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ABSTRACT 

Amino Acid Interactions of Spiropyran 

Gene Dalton 

 

A solution phase study was carried out to explore the interactions between the 

spiropyran molecule in its merocyanine zwitterionic merocyanine 'open' form and 

amino acids. The principal amino acids chosen for investigation were β-Alanine, L-

Phenylalanine and 8-Aminocaprylic acid. Both single phase and two-phase switching 

experiments were undertaken to document the photochromic interconversion between 

spiropyran and merocyanine in the presence of these amino acids, compared to a 

water blank. A kinetics study was then carried out to examine how the rate of decay of 

the coloured merocyanine back to the closed spiropyran was affected by the presence 

of amino acids. Results show that there are significant differences in the decay rate 

depending on which amino acid was present. There are several factors which may be 

involved in how the different amino acids affect the decay rate of the merocyanine, 

such as the relative polarity of the solution. A significant stabilisation effect was also 

observed in the presence of water (i.e. no amino acid present), suggesting that 

hydrogen bonding may play an important role in stabilising the merocyanine isomer at 

the molecular level. 
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1. Introduction 

1.1. Spiropyran background 

Spiropyrans are a group of organic molecules that exhibit photochromism. 

Photochromism is a chemical process by which a compound undergoes a reversible 

change between two states which have different visible absorption spectra, i.e. 

different colours. As a general rule, the change in one direction is induced by 

electromagnetic radiation, usually UV light, and in the other direction by altering or 

removing the light source, or alternatively by thermal means1.  

 

The photochromism of spiropyrans was first observed in 1952 by Fischer and 

Hirshberg2. On exposure to UV light, the colourless "closed" spiro form (referred to 

as SP) is transformed to the highly coloured, "open" merocyanine form (referred to as 

MC). The UV light induces a heterocyclic ring cleavage, changing the conformation 

of the molecule to produce a planar conjugated molecule with absorbance in the 

visible region. This merocyanine structure is zwitterionic, a property which may be 

exploited to facilitate both physical and chemical sensing. This charged form can 

isomerise to a quinoidal molecule, but due to the loss of aromaticity in this neutral 

structure, the zwitterion is the major contributor to the open form3. In subsequent 

experiments it is assumed that the zwitterionic form dominates the switching. 

Irradiation with visible light reverses this isomerisation, as does thermal energy. The 

interconversion is shown in Figure 1.1. An example of the UV-Vis spectra of the open 

and closed forms can be seen in the experimental section in Figure 3.4. 
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Figure 1.1 The photochromic conversion of the spiropyran from a colourless, closed form to a 

coloured, zwitterionic open form when exposed to UV irradiation. The open form also exists as a 

neutral quinoidal structure, but the zwitterion is stabilised due to the loss of aromaticity in the quinoidal 

form3. The reaction is reversed by visible irradiation, or thermally. 

 

1.1.1. Dynamic Equilibrium 

When the spiropyran merocyanine interconversion is in a state of dynamic 

equilibrium, there is no net change in reactant or product concentrations over time as 

the rate of the forward reaction is equal to the rate of the reverse reaction. The system 

is a typical intramolecular Lewis acid-base equilibrium4. The position of the 

equilibrium depends mainly on the degree of solvation of SP and MC, which in turn is 

linked to the polarity of the solvent used5.  

 

However, the delicate equilibrium can also be upset by other factors, such as exposure 

to light, changes in ambient temperature, or addition of more solvent to the spiropyran 

solution. In all these cases the equilibrium is affected, and the rates of forward and 
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reverse reactions change in order to re-establish equilibrium, according to Le 

Chatêlier’s principle, which states: 

 

“A system at equilibrium, when subjected to a disturbance, responds in a way that 

tends to minimise the effect of the disturbance”
6 

 

In practical terms, experimental procedures exploiting the photochromism of 

spiropyran must be performed with a certain level of exposure to ambient light, which 

of course affects this equilibrium. To reduce the effect that this might have on the 

reproducibility of the results, it is vital to be aware of the delicate nature of the 

dynamic equilibrium, to minimise interferences and try to keep unavoidable exposure 

to interferences constant between samples and experiments. Therefore the spiropyran 

solution must be left in the dark for a sustained period of time to re-establish the 

initial starting conditions. 

1.1.2. Solvent Effects 

The switching characteristics of spiropyran are also sensitive to the polarity of the 

local microenvironment. Solvatochromic studies have been carried out on various 

spiropyran derivatives3,5. Solvatochromism is the change in position and sometimes 

intensity of the absorption bands, and therefore colour, of solutes when measured in 

different solvents7.  

 

A range of common solvents are compared in Table 1.1 using various solvent polarity 

scales. The terms εr, n,  and ET
N  represent the dielectric constant, refractive index and 

normalised Reichardt’s polarity factor respectively, and the terms π*, α,  and β refer to 
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the Kamlet-Taft scales8,9,10 for solvent dipolarity-polarisability, hydrogen bond donor 

acidity and hydrogen bond acceptor basicity. These parameters are used as a measure 

of the polarity of a solvent and may be used to predict the behaviour of the spiropyran 

in solvents of different polarity. 

 

Table 1.1 Solvent polarity parameters11. 

Solvent εr n ET
N
 π* α β 

Toluene 2.38 1.497 0.099 0.54 0 0.11 

Tetrahydrofuran 7.58 1.407 0.207 0.58 0 0.55 

Acetone 20.56 1.359 0.355 0.71 0.08 0.48 

1-Butanol 17.51 1.399 0.602 0.41 0.68 1.01 

2-Propanol 19.92 1.377 0.546 0.48 0.76 0.95 

Ethanol 24.55 1.361 0.654 0.54 0.83 0.77 

Methanol 32.66 1.328 0.762 0.60 0.93 0.62 

Water 78.30 1.333 1.000 1.09 1.17 0.18 

 

Intermolecular interactions between the solute and solvent modify the energy gap 

between the ground and excited states of the absorbing species, thus altering its 

absorption wavelength12, as shown in Figure 1.2.  
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Figure 1.2 Solvatochromic effect. A refers to the ground state MC in a non-polar solvent such as 

toluene, A* refers to the photoexcited MC in that solvent. B and B* indicate the ground state and 

photoexcited MC respectively in a more polar solvent, such acetonitrile. C and C* denote the ground 

state and photoexcited MC respectively in a very polar solvent such as methanol. The ground state is 

stabilised in more polar solvents, leading to an increase in the energy gap between ground and excited 

states, and hence a decrease in the λmax of the absorbance waveband. 

 

In a comprehensive study carried out by Garcia et al3 it was reported that the solvent 

stabilisation of the merocyanine isomer depends on a whole variety of solvent-solute 

interactions, for example hydrogen bonding and dipole-dipole interactions13,14. 

Reichardt’s polarity scale is regarded as a comprehensive measure of solvent polarity, 

as it takes into account both the dipolarity of the solvent, and its hydrogen bond 

donating ability.  

 

Garcia and colleagues found that the polarity of the microenvironment of spiropyrans 

dramatically affects their photochromism3. They found the open chain merocyanine 

forms of spiropyrans to be negatively solvatochromic, meaning that their absorption 

and fluorescence emission bands undergo a hypsochromic (blue) shift in solvents of 

increasing polarity, with solvent polarity classified using the Reichardt ET
N parameter. 
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This parameter is a measure of the solvation power of a solvent, taking into account 

all intermolecular interactions between solute and solvent molecules, excluding those 

which result in chemical alteration of the solute15. The most important intermolecular 

interactions in the case of spiropyrans are thought to be hydrogen bonding between 

the solute and solvent molecules3. The ET
N parameter is calculated from the maximum 

wavenumber of the longest wavelength electronic absorption band of Reichardt’s dye 

(Figure 1.3) in any given solvent16.  

 

 

2,6-diphenyl-4-(2,4,6-tripheynylpyidinio)phenolate 

Figure 1.3 Reichardt’s dye. Reichardt’s polarity scale is based on the maximum wavenumber of the 

longest wavelength electronic absorption band of this molecule in a given solvent. 

 

Garcia and co-workers reported evidence of the effect of hydrogen bonding on the 

stabilisation of merocyanine. They emphasised the strong stabilisation effect present 

in solvents with hydrogen bonding capability, finding that the hydrogen bond donor 

acidity played a significant role in solvent stabilisation.  

 

Song et al5 reported an in-depth study of the correlation between solvatochromism, 

Lewis acid-base equilibrium and the photochromism of spiropyran in pure and mixed 

organic solvents. They used the transition energy for the open MC as an empirical 

way to measure solvent polarity, and to investigate the position of the Lewis acid-base 

equilibrium of the SP-MC system, and the rate of decoloration of the MC back to SP. 

The results showed that as the equilibrium position depended on the relative solvation 

of the MC and SP, the value of the equilibrium constant was solvent dependant. The 
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results suggested that the MC was solvated to a greater extent in polar solvents, 

whereas the SP was solvated more strongly in non-polar solvents, which is to be 

expected, given the zwitterionic nature of the MC. They also reiterated the commonly 

reported solvatochromic effect, with a hypsochromic (blue) shift observed in the UV-

Vis spectra on increasing solvent polarity. The rate of decay from the MC to SP form 

was also found to be dependant on solvent polarity. It was reported that the 

decoloration rate constants decrease as the solvent polarity increases, which again can 

be explained intuitively due to the increased stabilisation of the MC zwitterions in 

more polar solvents. The suggested mechanism for decoloration is shown in Fig 1.4. 
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Figure 1.4 The proposed mechanism for interconversion between SP and MC via intermediate X.  

 

This mechanism was first suggested by Flannery in 196817. The interconversion 

between SP and MC takes place via an intermediate X18,19. During the ring opening 

process, X is formed as the spiro carbon - pyran oxygen atom bond is broken. The X 

form then interconverts to the trans- and cis- forms of MC. The solvent effect on the 

rate of ring opening is very weak, since the conversion of SP to X is an electrocyclic 

reaction, and this is the rate determining step. However, for the reverse reaction the 

rate determining step is the trans-cis isomerisation and internal rotation around the 

olefinic double bond. These are sensitive to solvent polarity, hence a large difference 

in decoloration rates can be observed on varying the polarity of the solvent used.  

 

Görner20,21,22 has also carried out detailed studies on a range of spiropyrans to 

investigate the effects of structure, solvent and temperature on photochromism. The 
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results he obtained were broadly similar to Song et al, with one interesting variation. 

His results show a higher absolute quantum yield of MC in non-polar solvents than in 

polar, when the SP is irradiated with UV light. This contrasts with Song’s claim that 

the effect of solvent polarity on ring opening is negligible. Görner attributes the 

decrease in quantum yield with increase of solvent polarity to a suggested mechanism 

of ring opening – i.e. via the n,π triplet state and an increasing energy gap with respect 

to the 3(π,π)* state. 

1.1.3. Temperature effects 

The effect of temperature on the SP-MC equilibrium needs to be taken into account in 

any study of the molecule’s photochromism. Spiropyrans have long been known to be 

thermochromic – i.e. their colour depends on temperature. Hirschberg and Fischer 

reported that the absorption spectra of several quinoidal merocyanines changed with 

temperature23. The general trend was a decrease in the intensity of the absorption band 

at longer wavelengths and an increase in that at shorter wavelengths, as the 

temperature decreased.  

 

In 1951 Knott carried out a comprehensive study of the temperature dependence of 

the absorption spectra of various merocyanines, and classified them into groups 

accordingly24. These reversible temperature effects can be attributed to the change in 

position of the equilibrium between the different species. In the various current 

applications of spiropyran, the exploitation of the photochromic properties of SP-MC 

usually involves a thermal relaxation from the coloured to colourless forms25. The 

intensity of colour observed, and the length of time taken to revert to the closed form 
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are both temperature dependant. Görner22 reported that there was a large variation in 

the equilibrium constant and rate of MC decay when the temperature is changed.  

1.1.4. pH effects 

The phenolate anion present in the MC form is a reactive functional group. For 

example, in the presence of acid the MC may become protonated, with the yellow-

green MCH+ being formed26, as shown in Fig. 1.5. This means that the pH of the 

solution must be carefully controlled. The pKa of the protonation of the merocyanine 

is of the order of 4-527. The formation of the protonated MCH+ may be exploited for 

various applications such as the use of the SP-MC-MCH+ interconversion for a 

molecular switch, as discussed below. An example of the UV-Vis spectrum of a 

protonated merocyanine is shown in Fig. 1.6.  

N+

R

-O

NO2

H+

-H+

N+

R

HO

NO2

 

Figure 1.5 The protonation of the merocyanine in the presence of acid. The protonated form, denoted 

by MCH, is yellow-green in colour. 
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Figure 1.6 Part A shows the absorption spectra of the spiropyran shown in part B at various pHs of the 

aqueous-acetone (1 : 1) solutions27. pH: (1) 7.0, (2) 6.4, (3) 5.3, (4) 4.9, (5) 4.4, (6) 3.7, and (7) 2.0 

(concentration 2.5x10-5 M). The pKa for this spiropyran is 5. It can be seen that a peak around 400 nm 

increases with increasing acidity, with a corresponding decrease in absorbance at about 530 nm28. 

Although the structure of this molecule differs slightly from the spiropyran studied here, it displays 

similar behaviour upon protonation.  

 

1.1.5. Aggregation 

Non-covalent interactions such as Van der Waals forces can induce the self-assembly 

of molecules into aggregates. Flannery17 first proposed that the aggregation of 

molecules of spiropyran was taking place, after examining the absorption bands of the 

merocyanine form in neutral solvents. A review of the photoinduced aggregation of 

photochromic spiro compounds was published by Barachevskii and Karpov in early 
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200729, discussing recent studies of the aggregation of SP and potential applications. 

A spectral study of 6-nitrosubstituted spiropyran showed the appearance of a long 

wavelength absorption band in the region of 640-670 nm upon increasing the 

concentration of MC, indicating the presence of aggregates30,31. It was concluded that 

spiropyrans of this type tend to form J-aggregates, where the molecules are arranged 

in a head-to-tail pattern at the expense of electrostatic interactions, in the ratios AB 

and AnB, where A is the initial SP and B is the ring-opened MC. This is demonstrated 

in Fig. 1.7 below.  

N+

R

-O

NO2

N

R

O NO2

nA B
 

 

Figure 1.7 The head to tail molecular arrangement of SP and MC in J aggregates in the ratio AnB, 

where A is the SP and B the MC.  

 

In polar solvents, aggregates are only formed at high concentrations of MC. It was 

found that the activation energy for thermal decoloration and the free energy value for 

SP in solution were higher in toluene than in ethanol, meaning that the aggregation of 

molecules takes place more efficiently in non-polar solvents. The hydrogen bonding 

in polar protic solvents apparently leads to a decrease in the intermolecular 

interactions which lead to the formation of aggregates. 
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1.2. Current Applications 

What makes spiropyran such an interesting potential chemical sensing agent is how its 

conformation, chemical and physical properties can be light modulated. The 

photoswitchability of spiropyrans has been exploited as a means of reversible light 

modulation of properties for a variety of chemical assemblies, including optical data 

storage, photoreceptors, molecular switches, among others1.  

 

Information transfer in contemporary telecommunication networks relies on the 

interplay of optical and electrical signals. The electronic processing of the optical 

signals slows down information transfer. Giordani et al32 have described a spiropyran 

based three state optical molecular switch for multichannel digital transmission in an 

optical network of communicating molecules, demonstrating that molecular switches 

can be used to gate optical signals in response to optical signals. The simple optical 

network developed consisted of three light sources, one cell containing a solution of 

three fluorescent molecules, one cell containing the spiropyran based three-state 

molecular switch, and a detector. The three states in the molecular switch are 

spiropyran (SP), merocyanine (MC) and protonated merocyanine (MCH) (Fig. 1.8).  
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Figure 1.8 The three state molecular switch described by Giordani et al. The three states are spiropyran 

(SP), merocyanine (MC) and protonated merocyanine (MCH). The inputs are UV light, visible light, 

acid and base. The outputs are the purple absorption band of MC and the yellow green absorption of 

MCH.  

 

Ultraviolet light, visible light, acid and base are the inputs that lead to a change from 

one state to the other. The SP form is colourless, MC is purple, and MCH is yellow-

green. This change in absorbance between the three states can be exploited for optical 

signal switching. This is an important step towards the ultimate goal of eliminating 

the electronic element of existing communication networks. Giordani et al33 also 

describe the exploitation of this same three-state molecular switch to execute a logic 

function equivalent to that of a combinational logic circuit integrating two AND, two 

NOT, and one OR gate. The logic gate produced two outputs that are 

spectroscopically observable; the absorption bands of the purple MC and the yellow-

green MCH. This logic gate may be the starting point for the potential development of 

a more complex digital circuit based on molecular changes in the chemical system.  

 

Electronically reconfigurable spiropyran-based molecular solid-state switching 

devices have also been constructed from monolayers sandwiched between two 

electrodes. Collier et al34
 reported that a well-characterised optical switching response 

was chemically designed into the molecular component. Previous work in molecular 

electronics showed that voltammetry experiments on molecular components in 
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solution often do not map onto solid-state device properties, but Collier demonstrated 

that even after harsh device fabrication conditions, the optical switching properties of 

spiropyrans were retained in the solid-state device, and in fact dominated the device 

characteristics, unlike similar devices with alternative molecular components. The two 

forms of the spiropyran, open and closed, were found to have completely different 

electrochemical behaviour. The fact that the photoswitching of the SP can still occur 

in the solid state makes the photocontrol of electrochemical properties possible. The 

authors also carried out control experiments with other amphiphilic molecules, but 

found that no optical switching was observed. This work is significant as it 

demonstrates that the basic molecular signatures of isolated molecules in solution may 

be retained in a solid-state device, and that it is possible to design a specific, unique 

molecular property into a solid-state tunnel junction. 

 

Another electrochemical application of spiropyran is reported by Willner et al35. 

Photoisomerisable monolayers of SP were assembled on Au electrodes and used to 

control the electrooxidation of dopamine and (3,4-dihydroxyphenyl)acetic acid by 

means of electrostatic interactions that could be photomodulated. This functionalised 

electrode could be used for the transduction of optical, thermal or pH signals recorded 

by the monolayer, again exploiting the photochromic variation in the physical and 

chemical properties of SP and applying them to develop an effective sensing system. 

 

The chelating ability of merocyanine was observed as far back as 1965 by Phillips36. 

More recently, Chibisov and Görner37 have reported the use of spiropyran derivatives 

to complex metal ions, giving rise to the potential application of SP as a metal 

complexation agent. They carried out detailed kinetic studies to examine the 
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formation of the merocyanine-metal complex, and found that the complexation of 

metal ions by SP in solution is the result of two coupled reactions – the formation of 

the merocyanine-type ligand and substitution of the solvent (co-ordinated at the metal 

ion) by the ligand. Diamond et al38 have also reported metal ion complexation by 

spiropyran, with the effect manifested with a number of ions such as Co2+, Cr3+, etc. 

Clearly the potential of spiropyran as an optical sensor has not yet been fully explored 

or exploited.  

 

Another application which employs the difference in charge between the open and 

closed forms is the photocontrol of ionic conduction. Kobayashi39 and co-workers 

presented a novel technique for the photocontrol of ionic conduction using 

spiropyrans. In the polymer electrolyte used, a photochromic chelation of spiropyran 

and a divalent cation occurred under UV irradiation, resulting in a decrease in ionic 

conductivity of the electrolyte. The photochromic chelation was suppressed by visible 

irradiation, leading to an increase in ionic conductivity.  

 

Another application of the chelating capability of the photochromic spiropyran was 

reported by Filley et al40. A bis-spiropyran was prepared, and the magnesium and 

calcium chelating ability of this was investigated and compared to mono-spiropyrans. 

It was found that the binding was 8 times higher using the bis-spiropyran than the 

mono spiropyran. The colour of the merocyanine was shown to be strongly influenced 

by the metal cation, with a blue shift in the maximum absorbance of 43 nm for 

magnesium and 22 nm for calcium. Strong fluorescence was also observed, providing 

another technique to detect the chelation of the metal ions. 
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An additional interesting use of spiropyrans is for the recording of erasable 

holograms. This has been reported as far back as 1970 by Lesscinski et al41, and 

illustrated more recently by Xue et al42. In this application it was the change in 

absorption and refractive index observed when irradiated with either UV or visible 

light that formed the basis for the method. The photochromic interconversion 

modulated the absorption and refractive index of spiropyran doped polymer films, 

allowing holograms to be recorded. These holograms could be erased by irradiating 

the polymer with visible light. Xue and co-workers found that this write-and-erase 

cycle could be carried out repeatedly, effectively producing erasable holograms. The 

wavelength of light used was 350 nm for the writing cycle, and 647 nm to erase the 

merocyanine hologram. 

 

Min et al43 describe a photoreceptor consisting of spiropyran-TCNQ films for image 

extraction. A spiropyran with a long alkyl chain was deposited by spin coating on a 

quartz substrate. TCNQ Langmuir-Blodgett films were deposited on the other side of 

the quartz substrate. The SP layer was irradiated with different wavelengths of light, 

producing different photocurrents in the TCNQ film. This enabled image extraction 

by the TCNQ photodetector without the need for computational circuits. The 

extraction efficiency was found to be 10%, with a 15 minute extraction time.  

 

In a subsequent publication, Min et al44 presented a photoreceptor consisting of 

spiropyran-bacteriorhodopsin films for photosignal enhancement. The experimental 

setup was similar to the TNCQ system described above, but in this case 

bacteriorhodopsin was chosen as a photoreceptor in an attempt to improve the signal 

to noise ratio.  Bacteriorhodopsin is a protein which generates a photocurrent 
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proportional to light intensity. The extraction efficiency for this method was found to 

be 25% - an improvement from the TCNQ photoreceptor, however the extraction time 

was considerably longer, at 40 minutes. 

 

The exploitation of the photochromism of spiropyran to produce a mechanical output 

was reported by Athanassiou et al45
. They put forward a microsystem that underwent 

mechanical actuation induced exclusively by photons. The system consisted of a 

polymer substrate doped with photochromic spiropyran molecules. The photochromic 

interconversion led to the contraction and expansion of the polymer substrate in a 

controllable manner. The number and intensity of incident laser pulses controlled the 

optomechanical actuation. The advantages of using laser beams for the optical 

manipulation of microsystems were the high spatial control offered and the fact that 

the operation could be non-contact.  

 

There are numerous other less common applications of spiropyran molecules to be 

found in the literature. Weston et al
46 have developed photo-modulation of 

horseradish peroxidase activity via covalent attachment of carboxylated spiropyran 

dyes. They reported a reduction in enzyme activity of greater than 90% under visible 

compared to UV irradiation, matching the greatest degree of photo-modulation 

previously reported in the literature. Other interesting applications include the use of 

spiropyran in dry colour printing47, photo-controlled gating48, potentiometric protein 

sensing49, etc, but one of the most exciting areas of current research involves the 

exploitation of the zwitterionic nature of the merocyanine to develop an optical sensor 

for other zwitterions.  
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The merocyanine molecule is zwitterionic, as shown in Fig 1.1 above. This gives rise 

to the possibility of electrostatic interactions between the merocyanine and other 

charged species. If the target molecule is also a zwitterion, with similar spacing 

between charges, then the electrostatic interaction may be strong enough to form a 

host-guest complex. If this is the case, the light modulation of the merocyanine makes 

this a very attractive sensing agent, as the binding reaction, in principle, can be 

photonically switched on and off.  

 

One potential group of zwitterionic target molecules is amino acids. Sunamoto et al50 

reported interactions between the zwitterionic merocyanine and zwitterionic amino 

acids. They reported that in a two-phase system an amino acid crossed from the 

aqueous phase to the organic phase after the SP in the organic phase had been 

irradiated with UV light and opened to become MC. They achieved the transport of 

amino acids across lipid membrane using spiropyran embedded in liposomal bilayers 

of egg phosphatidylcholine, as shown in Fig. 1.9.  
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Figure 1.9 Representation of amino acid transfer across liposomal bilayers through the photochromic 

interconversion between SP and MC as reported by Sunamoto et al50. The SP present in the bilayer is 

irradiated with UV light, leading to the formation of the brightly coloured MC. This zwitterion interacts 

with the zwitterionic amino acid (AA) in the interior and transports it into the bilayer. When the MC-

AA complex is irradiated with visible light, the MC returns to the SP form, releasing the AA into the 

exterior. 

 

Seno and co-workers have also reported the photocontrolled extraction and transport 

of amino acids using functional reversed micelles containing a spiropyran moiety51. 

The spiropyran was incorporated into the reverse micelles of tetraethyleneglycol 

dodecylether (TEGDE) in n-decane. A three phase water/n-decane/water system was 

used, with the AA in the first aqueous layer, the SP-TEGDE in the organic layer. 

Transport of tryptophan was observed from the first aqueous layer to the second, with 

the first aqueous/organic interface irradiated with UV light, and the second irradiated 

with visible light.  
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Chiral spiropyrans have been used for the enantiomeric recognition of amino acids. 

Tsubaki et al52 described the synthesis of an optically active spiropyran with a 

binaphthol moiety as a chiral source. The chiral spiropyrans used (1 and 2) are shown 

in Fig. 1.10.  

N O

R1

R2O

R3

1: R1=R3=H, R2=Me

2: R1=NO2, R2=CH2CH2OMe, R3=Br  

Figure 1.10 The chiral spiropyrans 1 and 2 used by Tsubaki et al in their system to differentiate 

between D- and L-amino acids. 

 

It was found that the open merocyanine form obtained under UV irradiation was 

retained longer in D amino acids than in L amino acids. The half life of the coloured 

MC was measured in the presence and absence of different amino acids. The amino 

acids tested were alanine (Ala), valine (Val), tryptophan (Trp), histidine (His) and 

phenylalanine (Phe). The solvent system used was a 4:1 ratio of acetonitrile to water. 

The concentration of SP was 8.0x10-4 M. Using SP1 (see Fig. 1.10 above) it was 

found that the half lives of the MC in the presence of the amino acids were longer 
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than for the molecule alone. They found that the half lives decreased with increasing 

bulk of both the ammonium and the carboxylate moieties, suggesting that a two-point 

electrostatic interaction between the zwitterionic MC and amino acid was taking 

place. The results showed a difference in half-life that was directly related to the 

bulkiness of the side chain of the amino acid, facilitating differentiation between the 

D- and L-enantiomers.  This is a novel method to differentiate between amino acid 

enantiomers. The synthesis of host 2 (see Fig. 1.10. above) led to epimerisation, 

resulting in a racemic mixture of spiropyran. No retention of amino acid was 

observed, and further studies were to be undertaken on this molecule. 

 

More recently, Shao et al53 have reported a spiropyran based system for the 

recognition and quantification of cysteine (Cys) and homocysteine (Hcy) at 

physiological levels. The spiropyran used is shown in Fig. 1.11. The system involves 

using the merocyanine of this spiropyran and mercury or copper ions as a sensing 

system for Cys and Hcy. It was found that when a range of amino acids were added to 

a merocyanine solution containing either Hg2+ or Cu2+, a marked difference was 

observed in the absorbance spectra when Cys and Hcy were present, compared to the 

other amino acids. This difference in colour could be exploited to selectively detect 

Cys and Hcy. The divalent metal ion formed a complex with two MC molecules, 

which in turn acted as a host to the amino acid guest.  
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Figure 1.11 The spiropyran used by Shao et al in their system for the selective detection of Cysteine 

and Homocysteine in the presence of copper or mercury ions. Each metal ion forms a complex with a 

merocyanine, then two of these complexes act as a host for two amino acids, linked with a disulphide 

bridge. The system is dimeric, with two MCs, two metal ions and two amino acids being linked.  

 



 24 

1.3. Proposed Research 

In this study we investigate the possibility of light controlled interactions between the 

zwitterionic merocyanine and other charged molecules. Amino acids have been 

proposed as targets for this study, given that they may exist in a zwitterionic form at a 

specific pH (Fig 1.12).   

R
OH

NH
2H

O

R
O

NH
3
+

H

O
 

Figure 1.12 General structure of an amino acid in both its uncharged and zwitterionic forms. The R 

group refers to the side chain, which varies in different amino acids. The charge displayed by the 

molecule depends on the pH of the solution. 

 

If docking takes place then the open form of the spiropyran is stabilised, meaning it 

stays coloured rather than reverting to the colourless closed form. This means that in 

principle spiropyran could be used to detect the presence of amino acid (Fig. 1.13).  



 25 

 

Figure 1.13 Schematic representation of possible “docking” interactions between merocyanine and 

zwitterionic amino acid. 

 

One factor which may affect the MC-AA interactions is pH. Amino acids are 

ampholytes. An ampholyte is a molecule that contains both acidic and basic groups. 

The charge on these molecules depends on the pH, and they can exist in zwitterionic 

form at a specific pH known as the isoelectric point, or pI. Below this pH the 

molecule is protonated and the molecule has a net positive charge, whilst above this 

pH the molecule has a net negative charge. This is demonstrated graphically in Fig 

1.14, where an example of a pH titration curve for an amino acid is shown54.  
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pKa2 

pKa1 

pI pH 

0 

14 

Volume base added  

Figure 1.14 A sample pH titration curve for an amino acid.  

 

The first deprotonation takes place at pKa1, and the second at pKa2. Below pKa1 the 

amino acid molecule exists as a positively charged ion. Then, as the pH increases, the 

carboxylic acid group on the amino acid loses a H+ leading to the formation of the 

zwitterion. The deprotonation of the basic amine group takes place at a much higher 

pH, giving rise to a negatively charged ion. Between these two reactions the amino 

acid exists in its zwitterionic form. 
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The reactions taking place are as follows: 
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AA+ + H2O AA0 H3O
++

Ka1

 

AA0 + H2O AA- H3O
++

Ka2

 

From these reactions the rate constants Ka1 and Ka2 can be determined as shown:  
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AA

OHAA
Ka

3
0

1                                   Equation 1 
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=                                   Equation 2 

 

The pI value is calculated from the pKas of the molecule. For an amino acid with only 

one amine and one carboxyl group, the pI is calculated from the two pKas as follows: 

 

2
21 aa pKpK

pI
+

=                                   Equation 3 

 

From the values of pI in Table 1.2 shown it can be seen that there is a general increase 

in pI upon increasing the spacer length between the positive and negative charges of 

the zwitterion. The higher the pKa of an acid, the lower is its Ka and therefore the 

weaker is its proton donating power to water.   

 



 28 

In order to optimise the potential for “docking” to take place, it is necessary to ensure 

that the amino acid is in the zwitterionic form, therefore the pH of each solution 

should be adjusted to the isoelectric point of the amino acid in question. A summary 

of some common amino acids and their isoelectric points is given in Table 1.2.  

 

Table 1.2 Isoelectric points of some common amino acids55. 

Amino Acid Isoelectric point (pI) 

Phenylalanine 5.48 

Tyrosine 5.66 

Valine 5.96 

Glycine 5.97 

Leucine 5.98 

Alanine 6.00 

β-Alanine 6.90 

γ-Aminobutyric acid 7.30 

δ-Amino-n-valeric acid 7.52 

ε-Amino-n-caproic acid 7.60 

Lysine 9.59 

 

 

The simple amino acid is the building block of peptides, and is often the basis for 

more complex drug molecules, for example dopamine (Fig. 1.15.). Therefore, if the 

detection of amino acids using spiropyran is optimised, there are potential 

applications for the monitoring and detection of both legal and illegal drugs. The 

spiropyran-drug molecular interactions could ultimately be monitored using a simple, 
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low-cost LED-based sensor system to control both the photo-switching of the SP-MC 

system and measurement of the resulting colour to determine whether binding with 

the guest species has occurred, as this often leads to changed in the visible absorbance 

spectrum of MC. 

 

Dopamine 

OH

OH

NH
2

 

Figure 1.15 The structure of the drug “dopamine”, used in the treatment of Parkinson’s disease. 
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2.  Solvatochromic Study 

2.1. Introduction 

The solvatochromic nature of spiropyran has been investigated and reported in the 

literature. A solvatochromic study was undertaken to explore the effect of solvent 

polarity on the switching characteristics of spiropyran and the relative stabilities of the 

open and closed form, in order to better understand the various factors which can 

affect this sensitive equilibrium.  

2.2. Experimental  

2.2.1. Materials  

The materials used in this section were as follows: 

• Spiropyran: 6-Nitro-1’, 3’,3’-trimethylspiro[2H-1-benzopyran-2,2’-

indolin]1’,3’-Dihydro-1’,3’,3’-trimethl-6-nitrospiro, 98%, Sigma-Aldrich 

• Methanol, Aldrich 

• Ethanol, Aldrich 

• Butan-1-ol, Riedel-de Haën 

• Acetonitrile, Lab Scan 

• Acetone, Aldrich 

• Tetrahydrofuran, Aldrich 

• Toluene, Aldrich 
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2.2.2. Instrumentation 

The instrumentation used in this section was as follows: 

• Electrolite Corporation Bond Wand UV lamp 

• Ocean Optics S2000 Mini Fiber Optic Spectrometer 

2.2.3. Method 

A solvent study was carried out to investigate the switching characteristics of 6-Nitro-

1’, 3’,3’-trimethylspiro[2H-1-benzopyran-2,2’-indolin]1’,3’-Dihydro-1’,3’,3’-

trimethl-6-nitrospiro (subsequently referred to as spiropyran) in solvents of different 

polarity. Spiropyran solutions were prepared in the concentration range of 10 µM – 1 

mM in the solvents listed in Table 2.1. 

Table 2.1 Solvents used and the concentration of spiropyran dissolved 

Solvent SP Concentration 

Methanol 100 µM 

Ethanol 100 µM 

Butan-1-ol 1 mM 

Acetonitrile 1 mM 

Acetone 100 µM 

Tetrahydrofuran 1 mM 

Toluene 1 mM 
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Figure 2.1 Switching setup consisting of Bond Wand UV light source (1) and Ocean Optics mini 

spectrometer. The cuvette containing the spiropyran solution was placed in the optical cell (2) and 

irradiated with UV light facilitating real-time spectral analysis of sample. Light is conveyed from the 

light source to the optical cell via fibre optic cable (3), and after passing through the sample the 

transmitted light is sent via fibre optic cable (4) to the mini spectrometer. 

 

The apparatus shown in Figure 2.1 was chosen as the photo-switching and 

spectrometric measurement set-up. The convenient size and portability of the Bond 

Wand meant that it could be used in conjunction with an Ocean Optics mini 

spectrometer for real time analysis. The experimental set-up consisted of the Bond 

Wand UV light source placed directly above the Ocean Optics mini spectrometer. The 

cuvette containing the spiropyran solution was placed in the mini spectrometer, the 

apparatus covered, and the UV light source switched on. The mini spectrometer was 

connected to a nearby PC using a fibre optic cable, facilitating real time spectral 

analysis of the sample as the molecule opened to the merocyanine form and the 

solution went from colourless to coloured. The UV-Vis spectra were recorded for the 

MC in the different solvents. 
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2.3. Results and Discussion 

In the course of the switching experiments it was found that in some solvents the 

photochromic interconversion of the spiropyran to the merocyanine was not easily 

observable at concentrations below 100 µM. The optimum spiropyran concentration 

in each solvent for these preliminary switching experiments was determined by 

making up solutions in the concentration range of 100 µM - 1 mM. These are 

summarised in Table 2.2. 

Table 2.2 The solvents studied are classed below in order of decreasing polarity (Reichardt), along 

with the concentrations of spiropyran used. It was necessary to increase the concentration in some 

solvents in order to optimise switching.  

Solvent Concentration SP Polarity 

(Reichardt ET
N 3,56

) 

Methanol 100 µM 0.762 

Ethanol 100 µM 0.654 

Butan-1-ol 1 mM 0.602 

Acetonitrile 1 mM 0.47 

Acetone 100 µM 0.355 

Tetrahydrofuran 1 mM 0.207 

Toluene 1 mM 0.099 

 

There was a marked difference in the relative stability of the open/closed molecule in 

the solvents of different polarity. In toluene, for example, the open form was so 

unstable that the colour would decay within seconds of removing the UV light source. 
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For all the other solvents tested, irradiation with a visible light source was necessary 

to switch the solutions from coloured to colourless.  

 

If we use the Beer-Lambert Law: 

A = εcl                                                     Equation 4 

Where A is absorbance, ε is the molar extinction co-efficient, c is the molar 

concentration and l is the path length in cm, we can calculate the percentage of the SP 

in the open MC form. We estimate ε to be 40,00027 from the literature values for 

similar molecules. It was estimated that in toluene, only 0.5% of the SP is in the MC 

form, compared to values of around 20% in methanol and ethanol. This demonstrates 

the effect that solvent polarity has on the relative stabilities of the open and closed 

forms. The non-polar solvents such as toluene stabilise the closed, uncharged 

spiropyran, whereas more polar solvents stabilise the charged merocyanine.  

 

Table 2.3 Comparison of literature and experimental values of λmax, showing a solvatochromic shift 

in solvents of decreasing polarity according to Reichardt’s ET
N value of solvation power. 

Solvent λλλλmax Literature
3 

λλλλmax Experimental ET
N 

 

Methanol 525 528 0.762 

Ethanol 534 543 0.654 

Butan-1-ol 548 545 0.602 

Acetonitrile Not tested 560 0.47 

Acetone 562 567 0.355 

Tetrahydrofuran 574 584 0.207 

Toluene 596 590 0.099 
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This solvatochromic effect was observed in the solvents used, with Reichardt’s 

polarity scale being used to measure the polarity of the solvents. A comparison of the 

literature values of absorbance wavelength with those experimentally obtained, along 

with the Reichardt ET
N value, is summarised in Table 2.3. The experimental values 

are comparable with the literature values, as shown in Fig. 2.2, and there is an 

increase in absorbance wavelength as the Reichardt ET
N value decreases.  
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Figure 2.2 Comparison of the literature λmax with the experimental values obtained in the course of this 

study. Both literature and experimental values show a decrease in λmax as polarity increases. The 

experimental value found for toluene is ringed above, as it was less precise due to the relative 

instability of the MC in this highly non-polar solvent.  

 

Figure 2.3 shows the solvatochromic shift in λmax from 528 nm to 590 nm in solvents 

of decreasing polarity from methanol to toluene. Of course, water is the most polar 
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solvent, and would absorb at a lower wavelength than methanol, but water was not 

investigated in this study. The peak for toluene (ringed in Fig. 2.2) is highly irregular, 

due to the instability of the open form in this non-polar solvent. The coloured solution 

was highly sensitive even to light from the spectrometer, which switched the solution 

almost completely back to colourless thus resulting in low absorbance and irregular 

peak. 
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Figure 2.3 Hypsochromic solvatochromic shift of MC in solvents of decreasing polarity, classed 

according to Reichardt’s polarity scale. The absorbance values are normalised, as different absorbance 

intensities were observed for different solvents. The peak for toluene is very irregular, as in this non-

polar solvent, the open form was very unstable, and the solution was in fact switched back to colourless 

by the light from the spectrometer. 

 

The solvatochromic effect can also be demonstrated photographically. Figure 2.4 

shows spiropyran solutions in a range of solvents of varying polarity after UV 

irradiation. The solutions are highly coloured, with a blue solvatochromic shift 

observable as the colour varies from pink to purple to blue in solvents of decreasing 
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polarity. The same solutions after irradiation with visible light can be seen in Figure 

2.5, and are colourless, demonstrating the reverse reaction to the closed spiropyran.  

 

 

Figure 2.4 SP in solvents of decreasing polarity after UV irradiation. From left to right: methanol, 

ethanol, butan-1-ol, acetonitrile, acetone, tetrahydrofuran and toluene. The solvatochromic effect is 

observed, with a shift in colour from pink to purple to blue. A much weaker colour is observed for the 

toluene solution than the other solutions. This was due to the instability of the open form in toluene, the 

colour disappearing within seconds of removing the UV light source.  

 

 

Figure 2.5 SP in solvents of decreasing polarity after visible irradiation. From left to right: methanol, 

ethanol, butan-1-ol, acetonitrile, acetone, tetrahydrofuran and toluene. Toluene switched back to 

colourless with ambient light, but all other solutions needed irradiation with desk lamp. 

 

The variation in colour observed indicates the different wavelength of light absorbed 

by the chromophore. The colour seen by the naked eye can be equated to the colour 

absorbed, as described in Table 2.4. This indicates that the merocyanine is absorbing 

light in the wavelength range of 480-630 nm, depending on the polarity of its 

microenvironment. 
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Table 2.4 The relationship between colour observed, colour absorbed and wavelength ( nm) of light 

absorbed – for example, a solution appearing violet absorbs in the yellow, and a red solution absorbs in 

the green, etc.  

Colour observed Colour absorbed Absorption wavelength 

Yellow Violet 400-430 nm 

Orange Blue 430-480 nm 

Red Green 480-560 nm 

Violet Yellow  560-590 nm 

Blue Orange 590-630 nm 

Green Red 630-750 nm 

 

There are many implications for the solvatochromism of spiropyran. One interesting 

potential application to exploit this phenomenon would be to use the merocyanine to 

probe polarity changes in local environments. In the absence of competing 

mechanisms (e.g. metal ion binding), a slight change in the absorbance wavelength of 

the merocyanine would indicate that an event had occurred to alter the polarity of the 

microenvironment. 
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2.4. Conclusions 

In conclusion, this simple solvent study clearly demonstrated the solvatochromic 

behaviour of the spiropyran studied, with a blue solvatochromic shift observed in 

solvents of decreasing polarity. The experimental results obtained agree with those in 

the literature. In addition, the complex nature of the spiropyran-merocyanine 

equilibrium was highlighted, as it was found that polar solvents tended to stabilise the 

open MC, while non polar solvents favoured the closed SP. In any study of spiropyran 

as a chemical sensing agent, it is vital to have an understanding of all these issues, as 

small changes in the polarity of the microenvironment of the spiropyran can affect the 

equilibrium. In fact, this sensitivity to polarity could perhaps be exploited in using the 

spiropyran as a polarity probe. The remainder of this study however focuses on 

investigating the interactions between spiropyran and amino acid, building on the 

background understanding of the photochromic interconversion of spiropyran 

developed in this initial solvent investigation.  
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3.  Spiropyran/Amino Acid Switching 

3.1. Introduction 

After investigating the switching characteristics of spiropyran in various solvents, the 

next phase was to add amino acid to the solution and spectrally characterise the 

switching in order to determine whether or not interactions between the zwitterionic 

merocyanine and amino acid are observed. For optimal stabilisation of the open 

merocyanine, it was important to ensure that the distance between the positive and 

negative charges on the amino acid was comparable to the distance between the 

charges on the merocyanine. The distance between the positive and negative charges 

on the merocyanine was estimated using molecular modellinga (4.67 Å). The energy 

minimised model is shown from different angles in Figures 3.1 and 3.2.  

                                                 
a The molecular modelling program used was Gaussian 03, used on a PC platform. Calculation Type: 

FOPT, Caluculation Method: RB3LYP, Basis Set: 6-311 G(d), E (HF): -1070.16908722 a.u., Dipole 

Moment: 11.8177 Debye. 
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Figure 3.1 Side view of the merocyanine after Gaussian energy optimisation. The molecule can be 

seen to be planar.  

 

Figure 3.2 Aerial view of the merocyanine after Gaussian energy optimisation. The distance between 

the positively charged N and negatively charged O was found to be 4.67 Å. 

 

Depending on the spacer length of the amino acid, both intramolecular and 

intermolecular interactions are possible, though it would be expected that the 

intramolecular would be considerably stronger. This is demonstrated in Figure 3.3. 
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Figure 3.3 “Docking” of zwitterionic amino acids onto zwitterionic open form of spiropyran. In 

solution phase both intra- and intermolecular interactions can theoretically take place, depending on 

spacer length between the two charges on the amino acid. The relative strength of the intermolecular 

reactions compared to the intramolecular would be thought to be weaker, though this can only be 

determined by a comparative study. Surface immobilisation of the merocyanine could reduce the 

intermolecular interactions with amino acids observed in solution phase by controlling the distance 

between merocyanine units. This gives rise to greater selectivity for use of merocyanine in potential 

applications involving the detection of amino acids.   

 

With this in mind, a range of amino acids were selected for study, and their spacer 

length measured using molecular modelling (MM2 energy minimisation in Chem 3D 

Ultra, version 10.0). These amino acids, their solution labels, abbreviated names and 

structures are summarised in Table 3.1. The 3D structures are shown in the Appendix.  
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Table 3.1 Amino acids used, with full name, abbreviated name, and structure of each amino acid 

tested, where d refers to the distance between the opposite charges in the zwitterions, calculated using 

Chem 3D Ultra version 10.0 MM2 energy minimisation. The 3D structures of these molecules are 

shown in the Appendix. 

AA AA abbreviation Structure 

Blank (Water) - 
H

O
H  

β-Alanine 

 

β-Ala  

d=4.924 Å 

O

O

NH
3
+

 

Glycine  

 

Gly  

d=2.147 Å 
O

H

H
NH

3
+

O

 

L-Tyrosine  L-Tyr  

d=2.147 Å O

O

OH

H
NH

3
+

  

L-Phenylalanine  L-Phe 

d=2.147 Å O

O

NH
3
+H

 

L-Leucine  

 

L-Leu  

d=2.145 Å 
O

O

H
NH

3
+

 

8-Aminocaprylic 

acid  

8-ACA d=11.364 

Å 

O
NH

3
+

O  

5-Aminovaleric 

acid  

5-AVA  

d=7.511 Å 

O

O

H
3
N+
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γ -Aminobutyric 

acid  

γ –ABA d=6.269 

Å 

O

O

H
3
N+

 

3.2.  
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3.3. Experimental 

3.2.1. Materials  

• Spiropyran: 6-Nitro-1’, 3’,3’-trimethylspiro[2H-1-benzopyran-2,2’-

indolin]1’,3’-Dihydro-1’,3’,3’-trimethl-6-nitrospiro, 98%, Sigma-Aldrich 

• β-Alanine, >99%, Fluka 

• Glycine, 99%, Sigma 

• L-Tyrosine, >99%, Fluka 

• L-Phenylalanine, >99%, Fluka 

• L-Leucine, >99.5%, Fluka 

• 8-Aminocaprylic acid, 99%, Aldrich  

• 5-Aminovaleric acid, 97%, Aldrich 

• γ -Aminobutyric acid, >99%, Sigma 

• Acetonitrile, Aldrich 

• Hexane, Aldrich 

3.2.2. Instrumentation 

The instrumentation used in this work was as follows: 

• Electrolite Corporation Bond Wand UV lamp 

• Perkin Elmer UV/VIS/NIR Spectrometer Lambda 900 
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3.2.3. Method 

Single phase switching experiments 

In an attempt to reproduce the stabilisation of the open form of the spiropyran by the 

zwitterionic amino acid described by Tsubaki et al52, spiropyran solutions were 

prepared in acetonitrile, amino acid solutions were prepared in water and the two were 

mixed in a 4:1 ACN/H2O v/v ratio, then exposed to UV light from the Bond Wand. 

The switching was monitored spectrally, with UV-Vis data being collected at various 

stages of the experiment. Eight solutions and their corresponding blanks were 

analysed, taking the UV-Vis spectrum of each solution before exposure to UV light, 

immediately after 2 minutes UV irradiation, and 1 hour after irradiation, after leaving 

the solutions exposed to ambient light. The eight solutions are described in Table 3.2.  

Table 3.2 Composition of solutions tested where ACN is acetonitrile, amino acids are denoted by their 

three letter abbreviation, L-Tyr is L-Tyrosine, L-Ala is L-Alanine. 

Solution  Volume Ratio Spiropyran (SP) Amino Acid  

1 4:1 SP/ACN 10-4 M L-Tyr/H2O 10-4 M 

2 10:1 SP/ACN 10-4 M L-Tyr/H2O 10-4 M 

3 10:1 SP/ACN 10-4 M L-Tyr/H2O 10-3 M 

4 4:1 SP/ACN 10-3 M L-Tyr/H2O 10-3 M 

5 10:1 SP/ACN 10-3 M L-Tyr/H2O 10-3 M 

6 4:1 SP/ACN 10-3 M L-Ala/H2O 10-3 M 

7 4:1 SP/ACN 10-4 M L-Tyr/H2O 10-4 M 

8 4:1 SP/ACN 10-4 M L-Ala/H2O 10-4 M 



 47 

Two phase switching experiments 

To counteract the stabilisation effect that the addition of water was having on the 

merocyanine, two-phase switching experiments were proposed. The aim of these 

experiments was to investigate whether the amino acid, normally insoluble in organic 

solvents, could be induced to transfer from the aqueous to the organic phase when the 

spiropyran was in its open, charged merocyanine form. The solutions were prepared 

by adding equal volumes of 10-4 M spiropyran (SP) in hexane and 10-4 M amino acid 

(AA) in water. For convenience the solutions were labelled numerically, as described 

in Table 3.3. 
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Table 3.3 Explanation of solution labels, with full name and abbreviated name of each amino acid 

tested, where d refers to the distance between the opposite charges in the zwitterions, calculated using 

Chem 3D Ultra Version 10.0 MM2 energy minimisation. 

Solution No. AA AA abbreviation 

1 Blank (Water) - 

2 β-Alanine d=4.924 Å β-Ala 

3 Glycine d=2.147 Å Gly 

4 L-Tyrosine d=2.147 Å L-Tyr 

5 L-Phenylalanine d=2.147 Å L-Phe 

6 L-Leucine d=2.145 Å L-Leu 

7 8-Aminocaprylic acid  

d=11.364 Å 

8-ACA 

8 5-Aminovaleric acid  

d=7.511 Å 

5-AVA 

9 γ -Aminobutyric acid  

d=6.269 Å 

γ –ABA 

 

The solutions were irradiated with UV light for 2 minutes, then photographed. The 

vials were shaken, first for 5 seconds and photographed, then for a further 30 seconds 

to maximize contact between organic and aqueous phases, and photographed again. 

Results were documented photographically and spectrophotometrically using the UV-

Vis spectrometer. The vials were then exposed to ambient light for 10 minutes, and 

the colour monitored using UV-Vis spectroscopy and digital photography. 
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3.4. Results and Discussion 

3.4.1. Single phase switching  

When the UV-Vis spectra of the merocyanine in acetonitrile in the presence of 

aqueous solutions of Alanine and Tyrosine were compared to those of the water 

blank, no substantial difference could be observed. This can be seen in Figures 3.4 

and 3.5. A similar colour intensity and decay were observed in the spiropyran 

solutions with or without amino acid present, and this was the case for all amino acids 

tested.  
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Figure 3.4 Absorbance vs. wavelength of 4:1 SP/ACN 10-4 M: L-Tyr/H2O 10-4 M under conditions 

described in legend. The results show that there is no significant difference between curves 1 and 2, 3 

and 4, 5 and 6. However, this experiment merely monitors the beginning and end of the colour change. 

This would indicate that amino acid docking is not having a significant effect on the steady state ring 

open and closed behaviour of the spiropyran. 
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Absorbance comparison spiropyran in presence/absence of amino acid 
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Figure 3.5 Absorbance vs. wavelength of 4:1 SP/ACN 10-4 M: ß-Ala/H2O 10-4 M under conditions 

described in legend. The results show that there is no significant difference between curves 1 and 2, 3 

and 4, 5 and 6. Again, this experiment merely monitors the beginning and end of the colour change. 

This would indicate that amino acid docking is not having a significant effect on the steady state ring 

open and closed behaviour of the spiropyran. 

 

This behaviour may arise because of the presence of water in the solution, as this will 

stabilise the merocyanine. Ideally the docking experiments should be carried out in a 

much less polar environment, so that the amino acid interactions could be observed 

more closely. However, this is difficult to accomplish due to the limited solubility of 

amino acids in organic solvents. The amino acids used, namely L-Alanine and L-

Tyrosine, were found to be insoluble in a range of organic solvents, including the 

polar organic solvent such as ethanol. Another contributing factor may be the 

concentration of amino acid used. In the experimental design used, the SP was almost 

always in excess. The problem with having such a low proportion of amino acid 

solution present is that there may not be enough amino acid molecules to drive the 

binding, as for the effect to be observed, perhaps it is necessary for the amino acid to 
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be in excess. In an attempt to counterbalance this problem, the concentration of the 

amino acid solution was increased by a factor of 10 to 10-3 M, while the spiropyran 

concentration was kept at 10-4 M. The dilution factor then means that the spiropyran 

and amino acid in solution are equimolar. The results are displayed in Figures 3.6 and 

3.7. It was found that there was no significant difference between the merocyanine or 

spiropyran in the presence or absence of the amino acid. Perhaps the amino acid 

concentration was still too low to observe a difference in absorbance.  
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Figure 3.6 Absorbance vs. wavelength of 10:1 SP/ACN 10-4 M: L-Tyr/H2O 10-4 M under conditions 

described in legend. The results show that there is no significant difference between the spiropyran in 

the presence or absence of AA before, immediately after irradiation with UV light, and after exposure 

to ambient light for 1 hour. Therefore, amino acid interactions with spiropyran cannot be confirmed 

using this method. The slight increase in absorbance at the λmax for SP open in the presence of AA 

when compared to SP open without AA is minimal, and falls within the experimental error range.  
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Absorbance comparison spiropyran in presence/absence of amino acid 
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Figure 3.7 Absorbance vs. wavelength of 10:1 SP/ACN 10-4 M: L-Tyr/H2O 10-3 M under conditions 

described in legend. The results show that there is no significant difference between spiropyran in the 

presence or absence of AA before, immediately after irradiation with UV light, and after exposure to 

ambient light for 1 hour. Therefore, amino acid interactions with spiropyran cannot be confirmed using 

this method, although, again, the slight increase in absorbance at the λmax for SP open in the presence of 

AA when compared to SP open without AA suggests that a slight effect may be taking place. 
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3.4.2. Two phase switching  

The concept behind these two-phase switching experiments was as follows. Under 

UV light spiropyran (10-4 M) ring opening takes place in the organic phase (hexane). 

Amino acid (10-4 M) present in an aqueous layer is in contact with the organic phase. 

When ring opening occurs the merocyanine may be able to act as a host and attract the 

charged amino acid across the phase barrier as an ion-pair, as suggested by Sunamoto 

et al
50. Under normal conditions the amino acid would not be soluble in the organic 

phase, but in theory the presence of the highly charged merocyanine in the organic 

layer would favourise solubilisation of the amino acid by forming an electronically 

neutral host-guest pair through the electrostatic docking interaction.  Figure 3.8 shows 

the nine two-phase solutions immediately before UV irradiation. Vial 1 is the water 

control, vials 2-9 are the amino acid solutions described in Table 3.3. All the solutions 

are colourless before exposure to UV light. After two minutes irradiation with the 

Bond Wand the organic (upper) phase is highly coloured in all vials (Fig. 3.9), 

indicating that ring opening of the spiropyran has taken place. After 5 seconds 

shaking some of the merocyanine has migrated to the aqueous phase in all vials, but 

some colour still remains in the organic phase (Fig. 3.10). However, after 30 seconds 

shaking, the merocyanine has been completely transferred to the aqueous phase of all 

the samples, as there is no longer any colour in the organic layer (Fig. 3.11). After 10 

minutes ambient light, it is observed that in all the vials all colour has decayed (Fig. 

3.12.), and some precipitate can be seen, suggesting that aggregation of spiropyran 

molecules may be taking place. Initially it was thought that by shaking the two phases 

the amino acid would come in contact with the charged merocyanine and transfer to 

the organic phase. However, the reverse was observed: the merocyanine rapidly 
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transferred to the polar aqueous solution. There appeared to be a slight difference in 

colour intensity between the spiropyran-water control and the spiropyran in the 

presence of the various amino acids. This could be due to different strengths of 

interaction between the different amino acids and the merocyanine.  

 

Figure 3.8 Solutions 1 to 9 before UV irradiation, all solutions colourless, organic phase (hexane) on 

top, aqueous phase below. SP 10-4 M in hexane, AA 10-4 M in water.  
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Figure 3.9 Solutions 1 to 9 immediately after 2 mins UV irradiation. Spiropyran is now in the MC 

open form in organic phase, some cross-phase migration observed at interface, and can be seen in 

picture inset. The pink colour observed as the spiropyran crosses the interface is consistent with the 

solvatochromic effect, as the absorbance shifts to a lower wavelength in the more polar solvent.  
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Figure 3.10 Solutions 1 to 9 after 2 mins UV irradiation and after 5s shaking. Merocyanine in organic 

phase, some MC has migrated to aqueous phase giving rise to the orange colour. 
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Figure 3.11 Solutions 1 to 9 after a further 30 seconds shaking. Orange colour in varying intensity in 

the presence of different amino acids. The amino acids were all present in the same concentration  (10-4 

M), which suggests that the variation in colour intensity may be due to different interactions between 

the MC and the different amino acids tested.  

 

 



 58 

 

Figure 3.12 Solutions 1 to 9 after 10 minutes ambient light. Orange colour has disappeared. Some 

precipitate visible. 

 

These results are very interesting as they demonstrate the possibility of photo-induced 

phase transfer. The processes happening are as follows: 

 

SP(o) MC(o) MC(aq) SP(aq) SP(s)

Phase transfer

UV Vis
precipitate

 

 

The UV-Vis spectra of the aqueous phase after MC migration were obtained. The 

results are shown in Fig. 3.13. It was found that the absorbance intensity varied in 

decreasing order as follows: L-Phe, L-Tyr, L-Leu, γ-ABA, 5-AVA, 8-ACA, Gly, β-

Ala, water. This suggests that the presence of the amino acids in some way stabilises 
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the merocyanine, increasing absorbance intensity compared to water. The variation in 

the colour intensity observed may be due to varying levels of interaction between the 

merocyanine and the different amino acids. These interactions may take the form of 

intimate association between the zwitterionic MC and AA, or alternatively the results 

observed could be due to a bulk effect, depending on the ionic strength or polarity of 

the solution, which again depends on the amino acid used.  Also, the nature of the 

experimental set-up used meant that there were slight variations in UV exposure for 

spatial reasons, and the time taken to measure the UV-Vis spectrum of each sample. 

This means that the UV-Vis spectra obtained could have inherent errors and 

comparisons between samples cannot be fully relied upon. 

 

 There is no shift in the wavelength of maximum absorbance for all amino acids 

tested, indicating that there is no charge transfer complex forming between the 

merocyanine and amino acid, but ionic interactions may still have taken place.  
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Comparison of SP absorbance in presence of different Amino Acids
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Figure 3.13 Normalised relative absorbance of merocyanine in the presence of different amino acids in 

aqueous phase. The maximum absorbance wavelength is 492 nm, indicating a blue shift from the 

wavelength observed in the solvents previously studied. This is in line with the solvatochromic shift to 

lower wavelengths in solvents of increasing polarity. The peak observed in water at 650 nm indicates 

that a contaminant may have been present.  
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Table 3.4 Table summarising and comparing the data obtained from the UV-Vis spectra of the MC in 

the presence of water and different amino acids. The amino acids are listed according to decreasing 

absorbance in two wavelength regions – approximately 360 nm and 500 nm. The pI values of the 

amino acids are also listed in order to determine whether a trend in absorbance emerges depending on 

the pI of the amino acid. 

 Absorbance Order Absorbance Order 

λλλλmax ~360 nm pI λλλλmax 492 nm pI 

β-Ala 6.90 L-Phe 5.48 

Gly 5.97 L-Tyr 5.66 

L-Phe 5.48 L-Leu 5.98 

L-Leu 5.98 γ-ABA 7.30 

L-Tyr 5.66 5-AVA 7.52 

γ-ABA 7.30 8-ACA ~8 

5-AVA 7.52 Gly 5.97 

Water 7 β-Ala 6.90 

8-ACA ~8 Water 7 

 

 

From examining the data in Table 3.4 we can see that at 492 nm there is a general 

increase in absorbance intensity as the pI decreases. It would appear that the amino 

acid with the lowest pI will shift the SP-MC equilibrium to the right to a greater 

extent than an amino acid with a higher pI. This is a very interesting observation. 

There are some exceptions to this trend, namely Gly and Ala, which have the lowest 

absorbances of the amino acids tested but have low pI values. Interestingly, these are 

the two smallest amino acids tested, and this may have an effect on any interactions 

taking place. These results show that the addition of amino acids with different 
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structures, polarities, and isoelectric points, definitely has an effect on the MC. The 

nature of this effect is indeterminate, but merits further study. An in depth 

examination of the MC-AA interactions in water could yield some very useful 

information, especially since the system would be reduced to a single phase.  

 

Any interactions that may be taking place must be quite weak, or perhaps the 

interactions are such that they do not lead to a change in absorbance wavelength. 

Kinetics experiments to study the rate of decay or the merocyanine in the presence of 

amino acids would perhaps be more powerful at drawing out any interactions or 

structural effects. Therefore it was decided to concentrate on optimising an 

experiment to monitor and compare the kinetics of the reverse reaction from 

merocyanine to spiropyran in the presence of a carefully selected range of amino 

acids. 
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3.5. Conclusions 

The single phase switching experiments carried out showed similar results in the 

presence of the two amino acids tested and the water blank. It appears that the polar 

water molecules stabilise the open MC to a great extent (which agrees with the results 

of our solvent study, above). It could not be confirmed that any spiropyran - amino 

acid interactions were taking place using this method, perhaps due to the low relative 

concentration of amino acid present. A similar experimental procedure was employed 

by Tsubaki et al52 in their system for the enantiomeric recognition of amino acids 

using chiral spiropyran. However, the structure of the spiropyran used was quite 

different from the subject of this study. Tsubaki’s spiropyran (Fig. 1.9) had a structure 

which could facilitate a three point interaction with the amino acid, potentially 

enhancing the host-guest binding affinity.   

 

Two-phase switching experiments were then proposed to try to keep the spiropyran in 

a non-aqueous environment so that any zwitterionic interactions between the 

merocyanine and amino acids could be observed in the organic phase. However, in 

these experiments it was found that rather than the zwitterionic amino acid being 

attracted by the zwitterionic merocyanine, and brought into the organic phase, the 

merocyanine itself went into the aqueous phase. This demonstrated the strong affinity 

that the charged merocyanine has for water. Sunamoto et al50 has reported the light-

modulated transfer of amino acid from aqueous to organic phase through the 

photochromism of spiropyran, but there are several differences between his system 

and the one used in these experiments. Sunamoto’s system employed a liposome 

membrane between phases (see Fig. 1.9), ensuring that the SP-MC was retained in the 
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organic phase, and not released into the aqueous on either side. This enabled recycling 

of the SP used, meaning that the SP was continuously being switched to the MC form 

and back again. Perhaps this is necessary to prevent the MC from crossing to the 

aqueous phase. In addition, Sunamoto’s procedure did not involve sample shaking.  

 

In this study, light-modulated phase transfer was shown to take place, and the spectral 

analysis of the merocyanine in the aqueous samples yielded some very interesting 

results. The variation in colour intensity between the amino acid samples suggests 

amino acid – spiropyran interactions, though a more in-depth study is needed to 

develop a better understanding of what is taking place at molecular level. The relative 

concentration of AA to SP may be very important for these interactions also, as 

previously mentioned in the single-phase study. Again, perhaps it is necessary for the 

amino acid to be present in a large excess in order to be able to see what interactions 

may be taking place. Otherwise, it is possible that the SP-MC interconversion could 

mask any other binding.  

 

Therefore, the spectral characterisation of the spiropyran – merocyanine equilibrium 

suggested that some kind of interaction was taking place to varying degrees between 

the amino acids and merocyanine. Consequently, it was decided to move to a series of 

kinetics experiments in order to ascertain whether the rate of decoloration of the MC 

is affected by the presence of amino acids, which would help to shed light on the 

interactions taking place.  
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4.  Kinetics study 

4.1. Introduction 

Considering that it was difficult to detect merocyanine-amino acid interactions 

through comparing absorbance spectra, it was decided to carry out a kinetics study to 

investigate whether the presence of amino acid influenced the rate of ring closure after 

exposure to UV light. There are two types of kinetic study reported in the literature 

for the study of the thermal ring closure of the merocyanine – one over a long time 

scale, another over a very short time scale57. The first has been carried out at room 

temperature, measuring absorbance using a regular spectrophotometer over time 

periods ranging from a few seconds to several days. The second type of kinetic study 

is typically carried out at low temperatures measuring absorbance changes over time 

periods of less than one second.   

 

The results from both types of studies indicate that spiropyran undergoes very 

complex and rapid molecular changes due to a series of photo or thermal reactions 

immediately after colouration, and a relatively simple first order colour decay over 

longer time periods. Therefore, the thermal decoloration rates over longer time 

periods are the most studied, and it is this type of experiment that was envisaged for 

this study. If strong interactions are taking place between the zwitterionic 

merocyanine and the zwitterionic amino acid, it is expected that the rate of decay of 

the coloured MC back to SP would be slowed down to an extent that would depend on 

the strength of the interaction. 
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The importance of matching the spacer length of the amino acid to that of the 

merocyanine has already been mentioned. To investigate this, the following amino 

acids were selected for an in-depth study; ß-Alanine (Ala), Phenylalanine (Phe) and 8-

Aminocaprylic acid (ACA) (see Table 4.1). A comparison of the interactions between 

these zwitterionic molecules should clarify the effect of spacer length on interactions, 

and give an insight into the impact this has on intra and intermolecular interactions. 

 

Table 4.1 The amino acids selected for study with varying charge separation distance  

β-Alanine (Ala) 

Charge separation 4.924 Å 

O

O

NH
3
+

 

Phenylalanine (Phe) 

Charge separation 2.147  Å O

O

NH
3
+H

 

8-Aminocaprylic Acid (ACA) 

Charge separation 11.364 Å 

O
NH

3
+

O  

 

 

If indeed “docking” is taking place, it can be supposed that the merocyanine will be 

stabilised, thus altering the rate of the reverse reaction to the closed spiropyran 

molecule. However, in order to better understand what is happening at a molecular 

level when aqueous amino acid is added to spiropyran in an organic solvent, it is 

necessary to consider the various intermolecular interactions that can take place. In 

this case we regard electrostatic interactions and hydrogen bonding as the most 
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relevant. The electrostatic interaction is strictly defined as the Coulombic interaction 

between the charge distributions of the molecules, when they have not been distorted 

by the interactions58. It appears that the electrostatic interactions, when accurately 

calculated, often dominate the orientation dependence of the total intermolecular 

potential59. However, the analysis of Sokalski et al of the electrostatic potential 

around model blocked peptides showed that it can be considerably distorted around 

the functional groups which can form hydrogen bonds60. This is very interesting, as in 

this study so far it was found that the proposed strong electrostatic interactions were 

not in fact observed. This may be due to a number of factors, one of which could 

involve the hydrogen bond stabilisation of the merocyanine. 

 

Although the hydrogen bond is weaker than covalent bonds, it is stronger than the 

Van der Waals forces between non-polar molecules. The Coulombic attraction 

between polar molecules contributes towards the force of the hydrogen bond, however 

the hydrogen bond is considered to be more than a simple electrostatic interaction. For 

a hydrogen bond to form, both proton donating and accepting groups are needed, and 

whether they are in separate molecules is irrelevant, so long as the proper spatial 

positioning can be attained. When a hydrogen atom which is covalently bonded to an 

electronegative atom A, such as oxygen, nitrogen or a halogen, is able to approach 

another electronegative atom B, a relatively strong interaction energy is observed 

between them61. As the proton donor, AH, approaches the acceptor, B, the hydrogen 

atom forms a bridge between them. The lone pair of B is drawn towards the bridging 

proton to form a weak bond, represented by AH….B62. Typical strengths of neutral 

hydrogen bonds are in the 2-16 kJ mol-1 range, whereas for ionic hydrogen bonds the 

range raises to 9-45 kJ mol-1 63. These values are compared with sample energies for 
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other bonding interactions in Table 4.2. These figures give a general indication of the 

value of bond strength across the various classes. Actual values vary widely 

depending on the specific interactions involved. 

 

Table 4.2 Some sample energies for various bonds and interactions64.  

Interaction Sample Energy (kJ mol
-1

) 

Ionic bond 700 

Covalent bond 400 

Van der Waals interactions  8 

Hydrogen bonding 20 

 

 

Therefore, there are a number of factors which will affect the stabilisation of the 

merocyanine, which the proposed kinetic study should help to elucidate. 
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4.2. Experimental 

4.2.1. Materials  

• Spiropyran: 6-Nitro-1’, 3’,3’-trimethylspiro[2H-1-benzopyran-2,2’-

indolin]1’,3’-Dihydro-1’,3’,3’-trimethl-6-nitrospiro, 98%, Sigma-Aldrich 

• β-Alanine, >99%, Fluka 

• L-Phenylalanine, >99%, Fluka 

• 8-Aminocaprylic acid, 99%, Aldrich  

• Hydrochloric acid, Aldrich 

• Sodium hydroxide, Aldrich 

• Ethanol, Aldrich 

• Toluene, Aldrich 

4.2.2. Instrumentation 

The instrumentation used in this work was as follows: 

• Metrohm 713 pH Meter 

• Electrolite Corporation Bond Wand UV lamp 

• Bio-tek Instruments KC4 Universal Microplate Spectrophotometer 

4.2.3. Method 

A 10-3 M spiropyran in ethanol solution was prepared. The amino acids were made up 

in water at a concentration of 10-1 M. The pH of the amino acid solutions was adjusted 

using a calibrated Metrohm 713 pH meter and hydrochloric acid and sodium 
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hydroxide solutions so that 3 samples were obtained for each amino acid – one with 

the pH below the isoelectric point (pI), one at the pI, and another above the pI. The 

amino acids and their pHs are summarised in Table 4.3.  

 

Table 4.3 Summary of amino acid solutions prepared at different pHs. 

Amino Acid pH 

Alanine below pI 5.90 

Alanine at pI 6.90 

Alanine above pI 7.90 

Phenylalanine below pI 4.48 

Phenylalanine at pI 5.48 

Phenylalanine above pI 6.48 

Aminocaprylic acid below pI 7.00 

Aminocaprylic acid at pI 8.00 

Aminocaprylic acid above pI 9.00 

 

15µL of the aqueous amino acid solution (10-1 M) was added to 200µL spiropyran 

ethanol solution (10-3 M) in a 96 well plate. Each sample was repeated 5 times. Water 

was used as a control, with 15µL being added to 200µL spiropyran. The delicate 

equilibrium between the SP and MC is affected both by the exposure to ambient light 

during sample preparation, and also the altered polarity of the solution due to the 

addition of the amino acid sample in water. Therefore, the samples were left to 

equilibrate overnight in the dark. Then the plate was illuminated with UV light from 

the Bond Wand for 3 minutes (the Bond Wand was allowed to heat up for 3 minutes 

before the experiment). Then the absorbance at 546 nm was noted every minute for 4 
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hours and 30 minutes. The procedure was repeated to investigate inter-day 

reproducibility, and Excel Solver was used to determine the rate constant for each 

sample.  

 

The entire UV-Vis spectrum of each sample was then recorded. The plate was 

exposed to ambient light for 10 minutes, and the UV-Vis spectrum recorded again.  
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4.3. Results and Discussion 

When the absorbance at 546 nm was monitored at 1 minute intervals over a 4 hour 30 

minute period subsequent to 3 minutes irradiation with UV light, some interesting 

trends emerged. It was found that the absorbance was substantially lower in the 

solutions containing ACA (Fig. 4.1), and that the rate of decay of MC in these 

samples was much faster than the other amino acids tested. The sample containing 

water as a blank was found to have the highest absorbance after 4 hours 30 minutes, 

even though several of the amino acid containing solutions started with higher 

absorbance than water (Fig. 4.2.). 

Comparison of merocyanine decay in presence of Ala and ACA
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Figure 4.1 Comparison of absorbance and rate of decay of merocyanine in the presence of Ala and 

ACA. Though both were added at the same concentration, there is a large initial difference in 

absorbance between the two, which continues throughout the kinetics experiment. Ala can be seen to 

stabilise the merocyanine to a greater extent than ACA, and ACA has a faster rate of decay. 
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Kinetics of merocyanine decay in the presence of amino acids
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Figure 4.2 Decaying absorbance of merocyanine over time, in the presence of water and a selection of 

amino acids at different pHs. The irregularity in the spectra over the first 20 minutes is thought to be an 

artefact of the instrument used. Water has the highest absorbance after 4 and a half hours, followed 

closely by the Phe and Ala solutions, with a marked drop in absorbance for the ACA solutions. The 

ACA solutions are seen to have a faster rate of decay than the other amino acids and water. 

 

As can be seen in Fig. 4.2, there is a large difference between the absorbance values 

for ACA and the other samples. This indicates that there are some interactions taking 

place between the amino acids and the merocyanine.  

 

There are 2 effects observed when the results are compared. There is the variation in 

initial absorbance or colour intensity, and also the difference in the rate of decay of 

merocyanine between the amino acids tested. The difference in initial absorbance, 

showed clearly in Fig. 4.2 can be denoted by Keq, where: 

 

[ ]
[ ]SP

MC
K eq =                                          Equation 5                                       
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The difference in absorbance intensity is related to the relative amounts of 

merocyanine and spiropyran present in solution. This in turn depends on the 

stabilisation of the merocyanine by the solvent. The merocyanine tends to be more 

stable in a polar solvent, so perhaps the different amino acids affect the polarity of the 

local environment of the merocyanine to greater or lesser degree based on their own 

structure and charge. 

 

More information about merocyanine-amino acid interactions may be extracted from 

the rate of the merocyanine decay back to spiropyran. 

SP MC
KF

KR  

The rate of reverse reaction, indicated by KR, varies between samples. In theory, this 

rate depends on the strength of interactions between the amino acid molecules and the 

merocyanine. The stronger the interactions the slower the rate of reversion to 

spiropyran.  

 

The difference in colour intensity was visible to the naked eye, as demonstrated in 

Fig. 4.3. 
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Figure 4.3 Photograph comparing colour of merocyanine in the presence of water and different amino 

acids.  In each case 15 µL of 10-1 M AA was added to 200 µL of 10-3 SP. The different aqueous 

solutions added to the SP are as follows: Column 1: water, Column 2: Ala below pI, Column 3: Ala at 

pI, Column 4: Ala above pI, Column 5: Phe below pI, Column 6: Phe at pI, Column 7: Phe above pI, 

Column 8: ACA below pI, Column 9: ACA at pI, Column 10: ACA above pI. There is a noticeably 

lighter colour in the last 3 columns on the right hand side of the plate, when ACA is the amino acid 

present.  

 

The wells A 8 to E10 contain ACA. There is a sharp contrast in the colour of the 

merocyanine in these wells compared to wells A1 to E7. In addition, when the UV-

Vis spectrum of these samples was taken (Fig. 4.4) it was observed that in the ACA 

samples there was an increased absorption at around 400 nm, contributing to the more 

yellow-coloured solution. There is also a decrease in the intensity of the peak at 540 

nm showing that there is a smaller proportion of spiropyran molecules in the open 

merocyanine form.  
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Absorbance of MC in presence of AA
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Absorbance of merocyanine in the presence of amino acids
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Figure 4.4 (A) UV-Vis spectra of merocyanine comparing absorbance in the presence of different 

amino acids at varying pHs, 4 and a half hours after UV irradiation. ACA has the lowest absorbance, 

and also shows an increase in absorbance in the region of 380 – 410 nm. (B) Detail from (A), shown at 

different scale. Water shows the highest absorbance, followed by Ala and Phe, with a sharp drop to the 

ACA absorbance.  
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After exposure to ambient light for 10 minutes, the pink colour decayed from all wells 

(Fig. 4.5). This suggests that any stabilisation effects that may be taking place due to 

the presence of the zwitterionic amino acids and highly polar water molecule are not 

strong enough to keep the merocyanine molecule from reverting to its closed SP form 

when exposed to light. When all the pink had decayed, a strong yellow colour was 

observed in the wells containing ACA. There is also a slight yellow tinge to the β-Ala 

and Phe solutions. This is confirmed by the UV-Vis spectra shown in Fig. 4.6, when 

an increase in the ~400 nm region is observed for all amino acids compared to the 

water blank, with the largest increase for ACA. This yellow colour will subsequently 

be discussed in further detail. The overall result however indicates that the amino 

acids have a different effect on the merocyanine to water, and this effect varies 

depending on the amino acid used. 
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Figure 4.5 Photograph comparing colour of merocyanine in the presence of water and different amino 

acids after exposure to 10 minutes ambient light..  In each case 15 µL of 10-1 M AA was added to 200 

µL of 10-3 SP. The different aqueous solutions added to the SP are as follows: Column 1: water, 

Column 2: Ala below pI, Column 3: Ala at pI, Column 4: Ala above pI, Column 5: Phe below pI, 

Column 6: Phe at pI, Column 7: Phe above pI, Column 8: ACA below pI, Column 9: ACA at pI, 

Column 10: ACA above pI. The pink colour has decayed, in leaving a yellow coloured solution for 

both ACA and Ala.  
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Absorbance of MC in presence of AA after 10 mins ambient light
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Figure 4.6 Absorbance spectra after 10 minutes exposure to ambient light. Pink colour has decayed, 

and absorbance shift for ACA samples can be observed from 360-460 nm. 

In order to determine the rate constants for the decay of the merocyanine in the 

presence of water and amino acids, Microsoft Excel Solver was used. A model was 

created using the equation: 

 

Absorbance = [A(1-e-Kt)]+B                              Equation 6                               

 

where K is the rate constant, t is time and A and B are constants. The experimental 

data was fitted to this model with an error of less than 1%. The data and models were 

plotted, and can be seen in Figures 4.7-9.  
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Excel Solver plots
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Figure 4.7 Microsoft Excel Solver plots, fitting the experimental data to a model in order to determine 

the rate constant. Ala, Phe and ACA are all plotted at their isoelectric points (pH measured in aqueous 

solution before adding to SP).  

Excel Solver plots
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Figure 4.8 Microsoft Excel Solver plots comparing the rate of decay of the merocyanine in the 

presence of the three different amino acids. ACA can be seen to decay considerably faster than the 

other two.  
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Steady State Estimate

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Time (mins)

N
o
rm
a
li
s
e
d
 A
b
s
o
rb
a
n
c
e

Water Model

Water Data

Ala Model

Ala Data

Phe Model

Phe Data

ACA Model

ACA Data

 

Figure 4.9 Microsoft Excel Solver plots, fitting the experimental data to a model, and then extending 

the model over time to estimate steady state absorbance, when the system had reached equilibrium. 

Ala, Phe and ACA are all plotted at their isoelectric points.  

 

This data analysis was also applied to the repeat experiment. The rate constant values 

were extracted, and are compared in Table 4.4. The inter-day precision can be seen to 

be approximately 10%.  
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Table 4.4 Rate constants determined using MS Excel Solver on 2 different sets of experimental data. 

 pH rate constant 

k (s
-1

) 

Run A 

rate constant 

k (s
-1

) 

Run B 

Difference 

(B-A) 

% Difference 

[(B-

A)/B]x100 

water 7 9.11E-03 9.30E-03 1.84E-04 2 

Ala <pI 5 1.01E-02 1.07E-02 6.59E-04 6 

Ala @pI 6 1.04E-02 1.14E-02 1.08E-03 9 

Ala >pI 7 1.14E-02 1.25E-02 1.09E-03 9 

Phe <pI 4.48 1.04E-02 1.10E-02 6.20E-04 6 

Phe @pI 5.48 1.01E-02 1.12E-02 1.03E-03 9 

Phe >pI 6.48 1.04E-02 1.19E-02 1.51E-03 13 

ACA <pI 7 1.66E-02 1.83E-02 1.72E-03 9 

ACA @pI 8 1.77E-02 1.91E-02 1.43E-03 7 

ACA >pI 9 1.87E-02 1.98E-02 1.12E-03 6 

 

The slowest rate constant in both cases was found to be that of water, indicating that 

the merocyanine is most stable in the presence of the blank water solution. Ala and 

Phe have the next slowest rate constant, demonstrating that they do have an effect on 

the stability and lifetime of the merocyanine. ACA has the largest rate constant, 

indicating that the MC is least stable in the presence of this amino acid.  As can been 

seen in Table 4.5, the rate of MC decay in ACA is 69% faster than in Ala, and 73% 

faster in Phe, which is quite a large difference.  
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Table 4.5 Percentage increase in rate of ACA decay compared to other AAs 

 Mean at pI % increase in rate of ACA relative to other AA 

Ala 1.09E-02 69% 

Phe  1.065 73% 

ACA 1.84 - 

 

A significant difference can be seen between the results obtained on different days. 

This difference can be clearly observed when 2 sets of results for the absorbance 

decay over time of Ala and water are compared (Figures 4.10, 4.11). In both cases the 

absorbance was found to be higher the second time the experiment was carried out. 
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Figure 4.50 Normalised comparison between two sets of kinetics data for Alanine at pI. 
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Water - comparison 2 runs
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Figure 4.11 Normalised comparison between two sets of kinetics data for water. 

 

The difficulty here is that this is a very sensitive and dynamic system, and there are a 

number of different factors which may influence the results on a day to day basis. 

However, the experimental design is very effective at limiting these differences by 

monitoring a large number of samples in the same run. The platewell reader used is 

capable of real-time analysis of up to 96 samples simultaneously. The inter-run 

variability was found to be very low, with standard deviation of between 1 and 4% 

(see data in Table 4.6 and error bars on Figures 4.12, 4.13). Therefore, the key is to 

test as many samples as possible in the same run in order to reliably compare the 

results. The inter-day results show the same general pattern, but they must be 

compared with more caution, due to the lower precision.  
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Table 4.6 A cross section of the average inter-run results (n=5) for water, Ala, Phe and ACA. The 

average standard deviation, and percentage standard deviation for each are shown at the bottom of the 

table. 

 Water Alanine Phenylalanine Aminocaprylic acid 

Time  Below 

pI 

At pI Above 

pI 

Below 

pI 

At pI Above 

pI 

Below 

pI 

At pI Above 

pI 

0 0.719 0.779 0.836 0.810 0.714 0.807 0.815 0.693 0.630 0.608 

10 0.831 0.886 0.893 0.878 0.806 0.895 0.935 0.751 0.707 0.633 

20 0.808 0.852 0.858 0.842 0.767 0.854 0.856 0.685 0.636 0.577 

30 0.778 0.816 0.824 0.798 0.741 0.820 0.813 0.629 0.581 0.528 

40 0.753 0.782 0.787 0.758 0.715 0.787 0.777 0.580 0.533 0.489 

50 0.730 0.750 0.754 0.722 0.691 0.755 0.744 0.536 0.492 0.447 

60 0.709 0.721 0.721 0.689 0.669 0.726 0.713 0.498 0.457 0.417 

61 0.707 0.718 0.718 0.686 0.666 0.723 0.710 0.495 0.454 0.415 

62 0.705 0.715 0.715 0.682 0.664 0.721 0.707 0.491 0.451 0.412 

63 0.703 0.713 0.712 0.679 0.662 0.718 0.704 0.488 0.448 0.409 

64 0.701 0.710 0.709 0.676 0.660 0.715 0.701 0.485 0.445 0.407 

65 0.698 0.707 0.706 0.674 0.657 0.712 0.698 0.481 0.442 0.404 

66 0.697 0.704 0.704 0.670 0.656 0.710 0.696 0.478 0.439 0.402 

67 0.695 0.702 0.701 0.667 0.653 0.707 0.693 0.475 0.436 0.400 

68 0.693 0.699 0.698 0.664 0.652 0.704 0.690 0.472 0.433 0.397 

69 0.691 0.697 0.695 0.661 0.650 0.702 0.687 0.469 0.430 0.394 

70 0.689 0.694 0.693 0.658 0.647 0.699 0.684 0.466 0.427 0.392 

80 0.670 0.669 0.666 0.631 0.629 0.675 0.659 0.438 0.402 0.371 

90 0.653 0.646 0.642 0.607 0.611 0.652 0.635 0.415 0.381 0.353 

100 0.637 0.625 0.621 0.585 0.596 0.632 0.614 0.396 0.363 0.338 

110 0.623 0.607 0.601 0.565 0.581 0.612 0.594 0.379 0.349 0.326 

120 0.609 0.590 0.582 0.548 0.568 0.595 0.577 0.365 0.336 0.315 

130 0.598 0.574 0.567 0.533 0.557 0.580 0.561 0.353 0.326 0.307 

140 0.587 0.560 0.553 0.519 0.546 0.566 0.547 0.342 0.318 0.300 

150 0.577 0.548 0.539 0.506 0.536 0.554 0.535 0.335 0.311 0.294 

160 0.568 0.537 0.528 0.495 0.527 0.543 0.524 0.328 0.305 0.290 

170 0.559 0.527 0.517 0.486 0.520 0.533 0.513 0.322 0.300 0.286 

180 0.552 0.518 0.509 0.478 0.512 0.524 0.504 0.316 0.296 0.283 

190 0.545 0.511 0.500 0.470 0.506 0.516 0.497 0.312 0.293 0.280 

200 0.539 0.504 0.493 0.463 0.500 0.509 0.490 0.309 0.290 0.278 

210 0.533 0.497 0.486 0.457 0.495 0.502 0.483 0.306 0.288 0.276 
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220 0.528 0.491 0.481 0.452 0.489 0.496 0.477 0.304 0.286 0.275 

230 0.524 0.486 0.476 0.448 0.486 0.491 0.472 0.302 0.285 0.273 

240 0.520 0.482 0.471 0.445 0.482 0.487 0.468 0.300 0.283 0.272 

250 0.516 0.478 0.467 0.441 0.479 0.482 0.464 0.299 0.283 0.271 

260 0.513 0.473 0.463 0.437 0.475 0.478 0.460 0.298 0.282 0.271 

Average 

Std Dev 

0.012 0.010 0.010 0.011 0.010 0.013 0.015 0.012 0.008 0.014 

% Std 

Dev 

1.8 1.4 1.6 1.8 1.5 1.9 2.1 2.5 1.8 3.7 
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Figure 4.12 Normalised plot comparing rate of decay of merocyanine in the presence of water, Ala, 

Phe and ACA. The rate for ACA can be seen to be much faster than the other samples. Error bar = 

Standard Deviation (n=5). 
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Figure 4.13 Normalised plot comparing rate of decay of merocyanine in the presence of the three 

amino acids tested. It can be clearly seen than ACA decays at a much faster rate than Ala or Phe. Error 

bar = Standard Deviation (n=5). 

 

Water showed greater MC stabilisation than any of the amino acids tested. Water is an 

extremely polar solvent, with an ET
N value of 165, compared to ethanol’s ET

N of 0.654. 

Therefore the merocyanine is stabilised to a great extent in water. The small size of 

the water molecule may give it an advantage over the bulkier amino acid molecules, 

giving it easier access to the charge sites on the merocyanine. We have already 

discussed the strong nature of hydrogen bonding, and indeed these kinetics results 

suggest that hydrogen bonding plays an important role in this system. 
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However, the strong stabilisation of the MC by water cannot mask the fact that there 

are significant differences observed between the amino acids tested. These differences 

can only be explained by the different properties of the three amino acids studied 

leading to a variation in interactions with the MC. This is backed up by the literature, 

where amino acid – merocyanine interactions are reported50-53. The structures and 

charge separations of the three amino acids are shown in Table 4.7.  

 

Table 4.7 The structures and charge separations of the three amino acids studied. 

AA Structure Charge 

Separation 

Ala 

 

O

O

NH
3
+

 

4.924 Å 

Phe 

O

O

NH
3
+H

 

2.147  Å 

ACA 
O

NH
3
+

O  

11.364 Å 

 

What remains is to elucidate the nature and cause of these interactions. There are 

several potential explanations to be considered.  

 

One possibility is that the difference in absorbance and rate of MC decay between the 

different amino acids may be a solvatochromic effect due to the variations in polarity 

between the different spikes added to the spiropyran solution and the effect these 
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variations have on the spiropyran merocyanine equilibrium. The lower intensity 

colour observed for the MC in the presence of ACA could possibly be due to the 

decreased polarity of the environment due to the non-polar long chain moiety of the 

molecule. This would be a very simple effect related to the relative stabilities of open 

and closed forms in polar and non-polar solvents. The MC is stabilised more in polar 

solvents, the SP is stabilised in non-polar solvents. However, there is no real 

solvatochromic shift observed in the absorbance maximum for ACA, which is at odds 

with this theory.  

 

The variation in absorbance of the merocyanine in the presence of water and different 

amino acids could possibly be due to electrostatic interactions between 

complementarily oriented zwitterions, or could be a charge stabilisation effect. In 

order to investigate this, the kinetic experiment was carried out on the merocyanine in 

the presence of sodium chloride, an electrolyte, at two different concentrations: 10-3 

and 10-1 M. The results are displayed in Fig. 4.14. It can be seen that the merocyanine 

is again most stable in the presence of water, suggesting that it is not a dielectric effect 

merely relying on the polarity of the solution. 
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Figure 4.14 Decaying absorbance of merocyanine over time, in the presence of water and different 

concentrations of electrolyte – NaCl. The data was fitted to a model using Microsoft Excel Solver, and 

the rate constants determined.  

 

The rate constants were determined using Microsoft Excel Solver as described above, 

and are summarised in Table 4.8. There is a difference between the rate constant value 

for water obtained in this experiment and in the two previous experiments, meaning 

that the k values for sodium chloride cannot be directly compared to the amino acid k 

values obtained previously.  

Table 4.8 Rate constants determined using MS Excel Solver 

  rate constant k (s
-1

) 

Water 8.28E-03 

NaCl 10-1 M 8.58E-03 

NaCl 10-3 M 8.60E-03 
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These results show that the stabilisation of the merocyanine cannot simply be 

explained by the dielectric constant of its environment. The difference in results 

between different amino acids indicates that the addition of an amino acid to the SP-

MC equilibrium does have an effect on the system whose strength seems to depend on 

the structure and properties of the amino acid used.  

 

One possible explanation for what is taking place is an acid-base interaction. This 

theory is suggested by the yellow colour observed in the presence of ACA. A yellow 

colour is also observed when the phenolate anion of the merocyanine is protonated 

(see UV-Vis spectra in Figure 1.6), suggesting that in these experiments interactions 

with the phenolate may have occurred. The colour visible to the eye in the samples 

containing ACA is effectively orange – a mixture of pink and yellow. This is 

confirmed by the UV-Vis absorbance spectrum obtained. This suggests that there 

could be a mixture of protonated and unprotonated MC in the solution.  If the 

merocyanine is being protonated, the only sources of hydrogen ions are the 

zwitterionic ACA itself or the water solvent. One possibility is that the merocyanine 

acts as a base and deprotonates the basic NH3
+ group of the amino acid. ACA is a 

very weak acid, with poor proton-donating capability, as can be seen by examining 

the pKa value. Although the pKa2 for ACA cannot be found in the literature, it can be 

estimated to be above 11 by examining the trend in pKa2 for amino acids with 

increasing spacer length, as demonstrated in Table 4.9. As can be seen, the extremely 

high pKa2 for aminocaprylic acid would indicate that a very strong base would be 

needed for deprotonation to occur. It seems unlikely that the merocyanine could act as 

such a strong base to deprotonate this weak acid. The pKa of the particular spiropyran 
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used in this study could not be found in the literature, but studies on similar 

spiropyrans (see Figure 1.6) have found their pKa to be approximately 4 or 527.  

Table 4.9 Comparison of pKa2 values of amino acids. There is a general increase in pKa2 as the chain 
length increases. 

Amino Acid Structure pKa2
66 

Glycine 

O

H

H
NH

3
+

O

 

9.78 

β-Alanine 
O

O

NH
3
+

 

10.19 

γ-Aminobutyric acid 
O

O

H
3
N+

 

10.43 

5-Aminovaleric acid 
O

O

H
3
N+

 

10.77 

8-Aminocaprylic acid 
O

NH
3
+

O  

>11 (estimate) 

 

Another possible explanation for the protonation of the merocyanine involves the 

dielectric effect. Ethanol has quite a high dielectric constant, which may be affected 

by the addition of the aminocaprylic acid. This long chain zwitterion has a large 

lipophilic moiety, which could possibly decrease the effective dielectric constant of 

the solution. This in turn could enhance the basicity of the merocyanine, enabling it to 

scavenge protons from the water. In his book “Reactions of Acids and Bases in 

Analytical Chemistry”67 Hulanicki states that for acids and bases in non aqueous 
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solvents, if there is a large dielectric constant, the interactions between ions will be 

weak, whereas in a solvent with a small dielectric constant the interactions between 

the ions will be enhanced. This is due to the varying degrees of solvation power, 

according to Williams and Hale, who described how the reduction of the dielectric 

constant leads to increased acid-base reactivity as the solvation energy becomes less 

important68. In order to test this concept in relation to the SP-MC system, a simple 

experiment was carried out to vary the dielectric constant of the solution. Toluene has 

a very low dielectric constant, and therefore it was added in varying ratios (10:1 and 

5:1) to the spiropyran solution in ethanol. A blank solution for each ratio was prepared 

by adding the relevant amount of ethanol instead of toluene. Water was then added to 

each solution, and the samples left in the dark overnight to investigate whether or not 

protonation would occur.  

 

The results showed that the protonation of the MC was not observed, as there was no 

change in the colour of each solution. The UV-Vis spectra of the samples and blanks 

show that there was very little difference observed between the blanks and the 

solutions containing toluene (Fig. 4.15), indicating that the low dielectric constant of 

the toluene did not have a significant effect on the merocyanine.  
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Comparison of absorbance of MC on addition of toluene

0.0

0.2

0.4

0.6

0.8

1.0

380 430 480 530 580 630 680

Wavelength (nm)

A
b
s
o
rb
a
n
c
e
 (
A
U
)

A1

A2

B1

B2

 

Figure 4.6 UV-Vis spectra comparing the absorbance of merocyanine in the presence and absence of 

toluene. The graphs overlaid are as follows: A1 is a 10:1 ratio of ethanol to toluene, A2 is its 

corresponding blank; B1 is a 5:1 ratio of ethanol to toluene, B2 is its corresponding blank. There is no 

shift observed in the ~400 nm region, as noted in the presence of aminocaprylic acid, suggesting that an 

acid-base interaction could be taking place, which is not reproduced with the addition of the non-polar 

toluene.   

 

Therefore, this experiment does not back up the theory that the merocyanine is 

protonated in the presence of aminocaprylic acid due to the effective dielectric 

constant of the solution. It would be necessary to carry out further investigations into 

this matter. Ion migration and gel permeation studies could clarify whether or not 

protonation is taking place. 

 

A further possible explanation for the varying degree of interaction relates to the 

spacer length between the charges on the amino acids. It was proposed in the 

introduction to this chapter that the amino acids with spacer lengths which approached 

that of the charged merocyanine would have stronger interactions with the MC than 
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an amino acid with a much larger spacer length. This would mean that the 

merocyanine would be more stable, i.e. have a slower decay rate, in the presence of 

amino acids with shorter spacer lengths. This theory is backed up by the significantly 

faster rate of decay observed in the presence of ACA, which has a much longer spacer 

length than the other two amino acids. However, one difficulty with this hypothesis is 

the yellow colour observed in the MC-ACA solutions, which cannot be explained by 

the basic spacer length theory. It appears that the system is more complex than the 

simple spacer length model, and this merits further research.  
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4.4. Conclusions 

From these results we can see that there are differences in the rates of decay of MC 

back to SP over time in the presence of different amino acids and water. It was found 

that ACA had a significantly faster rate of decay than the other amino acids, 

indicating that the structure of the amino acid has an affect on the SP-MC equilibrium.  

 

The inter-run and inter-day reproducibility were compared, and it was found that 

while the dynamic nature of the system led to large inter-day variations, the inter-run 

precision was very high. The instrumentation used capitalised on this by facilitating 

the monitoring of up to 96 samples in one run, enabling many samples to be tested 

and reliably compared.  

 

The results showed that water has a very strong stabilisation effect on the 

merocyanine. This however could not mask the differences in rate between the amino 

acids. There were several possible reasons proposed for the observed variations in 

rate.  One suggestion was that the different rates of decay were due to the dielectric 

constant of the environment, which is of course linked to the ionic strength of the 

solution. An electrolyte was added to the MC to investigate this theory, but the MC 

was found to still be most stable in water, indicating that the stabilisation of the 

zwitterionic MC is not simply due to the polarity of the solution.  

 

Another proposal was that an acid-base reaction was taking place. This was backed up 

by the yellow colour observed in MC in the presence of ACA. However, the fact that 

ACA is a very weak acid does not support this theory. Then it was suggested that the 
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MC was becoming protonated due to a decrease in the dielectric constant of the 

solution, because of the lipophilic moiety in the ACA molecule. However an attempt 

to replicate this effect by lowering the dielectric constant of the MC by adding toluene 

failed. Therefore, this proposition is also unsubstantiated.  

 

Finally, the theory that the strength of MC-AA interactions depends on the relative 

zwitterionic spacer length was put forward. This is supported by the rates of decay 

found experimentally, with the MC-ACA solution decaying much more rapidly than 

the other two amino acids, indicating that ACA stabilises the MC to a lesser extent. 

However, this theory does not explain the yellow colour observed in the MC-ACA 

solution. A more detailed study is required to elucidate this matter. Perhaps the 

variations of MC behaviour in the presence of different amino acids is due to a 

combination of some of these factors, and maybe the interactions are weak due to the 

fact that the AA and MC zwitterions are strongly hydrated, and therefore a much 

higher concentration of AA relative to MC is needed to drive the process. This is 

something that will have to be taken into account in further studies.  
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5.  Overall Discussion and Conclusions  

Although the photochromism, thermochromism and solvatochromism of spiropyran 

have been studied in detail for more than 50 years, the spiropyran-merocyanine 

equilibrium is still a delicate system which is subject to many factors that prevent it 

from acting in a predictable way Any investigation into the potential use of spiropyran 

as a molecule for use in chemical or biological sensing must take into account the 

multiple variables which can alter the equilibrium of the system. The effect that 

variables such as light, heat, polarity, acidity have on the equilibrium, must be 

properly understood and regulated, to ensure a full and thorough investigation of 

amino acid – spiropyran interactions.  

 

The results of this study have demonstrated the various interactions taking place to be 

quite complex, with many factors potentially involved. The experiments carried out 

demonstrated that there is a difference in MC-AA interactions depending on the 

structure of the amino acid used. However, further work is needed to determine the 

nature and cause of these interactions.  

 

From the results observed it seems that hydrogen bonding and the solvation of the MC 

by water is very energetically favourable. This may have caused difficulties in trying 

to observe and analyse MC-AA interactions, considering that the amino acids used 

were only soluble in water. This led to either a two-phase system or a mixture of 

solvents, thus adding further variables to affect the SP-MC equilibrium. It could be 

that these interactions are weak due to the fact that the AA and MC zwitterions are 
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strongly hydrated, and therefore a much higher concentration of AA relative to MC is 

needed to drive the process. It could be helpful to reduce the system to a single 

solvent. One way of doing this would be to carry out a kinetics study on the MC-AA 

interactions in water. We have seen from the two phase experiments carried out that 

the MC crossed very easily into the aqueous phase in a high enough concentration to 

observe a substantial colour. Even with the strong hydrogen bonding when the MC 

was dissolved in water, variations in absorbance were demonstrated for the different 

amino acids. This would indicate that a more in-depth study of MC-AA interactions in 

water could prove very fruitful, and provide valuable information showing how the 

differences in structure and polarity of the amino acid could affect absorbance and 

even rate of decay. This would be an interesting piece of research.   

 

Another alternative would be to put a membrane between the spiropyran and the 

aqueous layer, as described by Sunamoto50. It is evident that amino acid – spiropyran 

interactions do take place, as reported in the literature. This study has merely been an 

observation of these interactions in a very simple solvent system, and more work is 

needed to further characterise the interactions taking place. The use of a two-phase 

system separated by a membrane could be the key to understanding and characterising 

MC-AA interactions.  

 

An additional way to optimise the MC-AA interactions could be to modify the 

spiropyran used. The basic spiropyran used throughout this project may not be the 

optimum spiropyran molecule to act as a ligand to an amino acid. The addition of 

some side chain could drastically alter the host-guest properties of the molecule, and 

make electrostatic interactions with amino acids a lot more favourable. This theory is 
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supported by the spiropyran used by Tsubaki and co-workers52 for the recognition of 

amino acid enantiomers. 

 

The possibility that an acid-base reaction is taking place in the MC-AA solution is 

another area that requires further investigation. Initial tests to investigate whether this 

was a dielectric constant effect proved inconclusive, and more work is needed to 

clarify this issue. The modification of the dielectric constant by the addition of toluene 

did not yield the same yellow solution observed with ACA. Again a more 

comprehensive study of the various factors involved in the amino acid interactions is 

needed.  

 

Another exciting area of future work would be the immobilisation of the spiropyran 

onto a surface or onto beads. This would enable light-modulated activation of the 

surface/bead, and could provide a platform for selective amino acid binding. This 

immobilisation could eliminate a lot of the solvent effects that have been observed 

thus far, and could potentially clarify the nature and strength of interactions between 

amino acids and merocyanine. This field of study has already been commenced in the 

research group.  

 

Therefore, in order to optimise interactions between amino acids and spiropyran, 

intelligent system design is needed to minimise the influence of water and hydrogen 

bonding on the merocyanine and to optimised interactions with amino acid. This is a 

very exciting area of research with potentially far-reaching consequences in the 

biological sensing field. However, in order to fully exploit the potential of spiropyran 

as a selective self-indicating biological sensing agent, further research is needed. This 
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study confirms that the photochromic equilibrium between spiropyran and 

merocyanine is indeed affected differently in the presence of a range of amino acids, 

showing that the area merits additional work. This body of research has also 

highlighted some of the key factors involved in the intermolecular interactions 

between the solvent, spiropyran and amino acid. Due to time constraints, a 

comprehensive analysis of each of these factors was not possible, and this study 

merely provides an overview which can stimulate further discussion and the 

development of focussed research into the areas highlighted.  
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6.  Appendix 

β-Alanine 

 

 

Glycine  

 

 

L-Tyrosine  

 

L-Phenylalanine  
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L-Leucine  

 

 

8-Aminocaprylic acid  

 

5-Aminovaleric acid  

 

γ -Aminobutyric acid  
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