction with the 

base fluid due to viscous laminar flow which is described by the Stokes drag. 

Compressive stress was observed to be the highest stress among other stresses (tensile 

and shear), and the ratio of maximum stresses between shear and compressive loadings 

was quite large and increased with the loading rate. The effect of multipolar corrections 

was significant on the maximum forces of the grown structures (a single chain or a 

column of Body Centred Tetragonal (BCT) structure) under tension loading.  
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b. Tension 

 

Another mechanism in the squeeze mode is tension as shown in figure 3.13. 

Tension in a squeeze mode is as an operational mode where two flat parallel surfaces, 

standing opposite to each other, are pulled apart from each other by an external force, 

acting along the path of the magnetic flux lines. Yield stress produced by tension mode 

is greater by three to four times than shear yield stress, but lower than compressive stress 

under the same magnetic field strength [8]. In simulation studies done by Lukkarinen 

and Kaski [157], different types of particle configurations under tension, compression 

and shear loading were studied. For a single chain and a column of BCT unit cells, they 

observed that both structures under tension loading appeared stronger than those under 

shear loading. However, in contrast, thick structure of BCT under tension loading 

seemed to be weaker than under shear loading. This is probably because of the odd 

behaviour of the structure during tension, where at the beginning of straining, the forces 

were obviously negative and the system was very week. 

 

 
 

Figure 3.13: Basic concept of tension in squeeze mode 

 

 

A tensile behaviour study under DC current electric fields has been carried out 

by Tian et al. [13]. They reported that the tensile behaviour can be divided into five 
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categories depending on the pattern of the stress-strain curves. Different tension types 

were described by the structural strengthening and the competition between particle 

chains and the electrodes, and the interaction of particle chain strength. Tian and Zou 

[12] proposed a normalized method for comparing tensile behaviour of ER fluids. Both 

tensile stress and electric field were normalized in order to achieve the approximated 

tensile behaviour of the ER fluids under different conditions. Then, these results were 

compared with each other to address the electric field effect and the particle structure 

effect on the tension loading. Under high voltages, the structure effect has been found to 

be stronger than that under low voltages. 

 

 

3.4.4 Combination of modes 

 

Some of the applications of field responsive fluids take advantage of the 

combination of two modes for a greater strength and functionality. For instance, 

dampers can be constructed in three different modes as shown in figure 3.14 [158]. In a 

general manner, shear mode exhibits Couette flow through the annular bypass, while a 

valve flow is characterized by Poiseiulle flow through the annular bypass. The 

combination of them often gives higher yield stress as compared to stress produced by 

individual operation modes. Kamath et al. [159] have shown in their analysis and testing 

of Bingham plastic behaviour that mixed (valve and shear) mode dashpot dampers have 

higher passive damping than flow mode dampers. The mixed mode damper has a 

secondary effect of viscous drag as a result of the motion of piston head, instead of 

relying on the pressure gradient developed by the piston head to push the fluid through 

the gap created by the fixed electrodes. Wereley and Pang [158] have developed 

nonlinear quasi-steady ER and MR damper models using idealized Bingham plastic 

shear flow mechanism to characterize the equivalent viscous damping constant of the 

dampers. Plug thickness is the strongest variable that contributed to the damper 

behaviour for both flow and mixed modes. 
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Figure 3.14: Schematic of dampers in three different modes. (a) Shear mode, (b) valve 

mode and (c) mixed mode which combines the valve and shear modes of operation 

[158]. 

 

 

In another experimental study done by Kulkarni et al. [16], the performance of 

the combination of squeeze and shear modes of MR fluids in dynamic loading was 

investigated. Even though squeeze mode can produce the highest strength among all 

modes, the addition of squeeze mode to shear mode did not always give a better strength 

than the shear mode alone. However, Tang et al. [160] demonstrated that the yield shear 

stress can be significantly improved by compressing the MR fluid along the magnetic 

field direction before the shear process is performed. With regards to this result, Tao 

[161] concluded that the weak points of the MR microstructure under a shear force 

occurred at the chains’ ends. Therefore, a compression-aggregation process can enhance 
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the robust thick columns with strong ends. He also verified this thought with scanning 

electronic micrographic images for a structure change. Zhang et al. [162] studied the 

mechanism of the squeeze-strengthen effect in MR fluids. They proposed a 

semiempirical model by considering the local field theory and the friction between 

magnetizable particles. In order to achieve the true yield stress of MR fluids, they 

suggested a ferromagnetic material to be used as a test piece rather than a non-

ferromagnetic material. This is because of the existence of the wall effect between the 

test piece and fluid. 

 

 

3.5 Summary of chapter 3 

 

A brief and comprehensive overview of the main points of a body of the research 

process is shown in figure 3.15. Chapter 2 addressed the question of how MR fluids 

behave under individual static loadings in squeeze mode. Instead of MR fluids, 

experimental investigations on ER fluids under compression or tension loading are quite 

thorough and systematic. Even though ER fluids can be considered as MR fluids 

analogue, some of the researchers found that the behaviour of both fluids is not always 

the same. Furthermore these types of field responsive fluids are difficult to compare 

directly because of their reaction to different stimulus. The achievement of producing 

high stress in squeeze mode attracted extensive interest and makes it worthy of 

investigation. Therefore, a thorough study on the stress-strain relationship of MR fluids 

in compression and tension need to be scrutinized. In order to perform experimental 

trials on MR fluids under squeeze mode, design of the test rig will be based on the 

previous work which were carried out on the ER fluids as will be presented in chapter 3. 

A simulation software package will be used to predict the magnetic field through the gap 

in between the two cylinders of the test rig as also will be demonstrated in chapter 3.  
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Summary 
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of MR fluids in squeeze mode 
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Fluids

Compositions of MR fluids 
- Magnetic Properties 
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- Basic Principles 
- Rheology of MR fluids 
- Off- and on-state rheology 
- Volume fraction 

2 Field Responsive 
Fluids 

Working Modes 
- Shear 
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- Applications 

Sequence Legend:  Resource Research task 
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7 

4 

Effects of Various Factors 6 
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Experimental Procedures 

Research Outcome 

Point of Departure 1 

Figure 3.15: Summary of the research process in chapter 3. 
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4.0 Introduction 

 

Better understanding of MR fluid characteristics is important for focussing such 

engineering issues as optimizing apparatus geometry and magnetic field distribution, and 

developing predictive capabilities for design and control strategies. In this chapter, a 

method to investigate the behaviour of MR fluid in several carrier liquids in order to 

optimize the function of the fluid in squeeze mode was carried out. Detailed description 

of a magnetic circuit design and a test rig were presented. Simulation results in 

connection with magnetic field strength which was done by Finite Element Method 

Magnetics (FEMM) software package were also described. Finally, procedures of the 

experimental set-up were described according to each testing, and overall processes 

were summarized at the end of this chapter. 

 

 

4.1 MR fluid materials 

 

In this study, three different types of commercially available MR fluids produced 

by Lord Corporation were chosen to characterize the compressive/tensile stress under 

various conditions. These materials were namely MRF-241ES, MRF-132DG and MRF-

122-2ED, and they were selected in order to produce consistency in the results. MRF-

241ES was a water-based MR fluid, which was developed for general use in sealed 

systems of controllable, energy-dissipating applications such as shocks, dampers and 

brakes. MRF-132DG and MRF-122-2ED were hydrocarbon-based MR fluids, which 

were formulated for general use in controllable, energy-dissipating applications such as 

shocks, dampers and brakes. The MR fluids have a lot of advantages such as fast 

response time, high yield stress, low off-state viscosity, high resistance to hard settling, 

easy remixing and were non abrasive [47]. Fast response time was regarded to instant 

and reversible responds to changes in a magnetic field. Dynamic yield strength allows 

for a wide range of controllability, where high yield strength could be achieved in the 

presence of a magnetic field and very low yield strength could be produced in the 

absence of a magnetic field. In order to fulfil the requirements of demanding 

applications such as automotive shock absorbers, temperature resistance performs 
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consistently throughout a broad temperature range. Non-abrasive components were 

formulated and used to not abrade the apparatus in which the MR fluid was used.  

 

The selection of the carrier liquid determines the temperature ranges in which the 

MR fluid could be utilized. Even though silicone oil was the most frequently used as a 

carrier liquid, hydrocarbon oil has some advantages due to its low viscosity, better 

lubrication properties and suitability for high shear-rate applications. Moreover, a 

hydrocarbon oil-based MR fluid has lower zero field viscosity, which was about 0.6 

times less than the silicone oil-based MR fluid [72]. On the other hand, a water-based 

MR fluid could minimize waste disposal problems and allows the particles to be easily 

recycled from the material [163]. 

 

 

4.1.1 Physical properties of tested MR fluids 

 

Typical physical properties of MR fluid materials that are used in this study are 

listed in table 4.1 [47]. MR fluids have a high tolerance of common impurities or less 

sensitive to contaminants such as water. They were stable over a broad temperature 

range; -10°C to 70°C for water-based MR fluids and -40°C to 150°C for hydrocarbon-

based MR fluids, but limited by the volatility properties of the carrier fluid rather than 

the details of the polarization mechanism. The fluids also have the advantages of using 

low voltage power supplies in the range of 2 to 25 V, with current range between 1 to 2 

Amps and power ratings between 2-50 watts [39].  

 

The density range of the soft magnetic particles dispersed in the carrier liquid 

was between 2.32 – 3.92 g/cm3. This property gives a great restriction in terms of the 

agglomeration and sedimentation because of the higher density of particles compared to 

the carrier liquids. In a previous study, instead of carbonyl iron, Pu and Jiang [164] used 

other materials such as Carbon NanoTube (CNT)/Fe3O4 nanocomposites to reduce the 

density to about 1.8 g/cm3 and exhibit high sedimentation stability. Furthermore, using 

surface chemistry by addition of surfactants and additives, MR fluids were also stable 

against particle-liquid separation [165]. This was because the magnetic polarization 

mechanism was slightly or considerably not affected by those coated layers and 
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additives. According to Kormann et al. [166] in their patent, the coated particles with 

polyelectrolyte had viscosity of less than 10 Pa.s at shear rates of 10 s-1 and gave MR 

effects at 10 kPa in an environment of magnetic field of 100 kA/m. On account of 

volume fraction, most of the MR fluids contain 20 - 40% by volume, or about 80% by 

weight of comparatively pure and soft iron particles such as carbonyl iron [39].  

 

Table 4.1: Physical properties of tested MR fluids.  

Property Values / limits 

Codes of MR fluids MRF-241ES MRF-132DG MRF-122-2ED 

Base Fluid Water Hydrocarbon Hydrocarbon 

Operating 
Temperature -10°C to 70°C -40°C to 130°C -40°C to 130°C 

Density Range 3.80 to 3.92 g/cm3 2.98 to 3.18 g/cm3 2.32 to 2.44 g/cm3

Colour Dark Gray Dark Gray Dark Gray 

Solids Percentage 
Weight 85% 80.98% 72% 

°C Unit volume 
per °C °C Unit volume 

per °C °C 
Unit volume 

per °C 
0 to 
50 0.55 x 10-3 0 to 

50 0.65 x 10-3

50 to 
100 0.66 x 10-3 50 to 

100 0.71 x 10-3

Coefficient of 
Thermal Expansion 0 to 

70 0.223 x 10-3

100 to 
150 0.67 x 10-3 100 to 

150 0.79 x 10-3

Specific Heat @ 
25°C 0.94J/g°C 0.79 J/g°C 0.94 J/g°C 

Thermal 
Conductivity @ 
25°C 

0.85 – 3.77 W/m°C 0.25 – 1.06 W/m°C 0.21 – 0.81 W/m°C 

Flash Point > 93°C > 150°C > 150°C 

 

 

In terms of the MR fluids supplied by Lord Corporation, settling was not 

significant as the fluids have the capability to remix in the apparatus/device. This 

property was called redispersability and it depended on the geometry of the apparatus 

 61



 

and fluid properties. For example, a number of tests were conducted and results have 

shown that MR fluids in the device will return to their original condition even after one 

year of settling with as little as one stroke [47]. Therefore, any apparatus could be 

designed to have essentially no settling, which was demanded by applications where the 

apparatus was not active for a long period of time, such as in seismic damage mitigation 

or automotive crash energy absorption. In any event, a small amount of settling was 

typically an acceptable trade-off for other desirable properties.  

 

 

4.1.2 Magnetic properties of tested MR fluids 

 

Figure 4.1 shows the magnetic induction curves or B-H curves, of three 

commercial MR fluid materials. MR fluids exhibit approximately linear magnetic 

properties up to 200 kA/m of applied field intensity. The magnetic flux density of MRF-

241ES demonstrates greater values over those of the other MR fluids. The magnetic 

properties of MR fluids vary significantly due to a higher particle density in MRF-

241ES (3.80 to 3.92 g/cm3) than MRF-132DG (2.98 to 3.18 g/cm3) and MRF-122-2ED 

(2.32 to 2.44 g/cm3). According to Jolly et al. [95], the intrinsic induction or polarization 

density of an MR fluid at complete saturation was equal to φ × Js Tesla, where φ is the 

volume percent of particles in the fluid (unitless) and Js is the saturation polarization of 

the particles’ material (Tesla). For instance, an MR fluid containing 35% iron and Js 

equal 2.1 Tesla, was expected to saturate at about 0.35 × 2.1 = 0.735 Tesla. 
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Figure 4.1: Typical magnetic properties of tested MR fluids [47]. 

 

 

4.1.3 Remixing method 

 

All the MR fluids have to remix prior to filling to ensure a homogeneous fluid 

was placed into the test rig. MR fluids produced by Lord Corporation were formulated 

for minimal settling and easy redispersion when operating in an apparatus. Studies have 

shown once inside a properly designed device, MR fluids will typically be fully mixed 

after the first cycle [47]. Generally, MR fluids were optimized for low fluid viscosity in 

the non-magnetic state, which might result in the formation of a clear layer between the 

iron particles and the carrier fluid in the as-shipped state.  

 

In this work, MR fluids were remixed by using a electronic overhead stirrer 

model EUROSTAR digital supplied by IKA®Werke GmbH & Co. KG together with 4-

bladed propeller stirrer made from stainless steel (non-magnetic materials) [167], shown 

in figure 4.2. The propeller of choice was a low-shear, axial-flow impeller in order to 

minimally shear the fluid. MR fluids were mixed at approximately 350 rpm until they 

were uniform throughout the containers. No separation was observed between particles 

and the carrier fluid under common flow conditions. A degree of separation may 
 63



 

eventually have occurred under static conditions, but low-shear agitation (shaking or 

remixing) prior to use would easily redisperse the particles into a homogeneous state.  

 

 
 

Figure 4.2: Overhead rotary mixer used to mix MR fluids in this work. 

 

 

4.2 Experimental design 

 

The basic concept of the test rig was to perform compression and tension tests on 

the MR fluids placed between two parallel cylinders (upper and lower cylinders). The 

best values of the magnetic field strength generated by the test rig, design and materials 

selection were carried out by FEMM [168]. A selection range of the coil size/design 

within the test rig was obtained based on the given dimensions of the lower cylinder. 

The same FEMM software package helped finalizing the coil selection in order to 

produce the best range of magnetic field strength. 
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4.2.1 Simulation of the magnetic circuit 

 

The main objective of the magnetic circuit was to produce the correct magnetic 

flux density across the MR fluid. From the electromagnetic point of view, the test rig 

could be treated as a circuit concentrating the magnetic field generated by a coil and 

guiding it from the core to and across the fluid. FEMM simulation software package was 

used to analyze and optimize the design of the magnetic circuit. 

 

An axisymmetric model was employed in the FEMM software package for the 

magnetostatic problems in 2-Dimensional spaces [168]. The magnetostatic problems are 

problems in which the fields are time-invariant. In this case, the magnetic field intensity 

H must comply with 

 HJ ×∇=  (4-1)

where ∇ is the divergence operator (1/m) and J is the current density (Amps/m2). In 

another case, according to Gauss’s law for magnetism, in the absence of magnetic 

monopoles, the magnetic flux density B must comply with 

 B⋅∇=0  (4-2)

where B is the magnetic flux density (Tesla). 

 

Equations 4-1 and 4-2 are subject to a constitutive relationship between magnetic 

flux density B and magnetic field intensity H for each material; same as in equation (2-

10): 

 HB μ=  

If a material is nonlinear, for instance saturating iron or alnico magnets, the permeability 

μ is actually a function of magnetic flux density B, 

 ( )BH
B

=μ  (4-3)

After nonlinear materials have reached the saturation points, the values of magnetic flux 

density will remain the same as magnetic field intensity increases.  
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FEMM goes about finding a field that satisfies equations (4-1), (4-2) and (2-10) 

via a magnetic vector potential approach [168]. The magnetic flux density is written in 

terms of the vector potential A (magnetic vector potential) as [169] 

 AB ×∇=  (4-4)

Now, this definition of B always satisfies (4-2). Then, equation (4-1) can be rewritten as: 

 ( ) A
B

J ×∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇=

μ
1  (4-5)

 

For a linear isotropic material (and assuming the Coulomb gauge ∇·A = 0), 

equation (4-5) reduces to [169] 

 AJ 21
∇−=

μ
 (4-6)

In practice, FEMM uses equation (4-5) so that magnetostatic problems with a nonlinear 

B-H relationship can be solved. 

 

A is a vector with three components in the 3-Dimensional case. However, in 2-

dimensional planar and axisymmetric cases, only one component was left in one 

direction while the other two components are zero. There was an advantage in using 

vector potential formulation because all the conditions can be fulfilled and combined 

into a single equation. If A is found, B and H can then be calculated by differentiating A.  

 

For boundary conditions in the FEMM software package, a Robin boundary 

condition was selected where this boundary was sort of a mix between Dirichlet and 

Neumann, prescribing a relationship between the value of A and its normal derivative at 

the boundary [168]. A Dirichlet boundary condition was applicable if the value of vector 

potential A was explicitly defined on the boundary, for example A = 0 along a boundary 

to keep the magnetic flux from crossing the boundary, while a Neumann boundary 

condition specified the normal derivative of potential along the boundary. The 

homogeneous Neumann boundary condition ∂A/∂n = 0 was defined along a boundary to 

force the flux to pass the boundary condition at exactly 90° angle to the boundary and 

applicable for a very high permeability metal. Therefore, by using the Robin boundary 
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condition, the magnetic field produced by the coil could be modelled in an unbounded 

space while still only modelling a finite region of that space. For an asymptotic 

boundary condition, the coefficients in a boundary condition can be represented by 

 01
10

0
=++

∂
∂ CAC

n
A

rμμ
 (4-7)

where μr is the relative magnetic permeability of the region adjacent to the boundary, μ0 

is the permeability of free space and n represents the direction normal to the boundary.  

 

Coefficients C0 and C1 are specified by 

 R
C

r 0
0

1
μμ

=  (4-8)

 01 =C  (4-9)

where R is the outer radius of a sphere problem domain. 

 

 

4.2.2 Design of test rig  

 

A design concept of the experimental set-up similar to that used for studying ER 

fluid by Tian et al. [14] was utilized in this study. In order to execute experimental trials 

on the MR fluids, the external field had to be changed from an electric field to a 

magnetic field. Therefore, a new test rig needed to be designed to accommodate these 

differences. Basically, the test rig consisted of two parts; upper and lower cylinders. A 

measured amount of the MR fluid was sandwiched in between the two cylinders, so that 

the upper cylinder could move towards or pulls against the lower cylinder, and 

simultaneously compressed or decompressed the MR fluid. An axial-symmetrical model 

was selected in the FEMM software package. A sketch of the initial design concept with 

coordinates is shown in figure 4.3.  
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Figure 4.3: Middle half of the test rig of the initial design concept. 

 

 

At the beginning of the design, the test rig consisted of six parts where part A 

was the upper cylinder, part B was the lower cylinder, part C was the coil, part D was 

the support cylinder, part E was the plate and part F was the lower ring. Part A, B, E and 

F were made from magnetic materials, while parts D and C were made from non-

magnetic materials and copper wire, respectively. The inner diameter of the support 

cylinder (part D) used to contain the MR fluid was a little larger than the outer diameter 

of the upper cylinder (part A), so that the gap region remained flooded by the MR fluid 

throughout the compression, which was applicable to perform the tension test. A number 

of design changes were simulated in the FEMM software package and are listed in table 

4.2. An analysis and optimization of the magnetic behaviour of similar devices was 
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carried out using FEMM [170-172]. This software package was related to the type of 

materials for each component of the test rig, type of coil, number of turns of the coils 

wrapping around the core and values of the electric current that runs in the coils. These 

parameters were important to produce the best value for the magnetic field intensity H, 

which was correlated with the magnetic flux density B. 

 

In these changes, the number of turns of the coil, the initial gap size and the 

current value supplied to the coil were kept constant. The average values of magnetic 

flux density were taken at the middle between the two cylinders, which was indicated by 

red centred line in figure 4.3 and table 4.2. 

 

Table 4.2: List of changes in the design concept. 

Design change Sketch of test rig 
Magnetic flux density (Tesla) 

versus length taken from middle  
half of the test rig 

Number 1 
 
• First idea of the test rig. 
• Average value of magnetic flux 

density is about 0.063 Tesla. 
 
 
 
 
 
 

 

 

Number 2 
 
• From design number 1. 
• Change material of the lower 

ring from magnetic (steel) to 
non-magnetic (stainless steel) 
materials. 

• Average value of magnetic flux 
density is about 0.053 Tesla. 

• Smaller value than design 
number 1. 
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Number 3 
 
• From design number 1. 
• Change material of the upper 

cylinder from magnetic (steel) 
to non-magnetic (stainless steel) 
materials. 

• Magnetic flux density is not 
distributed evenly. 

• Maximum value of magnetic 
flux density is less than 0.06 
Tesla. 

 

 

 

Number 4 
 
• From design number 1. 
• Change material of the plate 

from magnetic (steel) to non-
magnetic (stainless steel) 
materials.  

• Magnetic flux density is not 
distributed evenly. 

• Maximum value of magnetic 
flux density is slightly above 
0.05 Tesla. 

 

 

 

Number 5 
 
• From design number 1. 
• Change plate thickness from 15 

to 5 mm.  
• Average value of magnetic flux 

density is about 0.068 Tesla. 
 
 
 
 

 

 

Number 6 
 
• From design number 1. 
• Change radius of the upper 

cylinder from 35 to 20 mm. 
• Change radius of the plate from 

35 to 20 mm. 
• Change radius of the inner 

support cylinder from 36 to 21 
mm but maintain the same 
thickness. 

• Average value of magnetic flux 
density is about 0.14 Tesla  
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Number 7 
 
• From design number 6. 
• Change plate thickness from 15 

to 5 mm.  
• Change thickness of the support 

cylinder from 5 to 2 mm. 
• Average value of magnetic flux 

density is about 0.2 Tesla  
 
 
 

 

 

 

 

Based on simulation results, the test rig (design number 7) was expected to 

produce the highest values of the magnetic flux density. Magnetic materials were useful 

to make upper cylinder (part A), lower cylinder (part B), plate (part E) and lower ring 

(part F), while non-magnetic materials were preferred to make support cylinder (part D). 

The introduction of non-magnetic material as a plate produced uneven distribution of the 

magnetic flux density. This condition also applied to the support cylinder. However, if 

magnetic materials were used as a support cylinder, the tested MR fluids would stick to 

the surface of support cylinder, which were not return back to its original place during 

and after the experiments. Therefore, it was better to make the support cylinder with two 

different materials; magnetic material at bottom area of the plate and non-magnetic 

material at the other parts as shown in figure 4.4. 

 

 
 

Figure 4.4: Sketch of a new configuration of material of support cylinder. 
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4.2.3 Selection of coil dimension and material 

 

The following parameters were used for the geometry of the coil; the dimensions 

of inner diameter, outer diameter and width of the coil were equal to 60, 92 and 100 mm, 

respectively. These dimensions were selected based on the various values of magnetic 

flux density could be achieved by varying the applied current, and furthermore, ease of 

manufacture and assembly. These parameters were limited the area in which the copper 

wire can be wound. Current density was limited to 4 Amm-2 in connection with the 

appropriate wire diameter [131]. Therefore, the maximum current density is given by 

 
w

m

A
I

J =  (4-10)

where J is the current density (Amps/mm2), Im is the maximum current supplied to the 

coil (Amps) and Aw is the surface area of the uncoated wire (mm2). For instance, 24SWG 

copper wires has a diameter of 0.56 mm, thus, the maximum current value allowed in 

this wire was 1.0 Amps. Furthermore, the wire can be wound around the specified core’s 

dimensions with 160 turns in each layer of the width of coil, 25 layers between inner and 

outer diameters of the coil, and gave the total number of turns of 4000 turns. Other 

outcomes using various types of wires are shown in table 4.3.  

 

Table 4.3: Numbers of turns of the coil and maximum values of the applied current.  

Wire 
gauge 

Diameter 
(mm) 

Diameter of 
coated wire 

(mm) 

No. of turns 
(each layer)

No. of 
layer 

No. of 
turns 

Max. 
Current 
(Amps) 

18SWG 1.22 1.28 77 12 924 4.7 

20SWG 0.91 0.98 102 16 1632 2.6 

22SWG 0.71 0.78 128 20 2560 1.6 

24SWG 0.56 0.62 160 25 4000 1.0 

26SWG 0.46 0.52 191 30 5730 0.7 

28SWG 0.38 0.44 226 36 8136 0.4 

30SWG 0.31 0.38 263 42 11046 0.3 
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Figure 4.5 shows the range of some parameters to be compromised in order to 

achieve the desired results.  
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Curve A  Curve B 

Figure 4.5: Number of coil’s turns and current as functions of wire gauge. Curve A is a 

function of number of turns and wire gauge and curve B is a function of current and wire 

gauge. 

 

In this study, copper wire type 22SWG was chosen to be wound around the 

lower cylinder. The specifications of this copper wire [173] are shown in table 4.4. 

22SWG copper wire was coated and insulated with polyurethane. It was used normally 

as a fuse wire for a current limit of 28 Amps [174]. The selected wire was also utilized 

by Bakir [175] to make a solenoid where that wire was easily wound around the core 

and had a current carrying capability to generate a very high static magnetic field 

strength.  

 

Table 4.4: Specifications of copper wire used to make the coil [173]. 

Coil type 
Resistivity 

(nΩm) 

Diameter 

(mm) 

Diameter including 

insulating layer (mm)  

Temperature 

index 

22SWG 16.8 0.71 0.776 200 °C 
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4.2.4 Fabrication of the test rig 

 

After the most adequate design of the test rig was predicted by FEMM (section 

4.2.2), the next step was to implement and design the test rig using Pro-Engineer® 

version 2001. Some modifications have been made to the original concept of the test rig 

because of the manufacturing processes and material limitations. The test rig assembly 

shown in figure 4.6 was designed to allow different initial gaps before the test can be 

performed in the compression and tension modes.  

 

In the final design, the test rig consisted of seven parts. The materials of the test 

rig could be divided into three categories; magnetic materials, non-magnetic materials 

and a coil. The detail list of each part is shown in table 4.5. Some advantages of this test 

rig included a small required volume of tested samples, the ability to vary the working 

gap height, and the simplicity and ease of use. The upper cylinder, lower cylinder, lower 

ring and lower base were made from magnetic materials, while upper ring and support 

cylinder were made from non-magnetic material. A length of copper wire type 22SWG 

having a resistance of 29 ohms was wound around the lower cylinder forming 2750 

turns to generate a magnetic field. The support cylinder was attached on the top of the 

lower cylinder and acted as a container so as to refrain the MR fluid during the testing. 

An upper cylinder and a lower base made from low carbon steel (type 1020) were 

available in the institute’s workshop and were partly used in this study.  
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Figure 4.6: Test rig assembly. 

 

 

Table 4.5: Design details and material for each component of the test rig.   

Appendix 
No. Part Name Type of 

material Material Type 

A1 Upper Cylinder Magnetic Low Carbon Steel 1020 

A2 Lower Cylinder Magnetic Low Carbon Steel 1020 

A3 Upper Ring Non-magnetic Stainless Steel 304 

A4 Lower Ring Magnetic Low Carbon Steel 1020 

A5 Support Cylinder Non-magnetic Stainless Steel 304 

- Coil Non-magnetic Copper wire 22SWG 

- Lower Base Magnetic Low Carbon Steel 1020 
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A computer numerical control (CNC) lathe machine and a laser cutter were used 

in order to achieve the desirable dimensions of the parts according to the drawings. All 

the manufacturing processes were done in the engineering workshop at Dublin City 

University. For the first step of sub assembly, the upper ring was placed between the 

bottom of the support cylinder and the top of the lower cylinder. Then the support 

cylinder was screwed to a threaded part on the top of lower cylinder. After that, the 

lower ring was attached to the bottom of the lower cylinder. The lower ring and the 

lower cylinder were then jointed with the lower base using a bolt. These two rings act as 

a stopper during and after the coil wounding around the lower cylinder. A cross sectional 

view of the sub assembly drawing for the lower part (without the coil) is shown in figure 

4.7. 

 

 
 

Figure 4.7: Cross-sectional view and dimensions of the lower part. 
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4.3 Experimental set-up 

 

A schematic diagram of the experimental set-up is shown in figure 4.8. The 

experimental-set up consisted of five main components, namely the Instron Machine, the 

test rig, the MR fluids, the power supply and the control computer. The test rig was 

placed in the testing area of the Instron Universal Electromechanical Testing (UTS) 

machine (model 4202) [176]. This UTS machine has a load weighting system accuracy 

at digital readout accessory or analog output for error about ± 1% of reading to 1/50 of 

load cell capacity, or ± 1 count of the display. The communication with the machine was 

achieved via a built-in data acquisition board in the computer. The Instron machine was 

operated in the vertical direction to obtain displacements and forces under compression 

and tension modes. A measured amount of the MR fluids was filled in the gap between 

the upper and the lower cylinders. The current was supplied by the XantrexTM XFR 150v 

[177], 18 Amps DC power supply with ± 0.01% error of current maximum or ± 1 count 

of the display. This power supply needed 1 millisecond for the output voltage to recover 

within 0.5% of its previous level after a step change in load current of up to 50% of the 

rated output. The initial gap size and magnetic field strength were adjusted by manually 

monitoring both load and displacement displayed in the UTS machine, and controlling 

the value of the current supplied to the electromagnetic coil, respectively. All 

experiments were carried out in a displacement control mode at a room temperature of 

20 °C. 
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Test rig 

 

Figure 4.8: Schematic diagram of experimental set-up. 

 

 

MR fluids were transferred from the original case into the gap using a syringe as 

shown in figure 4.9 in order to precisely measure the appropriate volume of the fluid to 

be tested.  
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Figure 4.9: A syringe used to quantify the amount of MR fluids.  

 

 

The volume V is given by  

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛××=
φπ hV  (4-11)

where h is the height of the gap measured from top of the lower cylinder to the bottom 

of the upper cylinder and φ is the inner diameter of the hollow cylinder. Conversions of 

the initial gap size or height of the gap to volume is shown in table 4.6.  

 

Table 4.6: Conversions of gap height to gap volume. 

Volume Initial Gap Size 
(mm) (mm3) (ml) 

1.0 2042.8 ~ 2 

2.0 4085.6 ~ 4 
 

 

4.3.1 Test procedures 

 

In this study, for each type of MR fluid tested, three types of parameters were 

prepared to perform the compression and the tension tests. Various parameters including 

different initial gap sizes (step 1), compressive/tensile speeds (step 2) and applied 

currents (step 3) were set before performing any tests, shown in figure 4.10. Two types 

of experiments were performed; namely compression and tension tests. There were four 

sets of tests; two sets in compression and two sets in tension for each MR fluid. For a 

complete set of each test, the same sample of the MR fluid was used at a specified initial 
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gap size with different values of compressive/tensile speeds and applied currents. The 

compression test was carried out by lowering the upper cylinder towards the lower 

cylinder, while the tension test was carried out by pulling up the upper cylinder away 

from the lower cylinder using a computer-controlled movement. The temperature in the 

gap between the upper and the lower cylinders was measured using a Type K 

thermocouple [178], which was capable of operating over a very wide temperature 

range. The maximum temperature obtained on the top of test rig when the current was 

supplied continuously for 20 minutes was 65 °C with the maximum voltage reached 54 

Volts. Therefore, in every set of test, the maximum voltage was set to 54 Volts; where 

the power supply was withdrawn after running every single test.   

 

 
 

Figure 4.10: Procedures of the tests.  

 

 

Initially, one of the parameters in steps 1 and 2 were set firmly to the required 

values. For the compression and tension tests, the initial gap sizes between the upper 

cylinder and the lower cylinder were set to either 1.0 or 2.0 mm. Then, different current 

values supplied to the coil (0.4, 0.8, 1.2 and 1.6 Amps) and were maintained constant 

throughout the tests. The compression/tension processes began when the upper cylinder 

was either lowered or raised at a constant speed, set of various values in step 2 (0.5, 1.0, 

1.5 and 2.0 mm/min), and simultaneously loads and displacements were recorded 

continuously. 
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4.4 Simulation results 

 

An analysis of the magnetic field between the upper cylinder and the lower 

cylinder (in the gap or across the MR fluids) was performed using FEMM. The magnetic 

properties of the non-magnetic materials were assumed to be linear such as stainless 

steel, copper wire and air. The magnetic properties of the magnetic materials such as low 

carbon steel and MR fluids were assumed to follow the B-H curves given in the software 

package and provided by the manufacturer, respectively. Simulation results were based 

on the middle half of the test rig (axial symmetric model), where was indicated by black 

centred line, while the average values of the magnetic flux density were pointed out by 

the red centred line as shown in figure 4.11.  

 
Figure 4.11: Sketch of the test rig showing the black centred lines in the middle half of 

the test rig and red centred line between the upper and lower cylinders. 

 

 

The input parameters for the FEMM software package including circuit 

properties and boundary property when the applied current to the coil was set to 1.6 

Amps and the initial gap size was set to 2.0 mm are shown in figure 4.12.  
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Figure 4.12: Input parameters in the FEMM software package. 

 

 

4.4.1 Magnetic field distribution 

 

The magnetic flux density distribution in the test rig and the details regarding the 

magnetic flux density distribution within the air gap are shown in figures 4.13 (a) and 

(b). The magnetic flux density distribution within the MR fluids are shown in figures 

4.14 (a), (b) and (c), whereas magnetic flux lines across the air gap and MR fluids are 

shown in figures 4.15 (a), (b), (c) and (d). These figures (4.13, 4.14 and 4.15) show the 

results when the applied current to the coil was set to 1.6 Amps and the initial gap size 

was set to 2.0 mm.  
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(b) 

 

Figure 4.13: Simulated magnetic flux density distribution (a) in the test rig and (b) in 

the area of the gap between the upper and lower cylinders. 
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(a) 

 

(b) 

 

Upper Cylinder 

Lower Cylinder 

MRF-241ES 

Upper Cylinder 

Lower Cylinder 

MRF-132DG 

Upper Cylinder 

Lower Cylinder 

MRF-122-2ED 

(c) 

Figure 4.14: Simulated magnetic flux density distribution, (a) in MRF-241ES, (b) in 

MRF-132DG and (c) in MRF-122-2ED. 
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(c) (d) 
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Figure 4.15: Simulated magnetic flux lines across the (a) air gap, (b) MRF-241ES, (c) 

MRF-132DG and (d) MRF-122-2ED. 

 

 

The magnetic flux density distribution in the air gap and MR fluids could be 

considered to be dispersed evenly. Figure 4.16 (a) shows that the average values of the 

magnetic flux density at the middle line between the upper and lower cylinders starting 

from the centre of the test rig to the inner diameter of the support cylinder were 0.47, 

0.70, 0.67 and 0.61 Tesla for the air gap, MRF-241ES, MRF-132DG and MRF-122-

2ED, respectively. As shown in figure 4.15, the magnetic flux lines seemed to penetrate 

the air gap and MR fluids and were aligned in straight lines with the direction of the 

magnetic field. However, after about 24 mm distance from the centre of the test rig, the 

values of normal magnetic flux density tended to reduce, while the values of tangential 

magnetic flux density become higher as shown in figures 4.16 (a) and (b). The values of 

the tangential magnetic flux density contributed to the shear mode during the testing, 

which was not the interest of this study. However, the tangential values were very small 

(less than 0.04 Tesla in the negative direction) and could be neglected.  
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(b) 

 

Figure 4.16: Simulated magnetic flux density distribution inside the air gap and MR 

fluids from centre line to the edge between the upper and the lower cylinders. (a) 

Normal magnetic flux density (B.n) and (b) tangential magnetic flux density (B.t). 

 

 

The negative values of the tangential magnetic flux density in figure 4.16 (b) 

represented their magnitudes in the opposite direction, depending on the north–south 

poles of the system. Detailed description regarding the negative value of the tangential 
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magnetic flux density could be depicted from figure 4.17. The tangential magnetic flux 

lines showed various directions (values) from the centre line of the test rig towards the 

edge, which could be divided into three zones; Zone I – zero value (0 ≤ x ≤ 23.5 mm), 

Zone II – negative value (23.5 < x ≤ 25.0 mm) and Zone III – positive value (25.0 < x ≤ 

25.5 mm). However, as mentioned earlier, the values of the magnetic flux density could 

be changed in the opposite direction by changing the direction of the applied current 

which also changed the dipoles location (north-south dipoles) as shown in figure 4.18. 

 

 
 

Figure 4.17: Simulated magnetic flux lines towards the edge of the test rig. 
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Figure 4.18: Simulated tangential magnetic flux density in the opposite direction. 

 

 

4.4.2 Effects of applied current and initial gap size 

 

Figures 4.19 (a), (b), (c), (d) and (e) show the values of the average magnetic 

flux density as the applied current increases at different initial gap sizes starting from 2.0 

mm down to 0.4 mm. The magnetic flux density increased with increasing applied 

current. The average values of the magnetic flux density were taken from centre of the 

test rig through middle line between the upper and the lower cylinders for figures 4.19, 

4.20, 4.21 and 4.22.  

 

MRF-241ES always showed the highest values of magnetic flux density at any 

initial gap size, followed by MRF-132DG, MRF-122-2ED and air. As the initial gap size 

decreased, the curves variation became smaller in the air and the MR fluids. The curves 

tended to slowly close match to each other as the initial gap size was decreased. This 

indicated a small effect on the magnetic flux density. 
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(e) 

Figure 4.19: Simulated magnetic flux density versus applied current for initial gap sizes 

of (a) 2.0, (b) 1.6, (c) 1.2, (d) 0.8 and (e) 0.4 mm. 
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The effects of applied current on magnetic flux density when increasing the 

initial gap sizes are depicted in figure 4.20 (a), (b), (c) and (d). As the initial gap size 

increased, the values of magnetic flux density decreased. When the initial gap size 

increased, MRF-241ES, in figure 4.20 (b), showed the least variation in magnetic flux 

density, while the air case, in figure 4.20 (a), showed the largest variation of the 

magnetic flux density. 
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Figure 4.20: Simulated magnetic flux density versus initial gap size for different values 

of applied current for (a) Air, (b) MRF-241ES, (c) MRF-231DG and (d) MRF-122-2ED. 
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Figures 4.21 (a), (b), (c) and (d) show the values of magnetic flux density as the 

initial gap size increased at different applied currents starting from 1.6 Amps down to 

0.4 Amps. The values of magnetic flux density decreased with increasing the initial gap 

size. Curves of the magnetic flux density versus initial gap size initiated at the same 

point at zero value of the initial gap size. But the initial magnetic flux density depended 

on the current supplied to the coil, for example 0.79, 0.61, 0.42 and 0.21 Tesla were 

initial values due to 1.6, 1.2, 0.8 and 0.4 Amps, respectively before proceeding to 

decrease as the initial gap size increased.  
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Figure 4.21: Simulated magnetic flux density versus initial gap size for the applied 

currents of (a) 1.6, (b) 1.2, (c) 0.8 and (d) 0.4 Amps. 
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The effects of initial gap size on magnetic flux density when increasing the 

applied currents are shown in figure 4.22 (a), (b), (c) and (d). As the applied current 

increased, the values of magnetic flux density increased. When increasing the current 

values in the coil, MRF-241ES in figure 4.22 (b), showed the least variation of the 

magnetic flux density, while air in the gap in figure 4.22 (a), showed the largest 

variation of the magnetic flux density. 
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Figure 4.22: Simulated magnetic flux density versus current for different values of the 

initial gap sizes for (a) Air, (b) MRF-241ES, (c) MRF-231DG and (d) MRF-122-2ED. 

 

 

The effects of the applied current and initial gap size on the magnetic flux 

density were interdependent. In general, the values of the magnetic flux density turned 
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into greater values with increasing the value of applied current or decreasing the initial 

gap size. However, these values depended on the type of carrier fluid in the MR fluid. 

MRF-241ES showed the highest values of magnetic flux density as compared to the 

other MR fluids (MRF-132DG and MRF-122-2ED). The reason behind this was simply, 

due to the relatively higher values of magnetic properties in MRF-241ES as shown in 

figure 4.1. 

 

 

4.5 Validation of simulation result 

 

A hand-held 5000 series gaussmeter (F.W Bell) supplied by Sypris Test and 

Measurement as shown in figure 4.23, was used to validate the results of the FEMM 

software package for the air gap in terms of the magnetic field intensity generated by the 

coil. This meter can measure magnetic field intensity of up to 20 kilogauss with 

accuracy of ± 4% of reading or ± 3 counts (milliTesla), and was equipped with a built-in 

software package to eliminate the requirement for complex calibration procedures [179].  

 

 
 

Figure 4.23: The 5000 series hand-held gaussmeter (F.W Bell).  
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Figure 4.24 shows the magnitude of the magnetic field strength in Tesla (1 Tesla 

is equal to 10 kilogauss) versus the applied current of both the measured and the 

simulated results at an initial gap size of 2.0 mm. The magnetic field strength increased 

when the applied current increased. The gaussmeter had shown less sensitivity at lower 

currents as compared to higher currents. However, in general, the values of the magnetic 

field strength obtained by direct measurement and simulation were in a good agreement.  
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Figure 4.24: Comparison of magnetic field strength between direct measurement and 

simulation result. 

 

 

4.6 Summary of chapter 4 

 

A summary and extensive overview of the research process in chapter 4 is shown 

in figure 4.25. A test rig was designed and built in order to perform the compression and 

tension tests. The upper and the lower cylinders were made from magnetic materials 

while the support cylinder was made from a non-magnetic material. The clearance 

between the outer diameter of the upper cylinder and inner diameter of the support 

cylinder was finalized to 0.5 mm, so that the gap could release any excess of MR fluids 
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during the compression tests. A coil made from a copper wire 22 SGW was wound 

around the lower cylinder in order to produce a magnetic field. The wire which had a 

diameter 0.771 mm was wound 2750 times to make the coil. Instron Universal 

Electromechanical Testing Machine was used to squeeze the fluid by self-constructed 

computer-controlled moving plate along the y-axis, in the same direction with the 

magnetic field. Three types of MR fluids were used in these experimental trials. MRF-

241ES was water-based MR fluid and MRF-132DG and MRF-122-2ED were 

hydrocarbon-based MR fluids, produced by Lord Corporation. A measured amount of 

MR fluids was sandwiched between two parallel flat surfaces, so that the fluid could be 

compressed or uncompressed in a direction normal to these surfaces. The upper cylinder 

was either pushed towards or pulled away from the lower cylinder. All experimental 

trials were performed in a displacement control mode at room temperature (20 °C). 

Results in terms of stress-strain relationships will be presented in the next chapter.  
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Figure 4.25: Summary of the research process in chapter 4. 
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CHAPTER 5 
 

BEHAVIOUR OF MR FLUIDS 
 

 

 

 

 

 

 

 

 



 

5.0 Introduction 

 

This chapter presents the results in terms of stress-strain relationships that were 

obtained from the compression and tension experiments. MR fluids are free-flowing 

media whose flow properties change rapidly and reversibly under the influence of a 

magnetic field. In this study, MR fluids showed a unique behaviour during the 

compression and tension tests. Discussion of the behaviour of the MR fluids was based 

on the relative movement between the particles and carrier fluid. Three MR fluids were 

investigated in this study. The first was a water-based MR fluid (MRF-241ES), the 

second and third were hydrocarbon-based MR fluids; MRF-132DG and MRF-122-2ED, 

respectively. There was a significant effect of the solid to liquid ratio, at a given applied 

current, on the compressive and tensile stresses. Higher ratios of solid particles to carrier 

liquid are an indication of higher magnetic properties of the MR fluid.  

 

 

5.1 Behaviour of MR fluids  

 

The relationships between stress and strain in both compression and tension 

modes, obtained from a large number of experiments, are included in appendices B and 

C, respectively. Significant sample results, representing the whole set of results in the 

appendices, are presented and discussed in the following sections. 

 

In this study, the only type of stress (compressive/tensile) experienced by a liquid 

was volumetric stress which was pressure based. Similarly the compressive/tensile strain 

exhibited normally by the liquids was volumetric compressive/tensile strain which was 

related to the compressibility or expandability of the liquid. Volumetric changes or the 

tendency of an object’s to deform when under pressure in three dimensions, was 

described by volumetric stress over volumetric strain.  

 

Because of this, it would be better to treat and refer to the compressive/tensile 

stress as an apparent compressive/tensile stress, to be understood in terms of an analogy 

with solids which deform easily. If the squeeze mode arrangement was examined in 

greater detail, this compressive/tensile stress could be shown to be related to the pressure 
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experienced by the MR fluid. However, an average value of the compressive/tensile 

stress measured by the experimental arrangement indicated that various regions of the 

MR fluid were experiencing different values of pressure. Near the centre line of the 

equipment, the pressure was very intense, but near the outside rim, the pressure was 

close to atmospheric pressure. This difference in pressure caused the fluid to accelerate, 

and some of the forces opposing this movement were related to the viscosity of the fluid. 

The apparent compressive/tensile stress was also therefore related in a complex way to 

the viscosity of the fluid. 

 

Similar complications existed in the relationships between the apparent 

compressive/tensile strain and the fundamental fluid properties. The compressibility or 

expandability of the liquid was almost certainly so small that its effect on the apparent 

compressive/tensile strain was negligible. The major effect of these properties was the 

displacement of the liquid from the region between the upper and lower cylinders to an 

outside region. While the compressive/tensile strain was applied at a constant rate, the 

actual fluid velocity changed depending on the region of the fluid and the instantaneous 

value of the apparent compressive/tensile strain. Near the centre line of the equipment, 

velocities would be low, but near the rim, the velocities would be high. When the 

apparent compressive/tensile strain was low, fluid velocities would be comparatively 

low, but at high values of the compressive/tensile strain, the fluid velocities would be 

much greater. With each value of the fluid velocity, there would be values for the shear 

rate. Therefore, to some extent, the apparent compressive/tensile strain endured a 

complex relationship with the different shear rates experienced by the fluid. A further 

complication occurred, because in the presence of a magnetic field, there would be a 

tendency of the carrier fluid to move leaving the magnetic particles behind. The apparent 

compressive/tensile strain was also, therefore, an indication of the ratio of the amount of 

solid particles to the amount of liquid in the MR fluid. It followed that when the 

relationship between apparent compressive/tensile stress and apparent 

compressive/tensile strain was being examined, it was difficult to draw any conclusions 

about the relationships between the fundamental characteristics of the MR fluid. From 

this point onwards in the thesis, where expressions such as compressive/tensile stresses 

and strains occur and they refer to the MR fluid, they are to be understood to be, 

apparent compressive/tensile stresses and strains. 
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5.2 Compression behaviour of MR fluids 

 

The relationships between compressive stress and compressive strain under a 

constant applied current of 1.6 Amps, a compressive speed of 1.5 mm/min and an initial 

gap size of 2.0 mm are shown in figure 5.1. If the tested compressive force is F, the 

compressive stress P during the compressive process can be represented as 

 2r
F

A
FP

π
==  (5-1)

where A is the surface area of compression and r is the radius of the surface area of the 

cylinder (r = 25 mm). 
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Figure 5.1: Compressive stress versus compressive strain of the MR fluids. 

 

 

The process of compression of the MR fluids always showed the same three 

regions. All the curves of compressive stress versus compressive strain showed similar 

characteristics despite the fact that different MR fluids were used. Figure 5.2 shows the 

three regions for the compression process of individual MR fluids. In the first region, the 

compressive stress increased gradually with the increased of the compressive strain until 

it reached nearly 0.46 MPa for MRF-241ES, and 0.51 MPa for MRF-132DG and MRF-

122-2ED. Then, there was a plateau with the compressive stress remaining constant 
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while the strain increased by values of about 10% for all tested materials. Probably the 

only safe conclusion that could be drawn from this result was that in the so-called 

constant region, the viscosity of the fluid remained almost constant even though the 

various shear rates and the solid to liquid ratios were increasing. This phenomenon had 

not been reported by any previous researchers. In the third region, the compressive stress 

began to increase again with further increased in the values of the compressive strain.  

 

 
(a) 

(b) (c) 

Figure 5.2: Compression process regions for (a) MRF-241ES, (b) MRF-132DG and (c) 

MRF-122-2ED.  

 

 

Some aspects of these regions could be explained, by the author, by assuming 

that there was relative movement between the magnetic particles and the carrier liquid. 

During the compression, while the liquid was being expelled, the solid particles, being 
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magnetic, were assumed to be able to resist this expulsion to some extent. Therefore the 

volume fraction of the particle was assumed to increase, because only the carrier liquid 

was being expelled. Now if this was true, the magnetic properties of the MR fluid would 

change as a result of this change in composition. Illustrations regarding these 

phenomena are demonstrated in figure 5.3. 

 

  
(a) (b) 

 
(c) (d) (e) 

Figure 5.3: Schematic of the arrangement of magnetic particles (a) under normal 

condition without magnetic field, (b) when magnetic field is applied, and at the (c) first 

region, (d) second region and (e) third region. 

 

 

An assumption has been made by other researchers concerning this change in 

magnetic properties. The assumption was that the magnetic permeability was directly 

proportional to the volume fraction of the magnetic particles in the fluid [2, 125]. For 

example, the volume fraction of MRF-241ES can be calculated as follows:  

 100% ×
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=
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ww

w

particlesofVolume

ρρ

ρ
 (5-2)

where w is the weight percent (unitless) and ρ is the density of the two constituents, the 

particles and the carrier fluid (g/cm3). The carrier fluid was assumed to have the same 
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density as water (1 g/cm3) and the density of the particles was given as (3.86 g/cm3) 

[47].  

 

Initially the weight percent of the particles and the carrier fluid were 85% and 

15% respectively, and therefore the volume percent of the particles was calculated to 

have been 60%. Now if the initial gap size was 2.0 mm, after the gap has decreased by 

0.2 mm, there would be an increase in the volume of the MR fluid by 10%. If it was 

assumed that this change in volume was due to the expulsion of carrier fluid alone, and 

that there was no change in the volume of the particles, the new value of the volume 

fraction of the particles could be calculated to be 66%.  

 

Using the same assumption that other researchers have made, namely, that the 

magnetic permeability is proportional to the volume fraction of particles, values for the 

flux density for different values of the magnetic field strength could now be calculated. 

This latter correlation is illustrated in figure 5.4 where the curves given correspond to a 

change in volume fraction of particles from 60% to 66%.  

 

 
 

Figure 5.4: Magnetic induction curves of MRF-241ES for two different iron volume 

percents.  
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It may also be assumed that the greater the flux density, the greater the tendency 

would be for the magnetic particles to arrange themselves along the lines of magnetic 

flux, and to form greater resistance to the movement of the carrier fluid. As a result, a 

greater compressive stress would be required to maintain the constant compressive strain 

rate. This mechanism therefore helped to explain why the compressive stress increased 

so sharply in the third region of the stress-strain relationship. 

 

It was equally true, of course, that as the volume fraction of particles increased; 

there would be an increase in the fluid’s viscosity. For concentrated suspension of solids, 

empirical data suggested that the relationship could be described by equation 3-6. This 

formula predicted that the viscosity will increase by 1.6 times when the volume fraction 

increased from 60% to 66%. Because of this higher viscosity, there would be an increase 

in the fluid’s resistance to flow. This would suggest that much higher forces were 

needed to cause the liquid to flow as the volume fraction increases, and, in turn, it 

supported the explanation of sharp increase in the compressive stress in the third region 

of the stress-strain relationship. 

 

Other workers have also postulated that for very high volume fractions, at values 

approaching the maximum packing density of the solid particles, there may be a 

tendency for the particles to agglomerate. This causes trapping some of the carrier fluid 

and reducing the effective volume for the movement of the “free” carrier fluid. If this 

occurred, the result would be further resistance to the flow, and even higher compressive 

stresses would be required to overcome this resistance, which has to occur in the system 

if a constant strain rate is to be maintained.  

 

All of these mechanisms helped to explain why in the third region, there was a 

very steep slope in the compressive stress versus the compressive strain. The 

mechanisms also helped to explain why the slope was even steeper when the magnetic 

field strength was high, because the volume fraction of particles was likely to increase 

more rapidly under these conditions. 

 

 

 

 103



 

5.2.1 Comparison of compression behaviour of MR fluids 

 

At the beginning of compression as shown in figure 5.1, all curves increased 

slowly as the compressive strain increased. Then the curves turned almost constant 

before proceeding to increase tremendously. However, different types of the MR fluids 

have showed different positions of the stress-strain curves.  

 

The basic phenomenon of the MR effect was understood to consist of the 

following. Under the influence of a magnetic field, the particles, which were initially in 

random positions, formed chains along the field direction, and later these chains, tended 

to form into thicker structures. These formations in the MR fluids were reversible, but as 

the magnetic field increased, there was growth in the structures from single chains to 

columns and then thicker columns.  

 

In general, the responses of the MR fluids to compressive strains can be divided 

into two stages. The first and second regions of the compression can be interpreted as 

the formation of the fluid movement with the particles arranged in single chains, and in 

the third region the particles are arranged in thicker structures. However, different values 

of compressive stress can be achieved by different sets of conditions. For instance, 

figure 5.1 shows that MRF-241ES, MRF-132DG and MRF-122-2ED started to 

experience large compressive stresses at very different values of compressive strain. In 

one case it was at a strain value of approximately 0.14, and in other cases it was at strain 

values of about 0.52 and 0.66.  

 

It seemed clear that the increased in the compressive stress at these particular 

points were due mainly to the values of the ratio of solids-to-liquid in the fluids. The 

three liquids started off with very different ratios of solids-to-liquid, and this factor, 

amongst others, gave the liquids different magnetic properties. By the process described 

in the preceding sentences, the ratio of solids-to-liquid in each fluid was steadily 

increasing. It was probable that at a certain critical value of the solids-to-liquid ratio, the 

point was reached when the compressive stress suddenly increased, while the 

compressive strains continued to increase at a steady rate. (These points occurred at the 

beginning of the third region.) Since one of the MR fluids started off with a 
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comparatively high solids-to-liquid ratio, it reached this critical value at quite a low 

value of the compressive strain. Consequently the MRF-241ES fluid shows this 

characteristic response at a much lower value of the compressive strain when compared 

with the MRF-132DG and MRF-122-2ED.  

 

It follows that one could make an MR fluid with magnetic particles composed of 

a material with a saturation of magnetisation which is lower than iron. If one then made 

a second MR fluid with iron particles, its magnetic properties would be superior. 

However if the second MR fluid had a lower ratio of solids-to-liquid, this would 

compensate for the difference in magnetic properties, and the two fluids could be tuned 

to have identical magnetic properties. However, in compression mode, the fluid with the 

particles of poorer saturation properties and initial higher solids-to-liquid ratio would 

reach the critical value of this ratio after only a small compressive strain value had been 

reached. The other fluid would reach this critical ratio after a much larger amount of 

compressive strain. For the cases of fluids with lower ratios of solids-to-liquid (MRF-

132DG and MRF-122-2ED), the compressive stresses were mainly determined by the 

strength of magnetic field but the influence of this factor was less significant for the 

fluid with the higher ratio of solids-to-liquid (MRF-241ES). The factor of greater 

significance for this fluid was the steadily increasing solids-to-liquid ratio. 

 

 

5.2.2 Compression behaviour of hydrocarbon-based MR fluids 

 

Values of the compressive stress of the MRF-132DG and MRF-122-2ED 

suddenly dropped at end of the second region, at about 0.53 and 0.53 MPa, respectively, 

and then continued to increase again as shown in figure 5.5. Since the particles were all 

approximately the same size, it was expected that the force required to break a chain 

composed of a single column of the particles would be of approximately the same 

magnitude throughout the volume occupied by the MR fluid. Also, as mentioned earlier, 

various regions of the fluid will move with very different velocities. Because of this, and 

since the resistance to flow was mainly due to viscosity, the force tending to break the 

chains of particles apart would be much greater in a region of high velocity and much 

smaller in a region of low velocity. However, the effect of a pressure drop phenomenon 

 105



 

as large as shown in figure 5.6, if it were caused by particle chains being broken, would 

have to be caused by a substantial number of chains being broken within a very short 

period of time (1.1 seconds). 

 

 
 

Figure 5.5: In the data, already given in figure 4.1, was scaled to show details in the 

range of values of compressive stress between 0.40 and 0.59 MPa. 

 

 

(a) (b) 

Figure 5.6: The compressive stress versus time data for the (a) MRF-132DG and (b) 

MRF-122-2ED. 
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In view of these facts, it would seem that the pressure drop effect could be due to 

a large number of single column chains of particles being broken almost instantaneously 

by forces resisting the movement of the MR fluid. It was more likely that this was the 

explanation for the occurrence of the complete second region in the stress-strain 

relationship. The chains of particles were broken successively beginning in those regions 

where the velocity is greatest and moving to regions where the velocity was originally 

smaller but increased as the size of the gap decreases. An effect similar to the pressure 

drop could be caused by air bubbles, originally in the MR fluid, being expelled from the 

region between the upper and lower cylinders. These air bubbles would introduce a 

small amount of compressibility as noted by Tang et al. [160], and this might explain the 

observed phenomenon. It also has been reported by Tang et al. [160] that MR fluids 

based on hydrocarbon carriers were very difficult to bleed satisfactorily, so that all air 

bubbles were removed. However, when the experimental trials were repeated, the same 

pressure drop was observed, and this would suggest that the same amount of air bubbles 

were present again and were expelled in the same way. In this work, no special attempts 

were made to expel air bubbles from the equipment before the experiments. In fact the 

equipment was not designed to allow for such a procedure to be carried out.  

 

 

5.3 Tension behaviour of MR fluids 

 

The relationships between tensile stress and tensile strain under a constant 

applied current of 1.2 Amps, a tensile speed of 1.5 mm/min and initial gap size of 2.0 

mm for the MR fluids are shown in figure 5.7. 
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Figure 5.7: Tensile stress versus tensile strain relationships for the MR fluids. 

 

 

Similar to the compression process, the tension process of the MR fluids 

consisted of three regions. Stress-strain curves of the MR fluids under tension showed 

similar characteristics despite the fact that different types of the carrier fluids were used. 

Figure 5.8 shows that the process of tension for each MR fluid could be divided into the 

three regions. In the first region, the tensile stress curve initially increased to an 

inflection point closely at 0.14 MPa for MRF-241ES, and 0.12 MPa for MRF-132DG 

and MRF-122-2ED, with the increased of the tensile strain. After the inflection points 

had been reached, the tensile stress decreased with increasing tensile strain in the second 

region. The stress-strain curves displayed a concave shape. In the third region, the 

tensile stress further decreased, slowly, with further elongation. The same behaviour was 

reported by Tian et al. [13] under tension process of the ER fluid when voltage ranging 

from 0.4 to 0.6 kV was applied.  
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(a) 

(b) (c) 

Figure 5.8: The three regions of tension process in (a) MRF-241ES, (b) MRF-132DG 

and (c) MRF-122-2ED.  

 

 

The same assumption, had been made by the author about the relative movement 

between the particles and the carrier fluid under compression process, could also be 

made to describe the transformation of the elongation patterns as shown in figure 5.9. 

When a magnetic field was applied to MR fluids between two parallel surfaces, the 

particles formed chains aligned in the direction of the magnetic field. For tension 

process under constant applied current and initial gap size, as the gap size between the 

surfaces increased, the instantaneous magnetic field decreased.  
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(a) (b) 

  
(c) (d) 

Figure 5.9: Schematic of the aggregation of MR fluids under tensile elongation (a) with 

the magnetic field applied, and at the (b) first region, (c) second region and (d) third 

region. 

 

 

The tension process was interrelated between the structure strengthening effect 

and the decreasing magnetic field in which was a direct consequence of the widening 

gap between the surfaces. Initially, the particle chains could be considered as a 

combination structure of the magnetic particles and the carrier fluid. In the first region, 

when the upper cylinder was moved up, the particle chains stretched a little bit while 

maintaining their structure. In order to elongate, a higher resistance was given to the MR 

fluids by the particle chains. In the second region, the particle chains rearranged to form 

a new structure, which consisted of the magnetic particles only. The magnetic particles 

could easily move and build-up new particle chains because the interaction among the 

magnetic particles was stronger than the interaction between the particles and the carrier 

fluid. Therefore, as the particle chains further elongated, they started to expel the carrier 

fluid until they reached a steady state. During this region, the structure aggregation 

effect compensated most of the field effect. Then in the third region, the new single 

chains tended to aggregate forming columns. The effect of the decreasing magnetic field 
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was therefore more obvious and consequently decreased the tensile strength of the MR 

fluid.  

 

 

5.3.1 Comparison of tension behaviour of MR fluids 

 

At the beginning of the tensile process (first region), the stress-strain curves 

increased rapidly as the tensile strain increased. Then, after reaching the peak point, the 

tensile stress decreased quickly (second region) before proceeding to decrease slowly 

(third region) with further increased of the tensile strain. The second and the third 

regions could be differentiated by the decreasing rate of the tensile stress. However, the 

values of tensile stress versus tensile strain were depending on the type of the MR fluid 

as shown in figure 5.7. Different values of the maximum tensile stress and the range of 

tensile strain of the MR fluids for each region under tension are shown in table 5.1.  

 

Table 5.1: Comparison values of the tensile stress and strain of MR fluids.  

 MRF-241ES MRF-132DG MRF-122-2ED

Maximum value of tensile stress 0.139 MPa 0.123 MPa 0.118 MPa 

Region 1 0 – 0.066 
(0.066) 

0 – 0.046 
(0.046) 

0 – 0.043 
(0.043) 

Region 2 0.066 - 0.094 
(0.028) 

0.046 – 0.099 
(0.053) 

0.043 – 0.105 
(0.062) 

Range of the 
tensile strain 

Region 3 > 0.094 > 0.099 > 0.105 

 

It seemed clear that the maximum value of the tensile stress was due mainly to 

the value of the ratio of solids-to-liquid in the fluids. Basically, all the MR fluids had 

different magnetic properties because their ratios of solids-to-liquids were not the same. 

Since one of the MR fluids started off with a comparatively high solids-to-liquid ratio, 

(MRF-241ES), the tensile stress reached the maximum value at a relatively a higher 

value of tensile strain. This can be clearly seen in figure 5.7. However, the range of 

tensile strain of the second region was smaller for this material with high ratio of solids-
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to-liquid. A fluid with high magnetic properties tended to rearrange its particles more 

efficiently than the one with lower magnetic properties. Therefore, the process of 

expelling the liquid occurred in a shorter range of tensile strain. It followed that in the 

third region, the tensile stress corresponding to higher magnetic properties of MR fluid 

began at a higher point of the tensile stress. Moreover, the values of tensile stress at any 

points of strain were higher for the high ratio of solids-to-liquid. As an overall 

comparison under tension process, tensile stress of MR fluids was mainly determined by 

the amount of solids-to-liquid ratio. As shown in figure 5.7, at any point, MRF-241ES 

showed the highest values of the tensile stress, followed by MRF-132DG and finally by 

MRF-122-2ED with slightly lower values of tensile stress than those of MRF132DG.  

 

 

5.4 Summary of chapter 5 

 

Experimental trials were performed on individual compression and tension of the 

MR fluids. The influence of the applied current, initial gap size and compressive/tensile 

speed on the three types of MR fluids under compression and tension processes have 

been experimentally investigated. In all cases, during the compression, the water-based 

MR fluid showed a stable behaviour while the hydrocarbon-based MR fluids 

experienced a very fast drop in the compressive stress at a constant region for a small 

amount of compressive strain before proceeding to increase again. The compressive 

stress of the water-based MR fluid showed a response to the compressive strain in a 

greater magnitude than the hydrocarbon-based MR fluids. This result was probably due 

to the high ratio of solids-to-liquid in the water-based MR fluid as compared to the 

hydrocarbon-based MR fluids at the same value of the magnetic field intensity. 

Experimental results also emphasized that the compressive stress of the MR fluids was 

strongly affected by the type of the carrier fluid. A summary and a comprehensive 

outline of the main research process of chapter 5 are shown in figure 5.10. 
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Figure 5.10: Summary of the research process in chapter 5. 
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CHAPTER 6 
 

EFFECTS OF VARIOUS 

FACTORS 

 

 

 

 

 

 



 

6.0 Introduction 

 

This chapter presents the effects of various factors such as initial gap size, 

applied current and compressive/tensile speeds on MR fluids in terms of stress-strain 

relationships that were obtained from the compression and tension experiments. The 

resulting MR effect corresponded to the changes or increases in compressive and tensile 

stresses due to changes in magnetic field. This chapter also includes discussions of each 

factor that contributes to effects on the performance of MR fluids. The discussion is 

intended to support the knowledge gained in the previous sub-chapters. A brief 

conclusion with respect to the results and discussions is presented at the end of the 

chapter.    

 

 

6.1 Effect of applied current  

 

Applying Ampere’s circuital law for magnetic circuits, the number of turns N (in 

a coil) and the applied current I determined the magnitude of the magnetic field strength 

H as depicted by equation 2-3, .∫ ⋅= dlHNI  In this equation, l refers to the total length 

of the whole magnetic circuit. This must include not only the length of the lower 

cylinder around which the coil is wound, but also the rest of the magnetic circuit, and 

most of the flux lines that pass through the MR fluid. Therefore, l was also larger if the 

gap size was large. For the same number of turns, a higher electrical current or a small 

gap size would result in a greater magnetic field strength.  

 

 

 

6.1.1 Effect of applied current under compression 

 

All the investigated MR fluids; MRF-241ES, MRF-132DG and MRF-122-2ED 

exhibited the same behaviour under a constant compressive speed of 1.5 mm/min, an 

initial gap size of 2.0 mm and different applied currents as shown in figure 6.1. 

However, under the same values of compressive strain, the value of compressive stress 
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seemed to be higher for higher applied currents. Consequently, lower values of 

compressive stress could be achieved by reducing the applied currents to lower values. 

The relationships showed greater values of compressive stresses as the gap between the 

two cylinders became smaller as shown in figure 6.2. Even though all the curves started 

at the same point of initial gap size, the values of compressive stress showed significant 

variations according to the applied current.  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.1: Compressive stress versus compressive strain under different applied 

currents for (a) MRF-241ES, (c) MRF-132DG and (e) MRF-122-2ED, and a zoom in 

when the curves became plateau for (b) MRF-241ES, (d) MRF-132DG and (f) MRF-

122-2ED. 
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(a) 

(b) (c) 

Figure 6.2: Initial gap size as a function of compressive stress at different applied 

currents ranging from 0.4 to 1.6 Amps of (a) MRF-241ES, (b) MRF-132DG and (c) 

MRF-122-2ED. 

 

 

For a given compressive strain or initial gap size, a higher value of stress could 

be achieved by increasing the applied current. This influence of the applied current or 

magnetic field strength on stress complied with the results observed by other researchers 

[8, 10, 14, 17, 24]. The stress-strain curves developed quickly with the increase of 

compressive strain as can be clearly depicted from figures 6.1 (b), (d) and (f). At higher 

currents, the curves stabilized at higher values of compressive stress for the same range 

values of compressive strain.  
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At the initial compression deformation (first region), the stress increased as the 

strain increased. When the stress reached a particular point, the curve became constant 

(second region) as the strain increased swiftly for a certain value of strain. As the strain 

further increased, the curves proceeded to increase drastically in the third region. The 

higher the applied current, the faster the stress-strain curve developed. All curves 

seemed to have the same behaviour and to be shifted either to the left, right, bottom or 

top of the graph depending on the value of the applied current. 

 

When applying different values of currents with a constant speed and an initial 

gap size, the stress-strain relationships, figure 6.1, are affected. Early formation of 

particles (due to compressive strain) could be achieved by applying a higher current. The 

particles formed chains rapidly and, correspondingly, reacted to the applied 

pressure/stress. Under various magnetic field strengths (different applied currents), the 

structures formed inside the MR fluids had a constructive effect on the compressive 

stress to the compressive strain relationship. Hence, the stress-strain curves developed 

rapidly as shown in figure 6.1, and then stabilized at a slightly higher value of 

compressive stress before starting to increase drastically again. This process seemed to 

be more significant when applying higher values of current.  

 

On the other hand, the influence of the applied current could be described by an 

MR fluid’s solids-to-liquid ratio. For a higher magnetic field strength (higher applied 

current), the compressive stress would be greater. When working with the same MR 

material with a higher applied current in compression mode, a maximum value of 

compressive stress at the first region is reached after only a small compressive strain 

value as shown in figures 6.1 (b), (d) and (f). For the same fluid with a lower applied 

current, this maximum value would be reached after a larger value of compressive strain. 

Furthermore, at the first region, a higher maximum value of compressive stress could be 

obtained when a higher current was applied. The carrier fluid was being expelled for the 

same range of compressive strain, but starting at different values of compressive stress 

and compressive strains. The process of expelling the carrier liquid with a higher applied 

current occurred at a smaller value of compressive strain and a higher value of 

compressive stress.  
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According to Lukkarinen and Kaski [157], thicker structures may have occurred 

in a system for a small gap size between the two plates. Therefore, as shown in figure 

6.2, at the beginning of compression, the gap is considered to have a large size and this 

occurs during the first and second regions. The stress-strain relationships for these 

regions were similar, but during the third region, as the gap size decreases further, the 

stress-strain relationship changed. Based on this consideration, the thick columns 

occurring in the third region were assumed to be the main structure, and were 

responsible for the changes in the stress-strain relationship. Hagenbuchle and Liu [3] 

have reported that chain formation also depended on the applied field strength. As the 

applied current increased, there was also an increased in the magnetic field strength, and 

so the tendency of the particles to form thick columns also increased. This explains why 

the change from the second to the third region also dependent on the size of the current.  

 

 

6.1.2 Effect of applied current under tension 

 

Figure 6.3 shows the effect of the applied current on MR fluids under a constant 

tensile speed of 1.5 mm/min and an initial gap size of 2.0 mm. As can be seen, under the 

same value of the tensile strain, the value of tensile stress was higher at higher values of 

applied currents. Lower values of tensile stress could be achieved as the applied current 

was reduced.  
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Figure 6.3: Tensile stress versus tensile strain under different applied currents at initial 

gap size of 2.0 mm for (a) MRF-241ES, (b) MRF-132DG and (c) MRF-122-2ED. 

 

 

Similar effect of the applied current could also be found in the discussion of the 

compression process in the preceding section. Higher values of the tensile stress could 

be achieved with increased in the applied current [12, 13]. When an external magnetic 

field was applied to MR fluids, the polarized particles formed particle chains along the 

field direction. The interactions between the particles for a higher applied current were 

much stronger than those for a lower applied current. Initially, when the upper cylinder 

was moved up, the required force was high in order to break up the particle chains, 

which corresponded to the highest value of tensile stress, shown in figure 6.3. As the gap 

size was further increased, the broken particle chains aggregated to form columns. Even 

though the interactions between the particles in columns were expected to be stronger 
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than particle chains, the increased in gap size reduced the magnetic field strength. The 

effect of decreasing the magnetic field was more significant than the interaction between 

the particles in the columns. Therefore, as the gap size increased, the tensile strength of 

the MR fluid decreased. Tensile stresses of the MR fluids were higher at a higher 

applied current rather than at a lower applied current. This was because magnetic field 

strength was one of the factors that influenced the tensile stress as demonstrated by 

different values of applied current.    

 

 

6.2 Effect of initial gap size 

 

Equation 2-3 shows that for a fixed number of turns and applied current, a small 

gap size would result in a greater magnetic field strength. Moreover, Tian et al. [14] 

showed that the instantaneous electric field E during the compression process can be 

calculated by 

 
h
VE =  (6-1)

where V is the voltage (Volt) and h is the instantaneous gap size (mm). Similar to 

equation 6-1, the instantaneous magnetic field H is calculated by 

 
h
IkH =  (6-2)

where k is the constant value on account of the length of the lower cylinder around 

which the coil is wound, I is the applied current (Amps) and h is the instantaneous gap 

size in between the two parallel cylinders of the test rig (mm). Therefore, reducing the 

initial gap size between the two cylinders could increase the instantaneous magnetic 

field. As mentioned in section 6.1.1, the particles of the MR fluids were polarized and 

strongly interacted with each other to form regular chains and columns along the field 

direction. Therefore, the stresses achieved depend on the strength of the magnetic field. 

Consequently, the initial gap size was inversely proportional to the achieved stresses.  
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6.2.1 Effect of initial gap size under compression 

 

Figure 6.4 illustrated the compressive stress-strain curves of the MR fluids at a 

constant applied current of 1.6 Amps, a compressive speed of 1.5 mm/min and different 

initial gap sizes. The stress-strain curve of MRF-241ES looked steeper at a large initial 

gap size indicating that the compressive stress increased as the initial gap size increased 

for the same value of compressive strain. The usual three regions of the compression 

process were also obtained under different initial gap sizes. The stress-strain 

relationships, at the first region, were having almost identical curve. At the second 

region for a particular material, the stress-strain curves for the initial gap size of 2.0 mm 

started to become plateau at slightly lower values of compressive stress and compressive 

strain as compared to the case of initial gap size of 1.0 mm. These results emphasized 

that the stress-strain relationship of MR fluids was strongly affected by the initial gap 

size which was similar to that reported by Tian et al. [14]. However, the effect of the 

initial gap size was difficult to illustrate for fluids with poorer solids-to-liquid ratio at the 

third region of the initial gap size of 1.0 mm. This can be seen in figures 6.4 (c), (d), (e) 

and (f), indicated by the red curves. 
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Figure 6.4: Effect of the initial gap size under compression tests and a zoom in when the 

curves became plateau of (a) and (b) MRF-241ES, (c) and (d) MRF-132DG, and (e) and 

(f) MRF-122-2ED. 
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In view of this, one might have expected that a higher compressive stress would 

have occurred where the applied magnetic field strength was greatest by reducing the 

initial gap size between the two cylinders. However, in fact, higher values of 

compressive stresses were obtained when the initial gap size was set to 2.0 mm in 

comparison to the situation when the initial gap size of 1.0 mm has been set. During the 

compression, the volume fraction of the solid particles would increase because the liquid 

was being expelled from the MR fluid. In terms of the compressive strain, the process of 

expelling the carrier fluid was more obvious for a small initial gap size. By increasing 

the initial gap size, more particles were consumed inside the MR fluids. Even though the 

solids-to-liquid ratios of the MR fluids were the same, the achievable compressive 

stresses were not the same. However, in terms of the compressive stress versus 

displacement, the expelling process of the liquid for a large initial gap size was almost 

the same as that for a small initial gap size (represented by the second region) as shown 

in figure 6.5.  
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Figure 6.5: Compressive stress versus displacement of MRF-241ES under a constant 

compressive speed of 1.5 mm/min and applied current of (a) and (b) 1.6, (c) and (d) 1.2, 

(e) and (f) 0.8, and (g) and (h) 0.4 Amps. 

 

 

When converting the stress-displacement curves (figure 6.4) to stress-strain 

curves (figure 6.5), the effect of the initial gap size on the MR fluids seemed to be more 

significant. The same magnetic field strength could be delivered to the MR fluid using 

different combinations of applied currents and initial gap sizes. The relationship between 

the magnetic field strength and the current to gap size ratio was disclosed in equation 6-

2. Figures 6.6 (a) and (b) illustrated the stress-displacement curves corresponding to 

equal current to gap size ratios. It can be seen that both curves were identical. This was 

because the magnetic field strength in the two cases was the same. Similar behaviour 

was shown in figures 6.6 (c) and (d). Consequently, the effect of the magnetic field 
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strength on the performance of the MR fluid during the compression process could also 

be demonstrated by changing the initial gap size.  
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Figure 6.6: Stress-strain curves of MRF-241ES corresponding to, (a) current-to-gap size 

ratio is equal to 0.8 Amps/mm, (b) zoom in on (a), (c) current-to-gap size ratio is equal 

to 0.4 Amps/mm, and (d) zoom in on (c). 

 

 

As can be seen in figure 6.6, the same stress-strain curves could be obtained 

when compensating between the applied current and the initial gap size to maintain the 

same current to initial gap size ⎟
⎠
⎞

⎜
⎝
⎛

h
I  ratio. In the same figure, even though the increase 
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of the initial gap size increased the volume of the MR fluid, the solids-to-liquid ratio 

remained constant. Therefore, the behaviour of the MR fluid for both initial gap sizes 

remained identical. The applied stress could be considered as the resistance of the solid 

particles along the magnetic flux direction under compression. Decreasing the initial gap 

size is a means of increasing the magnetic field strength. The degree of deformation 

resistance was a function of the applied magnetic field strength or applied current [3]. 

Once the magnetic field was applied, the particles of MR fluids were polarized and 

strongly interacted with each other to form regular chains and columns along the field 

direction.  

 

 

6.2.2 Effect of initial gap size under tension 

 

Tensile stress-strain curves of MR fluids at a constant tensile speed of 1.5 

mm/min, applied current of 1.2 and 0.8 Amps, and different initial gap sizes are shown 

in figure 6.7.  
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Figure 6.7: Effect of the initial gap size under constant tensile speed of 1.5 mm/min for 

(a) MRF-241ES at applied current of 1.2 Amps, (b) MRF-241ES at applied current of 

0.8 Amps, (c) MRF-132DG at applied current of 1.2 Amps, (d) MRF-132DG at applied 

current of 0.8 Amps, (e) MRF-122-2ED at applied current of 1.2 Amps and (f) MRF-

122-2ED at applied current of 0.8 Amps. 
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As can be seen, higher values of the tensile stress were observed at lower initial 

gap sizes when a constant current was applied to the MR fluids. The effect of the initial 

gap size under tension tests was contradicted with the same effect under compression 

tests in terms of the stress-strain relationships. In sight of this, one might have expected 

that a higher tensile stress would occur where the applied magnetic field strength was 

greatest. Therefore, higher values of tensile stresses were required when the initial gap 

size was set to 1.0 mm in comparison to the situation when the initial gap size of 2.0 mm 

has been set. At the beginning of the tension process, the volume fraction of the solid 

particles remained the same. Then, this amount will increase because of the liquid being 

expelled from the MR fluid. However at any values of tensile strain, as the initial gap 

size increased, the tensile stresses always showed lower values. This was because the 

influence of the magnetic field strength was greater than the structure strengthening as 

discussed in section 6.1.2.  

 

The effect of the initial gap size under tension could also be presented in terms of 

stress-displacement relationships as depicted from figure 6.8. The values of tensile 

stresses corresponding to two different initial gap sizes when the same value of current 

was applied to the MR fluids were clearly demonstrated by the case of MRF-241ES in 

figure 6.8 (a). The stress-displacement curves increased as the initial gap size reduced. 

The same results have also been observed in the MRF-132DG and MRF-122-2ED cases 

at high applied currents (1.2 and 1.6 Amps) as shown in figures 6.8 (b) and (c). 

However, the increases in tensile stresses were less significant at 0.4 and 0.8 Amps of 

the applied current. 
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(a) 

(b) (c) 

Figure 6.8: Tensile stress versus displacement under a constant tensile speed of 1.5 

mm/min for (a) MRF-241ES, (b) MRF-132DG and (c) MRF-122-2ED. 

 

 

In view of this, one might have expected that the tensile stress was dependent on 

the structure strengthening effect due to particle chains restructuring and the decreasing 

magnetic field as the gap size increased. The structure strengthening effect for a high 

solids-to-liquid ratio (MRF-241ES) was greater at any strength of the applied magnetic 

field. Therefore, the increased in tensile stresses could be considered proportional with 

the increased in magnetic field strength. However, the structure strengthening effect at 

low ratios of solids-to-liquid was very weak in comparison with decreasing magnetic 

field strength. When lower magnetic fields (0.4 and 0.8 Amps of applied current) were 

applied to the MR fluids (MRF-132DG and MRF-122-2ED), the difference in values of 
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tensile stresses were very little for both initial gap sizes. However, the effect of structure 

strengthening could be increased by increasing the magnetic field strengths (1.2 and 1.6 

Amps of applied current).  

 

 

6.3 Effect of compressive/tensile speed 

 

 Investigating the properties of MR fluids under different speeds of compression 

and tension was helpful for further understanding of the MR effect. The formation of 

particle chains was strongly dependent on the applied field strength. This structure 

formation occurred on a time scale of milliseconds and caused the fluid to respond to 

compressive/tensile stresses at the direction of magnetic field [3]. Consequently, the 

effect of compressive/tensile speed on the stress-strain relationships needed to be 

studied.  

 

 

6.3.1 Effect of compressive speed 

 

Figure 6.9 reveals the effect of the compressive speed on the stress-strain 

relationships of the MR fluids. In this investigation, the applied current was set to 1.2 

Amps and the compressive speeds were in the range of 0.5 to 2.0 mm/min. The 

compressive stress changed correspondingly as the compressive strain changed. When 

applying a constant current, the results showed that the compressive speed had a small 

effect on the stress-strain relationship which is considered as being neglected. The same 

characteristics were observed at all values of the compressive speed with reference to the 

types of the MR fluids and the initial gap sizes. As the compressive speed increased, the 

stress-strain curves remained the same.  
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(a) 

 

(b) 

 

(c) 

Figure 6.9: Stress-strain relationships under different compressive speeds at 1.2 Amps 

of applied current of (a) MRF-241ES, (b) MRF-132DG and (c) MRF-122-2ED. 

 

 

These results were in contradiction with the employment of the experiments 

carried out on ER fluids as reported by Choi et al. [17]. The authors found that the 

compressive stress decreased as the compressive speed increased. The particle clusters 

of an ER fluid were assumed to elongate and suddenly break as the compressive speed 

increased. However, See et al. [156] discovered that there was no difference between 

fast and slow compressions (step compression). In the slow compression, the gap was 

reduced by 0.01 mm until the final gap has reached 0.9 mm from an initial gap size of 

1.0 mm, and the interval time between compression steps was set to 60 seconds. While 
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for the fast compression or one step compression, the total time taken to reach final gap 

was about 2 to 3 seconds. Their result was as anticipated since the formation of particle 

chains and columns occurred in a very short period of time. According to Tao [161], the 

strongest structure of MR fluids was built up after the magnetic field was applied only 

by a few milliseconds. Therefore, the particles had more than sufficient time for the 

structural rearrangements to take place. Similar results on the effect of the compressive 

speed could also be found in another study of ER fluids by Tian et al. [154]. 

 

 

6.3.2 Effect of tensile speed 

 

Stress-strain relationships under different tensile speeds are shown in figure 6.10. 

The tests were conducted at 1.0 and 2.0 mm of initial gap sizes. The current passing 

through the coil was 1.2 Amps for all cases. It could be observed that the stress-strain 

curves were well overlapped for all values of the tensile speed.  
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Figure 6.10: Effects of the tensile speed under a constant current of 1.2 Amps of (a) 

MRF-241ES, (c) MRF-132DG and (e) MRF-122-2ED at initial gap size of 2.0 mm, and 

(b) MRF-241ES, (d) MRF-132DG and (f) MRF-122-2ED at initial gap size of 1.0 mm. 
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The tensile speeds used in this study were in the range of 0.0083 to 0.0333 mm/s, 

which were comparable to speeds used by other researchers. For instance, Tian et al. 

[13] used a constant speed of 0.0524 mm/s to investigate the tensile behaviour of ER 

fluids. It might be anticipated that the effect of the tensile speed was not significant on 

the tensile stress since the structure formation occurred on a time scale of milliseconds 

[39, 62]. Even though, in this study, various values of the compressive/tensile speeds 

were applied to move the upper cylinder, the speeds were still considered slow 

compared to the structure formation. Based on the speed and initial gap size ranges 

experimented in this study, the compression/tension time ranges were, approximately, 

between 30 and 240 seconds. A much higher speed range was necessary to detect the 

variance, on a millisecond scale, in MR effect due to the structure formation. However, 

the use of high speeds was prohibited by the gap size restriction in the design and the 

motor movement mechanisms in the UTS machine. 

 

 

6.4 General discussion 

 

In figures 6.11, the plots on the left hand side were the original stress-strain 

curves. The plots on the right hand side of these figures were edited versions of the left 

hand side ones. These curves were adjusted or shifted, generally to the right and slightly 

to the bottom, to fall onto the curve with the lowest value of applied current, which was 

0.4 Amps in all cases. The curves in figure 6.12 were treated similarly. For each type of 

MR fluid in compression mode under different applied currents, the stress-strain curves 

were observed to be well overlapped as shown in the right hand side plots of figure 6.11 

and figure 6.12. However, in figures 6.12 (b) and (c), the curves were not perfectly 

overlapped. This was due to the poorer solids-to-liquid ratios in hydrocarbon-based MR 

fluids. This repeating MR behaviour under different applied currents and initial gap sizes 

supported the categorization of the MR effect regions. Consequently, the MR effect 

could be modelled or explained, independently, in each region. 
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(a)  

 
(b) 

 

(c) 

Figure 6.11: The adjusted or shifted curves of compressive stress versus compressive 

strain at the initial gap size of 2.0 mm for (a) MRF-241ES, (b) MRF-132DG and (c) 

MRF-122-2ED.  
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(a)  

 
(b) 

 
(c) 

Figure 6.12: The adjusted or shifted curves of compressive stress versus compressive 

strain at the initial gap size of 1.0 mm for (a) MRF-241ES, (b) MRF-132DG and (c) 

MRF-122-2ED.  
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According to equation 3-16, the compressive stresses σ of the MR fluids in the 

first region were assumed to increase linearly, which were represented by 

 111 γσ G= , yσσ <  

where σ1 is the compressive stress at the first region (MPa), G1 is the compressive 

modulus at the first region (MPa), γ1 is the compressive strain at the first region 

(unitless) and σy is the maximum value of compressive stress at the first region (MPa).  

 

In the second region, equation 6-3 was applicable when the compressive stresses 

were equal to the maximum values of the compressive stresses σ = σy at the first region. 

The values of the compressive strains γ2 were between the maximum values of the 

compressive strains at the first region γ1,max and the minimum values of the compressive 

strains at the third region γ3,min.  

 min,32max,1 γγγ ≤≤ , yσσ =  (6-3)

 

When the compressive stresses were greater than the maximum values of the 

compressive stresses at the first region as indicated by the third region, the compressive 

stresses were representing by 

 CG += 333 γσ , yσσ >  (6-4)

where σ3 is the compressive stress at the third region (MPa), G3 is the compressive 

modulus at the third region (MPa), γ3 is the compressive strain at the third region 

(unitless) and C is the constant value (MPa). All parameters obtained from the stress-

strain curves of experimental values are listed in table 6.1.  
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Table 6.1: Experimental values of the mechanical properties of MR fluids.  

Region 1 
(σ  < σy) 

Region 2 
(σ  = σy) 

Region 3 
(σ  > σy) 

 Initial 
gap 
size 

(mm) 

Maximum 
stress at the 
first region  

σy 
 (MPa)  

G1  
(MPa) γ1,max γ3,min

G3 
(MPa) 

C 
(MPa) 

2.0 0.41 5.13 0.08 0.17 51.45 -9.77 
MRF-241ES 

1.0 0.43 2.77 0.16 0.28 25.70 -8.34 

MRF-132DG 2.0 0.42 0.79 0.53 0.64 40.74 -27.34 

MRF-122-2ED 2.0 0.41 0.59 0.69 0.80 37.26 -30.35 
 

 

Based on equations 3-16 and 6-4 as represented by the first and third regions, the 

values of compressive moduli were always constant in the linear regions with the 

increase of compressive strain. The values of compressive moduli were smaller in the 

first region than they are in the third region. These results showed that the third region 

was more dominant in terms of MR effect. Small changes in strain in the third region 

induced larger stress changes than they did in the first region. 

 

 

6.4.1 Comparisons between compressive and tensile stresses 

 

Figure 6.13 shows the compressive and tensile stresses versus magnetic field 

density at 1.0 and 2.0 mm of initial gap sizes. The compressive stress values in figure 

6.13 were the maximum stresses during the compressing process, taken from the end 

points of the curves at the first region. The tensile stresses in figure 6.13 were taken 

from the peak values of the tension curves, which also were symbolized by the 

maximum values of the tensile stress at the first region. As can be seen in figure 6.13, 

linear relationships could be established for both the compression and tension processes 

under various magnetic flux densities.   
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(c)  

Figure 6.13: Compressive and tensile stresses versus magnetic flux density at different 

initial gap sizes of (a) MRF-241ES, (b) MRF-132DG and (c) MRF-122-2ED.  

 

 

The relationship between the compressive and the tensile stresses under the 

influence of the magnetic flux density could be described by a general linear equation as 

follow 

 minσσ += kBy  (6-5)

where σy is the maximum value of compressive or tensile stress at the first region (MPa), 

k is the constant value (MPa/Tesla), B is the magnetic flux density (Tesla) and σmin is the 

value of the compressive or tensile stress at zero magnetic flux density. In these cases, 
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the values of σmin were not equal to zero. This was because the values of the stresses 

taken, and used in figure 6.13, were not at the same value of the compressive strain for 

each process. 

 

 The parameter values corresponding to the compressive and tensile stresses 

explained by equation 6-5 are listed in table 6.2. 

 

Table 6.2: Parameter values obtained from equation 6-5.  

Compression Tension 
Type of MR fluid k  

(MPa/Tesla) 
σmin  

(MPa) 
k  

(MPa/Tesla) 
σmin  

(MPa) 

MRF-241ES 109.4 × 10-3 379.2 ×10-3 274.7 ×10-3 0.6 ×10-3

MRF-132DG 183.2 ×10-3 387.9 ×10-3 272.8 ×10-3 -16.1 ×10-3

MRF-122-2ED 200.4 ×10-3 379.8 ×10-3 297.1 ×10-3 -19.2 ×10-3

 

 

During the compression process, the distance between the solid particles in the 

MR fluid decreased. As discussed earlier in section 5.2, the relative movement between 

the solid particles and the carrier liquid had an effect on particle condensation. 

Therefore, the particle volume fraction of the MR fluid increased and the structure of the 

particles was more compact. However, the tension process was different from 

compression process in having no effect on the particle condensation. Figure 6.13 also 

shows that the compressive stresses were much higher than the tensile stresses under the 

same magnetic flux density. Similar results have been found by other researchers. Tian 

et al. [8] have done comparisons between (compression, tension and shear) stresses of 

ER fluids. The authors encountered that the compressive stress was much higher than 

the tensile and shear stresses under the same DC electrical field. These results were also 

supported by Lukkarinen and Kaski [9, 157] using computer simulations.  
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6.4.2 Combinations of compressive and tensile stresses 

 

Figures 6.14, 6.15 and 6.16 show the combination of the compressive and tensile 

stresses versus displacement under different applied currents. The maximum 

displacement was taken at 0.5 mm for both compression and tension modes. The 

positive values of the stresses in these figures, above the zero dotted lines, represented 

the tension process, while the negative values represented the compression process.   

 

(a) (b) 

Figure 6.14: Combination of compressive and tensile stresses of MRF-241ES at (a) 2.0 

mm and (b) 1.0 mm of initial gap size. 

 

 

(a) (b) 

Figure 6.15: Combination of compressive and tensile stresses of MRF-132DG at (a) 2.0 

mm and (b) 1.0 mm of initial gap size. 
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(a) (b) 

Figure 6.16: Combination of compressive and tensile stresses of MRF-122-2ED at (a) 

2.0 mm and (b) 1.0 mm of initial gap size. 

 

 

 The combination of stress modes in figures 6.14, 6.15 and 6.16 were assumed to 

represent the behaviour of the MR fluids under dynamic loading (combination of 

compression and tension). As the applied current was increased, the area of the loop 

curves along with the maximum compressive and tensile stresses increased. The 

increased in the area of the loop curves was an indication on the increased in the 

damping performance of the MR fluids. A low initial gap size also contributed to larger 

area of the loop curves. Obviously, the damping performance of MRF-241ES was better 

than MRF-132DG, while the performance of MRF-132DG was better than MRF-122-

2ED. Furthermore, the maximum stresses obtained in the compression mode were much 

greater than those obtained in the tension mode.   

  

The combination results, obtained in this study, were in agreement with the 

results of other researchers. Kulkarni et al. [16] have obtained similar results from the 

dynamic loadings of a hydrocarbon-based MR fluid under squeeze mode. The authors 

found less effect of the tensile stresses under various applied currents as compared to the 

compressive stresses. They also observed that the compressive side of the stress loop 

was highly non-linear and had a peak on the left side of the curve, similar to figure 6.14. 
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However, they did not report the magnetic properties of the MR fluid and the magnetic 

field strength generated by the coil. However, it was assumed to contain highly solid 

magnetic particles. In another study done by the same group, Vieira et al. [24] further 

compared the behaviour of three different types of MR fluids under squeeze mode. The 

authors obtained similar results, which are also in agreement with the results in figures 

6.14, 6.15 and 6.16. The types of the carrier fluids and the applied magnetic field 

strengths were discovered to influence the behaviour of the MR fluids. 

 

 

6.5 Summary of chapter 6 

 

Experimental results emphasized that the compressive stress of the MR fluids 

was strongly affected by the applied current and the initial gap size. The compressive 

stress changed correspondingly as the compressive strain changed. The compressive 

stress of the MR fluids increased with increasing the applied current or decreasing the 

initial gap size. However, when applying constant currents and initial gap sizes, the 

results showed that the compressive/tensile speed had a small effect on the stress-strain 

relationship, which was considered as being neglected. A summary and a comprehensive 

outline of the main research process of chapter 6 are shown in figure 6.17. 
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Figure 6.17: Summary of the research process in chapter 6. 
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CHAPTER 7 
 

CONCLUSIONS 

 

 

 

 

 

 



 

7.0 Conclusions 

 

Magnetorheological (MR) fluids are liquid materials whose consistency is 

strongly influenced by magnetic fields. This behaviour can be utilized for a large 

number of applications in various technological fields like vibration damping, clutches, 

actuators and haptic devices. The basic properties of MR fluids which change their 

rheological behaviour in the presence of a magnetic field are described. In this study, 

special equipment was designed and set-up to carry out experiments in compression and 

tension modes. The design was assisted via Finite Element Method Magnetics (FEMM) 

software package. The equipment was capable of varying the strength of the magnetic 

field by changing the electric current values supplied to the coil. Combinations of 

process parameters of initial gap size, applied current and speed were used in both 

compression and tension processes. For each experiment, the speed and the current in 

the coil were kept constant, while the instantaneous forces and displacements were 

recorded. In addition, three types of MR fluids were used in these experiments; namely 

MRF-241ES, a water-based MR fluid, and MRF-132DG and MRF-122-2ED, 

hydrocarbon-based MR fluids. Results, mainly in terms of stress-strain relationships 

were presented and discussed. The conclusions of the study are listed in the following:  

 

I. Test rig 

The test rig was a type of uniaxial testing in either compression or tension 

modes. The primary components of the test rig consisted of an upper cylinder, a 

lower cylinder and a support cylinder. The main design parameters of the test rig 

were the selection of materials, dimensions of the cylinders, number of windings 

around the coil and initial gap size between the flat parallel surfaces of the upper 

and the lower cylinders. Low carbon steel, type of a magnetic material, was used 

to make the upper and the lower cylinders, while stainless steel, type of a non-

magnetic material, was used to make the support cylinder. A coil made from 

copper wire, type of 22SWG with 2750 turns was wound around the lower 

cylinder in order to produce a magnetic field. The diameter of the effective 

surfaces of the upper and the lower cylinders to contain the tested materials were 

set to 50.0 mm. The investigated initial gap sizes were 1.0 and 2.0 mm. The 

clearance between the outer diameter of the upper cylinder and the inner of the 
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support cylinder was 0.5 mm. A measured amount of the MR fluids was placed 

between the two parallel flat surfaces. Instron Universal Electromechanical 

Testing Machine was used to compress or decompress the tested MR fluids in the 

same direction of the magnetic field. The upper cylinder was either pushed 

towards or pulled away from the lower cylinder containing the MR fluid between 

them, and surrounded by a support cylinder. The test rig was observed to be 

suitable to perform the investigations of the behaviour of MR fluids. 

 

II. Simulation of magnetic fields 

A magnetic field finite element analysis for the test rig was conducted using the 

FEMM software package. The purpose of the analysis was to identify the 

magnetic field strength of the magnetic circuit and to evaluate the effects of the 

design parameters on the magnetic flux density in the gap. A number of design 

changes were simulated in FEMM in order to produce the best value for the 

magnetic field intensity H, which was mutually related to the magnetic flux 

density B. Input data in terms of materials selection for each component of the 

test rig, type of coil, number of turns of the coil wrapping around the core and 

values of the electric current that runs in the coil were used in FEMM. 

Subsequent to the most adequate design of the test rig predicted by the 

simulation, a few changes and modifications on the test rig have been 

constructed due to certain limitations. Throughout this analysis, an optimized test 

rig was used to perform the compression and tension tests with maintaining 

magnetic flux density at given values of the applied current in the gap. 

Consequently, magnetic flux density was found to distribute evenly in the MR 

fluids and the air gap. The average maximum values of the magnetic flux density 

at the centre of the gap were achieved at 0.70, 0.67, 0.61 and 0.47 Tesla for 

MRF-241ES, MRF-132DG, MRF-122-2ED and air, respectively, taken from the 

middle half of the test rig. The effects of the applied current (magnetic field) and 

initial gap size on the magnetic flux density were interdependent. The magnetic 

flux density increased with increasing the applied current or decreasing the gap 

size. When increasing the applied current or initial gap size, MRF-241ES showed 

the least variation in the magnetic flux density, while air in the gap showed the 
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largest variation in the magnetic flux density. Results from the simulations 

agreed well with the results from the direct measurement.  

 

III. Behaviour of MR fluids 

a)  General behaviour of the MR fluids under compression 

Stress-strain relationships were obtained for a water-based MR fluid (MRF-

241ES) and hydrocarbon-based MR fluids (MRF-132DG and MRF-122-2ED) in 

squeeze mode using compression test equipment. The curves could be divided 

into three different regions, because of distinct characteristics in the relationship 

between stress and strain changes as the process was carried out. In the first and 

third regions the compressive stress increased as the compressive strain 

increased, whereas in the second region the compressive stress remained almost 

constant as the compressive strain increased. Some aspects of the phenomenon 

could be explained by assuming that when the squeeze mode operated to cause 

the fluid to move, the liquid carrier moved to a greater extent than the solid 

particles, which were restricted by the magnetic field. In addition, experimental 

results also emphasized that the magnitude of the compressive stress of MR 

fluids was strongly affected by the nature of the carrier fluid. The compressive 

stress in the water-based MR fluid, in response to a given value of the 

compressive strain, was of greater magnitude than the compressive stress in the 

hydrocarbon-based MR fluids corresponding to the same compressive strain. 

This result, occurring at the same value of the magnetic field strength, was 

probably due to the higher ratio of solids-to-liquid in the water-based fluid 

compared to the hydrocarbon-based fluids.  

 

b)  Compression behaviour of hydrocarbon-based MR fluids   

During compression, the MRF-241ES fluid showed a more stable behaviour. 

MRF-132DG and MRF-122-2ED experienced a very sudden drop in the 

compressive stress, in a region where the compressive stress would be expected 

to rise steadily, before proceeding to increase again abruptly. The pressure drop 

phenomenon could be caused by air bubbles, where a substantial number of 

chains were found being broken in a very short period of time. The same 

pressure drop was observed when the experiments were repeated. This 
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phenomenon would suggest that the same amount of air bubbles were present 

again and were expelled in the same way.  

 

c)  General behaviour of the MR fluids under tension 

Stress-strain curves of the MR fluids under tension process could be divided into 

three regions. In the first region, the tensile stress curves increased drastically to 

a peak point, with increases of the compressive strain. Then, in the second 

region, the tensile stress decreased with increasing tensile strain. Finally, in the 

third region, the tensile stress further decreased slowly, with further elongation. 

Similar assumptions about the relative movement between the particles and the 

carrier fluid under the compression process can be made to describe the 

behaviour of the MR fluids under the tension mode. The tension process was a 

relationship between structure strengthening effect and decreasing magnetic 

field. Structure strengthening effect was due to particle chains restructuring, 

while decreasing magnetic field was due to the gap widening between the two 

flat parallel surfaces. The maximum value of the tensile stress in the water-based 

MR fluid was of greater magnitude than those of the hydrocarbon-based MR 

fluids. Furthermore, the tensile stress reached the maximum value at a higher 

tensile strain in the water-based MR fluid as compared to the hydrocarbon-based 

MR fluids. These results were comparable to the MR fluids under compression. 

These observations were apparently due to the higher ratio of solids-to-liquid in 

the water-based MR fluid when compared to the hydrocarbon-based MR fluids.  

 

IV. Effects of various factors on the MR fluids 

The results were presented starting with different electrical currents to generate 

magnetic fields, using different initial gap sizes and compressive or tensile 

speeds. The results revealed that high values of stress occurred where the strain 

was high, and that even higher values were obtained when the electrical current 

was high. Furthermore, the magnitude of the stress, for a given strain, depended 

on the initial gap size. Curves showing the relationships between the stress and 

the strain were constructed for two different initial gap sizes. In compression, it 

was seen that, for larger initial gap sizes, there were larger stress values. In the 

first two regions, the stress seemed to be almost independent of the value of the 
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electrical current generating the magnetic field. Furthermore, in the third region, 

higher values of the stress occurred when the electrical current was higher. 

However, the effect of the initial gap size under tension tests was contradicted 

with the same effect under compression tests. For smaller initial gap sizes, there 

were larger stress values. The sizes of the three regions depended on the initial 

gap sizes. In addition, the compressive or tensile speed had a small effect on the 

stress-strain relationship which was considered as being neglected.  

 

V. Comparison between compressive and tensile stresses of the MR fluids 

The relationship between the stresses and the magnetic flux density at maximum 
values of the first region could be represented by a general linear equation. The 
compressive stresses were found to be much higher than the tensile stresses for 
the same experimental parameters throughout this study. On the other hand, 
combinations of the stress-displacement curves in compression and tension 
modes were assumed to be similar with the stress-strain curves under dynamic 
loading. The damping performance of the water-based MR fluid was found to be 
higher than that of the hydrocarbon-based MR fluids. The damping performance 
was greater at a low initial gap size. Furthermore, the maximum stresses obtained 
in the compression mode were much greater than those obtained in the tension 
mode at a given displacement of 0.5 mm.  

 

 

7.1 Contributions of the thesis 

 

In this thesis, the problem of lack of investigation of individual compression and 

tension behaviour in terms of stress-strain relationship has been addressed. In order to 

enhance the knowledge regarding this matter, the behaviour of MR fluids under squeeze 

mode has been studied thoroughly. The results obtained from the compression and 

tension processes showed that MR fluids have potentials in many applications that 

require controlling small, millimetre-order movements but involving large stresses. 

Consequently, the contributions of this thesis are listed in the following:  

 

a) This thesis contributed to the experimental results of the MR fluids using a 

constructed test rig under compression mode. This was the first time that a 
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unique behaviour of the MR fluids had been demonstrated. The behaviour of the 

MR fluids in terms of stress-strain relationships could be divided into three 

different regions. This was because of the distinct characteristics in the 

relationship between stress and strain changes.  

 

b) The second contribution was related to the behaviour of the hydrocarbon-based 

MR fluids. During the compression process, the hydrocarbon-based MR fluids 

appeared to show a distinct behaviour where an abrupt pressure drop was 

discovered in a region where the compressive stress would be expected to 

increase steadily.  

 

c) The third contribution was the description of the MR fluids’ behaviour during the 

experiments. The behaviour was reasonably explained by the relative movement 

between the solid magnetic particles and the carrier liquid in the MR fluids. The 

explanation can be utilized in both modes; compression and tension.  

 

 

7.2 Recommendations for future work 

 

The results in this thesis lay the groundwork for a good understanding of the 

behaviour of the MR fluids under squeeze mode. Following these investigations, there 

are some extensions to this work that would help expand and strengthen the results, 

involving the modification of the test rig: 

 

a) Further study of the conformational behaviour of the MR fluid under squeeze 

mode. Different ratios of the amount of solid particles to the amount of liquid in 

the same MR fluid could be performed in order to gain understanding regarding 

the behaviour of the fluid.  

 

b) Further investigation of the phenomenon regarding the relative movement 

between the solid particles and the carrier liquid in the MR fluid during the 

compression and tension processes. This can be done by using scanning electron 
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microscopy (SEM) to estimate the average particle size, particle size distribution, 

shape and surface morphology of the particles.  

 

c) It would be interesting to model the field-responsive behaviour of MR fluids to 

describe the mechanism of stress formation during the compression and tension 

processes. The model would assist characterizing the physics behind the 

interaction between the solid magnetic particles and the magnetic field and may 

help developing new materials with improved performance. 

 

d) Further improvement of the test rig design where the volume of tested materials 

would be constrained in the gap between the two flat parallel surfaces. The new 

design could be achieved by avoiding the clearance, in this case, the gap between 

the outer diameter of the upper cylinder and the inner diameter of the support 

cylinder. Therefore, this arrangement could be adopted to deal effectively with 

the compression and tension processes. 

 

e) To investigate the achievable stresses when two working modes, such as 

compression and shear modes combined. The process is called compression-

assisted-aggregation and it employs forcing MR fluid to form a new 

microstructure that is much stronger than the existing structure. It can be done by 

compressing the MR fluid until the compressive strain reaches the third region of 

stress-strain relationship before shear stress is applied. This stress process is 

recommended for the clutch applications.   
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Figure A1: Upper cylinder. 
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Figure A2: Lower cylinder. 
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Figure A3: Upper ring. 
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Figure A4: Lower ring. 
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Figure A5: Support cylinder. 
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Figure B1: Stress-strain relationship of MRF-241ES under compression mode at 2.0 mm 

initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps.   
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Figure B2: Stress-strain relationship of MRF-241ES under compression mode at 2.0 mm 

initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps.   
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Figure B3: Stress-strain relationship of MRF-241ES under compression mode at 2.0 mm 

initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps. 
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Figure B4: Stress-strain relationship of MRF-241ES under compression mode at 2.0 mm 

initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps. 
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Figure B5: Stress-strain relationship of MRF-241ES under compression mode at 1.0 mm 

initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps.   
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Figure B6: Stress-strain relationship of MRF-241ES under compression mode at 1.0 mm 

initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps.   
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Figure B7: Stress-strain relationship of MRF-241ES under compression mode at 1.0 mm 

initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps.   
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Figure B8: Stress-strain relationship of MRF-241ES under compression mode at 1.0 mm 

initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps. 
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Figure B9: Stress-strain relationship of MRF-132DG under compression mode at 2.0 mm 

initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 0.8, (c) 

1.2 and (d) 1.6 Amps. 
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Figure B10: Stress-strain relationship of MRF-132DG under compression mode at 2.0 

mm initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B11: Stress-strain relationship of MRF-132DG under compression mode at 2.0 

mm initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B12: Stress-strain relationship of MRF-132DG under compression mode at 2.0 

mm initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B13: Stress-strain relationship of MRF-132DG under compression mode at 1.0 

mm initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B14: Stress-strain relationship of MRF-132DG under compression mode at 1.0 

mm initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B15: Stress-strain relationship of MRF-132DG under compression mode at 1.0 

mm initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B16: Stress-strain relationship of MRF-132DG under compression mode at 1.0 

mm initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B17: Stress-strain relationship of MRF-122-2ED under compression mode at 2.0 

mm initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B18: Stress-strain relationship of MRF-122-2ED under compression mode at 2.0 

mm initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B19: Stress-strain relationship of MRF-122-2ED under compression mode at 2.0 

mm initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B20: Stress-strain relationship of MRF-122-2ED under compression mode at 2.0 

mm initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B21: Stress-strain relationship of MRF-122-2ED under compression mode at 1.0 

mm initial gap size, 0.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B22: Stress-strain relationship of MRF-122-2ED under compression mode at 1.0 

mm initial gap size, 1.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B23: Stress-strain relationship of MRF-122-2ED under compression mode at 1.0 

mm initial gap size, 1.5 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure B24: Stress-strain relationship of MRF-122-2ED under compression mode at 1.0 

mm initial gap size, 2.0 mm/min compressive speed and applied currents of (a) 0.4, (b) 

0.8, (c) 1.2 and (d) 1.6 Amps. 
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Figure C1: Stress-strain relationship of MRF-241ES under tension mode at 2.0 mm initial 

gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C2: Stress-strain relationship of MRF-241ES under tension mode at 2.0 mm initial 

gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C3: Stress-strain relationship of MRF-241ES under tension mode at 2.0 mm initial 

gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C4: Stress-strain relationship of MRF-241ES under tension mode at 2.0 mm initial 

gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C5: Stress-strain relationship of MRF-241ES under tension mode at 1.0 mm initial 

gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   

 

 200



 

MRF-241ES

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Tensile strain

T
en

si
le

 st
re

ss
 (k

N
)

Test 1
Test 2
Test 3

MRF-241ES

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Tensile strain

T
en

si
le

 st
re

ss
 (k

N
)

Test 1
Test 2
Test 3

  
(a) (b) 

  
  
  

MRF-241ES

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Tensile strain

T
en

si
le

 st
re

ss
 (k

N
)

Test 1
Test 2
Test 3

MRF-241ES

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Tensile strain

T
en

si
le

 st
re

ss
 (k

N
)

Test 1
Test 2
Test 3

  
(c) (d) 

 
 

Figure C6: Stress-strain relationship of MRF-241ES under tension mode at 1.0 mm initial 

gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C7: Stress-strain relationship of MRF-241ES under tension mode at 1.0 mm initial 

gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C8: Stress-strain relationship of MRF-241ES under tension mode at 1.0 mm initial 

gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 and (d) 

1.6 Amps.   
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Figure C9: Stress-strain relationship of MRF-132DG under tension mode at 2.0 mm 

initial gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C10: Stress-strain relationship of MRF-132DG under tension mode at 2.0 mm 

initial gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C11: Stress-strain relationship of MRF-132DG under tension mode at 2.0 mm 

initial gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C12: Stress-strain relationship of MRF-132DG under tension mode at 2.0 mm 

initial gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C13: Stress-strain relationship of MRF-132DG under tension mode at 1.0 mm 

initial gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C14: Stress-strain relationship of MRF-132DG under tension mode at 1.0 mm 

initial gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C15: Stress-strain relationship of MRF-132DG under tension mode at 1.0 mm 

initial gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C16: Stress-strain relationship of MRF-132DG under tension mode at 1.0 mm 

initial gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C17: Stress-strain relationship of MRF-122-2ED under tension mode at 2.0 mm 

initial gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C18: Stress-strain relationship of MRF-122-2ED under tension mode at 2.0 mm 

initial gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C19: Stress-strain relationship of MRF-122-2ED under tension mode at 2.0 mm 

initial gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C20: Stress-strain relationship of MRF-122-2ED under tension mode at 2.0 mm 

initial gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C21: Stress-strain relationship of MRF-122-2ED under tension mode at 1.0 mm 

initial gap size, 0.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C22: Stress-strain relationship of MRF-122-2ED under tension mode at 1.0 mm 

initial gap size, 1.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C23: Stress-strain relationship of MRF-122-2ED under tension mode at 1.0 mm 

initial gap size, 1.5 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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Figure C24: Stress-strain relationship of MRF-122-2ED under tension mode at 1.0 mm 

initial gap size, 2.0 mm/min tensile speed and applied currents of (a) 0.4, (b) 0.8, (c) 1.2 

and (d) 1.6 Amps.   
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