Material	Saturation strain in [ppm]	Curie temperature in [K]
Ni	-50	630
Fe	-14	1040
Fe ₃ O ₄	60	860
Terfenol-D	2000	650
$Tb_{0.5}Zn_{0.5}$	5500	180
Tb _{0.5} Dy _x Zn	5000	200

Table 1: Comparison of strain capability [4, 5, 6 and 20]

Table 2: Typical layouts in comparison similar to [7, 8]

	TC	TCM	TMC	MTC
Actuator Layout Permanent Magnet Coil Terfenol-D Typical actuator features				
Magnetic bias with	DC coil	Permanent magnets		
Magnetic bias level	Low	Medium	Medium, high	High
Terfenol-D shape	Rod, bar	Rod	Rod	Hollow rod
Structure	Simple	Medium	Medium	Complex
Field inhomogeneity	Low	Low	Medium	High

Table 3: "MS"-actuator key data

"MS"-actuator, 3D CAD cut view	Actuator key data	Experimental results
Actuator	Actuator coil:	Optimized pre-stress:
	-950 turns, 1.50hm	12MPa (600N pre-load)
	-wire diameter of 1.12mm	Strain capability:
	Terfenol-D shaft:	0.065mm @10 A
	-shaft diameter of 8mm	(1000ppm @ 105 kA/m)
	-shaft length 67.5mm	Blocked force: > 4500N

Fig.1: Strain versus magnetic field

Fig. 2: "MS"-effect, schematically

Fig. 3: Cross-section of the actuator used in the study

TERFENOL-D PHYSICAL PROPERTIES				
Nominal Composition	Tb 0.3 Dy 0.7 Fe 1.92			
Mechanical Properties				
Young's Modulus	25-35 GPA			
Sound Speed	1640-1940 m/s			
Tensile Strength	28 Mpa			
Compressive Strength	700 Mpa			
Thermal Properties				
Coefficient of Thermal	Expansion 12ppm/°C			
Specific Heat	0.35kJ/kg-K			
Thermal Conductivity	13.5 W/m-k			
Electrical Properties				
Resistivity	58 x 10-8 O-m			
Curie Temperature	380 °⊂			
Magnetostrictive Properties				
Strain (estimated linea	r) 800-1200ppm			
Energy Density	14-25 kJ/ m³			
Magnetomechanical Properti	es			
Relative Permeability	3-10			
Coupling Factor	0.75			

Fig. 4: Supplier characteristic and specification for Terfenol-D shaft [4]

Fig. 5: Axial force versus strain and Young's modulus E as parameter

Fig.6: Typical optimization with magnetic bias

Fig.7: Typical optimization with mechanic bias [similar to 9, 10 and 11]

Fig. 8: TC-Layout of the actuator coil

Fig. 9: Magnetic path through the actuator

Fig. 10: Strain versus applied magnetic field intensity (A/m) [4]

Fig. 11: B-H diagram of Ck15 with measurement data

Fig. 12: B-H diagram of Terfenol-D with measurement data [4]

Fig. 13: Number of turns versus achievable magnetic field strength

Fig. 15: Current density versus wire diameter with current as parameter

Fig. 16: Geometry and coil specification of the magnetostrictive actuator

Fig. 17: Meshed actuator with FEMM

Fig. 18: FEMM Magnetic Field Density plot B (Tesla) in the actuator

Fig. 19: Reference figure of the actuator plots of B (Tesla) and H (A/m)

Fig. 20: Comparison of simulation results regarding flux density B (T)

Fig. 21: Comparison of simulation results regarding field intensity H (A/m)

Fig. 22: Picture from "MS"-actuator assembly

Fig. 23: Actuator assembly for performance measurements

Fig. 24: Actuator assembly cross section for performance measurements

Fig. 25: Displacement, current and axial force versus time with 300 N pre-load

Fig. 26: Displacement versus current with 300 N

Fig. 27: Displacement, current and axial force versus time with 600 N pre-load

Fig. 28: Displacement versus current with 600 N

Fig. 29: Optimization of achievable strain with various pre-load

Fig. 30: Butterfly-curve at 550N pre-load & 20Hz sinusoidal power input

Fig. 31: Butterfly-curve at 550N pre-load & at 40Hz sinusoidal power input

Fig. 32: Butterfly-curve at 550N pre-load & at 60Hz sinusoidal power input

Fig. 33: Butterfly-curves, force versus current at medium pre-stress

Fig. 34: Butterfly-curves, force versus current, at high pre-stress